WO2011024361A1 - Network camera and video distribution system - Google Patents

Network camera and video distribution system Download PDF

Info

Publication number
WO2011024361A1
WO2011024361A1 PCT/JP2010/003984 JP2010003984W WO2011024361A1 WO 2011024361 A1 WO2011024361 A1 WO 2011024361A1 JP 2010003984 W JP2010003984 W JP 2010003984W WO 2011024361 A1 WO2011024361 A1 WO 2011024361A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
quality
unit
quality video
image
Prior art date
Application number
PCT/JP2010/003984
Other languages
French (fr)
Japanese (ja)
Inventor
中村研史
永田太一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011024361A1 publication Critical patent/WO2011024361A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/472End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
    • H04N21/47202End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for requesting content on demand, e.g. video on demand
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/21Server components or server architectures
    • H04N21/218Source of audio or video content, e.g. local disk arrays
    • H04N21/2187Live feed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6587Control parameters, e.g. trick play commands, viewpoint selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes

Definitions

  • the present invention relates to a network camera and a video distribution system that distribute a video signal obtained by photographing to other receiving terminals via a network.
  • Patent Literature 1 discloses a technique related to a video distribution system including a camera terminal including a recording medium for recording an encoded stream and a receiving terminal that receives video data from the camera terminal.
  • the camera terminal includes a high-resolution image sensor, encodes video data obtained by photographing, transmits an encoded stream obtained by encoding to the receiving terminal, and records the data on a recording medium. Then, the encoded stream recorded on the recording medium is transmitted to the receiving terminal based on an instruction from the user such as a retransmission request.
  • the camera terminal described in Patent Document 1 can suppress the use of network bandwidth by converting video data obtained by a high-resolution image sensor into a low-resolution video.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a network camera capable of reducing power consumption and a video distribution system including the network camera.
  • a network camera includes an imaging device, and generates an image signal by driving the imaging device with a predetermined driving method.
  • the network camera is generated by the imaging unit.
  • a low-quality video signal generation unit that generates a low-quality video signal having a first frame rate and a first resolution, and using the video signal generated by the imaging unit, the first frame rate
  • a first high-quality video signal generating unit that generates a first high-quality video signal having at least one of a high second frame rate and a second resolution higher than the first resolution
  • Transmitting to the receiving terminal at least one of the low-quality video signal and the first high-quality video signal recorded in the memory via a network and a recording unit that records in the memory
  • the imaging unit is configured to acquire a video signal having a frame rate equal to or higher than the first frame rate, and a frame from the video signal acquired by the first drive method.
  • the first drive method consumes less power than the second drive method, so that, for example, when the image pickup device is driven by the first drive method except when a high-quality image is required, Electric power can be reduced.
  • the receiving terminal side receives the real-time video and The viewer can view any of the videos that have gone back in the past for a predetermined period.
  • the second driving method is a driving method for acquiring a video signal having a higher resolution than the video signal acquired by the first driving method, and the low-quality video signal generation unit is configured to acquire the first driving method.
  • the low-quality video signal is generated using the video signal output from the image sensor driven by the method, and the first high-quality video signal generator is output from the image sensor driven by the second drive method.
  • the first high quality video signal may be generated using the processed video signal.
  • the low-quality video signal generation unit uses the video signal output from the imaging device driven by the first driving method with low power consumption. Power consumption can be reduced by driving the image sensor with the driving method.
  • the second driving method is a driving method for acquiring a video signal having a higher frame rate than the video signal acquired by the first driving method, and the low image quality video signal generation unit is configured to acquire the image sensor. Is driven by the second drive method, a plurality of images included in the video signal output from the imaging device, and within a predetermined period including one of the timings of the first frame rate The low-quality video signal including the selected image may be generated by selecting one image from a plurality of images included in the image.
  • the low-quality video signal generator when the image sensor is driven by the second drive method, the low-quality video signal generator generates the first frame from a plurality of images included in the video signal output from the image sensor.
  • the low-quality video signal including the selected image may be generated by selecting one image at the rate timing.
  • the low-quality video signal generation unit may include a plurality of images included in the video signal output from the image sensor when the image sensor is driven by the second drive method.
  • One image may be generated by adding a plurality of images included in a predetermined period including one timing of one frame rate, and the low-quality video signal including the generated image may be generated.
  • the network camera further includes a control unit that receives, from the receiving terminal, a first control signal for starting or stopping recording of the first high-quality video signal, and the control unit receives the first control signal. If received, the recording unit may start or stop the recording based on the received first control signal.
  • the memory resource can be effectively used and the power consumption related to the recording process can be reduced.
  • the network camera further includes a control unit that receives from the receiving terminal a second control signal that starts or stops transmission of the low-quality video signal or the first high-quality video signal.
  • the transmission unit may start or stop the transmission based on the received second control signal.
  • the transmission based on the control signal for example, only the video signal required by the viewer can be transmitted, and the power consumption related to the transmission process can be reduced.
  • the network camera further includes a control unit that receives a third control signal for erasing the first high-quality video signal recorded in the memory from the receiving terminal, and the control unit includes the third control signal. May be received, the recording unit may erase at least a part of the first high-quality video signal recorded in the memory.
  • the network camera further includes an abnormality detection unit that detects an abnormality in a shooting environment of the network camera, and the recording unit detects the first high-quality video when an abnormality is detected by the abnormality detection unit. Signal recording may be started.
  • the abnormality detection unit may detect an abnormality when the current time reaches a predetermined time.
  • the network camera further converts at least one of a resolution, a frame rate, and a bit rate of the first high quality video signal recorded in the memory, and transmits the converted first high quality video signal to the transmission unit.
  • the transmission unit may further transmit the first high-quality video signal converted by the video conversion unit to the receiving terminal.
  • the high-quality video signal can be used effectively by using the bandwidth. Can be sent.
  • the network camera further reduces a plurality of images included in the video signal output from the image sensor driven by the second driving method, and includes a plurality of reduced images as one image.
  • a second high-quality video signal generation unit that converts the high-quality video signal into a high-quality video signal; and the transmission unit further transmits the second high-quality video signal generated by the second high-quality video signal generation unit to the receiving terminal. May be.
  • the transmitting unit may stop transmitting the low-quality video signal when transmitting the second high-quality video signal.
  • the transmission unit may transmit any of the low-quality video signal, the first high-quality video signal, and the second high-quality video signal.
  • the transmitting unit transmits a part of the first high quality video signal recorded in the recording unit together with the low quality video signal at a lower transfer rate than when transmitting only the first high quality video signal. May be.
  • the recording unit may record the first high-quality video signal as an external recording device connected via a network different from the network as the memory.
  • the captured video can be recorded in another recording device, so that loss of the video can be prevented.
  • the present invention can also be realized as a video distribution system.
  • the video distribution system according to the present invention includes the network camera, the low-quality video signal and the first signal from the network camera via the network.
  • the network camera and video distribution system according to the present invention can reduce power consumption.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a video distribution system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a configuration of a DSP included in the network camera according to the first embodiment.
  • FIG. 3 is a diagram illustrating how low-quality bit streams and high-quality bit streams are generated in a conventional video distribution system.
  • FIG. 4 is a diagram illustrating an example of how low-quality bitstreams and high-quality bitstreams are generated in the video distribution system according to Embodiment 1.
  • FIG. 5 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to the first embodiment.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a video distribution system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating an example of a configuration of a DSP included in the network camera according to the first embodiment.
  • FIG. 3 is a diagram
  • FIG. 6 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to Embodiment 1.
  • FIG. 7 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to the first embodiment.
  • FIG. 9 is a block diagram illustrating an example of a configuration of the video distribution system according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of a state of conversion of a high-quality bitstream in the video distribution system according to the second embodiment.
  • FIG. 11 is a block diagram illustrating an example of a configuration of a video distribution system according to the third embodiment.
  • FIG. 12 is a diagram illustrating an example of an image capture timing in the video distribution system according to the third embodiment.
  • FIG. 13 is a diagram illustrating an example of an image capture size in the video distribution system according to the third embodiment.
  • FIG. 14 is a block diagram illustrating an example of a configuration of a video distribution system according to the fourth embodiment.
  • the network camera includes an imaging device, and uses an imaging unit that generates a video signal by driving the imaging device with a predetermined driving method, and a video signal generated by the imaging unit, A low-quality video signal generating unit that generates a low-quality video signal having a first frame rate and a first resolution, a video signal generated by the imaging unit, a second frame rate that is higher than the first frame rate, and A high-quality video signal generation unit that generates a first high-quality video signal having at least one second resolution higher than the first resolution, a recording unit that records the high-quality video signal in a memory, A transmission unit that transmits at least one of the high-quality video signal and the high-quality video signal recorded in the memory to the receiving terminal.
  • a first driving method for acquiring a video signal having a rate and a second driving method for acquiring a video signal having at least one of a frame rate and a resolution higher than that of the video signal acquired by the first driving method.
  • One of them is selected, and the image pickup device is driven by the selected driving method.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the video distribution system 10 according to the first embodiment.
  • the video distribution system 10 includes a camera 100 and a receiving terminal 120.
  • the camera 100 and the receiving terminal 120 are connected by a network 130.
  • the camera 100 is an example of a network camera that acquires a video signal by imaging and transmits the video signal to the receiving terminal 120 via the network 130.
  • the camera 100 includes a photographing optical system 101, an image sensor 102, a DSP (Digital Signal Processor) 103, a control unit 104, video signal generation units 105 and 106, and transmission units 107 and 108.
  • the photographing optical system 101, the image sensor 102, and the DSP 103 correspond to an image capturing unit according to the present invention.
  • the imaging unit selects either the first driving method for mainly acquiring low-quality images or the second driving method for mainly acquiring high-quality images, and the image sensor 102 is selected by the selected driving method.
  • the high-quality video is a video in which at least one of the frame rate and the resolution is higher than the frame rate and the resolution of the low-quality video.
  • the photographing optical system 101 is an optical system such as an optical lens and a diaphragm that focuses light from a subject to form an image of light on the image sensor 102.
  • the image sensor 102 is an image sensor including a photoelectric conversion element such as a photodiode that converts light into an electrical signal.
  • the image sensor 102 is a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like.
  • the image sensor 102 converts the subject image into an electrical signal based on the drive signal supplied from the DSP 103, and outputs the converted electrical signal to the DSP 103.
  • the DSP 103 generates a video signal by performing image processing such as AD conversion processing and gain correction on the electric signal input from the image sensor 102, and generates the generated video signal as video signal generation units 105 and 106. Output to. Further, the DSP 103 selects one of a plurality of driving methods and drives the image sensor 102 with the selected driving method. For example, as illustrated in FIG. 2, the DSP 103 includes a first drive signal generation unit 1031, a second drive signal generation unit 1032, and a switch 1033.
  • FIG. 2 is a block diagram showing an example of the configuration of the DSP 103 provided in the camera 100 according to the first embodiment.
  • FIG. 2 shows only a processing unit related to generation of the drive signal of the DSP 103, and does not show a processing unit that generates a video signal from the electrical signal output from the image sensor 102.
  • the first drive signal generator 1031 generates a drive signal L for generating a low-quality video signal having at least one of low resolution and low frame rate.
  • the first driving method is a driving method of the image sensor 102 when the driving signal L is supplied. More specifically, the first driving method is a driving method for acquiring a video signal having a frame rate equal to or higher than the first frame rate and a resolution equal to or higher than the first resolution.
  • the first frame rate and the first resolution are the frame rate and the resolution of the video signal generated by the video signal generation unit 105.
  • the second drive signal generator 1032 generates a drive signal H for generating a high-quality video signal having at least one of high resolution and high frame rate.
  • the second driving method is a driving method of the image sensor 102 when the driving signal H is supplied. More specifically, the second driving method is a driving method for acquiring a video signal having a frame rate equal to or higher than the second frame rate and a resolution equal to or higher than the second resolution.
