WO2010013714A1 - Fuel cell system and charging device - Google Patents

Fuel cell system and charging device Download PDF

Info

Publication number
WO2010013714A1
WO2010013714A1 PCT/JP2009/063432 JP2009063432W WO2010013714A1 WO 2010013714 A1 WO2010013714 A1 WO 2010013714A1 JP 2009063432 W JP2009063432 W JP 2009063432W WO 2010013714 A1 WO2010013714 A1 WO 2010013714A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
output
fuel
power generation
power
Prior art date
Application number
PCT/JP2009/063432
Other languages
French (fr)
Japanese (ja)
Inventor
清司 瀬上
英徳 鈴木
泰人 武田
慎一郎 柳田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2010013714A1 publication Critical patent/WO2010013714A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a charging device to which the fuel cell system is applied.
  • a fuel cell has the advantage that it can generate electric power only by supplying fuel and air, and can generate electric power continuously by exchanging only the fuel. Therefore, if the fuel cell can be miniaturized, it is extremely effective as a power source for small electronic devices.
  • DMFC direct methanol fuel cell
  • DMFCs are classified according to the liquid fuel supply method, and the active fuel cell such as the gas supply type that supplies gaseous fuel or the liquid supply type that supplies liquid fuel, and the liquid fuel in the fuel storage section are vaporized inside the cell.
  • the passive type fuel cell such as an internal vaporization type that is supplied to the fuel electrode.
  • the passive type is particularly advantageous for downsizing the DMFC.
  • Patent Document 1 As such a passive DMFC, a membrane electrode assembly (fuel cell) having a fuel electrode, an electrolyte membrane, and an air electrode is composed of a resin box-like container. The thing of the structure arrange
  • Patent Documents 2 to 4 disclose a configuration in which a DMFC fuel cell and a fuel storage portion are connected via a flow path.
  • the amount of liquid fuel supplied can be adjusted based on the shape and diameter of the flow path by supplying the liquid fuel supplied from the fuel storage unit to the fuel cell via the flow path. It is said.
  • liquid fuel is supplied from a fuel storage portion to a flow path by a pump.
  • Patent Document 3 also describes that an electric field forming unit that forms an electroosmotic flow in the flow path is used instead of the pump.
  • Patent Document 4 describes that liquid fuel or the like is supplied using an electroosmotic flow pump.
  • such a fuel cell system using the DMFC as a main power generation unit may be used as a charging device for charging a secondary battery, which is an internal power source of an electronic device, from the outside.
  • Such a charging device is provided with a storage element, for example, a secondary battery as an internal power source, and charges the secondary battery by the power generation output of the DMFC, and also enables power supply from the secondary battery to the electronic circuit inside the device. ing.
  • a storage element for example, a secondary battery as an internal power source
  • Patent Documents 5 and 6 both charge the secondary battery by the fuel cell only when the output power of the fuel cell exceeds the power requirement of the load. For this reason, for example, if the power demand of the load is large and the battery is used for a long time and the secondary battery may not be sufficiently charged, the remaining battery level may be extremely low. There arises a situation in which sufficient power cannot be supplied from the secondary battery to the electronic circuit inside the device, and the operation of the device itself becomes unstable.
  • An object of the present invention is to provide a fuel cell system and a charging device that can stably charge a storage element of an internal power source and can always obtain a stable operation.
  • a fuel cell main body that generates electric power by supplying fuel and supplies power generation output to a load;
  • a load request detector for detecting an output required by the load to the fuel cell body;
  • a charge state selection unit that selects a charge state for the power storage element according to the magnitude of the required output detected by the load request detection unit;
  • a control unit that supplies a predetermined power generation output as a charging output of the power storage element among the power generation outputs of the fuel cell main body according to the charging state selected by the charging state selection unit;
  • a fuel cell system is provided.
  • An output adjustment unit that generates an output supplied to the load from a power generation output of the fuel cell main body, and the load request detection unit detects an output current of the output adjustment unit as a request output requested by the load.
  • a fuel cell system is provided.
  • the charge state selection unit is configured to determine a ratio of the power generation output supplied to the power storage element in the power generation output of the fuel cell main body according to the magnitude of the required output detected by the load request detection unit.
  • a fuel cell system is provided.
  • a fuel cell system of the third invention in which the control unit can supply all of the power generation output of the fuel cell main body as the charge output of the power storage element according to the charge state selected by the charge state selection unit.
  • a charging device fuel cell system to which the fuel cell system according to the first to fourth inventions is applied.
  • the present invention it is possible to provide a fuel cell system and a charging device that can stably charge the storage element of the internal power supply and can always obtain a stable operation.
  • FIG. 1 is a block diagram schematically showing the configuration of the fuel cell system according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an enlarged structure of the fuel cell main body shown in FIG. 3 is a perspective view schematically showing a fuel distribution mechanism used in the fuel cell main body shown in FIG.
  • FIG. 4 is a block diagram schematically showing the charge control circuit shown in FIG.
  • FIG. 5 is a waveform diagram showing the operation of each part in the fuel cell system shown in FIG.
  • FIG. 1 shows a schematic configuration of a fuel cell system applied to the charging apparatus according to the first embodiment of the present invention.
  • reference numeral 1 denotes a fuel cell main body (DMFC).
  • the fuel cell main body 1 includes a fuel cell power generation unit (cell) 101 that constitutes an electromotive unit, a fuel storage unit 102 that stores liquid fuel, and a fuel storage unit 102. And a flow path 103 connecting the fuel cell power generation unit (cell) 101 and a pump 104 as a fuel supply control unit for transferring liquid fuel from the fuel storage unit 102 to the fuel cell power generation unit (cell) 101. .
  • FIG. 2 is a cross-sectional view for explaining the fuel cell main body 1 in more detail.
  • the fuel cell power generation unit 101 includes an anode (fuel electrode) 13 having an anode catalyst layer 11 and an anode gas diffusion layer 12, and a cathode (cathode catalyst layer 14 and cathode gas diffusion layer 15).
  • MEA Membrane Electrode Assembly
  • examples of the catalyst contained in the anode catalyst layer 11 and the cathode catalyst layer 14 include a simple substance of a platinum group element such as Pt, Ru, Rh, Ir, Os, and Pd, an alloy containing the platinum group element, and the like. It is done.
  • the anode catalyst layer 11 is preferably made of Pt—Ru, Pt—Mo, or the like that has strong resistance to methanol, carbon monoxide, or the like.
  • Pt, Pt—Ni or the like is preferably used for the cathode catalyst layer 14.
  • the catalyst is not limited to these, and various substances having catalytic activity can be used.
  • the catalyst may be either a supported catalyst using a conductive support such as a carbon material or an unsupported catalyst.
  • Examples of the proton conductive material constituting the electrolyte membrane 17 include fluorine-based resins (Nafion (trade name, manufactured by DuPont) and Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) such as a perfluorosulfonic acid polymer having a sulfonic acid group. Etc.), organic materials such as hydrocarbon resins having sulfonic acid groups, or inorganic materials such as tungstic acid and phosphotungstic acid.
  • fluorine-based resins Nafion (trade name, manufactured by DuPont) and Flemion (trade name, manufactured by Asahi Glass Co., Ltd.)
  • organic materials such as hydrocarbon resins having sulfonic acid groups
  • inorganic materials such as tungstic acid and phosphotungstic acid.
  • the proton conductive electrolyte membrane 17 is not limited to these.
  • the anode gas diffusion layer 12 laminated on the anode catalyst layer 11 serves to uniformly supply fuel to the anode catalyst layer 11 and also serves as a current collector for the anode catalyst layer 11.
  • the cathode gas diffusion layer 15 laminated on the cathode catalyst layer 14 serves to uniformly supply the oxidant to the cathode catalyst layer 14 and also serves as a current collector for the cathode catalyst layer 14.
  • the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 are made of a porous substrate.
  • a conductive layer is laminated on the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 as necessary.
  • these conductive layers for example, a porous layer (for example, mesh) made of a conductive metal material such as Au or Ni, a porous film, a foil body, a conductive metal material such as stainless steel (SUS), gold or the like.
  • a composite material coated with a highly conductive metal is used.
  • a rubber O-ring 19 is interposed between the electrolyte membrane 17 and a fuel distribution mechanism 105 and a cover plate 18 described later. This O-ring 19 prevents fuel leakage and oxidant leakage from the fuel cell power generation unit 101.
  • the cover plate 18 has an opening (not shown) for taking in air as an oxidizing agent.
  • a moisture retaining layer and a surface layer are disposed between the cover plate 18 and the cathode 16 as necessary.
  • the moisturizing layer is impregnated with a part of the water generated in the cathode catalyst layer 14 to suppress the transpiration of water and promote uniform diffusion of air to the cathode catalyst layer 14.
  • the surface layer adjusts the amount of air taken in, and has a plurality of air inlets whose number, size, etc. are adjusted according to the amount of air taken in.
  • a fuel distribution mechanism 105 is disposed on the anode (fuel electrode) 13 side of the fuel cell power generation unit 101.
  • a fuel storage unit 102 is connected to the fuel distribution mechanism 105 via a liquid fuel flow path 103 such as a pipe.
  • the fuel storage unit 102 stores liquid fuel corresponding to the fuel cell power generation unit 101.
  • the liquid fuel include methanol fuels such as aqueous methanol solutions of various concentrations and pure methanol.
  • the liquid fuel is not necessarily limited to methanol fuel.
  • the liquid fuel may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel.
  • liquid fuel corresponding to the fuel cell power generation unit 101 is stored in the fuel storage unit 102.
  • Fuel is introduced into the fuel distribution mechanism 105 from the fuel storage unit 102 via the flow path 103.
  • the flow path 103 is not limited to piping independent of the fuel distribution mechanism 105 and the fuel storage unit 102.
  • a fuel flow path connecting them may be used.
  • the fuel distribution mechanism 105 only needs to be connected to the fuel storage unit 102 via the flow path 103.
  • the fuel distribution mechanism 105 includes at least one fuel inlet 21 through which fuel flows in via the flow path 103, and a plurality of fuel outlets for discharging the fuel and its vaporized components. And a fuel distribution plate 23 having 22. Inside the fuel distribution plate 23, as shown in FIG. 2, a gap portion 24 is provided that serves as a fuel passage led from the fuel injection port 21. The plurality of fuel discharge ports 22 are directly connected to gaps 24 that function as fuel passages.
  • the fuel introduced from the fuel injection port 21 into the fuel distribution mechanism 105 enters the gap 24 and is guided to the plurality of fuel discharge ports 22 through the gap 24 that functions as the fuel passage.
  • a gas-liquid separator (not shown) that transmits only the vaporized component of the fuel and does not transmit the liquid component may be disposed in the plurality of fuel discharge ports 22.
  • the fuel vaporization component is supplied to the anode (fuel electrode) 13 of the fuel cell power generation unit 101.
  • the gas-liquid separator may be installed as a gas-liquid separation membrane or the like between the fuel distribution mechanism 105 and the anode 13.
  • the vaporized component of the fuel is discharged from a plurality of fuel discharge ports 22 toward a plurality of locations on the anode 13.
  • a plurality of fuel discharge ports 22 are provided on the surface of the fuel distribution plate 23 in contact with the anode 13 so that fuel can be supplied to the entire fuel cell power generation unit 101.
  • the number of the fuel discharge ports 22 may be two or more. However, in order to equalize the fuel supply amount in the plane of the fuel cell power generation unit 101, the fuel discharge ports 22 of 0.1 to 10 / cm 2 are provided. It is preferable to form it so that it exists.
  • a pump 104 as a fuel transfer control unit is inserted into a flow path 103 that connects between the fuel distribution mechanism 105 and the fuel storage unit 102.
  • the pump 104 is not a circulation pump through which fuel is circulated, but is a fuel supply pump that transfers fuel from the fuel storage unit 102 to the fuel distribution mechanism 105 to the last.
  • a rotary vane pump, an electroosmotic pump, a diaphragm pump, a squeezing pump, etc. should be used as the pump 104 from the viewpoint that a small amount of fuel can be sent with good controllability and can be reduced in size and weight. Is preferred.
  • a rotary vane pump feeds liquid by rotating a wing with a motor.
  • the electroosmotic flow pump uses a sintered porous material such as silica that causes an electroosmotic flow phenomenon.
  • the diaphragm pump is a pump that feeds liquid by driving the diaphragm with an electromagnet or piezoelectric ceramics.
  • the squeezing pump presses a part of a flexible fuel flow path and squeezes the fuel.
  • a fuel supply control circuit 9 to be described later is connected to the pump 104, and the drive of the pump 104 is controlled. This point will be described later.
  • the fuel stored in the fuel storage unit 102 is transferred through the flow path 103 by the pump 104 and supplied to the fuel distribution mechanism 105.
  • the fuel released from the fuel distribution mechanism 105 is supplied to the anode (fuel electrode) 13 of the fuel cell power generation unit 101.
  • the fuel diffuses through the anode gas diffusion layer 12 and is supplied to the anode catalyst layer 11.
  • methanol fuel is used as the fuel, an internal reforming reaction of methanol shown in the following formula (1) occurs in the anode catalyst layer 11.
  • the water generated in the cathode catalyst layer 14 or the water in the electrolyte membrane 17 is reacted with methanol to cause the internal reforming reaction of the formula (1).
