WO2011024618A1 - 遺伝子発現プロファイルによる消化器癌、胃癌、大腸癌、膵臓癌及び胆道癌の検出 - Google Patents

遺伝子発現プロファイルによる消化器癌、胃癌、大腸癌、膵臓癌及び胆道癌の検出 Download PDF

Info

Publication number
WO2011024618A1
WO2011024618A1 PCT/JP2010/063122 JP2010063122W WO2011024618A1 WO 2011024618 A1 WO2011024618 A1 WO 2011024618A1 JP 2010063122 W JP2010063122 W JP 2010063122W WO 2011024618 A1 WO2011024618 A1 WO 2011024618A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
probes
expression
gene
probe
Prior art date
Application number
PCT/JP2010/063122
Other languages
English (en)
French (fr)
Inventor
周一 金子
政夫 本多
佳夫 酒井
山下 太郎
Original Assignee
国立大学法人金沢大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人金沢大学 filed Critical 国立大学法人金沢大学
Priority to US13/391,858 priority Critical patent/US8932990B2/en
Priority to JP2011528728A priority patent/JP4953334B2/ja
Priority to EP10811669.0A priority patent/EP2471950B1/en
Publication of WO2011024618A1 publication Critical patent/WO2011024618A1/ja
Priority to US14/551,651 priority patent/US9441276B2/en
Priority to US14/551,674 priority patent/US9512491B2/en
Priority to US14/551,666 priority patent/US9512490B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to detection and diagnosis of digestive organ cancer, gastric cancer, colon cancer, pancreatic cancer, and biliary tract cancer using gene expression analysis using peripheral blood as a material.
  • Gastrointestinal cancer is the most common malignant tumor in the Japanese. According to a survey by the Ministry of Health, Labor and Welfare, 177,000 patients die annually. It can be completely cured if it is detected early and treated, but there are cases where early lesions do not show clinical symptoms and are found in an advanced state and have a poor prognosis outcome.
  • Gastric cancer is the most common gastrointestinal malignancy in Japanese. According to a survey by the Ministry of Health, Labor and Welfare, 50,000 patients die each year. Colorectal cancer is the third gastrointestinal malignant tumor in Japan, ranked by the number of cancer deaths by sex (total for both men and women). According to a survey by the Ministry of Health, Labor and Welfare, 41,000 patients die each year. Both gastric cancer and colorectal cancer can be cured by early detection and treatment. However, the earlier the lesion, the less clinical symptoms appear, and there are cases with advanced outcomes that have a poor prognosis.
  • pancreatic cancer is the fifth digestive malignant tumor in Japan, ranking the number of cancer deaths by sex (total for both men and women), and according to a survey by the Ministry of Health, Labor and Welfare, 23,000 patients die each year. Cancer is very difficult to detect and is rarely detected early. 75% of cases diagnosed with pancreatic cancer are already inoperable cases and have a very poor prognosis of gastrointestinal cancer that die within 1 to 2 years after discovery (according to National Cancer Center Cancer Control Information Center http: //ganjoho.jp/public/cancer/data/pancreas.html). A useful early diagnosis method has not been established for a long time since the advancement of diagnostic technology for pancreatic cancer has been desired.
  • biliary tract cancer is a malignant tumor that ranks 6th in cancer ranking by cancer (gender total) in Japanese. According to a survey by the Ministry of Health, Labor and Welfare, 15,000 patients die annually, but in many cases there are no subjective symptoms and early detection is difficult.
  • Patent Document 1 a group of genes capable of distinguishing C-type cirrhosis and C-type liver cancer using peripheral blood mononuclear cells was reported (see Patent Document 1 and Non-Patent Document 4).
  • This method has the advantage of being minimally invasive to the patient because it uses blood, but it requires several separation processes when collecting peripheral blood mononuclear cells, and it is complicated as an actual examination method. There was a problem that required time until the test results.
  • the present invention analyzes a gene whose expression varies in relation to digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer, biliary tract cancer in a method that is low invasion to a patient and easy to extract a gene from the patient,
  • the object is to provide a method for detecting gastrointestinal cancer, gastric cancer, colon cancer, pancreatic cancer, biliary tract cancer and an in vitro diagnostic agent.
  • the present inventor has started a clinical trial to verify whether digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer, biliary tract cancer can be diagnosed by gene expression analysis using peripheral blood, and as a result, diagnosis is possible. I found it.
  • Peripheral blood can be collected relatively non-invasively, and its practicality and usefulness are extremely large in clinical examinations.
  • Peripheral blood is composed of leukocytes including erythrocytes, platelets, lymphocytes, monocytes and granulocytes as cell components. These cellular components are thought to change their phenotype and function in response to lesions in the body environment.
  • the present inventor conducted gene expression analysis in peripheral blood of 24 digestive cancer patients and 8 healthy individuals, and performed clustering analysis based on analysis data with about 23,000 probes on a DNA microarray, They found that they can be distinguished from healthy people.
  • 868 probes corresponding to genes having a significant difference in expression between the groups were found.
  • the above-described hierarchical clustering of the digestive cancer case group and the healthy person group was performed. As a result, two clusters were formed, and it was found that the digestive cancer case and the healthy person could be distinguished.
  • the cancer model and the healthy person were determined by applying a prediction model to 40 cancer cases and 13 healthy persons different from the cancer cases and healthy persons used for extracting 868 probes.
  • 39 of 40 cancer cases were determined to be cancer cases, and the probability was 97.5%.
  • 9 cases out of 13 healthy persons were determined to be healthy persons, and the probability was 69.2%.
  • the correct answer rate for the decision was 48/53, 90.6%.
  • the present inventor conducted gene expression analysis in peripheral blood of 8 gastric cancer patients and 8 healthy people, and performed clustering analysis based on analysis data with about 22,000 probes on a DNA microarray, thereby obtaining gastric cancer cases and healthy persons. And found that can be identified.
  • 713 probes corresponding to genes having a significant difference in expression between the groups were found.
  • hierarchical clustering of the above-mentioned stomach cancer case group and healthy person group was performed, and it was found that two clusters were formed and the gastric cancer case and the healthy person could be distinguished.
  • the cancer model and the healthy person were determined by applying the prediction model to 10 cancer cases and 13 healthy persons different from the cancer cases and healthy persons used for extracting 713 probes.
  • 7 out of 10 cancer cases were determined to be cancer cases, and the probability was 70%.
  • 13 cases out of 13 healthy persons were determined to be healthy persons, and the probability was 100%.
  • the correct answer rate for the decision was 20/23, which was 87.0%.
  • the present inventor conducted gene expression analysis in the peripheral blood of 8 colon cancer patients and 8 healthy individuals, and performed clustering analysis based on analysis data with about 22,000 probes on a DNA microarray, They found that they can be distinguished from healthy people.
  • 771 probes corresponding to genes having a significant difference in expression between the groups were found.
  • this probe set the above-described hierarchical clustering of the colon cancer case group and the healthy person group was performed. As a result, two clusters were formed, and the colon cancer case and the healthy person were identified.
  • the cancer model and the healthy person were determined by applying the prediction model to 10 cancer cases and 13 healthy persons different from the cancer cases and healthy persons used for extracting 771 probes.
  • 9 out of 10 cancer cases were determined to be cancer cases, and the probability was 90%.
  • 13 cases out of 13 healthy persons were determined to be healthy persons, and the probability was 100%.
  • the correct answer rate for the decision was 22/23, 95.7%.
  • the present inventor conducted gene expression analysis in the peripheral blood of 8 pancreatic cancer patients and 8 healthy individuals, and performed clustering analysis based on analysis data of about 22,000 probes on a DNA microarray to identify pancreatic cancer cases. They found that they can be distinguished from healthy people. By comparing the gene expression of the two groups of the pancreatic cancer case group and the healthy person group, 677 probes corresponding to genes having a significant difference in expression between the groups were found. Using this probe set, the above-described hierarchical clustering of the pancreatic cancer case group and the healthy person group was performed. As a result, it was found that two clusters were formed and the pancreatic cancer case and the healthy person could be distinguished.
  • the cancer model and the healthy person were determined by applying the prediction model to 20 cancer cases and 13 healthy persons different from the cancer cases and healthy persons used for 677 probe extraction. As a result, 15 out of 20 cancer cases were determined to be cancer cases, and the probability was 75%. In addition, 13 cases out of 13 healthy persons were determined to be healthy persons, and the probability was 100%. The correct answer rate for the decision was 28/33, which was 84.8%.
  • the present inventor conducted gene expression analysis in the peripheral blood of 8 patients with biliary tract cancer and 8 healthy people, and clustering analysis performed using analysis data with about 22,000 probes on a DNA microarray revealed that 3 clusters were It has been found that biliary tract cancer cases can be distinguished from healthy individuals.
  • 363 probes corresponding to genes having a significant difference in expression between the groups were found.
  • hierarchical clustering of the aforementioned biliary tract cancer case group and the healthy person group was performed, and it was found that two clusters were formed and the biliary tract cancer case and the healthy person could be distinguished.
  • the cancer model and the healthy person were determined by applying the prediction model to 8 cancer cases and 13 healthy persons different from the cancer cases and healthy persons used for extracting 363 probes.
  • 8 out of 8 cancer cases were determined to be cancer cases, and the probability was 100%.
  • 13 cases out of 13 healthy persons were determined to be healthy persons, and the probability was 100%.
  • the correct answer rate for the decision was 21/21, which was 100%.
  • Gastrointestinal cancer can be identified by simple blood sampling.
  • the present invention is as follows.
  • the reagent for detecting digestive organ cancer according to [1], comprising a DNA microarray in which the probe according to [1] is bound to a substrate.
  • the reagent for detecting colon cancer according to [7], comprising a DNA microarray in which the probe according to [7] is bound to a substrate.
  • the reagent for detecting pancreatic cancer of [10], comprising a DNA microarray in which the probe of [10] is bound to a substrate.
  • the reagent for detecting biliary tract cancer of [13], comprising a DNA microarray in which the probe of [13] is bound to a substrate.
  • the expression of the gene corresponding to the probe of the present invention varies when suffering from digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer.
  • digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer can be detected.
  • the risk of suffering from digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer, or biliary tract cancer can be predicted.
  • FIG. 5-2 shows 868 probes which are the 1st probe group which can be used for the detection of digestive organ cancer.
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation).
  • Fig. 5-2 shows 868 probes that can be used for detection of digestive organ cancer
  • FIG. 5-2 shows 868 probes that can be used for detection of digestive organ cancer (continuation). It is a figure which shows 21 probes with a large extent of an expression fluctuation
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer
  • FIG. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • Fig. 5-2 shows 713 probes that can be used for detection of gastric cancer (continuation).
  • FIG. 4 is a diagram showing 107 probes having a large degree of expression fluctuation in gastric cancer patients and healthy individuals among 713 probes shown in FIG. 3.
  • FIG. 4 is a diagram showing 107 probes having a large degree of expression fluctuation in gastric cancer patients and healthy persons among the 713 probes shown in FIG. 3 (continuation).
  • FIG. 4 is a diagram showing 107 probes having a large degree of expression fluctuation in gastric cancer patients and healthy persons among the 713 probes shown in FIG. 3 (continuation).
  • FIG. 4 is a diagram showing 107 probes having a large degree of expression fluctuation in gastric cancer patients and healthy persons among the 713 probes shown in FIG. 3 (continuation).
  • FIG. 4 is a diagram showing 107 probes having a large degree of expression fluctuation in gastric cancer patients and healthy persons among the 713 probes shown in FIG. 3 (continuation).
  • FIG. 4 is a diagram showing 107 probes having a large degree of expression fluctuation in gastric cancer patients and healthy persons among the 713 probes shown in FIG. 3 (continuation).
  • FIG. 4 is a diagram showing 107 probes having a large degree of expression fluctuation in gastric cancer patients and healthy persons among the 713 probes shown in FIG. 3 (continuation).
  • It is a figure which shows the 771 probe which can be used for the detection of colon cancer.
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • Fig. 5-27 shows 771 probes that can be used for detection of colorectal cancer (continuation).
  • FIG. 5 It is a figure which shows 116 probes with a large grade of an expression fluctuation
  • FIG. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can
  • FIG. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can
  • FIG. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can
  • FIG. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can
  • FIG. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • Fig. 6-7 shows 677 probes that can be used for detection of pancreatic cancer (continuation).
  • FIG. 6 is a diagram showing hierarchical clustering by 21 probes corresponding to genes in which a decrease in expression of 0.4 times or less and an increase in expression of 2.5 times or more were observed in gastrointestinal cancer cases.
  • FIG. 6 is a diagram showing hierarchical clustering using 713 probes corresponding to genes in which expression attenuation of 0.5-fold or less and expression enhancement of 2-fold or more were observed in gastric cancer cases.
  • FIG. 4 is a diagram showing hierarchical clustering using 107 probes corresponding to genes in which expression attenuation of 0.33 times or less and expression enhancement of 3 times or more were observed in gastric cancer cases. It is a figure which shows the hierarchical clustering of the stomach cancer case and healthy person by 22181 probe.
  • FIG. 6 is a diagram showing hierarchical clustering using 713 probes corresponding to genes in which expression attenuation of 0.5-fold or less and expression enhancement of 2-fold or more were observed in gastric cancer cases.
  • FIG. 4 is a diagram showing hierarchical clustering using 107 probes corresponding to genes in which expression attenuation of 0.33 times or less and expression enhancement of 3 times or more were observed in gastric cancer cases. It is a figure which shows the hierarchical clustering of the
  • FIG. 6 is a diagram showing hierarchical clustering using 771 probes corresponding to genes in which expression attenuation of 0.5 times or less and expression enhancement of 2 times or more were observed in colorectal cancer cases.
  • FIG. 4 is a diagram showing hierarchical clustering using 116 probes corresponding to genes in which expression attenuation of 0.33 times or less and expression enhancement of 3 times or more were observed in colorectal cancer cases. It is a figure which shows the hierarchical clustering of the pancreatic cancer case by a 22149 probe, and a healthy person.
  • pancreatic cancer cases it is a figure which shows the hierarchical clustering by the 677 probe corresponding to the gene by which the expression attenuation of 0.5 times or less and the expression enhancement of 2 times or more were recognized.
  • pancreatic cancer cases it is a figure which shows the hierarchical clustering by 61 probes corresponding to the gene by which the expression attenuation of 0.33 times or less and the expression enhancement of 3 times or more were recognized.
  • Fig. 25 is a diagram showing 25 probes that are a second probe group that can be used for detection of digestive organ cancer (continuation).
  • FIG. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation).
  • Fig. 5-2 shows 363 probes that can be used for detection of biliary tract
  • FIG. 5-2 shows 363 probes that can be used for detection of biliary tract cancer (continuation). It is a figure which shows the hierarchical clustering of the biliary tract cancer case by a 22066 probe, and a healthy person.
  • FIG. 6 is a diagram showing hierarchical clustering using 363 probes corresponding to genes in which expression attenuation of 0.33 times or less and expression enhancement of 3 times or more were observed in biliary tract cancer cases.
  • digestive organ cancer includes gastric cancer, colon cancer, pancreatic cancer and biliary tract cancer.
  • These digestive organ cancers in general can be detected by the method for detecting digestive organ cancer of the present invention.
  • gastric cancer, colon cancer, pancreatic cancer or biliary tract cancer can be specifically detected by the method for detecting gastric cancer, colon cancer, pancreatic cancer or biliary tract cancer of the present invention, respectively.
  • a gene group whose expression varies with respect to a healthy person in a digestive cancer patient a gene group whose expression varies with respect to a healthy person in a stomach cancer patient, and an expression with respect to a healthy person in a colorectal cancer patient
  • An expression profile of the group is obtained to detect digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer.
  • the variation in expression includes attenuation of expression and enhancement of expression.
  • Measurement of gene expression in peripheral blood is performed by extracting and isolating mRNA from peripheral blood and measuring mRNA. Extraction and isolation of mRNA from peripheral blood can be performed by a known method.
  • MRNA that can be extracted and isolated from peripheral blood is mRNA derived from peripheral blood such as erythrocytes, platelets, leukocytes including lymphocytes, monocytes, granulocytes, and the like.
  • the expression level of the gene is measured.
  • the expression level of a gene refers to the expression level, expression intensity, or expression frequency of the gene, and is usually analyzed based on the production amount of the transcription product corresponding to the gene or the production amount, activity, etc. of the translation product. Can do.
  • an expression profile means the information regarding the expression level of each gene.
  • the gene expression level may be expressed as an absolute value or a relative value.
  • the expression profile may be referred to as an expression pattern.
  • the measurement of the expression level may be performed by measuring a gene transcription product, that is, mRNA, or by measuring a gene translation product, that is, a protein. Preferably, it is carried out by measuring a gene transcription product.
  • a gene transcription product also includes cDNA obtained by reverse transcription from mRNA.
  • the measurement of the transcription product of a gene is carried out by measuring the nucleotide sequence including all or a part of the base sequence of the gene or a sequence complementary thereto, that is, a nucleotide sequence comprising the base sequence of the gene or a partial sequence thereof or a sequence complementary thereto. What is necessary is just to measure the degree of gene expression using the nucleotide which consists of a sequence
  • These nucleotides are nucleotides that can hybridize to the gene, nucleotides that can bind to the gene, or nucleotides for detection that can be used to detect the gene.
  • the degree of gene expression can be measured by a method using a microarray (microchip), a Northern blot method, a quantitative PCR method targeting a gene to be quantified or a fragment thereof.
  • Quantitative PCR methods include agarose gel electrophoresis, fluorescent probe method, RT-PCR method, real-time PCR method, ATAC-PCR method (Kato, K. et al., Nucl. Acids Res., 25, 4694-4696, 1997), Taqman PCR method (SYBR (registered trademark) green method) (Schmittgen TD, Methods 25, 383-385, 2001), Body Map method (Gene, 174, 151-158 (1996)), Serial analysis analysis gene expression (SAGE) Method (US Pat. Nos.
  • mRNA messenger RNA
  • the base length of the probe or primer used for the measurement is 10 to 100 bp, preferably 20 to 80 bp, more preferably 50 to 70 bp.
  • a DNA microarray (DNA chip) can be prepared by immobilizing a nucleotide comprising the base sequence of the gene, a partial sequence thereof, or a nucleotide containing a complementary sequence thereof on an appropriate substrate.
  • Examples of the fixed substrate include a glass plate, a quartz plate, and a silicon wafer.
  • Examples of the size of the substrate include 3.5 mm ⁇ 5.5 mm, 18 mm ⁇ 18 mm, 22 mm ⁇ 75 mm, etc., which are variously set according to the number of probe spots on the substrate and the size of the spots. be able to.
  • As a method for immobilizing a polynucleotide or a fragment thereof it is possible to electrostatically bind to a solid phase carrier surface-treated with a polycation such as polylysine, polyethyleneimine, polyalkylamine, etc.
  • a nucleotide having a functional group such as an amino group, an aldehyde group, an SH group, or biotin can be covalently bonded to a solid phase surface into which a functional group such as an aldehyde group or an epoxy group has been introduced. Immobilization may be performed using an array machine.
  • a DNA microarray is prepared by immobilizing at least one gene of a gene corresponding to the 868 probe or a fragment thereof on a substrate, and contacting the mRNA or cDNA derived from a subject labeled with a fluorescent substance with the DNA microarray, By hybridizing and measuring the fluorescence intensity on the DNA microarray, the kind and amount of mRNA can be determined.
  • a gene whose expression is fluctuating in a subject can be known, and a gene expression profile can be obtained.
  • the fluorescent substance for labeling mRNA derived from a subject is not limited, and a commercially available fluorescent substance can be used. For example, Cy3, Cy5, etc. may be used. mRNA can be labeled by a known method.
  • a probe refers to a sequence of nucleotides arranged on a DNA microarray, and one nucleotide sequence is designated for each probe ID number.
  • the term “probe corresponds to a gene” means that the sequence of the probe is complementary to a partial sequence of the base sequence of the gene or a sequence complementary to the sequence, and the gene and the probe can hybridize.