  • the second frame rate and the second resolution are the frame rate and the resolution of the video signal generated by the video signal generation unit 106.
  • the switch 1033 selects one of the drive signal L and the drive signal H based on the control from the control unit 104 and outputs the selected drive signal to the image sensor 102.
  • the DSP 103 selects the drive method of the image sensor 102 by selecting either the drive signal L or the drive signal H using the switch 1033. Note that an image having at least one of a frame rate and a resolution higher than an image output from the image sensor 102 driven by the first drive method is output from the image sensor 102 driven by the second drive method.
  • the control unit 104 performs overall control of the camera 100. For example, the control unit 104 selects a driving method for the image sensor 102. Furthermore, the control unit 104 receives a control signal from the operation button 110 or from the receiving terminal 120 via the network 130, and controls each processing unit according to the received control signal.
  • the control signal is a signal indicating, for example, switching of drive signals, start and end of recording, start and end of transmission, and the like.
  • the video signal generation unit 105 is an example of a low quality video signal generation unit that generates a low quality video signal having a first frame rate and a first resolution using the video signal generated by the imaging unit.
  • the video signal output from the DSP 103 when the image sensor 102 is driven based on the drive signal L is a video signal having a first frame rate and a first resolution.
  • a low-quality bit stream (hereinafter referred to as a low-quality bit stream BL) is generated as a low-quality video signal.
  • the video signal generation unit 105 thins out an image (frame) included in the video signal, Alternatively, a low-quality video signal having a first frame rate and a first resolution is generated by scaling.
  • the video signal generation unit 105 compresses and encodes the video signal generated by the imaging unit at a high compression rate based on a method conforming to MPEG (Moving Picture Expert Group) which is an international standard, and has a low bit rate. Therefore, a low quality bitstream BL is generated.
  • the generated low image quality bit stream BL is output to the transmission unit 107.
  • the transmitting unit 107 transmits the low image quality bit stream BL generated by the video signal generating unit 105 to the external receiving terminal 120 via the network 130.
  • the video signal generation unit 106 generates a high-quality video signal having at least one of a second frame rate higher than the first frame rate and a second resolution higher than the first resolution, using the video signal generated by the imaging unit.
  • This is an example of a high-quality video signal generation unit.
  • the video signal output from the DSP 103 when the image sensor 102 is driven based on the drive signal H is a video signal having the second frame rate and the second resolution, and the video signal generation unit 106 By compressing and encoding the video signal, a high-quality bit stream (hereinafter referred to as a high-quality bit stream BH) is generated as a high-quality video signal.
  • a high-quality bit stream BH a high-quality bit stream
  • the video signal generation unit 106 thins out an image (frame) included in the video signal, Alternatively, the high-resolution video signal having the second frame rate and the second resolution is generated by scaling.
  • the video signal generation unit 106 compresses and encodes the video signal generated by the imaging unit at a low compression rate based on an MPEG-compliant method or the like, and generates a high bit rate, and thus a high-quality bit stream BH. To do.
  • the generated high-quality bitstream BH is output to the recording unit 109.
  • the recording unit 109 includes, for example, a storage unit such as a semiconductor memory, and can also be played back simultaneously with recording. Specifically, the recording unit 109 sequentially records the high-quality bit stream BH supplied from the video signal generation unit 106 in the semiconductor memory, and also records a portion recorded a predetermined time T before the recording time point. The data is read from the semiconductor memory and transmitted to the transmission unit 108 (reproduction processing). Accordingly, the high-quality bit stream BH is reproduced from the recording unit 109 with a delay of the predetermined time T.
  • a storage unit such as a semiconductor memory
  • the transmitting unit 108 transmits the high-quality bit stream BH delayed by the time T input from the recording unit 109 to the external receiving terminal 120 via the network 130.
  • the operation button 110 is an example of a receiving unit that receives an instruction from the user, and supplies the received instruction from the user to the control unit 104 as a control signal.
  • the camera 100 according to Embodiment 1 can drive the image sensor 102 by different driving methods. Specifically, either the first driving method for acquiring a low-quality image or the second driving method for acquiring a high-quality image is selected, and the image sensor 102 is driven by the selected driving method. . Since the first drive method consumes less power than the second drive method, for example, when the image sensor 102 is driven by the first drive method, the power consumption is reduced except when a high-quality image is required. Can be reduced.
  • the recording unit 109 records the high-quality bitstream BH in order from the top address in the semiconductor memory.
  • recording for a predetermined time T is performed, recording for the recording capacity is performed.
  • recording is performed again from the head address, and the already recorded contents are rewritten. Further, as described above, the recorded bit stream is reproduced with a delay of a predetermined time T.
  • the recording unit 109 only needs to include a memory having a capacity capable of recording a high-quality bitstream that is slightly longer than the predetermined time T.
  • the predetermined time T can be arbitrarily set as appropriate.
  • the predetermined time T is some time before a scene to call attention. It is preferable to set the time so that a high-quality video can be seen from a scene that dates back to. The same applies to other embodiments described later.
  • the receiving terminal 120 is an example of a receiver that receives a video signal (a low-quality bitstream BL and a high-quality bitstream BH) transmitted from the camera 100 via the network 130 and displays the video on a display unit.
  • the receiving terminal 120 receives a bit stream transmitted via the network 130.
  • the receiving terminal 120 includes a decoder 121, a controller 122, and a display unit 123.
  • the decoder 121 restores the original video signal by decoding the received bit stream.
  • the restored video signal is supplied to the display unit 123.
  • the decoder 121 may decode both.
  • the display unit 123 displays video based on the video signal input from the decoder 121. Note that when a plurality of video signals are input from the decoder 121, the display unit 123 may display only one of them, or may display both.
  • the display unit 123 may include a plurality of monitors, and each monitor may display each of the video signals. One monitor may be divided into a plurality of areas, and the video signals may be displayed in each of the divided areas. May be.
  • the controller 122 controls the entire receiving terminal 120 and accepts instructions from the viewer.
  • the controller 122 supplies the received instruction from the viewer to the control unit 104 as a control signal.
  • the display unit 123 displays a low-quality video included in the low-quality bitstream BL
  • a scene that alerts the viewer is displayed and the viewer wants to view this scene again.
  • the controller 122 when the viewer performs a first operation (hereinafter referred to as a retransmission operation) with a remote controller or the like on the receiving terminal 120 side, the controller 122 generates a switching control signal, and the generated switching via the network 130.
  • a control signal is transmitted to the camera 100.
  • control unit 104 receives the switching control signal, and controls the transmission unit 108 to transmit the high-quality bitstream BH.
  • the transmission unit 108 distributes the high-quality bit stream BH recorded in the recording unit 109 to the reception terminal 120 via the network 130.
  • the receiving terminal 120 receives the high-quality bitstream BH, and the decoder 121 decodes the high-quality bitstream BH, thereby restoring a high-quality video signal.
  • the restored high-quality video signal is supplied to the display unit 123.
  • the display unit 123 displays a high-quality video based on the video signal input from the decoder 121.
  • control unit 104 may stop the transmission of the low-quality bitstream BL from the transmission unit 107 by a switching control signal. Thereby, the bandwidth of the network 130 can be used effectively.
  • control unit 104 may cause both transmission of the high-quality bitstream BH from the transmission unit 108 and transmission of the low-quality bitstream BL from the transmission unit 107.
  • the receiving terminal 120 can display a high-quality image delayed from the high-quality bitstream BH by a predetermined time T, and can also display a real-time video obtained from the low-quality bitstream BL.
  • the control unit 104 performs control to start recording of the high-quality bitstream BH.
  • the signal is received, and the video signal generation unit 106 and the recording unit 109 start recording. That is, the video signal generation unit 106 and the recording unit 109 operate, and the high-quality bit stream BH is recorded in the memory included in the recording unit 109.
  • the control unit 104 receives a control signal for stopping the recording of the high-quality bitstream BH, and receives the video signal generation unit 106 and The recording unit 109 stops the recording. That is, the operations of the video signal generation unit 106 and the recording unit 109 are stopped.
  • the control unit 104 receives a control signal for erasing the high-quality bitstream BH recorded in the memory, and the recording unit 109 receives the control signal.
  • the high-quality bit stream BH is deleted.
  • the high-quality bitstream BH can be erased at an arbitrary timing, and memory resources can be used effectively.
  • the high-quality bit stream BH reproduced from the recording unit 109 is delayed by the time T from the low-quality bit stream BL output from the video signal generation unit 105 and distributed. Bitstream. Therefore, the display unit 123 of the receiving terminal 120 starts displaying high-quality video from the time point that is earlier by the time T than the current time point. That is, the same effect as the rewind reproduction from the recording / reproducing apparatus can be obtained with the high-quality video, so that the scene that has attracted the viewer's attention can be displayed again with the high quality.
  • FIG. 3 is a diagram illustrating how the conventional low-quality bitstream BL and high-quality bitstream BH are generated.
  • the image sensor 102 always operates with the same drive signal (a drive signal determined in advance so that the resolution obtained from the image sensor 102 is constant).
  • the low image quality bit stream BL is generated by encoding a video signal from the image sensor 102 obtained at a predetermined interval.
  • the high-quality bit stream BH is generated by encoding the video signal from the image sensor 102 at a higher frame rate than the low-quality bit stream BL.
  • the low-quality bitstream BL may be reduced in resolution by scaling the image included in the video signal obtained from the image sensor.
  • the driving method of the image sensor 102 cannot be changed.
  • the image sensor 102 has the high-quality bit stream BH. Therefore, useless power consumption is required.
  • FIG. 4 is a diagram illustrating an example of how the low-quality bitstream BL and the high-quality bitstream BH are generated in the first embodiment.
  • the second drive method based on the drive signal H has a higher resolution and the same frame rate as the video signal acquired by the first drive method based on the drive signal L. It is a drive system for acquiring. Specifically, the DSP 103 alternately selects the drive signal L for acquiring the low-resolution video signal L and the drive signal H for acquiring the high-resolution video signal H, and selects the selected drive signal. Is output. At this time, the frame rates of the low-resolution video signal L and the high-resolution video signal H are the same. Thus, a video signal in which low-resolution images and high-resolution images are alternately arranged is output from the image sensor 102 via the DSP 103.
  • the low-resolution video signal L is input to the video signal generation unit 105 and converted into a low-quality bitstream BL. That is, the video signal generation unit 105 generates the low-quality bitstream BL using the video signal output from the image sensor 102 driven by the first driving method. Note that the video signal generation unit 105 may convert an image included in the low-resolution video signal L into a lower-resolution video signal by further scaling.
  • the high-resolution video signal H is input to the video signal generation unit 106 and converted into a high-quality bit stream BH. That is, the video signal generation unit 106 generates a high-quality bit stream BH using the video signal output from the image sensor 102 driven by the second driving method.
  • the low resolution video signal L and the high resolution video signal H are alternately switched, but the arrangement thereof is arbitrary.
  • the driving method of the image sensor 102 is switched to a driving method suitable for each of the case of generating the low image quality bit stream BL and the case of generating the high image quality bit stream BH. That is, the video signal generation unit 105 generates a low-quality bitstream BL using the video signal output from the image sensor 102 driven by the first drive method, and the video signal generation unit 106 performs the second drive.
  • a high-quality bit stream BH is generated using a video signal output from the image sensor 102 driven by the method. Thereby, power consumption can be suppressed as compared with the case where the image sensor 102 is driven by a driving method for always generating the high-quality bit stream BH.
  • a high-quality video can be displayed on the display unit 123 based on instructions from the viewer.
  • the display unit 123 displays the high-quality video indicated by the high-quality bitstream BH and the low-quality video indicated by the low-quality bitstream BL, so that the viewer can view the video before time T with high quality.
  • real-time video As well as real-time video.
  • the camera 100 may transmit only the low-quality bitstream BL to the receiving terminal 120 at the normal time.