  • the internal reforming reaction is caused by another reaction mechanism that does not require water.
  • Electrons (e ⁇ ) generated by this reaction are guided to the outside via a current collector, supplied to the load side as so-called output, and then guided to the cathode (air electrode) 16. Further, protons (H + ) generated by the internal reforming reaction of the formula (1) are guided to the cathode 16 through the electrolyte membrane 17. Air is supplied to the cathode 16 as an oxidant. Electrons (e ⁇ ) and protons (H + ) reaching the cathode 16 react with oxygen in the air in accordance with the following equation (2) in the cathode catalyst layer 14, and water is generated with this reaction.
  • the fuel cell main body 1 configured as described above is connected to a DC-DC converter (voltage adjustment circuit) 2, a charge control circuit 3, and an output detection unit 4 as an output adjustment unit.
  • the DC-DC converter 2 includes a switching element and an energy storage element (not shown).
  • the DC-DC converter 2 stores / discharges the electric energy generated by the fuel cell body 1 by the switching element and the energy storage element, An output generated by boosting a relatively low output voltage to a sufficient voltage is generated.
  • the standard boost type DC-DC converter 2 is shown here, other circuit systems can be used as long as the boost operation is possible.
  • the charge control circuit 3 is connected to a chargeable / dischargeable secondary battery such as a lithium ion rechargeable battery (hereinafter referred to as LIB) 5 as a power storage element.
  • LIB lithium ion rechargeable battery
  • the LIB 5 is used as a power source for each electronic circuit in the fuel cell system, and the charge state is controlled by the charge control circuit 3. Note that an electric double layer capacitor can be used instead of LIB 5 as the power storage element.
  • the output detection unit 4 detects the state of the electric power generated by the fuel cell main body 1.
  • the output detection unit 4 detects the output voltage (or output current) of the output of the fuel cell main body 1, and uses this detection result as the fuel cell.
  • the generated power output from the main body 1 is output to the control unit 8.
  • the load request detector 6 and an electronic device 7 as a load are connected to the DC-DC converter 2.
  • the electronic device 7 includes an electronic device main body 71, a charging circuit 72, and a LIB 73 as a power storage element, and the LIB 73 can be charged by an output from the DC-DC converter 2.
  • the LIB 73 is used as a power source of the electronic device main body 71 and is charged by the charging circuit 72 in a state where the DC-DC converter 2 of the fuel cell system is connected to the electronic device 7.
  • the load request detection unit 6 detects an output requested by the electronic device 7 to the fuel cell main body 1.
  • the load request detection unit 6 detects an output current of the DC-DC converter 2 as an output requested by the electronic device 7, This request is output to the control unit 8.
  • the output current of the DC-DC converter 2 varies depending on the remaining charge of the LIB 73, and from this, the load requires the output current of the DC-DC converter 2 that varies depending on the remaining charge of the LIB 73. Detect as.
  • the LIB 5 is connected to a fuel supply control circuit 9 as an electronic circuit inside the fuel cell system and other electronic circuits (not shown), and is used as a power source for these electronic circuits.
  • the fuel supply control circuit 9 controls the operation of the pump 104 and controls the pump 104 on / off based on an instruction from the control unit 8.
  • the control unit 8 controls the entire system and has a charge state selection unit 81.
  • the charge state selection unit 81 selects a charge state for the LIB 5 based on the power generation output detected by the output detection unit 4 and the request output detected by the load request detection unit 6, and the charge control circuit 3 based on the selection result.
  • the charging state selection unit 81 is, for example, (a) an electronic device detected by the load request detection unit 6 on the condition that the power generation output of the fuel cell main body 1 detected by the output detection unit 4 is sufficient.
  • FIG. 4 is for explaining the charge control circuit 3 in detail, and the same parts as those in FIG.
  • reference numeral 100 denotes a fuel cell system as a charging device.
  • the fuel cell system 100 is provided with the fuel cell main body 1, the DC-DC converter 2, the charge control circuit 3, and the control unit 8 described above.
  • the fuel cell system 100 is provided with an output terminal 111 and a DC terminal 112.
  • the electronic device 7 is connected to the output terminal 111, and the AC adapter 10 can be connected to the DC terminal 112.
  • the AC adapter 10 generates DC power from an AC power source (not shown) (for example, commercial power source), and the LIB 5 can be charged by the DC power via a charging IC 303 described later.
  • the charging control circuit 3 has an input terminal 301, a charging terminal 302, and a charging IC 303.
  • the fuel cell body 1 is connected to the input terminal 301, and the LIB 5 is connected to the charging terminal 302.
  • the charging IC 303 controls charging of the LIB 5 based on an instruction from the charging state selection unit 81 of the control unit 8, and the input terminal 301, the DC terminal 102, and the DC-DC converter 2 are connected to the input terminal IN.
  • the charging terminal 302 is connected to the output terminal OUT.
  • a current control circuit 304 is connected to the control terminal CONT of the charging IC 303.
  • the current control circuit 304 has a configuration in which a resistor R0, a series circuit of a switching element Q1 made of a resistor R1 and a field effect transistor, and a series circuit of a resistor R2 and a switching element Q2 made of a field effect transistor are connected in parallel.
  • the charging current to the LIB 5 by the charging IC 303 is controlled by the combination of R0, R1, and R2. In this case, when the above-described (a) is selected by the charging state selection unit 81, the charging IC 303 shuts down the charging current for the LIB 5.
  • the switching elements Q1 and Q2 of the current control circuit 304 are turned off, and the charging IC 303 uses the resistance R0 of the current control circuit 304 to generate 20 of the power generation output of the fuel cell main body 1. % Is supplied as the charging current of LIB5. Further, when (c) described above is selected, only the switching element Q1 of the current control circuit 304 is turned on, and the charging IC 303 uses the combination of the resistors R0 and R1 of the current control circuit 304 to generate power from the fuel cell body 1. 50% of the output is supplied as LIB5 charging current.
  • the output generated by the fuel cell power generation unit 101 is boosted to a sufficient voltage by the DC-DC converter 2. And supplied to the electronic device 7. Thereby, in the electronic device 7, the LIB 73 is charged via the charging circuit 72 by the output current of the DC-DC converter 2.
  • the LIB 73 is used as a power source for the electronic device main body 71.
  • the state of the electric power generated by the fuel cell main body 1 is detected by the output detection unit 4, and the required output for the fuel cell main body 1 of the electronic device 7 is detected by the load request detection unit 6.
  • the load request detection unit 6 For example, when the electronic device 7 is frequently used and the LIB 73 of the power source is consumed so much that the charging circuit 72 is constantly charging, the request output on the electronic device 7 side from the load request detecting unit 6 The maximum is detected. Then, the charge state selection unit 81 of the control unit 8 selects (a) described above on the condition that the power generation output of the fuel cell main body 1 detected by the output detection unit 4 is sufficient.
  • the charging current for the LIB 5 is shut down according to the instruction (a) of the charging state selection unit 81 in accordance with the instruction (a) of the charging state selection unit 81 of the charging control circuit 3, and the supply of the charging current to the LIB 5 is stopped. To do. Thereby, all of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7 side.
  • the period A in FIG. 5 shows this state, and as shown in FIG. 5B, the output current of the DC-DC converter 2 corresponding to all of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7.
  • the charging current for LIB 5 does not flow at all.
  • 5A shows the output voltage of the DC-DC converter 2
  • FIG. 5C shows the charging voltage of the LIB 5.
  • the charging state selection unit 81 of the control unit 8 determines that the power generation output of the fuel cell main body 1 detected by the output detection unit 4 is not sufficient, the system cannot operate normally by displaying that fact. This is notified to the user.
  • the charging state selecting unit 81 outputs The above-described (b) is selected on the condition that the power generation output of the fuel cell main body 1 detected by the detection unit 4 is sufficient. Then, according to the instruction (b) of the charging state selection unit 81 at this time, the switching elements Q1 and Q2 of the current control circuit 304 are turned off, and the charging IC 303 determines the fuel based on the resistance R0 of the current control circuit 304. 20% of the power generation output of the battery body 1 is supplied as the charging current of the LIB 5. A period B in FIG.
  • FIG. 5 shows this state, and as shown in FIG. 5D, an output corresponding to 20% of the power generation output of the fuel cell body 1 is supplied as a charging current for the LIB 5, and FIG. ),
  • the output current of the DC-DC converter 2 corresponding to 80% of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7.
  • FIG. 5A shows the output voltage of the DC-DC converter 2
  • FIG. 5C shows the charging voltage of the LIB 5.
  • the charging state selecting unit 81 detects the fuel cell main body 1 detected by the output detecting unit 4.
  • the above-mentioned (c) is selected on the condition that the power generation output is sufficient.
  • only the switching element Q1 of the current control circuit 304 is turned on according to the instruction (c) of the charge state selection unit 81 at this time, and the charging IC 303 is based on the combination of the resistors R0 and R1 of the current control circuit 304.
  • 50% of the power generation output of the fuel cell main body 1 is supplied as the charging current of the LIB 5.
  • FIG. 5 shows this state, and as shown in FIG. 5D, an output corresponding to 50% of the power generation output of the fuel cell main body 1 is supplied as a charging current for the LIB 5, and FIG. ),
  • the output current of the DC-DC converter 2 corresponding to 50% of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7.
  • FIG. 5A shows the output voltage of the DC-DC converter 2
  • FIG. 5C shows the charging voltage of the LIB 5.
  • the charge state selection unit 81 is detected by the output detection unit 4.
  • the above (d) is selected on condition that the power generation output of the fuel cell body 1 is sufficient.
  • only the switching element Q2 of the current control circuit 304 is turned on according to the instruction (d) of the charge state selection unit 81 at this time, and the charging IC 303 is based on the combination of the resistors R0 and R2 of the current control circuit 304.
  • a period D in FIG. 5 shows this state. As shown in FIG.
  • FIG. 5D an output corresponding to 100% of the power generation output of the fuel cell main body 1 is supplied as a charging current for the LIB 5, and FIG. ), The output current of the DC-DC converter 2 supplied to the electronic device 7 becomes substantially zero.
  • FIG. 5A shows the output voltage of the DC-DC converter 2
  • FIG. 5C shows the charging voltage of the LIB 5.
  • the charging state selecting unit 81 detects the power generation output of the fuel cell main body 1 detected by the output detecting unit 4. (B) is selected again on the condition that is sufficient. Then, according to the instruction (b) of the charging state selection unit 81 at this time, the switching elements Q1 and Q2 of the current control circuit 304 are turned off, and the charging IC 303 determines the fuel based on the resistance R0 of the current control circuit 304.
  • FIG. 5A shows the output voltage of the DC-DC converter 2
  • FIG. 5C shows the charging voltage of the LIB 5.
  • the fuel cell main body 1 which supplies electric power generation output to the electronic device 7, and it is used as an internal power supply charged by the electric power generation output of this fuel cell main body 1.
  • the LIB 5 is included, and the charge state selection unit 81 determines the output of the fuel cell main body 1 according to the magnitude of the required output acquired from the load request detection unit 6 that detects the output requested by the electronic device 7 to the fuel cell main body 1.
  • the ratio of the power generation output supplied to the LIB 5 among the power generation outputs is selected as the charging state for the LIB 5, and a part of the power generation output of the fuel cell body 1 is charged to the LIB 5 according to the selected charging state. As a supply.
  • the LIB 5 can be stably charged with a part of the power generation output of the fuel cell main body 1 according to the magnitude of the required output of the electronic device 7, so that the battery level of the LIB 5 is extremely reduced.
  • the system internal power supply can be secured stably. As a result, sufficient power can be supplied to the electronic circuits inside the system by the internal power supply LIB5. Obtainable.
  • the surplus output can be used for charging the LIB 5, so that the energy loss can be greatly reduced and the fuel Can be used effectively.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage.
  • the present invention can also be applied as a charging device for other loads.
  • the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and is described in the column of the effect of the invention. If the above effect is obtained, a configuration from which this configuration requirement is deleted can be extracted as an invention.
  • the vaporized component of the liquid fuel supplied to the fuel cell power generation unit may be all supplied as the vaporized component of the liquid fuel, but the present invention is applied even when a part is supplied in the liquid state. be able to.
  • a fuel cell system and a charging device that can stably charge a storage element of an internal power source and can always obtain a stable operation.
  • SYMBOLS 1 Fuel cell main body, 101 ... Fuel cell power generation part 102 ... Fuel accommodating part, 103 ... Flow path 104 ... Pump, 105 ... Fuel distribution mechanism 2 ... DC-DC converter, 3 ... Charge control circuit 301 ... Input terminal, 302 ... Charging terminal 303 ... IC for charging, 304 ... Current control circuit 4 ... Output detection unit, 5 ... LIB, 6 ... Load request detection unit 7 ... Electronic device, 71 ... Electronic device main body 72 ... Charging circuit, 73 ... LIB DESCRIPTION OF SYMBOLS 8 ... Control part, 81 ... Charge condition selection part 9 ... Fuel supply control circuit, 10 ... AC adapter 11 ...

