WO2011027309A2 - Système de stockage d'énergie thermique à partir d'un rayonnement solaire direct - Google Patents

Système de stockage d'énergie thermique à partir d'un rayonnement solaire direct Download PDF

Info

Publication number
WO2011027309A2
WO2011027309A2 PCT/IB2010/053941 IB2010053941W WO2011027309A2 WO 2011027309 A2 WO2011027309 A2 WO 2011027309A2 IB 2010053941 W IB2010053941 W IB 2010053941W WO 2011027309 A2 WO2011027309 A2 WO 2011027309A2
Authority
WO
WIPO (PCT)
Prior art keywords
solid particles
fluid
solar radiation
bed
solar
Prior art date
Application number
PCT/IB2010/053941
Other languages
English (en)
Other versions
WO2011027309A3 (fr
Inventor
Andrea De Riccardis
Original Assignee
Andrea De Riccardis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andrea De Riccardis filed Critical Andrea De Riccardis
Publication of WO2011027309A2 publication Critical patent/WO2011027309A2/fr
Publication of WO2011027309A3 publication Critical patent/WO2011027309A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H7/00Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release
    • F24H7/02Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid
    • F24H7/04Storage heaters, i.e. heaters in which the energy is stored as heat in masses for subsequent release the released heat being conveyed to a transfer fluid with forced circulation of the transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Object of the present invention is a system for thermal energy storage from solar radiation apt to store thermal energy efficiently and to transfer simply and efficiently, even in different times, heat to a fluid which carries out a thermo-dynamic cycle to generate electric energy.
  • a system for thermal energy storage from solar radiation is generally made up of a means able to concentrate the solar radiation and to transfer it to a second means able to store the heat contained therein and to give such heat to a fluid for following usage.
  • the highest temperature reachable by the fluid heated by the storage system influences the yield reachable by the thermo-dynamic cycle.
  • the possibility that the operating fluid reaches the nearest temperature to the highest reachable one by concentrating the solar radiation, reducing the inevitable losses, is therefore one of the most important features of such storage systems.
  • thermo-dynamic solar plants with thermal storage it is generally possible to distinguish two operating fluids: the thermo-vector fluid which receives the heat from the concentration system and defines the storage peculiarity with its chemical- physical features; the process fluid which receives the heat from the thermo-vector fluid in an exchanger and carries out the thermo-dynamic or power cycle.
  • thermo-vector fluids used in plants which have exceeded a considerable number of operating hours are two: the synthetic/mineral oils and the mixtures of sodium and potassium fused salts. Both the fluids, which operate at the operating temperature at the liquid state, have shown a series of problems and limits of usage: the synthetic/mineral oils can be used up to the highest temperature of about 400°C, thus limiting the above-described power cycle yield; in addition they are expensive and in case of losses, they are simply flammable and dangerous for the environment.
  • the sodium and potassium fused salts allow to operate at maximum temperatures of about 550 °C (not more owing to the dissociation) , but the mixtures of these salts cannot be cautiously cooled under 290°C, as they crystallize at 238°C and solidify at 221°C, thus imposing a series of technological measures aimed at avoiding possible solidifications during night and in the starting steps of the plant .
  • the international patent WO 2008/154455 relates to a granular means for heat storage and apparatuses for heat storage systems.
  • the patent describes various heat storage systems, their method of usage and the plants for the production of vapor and energy which use them. It is described a solar energy concentration system, comprising a field of reflecting mirrors or Fresnel lens which heats a fluid, which in turn heats the heat storage system made up of granular inert material.
  • the heat storage system is able to give, in a second moment, the heat to the fluid which carries out the thermodynamic cycle. Further it is claimed the method for using such storage system which provides to direct the heat source on one or more ducts in which the fluid flows, which later gives the heat to the storage means.
  • the patent WO 2008/108870 filed on 12/2008 relates to a "Solar energy plant and a method and/or system for energy storage in a concentration solar plant”.
  • the heat storage system is made up of tanks full of a solid means resistant to high temperatures, in spheres with diameter between 5 and 10 mm.
  • the hot gases coming from the manifold pass in these tanks where they heat the solid means contained therein.
  • the tanks where the heat is stored are crossed by cold gases coming from the plant, to extract the stored heat.