  • FIG. 5 is a diagram illustrating an example in which the low-quality bitstream BL and the high-quality bitstream BH are generated in the first embodiment.
  • the second drive method based on the drive signal H acquires a video signal having a higher resolution and frame rate than the video signal acquired by the first drive method based on the drive signal L.
  • This is a driving method for this purpose.
  • the resolution may be the same.
  • the DSP 103 when only the low-quality bit stream BL is transmitted, the DSP 103 generates a drive signal L for driving the image sensor 102 by the first drive method. Based on the drive signal L, the image sensor 102 operates to output an image of 30 frames per second with a VGA size (640 ⁇ 480 pixels), for example.
  • VGA size 640 ⁇ 480 pixels
  • the DSP 103 switches to generate a drive signal H for driving the image sensor by the second drive method.
  • the image sensor 102 operates to output an image (high quality image) of 120 frames per second in HD size (1920 ⁇ 1080 pixels), for example.
  • the video signal generation unit 106 generates a high quality bit stream BH using the input high quality video and outputs it to the recording unit 109.
  • the recording unit 109 records the input high-quality bitstream BH in the memory.
  • the video signal generation unit 105 performs a first search from a plurality of images included in the video signal output from the image sensor 102 driven by the second driving method. By selecting an image (frame) at the timing of one frame rate, a low image quality bit stream BL including the selected image is generated.
  • the frame rate timing means the timing at which an image is output. For example, when the frame rate is N frames per second (N is a natural number), the timing is every 1 / N second. That is, selecting an image at a frame rate of N frames per second means selecting an image every 1 / N second.
  • the video signal generation unit 105 scales an HD size image obtained at a predetermined time interval (a period indicated by the reciprocal of the first frame rate), thereby reducing the low image quality before starting the recording operation.
  • a low image quality bit stream BL having an image size equivalent to that of the bit stream BL and an equivalent frame rate is generated.
  • the generated low image quality bit stream BL is output to the transmission unit 107.
  • the transmission unit 107 transmits the input low-quality bit stream BL to the reception terminal 120 via the network 130.
  • the recording unit 109 when receiving a recording instruction, records the high-quality bitstream BH, and the transmission unit 108 transmits the low-quality bitstream BL.
  • the recording unit 109 records the high-quality bitstream BH, and the transmission unit 108 transmits the low-quality bitstream BL.
  • the camera 100 normally uses the band of the network 130 because it transmits the low-quality bitstream BL to the receiving terminal 120 and does not transmit the high-quality bitstream BH during normal times (when no recording operation is accepted). can do.
  • the recording unit 109 records only the video necessary for the viewer in the memory, the memory resource can be used effectively.
  • the video signal generation unit 105 reads out a high-resolution image at the same frame rate as before the recording operation is accepted while the high-quality bitstream BH is being recorded, A low-resolution image is generated by scaling the image.
  • a video signal with a low frame rate may be generated by reading out an image at the same frame rate as that of the high-quality bit stream BH and adding the plurality of read-out images.
  • FIG. 6 is a diagram illustrating an example in which the low-quality bitstream BL and the high-quality bitstream BH are generated in the first embodiment.
  • the operations of the processing units other than the video signal generation unit 105 are the same as the example shown in FIG.
  • the video signal generation unit 105 includes a plurality of images included in the video signal output from the image sensor 102 driven by the second driving method.
  • a single image is generated by adding a plurality of images included in a predetermined period including one of the timings of the first frame rate, and a low-quality bitstream BL including the generated image is generated.
  • the predetermined period is, for example, a period indicated by the reciprocal of the first frame rate.
  • the video signal generation unit 105 reads an image at the same frame rate as that of the high-quality bitstream BH, and adds a plurality of read images to generate a video signal with a low frame rate. For example, the video signal generation unit 105 generates one image by temporally averaging pixel values of pixels constituting a plurality of images as the addition process.
  • the frame rate of the image (high quality image) output from the image sensor 102 driven by the second drive method is the image (the image output from the image sensor 102 driven by the first drive method ( 4 times the frame rate of (low quality video). Therefore, the video signal generation unit 105 generates one image by adding four images. Furthermore, the video signal generation unit 105 generates an image having the same resolution as that before the recording operation is accepted by scaling the generated image.
  • the video signal generation unit 105 does not add a plurality of images as in the example shown in FIG. 6, but selects an optimal image from the plurality of images and changes the selected image as shown in FIG.
  • the low-quality bitstream BL may be generated by doubling.
  • FIG. 7 is a diagram illustrating an example of how the low-quality bit stream BL and the high-quality bit stream BH are generated in the first embodiment.
  • the operations of the processing units other than the video signal generation unit 105 are the same as the example shown in FIG.
  • the video signal generation unit 105 includes a plurality of images included in the video signal output from the image sensor 102 driven by the second driving method. Then, one image is selected from a plurality of images included within a predetermined period including one of the timings of the first frame rate, and a low quality bit stream BL including the selected image is generated.
  • the predetermined period is, for example, a period indicated by the reciprocal of the first frame rate.
  • the video signal generation unit 105 reads an image at the same frame rate as that of the high-quality bitstream BH, and selects one image from the plurality of read images. For example, an image near the timing of the first frame rate is selected. Then, the video signal generation unit 105 generates a low-resolution image by scaling the selected image.
  • the video signal generation unit 105 obtains one image from a plurality of high resolution images located near the timing at the same timing as the frame rate of the low-quality bitstream BL before the recording operation is accepted. select. For example, an image having a small change in luminance value from the image selected immediately before is selected. As a result, it is possible to generate a low-quality bit stream BL with optimum image quality without being affected by exposure fluctuation due to the influence of pulsating light such as a fluorescent lamp or LED (Light Emitting Diode) illumination.
  • pulsating light such as a fluorescent lamp or LED (Light Emitting Diode) illumination.
  • the DSP 103 may select and output the drive signal L and the drive signal H at a predetermined cycle.
  • FIG. 8 is a diagram illustrating an example in which the low-quality bit stream BL and the high-quality bit stream BH are generated in the first embodiment.
  • the image pickup element 102 is always supplied with a drive signal L at a constant timing regardless of whether or not a recording operation is performed. That is, the image sensor 102 outputs a low-resolution image (frame) at the first frame rate. The low resolution image is output to the video signal generation unit 105.
  • the video signal generation unit 105 generates a low-quality bitstream BL by compressing and encoding an input image.
  • the drive signal H is supplied at a timing when the drive signal L is not supplied. Therefore, the image sensor 102 outputs a high-resolution image during a period when a low-resolution image is not output.
  • the high resolution image is output to the video signal generation unit 106.
  • the video signal generation unit 106 compresses and encodes an input image to generate a high-quality bit stream BH.
  • period and order shown in FIG. 8 may be a predetermined period or may be changed by a control signal received by the control unit 104.
  • the camera 100 selects one from a plurality of driving methods, and drives the image sensor 102 by the selected driving method. Specifically, either the first driving method for acquiring a low-quality image or the second driving method for acquiring a high-quality image is selected, and the image sensor 102 is driven by the selected driving method. . Since the first drive method consumes less power than the second drive method, for example, when the image sensor 102 is driven by the first drive method, the power consumption is reduced except when a high-quality image is required. Can be reduced.
  • the network camera according to Embodiment 2 includes an abnormality detection unit that detects an abnormality in the shooting environment of the network camera, and records a high-quality bitstream when an abnormality is detected. Furthermore, the network camera according to Embodiment 2 includes a video conversion unit that converts at least one of the resolution, the frame rate, and the bit rate of the high-quality bit stream recorded in the memory.
  • an example of the configuration of the network camera according to the second embodiment will be described with reference to FIG.
  • FIG. 9 is a block diagram illustrating an example of the configuration of the video distribution system 20 according to the second embodiment.
  • the video distribution system 20 includes a camera 200 and a receiving terminal 120.
  • the camera 200 and the receiving terminal 120 are connected via the network 130.
  • the camera 200 according to the second embodiment newly includes an abnormality detection unit 211, a transmission unit 212, band control units 213 and 214, and a video signal conversion unit 215. Is different. In the following, description of the same points as in the first embodiment will be omitted, and different points will be mainly described.
  • the anomaly detection unit 211 detects an anomaly in the shooting environment of the camera 200. That is, the abnormality detection unit 211 detects that a predetermined parameter indicating the shooting environment has reached a predetermined threshold as an abnormality.
  • the abnormality detection unit 211 may detect an abnormality using the video signal itself as a parameter indicating the shooting environment. Specifically, the abnormality detection unit 211 stores a predetermined video signal in advance in a memory provided therein, and the video signal obtained from the imaging unit is similar to or matches the stored video signal. If an error is detected, For example, when the camera 200 is a surveillance camera or the like that is always photographed from the same viewpoint, the abnormality detection unit 211 stores in the memory a video signal indicating a state in which no person enters or exits within the range photographed by the camera 200. Keep it. Thereby, the abnormality detection unit 211 can detect that a person has entered the photographing range as an abnormality.
  • the abnormality detection unit 211 may detect an abnormality using a change in brightness as a parameter indicating the shooting environment.
  • the abnormality detection unit 211 may include a sensor that detects brightness, and may detect that the brightness has changed to a predetermined value or more due to intrusion of a suspicious person as an abnormality.
  • a change in brightness may be detected from the acquired video signal. Specifically, the abnormality detection unit 211 detects that the luminance value of the video included in the video signal has changed to a predetermined value or more.
  • the abnormality detection unit 211 may detect an abnormality using time as a parameter indicating the shooting environment. For example, the abnormality detection unit 211 may set a state in which an abnormality is detected in a predetermined time zone such as at night. Specifically, the abnormality detection unit 211 includes a timer and detects a case where the current time reaches a predetermined first time as an abnormality. For example, when the time reaches a predetermined second time, the abnormality detection unit 211 detects that the abnormality has ended and is in a normal state.
  • the abnormality detection unit 211 causes the recording unit 109 to record the high-quality bitstream BH when the abnormality as described above is detected.
  • the operation for ending the recording may be performed when the abnormality detection unit 211 stops detecting an abnormality or when a predetermined time has elapsed since the abnormality was detected.
  • the recording unit 109 automatically records the high-quality bitstream BH in the memory.
  • the transmission unit 212 transmits an abnormality detection signal indicating that the abnormality detection unit 211 has detected an abnormality to the receiving terminal 120. As a result, it is possible to transmit the abnormality to a monitor who is monitoring at a remote place.
  • Band control units 213 and 214 control a band necessary for transmitting the low image quality bit stream BL and the high image quality bit stream BH in order to effectively use the band of the network 130.
  • the band control units 213 and 214 control the video signal generation unit 105, the transmission unit 108, and the video signal conversion unit 215 so as to always use a certain band among the bands of the network 130.
  • the bandwidth control unit 214 sets the transfer rate of the transmission unit 108 to a very low transfer rate.
  • the transmission unit 108 transmits the high-quality bit stream BH at a transfer rate lower than normal. Therefore, the transmission unit 108 can transmit the high-quality bitstream BH to the reception terminal 120 without squeezing the transmission band of the transmission unit 107.
  • the transfer rate lower than normal is, for example, a transfer rate lower than the transfer rate used when the transmission unit 107 and the transmission unit 108 transmit only the high-quality bitstream BH or only the low-quality bitstream BL. That is.
  • the transmission unit 108 can transmit all requested data (high-quality bitstream BH) to the reception terminal 120 even if it takes time.
  • the high-quality bitstream BH can be received while continuing real-time monitoring.
  • the transmission unit 107 transmits the low-quality bitstream BL, and the transmission unit 108 transmits a part of the high-quality bitstream BH, for example, data for a limited time at a transfer rate lower than normal. Also good. Thereby, the transmission part 108 should just transmit only required data, such as data for the time which a user desires, for example.
  • the bandwidth control unit 213 causes the video signal generation unit 105 to generate a low-quality bitstream BL having a lower resolution, frame rate, and bit rate, thereby transmitting the transmission unit 107.