  • the base sequence of the gene corresponding to the probe includes the base sequence of the probe or a base sequence complementary to the base sequence as a partial sequence.
  • nucleotides used as probes or primers in the present invention include nucleotides comprising the above gene sequences and nucleotide fragments thereof, as well as nucleotides comprising sequences complementary to those sequences.
  • the nucleotides used in the present invention also include nucleotides that hybridize under stringent conditions with nucleotides having the above base sequences and nucleotides composed of the fragment sequences thereof.
  • Such nucleotides include, for example, a base sequence having a degree of homology with the above base sequence of about 80% or more, preferably about 90% or more, more preferably about 95% or more as a whole on average.
  • a nucleotide etc. can be mentioned.
  • Hybridization is a method known in the art such as the method described in Current Protocols in Molecular Biology (edited by Frederick M. Ausubel et al., 1987) or the like. It can be done according to the method. Moreover, when using a commercially available library, it can carry out according to the method as described in an attached instruction manual.
  • stringent conditions are, for example, conditions of “1XSSC, 0.1% SDS, 37 ° C.”, and more severe conditions are “0.5XSSC, 0.1% SDS, 42 ° C.” There are more severe conditions such as “0.2XSSC, 0.1% SDS, 65 ° C.”. Thus, nucleotides having higher homology with the probe sequence can be isolated as the hybridization conditions become more severe.
  • genes may have variants, and the genes used in the present invention include variants of the above genes.
  • the base sequence of the variant can be obtained by accessing a gene database.
  • the nucleotide of the present invention also includes a nucleotide comprising the nucleotide sequence of the variant or a fragment sequence thereof.
  • nucleotide used in the present invention either a nucleotide comprising a sense strand of the above gene or a nucleotide comprising an antisense strand can be used.
  • FIG. 1 shows 868 probes that are the first probe group that can be used for detection of digestive organ cancer.
  • FIG. 1 shows a probe ID number, a gene symbol corresponding to the probe, a base sequence of the probe (SEQ ID NOs: 1 to 868), and a description of the gene corresponding to the probe (gene name and GenBank registration number). The full length sequences of these genes are known, and any partial sequence can be used as a nucleotide for detecting the genes.
  • FIG. 2 shows the nucleotide sequences of 21 probes (SEQ ID NOs: 220, 506, 508, 523, and 538) of 868 probes shown in FIG.
  • the genes corresponding to 555 probes No. 1 to No. 555 are genes whose expression is attenuated in healthy individuals in patients with gastrointestinal cancer.
  • the gene corresponding to the .868 313 probe is a gene whose expression is increased in healthy patients in gastrointestinal cancer patients.
  • SEQ ID NOs: 220, 506, 508, 523, 538 and 554 are genes whose expression is attenuated in healthy patients in digestive organ cancer patients. Yes, the genes corresponding to the probes No. 7 to No. 21 (SEQ ID NOs: 570, 589, 597, 602, 618, 654, 689, 701, 726, 744, 762, 763, 781, 795 and 849) are digested. It is a gene whose expression is increased in healthy cancer patients.
  • FIG. 21 shows 25 probes that are a second probe group that can be used for detection of digestive organ cancer.
  • FIG. 21 shows the probe ID number, the symbol of the gene corresponding to the probe, the probe base sequence (SEQ ID NOs: 3030 to 3054), and the explanation of the gene corresponding to the probe (gene name and GenBank registration number).
  • the full-length sequences of these genes are known, and any partial sequence can be used as a nucleotide for detecting the genes.
  • FIG. 3 shows 713 probes that can be used for detection of gastric cancer.
  • FIG. 3 shows the probe ID number, the symbol of the gene corresponding to the probe, the base sequence of the probe (SEQ ID NOs: 869 to 1581), and the explanation of the gene corresponding to the probe (gene name and GenBank registration number).
  • the full-length sequences of these genes are known, and any partial sequence can be used as a nucleotide for detecting the genes.
  • FIG. 4 (FIGS. 4-1 to 4-6) shows 107 nucleotide sequences (SEQ ID NOs: SEQ ID NOS :) of the 713 probes shown in FIG.
  • genes corresponding to 84 probes No. 1 to No. 84 are genes whose expression is attenuated in healthy individuals in gastric cancer patients, No. 85 to No. 713
  • the gene corresponding to the 629 probe (SEQ ID NOs: 953 to 1581) is a gene whose expression is increased in healthy patients in gastric cancer patients.
  • the genes corresponding to the probes No. 1 to No. 6 are genes whose expression is attenuated in healthy patients in gastric cancer patients, No. 7 to No.
  • FIG. 5 shows 771 probes that can be used for detection of colorectal cancer.
  • FIG. 5 shows a probe ID number, a symbol of a gene corresponding to the probe, a base sequence of the probe (SEQ ID NOs: 1582 to 2352), and a description of the gene corresponding to the probe (gene name and GenBank registration number).
  • SEQ ID NOs: 1582 to 2352 a base sequence of the probe
  • GenBank registration number The full-length sequences of these genes are known, and any partial sequence can be used as a nucleotide for detecting the genes.
  • FIG. 6 (FIGS. 6-1 to 6-6) shows that among the 771 probes shown in FIG.
  • the genes corresponding to the 125 probes No. 1 to No. 125 are genes whose expression is attenuated in healthy individuals in colorectal cancer patients.
  • the gene corresponding to the 646 probe (SEQ ID NOs: 1707 to 2352) of 771 is a gene whose expression is increased in healthy subjects in colorectal cancer patients.
  • the genes corresponding to the probes No. 1 to No. 9 are expressed in healthy individuals in colorectal cancer patients. Is an attenuated gene, and the probes No. 10 to No.
  • FIG. 7 shows 677 probes that can be used for detection of pancreatic cancer.
  • FIG. 7 shows the probe ID number, the symbol of the gene corresponding to the probe, the base sequence of the probe (SEQ ID NOs: 2353 to 3029), and the explanation of the gene corresponding to the probe (gene name and GenBank registration number).
  • the full-length sequences of these genes are known, and any partial sequence can be used as a nucleotide for detecting the genes.
  • FIG. 8 (FIGS. 8-1 to 8-3), among the 677 probes shown in FIG.
  • the genes corresponding to 96 probes (SEQ ID NO: 2353 to SEQ ID NO: 2448) No. 1 to No. 96 are genes whose expression is attenuated in healthy individuals in pancreatic cancer patients.
  • the gene corresponding to 577 probe (SEQ ID NOs: 2449 to 3029) of 677 is a gene whose expression is enhanced in healthy patients in pancreatic organ cancer patients.
  • the genes corresponding to the probes No. 1 to No. 6 are genes whose expression is attenuated in healthy patients in pancreatic cancer patients.
  • 61 probes (SEQ ID NOs: 2459, 2461, 2469, 2475, 2507, 2514, 2515, 2525, 2543, 2600, 2602, 2621, 2628, 2634, 2640, 2651, 2652, 2674, 2677 , 2680, 2681, 2691, 2692, 2700, 2714, 2715, 2719, 2723, 2724, 2738, 2740, 2746, 2748, 2763, 2778, 2781, 2815, 2818, 2823, 2842, 2857, 2861, 2885, 2898 2902, 2903, 2932, 2934, 2972, 2975, 2982, 2985, 2999, 3001 and 3003) are genes whose expression is enhanced in healthy patients in pancreatic cancer patients.
  • FIG. 24 shows 363 probes that can be used for detection of biliary tract cancer.
  • FIG. 24 shows a probe ID number, a gene symbol corresponding to the probe, a base sequence of the probe (SEQ ID NOs: 3055 to 3417), and a description of the gene corresponding to the probe (gene name and GenBank registration number). The full-length sequences of these genes are known, and any partial sequence can be used as a nucleotide for detecting the genes.
  • the genes corresponding to the 98 probes SEQ ID NO: 3055 to SEQ ID NO: 3152
  • No. 1 to No. 98 are genes whose expression is attenuated in healthy individuals in patients with biliary pancreatic cancer.
  • the gene corresponding to .363 265 probes (SEQ ID NOs: 3153 to 3417) is a gene whose expression is increased in healthy patients in pancreatic organ cancer patients.
  • a gene corresponding to the probe in the peripheral blood of the subject (described in the rightmost column of FIG. 1) is used by using at least one of the 868 probes shown in FIG.
  • the expression level of the gene is measured.
  • the probe at least 1 to 867 of the 868 probes shown in FIG. 1, for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800
  • the expression level of the corresponding gene may be measured using 850, 867, 867, or 868 probes.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is attenuated in the digestive cancer patient group.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is enhanced in the digestive cancer patient group.
  • at least one probe corresponding to a gene whose expression is attenuated in the digestive cancer patient group and at least one probe corresponding to a gene whose expression is enhanced in the digestive cancer patient group are used in combination, The expression level of the corresponding gene may be measured. That is, using at least one of the 555 probes (SEQ ID NO: 1 to 555) of the probes No. 1 to No. 555 shown in FIG.
  • At least one of the genes corresponding to these probes is measured.
  • at least 1 to 554 of 555 probes for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Expression level of the corresponding gene using 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550 or 554, or 555 probes Can be measured.
  • At least 1 to 312 of 313 probes for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50
  • the expression level of the corresponding gene may be measured using individual, 100, 150, 200, 250, 300, 312 or 313 probes.
  • at least one of 555 probes SEQ ID NO: 1 to SEQ ID NO: 555
  • the expression level of the gene corresponding to those probes may be measured.
  • the genes corresponding to the 868 probes at least one of the 21 probes shown in FIG. 2 corresponding to the gene whose expression fluctuation is particularly large is used, and the gene corresponding to the probe (the highest in FIG. 2) is used.
  • the expression level of the gene) described in the right column may be measured.
  • one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, and fifteen of 21 probes The expression level of the gene corresponding to these probes may be measured using individual, 16, 17, 18, 19, 20, or 21 probes.
  • the level may be measured, and among the 21 probes shown in FIG. 2, at least one of the No. 7 to No. 21 probes corresponding to the gene whose expression is enhanced in healthy patients in digestive cancer patients May be used to measure the expression level of the gene, and in addition, at least one of the No. 1 to No. 6 probes and at least one of the No. 7 to No. 21 probes may be used in combination to express the gene expression.
  • the level may be measured. At this time, one, two, three, four, five or six of the probes No. 1 to No. 6 may be used, and one or two of the probes No. 7 to No. 21 may be used. Three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or fifteen may be used.
  • a gene corresponding to the probe in the peripheral blood of the subject is used using at least one of the 25 probes shown in FIG.
  • the expression level of the gene described is measured.
  • the probes are one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve of the 25 probes shown in FIG. 1A. , 13, 14, 15, 16, 17, 19, 19, 20, 21, 22, 23, 24, or 25 probes to express the corresponding gene What is necessary is just to measure a level.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is attenuated in the digestive cancer patient group.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is enhanced in the digestive cancer patient group. Further, at least one probe corresponding to a gene whose expression is attenuated in the digestive cancer patient group and at least one probe corresponding to a gene whose expression is enhanced in the digestive cancer patient group are used in combination, The expression level of the corresponding gene may be measured. That is, at least one of the 14 probes (SEQ ID NO: 3030 to SEQ ID NO: 3043) of probes No. 1 to No. 14 shown in FIG. 21 is measured and at least one of the genes corresponding to these probes is measured.
  • the expression level of the corresponding gene may be measured using 14 probes. Further, by using at least one of eleven probes (SEQ ID NO: 3044 to SEQ ID NO: 3054) of probes No. 15 to No. 25 shown in FIG. 21, the expression level of the gene corresponding to the probe is measured. Well, at this time, one, two, three, four, five, six, seven, eight, nine, ten, or eleven probes out of eleven probes are supported. What is necessary is just to measure the expression level of a gene.
  • At least one of the 14 probes (SEQ ID NO: 3030 to SEQ ID NO: 3043) of the probes No. 1 to No. 14 shown in FIG. 21 and 11 probes No. 15 to No. 25 of the probe shown in FIG.
  • the expression level of the gene corresponding to those probes may be measured.
  • At least one of the 713 probes shown in FIG. 3 is used, and the gene corresponding to the probe in the peripheral blood of the subject (described in the rightmost column of FIG. 3).
  • the expression level of the gene is measured.
  • the probe at least 1 to 712 probes of 713 shown in FIG. 3, for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9 10 pieces, 50 pieces, 100 pieces, 150 pieces, 200 pieces, 250 pieces, 300 pieces, 350 pieces, 400 pieces, 450 pieces, 500 pieces, 550 pieces, 600 pieces, 650 pieces, 700 pieces or 712 pieces, or
  • the expression level of the corresponding gene may be measured using 713 probes.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is attenuated in the gastric cancer patient group.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is enhanced in the gastric cancer patient group.
  • at least one probe corresponding to a gene whose expression is attenuated in the gastric cancer patient group and at least one probe corresponding to a gene whose expression is enhanced in the gastric cancer patient group are used in combination, and the gene corresponding to those probes is used.
  • the expression level may be measured. That is, using at least one of the 84 probes (SEQ ID NO: 869 to SEQ ID NO: 952) of probes No.
  • At least one of the genes corresponding to these probes is measured.
  • at least 1 to 83 of 84 probes for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
  • the expression level of the corresponding gene may be measured using 20, 30, 40, 50, 60, 70, 80 or 83, or 84 probes. Further, by using at least one of the 629 probes (SEQ ID NO: 953 to SEQ ID NO: 1581) of the probes No. 85 to No. 713 shown in FIG. 3, the expression level of the gene corresponding to the probe is measured.
  • At least 1 to 628 of 629 probes for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50 , 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, or 628 or 629 probes of the corresponding gene What is necessary is just to measure an expression level.
  • the expression level of the gene corresponding to those probes may be measured.
  • the genes corresponding to the 713 probes at least one of the 107 probes shown in FIG. 4 corresponding to a gene having a particularly large variation in expression is used, and the gene corresponding to the probe (the highest in FIG. 4) is used.
  • the expression level of the gene) described in the right column may be measured.
  • at least one of 107 probes, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, Using 60, 70, 80, 90, 100, 106, or 107 probes, the expression level of the gene corresponding to these probes may be measured.
  • the expression level of the gene is determined using at least one of the No. 1 to No.
  • at least one of the No. 1 to No. 6 probes and at least one of the No. 7 to No. 107 probes may be used in combination to measure the gene expression level. May be. At this time, one, two, three, four, five or six of the probes No. 1 to No. 6 may be used, and at least one of the probes No. 7 to No. 107, 2 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 One or 101 may be used.
  • At least one of the 771 probes shown in FIG. 5 is used, and the gene corresponding to the probe in the peripheral blood of the subject (described in the rightmost column of FIG. 5).
  • the expression level of the gene is measured.
  • at least 1 to 770 probes as shown in FIG. 5, for example, at least 1, 2, 3, 4, 5, 6, 7, 7, 9, are used as the probes.
  • the expression level of the corresponding gene may be measured using one or 771 probes.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is attenuated in the colon cancer patient group. Further, the expression level of a gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is enhanced in the colon cancer patient group. Furthermore, at least one probe corresponding to a gene whose expression is attenuated in the colorectal cancer patient group and at least one probe corresponding to a gene whose expression is enhanced in the colorectal cancer patient group are used in combination, and these probes are supported. The expression level of the gene may be measured. That is, at least one of the 125 probes (SEQ ID NO: 1582 to SEQ ID NO: 1706) No. 1 to No.
  • 125 shown in FIG. 5 is used to measure at least one of the genes corresponding to these probes.
  • at least 1 to 124 of 125 probes for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Use 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 or 124 or 125 probes to determine the expression level of the corresponding gene Just measure.
  • at least one of the 646 probes SEQ ID NO: 1707 to SEQ ID NO: 2352
  • No. 126 to No. 771 of the probe shown in FIG. 5 is used, the expression level of the gene corresponding to the probe is measured.
  • At least 1 to 645 of 646 probes for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50 Of 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600 or 645, or 646 probes of the corresponding gene What is necessary is just to measure an expression level.
  • at least one of the 125 probes (SEQ ID NO: 1582 to SEQ ID NO: 1706) No. 1 to No. 125 of the probe shown in FIG. 5 and 646 probes No. 126 to No. 771 of the probe shown in FIG.
  • the probes SEQ ID NO: 1707 to SEQ ID NO: 2352
  • the genes corresponding to the 771 probes at least one of the 116 probes shown in FIG. 6 corresponding to genes with particularly large expression fluctuations was used, and the gene corresponding to the probe (the most suitable in FIG. 6) was used.
  • the expression level of the gene) described in the right column may be measured.
  • at least one of the 116 probes, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, Using 60, 70, 80, 90, 100, 110, 115, or 116 probes, the expression level of the gene corresponding to these probes may be measured.
  • At least one of the 677 probes shown in FIG. 7 is used, and the gene corresponding to that probe in the peripheral blood of the subject (described in the rightmost column of FIG. 7).
  • the expression level of the gene) is measured.
  • What is necessary is just to measure the expression level of a corresponding gene using a probe.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is attenuated in the pancreatic cancer patient group.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is enhanced in the pancreatic cancer patient group.
  • at least one probe corresponding to a gene whose expression is attenuated in the pancreatic cancer patient group and at least one probe corresponding to a gene whose expression is enhanced in the pancreatic cancer patient group are used in combination, and these probes are supported.
  • the expression level of the gene may be measured.
  • the expression level of the gene corresponding to the probe may be measured using at least one of the probe Nos. 97 to 677 581 (SEQ ID NOs: 2449 to 3029) shown in FIG.
  • At least 1 to 580 of 581 probes eg at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100 150, 200, 250, 300, 350, 400, 450, 500, 550 or 580, or 581 probes to measure the expression level of the corresponding gene .
  • the genes corresponding to the above 677 probes at least one of the 61 probes shown in FIG. 8 corresponding to the gene whose expression fluctuation is particularly large is used, and the gene corresponding to the probe (the highest in FIG. 8) is used.
  • the expression level of the gene) described in the right column may be measured.
  • at least one, two, three, four, five, six, seven, eight, nine, ten, twenty, thirty, forty, forty, fifty, or 61 of 61 probes What is necessary is just to measure the expression level of the gene corresponding to these probes using 60 or 61 probes.
  • the gene expression level may be measured by using at least one of No. 1 to No. 6 probes and at least one of No. 7 to No. 61 probes in combination. You may measure. At this time, one, two, three, four, five or six of the probes No. 1 to No. 6 may be used, and at least one of the probes No. 7 to No. 61, 2 Three, four, five, six, seven, eight, nine, ten, twenty, thirty, forty, fifty or 54, or 55 may be used.
  • a gene corresponding to the probe in the peripheral blood of a subject is used using at least one of the 363 probes shown in FIG. 24 (FIGS. 24-1 to 24-19).
  • the expression level of (the gene described in the rightmost column of FIG. 24) is measured.
  • at least 1 to 362 of the 363 probes shown in FIG. 24, for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 50, 100, 150, 200, 250, 300, 350, 362, or 363 probes may be used to measure the expression level of the corresponding gene.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is attenuated in the biliary tract cancer patient group.
  • the expression level of the gene corresponding to the probe may be measured using at least one probe corresponding to the gene whose expression is enhanced in the biliary tract cancer patient group.
  • at least one probe corresponding to a gene whose expression is attenuated in the biliary tract cancer patient group and at least one probe corresponding to a gene whose expression is enhanced in the biliary tract cancer patient group are used in combination to correspond to these probes.
  • the expression level of the gene may be measured.
  • At least one of 98 probes SEQ ID NO: 3055 to SEQ ID NO: 3152 of probes No. 1 to No. 98 shown in FIG. 24 is measured.
  • at least 1 to 97 of 98 probes for example, at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
  • the expression level of the corresponding gene may be measured using 20, 30, 40, 50, 60, 70, 80, 90, 97, or 98 probes.
  • the expression level of the gene corresponding to the probe may be measured using at least one of the No. 99 to No. 265 probes (SEQ ID NOs: 3153 to 3417) shown in FIG.
  • At least 1 to 264 of 265 probes eg at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 100 150, 200, 250, 264, or 265 probes may be used to measure the expression level of the corresponding gene.
  • the method of the present invention makes it possible to identify patients suffering from digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer. That is, the presence of digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer can be detected.
  • the subject may be a subject whose pathological condition is unknown, and when a subject whose pathological condition is unknown is used, the subject is normal or suffers from digestive cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer. Can be diagnosed.
  • the determination of the pathological condition of the digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer, prediction of prognosis, etc. are widely referred to as detection of digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer.