  • the direct solar radiation increases the temperature of a compressed gas flow, which in turn increases the temperature of the single solid particles constituting the storage means.
  • Figure 1 shows generally schematically the elements of a storage system according to the invention
  • FIG. 2 shows schematically the storage system in which the concentrator acts indirectly on the solid fluidized particles of the bed
  • Figure 3 shows schematically the storage system in which a Fresnel lens acts directly on the solid fluidized particles of the bed
  • Figure 4 shows schematically the storage system usable for the production of electric energy
  • Figure 5 shows schematically the solar plant made up of a series of storage systems according to the invention, integrated with other devices which use different forms of energy, integrative or substitutive for the solar one.
  • Figure 1 shows a preferred embodiment of the storage system according to the present invention, comprising a bed of perfectly mixed particles (3) inside a generic containment structure (6); a concentration system (2) of solar rays (1); a generic device for thermal exchange (4), in which the fluid (5), which carries out the thermo-dynamic cycle, flows.
  • the thermal energy coming from solar radiation is stored directly in the particles constituting the bed (3) and not in a substance at liquid state as a fused salt or oil, and however without requiring to interpose an intermediate fluid between the solar radiation and the storage means.
  • FIG 2 it is shown an embodiment of the storage system according to the invention in which the conditions of perfect mixing are attained by fluidizing the solid particles (3) with a gas or vapor, as it occurs in fluid bed systems whose characteristics and performance are well known in the different industrial embodiments.
  • a fluid bed of solid particles is characterized by a very high thermal inertia, a constant temperature in the whole mass and by very high coefficients of thermal exchange with the immersed surfaces in the dense phase.
  • Figure 2 shows that the fluidizing of the particles occurs by introducing the fluid (9) across the duct (12) in the distributing area (10), delimited by the bottom of the container (6) and by a perforated plate (11) ; after crossing with suitable speed the bed of particles, when reached the freeboard (13), the fluid (9) abandons the system, insulated from outside by means of the covering (8), across the duct (14).
  • the thermal energy stored by the fluidized particles (3) is transferred to the fluid (5) by means of the exchanger (4).
  • the described embodiment is intended to be an example and does not limit the application; in fact although the fluid distribution is shown by adopting a perforated distributor (11), many other kinds of distributors can be used for this function, as for example sintered plates or ceramics and/or distributing nozzles in the most different configurations. Every kind has however the only aim to distribute the flow of fluid used in the best and simplest possible form.
  • the same considerations are valid for the container (6); according to a preferred embodiment of the present invention this is made of high temperatures resistant-steel, it is insulated to limit its dispersions and it is cylindrically shaped, but different materials and sections can be used without departing from the scope of the present invention.
  • the continuous and causal re-mixing of the solid particles can be obtained not only by means of the fluidization of the same by means of a gas or vapor, but only by using mechanical devices for mixing or by generating acoustic waves.
  • Such systems can be used alone or in combination to improve the mixing of the solid particles the most.
  • the generation of the acoustic waves can be efficiently obtained by using an amplifier, a generator of signal and a loudspeaker and it is used to obtain the continuous re-mixing of solid particles with particular features, maybe contemporaneously with the fluidization obtained as above-described .
  • Such heating is of the indirect kind and the device (7) can be as a way of example but not in a limiting way, a simple material with good characteristics of thermal conductivity or a more complex system as, for example, a heat pipe.
  • the fluid (5) which carries out the thermo-dynamic cycle and the fluid (9) which carries out the fluidization, are different in nature and naturally separated.
  • the temperature level reachable with a system as represented in figure 2 could allow to carry out a Stirling cycle where the gases of the thermodynamic cycle (5), usually hydrogen and helium under high pressure, are heated by means of the exchange surfaces (4) immersed in the dense phase of the perfectly mixed bed (3) .
  • the storage system object of the invention is characterized by provision of a Fresnel lens (19), which acts directly on the particles of the fluidized bed by means of a window of material transparent to .