  • Limit the transmission bandwidth Accordingly, it is possible to ensure a large band for transmitting the high-quality bitstream BH without increasing the band used by the camera 100 as a whole.
  • the video signal conversion unit 215 converts at least one of the resolution and the frame rate of the high quality bit stream BH recorded in the recording unit 109 to generate the high quality bit stream BH2.
  • the generated high-quality bit stream BH2 is output to the transmission unit 108. This makes it possible to display past video on the display unit 123 while minimizing the bandwidth of the network 130.
  • whether or not to convert the high-quality bitstream BH is determined by the control unit 104 based on, for example, the operation button 110 or a control signal from the controller 122 on the receiving terminal 120 side. Alternatively, it may be determined by the band control unit 214. For example, when the available bandwidth of the network 130 is small and the high-quality bitstream BH cannot be transmitted as it is, the bandwidth control unit 214 outputs a conversion instruction to the video signal conversion unit 215, and based on the instruction The video signal conversion unit 215 performs conversion of the high quality bit stream BH.
  • FIG. 10 is a diagram illustrating an example of a state of conversion of a high-quality bitstream in the video distribution system 20 according to the second embodiment.
  • the video signal conversion unit 215 reads the high-quality bit stream BH from the memory, and converts it into a video signal by a decoder inside the video signal conversion unit 215. Convert. At this time, the video signal conversion unit 215 extracts only a video signal having a predetermined period (frame rate conversion). That is, an image is extracted from the decoded video signal at a predetermined frame rate.
  • image size conversion is performed by a scaling circuit in the video signal conversion unit 215 (resolution conversion).
  • the video signal whose frame rate and resolution are converted is converted into a high-quality bitstream BH2 conforming to an encoding standard such as MPEG by an encoder in the video signal conversion unit 215.
  • the video signal conversion unit 215 may lower the bit rate of the generated high-quality bitstream BH2.
  • the high-quality bitstream BH2 generated as described above is output to the transmission unit 108, and the transmission unit 108 transmits it to the reception terminal 120 via the network 130.
  • the camera 200 includes the abnormality detection unit 211 that detects an abnormality in the shooting environment, and records a high-quality bitstream when an abnormality is detected.
  • the camera 200 can record a high-quality video when a predetermined abnormality occurs even if there is no instruction from the viewer or the user, so that the viewer or the user can see a beautiful video. be able to.
  • the camera 200 according to Embodiment 2 includes a video signal conversion unit 215 that converts at least one of the resolution, frame rate, and bit rate of the high-quality bit stream recorded in the memory.
  • the bandwidth of the network 130 can be effectively used by suppressing the bandwidth of the network 130 necessary for the distribution of the high-quality bitstream.
  • the network camera according to Embodiment 3 includes a video signal generation unit that reduces a plurality of images included in a high-quality video signal and converts the reduced images into a video signal including the reduced images as one image. And
  • a video signal generation unit that reduces a plurality of images included in a high-quality video signal and converts the reduced images into a video signal including the reduced images as one image.
  • FIG. 11 is a block diagram illustrating an example of the configuration of the video distribution system 30 according to the third embodiment.
  • the video distribution system 30 includes a camera 300 and a receiving terminal 120.
  • the camera 300 and the receiving terminal 120 are connected via the network 130.
  • the camera 300 according to the third embodiment is different from the camera 200 according to the second embodiment in that a video signal generation unit 316 and a transmission unit 317 are newly provided.
  • description of the same points as in the first embodiment will be omitted, and different points will be mainly described.
  • the video signal generation unit 316 Similar to the video signal generation unit 106, the video signal generation unit 316 generates a high-quality video signal having a second frame rate higher than the first frame rate as an intermediate video signal using the video signal generated by the imaging unit. To do.
  • the first frame rate is the frame rate of the low-quality video signal generated by the video signal generation unit 105, as in the first and second embodiments.
  • the video signal generation unit 316 generates a video signal of the first frame rate as an output video signal using the generated intermediate video signal.
  • an output video signal is generated by combining a plurality of images included in the intermediate video signal into one image.
  • the number of images used for composition for generating one image is determined, for example, by the ratio of the second frame rate to the first frame rate.
  • the transmitting unit 317 transmits the output video signal generated by the video signal generating unit 316 to the receiving terminal 120 via the network 130.
  • FIG. 12 is a diagram illustrating an example of image capture timing in the video distribution system 30 according to the third embodiment.
  • the first frame rate is 30 frames per second
  • the second frame rate is 120 frames per second.
  • the first frame rate captures images at the timings T0, T4, T8, T12, and T16, and the second frame rates all include T0, T1, T2,..., T15, T16. It is assumed that an image is captured at the timing of.
  • the video signal generation unit 316 generates an intermediate video signal by capturing an image at the same timing as the second frame rate. Further, the video signal generation unit 316 generates an output image from the images captured at T0, T1, T2, and T3, and outputs it at the timing of T4. Similarly, an output image is generated from images captured at timings T4, T5, T6, and T7, and output at timing T8.
  • the method for generating one output image from four images is as shown in FIG.
  • FIG. 13 is a diagram illustrating an example of an image capture size in the video distribution system 30 according to the third embodiment. As shown in FIG. 13, an image having a size of horizontal m pixels and vertical n pixels is captured at the first frame rate, and an image having a size of horizontal x pixels and vertical y pixels is captured at the second frame rate.
  • the video signal generation unit 316 captures an image at the same timing as the second frame rate, and scales the captured image, for example, horizontal m / 2 (1/2 times m) pixels, vertical n / 2. An intermediate image having a pixel size (1/2 times n) is generated. Further, the video signal generation unit 316 generates an output image of horizontal m pixels and vertical n pixels by synthesizing four images (images of four frames) included in the intermediate video signal.
  • the intermediate image generated by the video signal generation unit 316 is generated by reducing the image of the second frame rate having the size of horizontal x pixels and vertical y pixels to be horizontal m / 2 pixels and vertical n / 2 pixels. May be.
  • a size of horizontal m / 2 pixels and vertical n / 2 pixels may be cut out from an image at a second frame rate having a size of horizontal x pixels and vertical y pixels.
  • the transmission unit 317 outputs an output video signal including the output image generated by the video signal generation unit 316.
  • the transmission unit 317 may output an output video signal simultaneously with the low-quality bit stream BL output from the transmission unit 107, or may output the low-quality bit stream BL without transmitting from the transmission unit 107. Only the video signal may be output.
  • the transmission unit 107, the transmission unit 108, and the transmission unit 317 transmit any one of a low-quality bit stream BL that is a low-quality video signal, a high-quality bit stream BH that is a high-quality video signal, and an output video signal. May be.
  • the video signal generation unit 316 reduces a plurality of frames captured at the second frame rate, and outputs one frame of the reduced plurality of frames. Is generated. Specifically, the video signal generation unit 316 generates an output image having an image size equivalent to the image at the first frame rate, and the transmission unit 317 transmits an output video signal including the output image to the reception terminal 120.
  • the receiving terminal 120 can obtain more detailed image information in time in addition to the video included in the low-quality bitstream BL. Thereby, for example, the viewer can more easily detect an abnormality.
  • the video signal generation unit 316 cuts out a part of a plurality of frames captured at the second frame rate, and the extracted plurality of frames 1 An output image of the frame may be generated.
  • the video signal generation unit 316 generates an output image having an image size equivalent to the image at the first frame rate, and the transmission unit 317 transmits the output video signal including the output image to the reception terminal 120.
  • a higher-definition image can be obtained in a certain part. Thereby, for example, the viewer can more easily detect an abnormality.
  • the first frame rate is four times the second frame rate, but other magnifications may be used.
  • the video signal generation unit 316 generates one frame of output image with four frames, the number of frames may be other than this.
  • the video signal generation unit 316 generates the same image size as the first frame rate, another image size may be used.
  • the video signal generation unit 316 generates the output video signal having the same frame rate as the first frame rate, a different frame rate may be used.
  • the network camera according to Embodiment 4 includes a recording control unit that causes an external recording device to record a high-quality video signal.
  • a recording control unit that causes an external recording device to record a high-quality video signal.
  • FIG. 14 is a block diagram illustrating an example of the configuration of the video distribution system 40 according to the fourth embodiment.
  • the video distribution system 40 includes a camera 400, a receiving terminal 120, and a recording device 440.
  • the camera 400 and the receiving terminal 120 are connected via the network 130, and the camera 400 and the recording device 440 are connected via the network 430.
  • the camera 400 according to the fourth embodiment is different from the camera 200 according to the second embodiment in that a recording control unit 418 is provided instead of the recording unit 109.
  • a recording control unit 418 is provided instead of the recording unit 109.
  • the recording control unit 418 outputs the high-quality video signal generated by the video signal generation unit 106 to the external recording device 440 via the network 430. Also, the recording control unit 418 receives a signal from the abnormality detection unit 211 or a control signal requesting retransmission from the control unit 104, and reads out and reads out the recording data from the external recording device 440 via the network 430. The data is output to the transmission unit 108.
  • the recording device 440 includes a memory and records data transmitted from the camera 400 via the network 430 in the memory. Specifically, the recording device 440 records the high-quality bit stream BH generated by the video signal generation unit 106 and transmitted via the network 430.
  • the video distribution system 40 includes the recording control unit 418 that causes the external recording device 440 to record the high-quality bitstream BH.
  • the recorded data can be stored in the recording device 440 outside the camera 400, thereby avoiding the risk of data loss. Can do. Further, since the network 430 different from the network 130 used for connection with the receiving terminal 120 is used, the bandwidth of the network 130 is not compressed.
  • the recording control unit 418 may transmit not only the high-quality bitstream BH generated by the video signal generation unit 106 but also the low-quality bitstream BL generated by the video signal generation unit 105 to the recording device 440. .
  • the network camera and the video distribution system according to the present invention have been described based on the embodiments. However, the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, the form which carried out the various deformation
  • each of the above devices is a computer system including a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), a hard disk unit, a display unit, a keyboard, a mouse, and the like.
  • a computer program is stored in the RAM or the hard disk unit.
  • Each device achieves its functions by the microprocessor operating according to the computer program.
  • the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
  • the system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. .
  • a computer program is stored in the RAM.
  • the system LSI achieves its functions by the microprocessor operating according to the computer program.
  • each of the above devices may be configured from an IC card that can be attached to and detached from each device or a single module.
  • the IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like.
  • the IC card or the module may include the super multifunctional LSI described above.
  • the IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or module may have tamper resistance.
  • the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of a computer program.
  • the present invention also provides a computer program or recording medium capable of reading a digital signal, such as a flexible disk, hard disk, CD-ROM, MO (Magneto-Optical Disk), DVD (Digital Versatile Disc), DVD-ROM, DVD.
  • a digital signal such as a flexible disk, hard disk, CD-ROM, MO (Magneto-Optical Disk), DVD (Digital Versatile Disc), DVD-ROM, DVD.
  • -It may be recorded on a RAM, a BD (Blu-ray Disc), a semiconductor memory, or the like. Further, it may be a digital signal recorded on these recording media.
  • the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
  • the present invention may be a computer system including a microprocessor and a memory.
  • the memory may store the above computer program, and the microprocessor may operate according to the computer program.
  • program or the digital signal may be recorded on a recording medium and transferred, or the program or the digital signal may be transferred via a network or the like by another independent computer system.
  • the imaging apparatus has an effect that power consumption can be reduced.
  • the imaging apparatus is used for a network camera such as a monitoring camera or a WEB camera, or a vehicle-mounted camera such as an in-vehicle camera or a drive recorder. be able to.