  • the pathological condition of a subject can be determined by obtaining an expression profile of one or more genes corresponding to 363 probes and analyzing the expression profile. If the expression profile obtained from the subject is similar to the expression profile obtained in patients with digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer, the subject is digestive cancer, stomach cancer, colon cancer, It can be determined that the patient is suffering from pancreatic cancer or biliary tract cancer.
  • an expression profile obtained from a subject can be compared with an expression profile obtained in a normal person, and evaluation can be made based on a difference from the expression profile of a normal person.
  • the gene expression profile is recorded as an image in which the pattern of an expression signal such as fluorescence intensity is a digital value or a color. Comparison of gene expression profiles can be performed using, for example, pattern comparison software, and Cox hazard analysis, discriminant analysis, or the like can be used.
  • a discriminant analysis model for evaluating and determining pathological conditions, pathological condition predictions or prognostic predictions is constructed in advance, and data relating to gene expression profiles obtained from the subject are input to the discriminant analysis model to perform pathological condition, pathological condition prediction or prognosis prediction. You can also.
  • a discriminant is obtained by discriminant analysis, the fluorescence intensity is associated with a disease state, a disease state prediction or a prognosis prediction, and the expression signal value of the subject is substituted into the discriminant to evaluate and determine the disease state, disease state prediction or prognosis prediction be able to.
  • the present invention relates to a gene whose expression varies with respect to a healthy person in a digestive cancer patient, a gene whose expression varies with respect to a healthy person in a stomach cancer patient, a gene whose expression varies with respect to a healthy person in a colon cancer patient, pancreas A nucleotide consisting of a base sequence of a gene or a partial sequence thereof for measuring the expression level of a gene whose expression varies with respect to a healthy person in a cancer patient, In-vitro diagnostic agents or kits for detecting digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer containing the nucleotides to be included are included.
  • the reagent is a reagent comprising a nucleotide comprising the nucleotide sequence of the gene or a nucleotide comprising a partial sequence thereof as a probe or primer, and a nucleotide comprising the nucleotide sequence of the gene or a nucleotide comprising a partial sequence thereof is solid-phased.
  • a microarray substrate comprising
  • a reagent or kit for detecting digestive organ cancer contains at least one of 868 or 25 probes that can be used for the detection of digestive cancer described above, and at least one gene of a gene corresponding to the probe Can be measured.
  • the reagent or kit for detecting gastric cancer contains at least one of 713 probes that can be used for the detection of gastric cancer, and measures the expression level of at least one gene corresponding to the probe.
  • a reagent or kit for detecting colorectal cancer includes at least one of 771 probes that can be used for the detection of colorectal cancer, and measures the expression level of at least one gene corresponding to the probe. can do.
  • the reagent or kit for detecting pancreatic cancer comprises at least one of 677 probes that can be used for detection of pancreatic cancer, and measures the expression level of at least one gene corresponding to the probe. Can do. Furthermore, the reagent or kit for detecting biliary tract cancer includes at least one of 363 probes that can be used for detection of biliary tract cancer, and measures the expression level of at least one gene corresponding to the probe. Can do.
  • the present invention includes a system for detecting digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer in a subject by the method for detecting digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer of the present invention. .
  • the system for detecting digestive organ cancer, gastric cancer, colon cancer, pancreatic cancer or biliary tract cancer of the present invention (a) means for inputting data relating to the gene expression profile of the subject, and the data relating to the gene expression profile input here is data indicating the expression level of each gene such as a signal value in each gene; (b) storage means for storing the constructed discrimination model; (c) By applying the data input using the input means of (a) to the discrimination model stored in the storage means of (b), the pathological condition of digestive organ cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer Data processing means for making the decision, and (d) Output means for outputting the determined pathological condition, pathological condition prediction, and prognosis prediction of the predicted digestive cancer, stomach cancer, colon cancer, pancreatic cancer or biliary tract cancer, It is a system including
  • the means for inputting data includes a keyboard or an external storage device storing the data.
  • the storage means (b) includes a hard disk or the like.
  • the data processing means receives the discrimination model from the storage means, processes the input data, sends the processing result to the output means, and the processing result is displayed by the output means.
  • the data processing means includes a central processing unit (CPU) that performs arithmetic processing on data.
  • the output means includes a monitor and a printer for displaying the result.
  • the system of the present invention can be constructed using a commercially available personal computer or the like.
  • RNA extraction and hybridization RNA was extracted from a Paxgene RNA blood collection tube using the PAXgene Blood RNA Kit (QIAGEN GmbH, Hilden, Germany) according to the protocol. Based on the extracted RNA, RNA was amplified using QuickAmp Labeling Kit, 1color (Agilent Technologies, Santa Clara, Calif.), And simultaneously labeled with Cy3 dye. After labeling RNA was mixed using Gene Expression Hybridization Kit (Agilent Technologies, Santa Clara, CA), hybridization was performed on Whole Human Genome oligo DNA microarray (Agilent Technologies, Santa Clara, CA). The steps from RNA amplification to hybridization were performed according to an experimental protocol published by Agilent Technologies.
  • Image analysis and data analysis of DNA microarrays The fluorescence intensity of each spot on the oligo DNA microarray was acquired with a DNA microarray scanner (Agilent Technologies, Santa Clara, CA). The acquired images were digitized for the fluorescence intensity of each spot using Feature Extraction software (Agilent Technologies, Santa Clara, CA). By this numerical conversion, the fluorescence intensity of the probe arranged on the spot was calculated.
  • GeneSpring GX (Agilent Technologies, Santa Clara, CA) normalization of the fluorescence intensity values of all probes on the microarray was performed, and the fluorescence intensity of each probe was determined based on the normalized values indicating the increase or decrease in expression of each probe. A quality check was performed, and hierarchical clustering was performed only for probes that passed the quality check. Similarly, using GeneSpring GX, genes with differences in expression between gastrointestinal cancer patients and healthy subjects were examined using Welch t-test with the Statistic Analysis tool. Benjamini and Hochberg False Discovery Rate was used as a multiple test, and candidate probes were extracted with p ⁇ 0.05 as the significance.
  • the cancer case group used to extract this candidate probe using GeneSpring GX is used for the calculation. Predictive judgment as to whether it belongs to a group was performed.
  • Hierarchical clustering Using the GeneSpring GX hierarchical clustering tool, we examined 23352 probes that passed the quality check. As shown in Fig. 9, 5 clusters were formed, and 3 out of 3 cases (100%) in the first cluster were digestive organs. Cancer cases, 8 out of 9 cases (88.9%) in the second cluster were digestive cancer cases, 5 out of 6 cases (83.3%) in the 3rd cluster, 9 out of 10 cases (90.0%) in the 4th cluster In the fifth cluster, 3 out of 4 cases (75.0%) accounted for gastrointestinal cancer cases, and gastrointestinal cancer cases and healthy people were grouped.
  • this 868 probe when the normalized fluorescence intensity value of this 868 probe was compared between the digestive cancer case group and the healthy person group using the Fold Change tool, the digestive cancer case group compared to the healthy person group regardless of the magnification. There were 555 probes with attenuated expression, and 313 probes with increased expression regardless of magnification. In addition, 6 probes with expression attenuation of 0.4 times or less were observed, and 15 probes with expression enhancement of 2.5 times or more were observed.
  • Hierarchical clustering with 868 probes corresponding to genes with attenuated and elevated expression in healthy individuals and gastrointestinal cancer cases was performed on the target cancer cases and healthy individuals using the total of 868 probes of the above 555 probes and 313 probes. As a result, three clusters were formed as shown in FIG. 14 of them (100%) were gastrointestinal cancer cases, 8 out of 8 cases (100%) were digestive cancer cases in the second cluster, and 8 out of 10 cases (80%) were healthy in the third cluster Gastrointestinal cancer cases and healthy people were grouped.
  • Predictive judgment using 868 probes corresponding to genes whose expression was attenuated and increased in healthy individuals and gastrointestinal cancer cases Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using Support Vector Machines based on 868 probes that showed a difference in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 39 cases out of 40 cases were determined to be cancer cases according to the prediction model of cancer cases analyzed separately, and the probability was 97.5%.
  • Hierarchical clustering with 21 probes corresponding to genes that are less than 0.4 times attenuated and more than 2.5 times more potent Hierarchical clustering was performed on the target cancer cases and healthy individuals using the above-mentioned 6 probes and 15 probes in total, and as a result, three clusters were formed as shown in FIG. 17 cases (100%) were digestive cancer cases, 7 cases out of 9 cases (77.8%) were digestive cancer cases in the second cluster, and 6 out of 6 cases (100%) were healthy in the third cluster. Gastrointestinal cancer cases and healthy people were grouped.
  • Predictive judgment using 21 probes corresponding to genes in which expression attenuation is 0.4 times or less and expression increase is 2.5 times or more Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using Support Vector Machines based on 21 probes that showed differences in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 37 cases out of 40 cases were determined to be cancer cases according to the prediction model of cancer cases analyzed separately, and the probability was 92.5%.
  • Detection of digestive organ cancer As in the case of detection of digestive organ cancer (1) above, a group of 39 cancer cases and 15 healthy individuals were examined using the 23278 probe that passed the quality check using the GeneSpring GX hierarchical clustering tool. In the first cluster, 5 out of 5 cases (100%) were digestive cancer cases, in the second cluster 29 out of 30 cases (96.7%) were digestive cancer cases, 3rd case In the cluster, 1 out of 1 cases (100%), in the 4th cluster 6 cases (60%) were digestive cancer cases, in the 5th cluster 8 out of 8 cases (100%) were healthy, Gastrointestinal cancer cases and healthy people were grouped.
  • a probe that can discriminate between 39 gastrointestinal cancer case groups and 15 healthy human groups using GeneSpring GX's Statistic Analysis tool was extracted at p ⁇ 0.000005, and normalized fluorescence intensity values were compared between the gastrointestinal cancer case group and the healthy subject group using the Fold Change tool.
  • 14 probes with expression attenuation of 0.33 times or less were observed, and 11 probes with expression enhancement of 3 times or more were observed (FIG. 21, SEQ ID NOs: 3030 to 3054).
  • Hierarchical clustering with 25 probes corresponding to genes with attenuated and enhanced expression in healthy individuals and gastrointestinal cancer cases was performed on the target cancer cases and healthy individuals using the above-mentioned 14 probes and 11 probes in total, and as a result, three clusters were formed as shown in FIG. 31 of them (100%) were gastrointestinal cancer cases, 6 out of 6 cases (100%) were digestive cancer cases in the second cluster, and 15 out of 17 cases (88.2%) were healthy in the third cluster Gastrointestinal cancer cases and healthy people were grouped.
  • Predictive judgment using 25 probes corresponding to genes whose expression was attenuated and increased in healthy individuals and gastrointestinal cancer cases Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using a support vector machine based on 25 probes that showed differences in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 37 cases out of 37 cases were determined to be cancer cases according to the prediction model of cancer cases analyzed separately, and the probability was 100%.
  • Hierarchical clustering detection for gastric cancer Using the GeneSpring GX hierarchical clustering tool and examining with 22155 probes that passed the quality check, four clusters were formed as shown in Fig. 12, and 6 out of 6 cases (100%) were gastric cancer cases in the first cluster. In the second cluster, 3 out of 4 cases (75%) were healthy, in the third cluster 3 out of 4 cases (75%) were healthy, and in the fourth cluster 2 out of 2 cases (100%) were healthy. Gastric cancer cases and healthy people were grouped.
  • the expression attenuation was 0.5 times or less in the gastric cancer case group compared to the healthy person group. Probes were observed, and 629 probes were observed with an expression increase of 2 times or more. Further, 6 probes with expression attenuation of 0.33 times or less were observed, and 101 probes with expression enhancement of 3 times or more were observed.
  • Hierarchical clustering with 713 probes corresponding to genes that are less than 0.5-fold attenuated and more than 2-fold increased in expression Using a total of 713 probes of the above 84 probes and 629 probes, hierarchical clustering was performed on the target cancer cases and healthy subjects. As shown in FIG. 13, a cluster of 100% cancer cases, 100% of normal subjects, Two clusters of clusters were formed.
  • Predictive judgment using a 713 probe corresponding to a gene with an expression attenuation of 0.5 times or less and an expression increase of 2 times or more Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using Support Vector Machines based on the 713 probe that showed a difference in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 7 cases out of 10 were determined to be cancer cases according to the prediction model of cancer cases analyzed separately, and the probability was 70%.
  • Hierarchical clustering with 107 probes corresponding to genes with expression attenuation of 0.33 times or less and expression enhancement of 3 times or more Hierarchical clustering was performed on the target cancer cases and healthy subjects using a total of 107 probes of the above 6 probes and 101 probes. As shown in FIG. 14, a cluster of 100% cancer cases, 100% of healthy subjects, Two clusters of clusters were formed.
  • Predictive judgment using 107 probes corresponding to genes with expression attenuation of 0.33 times or less and expression enhancement of 3 times or more Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using Support Vector Machines based on 107 probes that showed differences in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 8 cases out of 10 were determined to be cancer cases by the prediction model of cancer cases analyzed separately, and the probability was 80%.
  • Colorectal cancer detection hierarchy clustering Using the GeneSpring GX hierarchical clustering tool and examining the 22181 probe that passed the quality check, three clusters were formed as shown in Fig. 15. In the first cluster, 4 out of 5 cases (80%) had colorectal cancer disease. In the second cluster, 6 out of 7 cases (85.7%) were healthy, and in the third cluster 3 out of 4 cases (75%) were colon cancer cases, and colon cancer cases and healthy people were grouped. .
  • Hierarchical clustering with 771 probes corresponding to genes that are less than 0.5-fold attenuated and more than 2-fold increased in expression was performed on the target cancer cases and healthy subjects using the above-mentioned 125 probes and 646 probes in total 771 probes. As a result, three clusters were formed as shown in FIG. 5 of the cases (100%) were colon cancer cases, 3 of 5 cases (60.0%) were colon cancer cases in the second cluster, and 7 of 7 cases (100%) were healthy in the third cluster. It was done.
  • Predictive judgment using the 771 probe corresponding to a gene with an expression attenuation of 0.5 times or less and an expression increase of 2 times or more Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using Support Vector Machines based on the 771 probe with a difference in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of applying a predictive model to a cancer case and a group of healthy people who have undergone the same procedure for DNA microarray image analysis and data analysis separately from the group of healthy people. The probability of judging a person was obtained. As a result, 9 cases out of 10 were determined to be cancer cases according to the prediction model of cancer cases analyzed separately, and the probability was 90%.
  • Hierarchical clustering with 116 probes corresponding to genes with expression attenuation of 0.33 times or less and expression enhancement of 3 times or more Hierarchical clustering was performed on the target cancer cases and healthy subjects using a total of 116 probes of the above 9 probes and 107 probes. As a result, three clusters were formed as shown in FIG. 5 cases (100%) were colorectal cancer cases, 3 cases out of 6 cases (50.0%) were colorectal cancer cases in the 2nd cluster, 5 cases out of 5 cases (100%) in the 3rd cluster were formed as healthy people clusters It was done.
  • Predictive judgment using 116 probes corresponding to genes in which expression is attenuated 0.33 times or less and expression is enhanced 3 times or more Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using Support Vector Machines based on 116 probes that showed differences in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 9 cases out of 10 were determined to be cancer cases by the prediction model of cancer cases analyzed separately, and the probability was 90%.
  • Hierarchical clustering detection of pancreatic cancer Using the GeneSpring GX hierarchical clustering tool and examining the 22149 probe that passed the quality check, three clusters were formed as shown in Fig. 18, and 7 out of 7 cases (100%) were healthy in the first cluster. In the second cluster, 4 out of 5 cases (80%) were pancreatic cancer cases, and in the third cluster, 4 out of 4 cases (100%) were pancreatic cancer cases. Pancreatic cancer cases and healthy people were grouped .
  • Hierarchical clustering with 677 probes corresponding to genes that are less than 0.5-fold attenuated and more than 2-fold increased in expression Hierarchical clustering was performed on the target cancer cases and healthy individuals using the above-mentioned 96 probes and 581 probes in total 677 probes. As a result, two clusters were formed as shown in FIG. Eight of the cases (88.9%) were healthy, and in the second cluster, 7 of 7 cases (100%) formed two clusters of pancreatic cancer cases.
  • Predictive judgment using a 677 probe corresponding to a gene with an expression attenuation of 0.5 times or less and an expression increase of 2 times or more Similarly, using the GeneSpring GX Class Prediction tool, a prediction model was created using Support Vector Machines based on the 677 probe with a difference in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained.
  • Hierarchical clustering with 61 probes corresponding to genes that were found to have an expression attenuation of 0.33 times or less and an expression increase of 3 times or more Hierarchical clustering was performed on the target cancer cases and healthy individuals using the above 6 probes and 55 probes in total 61 probes. As a result, two clusters were formed as shown in FIG. Eight of the cases (88.9%) were healthy, and in the second cluster, 7 of 7 cases (100%) formed two clusters of pancreatic cancer cases.
  • Predictive judgment using 61 probes corresponding to genes with expression attenuation of 0.33 times or less and expression enhancement of 3 times or more Similarly, using the GeneSpring GX Class Prediction tool, a predictive model was created using Support Vector Machines based on 61 probes that showed differences in expression, and the cancer case group used to extract the probe and create the predictive model Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 15 cases out of 20 were determined to be pancreatic cancer cases according to the prediction model of cancer cases analyzed separately, and the probability was 75%.
  • Hierarchical clustering of biliary tract cancers Using GeneSpring GX's hierarchical clustering tool, we examined 220220 probes that passed the quality check. As shown in Fig. 25, three clusters were formed. 100%) were healthy, 3 of 3 cases (100%) were biliary tract cancer cases in the second cluster, and 5 out of 6 cases (83.3%) were biliary tract cancer cases in the third cluster. People were grouped.
  • Hierarchical clustering with 363 probes corresponding to genes with expression attenuation of 0.33 times or less and expression enhancement of 3 times or more Hierarchical clustering was performed on the target cancer cases and healthy individuals using the above-mentioned 98 probes and 265 probes in total, and as a result, two clusters were formed as shown in FIG. Seven of the cases (100%) were healthy, and in the second cluster, 8 of 9 cases (88.9%) formed two clusters of biliary tract cancer cases.
  • Predictive judgment using a 363 probe corresponding to a gene with an expression attenuation of 0.33 times or less and an expression increase of 3 times or more Similarly, using the Class Prediction tool of GeneSpring GX, a prediction model was created using a support vector machine based on 363 probes that showed differences in expression, and the cancer case group used to extract the probe and create the prediction model. Probability of adapting a prediction model to a cancer case group and a healthy person group in which DNA microarray image analysis and data analysis were performed in the same procedure separately from the healthy person group, and the healthy person is healthy The probability of judging a person was obtained. As a result, 8 out of 8 cases were determined to be cancer cases according to the prediction model of cancer cases analyzed separately, and the probability was 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 末梢血液中にて、健常人と比較して消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌症例において発現が変動する遺伝子を解析して、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌患者を検出する方法並びに試薬の提供 末梢血液中にて、健常人と比較して消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌症例において発現が変動する遺伝子に対応するプローブからなる群から選択される少なくとも1つの遺伝子の発現プロファイルを得て、発現プロファイルに基づいて消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌患者を検出する方法、並びに消化器、胃癌、大腸癌、膵臓癌又は胆道癌において発現が変動するプローブからなる群から選択される少なくとも1つの遺伝子の塩基配列からなるヌクレオチド若しくはその一部配列又はそれらの相補的な配列を含むヌクレオチドを含む消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を検出するための試薬。