  • the solar radiation (18) in place of the generic concentration system; according to the diagram, the perfect mixing of the solid particles (3) is obtained by introducing the fluid (9) across the duct (12), or the fluid (5) across the duct (15); in this latter a part of the fluid (5), normally used to carry out the thermo ⁇ dynamic cycle, is bled while outgoing from the exchanger (4) and used for the fluidization .
  • the fluid (9) or the fluid (5) can outgo from the duct (14) : although the opening of the valve (17) provides normally the closing of the valve (16), the possibilities of mixing the two fluids are not excluded a priori. It is extremely clear that, by adopting a fluid for the fluidization which coincides with the one carrying out the thermodynamic cycle, significant energy regeneration is possible. Only as a way of example, providing a Fresnel lens realized in a plastic material as for example polymethylmetacrylate (PMMA) has considerable advantages: the optimum optical properties, the low costs and the great production rates today reachable among the others.
  • PMMA polymethylmetacrylate
  • the blocking of the fluidization or however of the mixing can be obviously carried out not only by night but also during the interruptions of the insolation for the temporary passage of clouds and variable weather; as a consequence, each possible case of thermal shock occurring in the other storage systems are warded off.
  • the fluid which carries out the operating cycle is water, in form of overheated vapor, which expands in the turbine (21) to generate power.
  • the overheated vapor is generated inside the exchange surface (4), immersed in the dense phase of the bed of perfectly mixed solid particles, contained inside a fluidization column (24) .
  • a condenser (22) and a water pump (23) complete the classical scheme of a Rankine cycle.
  • part of the overheated vapor (5) outgoing from the exchanger (4) is withdrawn and used, by means of the opening of the valve (26) for the fluidization of the column: the vapor, outgoing from the freeboard, goes again in the circuit between the condenser (22) and the turbine (21) .
  • FIG. 4 shows another advantage of the storage system according to the invention deriving from the usage of the vapor as process and fluidization, fluid: the thermal storage, carried out by using the fluidized solid particles, lies physically on the same concentration area and it is the vapor, which, also at a considerable distance, reaches the usage area. It is also clear the reduced environmental impact of a storage system realized like that, where the fluidization column (24) and each vapor and water lines which reach the same can be arranged under the earth, and so can be invisible.
  • Figure 5 represents only as a way of example and in a not limiting way, a diagram in which many storage systems as in figure 4, numbered (28) to (37) are part of an unique plant for energy production together with the vapor generators (38) and (39) connected to processes which use substitutive forms of energy for the solar one, as for example the one contained in the biomasses or fossil fuels.
  • the fluid (5) circulated by the pump (23) crosses each storage system, the ones connected in series as well as those connected in parallel in an absolutely generic way, generating vapor usable in the turbine (21) .
  • the plants have generally different power and dimensions and can function with their own inner exchanger with water or vapor depending on their arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Central Heating Systems (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne un système de stockage d'énergie thermique à partir d'un rayonnement solaire, comprenant un concentrateur de rayons solaires (2), un lit de particules solides (3) en mouvement relatif continu et intermittent servant de moyen de stockage de l'énergie thermique et un dispositif d'échange thermique (4) disposé entre lesdites particules solides (3) et un liquide (5) qui permet le déroulement du cycle thermodynamique. En la présence de rayonnement solaire direct (1), le concentrateur de rayons solaires (2) dirige le rayonnement solaire dans une zone située à l'intérieur du lit de particules solides (3), ce qui produit une augmentation directe et uniforme de la température du moyen de stockage sans faire appel à des échanges thermiques intermédiaires. L'énergie thermique stockée peut être transférée à un second moment au liquide qui permet au cycle thermodynamique de se dérouler. Le mouvement des particules peut être obtenu par fluidisation ou au moyen de dispositifs mécaniques ou acoustiques, alors que la concentration du rayonnement solaire peut se produire au moyen d'une lentille de Fresnel.
PCT/IB2010/053941 2009-09-04 2010-09-02 Système de stockage d'énergie thermique à partir d'un rayonnement solaire direct WO2011027309A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITLE2009A000011 2009-09-04
IT000011A ITLE20090011A1 (it) 2009-09-04 2009-09-04 Sistema di accumulo dell'energia termica da radiazione solare.