  • Video distribution system 100, 200, 300, 400 Camera 101 Imaging optical system 102 Imaging element 103 DSP 104 Control unit 105, 106, 316 Video signal generation unit 107, 108, 212, 317 Transmission unit 109 Recording unit 110 Operation button 120 Receiving terminal 121 Decoder 122 Controller 123 Display unit 130, 430 Network 211 Abnormality detection unit 213, 214 Band control Unit 215 video signal conversion unit 418 recording control unit 440 recording device 1031 first drive signal generation unit 1032 second drive signal generation unit 1033 switch

Abstract

A camera (100) is provided with: an image-pickup unit that generates a video signal by driving an image-pickup element (102) with a prescribed driving method; a video-signal generating unit (105) that generates a low-resolution video signal having a first frame rate and a first resolution, using the video signal; a video-signal generating unit (106) that generates a high-resolution video signal having either a second frame rate that is higher than the first frame rate, or a second resolution that is higher than the first resolution, using the video signal; a recording unit (109) that records the high-resolution video signal into a memory; and transmission units (107, 108) that transmit either the low-resolution video signal or the high-resolution video signal to a receiving terminal (120), via a network (130). The image-pickup unit selects either a first driving method for obtaining the low-resolution video signal, or a second driving method for obtaining the high-resolution video signal, and drives the image-pickup element (102) using the selected driving method.

Description

ネットワークカメラ及び映像配信システムNetwork camera and video distribution system
 本発明は、撮影により得られた映像信号を、ネットワークを介して他の受信端末に配信するネットワークカメラ、及び映像配信システムに関する。 The present invention relates to a network camera and a video distribution system that distribute a video signal obtained by photographing to other receiving terminals via a network.
 近年、撮像素子の高画素化、及び高フレームレート化が進んでおり、一般的な受像機の表示フレームレートを大きく超える100フレーム毎秒以上の撮像素子も実用化されつつある。また、監視カメラ、又は車載カメラなどの用途において、より高い監視能力を得るために、高画素化、及び高フレームレート化の必要性が高まっている。 In recent years, the number of pixels and the frame rate of an image sensor have been increased, and an image sensor of 100 frames per second or more, which greatly exceeds the display frame rate of a general receiver, is being put into practical use. In addition, in applications such as surveillance cameras or in-vehicle cameras, there is an increasing need for higher pixels and higher frame rates in order to obtain higher monitoring capabilities.
 例えば、特許文献1には、符号化ストリームを記録するための記録媒体を備えるカメラ端末と、カメラ端末からの映像データを受信する受信端末とを備える映像配信システムに関する技術が開示されている。 For example, Patent Literature 1 discloses a technique related to a video distribution system including a camera terminal including a recording medium for recording an encoded stream and a receiving terminal that receives video data from the camera terminal.
 カメラ端末は、高解像度の撮像素子を備え、撮影により得られた映像データを符号化し、符号化により得られた符号化ストリームを受信端末に送信するとともに、記録媒体に記録する。そして、再送要求などのユーザからの指示に基づいて記録媒体に記録した符号化ストリームを受信端末に送信する。 The camera terminal includes a high-resolution image sensor, encodes video data obtained by photographing, transmits an encoded stream obtained by encoding to the receiving terminal, and records the data on a recording medium. Then, the encoded stream recorded on the recording medium is transmitted to the receiving terminal based on an instruction from the user such as a retransmission request.
 特許文献1に記載のカメラ端末は、高解像度の撮像素子によって得られた映像データを低解像度の映像に変換することで、ネットワークの帯域の利用を抑制することができる。 The camera terminal described in Patent Document 1 can suppress the use of network bandwidth by converting video data obtained by a high-resolution image sensor into a low-resolution video.
特許第4148673号公報Japanese Patent No. 4148673
 しかしながら、上記従来技術に示される技術では、高解像度の撮像素子から読み出された映像データを処理するので、映像データの読み出し、並びに、映像データの符号化及び記録などの各処理に必要な消費電力が大きくなるという課題がある。 However, in the technology shown in the above prior art, since video data read from a high-resolution image sensor is processed, consumption necessary for each processing such as reading of video data and encoding and recording of video data is performed. There is a problem that electric power increases.
 そこで、本発明は、上記課題を解決するためになされたものであって、消費電力を低減することができるネットワークカメラ、及び当該ネットワークカメラを備える映像配信システムを提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object thereof is to provide a network camera capable of reducing power consumption and a video distribution system including the network camera.
 上記課題を解決するため、本発明に係るネットワークカメラは、撮像素子を有し、所定の駆動方式で前記撮像素子を駆動することで映像信号を生成する撮像部と、前記撮像部によって生成された映像信号を用いて、第1フレームレート及び第1解像度を有する低画質映像信号を生成する低画質映像信号生成部と、前記撮像部によって生成された映像信号を用いて、前記第1フレームレートより高い第2フレームレート、及び、前記第1解像度より高い第2解像度の少なくとも1つを有する第1高画質映像信号を生成する第1高画質映像信号生成部と、前記第1高画質映像信号をメモリに記録する記録部と、ネットワークを介して、前記低画質映像信号、及び、前記メモリに記録された第1高画質映像信号の少なくとも一方を受信端末へ送信する送信部とを備え、前記撮像部は、前記第1フレームレート以上のフレームレートを有する映像信号を取得するための第1駆動方式、及び、当該第1駆動方式で取得される映像信号よりフレームレート及び解像度の少なくとも1つが高い映像信号を取得するための第2駆動方式のいずれかを選択し、選択した駆動方式で前記撮像素子を駆動する。 In order to solve the above-described problem, a network camera according to the present invention includes an imaging device, and generates an image signal by driving the imaging device with a predetermined driving method. The network camera is generated by the imaging unit. Using the video signal, a low-quality video signal generation unit that generates a low-quality video signal having a first frame rate and a first resolution, and using the video signal generated by the imaging unit, the first frame rate A first high-quality video signal generating unit that generates a first high-quality video signal having at least one of a high second frame rate and a second resolution higher than the first resolution; and Transmitting to the receiving terminal at least one of the low-quality video signal and the first high-quality video signal recorded in the memory via a network and a recording unit that records in the memory A transmission unit, and the imaging unit is configured to acquire a video signal having a frame rate equal to or higher than the first frame rate, and a frame from the video signal acquired by the first drive method. One of the second drive methods for acquiring a video signal having at least one of a rate and a resolution is selected, and the image sensor is driven by the selected drive method.
 これにより、第1駆動方式の方が第2駆動方式よりも消費電力が少ないので、例えば、高画質な映像を必要とする場合以外は、第1駆動方式で撮像素子を駆動することで、消費電力を低減することができる。さらに、リアルタイムで生成される低画質映像信号、及び、メモリに記録された所定の期間だけ遅延した高画質映像信号のいずれかを受信端末に送信するので、受信端末側では、リアルタイムの映像、及び、所定の期間だけ過去に遡った映像のいずれかを視聴者は見ることができる。 As a result, the first drive method consumes less power than the second drive method, so that, for example, when the image pickup device is driven by the first drive method except when a high-quality image is required, Electric power can be reduced. Further, since either the low-quality video signal generated in real time or the high-quality video signal delayed by a predetermined period recorded in the memory is transmitted to the receiving terminal, the receiving terminal side receives the real-time video and The viewer can view any of the videos that have gone back in the past for a predetermined period.
 また、前記第2駆動方式は、前記第1駆動方式で取得される映像信号よりも解像度が高い映像信号を取得するための駆動方式であり、前記低画質映像信号生成部は、前記第1駆動方式で駆動された撮像素子から出力された映像信号を用いて、前記低画質映像信号を生成し、前記第1高画質映像信号生成部は、前記第2駆動方式で駆動された撮像素子から出力された映像信号を用いて、前記第1高画質映像信号を生成してもよい。 The second driving method is a driving method for acquiring a video signal having a higher resolution than the video signal acquired by the first driving method, and the low-quality video signal generation unit is configured to acquire the first driving method. The low-quality video signal is generated using the video signal output from the image sensor driven by the method, and the first high-quality video signal generator is output from the image sensor driven by the second drive method. The first high quality video signal may be generated using the processed video signal.
 これにより、低画質映像信号生成部は、消費電力の少ない第1駆動方式で駆動された撮像素子からの出力された映像信号を用いるので、高画質な映像を必要とする場合以外は、第1駆動方式で撮像素子を駆動することで、消費電力を低減することができる。 As a result, the low-quality video signal generation unit uses the video signal output from the imaging device driven by the first driving method with low power consumption. Power consumption can be reduced by driving the image sensor with the driving method.
 また、前記第2駆動方式は、前記第1駆動方式で取得される映像信号よりもフレームレートが高い映像信号を取得するための駆動方式であり、前記低画質映像信号生成部は、前記撮像素子が前記第2駆動方式で駆動されている場合には、当該撮像素子から出力された映像信号に含まれる複数の画像であって、前記第1フレームレートのタイミングの1つを含む所定の期間内に含まれる複数の画像から1枚の画像を選択することで、選択した画像を含む前記低画質映像信号を生成してもよい。 The second driving method is a driving method for acquiring a video signal having a higher frame rate than the video signal acquired by the first driving method, and the low image quality video signal generation unit is configured to acquire the image sensor. Is driven by the second drive method, a plurality of images included in the video signal output from the imaging device, and within a predetermined period including one of the timings of the first frame rate The low-quality video signal including the selected image may be generated by selecting one image from a plurality of images included in the image.
 これにより、所定の期間に含まれる複数の画像から1枚の画像を選択するので、蛍光灯などの脈流光の影響を受けていない画像を選択することができる。これにより、低画質映像信号の画質をより高めることができる。 Thereby, since one image is selected from a plurality of images included in a predetermined period, it is possible to select an image that is not affected by pulsating light such as a fluorescent lamp. As a result, the image quality of the low-quality video signal can be further improved.
 また、前記低画質映像信号生成部は、前記撮像素子が前記第2駆動方式で駆動されている場合には、当該撮像素子から出力された映像信号に含まれる複数の画像から、前記第1フレームレートのタイミングで1枚の画像を選択することで、選択した画像を含む前記低画質映像信号を生成してもよい。 In addition, when the image sensor is driven by the second drive method, the low-quality video signal generator generates the first frame from a plurality of images included in the video signal output from the image sensor. The low-quality video signal including the selected image may be generated by selecting one image at the rate timing.
 これにより、高フレームレートの映像から容易に低フレームレートの映像を生成することができる。 This makes it possible to easily generate a low frame rate video from a high frame rate video.
 また、前記低画質映像信号生成部は、前記撮像素子が前記第2駆動方式で駆動されている場合には、当該撮像素子から出力された映像信号に含まれる複数の画像であって、前記第1フレームレートのタイミングの1つを含む所定の期間内に含まれる複数の画像を加算することで1枚の画像を生成し、生成した画像を含む前記低画質映像信号を生成してもよい。 The low-quality video signal generation unit may include a plurality of images included in the video signal output from the image sensor when the image sensor is driven by the second drive method. One image may be generated by adding a plurality of images included in a predetermined period including one timing of one frame rate, and the low-quality video signal including the generated image may be generated.
 これにより、高フレームレートの映像から容易に低フレームレートの映像を生成することができる。 This makes it possible to easily generate a low frame rate video from a high frame rate video.
 また、前記ネットワークカメラは、さらに、前記第1高画質映像信号の記録を開始又は停止させる第1制御信号を前記受信端末から受信する制御部を備え、前記制御部は、前記第1制御信号を受信した場合、受信した第1制御信号に基づいて、前記記録部に前記記録を開始又は停止させてもよい。 The network camera further includes a control unit that receives, from the receiving terminal, a first control signal for starting or stopping recording of the first high-quality video signal, and the control unit receives the first control signal. If received, the recording unit may start or stop the recording based on the received first control signal.
 これにより、制御信号に基づいて記録の制御を行うことで、常に記録処理を行わなくて済むので、メモリ資源を有効に利用することができるとともに、記録処理に関わる消費電力を低減することができる。 As a result, since the recording process is not always performed by controlling the recording based on the control signal, the memory resource can be effectively used and the power consumption related to the recording process can be reduced. .
