WO2011024386A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2011024386A1
WO2011024386A1 PCT/JP2010/004919 JP2010004919W WO2011024386A1 WO 2011024386 A1 WO2011024386 A1 WO 2011024386A1 JP 2010004919 W JP2010004919 W JP 2010004919W WO 2011024386 A1 WO2011024386 A1 WO 2011024386A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
supply
fuel cell
temperature
unit
Prior art date
Application number
PCT/JP2010/004919
Other languages
French (fr)
Japanese (ja)
Inventor
博史 菅
直樹 岩村
英徳 鈴木
俊介 木村
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2011024386A1 publication Critical patent/WO2011024386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the embodiments described herein generally relate to fuel cells.
  • Fuel cells have the advantage that they can generate electricity simply by supplying fuel and air, and can continuously generate electricity if only the fuel is replaced or replenished. Therefore, if the fuel cell can be miniaturized, it is effective as a power source for small electronic devices.
  • DMFC Direct Methanol Fuel Cell
  • DMFCs are classified according to the liquid fuel supply method, such as an active method such as a gas supply type and a liquid supply type, and an internal vaporization type that vaporizes the liquid fuel in the fuel storage section inside the battery and supplies it to the fuel electrode.
  • an active method such as a gas supply type and a liquid supply type
  • an internal vaporization type that vaporizes the liquid fuel in the fuel storage section inside the battery and supplies it to the fuel electrode.
  • passive type is advantageous for downsizing the DMFC.
  • FIG. 1 is a block diagram showing a schematic configuration of a fuel cell system according to an embodiment.
  • 1 is a cross-sectional view of a fuel cell main body 1.
  • FIG. The flowchart showing an example of the operation
  • the fuel cell according to the embodiment includes a fuel cell main body that generates power using liquid fuel, and a fuel supply unit that supplies fuel to the fuel cell main body.
  • a supply rate determination unit that determines the supply rate of the fuel by the fuel supply unit is provided based on the measurement result of the temperature sensor that detects the temperature of the fuel cell main body.
  • a fuel supply control unit is provided that controls fuel supply based on the determined supply speed and restricts fuel supply when the temperature is lower than a predetermined reference value.
  • the fuel cell shown in FIG. 1 includes a fuel cell main body (DMFC) 1, a pump drive unit 2, a DC-DC converter 3, a control unit 4, a temperature sensor SS1, and a current sensor SS2.
  • DMFC fuel cell main body
  • pump drive unit 2 a pump drive unit 2
  • DC-DC converter 3 a DC-DC converter 3
  • control unit 4 a temperature sensor SS1
  • current sensor SS2 a current sensor SS2.
  • the fuel cell body 1 includes a power generation unit 101, a fuel storage unit 102, a flow path 103, a pump 104, and a temperature sensor SS1.
  • the power generation unit (cell) 101 generates power by burning fuel and constitutes an electromotive unit of the fuel cell system.
  • the fuel storage unit 102 stores liquid fuel used in the power generation unit 101.
  • the flow path 103 connects the fuel storage unit 102 and the power generation unit (cell) 101.
  • the pump 104 is a fuel supply unit that transfers liquid fuel from the fuel storage unit 102 to the power generation unit (cell) 101.
  • the power generation unit 101 includes an anode (fuel electrode) 13 having an anode catalyst layer 11 and an anode gas diffusion layer 12, and a cathode (air electrode) having a cathode catalyst layer 14 and a cathode gas diffusion layer 15.
  • / Oxidant electrode) 16 and a membrane / electrode assembly (MEA) comprising a proton (hydrogen ion) conductive electrolyte membrane 17 supported by the anode catalyst layer 11 and the cathode catalyst layer 14.
  • examples of the catalyst contained in the anode catalyst layer 11 and the cathode catalyst layer 14 include a simple substance of a platinum group element such as Pt, Ru, Rh, Ir, Os, and Pd, and an alloy containing the platinum group element. It is done.
  • the anode catalyst layer 11 is preferably made of Pt—Ru or the like having strong resistance to methanol, carbon monoxide and the like.
  • Pt, Pt—Co or the like is preferably used for the cathode catalyst layer 14.
  • the catalyst is not limited to these, and various substances having catalytic activity can be used.
  • the catalyst may be either a supported catalyst using a conductive support such as a carbon material or an unsupported catalyst.
  • Examples of the proton conductive material constituting the electrolyte membrane 17 include a fluorine-based resin (Nafion (trade name, manufactured by DuPont) or Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) such as a purple sulfonic acid polymer having a sulfonic acid group. ), Etc.), organic materials such as hydrocarbon resins having sulfonic acid groups, or inorganic materials such as tungstic acid and phosphotungstic acid.
  • a fluorine-based resin Nafion (trade name, manufactured by DuPont) or Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) such as a purple sulfonic acid polymer having a sulfonic acid group. ), Etc.
  • organic materials such as hydrocarbon resins having sulfonic acid groups
  • inorganic materials such as tungstic acid and phosphotungstic acid.
  • the anode gas diffusion layer 12 laminated on the anode catalyst layer 11 serves to uniformly supply fuel to the anode catalyst layer 11 and also serves as a current collector for the anode catalyst layer 11.
  • the cathode gas diffusion layer 15 laminated on the cathode catalyst layer 14 serves to uniformly supply the oxidant to the cathode catalyst layer 14 and also serves as a current collector for the cathode catalyst layer 14.
  • the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 are made of a porous substrate.
  • a conductive layer is laminated on the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 as necessary.
  • These conductive layers include, for example, a porous layer (for example, a mesh) made of a conductive metal material such as Au or Ni, a porous film, a foil body, or a conductive metal material such as stainless steel (SUS) or Cu.
  • a composite material coated with a highly conductive material such as carbon or carbon is used.
  • a rubber 0-ring 19 is interposed between the electrolyte membrane 17 and a fuel distribution mechanism 105 and a cover plate 18 which will be described later, thereby preventing fuel leakage and oxidant leakage from the power generation unit 101. Yes.
  • the cover plate 18 has an opening (not shown) for taking in air as an oxidant.
  • a moisture retaining layer and a surface layer are disposed between the cover plate 18 and the cathode 16 as necessary.
  • the moisturizing layer is impregnated with a part of the water produced in the cathode catalyst layer 14 to suppress the transpiration of water and promote the uniform diffusion of air to the cathode catalyst layer 14.
  • the surface layer is for adjusting the amount of air taken in, and has a plurality of air inlets whose number and size are adjusted according to the amount of air taken in.
  • a fuel distribution mechanism 105 is disposed on the anode (fuel electrode) 13 side of the power generation unit 101.
  • a fuel storage unit 102 is connected to the fuel distribution mechanism 105 via a liquid fuel flow path 103 such as a pipe.
  • the liquid storage unit 102 stores liquid fuel corresponding to the power generation unit 101.
  • the liquid fuel include methanol fuels such as aqueous methanol solutions of various concentrations and pure methanol.
  • the liquid fuel is not necessarily limited to methanol fuel.
  • the liquid fuel may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel.
  • liquid fuel corresponding to the power generation unit 101 is stored in the fuel storage unit 102.
  • Fuel is introduced into the fuel distribution mechanism 105 from the fuel storage portion 102 through the flow path 103.
  • the flow path 103 is not limited to piping independent of the fuel distribution mechanism 105 and the fuel storage unit 102.
  • a fuel flow path connecting them may be used.
  • the fuel distribution mechanism 105 only needs to be connected to the fuel storage unit 102 via the flow path 103.
  • the fuel distribution mechanism 105 includes at least one fuel inlet 21 through which fuel flows in through the flow path 103 and a plurality of fuel outlets 22 through which fuel and vaporized components thereof are discharged.
  • a fuel distribution plate 23 is provided.
  • a gap 24 serving as a fuel passage led from the fuel injection port 21 is provided inside the fuel distribution plate 23.
  • the plurality of fuel discharge ports 22 are directly connected to gaps 24 that function as fuel passages.
  • the fuel introduced into the fuel distribution mechanism 105 from the fuel inlet 21 enters the gap 24 and is guided to the plurality of fuel outlets 22 through the gap 24 functioning as the fuel passage.
  • a gas-liquid separator (not shown) that transmits only the vaporized component of the fuel and does not transmit the liquid component may be disposed in the plurality of fuel discharge ports 22.
  • the gas-liquid separator may be installed as a gas-liquid separation membrane or the like between the fuel distribution mechanism 105 and the anode 13.
  • the vaporized component of the fuel is discharged from a plurality of fuel discharge ports 22 toward a plurality of locations on the anode 13.
  • a plurality of fuel discharge ports 22 are provided on the surface of the fuel distribution plate 23 in contact with the anode 13 so that fuel can be supplied to the entire power generation unit 101.