Publications (2)

Publication Number Publication Date
WO2011027309A2 true WO2011027309A2 (fr) 2011-03-10
WO2011027309A3 WO2011027309A3 (fr) 2012-03-01

Family

ID=41786387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/053941 WO2011027309A2 (fr) 2009-09-04 2010-09-02 Système de stockage d'énergie thermique à partir d'un rayonnement solaire direct

Country Status (2)

Country Link
IT (1) ITLE20090011A1 (fr)
WO (1) WO2011027309A2 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20110234A1 (it) * 2011-05-10 2012-11-11 Magaldi Ind Srl Ricevitore/scambiatore e metodo di connessione ad alto livello di efficienza energetica.
US20130042857A1 (en) * 2010-04-29 2013-02-21 Mario Magaldi Storing and transport device and system with high efficiency
WO2013138915A1 (fr) * 2012-03-20 2013-09-26 Sheer Technology Inc. Système de stockage et de transfert d'énergie
ITRM20120135A1 (it) * 2012-04-03 2013-10-04 Magaldi Ind Srl Dispositivo, impianto e metodo ad alto livello di efficienza energetica per l'accumulo e l'impiego di energia termica di origine solare.
WO2013110804A3 (fr) * 2012-01-28 2013-10-24 Georg-Simon-Ohm-Hochschule Für Angewandte Wissenschaften Procédé de conversion de courant en chaleur et de stockage de ladite chaleur
WO2011035232A3 (fr) * 2009-09-18 2013-10-31 Massachusetts Institute Of Technology Système à énergie solaire concentrée
JP2013543576A (ja) * 2010-10-15 2013-12-05 マガルディ インダストリエ ソシエタ ア レスポンサビリタ リミタータ 太陽由来の熱エネルギーを蓄積および使用するための高レベルのエネルギー効率を有する装置、プラントおよび方法
WO2013110730A3 (fr) * 2012-01-24 2014-03-13 Jb Group Aps Système d'accumulation de chaleur
WO2014181047A1 (fr) * 2013-05-08 2014-11-13 Sunpartner Technologies Dispositif de capture, d'échange et de stockage thermique de l'énergie solaire
ITUB20150365A1 (it) * 2015-04-21 2016-10-21 Balderrie Energies Gmbh Dispositivo di raccolta di energia solare mediante un concentratore del tipo senza immagine.
WO2016207000A1 (fr) 2015-06-23 2016-12-29 Mohamed Mansour Ali Accumulateur d'énergie thermique
GB2555572A (en) * 2016-10-19 2018-05-09 Amarjit Riyait Solar concentrator, solar receiver and thermal storage
IT201700010806A1 (it) * 2017-02-01 2018-08-01 Magaldi Power Spa Dispositivo, impianto e metodo ad alto livello di efficienza energetica per l_impiego di energia termica di origine solare
WO2018142292A1 (fr) * 2017-02-01 2018-08-09 Magaldi Power S.P.A. Dispositif à haut rendement énergétique, système et procédé d'utilisation d'énergie thermique d'origine solaire
IT201700018392A1 (it) * 2017-02-24 2018-08-24 Tomor Imeri Impianto per accumulo e conservazione di energia e tramite laq concentrazione dei raggi solari su barra conducente
IT201700018423A1 (it) * 2017-02-24 2018-08-24 Maurizio Carta Impianto per produzione di energia di acqua calda, tramite la concentrazione dei raggi solari su barra conducente
US10253685B2 (en) 2012-08-24 2019-04-09 Dynacert Inc. Method and system for improving fuel economy and reducing emissions of internal combustion engines
US10337734B2 (en) 2012-07-20 2019-07-02 Magaldi Industrie S.R.L. Plant for dry conveying of slag and / or heterogenous materials
US10400687B2 (en) 2016-10-20 2019-09-03 Dynacert Inc. Management system and method for regulating the on-demand electrolytic production of hydrogen and oxygen gas for injection into a combustion engine
US10488079B2 (en) 2014-05-13 2019-11-26 Massachusetts Institute Of Technology Low cost parabolic cylindrical trough for concentrated solar power
WO2020260155A1 (fr) 2019-06-26 2020-12-30 IFP Energies Nouvelles Systeme et procede d'echange de chaleur a contre-courant entre un fluide et des particules de stockage de chaleur
US11339730B2 (en) 2018-04-27 2022-05-24 Dynacert Inc. Systems and methods for improving fuel economy of internal combustion engines