 また、前記ネットワークカメラは、さらに、前記低画質映像信号又は前記第1高画質映像信号の送信を開始又は停止させる第2制御信号を前記受信端末から受信する制御部を備え、前記制御部は、前記第2制御信号を受信した場合、受信した第2制御信号に基づいて、前記送信部に前記送信を開始又は停止させてもよい。 The network camera further includes a control unit that receives from the receiving terminal a second control signal that starts or stops transmission of the low-quality video signal or the first high-quality video signal. When the second control signal is received, the transmission unit may start or stop the transmission based on the received second control signal.
 これにより、制御信号に基づいて送信の制御を行うことで、例えば、視聴者が必要とする映像信号のみを送信することができ、送信処理に関わる消費電力を低減することができる。 Thus, by controlling the transmission based on the control signal, for example, only the video signal required by the viewer can be transmitted, and the power consumption related to the transmission process can be reduced.
 また、前記ネットワークカメラは、さらに、前記メモリに記録された第1高画質映像信号を消去させる第3制御信号を前記受信端末から受信する制御部を備え、前記制御部は、前記第3制御信号を受信した場合、前記メモリに記録された第1高画質映像信号の少なくとも一部を、前記記録部に消去させてもよい。 The network camera further includes a control unit that receives a third control signal for erasing the first high-quality video signal recorded in the memory from the receiving terminal, and the control unit includes the third control signal. May be received, the recording unit may erase at least a part of the first high-quality video signal recorded in the memory.
 これにより、メモリ資源を有効に利用することができる。 This makes it possible to use memory resources effectively.
 また、前記ネットワークカメラは、さらに、当該ネットワークカメラの撮影環境における異常を検出する異常検出部を備え、前記記録部は、前記異常検出部によって異常が検出された場合に、前記第1高画質映像信号の記録を開始してもよい。 The network camera further includes an abnormality detection unit that detects an abnormality in a shooting environment of the network camera, and the recording unit detects the first high-quality video when an abnormality is detected by the abnormality detection unit. Signal recording may be started.
 これにより、異常が検出された場合に自動的に記録を行うことができるので、常に映像を見ていなければならないなどの視聴者への負担を軽減することができる。 This makes it possible to automatically record when an abnormality is detected, thereby reducing the burden on the viewer such as having to always watch the video.
 また、前記異常検出部は、現在時刻が予め定められた所定の時刻に達したときを異常として検出してもよい。 Further, the abnormality detection unit may detect an abnormality when the current time reaches a predetermined time.
 これにより、例えば、夜間帯などの監視が必要な時間帯のみを記録することができる。 Thus, for example, it is possible to record only the time zone that needs to be monitored, such as a night time zone.
 また、前記ネットワークカメラは、さらに、前記メモリに記録された第1高画質映像信号の解像度、フレームレート、及びビットレートの少なくとも1つを変換し、変換された第1高画質映像信号を送信部に出力する映像変換部を備え、前記送信部は、さらに、前記映像変換部によって変換された第1高画質映像信号を前記受信端末に送信してもよい。 The network camera further converts at least one of a resolution, a frame rate, and a bit rate of the first high quality video signal recorded in the memory, and transmits the converted first high quality video signal to the transmission unit. And the transmission unit may further transmit the first high-quality video signal converted by the video conversion unit to the receiving terminal.
 これにより、例えば、ネットワークの利用可能な帯域が制限されている場合であっても、高画質映像信号の解像度、及びフレームレートなどを低くすることで、帯域を有効に利用して高画質映像信号を送信することができる。 As a result, for example, even when the available bandwidth of the network is limited, by reducing the resolution and frame rate of the high-quality video signal, the high-quality video signal can be used effectively by using the bandwidth. Can be sent.
 また、前記ネットワークカメラは、さらに、前記第2駆動方式で駆動された撮像素子から出力された映像信号に含まれる複数の画像を縮小し、縮小した複数の画像を1枚の画像として含む第2高画質映像信号に変換する第2高画質映像信号生成部を備え、前記送信部は、さらに、前記第2高画質映像信号生成部によって生成された第2高画質映像信号を前記受信端末に送信してもよい。 The network camera further reduces a plurality of images included in the video signal output from the image sensor driven by the second driving method, and includes a plurality of reduced images as one image. A second high-quality video signal generation unit that converts the high-quality video signal into a high-quality video signal; and the transmission unit further transmits the second high-quality video signal generated by the second high-quality video signal generation unit to the receiving terminal. May be.
 これにより、より時間的に詳細な、すなわち、時間精度の高い画像情報を得ることができる。したがって、例えば、視聴者がより容易に異常を検知することができる。 This makes it possible to obtain image information that is more detailed in time, that is, with high time accuracy. Therefore, for example, the viewer can more easily detect an abnormality.
 また、前記送信部は、前記第2高画質映像信号を送信する場合に、前記低画質映像信号の送信を停止してもよい。 The transmitting unit may stop transmitting the low-quality video signal when transmitting the second high-quality video signal.
 これにより、ネットワークの帯域を有効に利用することができる。 This makes it possible to use the network bandwidth effectively.
 また、前記送信部は、前記低画質映像信号、前記第1高画質映像信号、及び前記第2高画質映像信号のいずれかを送信してもよい。 Further, the transmission unit may transmit any of the low-quality video signal, the first high-quality video signal, and the second high-quality video signal.
 これにより、ネットワークの帯域を有効に利用することができる。 This makes it possible to use the network bandwidth effectively.
 また、前記送信部は、前記記録部に記録された第1高画質映像信号の一部を前記低画質映像信号とともに、前記第1高画質映像信号のみを送信する場合より低い転送レートで送信してもよい。 The transmitting unit transmits a part of the first high quality video signal recorded in the recording unit together with the low quality video signal at a lower transfer rate than when transmitting only the first high quality video signal. May be.
 これにより、ネットワークの帯域を有効に利用することができる。 This makes it possible to use the network bandwidth effectively.
 また、前記記録部は、前記メモリとして、前記ネットワークとは異なるネットワークを介して接続された外部の記録装置に前記第1高画質映像信号を記録してもよい。 In addition, the recording unit may record the first high-quality video signal as an external recording device connected via a network different from the network as the memory.
 これにより、例えば、ネットワークカメラが盗難又は破壊された場合であっても、撮影された映像を他の記録装置に記録しておくことができるので、映像の紛失を防止することができる。 Thereby, for example, even if the network camera is stolen or destroyed, the captured video can be recorded in another recording device, so that loss of the video can be prevented.
 また、本発明は、映像配信システムとしても実現することができ、本発明に係る映像配信システムは、上記ネットワークカメラと、前記ネットワークを介して、前記ネットワークカメラから前記低画質映像信号及び前記第1高画質映像信号を受信し、受信した低画質映像信号及び第1高画質映像信号の少なくとも一方から得られる映像を表示する受信端末とを備える。 The present invention can also be realized as a video distribution system. The video distribution system according to the present invention includes the network camera, the low-quality video signal and the first signal from the network camera via the network. A receiving terminal for receiving a high-quality video signal and displaying a video obtained from at least one of the received low-quality video signal and the first high-quality video signal;
 これにより、視聴者は、ネットワークカメラが設置された場所から遠く離れた場所で、撮影された映像を確認することができるとともに、上記のようにネットワークカメラの消費電力を低減することができる。 This allows the viewer to check the captured video at a location far from the location where the network camera is installed, and to reduce the power consumption of the network camera as described above.
 本発明に係るネットワークカメラ及び映像配信システムによれば、消費電力を低減することができる。 The network camera and video distribution system according to the present invention can reduce power consumption.
図1は、実施の形態1に係る映像配信システムの構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a configuration of a video distribution system according to the first embodiment. 図2は、実施の形態1に係るネットワークカメラが備えるDSPの構成の一例を示すブロック図である。FIG. 2 is a block diagram illustrating an example of a configuration of a DSP included in the network camera according to the first embodiment. 図3は、従来の映像配信システムにおける低画質ビットストリーム及び高画質ビットストリームの生成の様子を示す図である。FIG. 3 is a diagram illustrating how low-quality bit streams and high-quality bit streams are generated in a conventional video distribution system. 図4は、実施の形態1に係る映像配信システムにおける低画質ビットストリーム及び高画質ビットストリームの生成の様子の一例を示す図である。FIG. 4 is a diagram illustrating an example of how low-quality bitstreams and high-quality bitstreams are generated in the video distribution system according to Embodiment 1. 図5は、実施の形態1に係る映像配信システムにおける低画質ビットストリーム及び高画質ビットストリームの生成の様子の一例を示す図である。FIG. 5 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to the first embodiment. 図6は、実施の形態1に係る映像配信システムにおける低画質ビットストリーム及び高画質ビットストリームの生成の様子の一例を示す図である。FIG. 6 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to Embodiment 1. 図7は、実施の形態1に係る映像配信システムにおける低画質ビットストリーム及び高画質ビットストリームの生成の様子の一例を示す図である。FIG. 7 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to the first embodiment. 図8は、実施の形態1に係る映像配信システムにおける低画質ビットストリーム及び高画質ビットストリームの生成の様子の一例を示す図である。FIG. 8 is a diagram illustrating an example of how a low-quality bitstream and a high-quality bitstream are generated in the video distribution system according to the first embodiment. 図9は、実施の形態2に係る映像配信システムの構成の一例を示すブロック図である。FIG. 9 is a block diagram illustrating an example of a configuration of the video distribution system according to the second embodiment. 図10は、実施の形態2に係る映像配信システムにおける高画質ビットストリームの変換の様子の一例を示す図である。FIG. 10 is a diagram illustrating an example of a state of conversion of a high-quality bitstream in the video distribution system according to the second embodiment. 図11は、実施の形態3に係る映像配信システムの構成の一例を示すブロック図である。FIG. 11 is a block diagram illustrating an example of a configuration of a video distribution system according to the third embodiment. 図12は、実施の形態3に係る映像配信システムにおける画像の取り込みタイミングの一例を示す図である。FIG. 12 is a diagram illustrating an example of an image capture timing in the video distribution system according to the third embodiment. 図13は、実施の形態3に係る映像配信システムにおける画像の取り込みサイズの一例を示す図である。FIG. 13 is a diagram illustrating an example of an image capture size in the video distribution system according to the third embodiment. 図14は、実施の形態4に係る映像配信システムの構成の一例を示すブロック図である。FIG. 14 is a block diagram illustrating an example of a configuration of a video distribution system according to the fourth embodiment.
 以下、本発明に係るネットワークカメラ及び映像配信システムの実施の形態について、図面を用いて説明する。 Hereinafter, an embodiment of a network camera and a video distribution system according to the present invention will be described with reference to the drawings.
 (実施の形態1)
 実施の形態1に係るネットワークカメラは、撮像素子を有し、所定の駆動方式で当該撮像素子を駆動することで映像信号を生成する撮像部と、撮像部によって生成された映像信号を用いて、第1フレームレート及び第1解像度を有する低画質映像信号を生成する低画質映像信号生成部と、撮像部によって生成された映像信号を用いて、第1フレームレートより高い第2フレームレート、及び、第1解像度より高い第2解像度の少なくとも1つを有する第1高画質映像信号を生成する高画質映像信号生成部と、高画質映像信号をメモリに記録する記録部と、ネットワークを介して、低画質映像信号、及び、メモリに記録された高画質映像信号の少なくとも一方を受信端末へ送信する送信部とを備え、撮像部は、第1フレームレート以上のフレームレートを有する映像信号を取得するための第1駆動方式、及び、当該第1駆動方式で取得される映像信号よりフレームレート及び解像度の少なくとも1つが高い映像信号を取得するための第2駆動方式のいずれかを選択し、選択した駆動方式で撮像素子を駆動することを特徴とする。以下では、まず、本実施の形態に係るネットワークカメラの構成の一例について説明する。
(Embodiment 1)
The network camera according to Embodiment 1 includes an imaging device, and uses an imaging unit that generates a video signal by driving the imaging device with a predetermined driving method, and a video signal generated by the imaging unit, A low-quality video signal generating unit that generates a low-quality video signal having a first frame rate and a first resolution, a video signal generated by the imaging unit, a second frame rate that is higher than the first frame rate, and A high-quality video signal generation unit that generates a first high-quality video signal having at least one second resolution higher than the first resolution, a recording unit that records the high-quality video signal in a memory, A transmission unit that transmits at least one of the high-quality video signal and the high-quality video signal recorded in the memory to the receiving terminal. A first driving method for acquiring a video signal having a rate, and a second driving method for acquiring a video signal having at least one of a frame rate and a resolution higher than that of the video signal acquired by the first driving method. One of them is selected, and the image pickup device is driven by the selected driving method. Hereinafter, an example of the configuration of the network camera according to the present embodiment will be described first.