  • the number of the fuel discharge ports 22 may be two or more, but there are 0.1 to 10 / cm 2 fuel discharge ports 22 in order to equalize the fuel supply amount in the surface of the power generation unit 101 It is preferable to form as follows.
  • a pump 104 as a fuel transfer control means is inserted into a flow path 103 that connects between the fuel distribution mechanism 105 and the fuel storage unit 102.
  • the pump 104 is not a circulation pump that circulates fuel, but is a fuel supply pump that transfers fuel from the fuel storage portion 102 to the fuel distribution mechanism 105.
  • the controllability of the fuel supply amount is improved.
  • a rotary vane pump, an electroosmotic pump, a diaphragm pump, a squeezing pump, etc. should be used from the viewpoint that a small amount of fuel can be sent with good controllability and can be reduced in size and weight. Is preferred.
  • a rotary vane pump feeds liquid by rotating a wing with a motor.
  • the electroosmotic flow pump uses a sintered porous material such as silica that causes an electroosmotic flow phenomenon.
  • the diaphragm pump is a pump that feeds liquid by driving a diaphragm with an electromagnet or piezoelectric ceramics.
  • the squeezing pump presses a part of the flexible fuel flow path and squeezes the fuel.
  • the fuel stored in the fuel storage unit 102 is transferred through the flow path 103 by the pump 104 and supplied to the fuel distribution mechanism 105.
  • the fuel discharged from the fuel distribution mechanism 105 is supplied to the anode (fuel electrode) 13 of the power generation unit 101.
  • the fuel storage unit 102 may be disposed between the pump 104 and the fuel distribution mechanism 105, and the fuel storage unit 102 may be pressurized by the pump 104 to transfer the liquid fuel.
  • the fuel diffuses through the anode gas diffusion layer 12 and is supplied to the anode catalyst layer 11.
  • an internal reforming reaction of methanol shown in the following formula (1) occurs in the anode catalyst layer 11.
  • pure methanol is used as the methanol fuel
  • the water generated in the cathode catalyst layer 14 or the water in the electrolyte membrane 17 is reacted with methanol to cause the internal reforming reaction of the formula (1).
  • the internal reforming reaction is caused by another reaction mechanism that does not require water.
  • Electrons (e ⁇ ) generated by this reaction are led to the outside via a current collector, supplied as so-called output to the load side, and then led to the cathode (air electrode) 16. Further, protons (H + ) generated by the internal reforming reaction of the formula (1) are guided to the cathode 16 through the electrolyte membrane 17. Air is supplied to the cathode 16 as an oxidant. Electrons (e ⁇ ) and protons (H + ) reaching the cathode 16 react with oxygen in the air in accordance with the following equation (2) in the cathode catalyst layer 14, and water is generated along with this reaction.
  • the pump drive unit 2 controls the drive of the pump 104.
  • the pump drive unit 2 controls on / off of the pump 104 based on an instruction from the control unit 4.
  • the DC-DC converter 3 includes a switching element and an energy storage element (not shown).
  • the switching element and the energy storage element store / release electric energy generated by the fuel cell main body 1, and output from the fuel cell main body 1.
  • a relatively low output voltage is boosted to a sufficient voltage and output.
  • the temperature sensor SS1 is a sensor that is disposed in the vicinity of the cathode 16 and measures the temperature of the cathode 16 (the temperature of the DMFC), such as a thermistor or a thermocouple.
  • a signal (temperature signal) representing the temperature measurement result from the temperature sensor SS1 is sent to the control unit 4 and used for fuel supply control.
  • the fuel cell according to the present embodiment does not use an external temperature for control and does not require measurement of the external temperature, so that the device configuration can be simplified. For example, it becomes unnecessary to expose a sensor for measuring the external temperature to the outside.
  • the control unit 4 includes a supply speed determination unit 41 and a fuel supply control unit 42.
  • the supply speed determination unit 41 determines the fuel supply speed (Duty ratio D) so that the temperature T becomes the target temperature Tt.
  • the pump drive unit 2 controls whether or not the pump 104 supplies fuel to the power generation unit 101. That is, the pump drive unit 2 does not directly control the fuel supply speed itself.
  • the pump drive unit 2 temporally controls whether or not fuel is supplied by the pump 104, and as a result, the amount of fuel supplied within a certain time can be controlled.
  • the fuel supply speed V [g / sec] is expressed by the Duty ratio D as follows.
  • Av proportional constant ton: time during which pump 104 supplies fuel (ON time)
  • toff time when pump 104 is not supplying fuel (OFF time)
  • tal ton + toff: Sum of ON time and OFF time
  • the supply speed determination unit 41 can determine the Duty ratio D using the following equation (4).
  • Equation (4) represents so-called PI (Proportional Integral) control, and a proportional term (Kp ⁇ (T ⁇ Tt)) and an integral term (Ki ⁇ B ⁇ ) of the deviation (T ⁇ Tt) between the current temperature T and the target temperature Tt. Based on (T ⁇ Tt) dt), the Duty ratio D is determined. Note that PID (Proportional Integral Differential) control may be used instead of PI control.
  • the fuel supply control unit 42 controls the pump 104 via the pump drive unit 2 so that the fuel is supplied at the duty ratio D determined by the supply speed determination unit 41.
  • the fuel supply control unit 42 fixes the upper limit of the fuel supply speed (the upper limit of the Duty ratio D) when the temperature (cathode temperature) T continues to be below the minimum temperature Tmin (DutyLock). With this DutyLock, the operation of the fuel cell can be stabilized without measuring the external temperature. When the temperature (cathode temperature) T exceeds the target temperature Tt (T> Tt), the DutyLock is released.
  • the fuel supply control unit 42 controls the fuel supply so that the temperature T becomes the target temperature Tt.
  • the operation of the fuel cell may become unstable.
  • the water generated by the reaction (2) aggregates on the surface of the cathode 16 and the supply of oxygen to the cathode 16 becomes insufficient (cathode oxygen deficient state).
  • the target temperature Tt is to be maintained in this oxygen-deficient state, the amplitude of the temperature T increases.
  • the output from the power generation unit 101 when the temperature T rises decreases.
  • the fuel is excessively supplied to maintain the target temperature Tt, the anode catalyst layer 11 and the cathode catalyst layer 14 are dissolved, and the fuel cell body (DMFC) 1 is irreversibly deteriorated.
  • the temperature (cathode temperature) T gradually rises and reaches the target temperature Tt (T> Tt) even if the DutyLock is ON.
  • the DutyLock is turned OFF (DutyLock is released).
  • the DutyLock is turned ON, and when the temperature T reaches the target temperature Tt, the DutyLock is turned OFF.
  • FIG. 4 is a flowchart showing an example of the operation procedure of the fuel cell.
  • Duty ratio D is periodically determined (step S11). That is, the duty ratio D is determined by the equation (4). In principle, the pump 104 is controlled based on the determined duty ratio D (step S13).
  • the duty ratio D used for controlling the pump 104 is stored as the duty ratio D0 (step S12). As will be described later, when the duty ratio D is adjusted and the pump 104 is controlled based on this value, the adjusted duty ratio D is stored as the duty ratio D0.
  • the duty ratio D0 is used in the later-described DutyLock.
  • Duty ratio D is adjusted based on temperature conditions and the like, and the pump 104 is controlled based on the adjusted Duty ratio D.
  • Step S41 to S45 Setting of DutyLock (Steps S41 to S45) When the following conditions a to c are satisfied, DutyLock is set (DutyLock ON), and an increase in Duty ratio D is prohibited (Steps S41 to S43). That is, if the duty ratio D determined in the current cycle is larger than the duty ratio D0 used in the previous cycle (step S44), the duty ratio D0 used in the previous cycle is substituted into the duty ratio D ( Step S45). As a result, the Duty ratio D is set to a value less than or equal to the Duty ratio D0.
  • DutyLock As described later, if DutyLock is set, increasing Duty ratio D is prohibited even if conditions a to c are not satisfied.
  • Temperature T is lower than minimum temperature Tmin (T ⁇ Tmin) b. Temperature is falling (Temperature differential coefficient dT / dt ⁇ 0) c. Current I decreasing (current differential coefficient dI / dt ⁇ 0) Note that when conditions a to c are satisfied a predetermined number of times (for example, three times), DutyLock is set, and DutyLock erroneous setting due to noise or the like can be prevented.
  • step S31, S44, S45 Processing when setting DutyLock (steps S31, S44, S45)
  • DutyLock is set, an increase in the Duty ratio D is prohibited even if the conditions a to c are not satisfied. That is, if the duty ratio D determined in the current cycle is larger than the duty ratio D0 used in the previous cycle (step S44), the duty ratio D0 used in the previous cycle is substituted into the duty ratio D ( Step S45).
  • Temperature T1 is higher than target temperature (T1> Tt) e. Temperature T is rising (Temperature differential coefficient dT / dt> 0)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