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system includes: a fuel cell body (1) to which a fuel is supplied to generate electric power and output the generated power to an electronic device (7); and an LIB (5) which is charged by the power generated by the fuel cell body (1) and used as an internal power source.  A load request detection unit (6) detects a power requested to the fuel cell body (1) by the electronic device (7).  In accordance with the requested power acquired, a charge state selection unit (81) selects the ratio of the power to be supplied to the LIB (5) against the total power of the fuel cell body (1) as a charge state for the LIB (5) and supplies a predetermined power as a charge power to the LIB (5) according to the selected charge state.

Description

燃料電池システム及び充電装置Fuel cell system and charging device
 本発明は、燃料電池システム及びこの燃料電池システムを適用した充電装置に関する。 The present invention relates to a fuel cell system and a charging device to which the fuel cell system is applied.
 携帯電話機や携帯情報端末などの電子機器の小型化は目覚しいものがあり、これら電子機器の小型化とともに、電源などに燃料電池を使用することが試みられている。燃料電池は、燃料と空気を供給するのみで、発電することができ、燃料のみを交換すれば連続して発電できるという利点を有する。従って、燃料電池の小型化が実現できれば、小型の電子機器の電源として極めて有効である。 There are remarkable miniaturizations of electronic devices such as mobile phones and personal digital assistants, and along with miniaturization of these electronic devices, attempts have been made to use fuel cells as power sources. A fuel cell has the advantage that it can generate electric power only by supplying fuel and air, and can generate electric power continuously by exchanging only the fuel. Therefore, if the fuel cell can be miniaturized, it is extremely effective as a power source for small electronic devices.
 そこで、最近、燃料電池として、直接メタノール型燃料電池(以下、DMFC; Direct Methanol Fuel Cellと称する。) が注目されている。かかるDMFCは、液体燃料の供給方式によって分類され、気体燃料を供給する気体供給型或いは液体燃料を供給する液体供給型等のアクティブ方式の燃料電池と、燃料収容部内の液体燃料を電池内部で気化させて燃料極に供給する内部気化型等のパッシブ方式の燃料電池がある。これらの燃料電池のうち、パッシブ方式のものはDMFCの小型化に対して特に有利である。 Therefore, a direct methanol fuel cell (hereinafter referred to as DMFC; “Direct Methanol Fuel Cell”) has attracted attention as a fuel cell. Such DMFCs are classified according to the liquid fuel supply method, and the active fuel cell such as the gas supply type that supplies gaseous fuel or the liquid supply type that supplies liquid fuel, and the liquid fuel in the fuel storage section are vaporized inside the cell. There is a passive type fuel cell such as an internal vaporization type that is supplied to the fuel electrode. Among these fuel cells, the passive type is particularly advantageous for downsizing the DMFC.
 従来、このようなパッシブ方式のDMFCとして、特許文献1に開示されるように、燃料極、電解質膜および空気極を有する膜電極接合体(燃料電池セル)を、樹脂製の箱状容器からなる燃料収容部上に配置した構造のものが提案されている。 Conventionally, as disclosed in Patent Document 1, as such a passive DMFC, a membrane electrode assembly (fuel cell) having a fuel electrode, an electrolyte membrane, and an air electrode is composed of a resin box-like container. The thing of the structure arrange | positioned on a fuel accommodating part is proposed.
 また、DMFCの燃料電池セルと燃料収容部とを流路を介して接続する構成のものも特許文献2~4に開示されている。これら特許文献2~4は、燃料収容部から供給された液体燃料を燃料電池セルに流路を介して供給することによって、流路の形状や径等に基づいて液体燃料の供給量を調整可能としている。特に、特許文献3では、燃料収容部から流路にポンプで液体燃料を供給している。また、特許文献3では、ポンプに代えて、流路に電気浸透流を形成する電界形成部を用いることも記載されている。さらに、特許文献4には電気浸透流ポンプを用いて液体燃料等を供給することが記載されている。 Also, Patent Documents 2 to 4 disclose a configuration in which a DMFC fuel cell and a fuel storage portion are connected via a flow path. In these Patent Documents 2 to 4, the amount of liquid fuel supplied can be adjusted based on the shape and diameter of the flow path by supplying the liquid fuel supplied from the fuel storage unit to the fuel cell via the flow path. It is said. In particular, in Patent Document 3, liquid fuel is supplied from a fuel storage portion to a flow path by a pump. Patent Document 3 also describes that an electric field forming unit that forms an electroosmotic flow in the flow path is used instead of the pump. Furthermore, Patent Document 4 describes that liquid fuel or the like is supplied using an electroosmotic flow pump.
国際公開第2005/112172号パンフレットInternational Publication No. 2005/112172 Pamphlet 特表2005-518646号公報JP 2005-518646 A 特開2006-085952号公報JP 2006-089552 A 米国特許公開第2006/0029851号公報US Patent Publication No. 2006/0029851 特開2006-049175号公報JP 2006-049175 A 特開2006-114486号公報JP 2006-114486 A
 ところで、このようなDMFCを主発電部とした燃料電池システムは、電子機器の内部電源である二次電池を外部より充電するための充電装置として用いられることがある。 Incidentally, such a fuel cell system using the DMFC as a main power generation unit may be used as a charging device for charging a secondary battery, which is an internal power source of an electronic device, from the outside.
 このような充電装置は、内部電源として蓄電素子、例えば二次電池が設けられ、DMFCの発電出力により二次電池を充電するとともに、かかる二次電池より装置内部の電子回路に電源を供給可能にしている。 Such a charging device is provided with a storage element, for example, a secondary battery as an internal power source, and charges the secondary battery by the power generation output of the DMFC, and also enables power supply from the secondary battery to the electronic circuit inside the device. ing.
 燃料電池システムにおいては、DMFCの発電出力を有効に利用することが重要である。そこで、従来、特許文献5に開示されるように燃料電池の出力電力が負荷電力より大きく余剰電力が生じている場合は充電モードに設定して二次電池を充電し、逆に燃料電池の出力電力が負荷電力より小さい場合は、放電モードに設定して二次電池より負荷に対して出力を供給するようにしている。また、特許文献6に開示されるように燃料電池への燃料供給が負荷の電力要求を上回る場合、燃料電池による電気エネルギーを蓄電要素に充電し、燃料電池が発電を行わない場合は蓄電要素より負荷に対して出力を供給するようにしたシステムが知られている。 In the fuel cell system, it is important to use the power generation output of DMFC effectively. Therefore, conventionally, as disclosed in Patent Document 5, when the output power of the fuel cell is larger than the load power and surplus power is generated, the secondary battery is charged by setting the charging mode, and conversely the output of the fuel cell When the electric power is smaller than the load electric power, the discharge mode is set to supply the output from the secondary battery to the load. In addition, as disclosed in Patent Document 6, when the fuel supply to the fuel cell exceeds the power requirement of the load, electric energy from the fuel cell is charged into the power storage element, and when the fuel cell does not generate power, the power storage element A system is known in which an output is supplied to a load.
 ところが、これら特許文献5、6の方法を採用したものは、いずれも燃料電池の出力電力が負荷の電力要求を上回る場合にのみ燃料電池により二次電池の充電を行うようにしている。このため、例えば負荷の電力要求が大きな状態で長い時間を使用し続け、二次電池の充電が十分に行われないことがあると電池残量が極端に少なくなることがあり、この状態では、二次電池より装置内部の電子回路に対し十分な電力を供給できない状況が生じ、装置自身の動作が不安定になるという問題を生じる。 However, those employing the methods of Patent Documents 5 and 6 both charge the secondary battery by the fuel cell only when the output power of the fuel cell exceeds the power requirement of the load. For this reason, for example, if the power demand of the load is large and the battery is used for a long time and the secondary battery may not be sufficiently charged, the remaining battery level may be extremely low. There arises a situation in which sufficient power cannot be supplied from the secondary battery to the electronic circuit inside the device, and the operation of the device itself becomes unstable.
 この発明の目的は、内部電源の蓄電素子の充電を安定して行うことができ、常に安定した動作を得られる燃料電池システム及び充電装置を提供することにある。 An object of the present invention is to provide a fuel cell system and a charging device that can stably charge a storage element of an internal power source and can always obtain a stable operation.
 第1の発明によれば、
 燃料供給により電力を発電するとともに、発電出力を負荷に供給する燃料電池本体と、
 前記燃料電池本体の発電出力により充電される、内部電源として用いられる蓄電素子と、
 前記負荷が前記燃料電池本体に対して要求する出力を検出する負荷要求検出部と、
 前記負荷要求検出部により検出される要求出力の大きさに応じて前記蓄電素子に対する充電状態を選択する充電状態選択部と、
 前記充電状態選択部により選択された充電状態に応じて前記燃料電池本体の発電出力のうち所定の発電出力を前記蓄電素子の充電出力として供給する制御部と、
 を具備する燃料電池システムが提供される。
According to the first invention,
A fuel cell main body that generates electric power by supplying fuel and supplies power generation output to a load;
A power storage element used as an internal power source, which is charged by the power generation output of the fuel cell body,
A load request detector for detecting an output required by the load to the fuel cell body;
A charge state selection unit that selects a charge state for the power storage element according to the magnitude of the required output detected by the load request detection unit;
A control unit that supplies a predetermined power generation output as a charging output of the power storage element among the power generation outputs of the fuel cell main body according to the charging state selected by the charging state selection unit;
A fuel cell system is provided.
 第2の発明によれば、第1の発明の燃料電池システムにおいて、
 前記燃料電池本体の発電出力より前記負荷に供給される出力を生成する出力調整部をさらに有し、前記負荷要求検出部は、前記出力調整部の出力電流を負荷が要求する要求出力として検出する燃料電池システムが提供される。
According to the second invention, in the fuel cell system of the first invention,
An output adjustment unit that generates an output supplied to the load from a power generation output of the fuel cell main body, and the load request detection unit detects an output current of the output adjustment unit as a request output requested by the load. A fuel cell system is provided.
 第3の発明によれば、第1の発明の燃料電池システムにおいて、
 前記充電状態選択部は、前記負荷要求検出部により検出される要求出力の大きさに応じて前記燃料電池本体の発電出力のうち前記蓄電素子に供給する発電出力の割合を前記蓄電素子に対する充電状態として選択する燃料電池システムが提供される。
According to the third invention, in the fuel cell system of the first invention,
The charge state selection unit is configured to determine a ratio of the power generation output supplied to the power storage element in the power generation output of the fuel cell main body according to the magnitude of the required output detected by the load request detection unit. A fuel cell system is provided.
 第4の発明によれば、第3の発明の燃料電池システムにおいて、
 前記制御部は、前記充電状態選択部で選択された充電状態に応じて前記燃料電池本体の発電出力の全てを前記蓄電素子の充電出力として供給可能にする燃料電池システムが提供される。
According to a fourth invention, in the fuel cell system of the third invention,
There is provided a fuel cell system in which the control unit can supply all of the power generation output of the fuel cell main body as the charge output of the power storage element according to the charge state selected by the charge state selection unit.
 第5の発明によれば、第1乃至4の発明に係る燃料電池システムを適用した充電装置燃料電池システムが提供される。 According to the fifth invention, there is provided a charging device fuel cell system to which the fuel cell system according to the first to fourth inventions is applied.
 本発明によれば、内部電源の蓄電素子の充電を安定して行うことができ常に安定した動作を得られる燃料電池システム及び充電装置を提供できる。 According to the present invention, it is possible to provide a fuel cell system and a charging device that can stably charge the storage element of the internal power supply and can always obtain a stable operation.
図1は、本発明の第1の実施の形態にかかる燃料電池システムの構成を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing the configuration of the fuel cell system according to the first embodiment of the present invention. 図2は、図1に示される燃料電池本体の構造を拡大して概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an enlarged structure of the fuel cell main body shown in FIG. 図3は、図2に示す燃料電池本体に用いられる燃料分配機構を概略的に示す斜視図である。3 is a perspective view schematically showing a fuel distribution mechanism used in the fuel cell main body shown in FIG. 図4は、図1に示される充電制御回路を概略的に示すブロック図である。FIG. 4 is a block diagram schematically showing the charge control circuit shown in FIG. 図5は、図1に示される燃料電池システムにおける各部の動作を示す波形図である。FIG. 5 is a waveform diagram showing the operation of each part in the fuel cell system shown in FIG.
 以下、図面を参照して本発明の実施の形態に係る燃料電池システムを説明する。 Hereinafter, a fuel cell system according to an embodiment of the present invention will be described with reference to the drawings.
(第1の実施の形態)
 図1は、本発明の第1の実施の形態にかかる充電装置に適用される燃料電池システムの概略構成を示している。
(First embodiment)
FIG. 1 shows a schematic configuration of a fuel cell system applied to the charging apparatus according to the first embodiment of the present invention.
 図1において、1は燃料電池本体(DMFC)で、この燃料電池本体1は、起電部を構成する燃料電池発電部(セル)101、液体燃料を収容する燃料収容部102、燃料収容部102と燃料電池発電部(セル)101を接続する流路103及び燃料収容部102から燃料電池発電部(セル)101に液体燃料を移送するための燃料供給制御部としてのポンプ104を有している。 In FIG. 1, reference numeral 1 denotes a fuel cell main body (DMFC). The fuel cell main body 1 includes a fuel cell power generation unit (cell) 101 that constitutes an electromotive unit, a fuel storage unit 102 that stores liquid fuel, and a fuel storage unit 102. And a flow path 103 connecting the fuel cell power generation unit (cell) 101 and a pump 104 as a fuel supply control unit for transferring liquid fuel from the fuel storage unit 102 to the fuel cell power generation unit (cell) 101. .
 図2は、このような燃料電池本体1をさらに詳細に説明するための断面図である。 FIG. 2 is a cross-sectional view for explaining the fuel cell main body 1 in more detail.
 図2に示すように、燃料電池発電部101は、アノード触媒層11とアノードガス拡散層12とを有するアノード(燃料極)13と、カソード触媒層14とカソードガス拡散層15とを有するカソード(空気極/酸化剤極)16と、アノード触媒層11とカソード触媒層14とで挟持されたプロトン(水素イオン)伝導性の電解質膜17とから構成される膜電極接合体(MEA: Membrane Electrode Assembly)を有している。
 ここで、アノード触媒層11やカソード触媒層14に含有される触媒としては、例えばPt、Ru、Rh、Ir、Os、Pd等の白金族元素の単体、白金族元素を含有する合金等が挙げられる。アノード触媒層11にはメタノールや一酸化炭素等に対して強い耐性を有するPt-RuやPt-Mo等を用いることが好ましい。カソード触媒層14にはPtやPt-Ni等を用いることが好ましい。ただし、触媒はこれらに限定されるものではなく、触媒活性を有する各種の物質を使用することができる。触媒は炭素材料のような導電性担持体を使用した担持触媒、あるいは無担持触媒のいずれであっても良い。