 図1は、実施の形態1に係る映像配信システム10の構成の一例を示すブロック図である。図1に示すように、映像配信システム10は、カメラ100と、受信端末120とを備える。カメラ100と受信端末120とは、ネットワーク130によって接続されている。 FIG. 1 is a block diagram illustrating an example of the configuration of the video distribution system 10 according to the first embodiment. As shown in FIG. 1, the video distribution system 10 includes a camera 100 and a receiving terminal 120. The camera 100 and the receiving terminal 120 are connected by a network 130.
 カメラ100は、撮像により映像信号を取得し、ネットワーク130を介して映像信号を受信端末120に送信するネットワークカメラの一例である。図1に示すように、カメラ100は、撮影光学系101と、撮像素子102と、DSP(Digital Signal Processor)103と、制御部104と、映像信号生成部105及び106と、送信部107及び108と、記録部109と、操作ボタン110とを備える。 The camera 100 is an example of a network camera that acquires a video signal by imaging and transmits the video signal to the receiving terminal 120 via the network 130. As shown in FIG. 1, the camera 100 includes a photographing optical system 101, an image sensor 102, a DSP (Digital Signal Processor) 103, a control unit 104, video signal generation units 105 and 106, and transmission units 107 and 108. A recording unit 109 and an operation button 110.
 なお、撮影光学系101、撮像素子102及びDSP103が、本発明に係る撮像部に相当する。撮像部は、主に低画質映像を取得するための第1駆動方式、及び、主に高画質映像を取得するための第2駆動方式のいずれかを選択し、選択した駆動方式で撮像素子102を駆動することで映像信号を生成する。ここで、高画質映像とは、フレームレート及び解像度の少なくとも一方が、低画質映像のフレームレート及び解像度より高い映像である。 Note that the photographing optical system 101, the image sensor 102, and the DSP 103 correspond to an image capturing unit according to the present invention. The imaging unit selects either the first driving method for mainly acquiring low-quality images or the second driving method for mainly acquiring high-quality images, and the image sensor 102 is selected by the selected driving method. To generate a video signal. Here, the high-quality video is a video in which at least one of the frame rate and the resolution is higher than the frame rate and the resolution of the low-quality video.
 撮影光学系101は、被写体からの光を集光することで、撮像素子102上で光を結像させる光学レンズ及び絞りなどの光学系である。 The photographing optical system 101 is an optical system such as an optical lens and a diaphragm that focuses light from a subject to form an image of light on the image sensor 102.
 撮像素子102は、光を電気信号に変換するフォトダイオードなどの光電変換素子を備えるイメージセンサである。例えば、撮像素子102は、CCD(Charge Coupled Device)センサ、又はCMOS(Complementary Metal Oxide Semiconductor)センサなどである。撮像素子102は、DSP103から供給される駆動信号に基づいて、被写体像を電気信号に変換し、変換した電気信号をDSP103に出力する。 The image sensor 102 is an image sensor including a photoelectric conversion element such as a photodiode that converts light into an electrical signal. For example, the image sensor 102 is a CCD (Charge Coupled Device) sensor, a CMOS (Complementary Metal Oxide Semiconductor) sensor, or the like. The image sensor 102 converts the subject image into an electrical signal based on the drive signal supplied from the DSP 103, and outputs the converted electrical signal to the DSP 103.
 DSP103は、撮像素子102から入力される電気信号に対して、AD変換処理、及び、ゲイン補正などの画像処理を行うことで映像信号を生成し、生成した映像信号を映像信号生成部105及び106に出力する。また、DSP103は、複数の駆動方式から1つを選択し、選択した駆動方式で撮像素子102を駆動する。例えば、図2に示すように、DSP103は、第1駆動信号生成部1031と、第2駆動信号生成部1032と、スイッチ1033とを備える。 The DSP 103 generates a video signal by performing image processing such as AD conversion processing and gain correction on the electric signal input from the image sensor 102, and generates the generated video signal as video signal generation units 105 and 106. Output to. Further, the DSP 103 selects one of a plurality of driving methods and drives the image sensor 102 with the selected driving method. For example, as illustrated in FIG. 2, the DSP 103 includes a first drive signal generation unit 1031, a second drive signal generation unit 1032, and a switch 1033.
 なお、図2は、実施の形態1に係るカメラ100が備えるDSP103の構成の一例を示すブロック図である。図2には、DSP103の駆動信号の生成に関わる処理部のみを示しており、撮像素子102から出力された電気信号から映像信号を生成する処理部については示していない。 FIG. 2 is a block diagram showing an example of the configuration of the DSP 103 provided in the camera 100 according to the first embodiment. FIG. 2 shows only a processing unit related to generation of the drive signal of the DSP 103, and does not show a processing unit that generates a video signal from the electrical signal output from the image sensor 102.
 第1駆動信号生成部1031は、低解像度及び低フレームレートの少なくとも1つを有する低画質映像信号を生成するための駆動信号Lを生成する。上記の第1駆動方式は、駆動信号Lが供給されたときの撮像素子102の駆動方式である。より具体的には、第1駆動方式は、第1フレームレート以上のフレームレート及び第1解像度以上の解像度を有する映像信号を取得するための駆動方式である。なお、第1フレームレート及び第1解像度は、映像信号生成部105が生成する映像信号のフレームレート及び解像度である。 The first drive signal generator 1031 generates a drive signal L for generating a low-quality video signal having at least one of low resolution and low frame rate. The first driving method is a driving method of the image sensor 102 when the driving signal L is supplied. More specifically, the first driving method is a driving method for acquiring a video signal having a frame rate equal to or higher than the first frame rate and a resolution equal to or higher than the first resolution. The first frame rate and the first resolution are the frame rate and the resolution of the video signal generated by the video signal generation unit 105.
 第2駆動信号生成部1032は、高解像度及び高フレームレートの少なくとも1つを有する高画質映像信号を生成するための駆動信号Hを生成する。上記の第2駆動方式は、駆動信号Hが供給されたときの撮像素子102の駆動方式である。より具体的には、第2駆動方式は、第2フレームレート以上のフレームレート及び第2解像度以上の解像度を有する映像信号を取得するための駆動方式である。なお、第2フレームレート及び第2解像度は、映像信号生成部106が生成する映像信号のフレームレート及び解像度である。 The second drive signal generator 1032 generates a drive signal H for generating a high-quality video signal having at least one of high resolution and high frame rate. The second driving method is a driving method of the image sensor 102 when the driving signal H is supplied. More specifically, the second driving method is a driving method for acquiring a video signal having a frame rate equal to or higher than the second frame rate and a resolution equal to or higher than the second resolution. The second frame rate and the second resolution are the frame rate and the resolution of the video signal generated by the video signal generation unit 106.
 スイッチ1033は、制御部104からの制御に基づいて、駆動信号L及び駆動信号Hのいずれか一方を選択し、選択した駆動信号を撮像素子102に出力する。 The switch 1033 selects one of the drive signal L and the drive signal H based on the control from the control unit 104 and outputs the selected drive signal to the image sensor 102.
 以上のように、DSP103は、スイッチ1033によって駆動信号L及び駆動信号Hのいずれか一方を選択することで、撮像素子102の駆動方式を選択する。なお、第2駆動方式で駆動された撮像素子102からは、第1駆動方式で駆動された撮像素子102から出力される映像より、フレームレート及び解像度の少なくとも1つが高い映像が出力される。 As described above, the DSP 103 selects the drive method of the image sensor 102 by selecting either the drive signal L or the drive signal H using the switch 1033. Note that an image having at least one of a frame rate and a resolution higher than an image output from the image sensor 102 driven by the first drive method is output from the image sensor 102 driven by the second drive method.
 制御部104は、カメラ100の全体の制御を行う。例えば、制御部104は、撮像素子102の駆動方式を選択する。さらに、制御部104は、操作ボタン110から、又は、ネットワーク130を介して受信端末120から制御信号を受信し、受信した制御信号に応じて、各処理部を制御する。制御信号は、例えば、駆動信号の切り替え、記録の開始及び終了、並びに、送信の開始及び終了などを示す信号である。 The control unit 104 performs overall control of the camera 100. For example, the control unit 104 selects a driving method for the image sensor 102. Furthermore, the control unit 104 receives a control signal from the operation button 110 or from the receiving terminal 120 via the network 130, and controls each processing unit according to the received control signal. The control signal is a signal indicating, for example, switching of drive signals, start and end of recording, start and end of transmission, and the like.
 映像信号生成部105は、撮像部によって生成された映像信号を用いて、第1フレームレート及び第1解像度を有する低画質映像信号を生成する低画質映像信号生成部の一例である。本実施の形態では、撮像素子102が駆動信号Lに基づいて駆動されたときにDSP103が出力する映像信号が、第1フレームレート及び第1解像度を有する映像信号であり、映像信号生成部105は、当該映像信号を圧縮符号化することで、低画質のビットストリーム(以下、低画質ビットストリームBLと記載)を低画質映像信号として生成する。なお、DSP103が出力する映像信号が、第1フレームレート及び第1解像度より高いフレームレート及び解像度を有する場合、映像信号生成部105は、当該映像信号に含まれる画像(フレーム)を間引くことで、又は、変倍することで、第1フレームレート及び第1解像度を有する低画質映像信号を生成する。 The video signal generation unit 105 is an example of a low quality video signal generation unit that generates a low quality video signal having a first frame rate and a first resolution using the video signal generated by the imaging unit. In the present embodiment, the video signal output from the DSP 103 when the image sensor 102 is driven based on the drive signal L is a video signal having a first frame rate and a first resolution. By compressing and encoding the video signal, a low-quality bit stream (hereinafter referred to as a low-quality bit stream BL) is generated as a low-quality video signal. When the video signal output from the DSP 103 has a frame rate and resolution higher than the first frame rate and the first resolution, the video signal generation unit 105 thins out an image (frame) included in the video signal, Alternatively, a low-quality video signal having a first frame rate and a first resolution is generated by scaling.
 例えば、映像信号生成部105は、国際標準規格であるMPEG(Moving Picture Expert Group)に準拠した方式などに基づいて、撮像部によって生成された映像信号を高圧縮率で圧縮符号化し、低ビットレートの、したがって、低画質ビットストリームBLを生成する。生成した低画質ビットストリームBLは、送信部107に出力される。 For example, the video signal generation unit 105 compresses and encodes the video signal generated by the imaging unit at a high compression rate based on a method conforming to MPEG (Moving Picture Expert Group) which is an international standard, and has a low bit rate. Therefore, a low quality bitstream BL is generated. The generated low image quality bit stream BL is output to the transmission unit 107.
 送信部107は、ネットワーク130を介して、映像信号生成部105によって生成された低画質ビットストリームBLを外部の受信端末120に送信する。 The transmitting unit 107 transmits the low image quality bit stream BL generated by the video signal generating unit 105 to the external receiving terminal 120 via the network 130.