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2356094A1 (fr) 1976-06-21 1978-01-20 Alsacienne Atom Perfectionnements aux moyens de captation et de stockage de l'energie solaire
US4081024A (en) 1973-11-13 1978-03-28 Gas Developments Corporation Air conditioning apparatus and method
US4153047A (en) 1977-07-13 1979-05-08 Dumbeck Robert F Heat storage systems
US4286141A (en) 1978-06-22 1981-08-25 Calmac Manufacturing Corporation Thermal storage method and system utilizing an anhydrous sodium sulfate pebble bed providing high-temperature capability
US4405010A (en) 1978-06-28 1983-09-20 Sanders Associates, Inc. Sensible heat storage unit
WO2008108870A1 (fr) 2007-03-08 2008-09-12 Research Foundation Of The City University Of New York Centrale hélioélectrique, et procédé et/ou système de stockage d'énergie dans une centrale hélioélectrique concentrée
WO2008154455A2 (fr) 2007-06-06 2008-12-18 Ausra, Inc. Supports de stockage d'énergie thermique granulaires et dispositifs de stockage d'énergie thermique associés

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US608755A (en) * 1898-08-09 District of co
DE2838284A1 (de) * 1978-09-01 1980-03-13 Alfred Dipl Phys Seeger Vorrichtung zur nutzung von sonnenenergie
US4449515A (en) * 1979-07-16 1984-05-22 Seige Corporation Apparatus for collecting, intensifying and storing solar energy
TW347861U (en) * 1997-04-26 1998-12-11 Ind Tech Res Inst Compound-type solar energy water-heating/dehumidifying apparatus
US7690377B2 (en) * 2006-05-11 2010-04-06 Brightsource Energy, Inc. High temperature solar receiver
DE102007035384A1 (de) * 2007-07-26 2009-01-29 I-Sol Ventures Gmbh Vorrichtung zur Gewinnung und Verwertung von Solarwärme
US8776784B2 (en) * 2008-06-27 2014-07-15 The Boeing Company Solar power device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081024A (en) 1973-11-13 1978-03-28 Gas Developments Corporation Air conditioning apparatus and method
FR2356094A1 (fr) 1976-06-21 1978-01-20 Alsacienne Atom Perfectionnements aux moyens de captation et de stockage de l'energie solaire
US4153047A (en) 1977-07-13 1979-05-08 Dumbeck Robert F Heat storage systems
US4286141A (en) 1978-06-22 1981-08-25 Calmac Manufacturing Corporation Thermal storage method and system utilizing an anhydrous sodium sulfate pebble bed providing high-temperature capability
US4405010A (en) 1978-06-28 1983-09-20 Sanders Associates, Inc. Sensible heat storage unit
WO2008108870A1 (fr) 2007-03-08 2008-09-12 Research Foundation Of The City University Of New York Centrale hélioélectrique, et procédé et/ou système de stockage d'énergie dans une centrale hélioélectrique concentrée
WO2008154455A2 (fr) 2007-06-06 2008-12-18 Ausra, Inc. Supports de stockage d'énergie thermique granulaires et dispositifs de stockage d'énergie thermique associés