As shown in FIG. 2, the fuel cell power generation unit 101 includes an anode (fuel electrode) 13 having an anode catalyst layer 11 and an anode gas diffusion layer 12, and a cathode (cathode catalyst layer 14 and cathode gas diffusion layer 15). Membrane Electrode Assembly (MEA) composed of an air electrode / oxidizer electrode) 16 and a proton (hydrogen ion) conductive electrolyte membrane 17 sandwiched between the anode catalyst layer 11 and the cathode catalyst layer 14 )have.
Here, examples of the catalyst contained in the anode catalyst layer 11 and the cathode catalyst layer 14 include a simple substance of a platinum group element such as Pt, Ru, Rh, Ir, Os, and Pd, an alloy containing the platinum group element, and the like. It is done. The anode catalyst layer 11 is preferably made of Pt—Ru, Pt—Mo, or the like that has strong resistance to methanol, carbon monoxide, or the like. Pt, Pt—Ni or the like is preferably used for the cathode catalyst layer 14. However, the catalyst is not limited to these, and various substances having catalytic activity can be used. The catalyst may be either a supported catalyst using a conductive support such as a carbon material or an unsupported catalyst.
 電解質膜17を構成するプロトン伝導性材料としては、例えばスルホン酸基を有するパーフルオロスルホン酸重合体のようなフッ素系樹脂(ナフィオン(商品名、デュポン社製)やフレミオン(商品名、旭硝子社製)等)、スルホン酸基を有する炭化水素系樹脂等の有機系材料、あるいはタングステン酸やリンタングステン酸等の無機系材料が挙げられる。ただし、プロトン伝導性の電解質膜17はこれらに限られるものではない。 Examples of the proton conductive material constituting the electrolyte membrane 17 include fluorine-based resins (Nafion (trade name, manufactured by DuPont) and Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) such as a perfluorosulfonic acid polymer having a sulfonic acid group. Etc.), organic materials such as hydrocarbon resins having sulfonic acid groups, or inorganic materials such as tungstic acid and phosphotungstic acid. However, the proton conductive electrolyte membrane 17 is not limited to these.
 アノード触媒層11に積層されるアノードガス拡散層12は、アノード触媒層11に燃料を均一に供給する役割を果たすと同時に、アノード触媒層11の集電体も兼ねている。カソード触媒層14に積層されるカソードガス拡散層15は、カソード触媒層14に酸化剤を均一に供給する役割を果たすと同時に、カソード触媒層14の集電体も兼ねている。アノードガス拡散層12およびカソードガス拡散層15は多孔質基材で構成されている。 The anode gas diffusion layer 12 laminated on the anode catalyst layer 11 serves to uniformly supply fuel to the anode catalyst layer 11 and also serves as a current collector for the anode catalyst layer 11. The cathode gas diffusion layer 15 laminated on the cathode catalyst layer 14 serves to uniformly supply the oxidant to the cathode catalyst layer 14 and also serves as a current collector for the cathode catalyst layer 14. The anode gas diffusion layer 12 and the cathode gas diffusion layer 15 are made of a porous substrate.
 アノードガス拡散層12やカソードガス拡散層15には、必要に応じて導電層が積層される。これら導電層としては、例えばAu、Niのような導電性金属材料からなる多孔質層(例えば、メッシュ)、多孔質膜、箔体あるいはステンレス鋼(SUS)などの導電性金属材料に金などの良導電性金属を被覆した複合材等が用いられる。電解質膜17と後述する燃料分配機構105およびカバープレート18との間には、それぞれゴム製のOリング19が介在されている。このOリング19によって燃料電池発電部101からの燃料漏れや酸化剤漏れが防止される。 A conductive layer is laminated on the anode gas diffusion layer 12 and the cathode gas diffusion layer 15 as necessary. As these conductive layers, for example, a porous layer (for example, mesh) made of a conductive metal material such as Au or Ni, a porous film, a foil body, a conductive metal material such as stainless steel (SUS), gold or the like. A composite material coated with a highly conductive metal is used. A rubber O-ring 19 is interposed between the electrolyte membrane 17 and a fuel distribution mechanism 105 and a cover plate 18 described later. This O-ring 19 prevents fuel leakage and oxidant leakage from the fuel cell power generation unit 101.
 カバープレート18は酸化剤である空気を取入れるための開口(図示せず)を有している。カバープレート18とカソード16との間には、必要に応じて保湿層や表面層が配置される。保湿層はカソード触媒層14で生成された水の一部が含浸されて、水の蒸散を抑制すると共に、カソード触媒層14への空気の均一拡散を促進するものである。表面層は空気の取入れ量を調整するものであり、空気の取入れ量に応じて個数や大きさ等が調整された複数の空気導入口を有している。 The cover plate 18 has an opening (not shown) for taking in air as an oxidizing agent. A moisture retaining layer and a surface layer are disposed between the cover plate 18 and the cathode 16 as necessary. The moisturizing layer is impregnated with a part of the water generated in the cathode catalyst layer 14 to suppress the transpiration of water and promote uniform diffusion of air to the cathode catalyst layer 14. The surface layer adjusts the amount of air taken in, and has a plurality of air inlets whose number, size, etc. are adjusted according to the amount of air taken in.
 燃料電池発電部101のアノード(燃料極)13側には、燃料分配機構105が配置されている。燃料分配機構105には配管のような液体燃料の流路103を介して燃料収容部102が接続されている。 A fuel distribution mechanism 105 is disposed on the anode (fuel electrode) 13 side of the fuel cell power generation unit 101. A fuel storage unit 102 is connected to the fuel distribution mechanism 105 via a liquid fuel flow path 103 such as a pipe.
 燃料収容部102には、燃料電池発電部101に対応した液体燃料が収容されている。液体燃料としては、各種濃度のメタノール水溶液や純メタノール等のメタノール燃料が挙げられる。液体燃料は必ずしもメタノール燃料に限られるものではない。液体燃料は、例えばエタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、その他の液体燃料であっても良い。いずれにしても、燃料収容部102には燃料電池発電部101に応じた液体燃料が収容される。 The fuel storage unit 102 stores liquid fuel corresponding to the fuel cell power generation unit 101. Examples of the liquid fuel include methanol fuels such as aqueous methanol solutions of various concentrations and pure methanol. The liquid fuel is not necessarily limited to methanol fuel. The liquid fuel may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel. In any case, liquid fuel corresponding to the fuel cell power generation unit 101 is stored in the fuel storage unit 102.
 燃料分配機構105には、燃料収容部102から流路103を介して燃料が導入される。流路103は、燃料分配機構105や燃料収容部102と独立した配管に限られるものではない。例えば、燃料分配機構105と燃料収容部102とを積層して一体化する場合、これらを繋ぐ燃料の流路であっても良い。燃料分配機構105は流路103を介して燃料収容部102と接続されていれば良い。 Fuel is introduced into the fuel distribution mechanism 105 from the fuel storage unit 102 via the flow path 103. The flow path 103 is not limited to piping independent of the fuel distribution mechanism 105 and the fuel storage unit 102. For example, when the fuel distribution mechanism 105 and the fuel storage unit 102 are stacked and integrated, a fuel flow path connecting them may be used. The fuel distribution mechanism 105 only needs to be connected to the fuel storage unit 102 via the flow path 103.
 ここで、燃料分配機構105は、図3に示すように、燃料が流路103を介して流入する少なくとも1個の燃料注入口21と、燃料やその気化成分を排出する複数個の燃料排出口22とを有する燃料分配板23を備えている。燃料分配板23の内部には、図2に示すように、燃料注入口21から導かれた燃料の通路となる空隙部24が設けられている。複数の燃料排出口22は、燃料通路として機能する空隙部24にそれぞれ直接接続されている。 Here, as shown in FIG. 3, the fuel distribution mechanism 105 includes at least one fuel inlet 21 through which fuel flows in via the flow path 103, and a plurality of fuel outlets for discharging the fuel and its vaporized components. And a fuel distribution plate 23 having 22. Inside the fuel distribution plate 23, as shown in FIG. 2, a gap portion 24 is provided that serves as a fuel passage led from the fuel injection port 21. The plurality of fuel discharge ports 22 are directly connected to gaps 24 that function as fuel passages.
 燃料注入口21から燃料分配機構105に導入された燃料は、空隙部24に入り、この燃料通路として機能する空隙部24を介して複数の燃料排出口22にそれぞれ導かれる。複数の燃料排出口22には、例えば燃料の気化成分のみを透過し、液体成分は透過させない気液分離体(図示せず)を配置しても良い。これによって、燃料電池発電部101のアノード(燃料極)13には燃料の気化成分が供給される。なお、気液分離体は燃料分配機構105とアノード13との間に気液分離膜等として設置しても良い。燃料の気化成分は複数の燃料排出口22からアノード13の複数個所に向けて排出される。 The fuel introduced from the fuel injection port 21 into the fuel distribution mechanism 105 enters the gap 24 and is guided to the plurality of fuel discharge ports 22 through the gap 24 that functions as the fuel passage. For example, a gas-liquid separator (not shown) that transmits only the vaporized component of the fuel and does not transmit the liquid component may be disposed in the plurality of fuel discharge ports 22. As a result, the fuel vaporization component is supplied to the anode (fuel electrode) 13 of the fuel cell power generation unit 101. The gas-liquid separator may be installed as a gas-liquid separation membrane or the like between the fuel distribution mechanism 105 and the anode 13. The vaporized component of the fuel is discharged from a plurality of fuel discharge ports 22 toward a plurality of locations on the anode 13.
 燃料排出口22は燃料電池発電部101の全体に燃料を供給することが可能なように、燃料分配板23のアノード13と接する面に複数設けられている。燃料排出口22の個数は2個以上であればよいが、燃料電池発電部101の面内における燃料供給量を均一化する上で、0.1~10個/cm2の燃料排出口22が存在するように形成することが好ましい。 A plurality of fuel discharge ports 22 are provided on the surface of the fuel distribution plate 23 in contact with the anode 13 so that fuel can be supplied to the entire fuel cell power generation unit 101. The number of the fuel discharge ports 22 may be two or more. However, in order to equalize the fuel supply amount in the plane of the fuel cell power generation unit 101, the fuel discharge ports 22 of 0.1 to 10 / cm 2 are provided. It is preferable to form it so that it exists.
 燃料分配機構105と燃料収容部102の間を接続する流路103には、燃料移送制御部としてのポンプ104が挿入されている。このポンプ104は燃料を循環される循環ポンプではなく、あくまでも燃料収容部102から燃料分配機構105に燃料を移送する燃料供給ポンプである。このようなポンプ104で必要時に燃料を送液することによって、燃料供給量の制御性を高めるものである。この場合、ポンプ104としては、少量の燃料を制御性よく送液することができ、さらに小型軽量化が可能という観点から、ロータリーベーンポンプ、電気浸透流ポンプ、ダイアフラムポンプ、しごきポンプ等を使用することが好ましい。ロータリーベーンポンプはモータで羽を回転させて送液するものである。電気浸透流ポンプは電気浸透流現象を起こすシリカ等の焼結多孔体を用いたものである。ダイアフラムポンプは電磁石や圧電セラミックスによりダイアフラムを駆動して送液するものである。しごきポンプは、柔軟性を有する燃料流路の一部を圧迫し、燃料をしごき送るものである。これらのうち、駆動電力や大きさ等の観点から、電気浸透流ポンプや圧電セラミックスを有するダイアフラムポンプを使用することがより好ましい。 A pump 104 as a fuel transfer control unit is inserted into a flow path 103 that connects between the fuel distribution mechanism 105 and the fuel storage unit 102. The pump 104 is not a circulation pump through which fuel is circulated, but is a fuel supply pump that transfers fuel from the fuel storage unit 102 to the fuel distribution mechanism 105 to the last. By supplying the fuel when necessary with such a pump 104, the controllability of the fuel supply amount is improved. In this case, a rotary vane pump, an electroosmotic pump, a diaphragm pump, a squeezing pump, etc. should be used as the pump 104 from the viewpoint that a small amount of fuel can be sent with good controllability and can be reduced in size and weight. Is preferred. A rotary vane pump feeds liquid by rotating a wing with a motor. The electroosmotic flow pump uses a sintered porous material such as silica that causes an electroosmotic flow phenomenon. The diaphragm pump is a pump that feeds liquid by driving the diaphragm with an electromagnet or piezoelectric ceramics. The squeezing pump presses a part of a flexible fuel flow path and squeezes the fuel. Among these, it is more preferable to use an electroosmotic pump or a diaphragm pump having piezoelectric ceramics from the viewpoint of driving power, size, and the like.
 また、ポンプ104には、後述する燃料供給制御回路9が接続され、ポンプ104の駆動が制御される。この点については後述する。 Further, a fuel supply control circuit 9 to be described later is connected to the pump 104, and the drive of the pump 104 is controlled. This point will be described later.
 このような構成において、燃料収容部102に収容された燃料は、ポンプ104により流路103を移送され、燃料分配機構105に供給される。そして、燃料分配機構105から放出された燃料は、燃料電池発電部101のアノード(燃料極)13に供給される。燃料電池発電部101内において、燃料はアノードガス拡散層12を拡散してアノード触媒層11に供給される。燃料としてメタノール燃料を用いた場合、アノード触媒層11で下記の(1)式に示すメタノールの内部改質反応が生じる。なお、メタノール燃料として純メタノールを使用した場合には、カソード触媒層14で生成した水や電解質膜17中の水をメタノールと反応させて(1)式の内部改質反応を生起させる。あるいは、水を必要としない他の反応機構により内部改質反応を生じさせる。 In such a configuration, the fuel stored in the fuel storage unit 102 is transferred through the flow path 103 by the pump 104 and supplied to the fuel distribution mechanism 105. The fuel released from the fuel distribution mechanism 105 is supplied to the anode (fuel electrode) 13 of the fuel cell power generation unit 101. In the fuel cell power generation unit 101, the fuel diffuses through the anode gas diffusion layer 12 and is supplied to the anode catalyst layer 11. When methanol fuel is used as the fuel, an internal reforming reaction of methanol shown in the following formula (1) occurs in the anode catalyst layer 11. When pure methanol is used as the methanol fuel, the water generated in the cathode catalyst layer 14 or the water in the electrolyte membrane 17 is reacted with methanol to cause the internal reforming reaction of the formula (1). Alternatively, the internal reforming reaction is caused by another reaction mechanism that does not require water.
  CH3OH+H2O → CO2+6H++6e- …(1)
 この反応で生成した電子(e-)は集電体を経由して外部に導かれ、いわゆる出力として負荷側に供給された後、カソード(空気極)16に導かれる。また、(1)式の内部改質反応で生成したプロトン(H+)は電解質膜17を経てカソード16に導かれる。カソード16には酸化剤として空気が供給される。カソード16に到達した電子(e-)とプロトン(H+)は、カソード触媒層14で空気中の酸素と下記の(2)式にしたがって反応し、この反応に伴って水が生成される。
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (1)
Electrons (e ) generated by this reaction are guided to the outside via a current collector, supplied to the load side as so-called output, and then guided to the cathode (air electrode) 16. Further, protons (H + ) generated by the internal reforming reaction of the formula (1) are guided to the cathode 16 through the electrolyte membrane 17. Air is supplied to the cathode 16 as an oxidant. Electrons (e ) and protons (H + ) reaching the cathode 16 react with oxygen in the air in accordance with the following equation (2) in the cathode catalyst layer 14, and water is generated with this reaction.
  6e-+6H++(3/2)O2 → 3H2O …(2)
 図1に戻って、このように構成された燃料電池本体1には、出力調整部としてのDC-DCコンバータ(電圧調整回路)2、充電制御回路3及び出力検出部4が接続されている。
6e + 6H + + (3/2) O 2 → 3H 2 O (2)