One embodiment of the present invention is a fuel cell which comprises a fuel cell main body for generating electric power using a liquid fuel and a fuel supply unit for supplying the fuel to the fuel cell main body. The fuel cell is provided with a supply rate determination unit for determining the fuel supply rate by the fuel supply unit based on the measurement result of a temperature sensor that senses the temperature of the fuel cell main body. The fuel cell is also provided with a fuel supply control unit for controlling the fuel supply according to the determined fuel supply rate and limiting the fuel supply when the temperature is lower than the predetermined reference value.

Description

燃料電池Fuel cell
 ここで説明する実施形態は,全般的に燃料電池に関する。 The embodiments described herein generally relate to fuel cells.
 携帯電話機,携帯情報端末等の電子機器の小型化が進められている。電子機器の小型化と共に,その電源などへの燃料電池の利用が試みられている。燃料電池は,燃料と空気を供給するのみで,発電することができ,燃料のみを交換,補充すれば連続して発電できるという利点を有する。このため,燃料電池が小型化できれば,小型の電子機器の電源として有効である。 Electronic devices such as mobile phones and personal digital assistants are being downsized. Along with miniaturization of electronic equipment, attempts have been made to use fuel cells for power supplies. Fuel cells have the advantage that they can generate electricity simply by supplying fuel and air, and can continuously generate electricity if only the fuel is replaced or replenished. Therefore, if the fuel cell can be miniaturized, it is effective as a power source for small electronic devices.
 燃料電池として,直接メタノール型燃料電池(以下,DMFC(Direct Methanol Fuel Cell)と称する。)が注目されている(例えば,特許文献1参照)。かかるDMFCは,液体燃料の供給方式によって分類され,気体供給型や液体供給型等のアクティブ方式のものと,燃料収容部内の液体燃料を電池内部で気化させて燃料極に供給する内部気化型等のパッシブ方式のものがある。これらのうち,パッシブ方式のものはDMFCの小型化に対して有利である。 As a fuel cell, a direct methanol fuel cell (hereinafter referred to as DMFC (Direct Methanol Fuel Cell)) has attracted attention (for example, see Patent Document 1). Such DMFCs are classified according to the liquid fuel supply method, such as an active method such as a gas supply type and a liquid supply type, and an internal vaporization type that vaporizes the liquid fuel in the fuel storage section inside the battery and supplies it to the fuel electrode. There is a passive type. Of these, the passive type is advantageous for downsizing the DMFC.
特開2008-243732号公報JP 2008-243732 A
実施形態に係る燃料電池システムの概略構成を示すブロック図。1 is a block diagram showing a schematic configuration of a fuel cell system according to an embodiment. 燃料電池本体1の断面図。1 is a cross-sectional view of a fuel cell main body 1. 燃料分配機構105の斜視図。The perspective view of the fuel distribution mechanism 105. FIG. 燃料電池の動作手順の一例を表すフロー図。The flowchart showing an example of the operation | movement procedure of a fuel cell.
 実施形態の燃料電池は、液体燃料により発電する燃料電池本体と,前記燃料電池本体に燃料を供給する燃料供給部とを持つ。燃料電池本体の温度を検出する温度センサーでの測定結果に基づき、燃料供給部による燃料の供給速度を決定する供給速度決定部が設けられている。決定された供給速度に基づいて燃料の供給を制御し,かつ前記温度が所定の基準値より小さい場合に燃料供給を制限する燃料供給制御部を備えている。 The fuel cell according to the embodiment includes a fuel cell main body that generates power using liquid fuel, and a fuel supply unit that supplies fuel to the fuel cell main body. A supply rate determination unit that determines the supply rate of the fuel by the fuel supply unit is provided based on the measurement result of the temperature sensor that detects the temperature of the fuel cell main body. A fuel supply control unit is provided that controls fuel supply based on the determined supply speed and restricts fuel supply when the temperature is lower than a predetermined reference value.
 以下,実施形態を図面を用いて説明する。図1に示す燃料電池は,燃料電池本体(DMFC)1,ポンプ駆動部2,DC-DCコンバータ3,制御部4,温度センサーSS1,電流センサーSS2を備える。 Hereinafter, embodiments will be described with reference to the drawings. The fuel cell shown in FIG. 1 includes a fuel cell main body (DMFC) 1, a pump drive unit 2, a DC-DC converter 3, a control unit 4, a temperature sensor SS1, and a current sensor SS2.
 燃料電池本体1は,発電部101,燃料収容部102,流路103,ポンプ104,温度センサーSS1を有する。発電部(セル)101は,燃料の燃焼により発電し,燃料電池システムの起電部を構成する。燃料収容部102は,発電部101で用いられる液体燃料を収容する。流路103は,燃料収容部102と発電部(セル)101を接続する。ポンプ104は,燃料収容部102から発電部(セル)101に液体燃料を移送する燃料供給手段である。 The fuel cell body 1 includes a power generation unit 101, a fuel storage unit 102, a flow path 103, a pump 104, and a temperature sensor SS1. The power generation unit (cell) 101 generates power by burning fuel and constitutes an electromotive unit of the fuel cell system. The fuel storage unit 102 stores liquid fuel used in the power generation unit 101. The flow path 103 connects the fuel storage unit 102 and the power generation unit (cell) 101. The pump 104 is a fuel supply unit that transfers liquid fuel from the fuel storage unit 102 to the power generation unit (cell) 101.
 図2に示すように,発電部101は,アノード触媒層11とアノードガス拡散層12とを有するアノード(燃料極)13と,カソード触媒層14とカソードガス拡散層15とを有するカソード(空気極/酸化剤極)16と,アノード触媒層11とカソード触媒層14とで扶持されたプロトン(水素イオン)伝導性の電解質膜17とから構成される膜電極接合体(Membrane Electrode Assembly:MEA)を有する。 As shown in FIG. 2, the power generation unit 101 includes an anode (fuel electrode) 13 having an anode catalyst layer 11 and an anode gas diffusion layer 12, and a cathode (air electrode) having a cathode catalyst layer 14 and a cathode gas diffusion layer 15. / Oxidant electrode) 16 and a membrane / electrode assembly (MEA) comprising a proton (hydrogen ion) conductive electrolyte membrane 17 supported by the anode catalyst layer 11 and the cathode catalyst layer 14. Have.
 ここで,アノード触媒層11やカソード触媒層14に含有される触媒としては,例えばPt,Ru,Rh,Ir,Os,Pd等の白金族元素の単体,白金族元素を含有する合金等が挙げられる。アノード触媒層11にはメタノールや一酸化炭素等に対して強い耐性を有するPt-Ru等を用いることが好ましい。カソード触媒層14にはPtやPt-Co等を用いることが好ましい。ただし,触媒はこれらに限定されるものではなく,触媒活性を有する各種の物質を使用することができる。触媒は炭素材料のような導電性担持体を使用した担持触媒,あるいは無担持触媒のいずれであってもよい。 Here, examples of the catalyst contained in the anode catalyst layer 11 and the cathode catalyst layer 14 include a simple substance of a platinum group element such as Pt, Ru, Rh, Ir, Os, and Pd, and an alloy containing the platinum group element. It is done. The anode catalyst layer 11 is preferably made of Pt—Ru or the like having strong resistance to methanol, carbon monoxide and the like. Pt, Pt—Co or the like is preferably used for the cathode catalyst layer 14. However, the catalyst is not limited to these, and various substances having catalytic activity can be used. The catalyst may be either a supported catalyst using a conductive support such as a carbon material or an unsupported catalyst.
 電解質膜17を構成するプロトン伝導性材料としては,例えばスルホン酸基を有するパープルオロスルホン酸重合体のようなフッ素系樹脂(ナフィオン(商品名,デュポン社製)やフレミオン(商品名,旭硝子社製)等),スルホン酸基を有する炭化水素系樹脂等の有機系材料,あるいはタングステン酸やリンタングステン酸等の無機系材料が挙げられる。ただし,プロトン伝導性の電解質膜17はこれらに限られるものではない。 Examples of the proton conductive material constituting the electrolyte membrane 17 include a fluorine-based resin (Nafion (trade name, manufactured by DuPont) or Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) such as a purple sulfonic acid polymer having a sulfonic acid group. ), Etc.), organic materials such as hydrocarbon resins having sulfonic acid groups, or inorganic materials such as tungstic acid and phosphotungstic acid. However, the proton conductive electrolyte membrane 17 is not limited to these.
 アノード触媒層11に積層されるアノードガス拡散層12は,アノード触媒層11に燃料を均一に供給する役割を果たすと同時に,アノード触媒層11の集電体も兼ねている。カソード触媒層14に積層されるカソードガス拡散層15は,カソード触媒層14に酸化剤を均一に供給する役割を果たすと同時に,カソード触媒層14の集電体も兼ねている。アノードガス拡散層12およびカソードガス拡散層15は多孔質基材で構成されている。 The anode gas diffusion layer 12 laminated on the anode catalyst layer 11 serves to uniformly supply fuel to the anode catalyst layer 11 and also serves as a current collector for the anode catalyst layer 11. The cathode gas diffusion layer 15 laminated on the cathode catalyst layer 14 serves to uniformly supply the oxidant to the cathode catalyst layer 14 and also serves as a current collector for the cathode catalyst layer 14. The anode gas diffusion layer 12 and the cathode gas diffusion layer 15 are made of a porous substrate.