Description

遺伝子発現プロファイルによる消化器癌、胃癌、大腸癌、膵臓癌及び胆道癌の検出
 本発明は、末梢血液を材料とし遺伝子発現解析を利用した消化器癌、胃癌、大腸癌、膵臓癌、胆道癌の検出診断に関する。
 消化器癌は日本人でもっとも多い悪性腫瘍である。厚生労働省調べでは年間17万7千人の患者が死亡する。早期発見し治療を行えば完治しうるが、早期病変であるほど臨床症状を呈さず、進行した状態で発見され予後不良の転帰をとる症例も認められる。
 胃癌は日本人で最も多い消化器系悪性腫瘍である。厚生労働省調べでは年間5万人の患者が死亡する。また、大腸癌は日本人で部位別のがん死亡数(男女計)順位が3番目の消化器系悪性腫瘍であり、厚生労働省調べでは年間4万1千人の患者が死亡する。胃癌・大腸癌ともに早期発見し治療を行えば完治しうるが、早期病変であるほど臨床症状を呈さず、進行した状態で発見され予後不良の転帰をとる症例も認められる。早期発見の契機として、検診の際の内視鏡・画像検査にて偶然に発見される場合や、癌とは直接的に関連しない症状を精査する過程で発見される場合も多く、現在のところ、消化器癌の早期発見に有用な血液診断マーカーは存在しない。消化器癌の存在を出来るだけ早い段階で診断できるシステムを確立することは極めて重要である。
 特に膵臓癌は日本人で部位別がん死亡数(男女計)順位が5番目の消化器系悪性腫瘍であり、厚生労働省調べでは年間2万3千人の患者が死亡する。癌の発見が非常に難しく、早期に発見されることは稀である。膵臓癌と診断された75%の症例は既に手術不能例であり、発見後1~2年以内に死亡する極めて予後不良の消化器癌である(国立がんセンターがん対策情報センター調べhttp://ganjoho.jp/public/cancer/data/pancreas.html)。膵臓癌の診断技術の進歩が望まれてから久しく未だ有用な早期診断法は確立されていない。
 また、胆道癌は日本人で部位別のがん死亡数(男女計)の順位が6位の悪性腫瘍である。厚生労働省調べでは年間1万5千人の患者が死亡するが、多くの場合自覚症状がなく早期発見が困難である。
 昨今、DNAマイクロアレイ技術の発展、及びヒトゲノム解読によって、全遺伝子を対象とした網羅的遺伝子発現解析が可能になった。これにより、新しい癌の診断・予後予測、治療後の再発率の予測などが可能になった。これまでに本発明者らは、慢性肝炎における遺伝子発現プロファイルの解析(非特許文献1から3を参照)、糖尿病患者における肝組織の遺伝子発現解析等、遺伝子発現解析を応用して、さまざまな疾患の病態解析、及び診断ツールの開発を目的とした開発を行ってきた。しかしながら、これらの解析においては、入院のうえ臓器(肝組織)の採取が必要であり、その侵襲性が問題であった。その後、より侵襲性の低い方法として、末梢血単核球を用いたC型肝硬変とC型肝癌を識別できる遺伝子群について報告した(特許文献1および非特許文献4を参照)。この方法では血液を用いるため患者に対して低侵襲である利点があるが、末梢血単核球を採取する際に数度の分離過程が必要であり、実際の検査方法としては煩雑であり、検査結果までの時間を要する問題点があった。
特開2008-126号公報
MASAO HONDA et al., GASTROENTEROLOGY 2001;120:955-966 MASAO HONDA et al., Am J Gastroenterol 2005;100:2019-2030 YUKIHIRO SHIROTA et al., HEPATOLOGY Vol.33, No.4, 2001, 832-840 YOSHIO SAKAI et al., Cancer Research;68(24) 2008. 10267-10279
 本発明は、患者への侵襲も低く、且つ患者からの遺伝子抽出も容易な方法で消化器癌、胃癌、大腸癌、膵臓癌、胆道癌に関連して発現が変動する遺伝子を解析して、消化器癌、胃癌、大腸癌、膵臓癌、胆道癌を検出する方法並びに体外診断薬の提供を目的とする。
 本発明者は末梢血液を用いた遺伝子発現解析により消化器癌、胃癌、大腸癌、膵臓癌、胆道癌が診断できないかどうかを検証する臨床試験を開始し、その結果診断が可能であることを見出した。
 末梢血液は、比較的非侵襲的に採取可能であり、臨床検査においてその実用性、有用性は極めて大きい。末梢血液は、その細胞成分として、赤血球、血小板の他、リンパ球、単球、顆粒球を含む白血球によって構成される。これらの細胞成分は、体内環境の病変に応じて、その表現形及び機能を変化させると考えられる。
 本発明者は消化器癌患者24名、健常人8名の末梢血液における遺伝子発現解析を行い、DNAマイクロアレイ上の約23,000個のプローブでの解析データによって行ったクラスタリング解析により、消化器癌症例と健常人とを識別し得ることを見出した。消化器癌症例群及び健常人群の2群の遺伝子発現の比較によって、各群間にて発現に有意差のある遺伝子に対応する868個のプローブを見出した。このプローブセットを用いて、前述の消化器癌症例群及び健常人群の階層クラスタリングを行ったところ、2つのクラスターを形成し、消化器癌症例と健常人とを識別し得ることを見出した。また868個のプローブ抽出に使用した癌症例と健常人とは別の癌症例40例と健常人13例に対して、予測モデルを適応して癌症例と健常人を判定した。その結果、癌症例40例中39例を癌症例と判定し、その確率は97.5%となった。また、健常人13例中9例を健常人と判定し、その確率は69.2%となった。その判定の正答率は48/53であり90.6%となった。
 さらに、消化器癌患者39名、健常人15名の末梢血液における遺伝子発現解析を行い、DNAマイクロアレイ上の約23000個のプローブでの解析データによって行ったクラスタリング解析により、消化器癌症例と健常人とを識別し得ることを見いだした。消化器癌症例群及び健常人群の2群の遺伝子発現の比較によって、各群間にて発現に有意差のある遺伝子に対応する25個のプローブを見出した。このプローブセットを用いて、前述の消化器癌症例群及び健常人群の階層クラスタリングを行ったところ、2つのクラスターを形成し、消化器癌症例と健常人とを識別し得ることを見出した。
 上記のプローブを用いた結果、判定の正答率は92.3%であった。
 また、本発明者は胃癌患者8名、健常人8名の末梢血液における遺伝子発現解析を行い、DNAマイクロアレイ上の約22,000個のプローブでの解析データによって行ったクラスタリング解析により、胃癌症例と健常人とを識別し得ることを見出した。胃癌症例群及び健常人群の2群の遺伝子発現の比較によって、各群間にて発現に有意差のある遺伝子に対応する713個のプローブを見出した。このプローブセットを用いて、前述の胃癌症例群及び健常人群の階層クラスタリングを行ったところ、2つのクラスターを形成し、胃癌症例と健常人とを識別し得ることを見出した。また713個のプローブ抽出に使用した癌症例と健常人とは別の癌症例10例と健常人13例に対して、予測モデルを適応して癌症例と健常人を判定した。その結果、癌症例10例中7例を癌症例と判定し、その確率は70%となった。また、健常人13例中13例を健常人と判定し、その確率は100%となった。その判定の正答率は20/23であり87.0%となった。
 さらに、本発明者は大腸癌患者8名、健常人8名の末梢血液における遺伝子発現解析を行い、DNAマイクロアレイ上の約22,000個のプローブでの解析データによって行ったクラスタリング解析により、大腸癌症例と健常人とを識別し得ることを見出した。大腸癌症例群及び健常人群の2群の遺伝子発現の比較によって、各群間にて発現に有意差のある遺伝子に対応する771個のプローブを見出した。このプローブセットを用いて、前述の大腸癌症例群及び健常人群の階層クラスタリングを行ったところ、2つのクラスターを形成し、大腸癌症例と健常人とを識別した。また771個のプローブ抽出に使用した癌症例と健常人とは別の癌症例10例と健常人13例に対して、予測モデルを適応して癌症例と健常人を判定した。その結果、癌症例10例中9例を癌症例と判定し、その確率は90%となった。また、健常人13例中13例を健常人と判定し、その確率は100%となった。その判定の正答率は22/23であり95.7%となった。
 さらに、本発明者は膵臓癌患者8名、健常人8名の末梢血液における遺伝子発現解析を行い、DNAマイクロアレイ上の約22,000個のプローブでの解析データによって行ったクラスタリング解析により、膵臓癌症例と健常人とを識別し得ることを見出した。膵臓癌症例群及び健常人群の2群の遺伝子発現の比較によって、各群間にて発現に有意差のある遺伝子に対応する677個のプローブを見出した。このプローブセットを用いて、前述の膵臓癌症例群及び健常人群の階層クラスタリングを行ったところ、2つのクラスターを形成し、膵臓癌症例と健常人とを識別し得ることを見出した。また677個のプローブ抽出に使用した癌症例と健常人とは別の癌症例20例と健常人13例に対して、予測モデルを適応して癌症例と健常人を判定した。その結果、癌症例20例中15例を癌症例と判定し、その確率は75%となった。また、健常人13例中13例を健常人と判定し、その確率は100%となった。その判定の正答率は28/33であり84.8%となった。
 さらに、本発明者は胆道癌患者8名、健常人8名の末梢血液における遺伝子発現解析を行い、DNAマイクロアレイ上の約22,000個のプローブでの解析データによって行ったクラスタリング解析により、3つのクラスターが形成され、胆道癌症例と健常人とを識別し得ることを見いだした。胆道癌症例群及び健常人群の2群の遺伝子発現の比較によって、各群間にて発現に有意差のある遺伝子に対応する363個のプローブを見出した。このプローブセットを用いて、前述の胆道癌症例群及び健常人群の階層クラスタリングを行ったところ、2つのクラスターを形成し、胆道癌症例と健常人とを識別し得ることを見出した。また363個のプローブ抽出に使用した癌症例と健常人とは別の癌症例8例と健常人13例に対して、予測モデルを適応して癌症例と健常人を判定した。その結果、癌症例8例中8例を癌症例と判定し、その確率は100%となった。また、健常人13例中13例を健常人と判定し、その確率は100%となった。その判定の正答率は21/21であり100%となった。
 これらの結果より、末梢血液中における、この遺伝子セットの発現変化を検討することにより、消化器癌、胃癌、大腸癌、膵臓癌及び胆道癌の診断が可能となることを見出し、本発明を完成させるに至った。本発明の方法は、DNAマイクロアレイ開発技術、real-time PCR法、ELISA法の応用によって、新しい消化器癌診断の実用化診断キットの作成を可能にする。
 現在、汎用・保健適応されている腫瘍マーカーはすべての消化器癌患者で有用とは限らなかったが、本発明の遺伝子発現解析での検出感度は90.6%であり、非常に高い検出感度と簡単な採血にて消化器癌を特定できる。
 すなわち、本発明は以下のとおりである。
[1] 配列番号220、506、508、523、538、554、570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849に表される塩基配列からなるプローブの総てを含む、末梢血中の配列番号220、506、508、523、538、554、570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849に表される塩基配列からなるプローブに対応する遺伝子、又は配列番号3030~3054に表される塩基配列からなるプローブの総てを含む、末梢血中の配列番号3030~3054に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し消化器癌を検出するための試薬。
[2] [1]のプローブが基板に結合しているDNAマイクロアレイを含む、[1]の消化器癌を検出するための試薬。
[3] 被験体の末梢血における配列番号220、506、508、523、538、554、570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849に表される塩基配列からなるプローブに対応する遺伝子、又は配列番号3030~3054に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて消化器癌を検出する方法。
[4] 配列番号923、927、929、932、946、952、986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578に表される塩基配列からなるプローブの総てを含む、末梢血中の配列番号923、927、929、932、946、952、986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し胃癌を検出するための試薬。
[5] [4]のプローブが基板に結合しているDNAマイクロアレイを含む、[4]の胃癌を検出するための試薬。
[6] 被験体の末梢血における配列番号923、927、929、932、946、952、986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて胃癌を検出する方法。
[7] 配列番号1583、1601、1611、1614、1644、1651、1678、1680、1684、1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340に表される塩基配列からなるプローブの総てを含む、配列番号1583、1601、1611、1614、1644、1651、1678、1680、1684、1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し大腸癌を検出するための試薬。
[8] [7]のプローブが基板に結合しているDNAマイクロアレイを含む、[7]の大腸癌を検出するための試薬。
[9] 被験体の末梢血における配列番号1583、1601、1611、1614、1644、1651、1678、1680、1684、1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて大腸癌を検出する方法。
[10] 配列番号2373、2404、2418、2419、2426、2430、2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003に表される塩基配列からなるプローブの総てを含む、配列番号2373、2404、2418、2419、2426、2430、2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し膵臓癌を検出するための試薬。
[11] [10]のプローブが基板に結合しているDNAマイクロアレイを含む、[10]の膵臓癌を検出するための試薬。
[12] 被験体の末梢血における配列番号2373、2404、2418、2419、2426、2430、2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて膵臓癌を検出する方法。
[13] 配列番号3055~3417に表される塩基配列からなるプローブの総てを含む、配列番号3055~3417に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し胆道癌を検出するための試薬。
[14] [13]のプローブが基板に結合しているDNAマイクロアレイを含む、[13]の胆道癌を検出するための試薬。
[15] 被験体の末梢血における配列番号3055~3417に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて胆道癌を検出する方法。
 本明細書は本願の優先権の基礎である日本国特許出願2009-193702号の明細書および/または図面に記載される内容を包含する。
 本発明のプローブに対応する遺伝子は、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を罹患した場合に発現が変動する。これらの遺伝子の発現プロファイルを解析することにより、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を検出することができる。また、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を罹患するリスク等を予測することができる。
消化器癌の検出に用い得る第1のプローブ群である868個のプローブを示す図である。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 消化器癌の検出に用い得る868個のプローブを示す図である(続き)。 図1に示す868個のプローブの中で特に消化器癌患者と健常人での発現変動の程度が大きい21個のプローブを示す図である。 胃癌の検出に用い得る713個のプローブを示す図である。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 胃癌の検出に用い得る713個のプローブを示す図である(続き)。 図3に示す713個のプローブの中で特に胃癌患者と健常人での発現変動の程度が大きい107個のプローブを示す図である。 図3に示す713個のプローブの中で特に胃癌患者と健常人での発現変動の程度が大きい107個のプローブを示す図である(続き)。 図3に示す713個のプローブの中で特に胃癌患者と健常人での発現変動の程度が大きい107個のプローブを示す図である(続き)。 図3に示す713個のプローブの中で特に胃癌患者と健常人での発現変動の程度が大きい107個のプローブを示す図である(続き)。 図3に示す713個のプローブの中で特に胃癌患者と健常人での発現変動の程度が大きい107個のプローブを示す図である(続き)。 図3に示す713個のプローブの中で特に胃癌患者と健常人での発現変動の程度が大きい107個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 大腸癌の検出に用い得る771個のプローブを示す図である(続き)。 図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブを示す図である。 図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブを示す図である(続き)。 図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブを示す図である(続き)。 図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブを示す図である(続き)。 図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブを示す図である(続き)。 図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブを示す図である(続き)。 図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 膵臓癌の検出に用い得る677個のプローブを示す図である(続き)。 図7に示す677個のプローブの中で特に膵臓癌患者と健常人での発現変動の程度が大きい61個のプローブを示す図である。 図7に示す677個のプローブの中で特に膵臓癌患者と健常人での発現変動の程度が大きい61個のプローブを示す図である(続き)。 図7に示す677個のプローブの中で特に膵臓癌患者と健常人での発現変動の程度が大きい61個のプローブを示す図である(続き)。 図7に示す677個のプローブの中で特に膵臓癌患者と健常人での発現変動の程度が大きい61個のプローブを示す図である(続き)。 23352プローブによる消化器癌症例と健常人の階層クラスタリングを示す図である。 健常人と消化器癌症例とで発現減弱及び発現亢進が認められた遺伝子に対応する868プローブによる階層クラスタリングを示す図である。 消化器癌症例において、0.4倍以下の発現減弱及び2.5倍以上の発現亢進が認められた遺伝子に対応する21プローブによる階層クラスタリングを示す図である。 22155プローブによる胃癌症例と健常人の階層クラスタリングを示す図である。 胃癌症例において、0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する713プローブによる階層クラスタリングを示す図である。 胃癌症例において、0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する107プローブによる階層クラスタリングを示す図である。 22181プローブによる胃癌症例と健常人の階層クラスタリングを示す図である。 大腸癌症例において、0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する771プローブによる階層クラスタリングを示す図である。 大腸癌症例において、0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する116プローブによる階層クラスタリングを示す図である。 22149プローブによる膵臓癌症例と健常人の階層クラスタリングを示す図である。 膵臓癌症例において、0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する677プローブによる階層クラスタリングを示す図である。 膵臓癌症例において、0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する61プローブによる階層クラスタリングを示す図である。 消化器癌の検出に用い得る第2のプローブ群である25個のプローブを示す図である。 消化器癌の検出に用い得る第2のプローブ群である25個のプローブを示す図である(続き)。 23278プローブによる消化器癌症例と健常人の階層クラスタリングを示す図である。 健常人と消化器癌症例とで発現減弱及び発現亢進が認められた遺伝子に対応する25プローブによる階層クラスタリングを示す図である。 胆道癌の検出に用い得る363個のプローブを示す図である。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 胆道癌の検出に用い得る363個のプローブを示す図である(続き)。 22066プローブによる胆道癌症例と健常人の階層クラスタリングを示す図である。 胆道癌症例において、0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する363プローブによる階層クラスタリングを示す図である。
 本発明において消化器癌には、胃癌、大腸癌、膵臓癌及び胆道癌が含まれる。本発明の消化器癌を検出する方法によりこれらの消化器癌全般を検出することができる。また、本発明の胃癌、大腸癌、膵臓癌又は胆道癌を検出する方法により、それぞれ、胃癌、大腸癌、膵臓癌又は胆道癌を特異的に検出することができる。
 本発明の方法においては、消化器癌患者において健常人に対して発現が変動する遺伝子群、胃癌患者において健常人に対して発現が変動する遺伝子群、大腸癌患者において健常人に対して発現が変動する遺伝子群、膵臓癌患者において健常人に対して発現が変動する遺伝子群、又は胆道癌患者において健常人に対して発現が変動する遺伝子群の末梢血中での発現を測定し、各遺伝子群の発現プロファイルを得て、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を検出する。ここで、発現の変動は発現の減弱及び発現の亢進を含む。