Returning to FIG. 1, the fuel cell main body 1 configured as described above is connected to a DC-DC converter (voltage adjustment circuit) 2, a charge control circuit 3, and an output detection unit 4 as an output adjustment unit.
 DC-DCコンバータ2は、不図示のスイッチング要素とエネルギー蓄積要素を有し、これらスイッチング要素とエネルギー蓄積要素により燃料電池本体1で発電された電気エネルギーを蓄積/放出させ、燃料電池本体1からの比較的低い出力電圧を十分の電圧まで昇圧して生成される出力を発生する。ここでは標準的な昇圧型のDC-DCコンバータ2を示したが、昇圧動作が可能なものならば、他の回路方式のものでも実施可能である。 The DC-DC converter 2 includes a switching element and an energy storage element (not shown). The DC-DC converter 2 stores / discharges the electric energy generated by the fuel cell body 1 by the switching element and the energy storage element, An output generated by boosting a relatively low output voltage to a sufficient voltage is generated. Although the standard boost type DC-DC converter 2 is shown here, other circuit systems can be used as long as the boost operation is possible.
 充電制御回路3には、蓄電素子として充放電可能な二次電池、例えばリチウムイオン充電池(以下、LIBと称する)5が接続されている。充電制御回路3については後述する。 The charge control circuit 3 is connected to a chargeable / dischargeable secondary battery such as a lithium ion rechargeable battery (hereinafter referred to as LIB) 5 as a power storage element. The charge control circuit 3 will be described later.
 LIB5は、燃料電池システム内部の各電子回路の電源として用いられるもので、充電制御回路3により充電状態が制御される。なお、蓄電素子としては、LIB5に代えて電気二重層コンデンサを用いることもできる。 The LIB 5 is used as a power source for each electronic circuit in the fuel cell system, and the charge state is controlled by the charge control circuit 3. Note that an electric double layer capacitor can be used instead of LIB 5 as the power storage element.
 出力検出部4は、燃料電池本体1で発電される電力の状態を検出するもので、ここでは、燃料電池本体1の出力の出力電圧(又は出力電流)を検出し、この検出結果を燃料電池本体1の発電出力として制御部8に出力する。 The output detection unit 4 detects the state of the electric power generated by the fuel cell main body 1. Here, the output detection unit 4 detects the output voltage (or output current) of the output of the fuel cell main body 1, and uses this detection result as the fuel cell. The generated power output from the main body 1 is output to the control unit 8.
 DC-DCコンバータ2には、負荷要求検出部6及び負荷としての電子機器7が接続されている。電子機器7は、電子機器本体71、充電回路72及び蓄電素子としてのLIB73を有するもので、DC-DCコンバータ2からの出力によりLIB73を充電可能にしている。LIB73は、電子機器本体71の電源として用いられるもので、燃料電池システムのDC-DCコンバータ2が電子機器7に接続された状態で、充電回路72により充電される。負荷要求検出部6は、電子機器7が燃料電池本体1に対して要求する出力を検出するもので、ここでは、DC-DCコンバータ2の出力電流を電子機器7が要求する出力として検出し、この要求を制御部8に出力する。つまり、DC-DCコンバータ2の出力電流は、LIB73の充電残量により変化するものであり、このことからLIB73の充電残量により変化するDC-DCコンバータ2の出力電流を負荷が要求する要求出力として検出する。 The load request detector 6 and an electronic device 7 as a load are connected to the DC-DC converter 2. The electronic device 7 includes an electronic device main body 71, a charging circuit 72, and a LIB 73 as a power storage element, and the LIB 73 can be charged by an output from the DC-DC converter 2. The LIB 73 is used as a power source of the electronic device main body 71 and is charged by the charging circuit 72 in a state where the DC-DC converter 2 of the fuel cell system is connected to the electronic device 7. The load request detection unit 6 detects an output requested by the electronic device 7 to the fuel cell main body 1. Here, the load request detection unit 6 detects an output current of the DC-DC converter 2 as an output requested by the electronic device 7, This request is output to the control unit 8. In other words, the output current of the DC-DC converter 2 varies depending on the remaining charge of the LIB 73, and from this, the load requires the output current of the DC-DC converter 2 that varies depending on the remaining charge of the LIB 73. Detect as.
 一方、LIB5には、燃料電池システム内部の電子回路として燃料供給制御回路9の他、不図示の他の電子回路などが接続され、これら電子回路の電源として用いられる。燃料供給制御回路9は、ポンプ104の動作を制御するもので、制御部8の指示に基づいてポンプ104をオン/オフ制御する。 On the other hand, the LIB 5 is connected to a fuel supply control circuit 9 as an electronic circuit inside the fuel cell system and other electronic circuits (not shown), and is used as a power source for these electronic circuits. The fuel supply control circuit 9 controls the operation of the pump 104 and controls the pump 104 on / off based on an instruction from the control unit 8.
 制御部8は、システム全体を制御するもので、充電状態選択部81を有している。充電状態選択部81は、出力検出部4より検出される発電出力と負荷要求検出部6により検出される要求出力に基づいてLIB5に対する充電状態を選択し、この選択結果に基づいて充電制御回路3を制御する。この場合、充電状態選択部81は、出力検出部4より検出される燃料電池本体1の発電出力が十分であることを条件に、例えば、(a)負荷要求検出部6により検出される電子機器7が要求する出力が最大(LIB73に供給されるDC-DCコンバータ2の出力電流が最大)のとき、LIB5への充電出力の供給を停止して燃料電池本体1の発電出力の全てをLIB73の充電のため供給することを選択する。(b)電子機器7のLIB73の充電が進み、負荷要求検出部6により検出される要求出力が最大時より例えば20%減少すると、燃料電池本体1の発電出力うちの、20%をLIB5の充電出力として供給することを選択する。(c)負荷要求検出部6により検出される要求出力がさらに減少し、要求出力の最大時より例えば50%減少すると、燃料電池本体1の発電出力の50%をLIB5の充電出力として供給することを選択する。そして、(d)電子機器7のLIB73が満充電状態になって負荷要求検出部6により検出される電子機器7の要求出力が略ゼロになったとき、燃料電池本体1の発電出力の全て(100%)をLIB5の充電出力として供給することを選択する。ようになっている。 The control unit 8 controls the entire system and has a charge state selection unit 81. The charge state selection unit 81 selects a charge state for the LIB 5 based on the power generation output detected by the output detection unit 4 and the request output detected by the load request detection unit 6, and the charge control circuit 3 based on the selection result. To control. In this case, the charging state selection unit 81 is, for example, (a) an electronic device detected by the load request detection unit 6 on the condition that the power generation output of the fuel cell main body 1 detected by the output detection unit 4 is sufficient. When the output required by 7 is the maximum (the output current of the DC-DC converter 2 supplied to the LIB 73 is the maximum), the supply of the charging output to the LIB 5 is stopped and all of the power generation output of the fuel cell body 1 is transferred to the LIB 73. Choose to supply for charging. (B) When the charging of the LIB 73 of the electronic device 7 proceeds and the required output detected by the load request detecting unit 6 is reduced by, for example, 20% from the maximum, 20% of the power generation output of the fuel cell body 1 is charged to the LIB 5 Choose to supply as output. (C) When the demand output detected by the load demand detection unit 6 further decreases and decreases by, for example, 50% from the maximum demand output, 50% of the power generation output of the fuel cell body 1 is supplied as the charging output of the LIB 5 Select. (D) When the LIB 73 of the electronic device 7 is in a fully charged state and the required output of the electronic device 7 detected by the load request detection unit 6 becomes substantially zero, all of the power generation output of the fuel cell body 1 ( 100%) is selected to be supplied as the charging output of LIB5. It is like that.
 図4は、充電制御回路3を詳細に説明するためのもので、図1と同一部分には同符号を付している。 FIG. 4 is for explaining the charge control circuit 3 in detail, and the same parts as those in FIG.
 図4において、100は充電装置としての燃料電池システムを示している。この燃料電池システム100には、上述した燃料電池本体1、DC-DCコンバータ2、充電制御回路3及び制御部8が設けられている。また、燃料電池システム100には、出力端子111及びDC端子112が設けられている。そして、出力端子111には、電子機器7が接続され、DC端子112には、ACアダプタ10が接続可能になっている。ここで、ACアダプタ10は、不図示のAC電源(例えば商用電源)より直流電力を生成するもので、この直流電力により後述する充電用IC303を介してLIB5の充電を可能にしている。 In FIG. 4, reference numeral 100 denotes a fuel cell system as a charging device. The fuel cell system 100 is provided with the fuel cell main body 1, the DC-DC converter 2, the charge control circuit 3, and the control unit 8 described above. The fuel cell system 100 is provided with an output terminal 111 and a DC terminal 112. The electronic device 7 is connected to the output terminal 111, and the AC adapter 10 can be connected to the DC terminal 112. Here, the AC adapter 10 generates DC power from an AC power source (not shown) (for example, commercial power source), and the LIB 5 can be charged by the DC power via a charging IC 303 described later.
 充電制御回路3は、入力端子301、充電端子302、充電用IC303を有している。入力端子301には、燃料電池本体1が接続され、充電端子302には、LIB5が接続されている。充電用IC303は、制御部8の充電状態選択部81の指示に基づいてLIB5に対する充電を制御するもので、入力端子INに上述した入力端子301、DC端子102及びDC-DCコンバータ2が接続され、出力端子OUTに充電端子302が接続されている。また、充電用IC303の制御端子CONTには、電流制御回路304が接続されている。電流制御回路304は、抵抗R0、抵抗R1と電界効果トランジスタからなるスイッチング素子Q1の直列回路、抵抗R2と電界効果トランジスタからなるスイッチング素子Q2の直列回路を並列接続した構成をしており、これら抵抗R0、R1、R2の組合せにより充電用IC303によるLIB5への充電電流を制御する。この場合、充電状態選択部81より上述した(a)が選択されると、充電用IC303は、LIB5に対する充電電流をシャットダウンする。また、上述した(b)が選択されると、電流制御回路304のスイッチング素子Q1、Q2がオフされ、充電用IC303は、電流制御回路304の抵抗R0により、燃料電池本体1の発電出力の20%をLIB5の充電電流として供給する。さらに、上述した(c)が選択されると、電流制御回路304のスイッチング素子Q1のみがオンされ、充電用IC303は、電流制御回路304の抵抗R0とR1の組合せにより、燃料電池本体1の発電出力の50%をLIB5の充電電流として供給する。さらに、上述した(d)が選択されると、電流制御回路304のスイッチング素子Q2のみがオンされ、充電用IC303は、電流制御回路304の抵抗R0とR2の組合せにより燃料電池本体1の発電出力の全て(100%)をLIB5の充電電流として供給する。 The charging control circuit 3 has an input terminal 301, a charging terminal 302, and a charging IC 303. The fuel cell body 1 is connected to the input terminal 301, and the LIB 5 is connected to the charging terminal 302. The charging IC 303 controls charging of the LIB 5 based on an instruction from the charging state selection unit 81 of the control unit 8, and the input terminal 301, the DC terminal 102, and the DC-DC converter 2 are connected to the input terminal IN. The charging terminal 302 is connected to the output terminal OUT. A current control circuit 304 is connected to the control terminal CONT of the charging IC 303. The current control circuit 304 has a configuration in which a resistor R0, a series circuit of a switching element Q1 made of a resistor R1 and a field effect transistor, and a series circuit of a resistor R2 and a switching element Q2 made of a field effect transistor are connected in parallel. The charging current to the LIB 5 by the charging IC 303 is controlled by the combination of R0, R1, and R2. In this case, when the above-described (a) is selected by the charging state selection unit 81, the charging IC 303 shuts down the charging current for the LIB 5. When (b) described above is selected, the switching elements Q1 and Q2 of the current control circuit 304 are turned off, and the charging IC 303 uses the resistance R0 of the current control circuit 304 to generate 20 of the power generation output of the fuel cell main body 1. % Is supplied as the charging current of LIB5. Further, when (c) described above is selected, only the switching element Q1 of the current control circuit 304 is turned on, and the charging IC 303 uses the combination of the resistors R0 and R1 of the current control circuit 304 to generate power from the fuel cell body 1. 50% of the output is supplied as LIB5 charging current. Further, when (d) described above is selected, only the switching element Q2 of the current control circuit 304 is turned on, and the charging IC 303 uses the combination of the resistors R0 and R2 of the current control circuit 304 to generate the power generation output of the fuel cell body 1. (100%) is supplied as a charging current for LIB5.
 次に、このように構成された実施の形態の作用を説明する。 Next, the operation of the embodiment configured as described above will be described.
 いま、燃料電池システムの起動指示により、燃料電池発電部101にポンプ104を介して燃料が供給されると、燃料電池発電部101で発電された出力がDC-DCコンバータ2で十分な電圧まで昇圧され、電子機器7に供給される。これにより、電子機器7では、DC-DCコンバータ2の出力電流により充電回路72を介してLIB73が充電される。LIB73は、電子機器本体71の電源として用いられる。 Now, when fuel is supplied to the fuel cell power generation unit 101 via the pump 104 according to the start instruction of the fuel cell system, the output generated by the fuel cell power generation unit 101 is boosted to a sufficient voltage by the DC-DC converter 2. And supplied to the electronic device 7. Thereby, in the electronic device 7, the LIB 73 is charged via the charging circuit 72 by the output current of the DC-DC converter 2. The LIB 73 is used as a power source for the electronic device main body 71.
 この状態で、出力検出部4により燃料電池本体1で発電される電力の状態が検出され、また、負荷要求検出部6により電子機器7の燃料電池本体1に対する要求出力が検出される。ここで、例えば、電子機器7の使用が頻繁で、電源のLIB73の消費が激しく充電回路72により常時充電が行われているような場合は、負荷要求検出部6より電子機器7側の要求出力最大が検出される。すると制御部8の充電状態選択部81は、出力検出部4より検出される燃料電池本体1の発電出力が十分であることを条件に、上述した(a)を選択する。すると、充電制御回路3の充電状態選択部81の指示(a)に応じて充電状態選択部81の指示(a)に応じてLIB5に対する充電電流をシャットダウンし、LIB5への充電電流の供給を停止する。これにより燃料電池本体1の発電出力の全てが電子機器7側に供給される。図5の期間Aは、この状態を示しており、図5(b)に示すように燃料電池本体1の発電出力の全てに相当するDC-DCコンバータ2の出力電流が電子機器7に供給され、図5(d)に示すようにLIB5に対する充電電流は全く流れない。なお、図5(a)は、DC-DCコンバータ2の出力電圧、図5(c)は、LIB5の充電電圧である。 In this state, the state of the electric power generated by the fuel cell main body 1 is detected by the output detection unit 4, and the required output for the fuel cell main body 1 of the electronic device 7 is detected by the load request detection unit 6. Here, for example, when the electronic device 7 is frequently used and the LIB 73 of the power source is consumed so much that the charging circuit 72 is constantly charging, the request output on the electronic device 7 side from the load request detecting unit 6 The maximum is detected. Then, the charge state selection unit 81 of the control unit 8 selects (a) described above on the condition that the power generation output of the fuel cell main body 1 detected by the output detection unit 4 is sufficient. Then, the charging current for the LIB 5 is shut down according to the instruction (a) of the charging state selection unit 81 in accordance with the instruction (a) of the charging state selection unit 81 of the charging control circuit 3, and the supply of the charging current to the LIB 5 is stopped. To do. Thereby, all of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7 side. The period A in FIG. 5 shows this state, and as shown in FIG. 5B, the output current of the DC-DC converter 2 corresponding to all of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7. As shown in FIG. 5D, the charging current for LIB 5 does not flow at all. 5A shows the output voltage of the DC-DC converter 2, and FIG. 5C shows the charging voltage of the LIB 5.