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488386B2 (en) 2009-09-18 2016-11-08 Massachusetts Institute Of Technology Concentrated solar power system receiver
WO2011035232A3 (fr) * 2009-09-18 2013-10-31 Massachusetts Institute Of Technology Système à énergie solaire concentrée
US9273883B2 (en) 2009-09-18 2016-03-01 Massachusetts Institute Of Technology Concentrated solar power system
US8960182B2 (en) * 2010-04-29 2015-02-24 Magaldi Industrie S.R.L. Device and method for storage and transfer of thermal energy originated from solar radiation based on fluidization of a bed of particles
US20130042857A1 (en) * 2010-04-29 2013-02-21 Mario Magaldi Storing and transport device and system with high efficiency
AU2011246933B2 (en) * 2010-04-29 2016-03-24 Magaldi Industrie S.R.L. Device and method for storage and transfer of thermal energy
JP2013543576A (ja) * 2010-10-15 2013-12-05 マガルディ インダストリエ ソシエタ ア レスポンサビリタ リミタータ 太陽由来の熱エネルギーを蓄積および使用するための高レベルのエネルギー効率を有する装置、プラントおよび方法
WO2012153264A3 (fr) * 2011-05-10 2013-06-20 Magaldi Industrie S.R.L. Échangeur/collecteur et procédé de raccordement à haut niveau de rendement énergétique
ITRM20110234A1 (it) * 2011-05-10 2012-11-11 Magaldi Ind Srl Ricevitore/scambiatore e metodo di connessione ad alto livello di efficienza energetica.
WO2013110730A3 (fr) * 2012-01-24 2014-03-13 Jb Group Aps Système d'accumulation de chaleur
WO2013110804A3 (fr) * 2012-01-28 2013-10-24 Georg-Simon-Ohm-Hochschule Für Angewandte Wissenschaften Procédé de conversion de courant en chaleur et de stockage de ladite chaleur
WO2013138915A1 (fr) * 2012-03-20 2013-09-26 Sheer Technology Inc. Système de stockage et de transfert d'énergie
WO2013150347A1 (fr) * 2012-04-03 2013-10-10 Magaldi Industrie S.R.L. Dispositif, système et procédé pour haut niveau de rendement énergétique pour le stockage et l'utilisation d'énergie thermique d'origine solaire
KR20150004347A (ko) * 2012-04-03 2015-01-12 마갈디 인더스트리에 에스.알.엘. 태양 원천의 열 에너지의 저장 및 사용에 대한 에너지 효율성의 수준을 높이기 위한 장치, 시스템 및 방법
CN104204516A (zh) * 2012-04-03 2014-12-10 马迦迪工业有限公司 太阳能起源的热能储用高级能量效率之装置、系统和方法
JP2015517081A (ja) * 2012-04-03 2015-06-18 マガルディ インダストリエ ソシエタ ア レスポンサビリタ リミタータ 高レベルのエネルギー効率で太陽由来の熱エネルギーを貯蔵及び使用する装置、システム及び方法
ITRM20120135A1 (it) * 2012-04-03 2013-10-04 Magaldi Ind Srl Dispositivo, impianto e metodo ad alto livello di efficienza energetica per l'accumulo e l'impiego di energia termica di origine solare.
KR102030642B1 (ko) * 2012-04-03 2019-11-08 마갈디 인더스트리에 에스.알.엘. 태양 원천의 열 에너지의 저장 및 사용에 대한 에너지 효율성의 수준을 높이기 위한 장치, 시스템 및 방법
AU2012376491B2 (en) * 2012-04-03 2017-02-16 Magaldi Industrie S.R.L. Device, system and method for high level of energetic efficiency for the storage and use of thermal energy of solar origin
US10337734B2 (en) 2012-07-20 2019-07-02 Magaldi Industrie S.R.L. Plant for dry conveying of slag and / or heterogenous materials
US10494993B2 (en) 2012-08-24 2019-12-03 Dynacert Inc. Method and system for improving fuel economy and reducing emissions of internal combustion engines
US10253685B2 (en) 2012-08-24 2019-04-09 Dynacert Inc. Method and system for improving fuel economy and reducing emissions of internal combustion engines
US10883419B2 (en) 2012-08-24 2021-01-05 Dynacert Inc. Method and system for improving fuel economy and reducing emissions of internal combustion engines
WO2014181047A1 (fr) * 2013-05-08 2014-11-13 Sunpartner Technologies Dispositif de capture, d'échange et de stockage thermique de l'énergie solaire
FR3005498A1 (fr) * 2013-05-08 2014-11-14 Sunpartner Dispositif de capture, d'echange et de stockage thermique de l'energie solaire
US10488079B2 (en) 2014-05-13 2019-11-26 Massachusetts Institute Of Technology Low cost parabolic cylindrical trough for concentrated solar power
WO2016170485A1 (fr) * 2015-04-21 2016-10-27 Balderrie Energies Gmbh Dispositif servant à collecter de l'énergie solaire au moyen d'un concentrateur du type concentrateur par réflexion
ITUB20150365A1 (it) * 2015-04-21 2016-10-21 Balderrie Energies Gmbh Dispositivo di raccolta di energia solare mediante un concentratore del tipo senza immagine.