 末梢血における遺伝子の発現の測定は、末梢血からmRNAを抽出単離し、mRNAを測定することにより行う。末梢血からのmRNAの抽出単離は、公知の方法により行うことができる。末梢血から抽出単離できるmRNAは、末梢血中の、赤血球、血小板の他、リンパ球、単球、顆粒球を含む白血球等に由来するmRNAである。
 本発明の方法においては、上記遺伝子の発現レベルを測定する。
 本発明において、遺伝子の発現レベルとは、遺伝子の発現量、発現強度又は発現頻度をいい、通常、遺伝子に対応する転写産物の産生量、又はその翻訳産物の産生量、活性等により解析することができる。また、発現プロファイルとは、各遺伝子の発現レベルに関する情報をいう。遺伝子の発現レベルは、絶対値で表してもよく、また相対値で表してもよい。なお、発現プロファイルを発現パターンという場合もある。
 発現レベルの測定は、遺伝子の転写産物、すなわちmRNAの測定により行ってもよいし、遺伝子の翻訳産物、すなわちタンパク質の測定により行ってもよい。好ましくは、遺伝子の転写産物の測定により行なう。遺伝子の転写産物には、mRNAから逆転写されて得られたcDNAも含まれる。
 遺伝子の転写産物の測定は、上記の遺伝子の塩基配列の全部若しくは一部又はそれらに相補的な配列を含むヌクレオチド、すなわち遺伝子の塩基配列からなるヌクレオチド配列若しくはその一部配列又はそれらに相補的な配列からなるヌクレオチドをプローブ又はプライマーとして用いて遺伝子発現の程度を測定すればよい。これらのヌクレオチドは該遺伝子にハイブリダイズし得るヌクレオチド、該遺伝子に結合しうるヌクレオチド、あるいは該遺伝子の検出に用い得る検出のためのヌクレオチドである。遺伝子発現の程度は、マイクロアレイ(マイクロチップ)を用いた方法、ノーザンブロット法、定量しようとする遺伝子又はその断片をターゲットとした定量PCR法等で測定することが可能である。定量PCR法としては、アガロースゲル電気泳動法、蛍光プローブ法、RT-PCR法、リアルタイムPCR法、ATAC-PCR法(Kato,K.et al.,Nucl.Acids Res.,25,4694-4696,1997)、Taqman PCR法(SYBR(登録商標)グリーン法)(Schmittgen TD,Methods25,383-385,2001)、Body Map法(Gene,174,151-158(1996))、Serial analysis of gene expression(SAGE)法(米国特許第527,154号、第544,861号、欧州特許公開第0761822号)、MAGE法(Micro-analysis of Gene Expression)(特開2000-232888号)等がある。ここに挙げた方法はいずれも公知の方法で行うことができる。これらの方法を用いて、上記遺伝子の全部又は一部から転写されたメッセンジャーRNA(mRNA)の量を測定すればよく、該mRNAにハイブリダイズするヌクレオチドプローブ又はプライマーの使用により測定することができる。測定に用いるプローブ又はプライマーの塩基長は、10~100bp、好ましくは20~80bp、さらに好ましくは50~70bpである。
 DNAマイクロアレイ(DNAチップ)は、前記遺伝子の塩基配列からなるヌクレオチド若しくはその一部配列又はそれらの相補的配列を含むヌクレオチドを適当な基板上に固定化することにより作製することができる。
 固定基板としては、ガラス板、石英板、シリコンウェハーなどが挙げられる。基板の大きさとしては、例えば3.5mm×5.5mm、18mm×18mm、22mm×75mmなどが挙げられるが、これは基板上のプローブのスポット数やそのスポットの大きさなどに応じて様々に設定することができる。ポリヌクレオチド又はその断片の固定化方法としては、ヌクレオチドの荷電を利用して、ポリリジン、ポリエチレンイミン、ポリアルキルアミンなどのポリ陽イオンで表面処理した固相担体に静電結合させたり、アミノ基、アルデヒド基、エポキシ基などの官能基を導入した固相表面に、アミノ基、アルデヒド基、SH基、ビオチンなどの官能基を導入したヌクレオチドを共有結合により結合させることもできる。固定化は、アレイ機を用いて行えばよい。上記868のプローブに対応する遺伝子の少なくとも1個の遺伝子又はその断片を基板に固相化してDNAマイクロアレイを作製し、該DNAマイクロアレイと蛍光物質で標識した被験体由来のmRNAまたはcDNAを接触させ、ハイブリダイズさせ、DNAマイクロアレイ上の蛍光強度を測定することにより、mRNAの種類と量を決定することができる。その結果、被験体において発現が変動している遺伝子がわかり、遺伝子発現プロファイルを得ることができる。被験体由来のmRNAを標識する蛍光物質は、限定されず、市販の蛍光物質を用いることができる。例えば、Cy3、Cy5等を用いればよい。mRNAの標識は公知の方法で行うことができる。
 本発明において、プローブとはDNAマイクロアレイ上に配置されているヌクレオチドの配列を指すものであり、プローブID番号1つについて、1つのヌクレオチド配列が指定されている。1つの遺伝子であっても、ヌクレオチドの配列が異なっている複数のプローブに対応している遺伝子も存在する。プローブが遺伝子に対応するとは、該プローブの配列が該遺伝子の塩基配列の部分配列又はその配列に相補的な配列に相補的であり、該遺伝子と該プローブがハイブリダイズし得ることをいう。プローブに対応する遺伝子の塩基配列は、該プローブの塩基配列又はその塩基配列に相補的な塩基配列を部分配列として含む。
 本発明でプローブ又はプライマーとして用いるヌクレオチドは上記遺伝子の配列を含むヌクレオチド及びその断片配列からなるヌクレオチド並びにそれらの配列に相補的な配列からなるヌクレオチドを含む。また、本発明に用いるヌクレオチドは、上記の塩基配列を有するヌクレオチドとストリンジェントな条件下でハイブリダイズするヌクレオチド及びその断片配列からなるヌクレオチドも含まれる。このようなヌクレオチドとしては、例えば、上記塩基配列との相同性の程度が、全体の平均で約80%以上、好ましくは約90%以上、より好ましくは約95%以上である塩基配列を含有するヌクレオチド等を挙げることが出来る。ハイブリダイゼーションは、カレント・プロトコールズ・イン・モレキュラー・バイオロジー(Current protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987))に記載の方法等、当業界で公知の方法あるいはそれに準じる方法に従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。ここで、「ストリンジェントな条件」とは、例えば、「1XSSC、0.1% SDS、37℃」程度の条件であり、より厳しい条件としては「0.5XSSC、0.1% SDS、42℃」程度の条件であり、さらに厳しい条件としては「0.2XSSC、0.1% SDS、65℃」程度の条件である。このようにハイブリダイゼーションの条件が厳しくなるほどプローブ配列と高い相同性を有するヌクレオチドを単離し得る。ただし、上記のSSC、SDS及びに温度の条件の組み合わせは例示であり、当業者であればハイブリダイゼーションのストリンジェンシーを決定する上記もしくは他の要素(例えば、プローブ濃度、プローブの長さ、ハイブリダイゼーションの反応時間など)を適宜組み合わせることにより、上記と同様のストリンジェンシーを実現することが可能である。さらに、これらの遺伝子はバリアントを有する場合もあり、本発明で用いる遺伝子には上記遺伝子のバリアントも含まれる。バリアントの塩基配列は遺伝子データベースにアクセスすることにより得ることができる。本発明のヌクレオチドは該バリアントの塩基配列を含むヌクレオチド又はその断片配列からなるヌクレオチドも含む。
 また、本発明で用いるヌクレオチドは、上記遺伝子のセンス鎖よりなるヌクレオチド、アンチセンス鎖よりなるヌクレオチドのいずれをも用いることができる。
 図1(図1-1~図1-48)に消化器癌の検出に用い得る第1のプローブ群である868個のプローブを示す。図1にはプローブID番号、プローブに対応する遺伝子のシンボル、プローブの塩基配列(配列番号1~868)及びプローブに対応する遺伝子の解説(遺伝子名及びGenBank登録番号)を示す。これらの遺伝子の全長配列は公知であり、任意の部分的配列を該遺伝子を検出するためのヌクレオチドとして用いることができる。図2には図1に示す868個のプローブの中で特に消化器癌患者と健常人での発現変動の程度が大きい21個のプローブの塩基配列(配列番号220、506、508、523、538、554、570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849)を示す。図1においてNo.1~No.555の555プローブ(配列番号1~配列番号555)に対応する遺伝子は消化器癌患者において健常人に対して発現が減弱する遺伝子であり、No.556~No.868の313プローブ(配列番号556~868)に対応する遺伝子は消化器癌患者において健常人に対して発現が亢進する遺伝子である。また、図2においてNo.1~No.6のプローブ(配列番号220、506、508、523、538及び554)に対応する遺伝子は消化器癌患者において健常人に対して発現が減弱する遺伝子であり、No.7~No.21(配列番号570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849)のプローブに対応する遺伝子は消化器癌患者において健常人に対して発現が亢進する遺伝子である。
 さらに、図21(図21-1及び図21-2)に、消化器癌の検出に用い得る第2のプローブ群である25個のプローブを示す。図21にはプローブID番号、プローブに対応する遺伝子のシンボル、プローブの塩基配列(配列番号3030~3054)及びプローブに対応する遺伝子の解説(遺伝子名及びGenBank登録番号)を示す。これらの遺伝子の全長配列は公知であり、任意の部分的配列を該遺伝子を検出するためのヌクレオチドとして用いることができる。
 図3(図3-1~図3-39)に胃癌の検出に用い得る713個のプローブを示す。図3にはプローブID番号、プローブに対応する遺伝子のシンボル、プローブの塩基配列(配列番号869~1581)及びプローブに対応する遺伝子の解説(遺伝子名及びGenBank登録番号)を示す。これらの遺伝子の全長配列は公知であり、任意の部分的配列を該遺伝子を検出するためのヌクレオチドとして用いることができる。図4(図4-1~図4-6)には図3に示す713個のプローブの中で特に胃癌患者と健常人での発現変動の程度が大きい107個のプローブの塩基配列(配列番号923、927、929、932、946、952、986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578)を示す。図3においてNo.1~No.84の84プローブ(配列番号869~配列番号952)に対応する遺伝子は胃癌患者において健常人に対して発現が減弱する遺伝子であり、No.85~No.713の629プローブ(配列番号953~1581)に対応する遺伝子は胃癌患者において健常人に対して発現が亢進する遺伝子である。また、図4においてNo.1~No.6のプローブ(配列番号923、927、929、932、946及び952)に対応する遺伝子は胃癌患者において健常人に対して発現が減弱する遺伝子であり、No.7~No.107のプローブ(配列番号986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578)に対応する遺伝子は胃癌患者において健常人に対して発現が亢進する遺伝子である。
 図5(図5-1~図5-41)に大腸癌の検出に用い得る771個のプローブを示す。図5にはプローブID番号、プローブに対応する遺伝子のシンボル、プローブの塩基配列(配列番号1582~2352)及びプローブに対応する遺伝子の解説(遺伝子名及びGenBank登録番号)を示す。これらの遺伝子の全長配列は公知であり、任意の部分的配列を該遺伝子を検出するためのヌクレオチドとして用いることができる。図6(図6-1~図6-6)には図5に示す771個のプローブの中で特に大腸癌患者と健常人での発現変動の程度が大きい116個のプローブ(配列番号1583、1601、1611、1614、1644、1651、1678、1680、1684、1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340)を示す。図5においてNo.1~No.125の125プローブ(配列番号1582~配列番号1706)に対応する遺伝子は大腸癌患者において健常人に対して発現が減弱する遺伝子であり、No.126~No.771の646プローブ(配列番号1707~2352)に対応する遺伝子は大腸癌患者において健常人に対して発現が亢進する遺伝子である。また、図6においてNo.1~No.9のプローブ(配列番号1583、1601、1611、1614、1644、1651、1678、1680及び1684)に対応する遺伝子は大腸癌患者において健常人に対して発現が減弱する遺伝子であり、No.10~No.116のプローブ(配列番号1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340)に対応する遺伝子は大腸癌患者において健常人に対して発現が亢進する遺伝子である。
 図7(図7-1~図7-37)に膵臓癌の検出に用い得る677個のプローブを示す。図7にはプローブID番号、プローブに対応する遺伝子のシンボル、プローブの塩基配列(配列番号2353~3029)及びプローブに対応する遺伝子の解説(遺伝子名及びGenBank登録番号)を示す。これらの遺伝子の全長配列は公知であり、任意の部分的配列を該遺伝子を検出するためのヌクレオチドとして用いることができる。図8(図8-1~図8-3)には図7に示す677個のプローブの中で特に膵臓癌患者と健常人での発現変動の程度が大きい61個のプローブ(配列番号2373、2404、2418、2419、2426、2430、2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003)を示す。図7においてNo.1~No.96の96プローブ(配列番号2353~配列番号2448)に対応する遺伝子は膵臓癌患者において健常人に対して発現が減弱する遺伝子であり、No.97~No.677の581プローブ(配列番号2449~3029)に対応する遺伝子は膵臓器癌患者において健常人に対して発現が亢進する遺伝子である。また、図8においてNo.1~No.6のプローブ(配列番号2373、2404、2418、2419、2426及び2430)に対応する遺伝子は膵臓癌患者において健常人に対して発現が減弱する遺伝子であり、No.7~No.61のプローブ(配列番号2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003)に対応する遺伝子は膵臓癌患者において健常人に対して発現が亢進する遺伝子である。
 図24(図24-1~図24-19)に胆道癌の検出に用い得る363個のプローブを示す。図24にはプローブID番号、プローブに対応する遺伝子のシンボル、プローブの塩基配列(配列番号3055~3417)及びプローブに対応する遺伝子の解説(遺伝子名及びGenBank登録番号)を示す。これらの遺伝子の全長配列は公知であり、任意の部分的配列を該遺伝子を検出するためのヌクレオチドとして用いることができる。図24においてNo.1~No.98の98プローブ(配列番号3055~配列番号3152)に対応する遺伝子は胆道膵臓癌患者において健常人に対して発現が減弱する遺伝子であり、No.99~No.363の265プローブ(配列番号3153~3417)に対応する遺伝子は膵臓器癌患者において健常人に対して発現が亢進する遺伝子である。
 本発明の消化器癌を検出する方法において、図1に示す868個のプローブの少なくとも1つを用いて、被験体の末梢血におけるそのプローブに対応する遺伝子(図1の最右欄に記載されている遺伝子)の発現レベルを測定する。この際、プローブとしては図1に示す868個のプローブの少なくとも1個~867個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個、600個、650個、700個、750個、800個、850個若しくは867個、又は868個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、消化器癌患者群において発現が減弱する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。また、消化器癌患者群において発現が亢進する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。さらに、消化器癌患者群において発現が減弱する遺伝子に対応する少なくとも1個のプローブ及び消化器癌患者群において発現が亢進する遺伝子に対応する少なくとも1個のプローブを組合せて用い、それらのプローブに対応する遺伝子の発現レベルを測定してもよい。すなわち、図1に示すプローブのNo.1~No.555の555個のプローブ(配列番号1~配列番号555)の少なくとも1つを用いて、これらのプローブに対応する遺伝子の少なくとも1つを測定すればよく、この際555個のプローブの少なくとも1個~554個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個若しくは554個、又は555個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、図1に示すプローブのNo.556~No.868の313個のプローブ(配列番号556~配列番号868)の少なくとも1つを用いて、そのプローブに対応する遺伝子の発現レベルを測定すればよく、この際、313個のプローブの少なくとも1個~312個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個若しくは312個、又は313個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。さらに、図1に示すプローブのNo.1~No.555の555個のプローブ(配列番号1~配列番号555)の少なくとも1つと図1に示すプローブのNo.556~No.868の313個のプローブ(配列番号556~配列番号868)の少なくとも1つを組み合わせて用いて、それらのプローブに対応する遺伝子の発現レベルを測定すればよい。
 さらに、上記868個のプローブに対応する遺伝子のうち、特に発現変動の大きい遺伝子に対応する図2に示す21個のプローブの少なくとも1つを用いて、該プローブに対応する遺伝子(図2の最右欄に記載されている遺伝子)の発現レベルを測定してもよい。この際21個のプローブの1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個又は21個のプローブを用いて、これらのプローブに対応する遺伝子の発現レベルを測定すればよい。また、図2に示す21個のプローブのうち、消化器癌患者において健常人に対して発現が減弱する遺伝子に対応するNo.1~No.6のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、図2に示す21個のプローブのうち、消化器癌患者において健常人に対して発現が亢進する遺伝子に対応するNo.7~No.21のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、さらに、No.1~No.6のプローブの少なくとも1つとNo.7~No.21のプローブの少なくとも1つを組み合わせて用いて遺伝子の発現レベルを測定してもよい。この際、No.1~No.6のプローブの1個、2個、3個、4個、5個又は6個を用いればよく、No.7~No.21のプローブの1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個又は15個を用いればよい。
 さらに、本発明の消化器癌を検出する方法において、図21に示す25個のプローブの少なくとも1つを用いて、被験体の末梢血におけるそのプローブに対応する遺伝子(図1Aの最右欄に記載されている遺伝子)の発現レベルを測定する。この際、プローブとしては図1Aに示す25個のプローブの1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個、20個、21個、22個、23個、24個、又は25個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、消化器癌患者群において発現が減弱する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。また、消化器癌患者群において発現が亢進する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。さらに、消化器癌患者群において発現が減弱する遺伝子に対応する少なくとも1個のプローブ及び消化器癌患者群において発現が亢進する遺伝子に対応する少なくとも1個のプローブを組合せて用い、それらのプローブに対応する遺伝子の発現レベルを測定してもよい。すなわち、図21に示すプローブのNo.1~No.14の14個のプローブ(配列番号3030~配列番号3043)の少なくとも1つを用いて、これらのプローブに対応する遺伝子の少なくとも1つを測定すればよく、この際14個のプローブの1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、又は14個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、図21に示すプローブのNo.15~No.25の11個のプローブ(配列番号3044~配列番号3054)の少なくとも1つを用いて、そのプローブに対応する遺伝子の発現レベルを測定すればよく、この際、11個のプローブの1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、又は11個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。さらに、図21に示すプローブのNo.1~No.14の14個のプローブ(配列番号3030~配列番号3043)の少なくとも1つと図21に示すプローブのNo.15~No.25の11個のプローブ(配列番号3044~配列番号3054)の少なくとも1つを組み合わせて用いて、それらのプローブに対応する遺伝子の発現レベルを測定すればよい。