 なお、制御部8の充電状態選択部81は、出力検出部4より検出される燃料電池本体1の発電出力が十分でないと判断した場合は、その旨を表示などしてシステムが正常に動作できないことをユーザに報知する。 If the charging state selection unit 81 of the control unit 8 determines that the power generation output of the fuel cell main body 1 detected by the output detection unit 4 is not sufficient, the system cannot operate normally by displaying that fact. This is notified to the user.
 この状態から、電子機器7の使用が頻繁でなくなり、LIB73の充電が進んで負荷要求検出部6により検出される要求出力が最大時より、例えば20%減少すると、充電状態選択部81は、出力検出部4より検出される燃料電池本体1の発電出力が十分であることを条件に、上述した(b)を選択する。すると、このときの充電状態選択部81の指示(b)に応じて、電流制御回路304のスイッチング素子Q1、Q2がオフされ、充電用IC303は、電流制御回路304の抵抗R0に基づいて、燃料電池本体1の発電出力の20%をLIB5の充電電流として供給する。図5の期間Bは、この状態を示しており、図5(d)に示すように燃料電池本体1の発電出力の20%に相当する出力がLIB5に対する充電電流として供給され、図5(b)に示すように燃料電池本体1の発電出力の80%に相当するDC-DCコンバータ2の出力電流が電子機器7に供給される。ここで、図5(a)は、DC-DCコンバータ2の出力電圧、図5(c)は、LIB5の充電電圧である。 From this state, when the electronic device 7 is not frequently used and the charging of the LIB 73 progresses and the required output detected by the load request detecting unit 6 is reduced by, for example, 20% from the maximum, the charging state selecting unit 81 outputs The above-described (b) is selected on the condition that the power generation output of the fuel cell main body 1 detected by the detection unit 4 is sufficient. Then, according to the instruction (b) of the charging state selection unit 81 at this time, the switching elements Q1 and Q2 of the current control circuit 304 are turned off, and the charging IC 303 determines the fuel based on the resistance R0 of the current control circuit 304. 20% of the power generation output of the battery body 1 is supplied as the charging current of the LIB 5. A period B in FIG. 5 shows this state, and as shown in FIG. 5D, an output corresponding to 20% of the power generation output of the fuel cell body 1 is supplied as a charging current for the LIB 5, and FIG. ), The output current of the DC-DC converter 2 corresponding to 80% of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7. Here, FIG. 5A shows the output voltage of the DC-DC converter 2, and FIG. 5C shows the charging voltage of the LIB 5.
 その後、さらにLIB73の充電が進んで負荷要求検出部6により検出される要求出力が最大時より、例えば50%減少すると、充電状態選択部81は、出力検出部4より検出される燃料電池本体1の発電出力が十分であることを条件に、上述した(c)を選択する。すると、このときの充電状態選択部81の指示(c)に応じて、電流制御回路304のスイッチング素子Q1のみがオンされ、充電用IC303は、電流制御回路304の抵抗R0とR1の組合せに基づいて、燃料電池本体1の発電出力の50%をLIB5の充電電流として供給する。図5の期間Cは、この状態を示しており、図5(d)に示すように燃料電池本体1の発電出力の50%に相当する出力がLIB5に対する充電電流として供給され、図5(b)に示すように燃料電池本体1の発電出力の50%に相当するDC-DCコンバータ2の出力電流が電子機器7に供給される。ここでも図5(a)は、DC-DCコンバータ2の出力電圧、図5(c)は、LIB5の充電電圧である。 Thereafter, when the charging of the LIB 73 further progresses and the requested output detected by the load request detecting unit 6 decreases by, for example, 50% from the maximum, the charging state selecting unit 81 detects the fuel cell main body 1 detected by the output detecting unit 4. The above-mentioned (c) is selected on the condition that the power generation output is sufficient. Then, only the switching element Q1 of the current control circuit 304 is turned on according to the instruction (c) of the charge state selection unit 81 at this time, and the charging IC 303 is based on the combination of the resistors R0 and R1 of the current control circuit 304. Thus, 50% of the power generation output of the fuel cell main body 1 is supplied as the charging current of the LIB 5. A period C in FIG. 5 shows this state, and as shown in FIG. 5D, an output corresponding to 50% of the power generation output of the fuel cell main body 1 is supplied as a charging current for the LIB 5, and FIG. ), The output current of the DC-DC converter 2 corresponding to 50% of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7. Again, FIG. 5A shows the output voltage of the DC-DC converter 2, and FIG. 5C shows the charging voltage of the LIB 5.
 そして、電子機器7のLIB73が満充電状態になって負荷要求検出部6により検出される電子機器7の要求出力が略ゼロになると、充電状態選択部81は、出力検出部4より検出される燃料電池本体1の発電出力が十分であることを条件に、上述した(d)を選択する。すると、このときの充電状態選択部81の指示(d)に応じて、電流制御回路304のスイッチング素子Q2のみがオンされ、充電用IC303は、電流制御回路304の抵抗R0とR2の組合せに基づいて、燃料電池本体1の発電出力の全て(100%)をLIB5の充電電流として供給する。図5の期間Dは、この状態を示しており、図5(d)に示すように燃料電池本体1の発電出力の100%に相当する出力がLIB5に対する充電電流として供給され、図5(b)に示すように電子機器7に供給されるDC-DCコンバータ2の出力電流が略ゼロになる。ここでも図5(a)は、DC-DCコンバータ2の出力電圧、図5(c)は、LIB5の充電電圧である。 When the LIB 73 of the electronic device 7 is in a fully charged state and the required output of the electronic device 7 detected by the load request detection unit 6 becomes substantially zero, the charge state selection unit 81 is detected by the output detection unit 4. The above (d) is selected on condition that the power generation output of the fuel cell body 1 is sufficient. Then, only the switching element Q2 of the current control circuit 304 is turned on according to the instruction (d) of the charge state selection unit 81 at this time, and the charging IC 303 is based on the combination of the resistors R0 and R2 of the current control circuit 304. Thus, all (100%) of the power generation output of the fuel cell main body 1 is supplied as the charging current of the LIB 5. A period D in FIG. 5 shows this state. As shown in FIG. 5D, an output corresponding to 100% of the power generation output of the fuel cell main body 1 is supplied as a charging current for the LIB 5, and FIG. ), The output current of the DC-DC converter 2 supplied to the electronic device 7 becomes substantially zero. Again, FIG. 5A shows the output voltage of the DC-DC converter 2, and FIG. 5C shows the charging voltage of the LIB 5.
 その後、電子機器7の使用が再開され、LIB73の充電状態が低下すると、DC-DCコンバータ2の出力電流が流れ始め。そして、負荷要求検出部6により検出される要求出力が最大時より、例えば20%減少した状態を検出すると、充電状態選択部81は、出力検出部4より検出される燃料電池本体1の発電出力が十分であることを条件に、再び上述した(b)を選択する。すると、このときの充電状態選択部81の指示(b)に応じて、電流制御回路304のスイッチング素子Q1、Q2がオフされ、充電用IC303は、電流制御回路304の抵抗R0に基づいて、燃料電池本体1の発電出力の20%をLIB5の充電電流として供給する。これにより、燃料電池本体1の発電出力の80%に相当するDC-DCコンバータ2の出力電流が電子機器7に供給され、LIB73の充電が開始される。図5の期間Eは、この状態を示しており、図5(b)に示すように燃料電池本体1の発電出力の80%に相当するDC-DCコンバータ2の出力電流が電子機器7に供給され、図5(d)に示すように燃料電池本体1の発電出力の20%に相当する出力がLIB5に対する充電電流として供給される。ここで、図5(a)は、DC-DCコンバータ2の出力電圧、図5(c)は、LIB5の充電電圧である。 After that, when the use of the electronic device 7 is resumed and the charging state of the LIB 73 is lowered, the output current of the DC-DC converter 2 starts to flow. Then, when detecting a state in which the required output detected by the load request detecting unit 6 is reduced by, for example, 20% from the maximum, the charging state selecting unit 81 detects the power generation output of the fuel cell main body 1 detected by the output detecting unit 4. (B) is selected again on the condition that is sufficient. Then, according to the instruction (b) of the charging state selection unit 81 at this time, the switching elements Q1 and Q2 of the current control circuit 304 are turned off, and the charging IC 303 determines the fuel based on the resistance R0 of the current control circuit 304. 20% of the power generation output of the battery body 1 is supplied as the charging current of the LIB 5. As a result, the output current of the DC-DC converter 2 corresponding to 80% of the power generation output of the fuel cell body 1 is supplied to the electronic device 7 and charging of the LIB 73 is started. A period E in FIG. 5 shows this state, and an output current of the DC-DC converter 2 corresponding to 80% of the power generation output of the fuel cell main body 1 is supplied to the electronic device 7 as shown in FIG. Then, as shown in FIG. 5 (d), an output corresponding to 20% of the power generation output of the fuel cell main body 1 is supplied as a charging current for the LIB 5. Here, FIG. 5A shows the output voltage of the DC-DC converter 2, and FIG. 5C shows the charging voltage of the LIB 5.
 したがって、このようにすれば、燃料供給により電力を発電するとともに、発電出力を電子機器7に供給する燃料電池本体1と、この燃料電池本体1の発電出力により充電される、内部電源として用いられるLIB5を有し、電子機器7が燃料電池本体1に対して要求する出力を検出する負荷要求検出部6より取得される要求出力の大きさに応じて充電状態選択部81により燃料電池本体1の発電出力のうちLIB5に供給する発電出力の割合をLIB5に対する充電状態として選択し、この選択された充電状態に応じて燃料電池本体1の発電出力のうちの一部の発電出力をLIB5の充電出力として供給するようにした。これにより、電子機器7の要求出力の大きさに応じて燃料電池本体1の発電出力の一部によりLIB5を安定して充電し続けることができるので、LIB5の電池残量が極端に少なくなるようなことがなくなり、システムの内部電源を安定して確保でき、この結果、内部電源のLIB5によりシステム内部の電子回路などに対し十分な電力を供給することができるので、常に安定したシステムの動作を得ることができる。 Therefore, if it does in this way, while generating electric power by fuel supply, the fuel cell main body 1 which supplies electric power generation output to the electronic device 7, and it is used as an internal power supply charged by the electric power generation output of this fuel cell main body 1. The LIB 5 is included, and the charge state selection unit 81 determines the output of the fuel cell main body 1 according to the magnitude of the required output acquired from the load request detection unit 6 that detects the output requested by the electronic device 7 to the fuel cell main body 1. The ratio of the power generation output supplied to the LIB 5 among the power generation outputs is selected as the charging state for the LIB 5, and a part of the power generation output of the fuel cell body 1 is charged to the LIB 5 according to the selected charging state. As a supply. As a result, the LIB 5 can be stably charged with a part of the power generation output of the fuel cell main body 1 according to the magnitude of the required output of the electronic device 7, so that the battery level of the LIB 5 is extremely reduced. The system internal power supply can be secured stably. As a result, sufficient power can be supplied to the electronic circuits inside the system by the internal power supply LIB5. Obtainable.
 また、電子機器7の要求出力が減少して燃料電池本体1に余剰の発電出力が発生しても、この余剰出力をLIB5の充電用として利用できるので、エネルギーロスを大幅に低減できるとともに、燃料の有効利用を実現できる。 Further, even if the required output of the electronic device 7 decreases and surplus power generation output is generated in the fuel cell main body 1, the surplus output can be used for charging the LIB 5, so that the energy loss can be greatly reduced and the fuel Can be used effectively.
 その他、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。例えば、上述した実施の形態では、負荷として電子機器7の電源であるLIB73を充電する場合を述べたが、これ以外の負荷に対する充電装置としても適用することができる。 In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage. For example, in the above-described embodiment, the case where the LIB 73 that is the power source of the electronic device 7 is charged as a load has been described, but the present invention can also be applied as a charging device for other loads.
 さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。 Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and is described in the column of the effect of the invention. If the above effect is obtained, a configuration from which this configuration requirement is deleted can be extracted as an invention.
 さらに燃料電池発電部へ供給される液体燃料の気化成分においても、全て液体燃料の気化成分を供給してもよいが、一部が液体状態で供給される場合であっても本発明を適用することができる。 Further, the vaporized component of the liquid fuel supplied to the fuel cell power generation unit may be all supplied as the vaporized component of the liquid fuel, but the present invention is applied even when a part is supplied in the liquid state. be able to.
 本発明によれば、内部電源の蓄電素子の充電を安定して行うことができ常に安定した動作を得られる燃料電池システム及び充電装置が提供される。 According to the present invention, there are provided a fuel cell system and a charging device that can stably charge a storage element of an internal power source and can always obtain a stable operation.
 1…燃料電池本体、101…燃料電池発電部
 102…燃料収容部、103…流路
 104…ポンプ、105…燃料分配機構
 2…DC-DCコンバータ、3…充電制御回路
 301…入力端子、302…充電端子
 303…充電用IC、304…電流制御回路
 4…出力検出部、5…LIB、6…負荷要求検出部
 7…電子機器、71…電子機器本体
 72…充電回路、73…LIB
 8…制御部、81…充電状態選択部
 9…燃料供給制御回路、10…ACアダプタ
 11…アノード触媒層、12…アノードガス拡散層
 13…アノード、14…カソード触媒層
 15…カソードガス拡散層、16…カソード
 17…電解質膜、18…カバープレート
 19…Oリング、21…燃料注入口
 22…燃料排出口、23…燃料分配板
 24…空隙部
DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body, 101 ... Fuel cell power generation part 102 ... Fuel accommodating part, 103 ... Flow path 104 ... Pump, 105 ... Fuel distribution mechanism 2 ... DC-DC converter, 3 ... Charge control circuit 301 ... Input terminal, 302 ... Charging terminal 303 ... IC for charging, 304 ... Current control circuit 4 ... Output detection unit, 5 ... LIB, 6 ... Load request detection unit 7 ... Electronic device, 71 ... Electronic device main body 72 ... Charging circuit, 73 ... LIB
DESCRIPTION OF SYMBOLS 8 ... Control part, 81 ... Charge condition selection part 9 ... Fuel supply control circuit, 10 ... AC adapter 11 ... Anode catalyst layer, 12 ... Anode gas diffusion layer 13 ... Anode, 14 ... Cathode catalyst layer 15 ... Cathode gas diffusion layer, DESCRIPTION OF SYMBOLS 16 ... Cathode 17 ... Electrolyte membrane, 18 ... Cover plate 19 ... O-ring, 21 ... Fuel injection port 22 ... Fuel discharge port, 23 ... Fuel distribution plate 24 ... Air gap