 アノードガス拡散層12やカソードガス拡散層15には,必要に応じて導電層が積層される。これら導電層としては,例えばAu,Niのような導電性金属材料からなる多孔質層(例えば,メッシュ),多孔質膜,箔体あるいはステンレス鋼(SUS)やCuなどの導電性金属材料に金やカーボンなどの良導電性材料を被覆した複合材等が用いられる。電解質膜17と後述する燃料分配機構105およびカバープレート18との間には,それぞれゴム製の0リング19が介在されており,これらによって発電部101からの燃料漏れや酸化剤漏れを防止している。 A conductive layer is laminated on the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 as necessary. These conductive layers include, for example, a porous layer (for example, a mesh) made of a conductive metal material such as Au or Ni, a porous film, a foil body, or a conductive metal material such as stainless steel (SUS) or Cu. A composite material coated with a highly conductive material such as carbon or carbon is used. A rubber 0-ring 19 is interposed between the electrolyte membrane 17 and a fuel distribution mechanism 105 and a cover plate 18 which will be described later, thereby preventing fuel leakage and oxidant leakage from the power generation unit 101. Yes.
 カバープレート18は酸化剤である空気を取入れるための不図示の開口を有している。カバープレート18とカソード16との間には,必要に応じて保湿層や表面層が配置される。保湿層はカソード触媒層14で生成された水の一部が含浸されて,水の蒸散を抑制すると共に,カソード触媒層14への空気の均一拡散を促進するものである。表面層は空気の取入れ量を調整するものであり,空気の取入れ量に応じて個数や大きさ等が調整された複数の空気導入口を有している。 The cover plate 18 has an opening (not shown) for taking in air as an oxidant. A moisture retaining layer and a surface layer are disposed between the cover plate 18 and the cathode 16 as necessary. The moisturizing layer is impregnated with a part of the water produced in the cathode catalyst layer 14 to suppress the transpiration of water and promote the uniform diffusion of air to the cathode catalyst layer 14. The surface layer is for adjusting the amount of air taken in, and has a plurality of air inlets whose number and size are adjusted according to the amount of air taken in.
 発電部101のアノード(燃料極)13側には,燃料分配機構105が配置されている。燃料分配機構105には配管のような液体燃料の流路103を介して燃料収容部102が接続されている。 A fuel distribution mechanism 105 is disposed on the anode (fuel electrode) 13 side of the power generation unit 101. A fuel storage unit 102 is connected to the fuel distribution mechanism 105 via a liquid fuel flow path 103 such as a pipe.
 燃料収容部102には,発電部101に対応した液体燃料が収容されている。液体燃料としては,各種濃度のメタノール水溶液や純メタノール等のメタノール燃料が挙げられる。液体燃料は必ずしもメタノール燃料に限られるものではない。液体燃料は,例えばエタノール水溶液や純エタノール等のエタノール燃料,プロパノール水溶液や純プロパノール等のプロパノール燃料,グリコール水溶液や純グリコール等のグリコール燃料,ジメチルエーテル,ギ酸,その他の液体燃料であってもよい。いずれにしても,燃料収容部102には発電部101に応じた液体燃料が収容される。 The liquid storage unit 102 stores liquid fuel corresponding to the power generation unit 101. Examples of the liquid fuel include methanol fuels such as aqueous methanol solutions of various concentrations and pure methanol. The liquid fuel is not necessarily limited to methanol fuel. The liquid fuel may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel. In any case, liquid fuel corresponding to the power generation unit 101 is stored in the fuel storage unit 102.
 燃料分配機構105には燃料収容部102から流路103を介して燃料が導入される。流路103は燃料分配機構105や燃料収容部102と独立した配管に限られるものではない。例えば,燃料分配機構105と燃料収容部102とを積層して一体化する場合,これらを繋ぐ燃料の流路であってもよい。燃料分配機構105は流路103を介して燃料収容部102と接続されていればよい。 Fuel is introduced into the fuel distribution mechanism 105 from the fuel storage portion 102 through the flow path 103. The flow path 103 is not limited to piping independent of the fuel distribution mechanism 105 and the fuel storage unit 102. For example, when the fuel distribution mechanism 105 and the fuel storage unit 102 are stacked and integrated, a fuel flow path connecting them may be used. The fuel distribution mechanism 105 only needs to be connected to the fuel storage unit 102 via the flow path 103.
 図3に示すように,燃料分配機構105は,燃料が流路103を介して流入する少なくとも1個の燃料注入口21と,燃料やその気化成分を排出する複数個の燃料排出口22とを有する燃料分配板23を備えている。燃料分配板23の内部には図2に示すように,燃料注入口21から導かれた燃料の通路となる空隙部24が設けられている。複数の燃料排出口22は燃料通路として機能する空隙部24にそれぞれ直接接続されている。 As shown in FIG. 3, the fuel distribution mechanism 105 includes at least one fuel inlet 21 through which fuel flows in through the flow path 103 and a plurality of fuel outlets 22 through which fuel and vaporized components thereof are discharged. A fuel distribution plate 23 is provided. As shown in FIG. 2, a gap 24 serving as a fuel passage led from the fuel injection port 21 is provided inside the fuel distribution plate 23. The plurality of fuel discharge ports 22 are directly connected to gaps 24 that function as fuel passages.
 燃料注入口21から燃料分配機構105に導入された燃料は空隙部24に入り,この燃料通路として機能する空隙部24を介して複数の燃料排出口22にそれぞれ導かれる。複数の燃料排出口22には,例えば燃料の気化成分のみを透過し,液体成分は透過させない気液分離体(図示せず)を配置してもよい。これによって,発電部101のアノード(燃料極)13には燃料の気化成分が供給される。なお,気液分離体は燃料分配機構105とアノード13との間に気液分離膜等として設置してもよい。燃料の気化成分は複数の燃料排出口22からアノード13の複数個所に向けて排出される。 The fuel introduced into the fuel distribution mechanism 105 from the fuel inlet 21 enters the gap 24 and is guided to the plurality of fuel outlets 22 through the gap 24 functioning as the fuel passage. For example, a gas-liquid separator (not shown) that transmits only the vaporized component of the fuel and does not transmit the liquid component may be disposed in the plurality of fuel discharge ports 22. As a result, the vaporized component of the fuel is supplied to the anode (fuel electrode) 13 of the power generation unit 101. The gas-liquid separator may be installed as a gas-liquid separation membrane or the like between the fuel distribution mechanism 105 and the anode 13. The vaporized component of the fuel is discharged from a plurality of fuel discharge ports 22 toward a plurality of locations on the anode 13.
 燃料排出口22は発電部101の全体に燃料を供給することが可能なように,燃料分配板23のアノード13と接する面に複数設けられている。燃料排出口22の個数は2個以上であればよいが,発電部101の面内における燃料供給量を均一化する上で,0.1~10個/cmの燃料排出口22が存在するように形成することが好ましい。 A plurality of fuel discharge ports 22 are provided on the surface of the fuel distribution plate 23 in contact with the anode 13 so that fuel can be supplied to the entire power generation unit 101. The number of the fuel discharge ports 22 may be two or more, but there are 0.1 to 10 / cm 2 fuel discharge ports 22 in order to equalize the fuel supply amount in the surface of the power generation unit 101 It is preferable to form as follows.
 燃料分配機構105と燃料収容部102の間を接続する流路103には,燃料移送制御手段としてのポンプ104が挿入されている。このポンプ104は燃料を循環する循環ポンプではなく,あくまでも燃料収容部102から燃料分配機構105に燃料を移送する燃料供給ポンプである。このようなポンプ104で必要時に燃料を送液することによって,燃料供給量の制御性を高めるものである。この場合,ポンプ104としては,少量の燃料を制御性よく送液することができ,さらに小型軽量化が可能という観点から,ロータリーベーンポンプ,電気浸透流ポンプ,ダイアフラムポンプ,しごきポンプ等を使用することが好ましい。ロータリーベーンポンプはモータで羽を回転させて送液するものである。電気浸透流ポンプは電気浸透流現象を起こすシリカ等の焼結多孔体を用いたものである。ダイアプラムポンプは電磁石や圧電セラミックスによりダイアフラムを駆動して送液するものである。しごきポンプは柔軟性を有する燃料流路の一部を圧迫し,燃料をしごき送るものである。これらのうち,駆動電力や大きさ等の観点から,電気浸透流ポンプや圧電セラミックスを有するダイアプラムポンプを使用することがより好ましい。 A pump 104 as a fuel transfer control means is inserted into a flow path 103 that connects between the fuel distribution mechanism 105 and the fuel storage unit 102. The pump 104 is not a circulation pump that circulates fuel, but is a fuel supply pump that transfers fuel from the fuel storage portion 102 to the fuel distribution mechanism 105. By supplying the fuel when necessary with such a pump 104, the controllability of the fuel supply amount is improved. In this case, as the pump 104, a rotary vane pump, an electroosmotic pump, a diaphragm pump, a squeezing pump, etc. should be used from the viewpoint that a small amount of fuel can be sent with good controllability and can be reduced in size and weight. Is preferred. A rotary vane pump feeds liquid by rotating a wing with a motor. The electroosmotic flow pump uses a sintered porous material such as silica that causes an electroosmotic flow phenomenon. The diaphragm pump is a pump that feeds liquid by driving a diaphragm with an electromagnet or piezoelectric ceramics. The squeezing pump presses a part of the flexible fuel flow path and squeezes the fuel. Among these, it is more preferable to use an electroosmotic pump or a diaphragm pump having piezoelectric ceramics from the viewpoints of driving power and size.