 本発明の胃癌を検出する方法において、図3に示す713個のプローブの少なくとも1つを用いて、被験体の末梢血におけるそのプローブに対応する遺伝子(図3の最右欄に記載されている遺伝子)の発現レベルを測定する。この際、プローブとしては図3に示す713個のプローブの少なくとも1個~712個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個、600個、650個、700個若しくは712個、又は713個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、胃癌患者群において発現が減弱する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。また、胃癌患者群において発現が亢進する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。さらに、胃癌患者群において発現が減弱する遺伝子に対応する少なくとも1個のプローブ及び胃癌患者群において発現が亢進する遺伝子に対応する少なくとも1個のプローブを組合せて用い、それらのプローブに対応する遺伝子の発現レベルを測定してもよい。すなわち、図1に示すプローブのNo.1~No.84の84個のプローブ(配列番号869~配列番号952)の少なくとも1つを用いて、これらのプローブに対応する遺伝子の少なくとも1つを測定すればよく、この際84個のプローブの少なくとも1個~83個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、30個、40個、50個、60個、70個、80個若しくは83個、又は84個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、図3に示すプローブのNo.85~No.713の629個のプローブ(配列番号953~配列番号1581)の少なくとも1つを用いて、そのプローブに対応する遺伝子の発現レベルを測定すればよく、この際、629個のプローブの少なくとも1個~628個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個、600個、若しくは628個又は629個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。さらに、図3に示すプローブのNo.1~No.84の84個のプローブ(配列番号869~配列番号952)の少なくとも1つと図3に示すプローブのNo.85~No.713の629個のプローブ(配列番号953~配列番号1581)の少なくとも1つを組み合わせて用いて、それらのプローブに対応する遺伝子の発現レベルを測定すればよい。
 さらに、上記713個のプローブに対応する遺伝子のうち、特に発現変動の大きい遺伝子に対応する図4に示す107個のプローブの少なくとも1つを用いて、該プローブに対応する遺伝子(図4の最右欄に記載されている遺伝子)の発現レベルを測定してもよい。この際107個のプローブの少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、30個、40個、50個、60個、70個、80個、90個、100個若しくは106個、又は107個のプローブを用いて、これらのプローブに対応する遺伝子の発現レベルを測定すればよい。また、図4に示す107個のプローブのうち、胃癌患者において健常人に対して発現が減弱する遺伝子に対応するNo.1~No.6のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、図4に示す107個のプローブのうち、胃癌患者において健常人に対して発現が亢進する遺伝子に対応するNo.7~No.107のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、さらに、No.1~No.6のプローブの少なくとも1つとNo.7~No.107のプローブの少なくとも1つを組み合わせて用いて遺伝子の発現レベルを測定してもよい。この際、No.1~No.6のプローブの1個、2個、3個、4個、5個又は6個を用いればよく、No.7~No.107のプローブの少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個20個、30個、40個、50個、60個、70個、80個、90個若しくは100個又は101個を用いればよい。
 本発明の大腸癌を検出する方法において、図5に示す771個のプローブの少なくとも1つを用いて、被験体の末梢血におけるそのプローブに対応する遺伝子(図5の最右欄に記載されている遺伝子)の発現レベルを測定する。この際、プローブとしては図5に示す771個のプローブの少なくとも1個~770個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個、600個、650個、700個、750個若しくは770個、又は771個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、大腸癌患者群において発現が減弱する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。また、大腸癌患者群において発現が亢進する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。さらに、大腸癌患者群において発現が減弱する遺伝子に対応する少なくとも1個のプローブ及び大腸癌患者群において発現が亢進する遺伝子に対応する少なくとも1個のプローブを組合せて用い、それらのプローブに対応する遺伝子の発現レベルを測定してもよい。すなわち、図5に示すプローブのNo.1~No.125の125個のプローブ(配列番号1582~配列番号1706)の少なくとも1つを用いて、これらのプローブに対応する遺伝子の少なくとも1つを測定すればよく、この際125個のプローブの少なくとも1個~124個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、30個、40個、50個、60個、70個、80個、90個、100個、110個、120個若しくは124個又は125個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、図5に示すプローブのNo.126~No.771の646個のプローブ(配列番号1707~配列番号2352)の少なくとも1つを用いて、そのプローブに対応する遺伝子の発現レベルを測定すればよく、この際、646個のプローブの少なくとも1個~645個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個、600個若しくは645個、又は646個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。さらに、図5に示すプローブのNo.1~No.125の125個のプローブ(配列番号1582~配列番号1706)の少なくとも1つと図5に示すプローブのNo.126~No.771の646個のプローブ(配列番号1707~配列番号2352)の少なくとも1つを組み合わせて用いて、それらのプローブに対応する遺伝子の発現レベルを測定すればよい。
 さらに、上記771個のプローブに対応する遺伝子のうち、特に発現変動の大きい遺伝子に対応する図6に示す116個のプローブの少なくとも1つを用いて、該プローブに対応する遺伝子(図6の最右欄に記載されている遺伝子)の発現レベルを測定してもよい。この際116個のプローブの少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、30個、40個、50個、60個、70個、80個、90個、100個、110個若しくは115個、又は116個のプローブを用いて、これらのプローブに対応する遺伝子の発現レベルを測定すればよい。また、図6に示す116個のプローブのうち、大腸癌患者において健常人に対して発現が減弱する遺伝子に対応するNo.1~No.9のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、図6に示す116個のプローブのうち、大腸癌患者において健常人に対して発現が亢進する遺伝子に対応するNo.10~No.116のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、さらに、No.1~No.9のプローブの少なくとも1つとNo.10~No.116のプローブの少なくとも1つを組み合わせて用いて遺伝子の発現レベルを測定してもよい。この際、No.1~No.9のプローブの1個、2個、3個、4個、5個、6個、7個、8個又は9個を用いればよく、No.10~No.116のプローブの少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個20個、30個、40個、50個、60個、70個、80個、90個、100個若しくは109個又は110個を用いればよい。
 本発明の膵臓癌を検出する方法において、図7に示す677個のプローブの少なくとも1つを用いて、被験体の末梢血におけるそのプローブに対応する遺伝子(図7の最右欄に記載されている遺伝子)の発現レベルを測定する。この際、プローブとしては図7に示す677個のプローブの少なくとも1個~676個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個、600個、650個若しくは676個、又は677個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、膵臓癌患者群において発現が減弱する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。また、膵臓癌患者群において発現が亢進する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。さらに、膵臓癌患者群において発現が減弱する遺伝子に対応する少なくとも1個のプローブ及び膵臓癌患者群において発現が亢進する遺伝子に対応する少なくとも1個のプローブを組合せて用い、それらのプローブに対応する遺伝子の発現レベルを測定してもよい。すなわち、図7に示すプローブのNo.1~No.96の96個のプローブ(配列番号2353~配列番号2448)の少なくとも1つを用いて、これらのプローブに対応する遺伝子の少なくとも1つを測定すればよく、この際96個のプローブの少なくとも1個~95個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、30個、40個、50個、60個、70個、80個、90個若しくは95個又は96個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、図7に示すプローブのNo.97~No.677の581プローブ(配列番号2449~3029)の少なくとも1つを用いて、そのプローブに対応する遺伝子の発現レベルを測定すればよく、この際、581個のプローブの少なくとも1個~580個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個、400個、450個、500個、550個若しくは580個、又は581個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。さらに、図7に示すプローブのNo.1~No.96の96個のプローブ(配列番号2353~配列番号2448)の少なくとも1つと図7に示すプローブのNo.97~No.677の581プローブ(配列番号2449~3029)の少なくとも1つを組み合わせて用いて、それらのプローブに対応する遺伝子の発現レベルを測定すればよい。
 さらに、上記677個のプローブに対応する遺伝子のうち、特に発現変動の大きい遺伝子に対応する図8に示す61個のプローブの少なくとも1つを用いて、該プローブに対応する遺伝子(図8の最右欄に記載されている遺伝子)の発現レベルを測定してもよい。この際61個のプローブの少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、30個、40個、50個若しくは60個、又は61個のプローブを用いて、これらのプローブに対応する遺伝子の発現レベルを測定すればよい。また、図8に示す61個のプローブのうち、膵臓癌患者において健常人に対して発現が減弱する遺伝子に対応するNo.1~No.6のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、図8に示す61個のプローブのうち、膵臓癌患者において健常人に対して発現が亢進する遺伝子に対応するNo.7~No.61のプローブの少なくとも1つを用いて遺伝子の発現レベルを測定してもよく、さらに、No.1~No.6のプローブの少なくとも1つとNo.7~No.61のプローブの少なくとも1つを組み合わせて用いて遺伝子の発現レベルを測定してもよい。この際、No.1~No.6のプローブの1個、2個、3個、4個、5個又は6個を用いればよく、No.7~No.61のプローブの少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個20個、30個、40個、50個若しくは54個、又は55個を用いればよい。
 本発明の胆道癌を検出する方法において、図24(図24-1~図24-19)に示す363個のプローブの少なくとも1つを用いて、被験体の末梢血におけるそのプローブに対応する遺伝子(図24の最右欄に記載されている遺伝子)の発現レベルを測定する。この際、プローブとしては図24に示す363個のプローブの少なくとも1個~362個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、300個、350個若しくは362個、又は363個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、胆道癌患者群において発現が減弱する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。また、胆道癌患者群において発現が亢進する遺伝子に対応するプローブの少なくとも1個を用いて、そのプローブに対応する遺伝子の発現レベルを測定してもよい。さらに、胆道癌患者群において発現が減弱する遺伝子に対応する少なくとも1個のプローブ及び胆道癌患者群において発現が亢進する遺伝子に対応する少なくとも1個のプローブを組合せて用い、それらのプローブに対応する遺伝子の発現レベルを測定してもよい。すなわち、図24に示すプローブのNo.1~No.98の98個のプローブ(配列番号3055~配列番号3152)の少なくとも1つを用いて、これらのプローブに対応する遺伝子の少なくとも1つを測定すればよく、この際98個のプローブの少なくとも1個~97個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、20個、30個、40個、50個、60個、70個、80個、90個若しくは97個又は98個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。また、図24に示すプローブのNo.99~No.363の265プローブ(配列番号3153~3417)の少なくとも1つを用いて、そのプローブに対応する遺伝子の発現レベルを測定すればよく、この際、265個のプローブの少なくとも1個~264個、例えば少なくとも1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、50個、100個、150個、200個、250個、264個、又は265個のプローブを用いて対応する遺伝子の発現レベルを測定すればよい。さらに、図24に示すプローブのNo.1~No.98の98個のプローブ(配列番号3055~配列番号3152)の少なくとも1つと図24に示すプローブのNo.99~No.363の265プローブ(配列番号3153~3417)の少なくとも1つを組み合わせて用いて、それらのプローブに対応する遺伝子の発現レベルを測定すればよい。
 本発明の方法により、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を罹患している患者を同定できることが可能になる。すなわち、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌の存在を検出することができる。
 被験体は、病態が未知の被験体でもよく、病態が未知の被験体を用いた場合、該被験体が正常であるか、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌に罹患しているかを判別診断することができる。
 本発明において、上記の消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌の病態の決定、予後の予測等を広く消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌の検出という。
 また、上記のプローブ、すなわち消化器癌については868個のプローブ若しくは25個のプローブ、胃癌については713個のプローブ、大腸癌については771個のプローブ、膵臓癌については677個のプローブ、胆道癌については363個のプローブに対応する遺伝子の1個以上の遺伝子の発現プロファイルを得て、発現プロファイルを解析することにより、被験体の病態を判定することができる。被験体から得られた発現プロファイルが消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌患者で得られた発現プロファイルと類似している場合、被験体はそれぞれ消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌に罹患していると判定することができる。また、被験体から得られた発現プロファイルを正常人で得られた発現プロファイルと比較し、正常人の発現プロファイルとの相違により、評価判定することもできる。
 遺伝子発現プロファイルは、蛍光強度等の発現シグナルのパターンが、デジタル数値で又は色を有する画像で記録される。遺伝子発現プロファイルの比較は、例えばパターン比較ソフトウェアを用いて行うことができ、コックスハザード分析、判別分析等を利用することができる。あらかじめ病態、病態予測又は予後予測を評価判定するための判別分析モデルを構築し、該判別分析モデルに被験体から得られた遺伝子発現プロファイルに関するデータを入力し、病態、病態予測又は予後予測を行うこともできる。例えば、判別分析により判別式を得て、蛍光強度と病態、病態予測又は予後予測を関連付け、判別式に被験体の発現シグナル数値を代入することにより、病態、病態予測又は予後予測を評価判定することができる。
 本発明は、消化器癌患者において健常人に対して発現が変動する遺伝子、胃癌患者において健常人に対して発現が変動する遺伝子、大腸癌患者において健常人に対して発現が変動する遺伝子、膵臓癌患者において健常人に対して発現が変動する遺伝子、又は胆道癌において健常人に対して発現が変動する遺伝子の発現レベルを測定するための該遺伝子の塩基配列からなるヌクレオチド又はその一部配列を含むヌクレオチドを含む消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を検出するための体外診断薬又はキットを包含する。該試薬は、前記遺伝子の塩基配列からなるヌクレオチド又はその一部配列を含むヌクレオチドをプローブ又はプライマーとして含む試薬であり、また前記遺伝子の塩基配列からなるヌクレオチド又はその一部配列を含むヌクレオチドを固相化したマイクロアレイ等の基板である。
 例えば、消化器癌を検出するための試薬又はキットは、上記の消化器癌の検出に用い得る868個若しくは25個のプローブの少なくとも1つを含み、該プローブに対応する遺伝子の少なくとも1つの遺伝子の発現レベルを測定することができる。また、胃癌を検出するための試薬又はキットは、上記の胃癌の検出に用い得る713個のプローブの少なくとも1つを含み、該プローブに対応する遺伝子の少なくとも1つの遺伝子の発現レベルを測定することができる。また、大腸癌を検出するための試薬又はキットは、上記の大腸癌の検出に用い得る771個のプローブの少なくとも1つを含み、該プローブに対応する遺伝子の少なくとも1つの遺伝子の発現レベルを測定することができる。さらに、膵臓癌を検出するための試薬又はキットは、膵臓癌の検出に用い得る677個のプローブの少なくとも1つを含み、該プローブに対応する遺伝子の少なくとも1つの遺伝子の発現レベルを測定することができる。さらに、胆道癌を検出するための試薬又はキットは、胆道癌の検出に用い得る363個のプローブの少なくとも1つを含み、該プローブに対応する遺伝子の少なくとも1つの遺伝子の発現レベルを測定することができる。
 本発明は本発明の消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を検出する方法により、被験体の消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を検出するシステムを包含する。
 本発明の消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌を検出するシステムは、
(a) 被験体の遺伝子発現プロファイルに関するデータを入力する手段、ここで入力される遺伝子発現プロファイルに関するデータとは、例えば、各遺伝子におけるシグナル数値等の各遺伝子の発現レベルを示すデータである;
(b) 構築した判別モデルを記憶している記憶手段、
(c) (a)の入力手段を用いて入力したデータを(b)の記憶手段に記憶されている判別モデルに適用して、消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌の病態の決定を行うためのデータ処理手段、及び
(d) 予測された消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌の病態の決定、病態予測、予後予測を出力する出力手段、
を含むシステムである。
 (a)のデータを入力する手段は、キーボード又はデータを記憶した外部記憶装置等を含む。(b)の記憶手段はハードディスク等を含む。データ処理手段は、記憶手段から判別モデルを受け取るとともに、入力されたデータを処理して、処理結果を出力手段に送り、出力手段で処理結果が表示される。データ処理手段は、データを演算処理する中央演算処理装置(CPU)等を含む。また、出力手段は、結果を表示するモニタやプリンタを含む。
 本発明のシステムは、市販のパーソナルコンピュータ等を用いて構築することが可能である。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
 本実施例において、用いた材料及び実験の方法は以下の通りであった。
対象
 医師が消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌と診断した患者から採取した血液をそれぞれ消化器癌、胃癌、大腸癌、膵臓癌又は胆道癌症例とした。対照群としては自治体主催における住民健診において同意を得た受診者の善意により提供された血液を下記検査項目により検索し正常値を示した受診者のみを健常人とした。
検査項目:
収縮期血圧、拡張期血圧、赤血球数、白血球数、ヘモグロビン値、ヘマトクリット値、肝機能(GOT、GPT、γ-GTP)、腎機能(クレアチニン値)、脂質代謝(LDLコレステロール値、HDLコレステロール値、総コレステロール値)、尿タンパク、尿潜血
末梢血液採取:
 パクスジーンRNA採血管(日本ベクトン・ディッキンソン株式会社 医療機器製造販売認証番号:218AFBZX00014000)を用いて、患者より末梢血液を採取した。
RNA抽出及びハイブリダイゼーション