WO2016207000A1 (fr) 2015-06-23 2016-12-29 Mohamed Mansour Ali Accumulateur d'énergie thermique
US10976113B2 (en) 2016-10-19 2021-04-13 Storenergy Holdings, Ltd. Solar concentrator, solar receiver and thermal storage
GB2555572B (en) * 2016-10-19 2021-03-10 Storenergy D O O Solar concentrator, solar receiver and thermal storage
GB2555572A (en) * 2016-10-19 2018-05-09 Amarjit Riyait Solar concentrator, solar receiver and thermal storage
US11619186B2 (en) 2016-10-20 2023-04-04 Dynacert Inc. Management system and method for regulating the on-demand electrolytic production of hydrogen and oxygen gas for injection into a combustion engine
US10400687B2 (en) 2016-10-20 2019-09-03 Dynacert Inc. Management system and method for regulating the on-demand electrolytic production of hydrogen and oxygen gas for injection into a combustion engine
US11268458B2 (en) 2016-10-20 2022-03-08 Dynacert Inc. Management system and method for regulating the on-demand electrolytic production of hydrogen and oxygen gas for injection into a combustion engine
US10961926B2 (en) 2016-10-20 2021-03-30 Dynacert Inc. Management system and method for regulating the on-demand electrolytic production of hydrogen and oxygen gas for injection into a combustion engine
US10934952B2 (en) 2016-10-20 2021-03-02 Dynacert Inc. Management system and method for regulating the on-demand electrolytic production of hydrogen and oxygen gas for injection into a combustion engine
CN110382971A (zh) * 2017-02-01 2019-10-25 马迦迪动力股份公司 用于使用源自太阳的热能的高能量效率的装置、系统及方法
AU2018215597B2 (en) * 2017-02-01 2023-04-13 Magaldi Power S.P.A. High energy-efficient device, system and method for the use of thermal energy of solar origin
JP2020514658A (ja) * 2017-02-01 2020-05-21 マガルディ パワー ソシエタ ペル アチオニ 太陽起源の熱エネルギーを使用するための高エネルギー効率装置、システム及び方法
WO2018142292A1 (fr) * 2017-02-01 2018-08-09 Magaldi Power S.P.A. Dispositif à haut rendement énergétique, système et procédé d'utilisation d'énergie thermique d'origine solaire
IT201700010806A1 (it) * 2017-02-01 2018-08-01 Magaldi Power Spa Dispositivo, impianto e metodo ad alto livello di efficienza energetica per l_impiego di energia termica di origine solare
KR102451326B1 (ko) 2017-02-01 2022-10-05 마갈디 파워 에스.피.에이. 태양열 에너지 사용을 위한 고-에너지 효율 장치, 시스템 및 방법(high energy-efficient device, system and method for the use of thermal energy of solar origin)
IL268411B2 (en) * 2017-02-01 2023-05-01 Magaldi Power Spa An efficient energy consumption device, system and method for using heat energy from a solar source
KR20190118596A (ko) * 2017-02-01 2019-10-18 마갈디 파워 에스.피.에이. 태양열 에너지 사용을 위한 고-에너지 효율 장치, 시스템 및 방법(high energy-efficient device, system and method for the use of thermal energy of solar origin)
US11143435B2 (en) 2017-02-01 2021-10-12 Magaldi Power S.P.A. High energy-efficient device, system and method for the use of thermal energy of solar origin
JP7008712B2 (ja) 2017-02-01 2022-01-25 マガルディ パワー ソシエタ ペル アチオニ 太陽起源の熱エネルギーを使用するための高エネルギー効率装置、システム及び方法
IL268411A (en) * 2017-02-01 2019-09-26 Salatino Piero An efficient energy consumption device, system and method for using heat energy from a solar source
IT201700018392A1 (it) * 2017-02-24 2018-08-24 Tomor Imeri Impianto per accumulo e conservazione di energia e tramite laq concentrazione dei raggi solari su barra conducente
IT201700018423A1 (it) * 2017-02-24 2018-08-24 Maurizio Carta Impianto per produzione di energia di acqua calda, tramite la concentrazione dei raggi solari su barra conducente
US11339730B2 (en) 2018-04-27 2022-05-24 Dynacert Inc. Systems and methods for improving fuel economy of internal combustion engines
FR3097952A1 (fr) 2019-06-26 2021-01-01 IFP Energies Nouvelles Système et procédé d’échange de chaleur à contre-courant entre un fluide et des particules de stockage de chaleur
WO2020260155A1 (fr) 2019-06-26 2020-12-30 IFP Energies Nouvelles Systeme et procede d'echange de chaleur a contre-courant entre un fluide et des particules de stockage de chaleur