 燃料収容部102に収容された燃料は,ポンプ104により流路103を移送され,燃料分配機構105に供給される。そして,燃料分配機構105から放出された燃料は,発電部101のアノード(燃料極)13に供給される。 The fuel stored in the fuel storage unit 102 is transferred through the flow path 103 by the pump 104 and supplied to the fuel distribution mechanism 105. The fuel discharged from the fuel distribution mechanism 105 is supplied to the anode (fuel electrode) 13 of the power generation unit 101.
 なお,燃料収容部102を,ポンプ104と燃料分配機構105の間に配置し,燃料収容部102をポンプ104で加圧して,液体燃料を移送しても良い。 The fuel storage unit 102 may be disposed between the pump 104 and the fuel distribution mechanism 105, and the fuel storage unit 102 may be pressurized by the pump 104 to transfer the liquid fuel.
 発電部101内において,燃料はアノードガス拡散層12を拡散してアノード触媒層11に供給される。燃料としてメタノール燃料を用いた場合,アノード触媒層11で下記の(1)式に示すメタノールの内部改質反応が生じる。なお,メタノール燃料として純メタノールを使用した場合には,カソード触媒層14で生成した水や電解質膜17中の水をメタノールと反応させて(1)式の内部改質反応を生起させる。あるいは,水を必要としない他の反応機構により内部改質反応を生じさせる。 In the power generation unit 101, the fuel diffuses through the anode gas diffusion layer 12 and is supplied to the anode catalyst layer 11. When methanol fuel is used as the fuel, an internal reforming reaction of methanol shown in the following formula (1) occurs in the anode catalyst layer 11. When pure methanol is used as the methanol fuel, the water generated in the cathode catalyst layer 14 or the water in the electrolyte membrane 17 is reacted with methanol to cause the internal reforming reaction of the formula (1). Alternatively, the internal reforming reaction is caused by another reaction mechanism that does not require water.
  CHOH+HO → 6H+CO十6e   …(1)
 この反応で生成した電子(e)は集電体を経由して外部に導かれ,いわゆる出力として負荷側に供給された後,カソード(空気極)16に導かれる。また,(1)式の内部改質反応で生成したプロトン(H)は電解質膜17を経てカソード16に導かれる。カソード16には酸化剤として空気が供給される。カソード16に到達した電子(e)とプロトン(H)は,カソード触媒層14で空気中の酸素と下記の(2)式にしたがって反応し,この反応に伴って水が生成される。
CH 3 OH + H 2 O → 6H + + CO 2 tens 6e - ... (1)
Electrons (e ) generated by this reaction are led to the outside via a current collector, supplied as so-called output to the load side, and then led to the cathode (air electrode) 16. Further, protons (H + ) generated by the internal reforming reaction of the formula (1) are guided to the cathode 16 through the electrolyte membrane 17. Air is supplied to the cathode 16 as an oxidant. Electrons (e ) and protons (H + ) reaching the cathode 16 react with oxygen in the air in accordance with the following equation (2) in the cathode catalyst layer 14, and water is generated along with this reaction.
  6H+(3/2)O+6e → 3H0   …(2)
 ポンプ駆動部2は,ポンプ104の駆動を制御する。ポンプ駆動部2は,制御部4の指示に基づいてポンプ104のオン/オフ等を制御する。
6H + + (3/2) O 2 + 6e → 3H 2 0 (2)
The pump drive unit 2 controls the drive of the pump 104. The pump drive unit 2 controls on / off of the pump 104 based on an instruction from the control unit 4.
 DC-DCコンバータ3は,不図示のスイッチング要素とエネルギー蓄積要素を有し,これらスイッチング要素とエネルギー蓄積要素により燃料電池本体1で発電された電気エネルギーを蓄積/放出させ,燃料電池本体1からの比較的低い出力電圧を十分な電圧まで昇圧して出力する。 The DC-DC converter 3 includes a switching element and an energy storage element (not shown). The switching element and the energy storage element store / release electric energy generated by the fuel cell main body 1, and output from the fuel cell main body 1. A relatively low output voltage is boosted to a sufficient voltage and output.
 温度センサーSS1は,カソード16の近傍に配置され,カソード16の温度(DMFCの温度)を測定するセンサー,例えば,サーミスタ,熱電対である。温度センサーSS1からの温度の測定結果を表す信号(温度信号)が制御部4に送られ,燃料供給の制御に用いられる。 The temperature sensor SS1 is a sensor that is disposed in the vicinity of the cathode 16 and measures the temperature of the cathode 16 (the temperature of the DMFC), such as a thermistor or a thermocouple. A signal (temperature signal) representing the temperature measurement result from the temperature sensor SS1 is sent to the control unit 4 and used for fuel supply control.
 なお,本実施形態に係る燃料電池は,制御に外部温度を用いず,外部温度の測定は不要のため,装置構成の簡略化が図られる。例えば,外部温度を測定するためのセンサーを外部に露出させることが不要となる。 Note that the fuel cell according to the present embodiment does not use an external temperature for control and does not require measurement of the external temperature, so that the device configuration can be simplified. For example, it becomes unnecessary to expose a sensor for measuring the external temperature to the outside.
 制御部4は,供給速度決定部41,燃料供給制御部42を有する。 The control unit 4 includes a supply speed determination unit 41 and a fuel supply control unit 42.
 供給速度決定部41は,温度Tが目標温度Ttになるように燃料の供給速度(Duty比D)を決定する。 The supply speed determination unit 41 determines the fuel supply speed (Duty ratio D) so that the temperature T becomes the target temperature Tt.
 ここでは,ポンプ駆動部2はポンプ104による発電部101への燃料の供給の有無を制御するものとする。即ち,ポンプ駆動部2は燃料の供給速度そのものを直接制御しない。ポンプ駆動部2がポンプ104による燃料の供給の有無を時間的に制御することで,結果として,ある時間内での燃料の供給量を制御できる。 Here, it is assumed that the pump drive unit 2 controls whether or not the pump 104 supplies fuel to the power generation unit 101. That is, the pump drive unit 2 does not directly control the fuel supply speed itself. The pump drive unit 2 temporally controls whether or not fuel is supplied by the pump 104, and as a result, the amount of fuel supplied within a certain time can be controlled.
 このとき,燃料の供給速度V[g/sec]は,次のようにDuty比Dで表される。 At this time, the fuel supply speed V [g / sec] is expressed by the Duty ratio D as follows.
 V=Av*D       
 D=ton/(ton+toff)
  =ton/tal                  ……式(3)
  Av: 比例定数
  ton:  ポンプ104が燃料を供給している時間(ON時間)
  toff: ポンプ104が燃料を供給していない時間(OFF時間)
  tal=ton+toff: ON時間とOFF時間の合計
 供給速度決定部41は,次の式(4)を用いて,Duty比Dを決定できる。
V = Av * D
D = ton / (ton + toff)
= Ton / tal ...... Formula (3)
Av: proportional constant ton: time during which pump 104 supplies fuel (ON time)
toff: time when pump 104 is not supplying fuel (OFF time)
tal = ton + toff: Sum of ON time and OFF time The supply speed determination unit 41 can determine the Duty ratio D using the following equation (4).
  D=Kp・(T-Tt)+Ki・B∫(T-Tt)dt ……式(4)
 式(4)はいわゆるPI(Proportional Integral)制御を表し,現在の温度Tと目標温度Ttの偏差(T-Tt)の比例項(Kp・(T-Tt))と積分項(Ki・B∫(T-Tt)dt)に基づいて,Duty比Dを決定している。なお,PI制御に代えて,PID(Proportional Integral Differential)制御を用いても良い。
D = Kp · (T−Tt) + Ki · B∫ (T−Tt) dt (4)
Equation (4) represents so-called PI (Proportional Integral) control, and a proportional term (Kp · (T−Tt)) and an integral term (Ki · B∫) of the deviation (T−Tt) between the current temperature T and the target temperature Tt. Based on (T−Tt) dt), the Duty ratio D is determined. Note that PID (Proportional Integral Differential) control may be used instead of PI control.
 式(4)等を用いて,周期的にDuty比Dを決定し,ポンプ104による燃料の供給速度を制御することで,温度Tが目標温度Ttと一致するように燃料電池を制御することができる。 It is possible to control the fuel cell so that the temperature T matches the target temperature Tt by periodically determining the duty ratio D using the equation (4) and controlling the fuel supply speed by the pump 104. it can.
 燃料供給制御部42は,供給速度決定部41で決定されたDuty比Dで燃料が供給されるように,ポンプ駆動部2を介して,ポンプ104を制御する。 The fuel supply control unit 42 controls the pump 104 via the pump drive unit 2 so that the fuel is supplied at the duty ratio D determined by the supply speed determination unit 41.
 ここで,燃料供給制御部42は,温度(カソード温度)Tが最小温度Tmin以下の状態が継続する場合に,燃料の供給速度の上限(Duty比Dの上限)を固定する(DutyLock)。このDutyLockにより,外部温度を測定しなくても,燃料電池の動作の安定化が図られる。温度(カソード温度)Tが目標温度Ttを越えたときに(T>Tt),DutyLockは解除される。 Here, the fuel supply control unit 42 fixes the upper limit of the fuel supply speed (the upper limit of the Duty ratio D) when the temperature (cathode temperature) T continues to be below the minimum temperature Tmin (DutyLock). With this DutyLock, the operation of the fuel cell can be stabilized without measuring the external temperature. When the temperature (cathode temperature) T exceeds the target temperature Tt (T> Tt), the DutyLock is released.