Claims (5)

  1.   燃料供給により電力を発電するとともに、発電出力を負荷に供給する燃料電池本体と、
     前記燃料電池本体の発電出力により充電される、内部電源として用いられる蓄電素子と、
     前記負荷が前記燃料電池本体に対して要求する出力を検出する負荷要求検出部と、
     前記負荷要求検出部により検出される要求出力の大きさに応じて前記蓄電素子に対する充電状態を選択する充電状態選択部と、
     前記充電状態選択部により選択された充電状態に応じて前記燃料電池本体の発電出力のうち所定の発電出力を前記蓄電素子の充電出力として供給する制御部と
     を具備する燃料電池システム。
    A fuel cell main body that generates electric power by supplying fuel and supplies power generation output to a load;
    A power storage element used as an internal power source, which is charged by the power generation output of the fuel cell body,
    A load request detector for detecting an output required by the load to the fuel cell body;
    A charge state selection unit that selects a charge state for the power storage element according to the magnitude of the required output detected by the load request detection unit;
    A fuel cell system comprising: a control unit that supplies a predetermined power generation output as a charge output of the power storage element among the power generation outputs of the fuel cell main body according to the charge state selected by the charge state selection unit.
  2.  前記燃料電池本体の発電出力より前記負荷に供給される出力を生成する出力調整部をさらに有し、
     前記負荷要求検出部は、前記出力調整部の出力電流を負荷が要求する要求出力として検出する請求項1記載の燃料電池システム。
    An output adjustment unit that generates an output supplied to the load from the power generation output of the fuel cell main body;
    The fuel cell system according to claim 1, wherein the load request detection unit detects an output current of the output adjustment unit as a request output requested by a load.
  3.   前記充電状態選択部は、前記負荷要求検出部により検出される要求出力の大きさに応じて前記燃料電池本体の発電出力のうち前記蓄電素子に供給する発電出力の割合を前記蓄電素子に対する充電状態として選択する請求項1記載の燃料電池システム。 The charge state selection unit is configured to determine a ratio of the power generation output supplied to the power storage element in the power generation output of the fuel cell main body according to the magnitude of the required output detected by the load request detection unit. The fuel cell system according to claim 1, which is selected as:
  4.   前記制御部は、前記充電状態選択部で選択された充電状態に応じて前記燃料電池本体の発電出力の全てを前記蓄電素子の充電出力として供給可能にした請求項3記載の燃料電池システム。 4. The fuel cell system according to claim 3, wherein the control unit is configured to be able to supply all of the power generation output of the fuel cell main body as the charge output of the power storage element according to the charge state selected by the charge state selection unit.
  5.   請求項1に記載の燃料電池システムを適用した充電装置。 A charging device to which the fuel cell system according to claim 1 is applied.
PCT/JP2009/063432 2008-07-29 2009-07-28 Fuel cell system and charging device WO2010013714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-195131 2008-07-29
JP2008195131A JP2010033903A (en) 2008-07-29 2008-07-29 Fuel cell system and charging device