Also Published As

Publication number Publication date
WO2011027309A3 (fr) 2012-03-01
ITLE20090011A1 (it) 2009-12-04

Similar Documents

Publication Publication Date Title
WO2011027309A2 (fr) Système de stockage d'énergie thermique à partir d'un rayonnement solaire direct
Borunda et al. Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes
AU2011246933B2 (en) Device and method for storage and transfer of thermal energy
EP3172413B1 (fr) Centrale électrique à cycle vapeur et système d'échange d'énergie thermique à haute température et procédé de fabrication de centrale électrique
CN103562503B (zh) 太阳能热力发电站
AU2009312347B2 (en) Solar thermal power plant and dual-purpose pipe for use therewith
EP2834519B1 (fr) Dispositif, système et procédé pour haut niveau de rendement énergétique pour le stockage et l'utilisation d'énergie thermique d'origine solaire
US20130147197A1 (en) Combined Cycle Solar Power Generation
KR102072415B1 (ko) 열병합 발전소 및 열병합 발전소를 작동하기 위한 방법
US20120111006A1 (en) Solar energy transfer and storage apparatus
EP2885590A1 (fr) Centrale de production d'énergie
JP2022515261A (ja) 熱の形態でエネルギーを蓄積するプラントと方法
CN103261787B (zh) 用于储存及利用太阳热能的具有高能量效率的装置、工厂以及方法
CN110637201B (zh) 用于能量生产的太阳能系统
ITTO20070088U1 (it) Progetto s.i.p.sistema solare di produzione
CN103775144B (zh) 高聚光型太阳能光热直接蒸发式流体正压循环发电系统
CN108139172B (zh) 具有主热交换腔室和副热交换腔室的热交换系统和通过使用热交换系统用于交换热的方法
EP3308090B1 (fr) Système d'échange de chaleur doté d'un dispositif de mouvement de fluide actif de joint pour le mode de charge et pour le mode de décharge et procédé d'échange de chaleur en utilisant le système d'échange de chaleur
WO2015033249A1 (fr) Appareil de transfert et de stockage d'énergie solaire
JP6138495B2 (ja) 発電システム
EP3303967B1 (fr) Système d'échange de chaleur avec au moins deux chambres d'échange de chaleur, et procédé d'échange de chaleur utilisant le système d'échange de chaleur
WO2014064673A2 (fr) Système de cycle combiné hybride pour génération de puissance électrique
CN219624565U (zh) 固体颗粒物蓄放热装置及包含该装置的蓄放热系统
WO2017055447A1 (fr) Système d'échange de chaleur à tubes d'échange de chaleur et procédé d'échange de chaleur en utilisant le système d'échange de chaleur
CN115823922A (zh) 固体颗粒物蓄放热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10771184

Country of ref document: EP

Kind code of ref document: A2