 既述のように,燃料供給制御部42は,温度Tが目標温度Ttになるように燃料の供給を制御するのが原則である。 As described above, in principle, the fuel supply control unit 42 controls the fuel supply so that the temperature T becomes the target temperature Tt.
 しかし,外部温度が大きく低下すると(例えば,45→5℃),燃料電池の動作が不安定となる場合があることが判明した。外部温度が低下すると,反応(2)によって生成した水がカソード16の表面に凝集し,カソード16への酸素の供給が不足する(カソード酸素欠乏状態)。この酸素欠乏状態において,目標温度Ttを維持しようとすると,温度Tの振幅が大きくなる。また,温度Tが上がったときの発電部101からの出力が却って低下する。さらには,目標温度Ttを維持しようとして燃料が供給過剰となり,アノード触媒層11およびカソード触媒層14等が溶解され,燃料電池本体(DMFC)1が不可逆に劣化する危険性もある。 However, it has been found that when the external temperature decreases greatly (for example, 45 → 5 ° C.), the operation of the fuel cell may become unstable. When the external temperature decreases, the water generated by the reaction (2) aggregates on the surface of the cathode 16 and the supply of oxygen to the cathode 16 becomes insufficient (cathode oxygen deficient state). If the target temperature Tt is to be maintained in this oxygen-deficient state, the amplitude of the temperature T increases. Further, the output from the power generation unit 101 when the temperature T rises decreases. Furthermore, there is a risk that the fuel is excessively supplied to maintain the target temperature Tt, the anode catalyst layer 11 and the cathode catalyst layer 14 are dissolved, and the fuel cell body (DMFC) 1 is irreversibly deteriorated.
 温度(カソード温度)Tが最小温度Tmin以下の状態が継続する場合に,DutyLockをONすることで(DutyLockの設定),燃料の供給過剰が防止される。これは,目標温度Ttの達成を一旦断念することを意味する。この場合,燃料電池は一時的な安定状態に保持され,発電部101からの出力も比較的低い状態となる。 When the temperature (cathode temperature) T continues to be below the minimum temperature Tmin, turning on DutyLock (DutyLock setting) prevents excessive fuel supply. This means that the achievement of the target temperature Tt is once abandoned. In this case, the fuel cell is maintained in a temporary stable state, and the output from the power generation unit 101 is also relatively low.
 外部温度が上昇すると,DutyLockをONしていても,温度(カソード温度)Tは次第に上昇し,目標温度Ttに到達する(T>Tt)。このように,温度(カソード温度)Tが目標温度Ttに到達すると,DutyLockがOFFとされる(DutyLockの解除)。 When the external temperature rises, the temperature (cathode temperature) T gradually rises and reaches the target temperature Tt (T> Tt) even if the DutyLock is ON. Thus, when the temperature (cathode temperature) T reaches the target temperature Tt, the DutyLock is turned OFF (DutyLock is released).
 以上のように,温度Tが最小温度Tmin以下の状態が継続する場合にDutyLockをONし,温度Tが目標温度Ttに到達したときにDutyLockをOFFする。このようにすることで,外部温度を測定することなく,外部温度の低下に起因する酸素の供給不足に対応し,燃料電池を安定して動作することが可能となる。 As described above, when the state where the temperature T is below the minimum temperature Tmin continues, the DutyLock is turned ON, and when the temperature T reaches the target temperature Tt, the DutyLock is turned OFF. By doing so, it becomes possible to stably operate the fuel cell in response to a shortage of oxygen supply caused by a decrease in the external temperature without measuring the external temperature.
(燃料電池の動作)
 図4は,燃料電池の動作手順の一例を表すフロー図である。
(Operation of fuel cell)
FIG. 4 is a flowchart showing an example of the operation procedure of the fuel cell.
A.Duty比Dの決定
 Duty比Dが周期的に決定される(ステップS11)。即ち,式(4)によりDuty比Dを決定する。原則的には,決定されたDuty比Dに基づき,ポンプ104が制御される(ステップS13)。
A. Determination of Duty Ratio D Duty ratio D is periodically determined (step S11). That is, the duty ratio D is determined by the equation (4). In principle, the pump 104 is controlled based on the determined duty ratio D (step S13).
 ポンプ104の制御に用いられるDuty比DはDuty比D0として記憶される(ステップS12)。後述のように,Duty比Dが調整され,この値に基づき,ポンプ104が制御される場合,調整されたDuty比DがDuty比D0として記憶される。Duty比D0は後述のDutyLockの際に用いられる。 The duty ratio D used for controlling the pump 104 is stored as the duty ratio D0 (step S12). As will be described later, when the duty ratio D is adjusted and the pump 104 is controlled based on this value, the adjusted duty ratio D is stored as the duty ratio D0. The duty ratio D0 is used in the later-described DutyLock.
B.Duty比Dの調節
 場合により温度条件等に基づいて,Duty比Dが調節され,調整されたDuty比Dに基づき,ポンプ104が制御される。
B. Adjustment of Duty Ratio D In some cases, the Duty ratio D is adjusted based on temperature conditions and the like, and the pump 104 is controlled based on the adjusted Duty ratio D.
 1)DutyLockの設定(ステップS41~S45)
 次の条件a~cが満たされると,DutyLockが設定され(DutyLockON),Duty比Dの増加が禁止される(ステップS41~S43)。即ち,今回の周期で決定されたDuty比Dが前回の周期で用いられたDuty比D0より大きければ(ステップS44),Duty比Dに前回の周期で用いられたDuty比D0が代入される(ステップS45)。この結果,Duty比Dは,Duty比D0以下の値に設定される。
1) Setting of DutyLock (Steps S41 to S45)
When the following conditions a to c are satisfied, DutyLock is set (DutyLock ON), and an increase in Duty ratio D is prohibited (Steps S41 to S43). That is, if the duty ratio D determined in the current cycle is larger than the duty ratio D0 used in the previous cycle (step S44), the duty ratio D0 used in the previous cycle is substituted into the duty ratio D ( Step S45). As a result, the Duty ratio D is set to a value less than or equal to the Duty ratio D0.
 後述のように,DutyLockが設定された状態だと,条件a~cを満たさなくても,Duty比Dの増加が禁止される。 As described later, if DutyLock is set, increasing Duty ratio D is prohibited even if conditions a to c are not satisfied.
 a.温度Tが最低温度Tminより低い(T<Tmin)
 b.温度が下降中(温度の微分係数dT/dt<0)
 c.電流I減少中(電流の微分係数dI/dt<0)
 なお,条件a~cが所定回数(例えば,3回)満たされたときに,DutyLockを設定することとし,ノイズ等に起因するDutyLockの誤設定を防止することができる。
a. Temperature T is lower than minimum temperature Tmin (T <Tmin)
b. Temperature is falling (Temperature differential coefficient dT / dt <0)
c. Current I decreasing (current differential coefficient dI / dt <0)
Note that when conditions a to c are satisfied a predetermined number of times (for example, three times), DutyLock is set, and DutyLock erroneous setting due to noise or the like can be prevented.
 2)DutyLock設定時の処理(ステップS31,S44,S45)
 DutyLock設定時には,条件a~cが満たされていなくても,Duty比Dの増加が禁止される。即ち,今回の周期で決定されたDuty比Dが前回の周期で用いられたDuty比D0より大きければ(ステップS44),Duty比Dに前回の周期で用いられたDuty比D0が代入される(ステップS45)。
2) Processing when setting DutyLock (steps S31, S44, S45)
When DutyLock is set, an increase in the Duty ratio D is prohibited even if the conditions a to c are not satisfied. That is, if the duty ratio D determined in the current cycle is larger than the duty ratio D0 used in the previous cycle (step S44), the duty ratio D0 used in the previous cycle is substituted into the duty ratio D ( Step S45).
 3)DutyLockの解除(ステップS21,S22)
 条件d,eが満たされると,DutyLockが解除される(DutyLock OFF)。
3) Canceling DutyLock (Steps S21 and S22)
When conditions d and e are satisfied, DutyLock is released (DutyLock OFF).
 d.温度T1が目標温度より高い(T1>Tt)
 e.温度Tが上昇中(温度の微分係数dT/dt>0)
 以上において述べた実施形態は、単に例として示したもので、本発明の範囲を限定することを意図したものではない。実際、ここにおいて述べた新規な燃料電池は、種々の他の形態に具体化されて良く、さらに、本発明の主旨から逸脱することなくここにおいて述べた形態における種々の省略、置き換えおよび変更を行っても良い。付随する請求項およびそれらの均等物は、本発明の範囲および主旨に入るようにそのような形態若しくは変形を含むことを意図している。
d. Temperature T1 is higher than target temperature (T1> Tt)
e. Temperature T is rising (Temperature differential coefficient dT / dt> 0)
The embodiments described above are given by way of example only and are not intended to limit the scope of the invention. Indeed, the novel fuel cell described herein may be embodied in various other forms, and various omissions, substitutions, and modifications in the form described herein may be made without departing from the spirit of the invention. May be. The appended claims and their equivalents are intended to include such forms or modifications within the scope and spirit of the present invention.
 本出願は、2009年8月31日に出願した先行する日本国特許出願第2009-200041号による優先権の利益に基礎をおき、かつ、その利益を求めており、その内容全体が引用によりここに包含される。 This application is based on and seeks the benefit of priority from the prior Japanese Patent Application No. 2009-200041 filed on August 31, 2009, the entire contents of which are hereby incorporated by reference Is included.