 パクスジーンRNA採血管よりPAXgene Blood RNA Kit(QIAGEN GmbH,Hilden,Germany)を用いて、プロトコールにしたがってRNAを抽出した。抽出したRNAを元にQuickAmp Labeling Kit,1color(Agilent Technologies, Santa Clara, CA)を用いてRNAを増幅し、同時にCy3色素にてラベル化を行った。ラベル化RNAをGene Expression Hybridization Kit(Agilent Technologies, Santa Clara, CA)を使用して混合した後、Whole Human Genome オリゴDNAマイクロアレイ(Agilent Technologies, Santa Clara, CA)にハイブリダイゼーションを行った。なお、RNAの増幅からハイブリダイゼーションまでの行程はAgilent Technologiesが公表している実験プロトコールに従って作業を行った。
DNAマイクロアレイのイメージ解析及びデータ解析:
 オリゴDNAマイクロアレイ上の各スポットの蛍光強度はDNAマイクロアレイスキャナ(Agilent Technologies, Santa Clara, CA)にて獲得した。獲得したイメージはFeature Extraction ソフトウェア(Agilent Technologies, Santa Clara, CA)にて各スポットの蛍光強度の数値化を行った。この数値化により、そのスポット上に配置されているプローブの蛍光強度が算定された。
 GeneSpring GX(Agilent Technologies, Santa Clara, CA)を用いて、マイクロアレイ上の全プローブの蛍光強度数値のノーマライゼーションを行い、各プローブの発現増強減弱を示すノーマライズされた数値を元に各プローブの蛍光強度の品質チェックを行い、品質チェックをパスしたプローブのみを解析対象として階層クラスタリングを行った。また、同様にGeneSpring GXを用いて、消化器癌患者群、健常人群の間において発現に差の認められる遺伝子をStatistic AnalysisツールでWelch t-testを利用し検討した。多重検定としてBenjamini and Hochberg False Discovery Rateを使用し、p<0.05を有為として候補プローブを抽出した。さらに、同様にGeneSpring GXを用いてこの候補プローブを抽出するために使用した癌症例群、健常人群とは異なる癌症例群、健常人群をClass Predictionツールで、Support Vector Machinesを計算に利用しどちらの群に属するのかの予測判定を行った。
 本実施例において以下の結果が得られた。
1.消化器癌の検出(1)
階層クラスタリング:
 GeneSpring GXの階層クラスタリングツールを用いて、品質チェックをパスした23352プローブによって検討したところ、図9のように5つのクラスターを形成し、第1クラスターでは3例中3例(100%)が消化器癌症例、第2クラスターでは9例中8例(88.9%)が消化器癌症例、第3クラスターでは6例中5例(83.3%)、第4クラスターでは10例中9例(90.0%)が消化器癌症例、第5クラスターでは4例中3例(75.0%)が消化器癌症例が占め、消化器癌症例と健常人が群別された。
消化器癌症例群、健常人群間に発現に差を認めた遺伝子:
 同じくGeneSpring GXのStatistic Analysisツールを用いて、消化器癌症例群と健常人群を判別しうるプローブを検討したところ、多重検定としてBenjamini and Hochberg False Discovery Rateを使用しp<0.0005にて868プローブが両群間において発現に差を認めた。
 また、この868プローブのノーマライズされた蛍光強度の数値をFold Changeツールを用いて消化器癌症例群と健常人群とを比較したところ、健常人群に比較して消化器癌症例群において倍率に関係なく発現減弱している555プローブが認められ、倍率に関係なく発現亢進している313プローブが認められた。また、0.4倍以下の発現減弱が6プローブ認められ、2.5倍以上の発現亢進が15プローブ認められた。
健常人と消化器癌症例とで発現減弱及び発現亢進が認められた遺伝子に対応する868プローブによる階層クラスタリング:
 上記の555プローブと313プローブの合計868プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図10に示すような3つのクラスターを形成し、第1クラスターでは14例中14例(100%)が消化器癌症例、第2クラスターでは8例中8例(100%)が消化器癌症例、第3クラスターでは10例中8例(80%)が健常人を占め、消化器癌症例と健常人が群別された。
健常人と消化器癌症例とで発現減弱及び発現亢進が認められた遺伝子に対応する868プローブを利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた868プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では40例中39例を癌症例と判定し、その確率は97.5%となった。また、健常人の予測モデルによる判定では13例中9例を健常人と判定し、その確率は69.2%となった。これらを合計すると判定を行った53例中48例に判定が正解となるため、その判定の正答率は48/53であり90.6%となった。
0.4倍以下の発現減弱及び2.5倍以上の発現亢進が認められた遺伝子に対応する21プローブによる階層クラスタリング:
 上記の6プローブと15プローブの合計21プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図11に示すような3つのクラスターを形成し、第1クラスターでは17例中17例(100%)が消化器癌症例、第2クラスターでは9例中7例(77.8%)が消化器癌症例、第3クラスターでは6例中6例(100%)が健常人を占め、消化器癌症例と健常人が群別された。
 0.4倍以下の発現減弱及び2.5倍以上の発現亢進が認められた遺伝子に対応する21プローブ利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた21プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では40例中37例を癌症例と判定し、その確率は92.5%となった。また、健常人の予測モデルによる判定では13例中12例を健常人と判定し、その確率は92.3%となった。これらを合計すると判定を行った53例中49例で判定が正解となるため、その判定の正答率は49/53であり92.5%となった。
1-2.消化器癌の検出(2)
 上記の消化器癌の検出(1)と同様に、癌症例39例、健常人15例の集団をGeneSpring GXの階層クラスタリングツールを用いて、品質チェックをパスした23278プローブによって検討したところ、図22のように5つのクラスターを形成し、第1クラスターでは5例中5例(100%)が消化器癌症例、第2クラスターでは30例中29例(96.7%)が消化器癌症例、第3クラスターでは1例中1例(100%)、第4クラスターでは10例中6例(60%)が消化器癌症例、第5クラスターでは8例中8例(100%)を健常人が占め、消化器癌症例と健常人が群別された。
 さらに、上記の消化器癌の検出(1)と同様に、GeneSpring GXのStatistic Analysisツールを用いて、39例の消化器癌症例群と15例の健常人群を判別しうるプローブを検討したところ、多重検定としてBenjamini and Hochberg False Discovery Rateを使用しp<0.000005にてプローブを抽出し、その中でさらにノーマライズされた蛍光強度の数値をFold Changeツールを用いて消化器癌症例群と健常人群とを比較したところ、0.33倍以下の発現減弱が14プローブ認められ、3倍以上の発現亢進が11プローブ認められた(図21、配列番号3030~3054)。
健常人と消化器癌症例とで発現減弱及び発現亢進が認められた遺伝子に対応する25プローブによる階層クラスタリング:
 上記の14プローブと11プローブの合計25プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図23に示すような3つのクラスターを形成し、第1クラスターでは31例中31例(100%)が消化器癌症例、第2クラスターでは6例中6例(100%)が消化器癌症例、第3クラスターでは17例中15例(88.2%)が健常人を占め、消化器癌症例と健常人が群別された。
健常人と消化器癌症例とで発現減弱及び発現亢進が認められた遺伝子に対応する25プローブを利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた25プローブを元にサポートベクターマシーンを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では37例中37例を癌症例と判定し、その確率は100%となった。また、健常人の予測モデルによる判定では15例中11例を健常人と判定し、その確率は73.3%となった。これらを合計すると判定を行った52例中48例に判定が正解となるため、その判定の正答率は48/52であり92.3%となった。
2.胃癌の検出
階層クラスタリング:
 GeneSpring GXの階層クラスタリングツールを用いて、品質チェックをパスした22155プローブによって検討したところ、図12のように4つのクラスターを形成し、第1クラスターでは6例中6例(100%)が胃癌症例、第2クラスターでは4例中3例(75%)が健常人、第3クラスターでは4例中3例(75%)が健常人、第4クラスターでは2例中2例(100%)が健常人を占め、胃癌症例と健常人が群別された。
胃癌症例群、健常人群間に発現に差を認めた遺伝子:
 同じくGeneSpring GXのStatistic Analysisツールを用いて、胃癌症例群と健常人群を判別しうるプローブを検討したところ、多重検定としてBenjamini and Hochberg False Discovery Rateを使用しp<0.05にて3453プローブが両群間において発現に差を認めた。
 また、この3453プローブのノーマライズされた蛍光強度の数値をFold Changeツールを用いて胃癌症例群と健常人群とを比較したところ、健常人群に比較して胃癌症例群において0.5倍以下の発現減弱が84プローブ認められ、2倍以上の発現亢進が629プローブ認められた。また、0.33倍以下の発現減弱が6プローブ認められ、3倍以上の発現亢進が101プローブ認められた。
0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する713プローブによる階層クラスタリング:
 上記の84プローブと629プローブの合計713プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図13に示すような、癌症例100%のクラスター、健常人100%のクラスターの2つのクラスターを形成した。
0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する713プローブを利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた713プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では10例中7例を癌症例と判定し、その確率は70%となった。また、健常人の予測モデルによる判定では13例中13例を健常人と判定し、その確率は100%となった。これらを合計すると判定を行った23例中20例に判定が正解となるため、その判定の正答率は20/23であり87.0%となった。
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する107プローブによる階層クラスタリング:
 上記の6プローブと101プローブの合計107プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図14に示すような、癌症例100%のクラスター、健常人100%のクラスターの2つのクラスターを形成した。
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する107プローブ利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた107プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では10例中8例を癌症例と判定し、その確率は80%となった。また、健常人の予測モデルによる判定では13例中13例を健常人と判定し、その確率は100%となった。これらを合計すると判定を行った23例中21例に判定が正解となるため、その判定の正答率は21/23であり91.3%となった。
3.大腸癌の検出
階層クラスタリング:
 GeneSpring GXの階層クラスタリングツールを用いて、品質チェックをパスした22181プローブによって検討したところ、図15のように3つのクラスターを形成し、第1クラスターでは5例中4例(80%)が大腸癌症例、第2クラスターでは7例中6例(85.7%)が健常人、第3クラスターでは4例中3例(75%)が大腸癌症例を占め、大腸癌症例と健常人が群別された。
大腸癌症例群、健常人群間に発現に差を認めた遺伝子:
 同じくGeneSpring GXのStatistic Analysisツールを用いて、大腸癌症例群と健常人群を判別しうるプローブを検討したところ、多重検定としてBenjamini and Hochberg False Discovery Rateを使用しp<0.05にて5267プローブが両群間において発現に差を認めた。
 また、この5267プローブのノーマライズされた蛍光強度の数値をFold Changeツールを用いて大腸癌症例群と健常人群とを比較したところ、健常人群に比較して大腸癌症例群において0.5倍以下の発現減弱が125プローブ認められ、2倍以上の発現亢進が646プローブ認められた。また、0.33倍以下の発現減弱が9プローブ認められ、3倍以上の発現亢進が107プローブ認められた。
0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する771プローブによる階層クラスタリング:
 上記の125プローブと646プローブの合計771プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図16に示すような3つのクラスターを形成し、第1クラスターでは5例中5例(100%)が大腸癌症例、第2クラスターでは5例中3例(60.0%)が大腸癌症例、第3クラスターでは7例中7例(100%)が健常人のクラスターが形成された。
0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する771プローブを利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた771プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では10例中9例を癌症例と判定し、その確率は90%となった。また、健常人の予測モデルによる判定では13例中13例を健常人と判定し、その確率は100%となった。これらを合計すると判定を行った23例中22例に判定が正解となるため、その判定の正答率は22/23であり95.7%となった。
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する116プローブによる階層クラスタリング:
 上記の9プローブと107プローブの合計116プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図17に示すような3つのクラスターを形成し、第1クラスターでは5例中5例(100%)が大腸癌症例、第2クラスターでは6例中3例(50.0%)が大腸癌症例、第3クラスターでは5例中5例(100%)が健常人のクラスターが形成された。
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する116プローブ利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた116プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では10例中9例を癌症例と判定し、その確率は90%となった。また、健常人の予測モデルによる判定では13例中13例を健常人と判定し、その確率は100%となった。これらを合計すると判定を行った23例中22例で判定が正解となるため、その判定の正答率は22/23であり95.7%となった。
4.膵臓癌の検出
階層クラスタリング:
 GeneSpring GXの階層クラスタリングツールを用いて、品質チェックをパスした22149プローブによって検討したところ、図18のように3つのクラスターを形成し、第1クラスターでは7例中7例(100%)が健常人、第2クラスターでは5例中4例(80%)が膵臓癌症例、第3クラスターでは4例中4例(100%)が膵臓癌症例を占め、膵臓癌症例と健常人が群別された。
膵臓癌症例群、健常人群間に発現に差を認めた遺伝子:
 同じくGeneSpring GXのStatistic Analysisツールを用いて、膵臓癌症例群と健常人群を判別しうるプローブを検討したところ、多重検定としてBenjamini and Hochberg False Discovery Rateを使用しp<0.05にて3301プローブが両群間において発現に差を認めた。
 また、この3301プローブのノーマライズされた蛍光強度の数値をFold Changeツールを用いて膵臓癌症例群と健常人群とを比較したところ、健常人群に比較して膵臓癌症例群において0.5倍以下の発現減弱が96プローブ認められ、2倍以上の発現亢進が581プローブ認められた。また、0.33倍以下の発現減弱が6プローブ認められ、3倍以上の発現亢進が55プローブ認められた。
0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する677プローブによる階層クラスタリング:
 上記の96プローブと581プローブの合計677プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図19に示すような、2つのクラスターを形成し、第一クラスターでは9例中8例(88.9%)が健常人、第2クラスターでは7例中7例(100%)が膵臓癌症例の2つのクラスターを形成した。
0.5倍以下の発現減弱及び2倍以上の発現亢進が認められた遺伝子に対応する677プローブを利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた677プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では20例中15例を膵臓癌症例と判定し、その確率は75%となった。また、健常人の予測モデルによる判定では13例中13例を健常人と判定し、その確率は100%となった。これらを合計すると判定を行った33例中28例に判定が正解となるため、その判定の正答率は28/33であり84.8%となった。
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する61プローブによる階層クラスタリング:
 上記の6プローブと55プローブの合計61プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図20に示すような、2つのクラスターを形成し、第一クラスターでは9例中8例(88.9%)が健常人、第2クラスターでは7例中7例(100%)が膵臓癌症例の2つのクラスターを形成した。 
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する61プローブ利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた61プローブを元にSupport Vector Machinesを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では20例中15例を膵臓癌症例と判定し、その確率は75%となった。また、健常人の予測モデルによる判定では13例中9例を健常人と判定し、その確率は69.2%となった。これらを合計すると判定を行った33例中24例で判定が正解となるため、その判定の正答率は24/33であり72.7%となった。
5.胆道癌の検出
階層クラスタリング
 GeneSpring GXの階層クラスタリングツールを用いて、品質チェックをパスした22066プローブによって検討したところ、図25のように3つのクラスターを形成し、第1クラスターでは7例中7例(100%)が健常人、第2クラスターでは3例中3例(100%)が胆道癌症例、第3クラスターでは6例中5例(83.3%)が胆道癌症例を占め、胆道癌症例と健常人が群別された。
胆道癌症例群、健常人群間に発現に差を認めた遺伝子
 同じくGeneSpring GXのStatistic Analysisツールを用いて、胆道癌症例群と健常人群を判別しうるプローブを検討したところ、多重検定としてBenjamini and Hochberg False Discovery Rateを使用しp<0.05にて8090プローブが両群間において発現に差を認めた。
また、この8090プローブのノーマライズされた蛍光強度の数値をFold Changeツールを用いて胆道癌症例群と健常人群とを比較したところ、健常人群に比較して胆道癌症例群において0.33倍以下の発現減弱が98プローブ認められ、3倍以上の発現亢進が265プローブ認められた。
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する363プローブによる階層クラスタリング:
 上記の98プローブと265プローブの合計363プローブを用いて、対象の癌症例、健常人につき、階層クラスタリングを行ったところ、図26に示すような、2つのクラスターを形成し、第一クラスターでは7例中7例(100%)が健常人、第2クラスターでは9例中8例(88.9%)が胆道癌症例の2つのクラスターを形成した。
0.33倍以下の発現減弱及び3倍以上の発現亢進が認められた遺伝子に対応する363プローブを利用しての予測判定:
 同じくGeneSpring GXのClass Predictionツールを用いて、発現に差を認めた363プローブを元にサポートベクターマシーンを利用して予測モデルを作製し、プローブの抽出と予測モデルの作製に使用した癌症例群と健常人群とは別にDNAマイクロアレイのイメージ解析及びデータ解析を同様の手順で行った癌症例群と健常人群に対して、予測モデルを適応して癌症例を癌症例と判定する確率、健常人を健常人と判定する確率を求めた。その結果、別個に解析を行った癌症例の予測モデルによる判定では8例中8例を癌症例と判定し、その確率は100%となった。また、健常人の予測モデルによる判定では13例中13例を健常人と判定し、その確率は100%となった。これらを合計すると判定を行った21例中21例に判定が正解となるため、その判定の正答率は21/21であり100%となった。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