Publications (1)

Publication Number Publication Date
WO2010013714A1 true WO2010013714A1 (en) 2010-02-04

Family

ID=41610414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063432 WO2010013714A1 (en) 2008-07-29 2009-07-28 Fuel cell system and charging device

Country Status (2)

Country Link
JP (1) JP2010033903A (en)
WO (1) WO2010013714A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085759B2 (en) * 2012-10-15 2017-03-01 アクアフェアリー株式会社 Power generator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049175A (en) * 2004-08-06 2006-02-16 Sanyo Electric Co Ltd Fuel cell system
JP2006073503A (en) * 2004-08-06 2006-03-16 Sanyo Electric Co Ltd Fuel cell system
JP2006166576A (en) * 2004-12-07 2006-06-22 Ricoh Co Ltd Power system and image forming apparatus
JP2006310246A (en) * 2004-08-06 2006-11-09 Sanyo Electric Co Ltd Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049175A (en) * 2004-08-06 2006-02-16 Sanyo Electric Co Ltd Fuel cell system
JP2006073503A (en) * 2004-08-06 2006-03-16 Sanyo Electric Co Ltd Fuel cell system
JP2006310246A (en) * 2004-08-06 2006-11-09 Sanyo Electric Co Ltd Fuel cell system
JP2006166576A (en) * 2004-12-07 2006-06-22 Ricoh Co Ltd Power system and image forming apparatus

Also Published As

Publication number Publication date
JP2010033903A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP2009087741A (en) Degradation detection device of fuel cell and fuel cell system
JP2006294619A (en) Operation stop method of fuel cell, and fuel cell system
JP2008218236A (en) Fuel cell system and electronic equipment
WO2010013711A1 (en) Fuel cell system and electronic device
WO2010013709A1 (en) Fuel cell system, and electronic device
JP2010165601A (en) Fuel cell system, and electronic equipment
KR100551063B1 (en) Fuel cell system
JP5258203B2 (en) Fuel cell system and electronic device
WO2010013714A1 (en) Fuel cell system and charging device
JP5617218B2 (en) Fuel cell
JP2010244919A (en) Fuel cell system, and control method therefor
JP2010238408A (en) Fuel cell system, and valve device
JP5025288B2 (en) Fuel cell system and electronic device
JP2011023198A (en) Fuel cell system and charging device
JP2010033904A (en) Fuel cell system and electronic equipment
JP5556123B2 (en) Fuel cell system
JP2010033899A (en) Fuel cell system and electronic device
JP2011023199A (en) Fuel cell system and charging device
JP2010033898A (en) Fuel cell system and electronic equipment
JP2008282626A (en) Fuel cell system and electronic equipment
WO2011024386A1 (en) Fuel cell
JP2008218033A (en) Fuel cell system and electronic equipment
JP2011023218A (en) Fuel cell
JP2008243787A (en) Fuel cell system and control method
JP2010170732A (en) Fuel cell system, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802957

Country of ref document: EP

Kind code of ref document: A1