Claims (6)

  1.  液体燃料により発電する燃料電池本体と,
     前記燃料電池本体に燃料を供給する燃料供給部と,
     前記燃料電池本体の温度を検出する温度センサーと,
     前記温度センサーでの測定結果に基づき,前記燃料供給部による燃料の供給速度を決定する供給速度決定部と,
     前記決定された供給速度に基づいて,前記燃料供給部による燃料の供給を制御し,かつ前記温度が所定の基準値より小さい場合に燃料供給を制限する燃料供給制御部と,
    を具備することを特徴とする燃料電池。
    A fuel cell body that generates power from liquid fuel;
    A fuel supply unit for supplying fuel to the fuel cell body;
    A temperature sensor for detecting the temperature of the fuel cell body;
    A supply rate determination unit that determines a supply rate of fuel by the fuel supply unit based on a measurement result of the temperature sensor;
    A fuel supply control unit that controls the supply of fuel by the fuel supply unit based on the determined supply rate and restricts the fuel supply when the temperature is lower than a predetermined reference value;
    A fuel cell comprising:
  2.  前記供給速度決定部が連続的に供給速度を決定し,
     前記燃料供給制御部がこの連続的に決定される供給速度に基づいて,燃料の供給を連続的に制御する,
     ことを特徴とする請求項1記載の燃料電池。
    The supply speed determining unit continuously determines the supply speed;
    The fuel supply control unit continuously controls the fuel supply based on the continuously determined supply speed;
    The fuel cell according to claim 1.
  3.  前記温度が前記所定の基準値より小さい場合,前回の制御に用いられた供給速度以下の供給速度に基づいて,前記燃料供給制御部が燃料の供給を制御する,
     ことを特徴とする請求項2記載の燃料電池。
    When the temperature is lower than the predetermined reference value, the fuel supply control unit controls the supply of fuel based on a supply speed equal to or lower than the supply speed used in the previous control;
    The fuel cell according to claim 2.
  4.  前記供給速度決定部が前記温度と目標温度との比較に基づいて,前記燃料の供給速度を決定する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の燃料電池。
    4. The fuel cell according to claim 1, wherein the supply speed determination unit determines the supply speed of the fuel based on a comparison between the temperature and a target temperature. 5.
  5.  前記燃料供給制御部が,前記燃料供給部から前記燃料電池本体への燃料の供給の有無を制御する,
     ことを特徴とする請求項1乃至4のいずれか1項に記載の燃料電池。
    The fuel supply control unit controls whether or not fuel is supplied from the fuel supply unit to the fuel cell body;
    The fuel cell according to any one of claims 1 to 4, wherein:
  6.  前記供給速度決定部が,前記燃料供給部から前記燃料電池本体に燃料を供給する動作時間と,前記燃料供給部から前記燃料電池本体に燃料を供給しない停止時間との和に対する前記動作時間の比を前記燃料の供給速度として決定する
     ことを特徴とする請求項5記載の燃料電池。
    The ratio of the operation time to the sum of the operation time for supplying the fuel from the fuel supply unit to the fuel cell main body and the stop time for not supplying the fuel cell main body from the fuel supply unit. The fuel cell according to claim 5, wherein the fuel supply speed is determined.
PCT/JP2010/004919 2009-08-31 2010-08-04 Fuel cell WO2011024386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009200041A JP2011054307A (en) 2009-08-31 2009-08-31 Fuel cell
JP2009-200041 2009-08-31