Claims (15)

  1. 配列番号220、506、508、523、538、554、570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849に表される塩基配列からなるプローブの総てを含む、末梢血中の配列番号220、506、508、523、538、554、570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849に表される塩基配列からなるプローブに対応する遺伝子、又は配列番号3030~3054に表される塩基配列からなるプローブの総てを含む、末梢血中の配列番号3030~3054に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し消化器癌を検出するための試薬。
  2. 請求項1に記載のプローブが基板に結合しているDNAマイクロアレイを含む、請求項1に記載の消化器癌を検出するための試薬。
  3. 被験体の末梢血における配列番号220、506、508、523、538、554、570、589、597、602、618、654、689、701、726、744、762、763、781、795及び849に表される塩基配列からなるプローブに対応する遺伝子、又は配列番号3030~3054に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて消化器癌を検出する方法。
  4. 配列番号923、927、929、932、946、952、986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578に表される塩基配列からなるプローブの総てを含む、末梢血中の配列番号923、927、929、932、946、952、986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し胃癌を検出するための試薬。
  5. 請求項4に記載のプローブが基板に結合しているDNAマイクロアレイを含む、請求項4に記載の胃癌を検出するための試薬。
  6. 被験体の末梢血における配列番号923、927、929、932、946、952、986、998、1000、1006、1007、1013、1019、1020、1022、1027、1039、1046、1073、1090、1107、1108、1117、1121、1132、1134、1154、1162、1179、1183、1191、1205、1207、1211、1216、1217、1224、1239、1244、1251、1254、1255、1283、1285、1301、1304、1316、1317、1327、1328、1331、1332、1345、1359、1365、1366、1372、1373、1375、1379、1380、1382、1383、1393、1394、1396、1397、1404、1405、1406、1407、1421、1423、1426、1430、1440、1441、1442、1448、1450、1454、1455、1456、1459、1466、1467、1491、1497、1500、1502、1504、1508、1513、1514、1519、1531、1534、1544、1546、1549、1551、1560、1563、1566、1570、1571及び1578に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて胃癌を検出する方法。
  7. 配列番号1583、1601、1611、1614、1644、1651、1678、1680、1684、1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340に表される塩基配列からなるプローブの総てを含む、配列番号1583、1601、1611、1614、1644、1651、1678、1680、1684、1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し大腸癌を検出するための試薬。
  8. 請求項7に記載のプローブが基板に結合しているDNAマイクロアレイを含む、請求項7に記載の大腸癌を検出するための試薬。
  9. 被験体の末梢血における配列番号1583、1601、1611、1614、1644、1651、1678、1680、1684、1737、1746、1750、1751、1757、1560、1765、1766、1773、1778、1779、1780、1782、1787、1794、1795、1798、1802、1831、1836、1837、1853、1854、1869、1871、1873、1876、1880、1890、1892、1896、1925、1942、1950、1953、1962、1970、1977、1978、1985、1990、1991、2000、2004、2007、2011、2018、2019、2023、2032、2046、2050、2054、2077、2085、2088、2095、2105、2126、2128、2132、2138、2140、2143、2144、2145、2147、2158、2160、2161、2173、2175、2176、2180、2191、2193、2198、2207、2209、2213、2217、2218、2223、2227、2233、2247、2255、2257、2258、2261、2266、2268、2269、2273、2280、2286、2296、2306、2317、2320、2322、2325、2332、2334、2336、2339及び2340に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて大腸癌を検出する方法。
  10. 配列番号2373、2404、2418、2419、2426、2430、2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003に表される塩基配列からなるプローブの総てを含む、配列番号2373、2404、2418、2419、2426、2430、2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し膵臓癌を検出するための試薬。
  11. 請求項10に記載のプローブが基板に結合しているDNAマイクロアレイを含む、請求項10に記載の膵臓癌を検出するための試薬。
  12. 被験体の末梢血における配列番号2373、2404、2418、2419、2426、2430、2459、2461、2469、2475、2507、2514、2515、2525、2543、2600、2602、2621、2628、2634、2640、2651、2652、2674、2677、2680、2681、2691、2692、2700、2714、2715、2719、2723、2724、2738、2740、2746、2748、2763、2778、2781、2815、2818、2823、2842、2857、2861、2885、2898、2902、2903、2932、2934、2972、2975、2982、2985、2999、3001及び3003に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて膵臓癌を検出する方法。
  13. 配列番号3055~3417に表される塩基配列からなるプローブの総てを含む、配列番号3055~3417に表される塩基配列からなるプローブに対応する遺伝子の発現を測定し胆道癌を検出するための試薬。
  14. 請求項13に記載のプローブが基板に結合しているDNAマイクロアレイを含む、請求項13に記載の胆道癌を検出するための試薬。
  15. 被験体の末梢血における配列番号3055~3417に表される塩基配列からなるプローブに対応する遺伝子の総ての遺伝子の発現プロファイルを得て、該発現プロファイルに基づいて胆道癌を検出する方法。
PCT/JP2010/063122 2009-08-24 2010-08-03 遺伝子発現プロファイルによる消化器癌、胃癌、大腸癌、膵臓癌及び胆道癌の検出 WO2011024618A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/391,858 US8932990B2 (en) 2009-08-24 2010-08-03 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling
JP2011528728A JP4953334B2 (ja) 2009-08-24 2010-08-03 遺伝子発現プロファイルによる消化器癌、胃癌、大腸癌、膵臓癌及び胆道癌の検出
EP10811669.0A EP2471950B1 (en) 2009-08-24 2010-08-03 Detection of digestive system cancer by means of gene expression profiling
US14/551,651 US9441276B2 (en) 2009-08-24 2014-11-24 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling
US14/551,674 US9512491B2 (en) 2009-08-24 2014-11-24 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling
US14/551,666 US9512490B2 (en) 2009-08-24 2014-11-24 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009193702 2009-08-24
JP2009-193702 2009-08-24

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US13/391,858 A-371-Of-International US8932990B2 (en) 2009-08-24 2010-08-03 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling
US14/551,666 Division US9512490B2 (en) 2009-08-24 2014-11-24 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling
US14/551,674 Division US9512491B2 (en) 2009-08-24 2014-11-24 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling
US14/551,651 Division US9441276B2 (en) 2009-08-24 2014-11-24 Detection of digestive organ cancer, gastric cancer, colorectal cancer, pancreatic cancer, and biliary tract cancer by gene expression profiling

Publications (1)

Publication Number Publication Date
WO2011024618A1 true WO2011024618A1 (ja) 2011-03-03

Family

ID=43627728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063122 WO2011024618A1 (ja) 2009-08-24 2010-08-03 遺伝子発現プロファイルによる消化器癌、胃癌、大腸癌、膵臓癌及び胆道癌の検出

Country Status (4)

Country Link
US (4) US8932990B2 (ja)
EP (4) EP2910649A1 (ja)
JP (5) JP4953334B2 (ja)
WO (1) WO2011024618A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5852759B1 (ja) * 2015-04-01 2016-02-03 株式会社キュービクス 遺伝子発現解析による膵臓癌の検出
JP5861048B1 (ja) * 2014-12-26 2016-02-16 株式会社キュービクス 遺伝子発現解析による大腸癌の検出
JP5970123B1 (ja) * 2015-12-04 2016-08-17 株式会社キュービクス 遺伝子発現解析による膵臓癌の検出
JP2016192952A (ja) * 2015-12-04 2016-11-17 株式会社キュービクス 遺伝子発現解析による膵臓癌の検出

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414774B (zh) 2014-06-11 2020-10-09 东丽株式会社 胆道癌的检测试剂盒或装置以及检测方法
CN112538530B (zh) * 2020-12-07 2024-02-13 益善生物技术股份有限公司 一种膀胱癌检测试剂盒

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304497A (ja) * 2004-03-25 2005-11-04 Joji Inasawa 特定の癌関連遺伝子を用いる癌の検出方法及び癌の抑制方法
WO2007147265A1 (en) * 2006-06-23 2007-12-27 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in cancer

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US527154A (en) 1894-10-09 William w
US544861A (en) 1895-08-20 mclaughlin
US5474796A (en) 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
US5866330A (en) 1995-09-12 1999-02-02 The Johns Hopkins University School Of Medicine Method for serial analysis of gene expression
JP3924976B2 (ja) 1999-02-17 2007-06-06 味の素株式会社 遺伝子の発現頻度の解析方法
JP4222835B2 (ja) 2001-03-14 2009-02-12 株式会社Dnaチップ研究所 癌の予測方法
WO2003093794A2 (en) 2002-05-01 2003-11-13 Irm Llc Methods for discovering tumor biomarkers and diagnosing tumors
US20050181516A1 (en) 2002-05-02 2005-08-18 Dressman Marlene M. Bioequivalence determination using expression profiling
AU2003900747A0 (en) * 2003-02-18 2003-03-06 Garvan Institute Of Medical Research Diagnosis and treatment of pancreatic cancer
EP1620573A4 (en) * 2003-04-15 2006-12-20 Avalon Pharmaceuticals DETERMINATION OF CANCER-ASSOCIATED GENES AND THERAPEUTIC OBJECTS USING MOLECULAR CYTOGENETIC PROCEDURES
US20050014165A1 (en) * 2003-07-18 2005-01-20 California Pacific Medical Center Biomarker panel for colorectal cancer
US20070065844A1 (en) * 2005-06-08 2007-03-22 Massachusetts Institute Of Technology Solution-based methods for RNA expression profiling
JP2007074916A (ja) 2005-09-12 2007-03-29 Igaku Seibutsugaku Kenkyusho:Kk 遺伝子検出方法、及びdnaマイクロアレイ
EP2468899B1 (en) * 2006-01-05 2015-03-11 The Ohio State University Research Foundation MicroRNA-based methods for the diagnosis of stomach cancers
JP2007236253A (ja) 2006-03-07 2007-09-20 Toray Ind Inc 疾患又は疾患マーカーの検出方法
JP5028615B2 (ja) 2006-05-24 2012-09-19 国立大学法人金沢大学 遺伝子発現プロファイルによるc型肝硬変及び肝癌の検出
EP2115138A2 (en) * 2006-09-19 2009-11-11 Asuragen, Inc. Micrornas differentially expressed in pancreatic diseases and uses thereof
CA2689714A1 (en) * 2007-06-01 2008-12-04 Agendia B.V. Prognostic gene expression signature for non small cell lung cancer patients
WO2009002175A1 (en) * 2007-06-28 2008-12-31 Agendia B.V. A method of typing a sample comprising colorectal cancer cells
WO2009032915A2 (en) * 2007-09-06 2009-03-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Arrays, kits and cancer characterization methods
JP5240902B2 (ja) 2008-02-12 2013-07-17 セイコーインスツル株式会社 太陽電池
WO2009126271A1 (en) 2008-04-11 2009-10-15 China Synthetic Rubber Corporation Methods, agents and kits for the detection of cancer
WO2010010201A1 (es) * 2008-07-22 2010-01-28 Equipo Ivi Investigacion Sl Perfil de expresion genetica como marcador de la receptividad endometrial
WO2010120914A1 (en) * 2009-04-14 2010-10-21 Cardiodx, Inc. Predictive models and method for assessing age

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005304497A (ja) * 2004-03-25 2005-11-04 Joji Inasawa 特定の癌関連遺伝子を用いる癌の検出方法及び癌の抑制方法
WO2007147265A1 (en) * 2006-06-23 2007-12-27 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in cancer

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HANSEL D.E. ET AL.: "Identification of novel cellular targets in biliary tract cancers using global gene expression technology.", AM. J. PATHOL., vol. 163, 2003, pages 217 - 229, XP008151291 *
HIROSHI YOKOZAKI ET AL.: "Shokudo Gan, I Gan no Akuseido o Kitei suru Bunshi Joho no Haaku to sore o Oyo shita Seiken Shindanho no Kakuritsu", MINISTRY OF HEALTH, LABOUR AND WELFARE GAN KENKYU JOSEIKIN NI YORU KENKYU HOKOKUSHU HEISEI 17 NENDO, 2005, pages 607 - 610, XP008151468 *
KARAMITOPOULOU E. ET AL.: "Clinical significance of cell cycle- and apoptosis- related markers in biliary tract cancer: a tissue microarray-based approach revealing a distinctive immunophenotype for intrahepatic and extrahepatic cholangiocarcinomas.", AM. J. CLIN. PATHOL., vol. 130, 2008, pages 780 - 786, XP008151311 *
KAWAGUCHI K. ET AL.: "Differential gene alteration among hepatoma cell lines demonstrated by cDNA microarray-based comparative genomic hybridization.", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 329, 2005, pages 370 - 380, XP004757040 *
MASAO HONDA ET AL.: "Shokaki Gan to Idenshi Ijo", BIOTHERAPY, vol. 21, 2007, pages 153 - 159, XP008151307 *
TAKASHI SHIMOJI ET AL., SHOKAKI GAN NO IDENSHI SHINDAN, 2006, pages 252 - 255, XP008151306 *
WATARU YASUI: "I Gan no Bunshi Byorigakuteki Shindan", JAPANESE JOURNAL OF CANCER AND CHEMOTHERAPY, vol. 32, 2005, pages 427 - 431, XP008151308 *
YASUSHI SASAKI ET AL.: "Shokaki Shokakan no Idenshi Shindanho Idenshi-Bunshi no Kosei ni Motozuita Tailor Made Iryo Shuyo Marker no Shinpo", MEBIO, vol. 19, 2002, pages 77 - 82, XP008151305 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861048B1 (ja) * 2014-12-26 2016-02-16 株式会社キュービクス 遺伝子発現解析による大腸癌の検出
JP5852759B1 (ja) * 2015-04-01 2016-02-03 株式会社キュービクス 遺伝子発現解析による膵臓癌の検出
JP5970123B1 (ja) * 2015-12-04 2016-08-17 株式会社キュービクス 遺伝子発現解析による膵臓癌の検出
JP2016192952A (ja) * 2015-12-04 2016-11-17 株式会社キュービクス 遺伝子発現解析による膵臓癌の検出

Also Published As

Publication number Publication date
US9512490B2 (en) 2016-12-06
JP2013244017A (ja) 2013-12-09
EP2910650A1 (en) 2015-08-26
US9512491B2 (en) 2016-12-06
JP2013244018A (ja) 2013-12-09
JP5773442B2 (ja) 2015-09-02
US8932990B2 (en) 2015-01-13
JP5773460B2 (ja) 2015-09-02
US20150133335A1 (en) 2015-05-14
EP2471950B1 (en) 2015-04-01
JP2012120540A (ja) 2012-06-28
US9441276B2 (en) 2016-09-13
EP2471950A4 (en) 2013-04-03
EP2910648A1 (en) 2015-08-26
EP2471950A1 (en) 2012-07-04
JP5773458B2 (ja) 2015-09-02
JP4953334B2 (ja) 2012-06-13
US20150133334A1 (en) 2015-05-14
JP5773459B2 (ja) 2015-09-02
US20150126397A1 (en) 2015-05-07
EP2910649A1 (en) 2015-08-26
JPWO2011024618A1 (ja) 2013-01-31
JP2013223520A (ja) 2013-10-31
US20120157341A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5773458B2 (ja) 遺伝子発現プロファイルによる、大腸癌の検出
JP4913331B2 (ja) 結腸直腸癌の予後
AU2008203226B2 (en) Colorectal cancer prognostics
CN110229899A (zh) 用于结直肠癌早期诊断或预后预测的血浆标记物组合
WO2018099884A1 (en) Risk scores based on human phosphodiesterase 4d variant 7 expression
JP5028615B2 (ja) 遺伝子発現プロファイルによるc型肝硬変及び肝癌の検出
BR112020012280A2 (pt) composições e métodos para diagnosticar cânceres de pulmão usando perfis de expressão de gene
JP2006101790A (ja) 高血圧症のリスクの評価方法
JP5861048B1 (ja) 遺伝子発現解析による大腸癌の検出
CN118207336B (zh) 一种诊断和评估肺结节癌症风险的血液基因表达生物标志物组
EP1660676B1 (en) Diagnosis of risk of breast cancer
JP2006166789A (ja) 癌の新規診断方法
Wang et al. A potential prognostic prediction model for metastatic osteosarcoma based on bioinformatics analysis
JP2024082172A (ja) 先天性横隔膜ヘルニアを検査する方法
CN118207336A (zh) 一种诊断和评估肺结节癌症风险的血液基因表达生物标志物组
JP2007006794A (ja) 肺扁平上皮癌を判別するための遺伝子セット
WO2006038010A2 (en) Detection of breast cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528728

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13391858

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010811669

Country of ref document: EP