Publications (1)

Publication Number Publication Date
WO2011024386A1 true WO2011024386A1 (en) 2011-03-03

Family

ID=43627508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004919 WO2011024386A1 (en) 2009-08-31 2010-08-04 Fuel cell

Country Status (2)

Country Link
JP (1) JP2011054307A (en)
WO (1) WO2011024386A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340174A (en) * 2004-04-07 2005-12-08 Yamaha Motor Co Ltd Fuel cell system and its control method
JP2008078068A (en) * 2006-09-25 2008-04-03 Ricoh Co Ltd Fuel cell system, electronic equipment, and image forming device
JP2009016311A (en) * 2007-07-09 2009-01-22 Toshiba Corp Fuel cell
JP2009087741A (en) * 2007-09-28 2009-04-23 Toshiba Corp Degradation detection device of fuel cell and fuel cell system
JP2009134885A (en) * 2007-11-28 2009-06-18 Casio Comput Co Ltd Fuel cell system and its control method
WO2010021231A1 (en) * 2008-08-18 2010-02-25 ソニー株式会社 Fuel cell system and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340174A (en) * 2004-04-07 2005-12-08 Yamaha Motor Co Ltd Fuel cell system and its control method
JP2008078068A (en) * 2006-09-25 2008-04-03 Ricoh Co Ltd Fuel cell system, electronic equipment, and image forming device
JP2009016311A (en) * 2007-07-09 2009-01-22 Toshiba Corp Fuel cell
JP2009087741A (en) * 2007-09-28 2009-04-23 Toshiba Corp Degradation detection device of fuel cell and fuel cell system
JP2009134885A (en) * 2007-11-28 2009-06-18 Casio Comput Co Ltd Fuel cell system and its control method
WO2010021231A1 (en) * 2008-08-18 2010-02-25 ソニー株式会社 Fuel cell system and electronic device

Also Published As

Publication number Publication date
JP2011054307A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP2009087741A (en) Degradation detection device of fuel cell and fuel cell system
JP2008218236A (en) Fuel cell system and electronic equipment
WO2010013711A1 (en) Fuel cell system and electronic device
WO2010013709A1 (en) Fuel cell system, and electronic device
JP5617218B2 (en) Fuel cell
JP5258203B2 (en) Fuel cell system and electronic device
WO2011024386A1 (en) Fuel cell
JP2010244919A (en) Fuel cell system, and control method therefor
WO2008068886A1 (en) Fuel battery
JP2010238408A (en) Fuel cell system, and valve device
WO2010013714A1 (en) Fuel cell system and charging device
JP5556123B2 (en) Fuel cell system
JP2010033899A (en) Fuel cell system and electronic device
JP2009016311A (en) Fuel cell
JP2011023198A (en) Fuel cell system and charging device
JP5025288B2 (en) Fuel cell system and electronic device
JP2008218046A (en) Fuel cell
JP2010033904A (en) Fuel cell system and electronic equipment
JP2010033898A (en) Fuel cell system and electronic equipment
JP2008282626A (en) Fuel cell system and electronic equipment
JP2011023218A (en) Fuel cell
JP2010061975A (en) Fuel cell system
JP2008218012A (en) Fuel cell
JP2009158420A (en) Fuel cell
JP2008218282A (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811445

Country of ref document: EP

Kind code of ref document: A1