 映像信号生成部106は、撮像部によって生成された映像信号を用いて、第1フレームレートより高い第2フレームレート及び第1解像度より高い第2解像度の少なくとも1つを有する高画質映像信号を生成する高画質映像信号生成部の一例である。本実施の形態では、撮像素子102が駆動信号Hに基づいて駆動されたときのDSP103が出力する映像信号が、第2フレームレート及び第2解像度を有する映像信号であり、映像信号生成部106は、当該映像信号を圧縮符号化することで、高画質のビットストリーム(以下、高画質ビットストリームBHと記載)を高画質映像信号として生成する。なお、DSP103が出力する映像信号が、第2フレームレート及び第2解像度より高いフレームレート及び解像度を有する場合、映像信号生成部106は、当該映像信号に含まれる画像(フレーム)を間引くことで、又は、変倍することで、第2フレームレート及び第2解像度を有する高画質映像信号を生成する。 The video signal generation unit 106 generates a high-quality video signal having at least one of a second frame rate higher than the first frame rate and a second resolution higher than the first resolution, using the video signal generated by the imaging unit. This is an example of a high-quality video signal generation unit. In the present embodiment, the video signal output from the DSP 103 when the image sensor 102 is driven based on the drive signal H is a video signal having the second frame rate and the second resolution, and the video signal generation unit 106 By compressing and encoding the video signal, a high-quality bit stream (hereinafter referred to as a high-quality bit stream BH) is generated as a high-quality video signal. When the video signal output from the DSP 103 has a frame rate and resolution higher than the second frame rate and the second resolution, the video signal generation unit 106 thins out an image (frame) included in the video signal, Alternatively, the high-resolution video signal having the second frame rate and the second resolution is generated by scaling.
 例えば、映像信号生成部106は、MPEGに準拠した方式などに基づいて、撮像部によって生成された映像信号を低圧縮率で圧縮符号化し、高ビットレートの、したがって、高画質ビットストリームBHを生成する。生成した高画質ビットストリームBHは、記録部109に出力される。 For example, the video signal generation unit 106 compresses and encodes the video signal generated by the imaging unit at a low compression rate based on an MPEG-compliant method or the like, and generates a high bit rate, and thus a high-quality bit stream BH. To do. The generated high-quality bitstream BH is output to the recording unit 109.
 記録部109は、例えば、半導体メモリなどの記憶部を有し、記録と同時に再生も行うことができる。具体的には、記録部109は、映像信号生成部106から供給される高画質ビットストリームBHを順次、半導体メモリに記録するとともに、記録時点よりも所定の時間Tだけ前に記録された部分を半導体メモリから読み出して送信部108に送信する(再生処理)。したがって、記録部109からは高画質ビットストリームBHが所定の時間Tだけ遅延されて再生される。 The recording unit 109 includes, for example, a storage unit such as a semiconductor memory, and can also be played back simultaneously with recording. Specifically, the recording unit 109 sequentially records the high-quality bit stream BH supplied from the video signal generation unit 106 in the semiconductor memory, and also records a portion recorded a predetermined time T before the recording time point. The data is read from the semiconductor memory and transmitted to the transmission unit 108 (reproduction processing). Accordingly, the high-quality bit stream BH is reproduced from the recording unit 109 with a delay of the predetermined time T.
 送信部108は、ネットワーク130を介して、記録部109から入力される時間Tだけ遅延した高画質ビットストリームBHを、外部の受信端末120に送信する。 The transmitting unit 108 transmits the high-quality bit stream BH delayed by the time T input from the recording unit 109 to the external receiving terminal 120 via the network 130.
 操作ボタン110は、ユーザからの指示を受け付ける受付部の一例であって、受け付けたユーザからの指示を制御信号として制御部104に供給する。 The operation button 110 is an example of a receiving unit that receives an instruction from the user, and supplies the received instruction from the user to the control unit 104 as a control signal.
 以上のように、実施の形態1に係るカメラ100は、異なる駆動方式で撮像素子102を駆動することができる。具体的には、低画質映像を取得するための第1駆動方式と、高画質映像を取得するための第2駆動方式とのいずれかを選択し、選択した駆動方式で撮像素子102を駆動する。第1駆動方式の方が第2駆動方式よりも消費電力が少ないので、例えば、高画質な映像を必要とする場合以外は、第1駆動方式で撮像素子102を駆動することで、消費電力を低減することができる。 As described above, the camera 100 according to Embodiment 1 can drive the image sensor 102 by different driving methods. Specifically, either the first driving method for acquiring a low-quality image or the second driving method for acquiring a high-quality image is selected, and the image sensor 102 is driven by the selected driving method. . Since the first drive method consumes less power than the second drive method, for example, when the image sensor 102 is driven by the first drive method, the power consumption is reduced except when a high-quality image is required. Can be reduced.
 なお、記録部109は、半導体メモリに先頭アドレスから順に高画質ビットストリームBHを記録していくが、所定の時間T分の記録がなされると、その記録容量分の記録がなされたことになって、先頭アドレスから再び記録が行われることになり、既に記録されている内容が書き替えられることになる。また、上述したように、記録されたビットストリームは、所定の時間Tだけ遅れて再生される。 The recording unit 109 records the high-quality bitstream BH in order from the top address in the semiconductor memory. When recording for a predetermined time T is performed, recording for the recording capacity is performed. Thus, recording is performed again from the head address, and the already recorded contents are rewritten. Further, as described above, the recorded bit stream is reproduced with a delay of a predetermined time T.
 このようにして、常時記録が行われるとともに、所定の時間Tだけ遅延された高画質のビットストリームが再生されることになる。この場合、記録部109は、所定の時間Tよりも若干長い時間の高画質ビットストリームを記録できる容量のメモリを備えていればよい。 In this way, recording is always performed and a high-quality bit stream delayed by a predetermined time T is reproduced. In this case, the recording unit 109 only needs to include a memory having a capacity capable of recording a high-quality bitstream that is slightly longer than the predetermined time T.
 なお、この所定の時間Tは、適宜任意に設定することができるが、例えば、本実施の形態の映像配信システム10を監視カメラシステムに適用する場合には、注意を喚起させる場面よりもある程度前に遡った場面から高画質映像が見られるような時間にすることが好ましい。このことは、後述する他の実施の形態においても、同様である。 The predetermined time T can be arbitrarily set as appropriate. For example, when the video distribution system 10 according to the present embodiment is applied to a surveillance camera system, the predetermined time T is some time before a scene to call attention. It is preferable to set the time so that a high-quality video can be seen from a scene that dates back to. The same applies to other embodiments described later.
 続いて、図1に示す受信端末120の構成について説明する。 Subsequently, the configuration of the receiving terminal 120 shown in FIG. 1 will be described.
 受信端末120は、カメラ100からネットワーク130を介して送信される映像信号(低画質ビットストリームBL及び高画質ビットストリームBH)を受信し、映像を表示部に表示させる受像機の一例である。受信端末120は、ネットワーク130を介して送信されるビットストリームを受信する。図1に示すように、受信端末120は、デコーダ121と、コントローラ122と、表示部123とを備える。 The receiving terminal 120 is an example of a receiver that receives a video signal (a low-quality bitstream BL and a high-quality bitstream BH) transmitted from the camera 100 via the network 130 and displays the video on a display unit. The receiving terminal 120 receives a bit stream transmitted via the network 130. As shown in FIG. 1, the receiving terminal 120 includes a decoder 121, a controller 122, and a display unit 123.
 デコーダ121は、受信したビットストリームをデコードすることで、元の映像信号を復元する。復元された映像信号は、表示部123に供給される。なお、デコーダ121は、例えば、低画質ビットストリームBLと高画質ビットストリームBHとの両方を受信した場合は、両方ともデコードしてもよい。 The decoder 121 restores the original video signal by decoding the received bit stream. The restored video signal is supplied to the display unit 123. For example, when the decoder 121 receives both the low image quality bit stream BL and the high image quality bit stream BH, the decoder 121 may decode both.
 表示部123は、デコーダ121から入力された映像信号に基づいて、映像を表示する。なお、表示部123は、デコーダ121から複数の映像信号が入力された場合、いずれか一方のみを表示してもよく、あるいは、両方ともを表示してもよい。例えば、表示部123は、複数のモニタを有し、各モニタに映像信号のそれぞれを表示させてもよく、1つのモニタを複数の領域に分割し、分割した領域のそれぞれに映像信号を表示させてもよい。 The display unit 123 displays video based on the video signal input from the decoder 121. Note that when a plurality of video signals are input from the decoder 121, the display unit 123 may display only one of them, or may display both. For example, the display unit 123 may include a plurality of monitors, and each monitor may display each of the video signals. One monitor may be divided into a plurality of areas, and the video signals may be displayed in each of the divided areas. May be.
 コントローラ122は、受信端末120の全体の制御を行うとともに、視聴者からの指示を受け付ける。コントローラ122は、受け付けた視聴者からの指示を制御信号として制御部104に供給する。 The controller 122 controls the entire receiving terminal 120 and accepts instructions from the viewer. The controller 122 supplies the received instruction from the viewer to the control unit 104 as a control signal.
 ここで、カメラ100のユーザ、及び、受信端末120の表示部123に表示される映像を見ている視聴者からの指示の具体例について説明する。 Here, a specific example of instructions from the user of the camera 100 and the viewer watching the video displayed on the display unit 123 of the receiving terminal 120 will be described.
 例えば、低画質ビットストリームBLに含まれる低画質映像を表示部123が表示している場合において、視聴者の注意を喚起する場面が表示され、視聴者が再度この場面を見たい場合を想定する。この場合、視聴者が受信端末120側のリモコンなどで第1の操作(以下、再送の操作と記載)をすると、コントローラ122は、切替制御信号を生成し、ネットワーク130を介して、生成した切替制御信号をカメラ100に送信する。 For example, in the case where the display unit 123 displays a low-quality video included in the low-quality bitstream BL, it is assumed that a scene that alerts the viewer is displayed and the viewer wants to view this scene again. . In this case, when the viewer performs a first operation (hereinafter referred to as a retransmission operation) with a remote controller or the like on the receiving terminal 120 side, the controller 122 generates a switching control signal, and the generated switching via the network 130. A control signal is transmitted to the camera 100.
 カメラ100では、制御部104が切替制御信号を受信し、高画質ビットストリームBHを送信するように送信部108を制御する。送信部108は、記録部109に記録された高画質ビットストリームBHを、ネットワーク130を介して受信端末120に配信する。 In the camera 100, the control unit 104 receives the switching control signal, and controls the transmission unit 108 to transmit the high-quality bitstream BH. The transmission unit 108 distributes the high-quality bit stream BH recorded in the recording unit 109 to the reception terminal 120 via the network 130.
 受信端末120は、高画質ビットストリームBHを受信し、デコーダ121が高画質ビットストリームBHをデコードすることで、高画質の映像信号を復元する。復元された高画質の映像信号は、表示部123に供給される。表示部123は、デコーダ121から入力された映像信号に基づいて、高画質の映像を表示する。 The receiving terminal 120 receives the high-quality bitstream BH, and the decoder 121 decodes the high-quality bitstream BH, thereby restoring a high-quality video signal. The restored high-quality video signal is supplied to the display unit 123. The display unit 123 displays a high-quality video based on the video signal input from the decoder 121.
 なお、制御部104は、切替制御信号によって送信部107からの低画質ビットストリームBLの送信を停止させてもよい。これにより、ネットワーク130の帯域を有効に利用することができる。 Note that the control unit 104 may stop the transmission of the low-quality bitstream BL from the transmission unit 107 by a switching control signal. Thereby, the bandwidth of the network 130 can be used effectively.
 逆に、制御部104は、送信部108からの高画質ビットストリームBHの送信と、送信部107からの低画質ビットストリームBLの送信との両方を行わせてもよい。これにより、受信端末120では、高画質ビットストリームBHから得られる所定の時間Tだけ遅延した高画質な画像を表示させるとともに、低画質ビットストリームBLから得られるリアルタイムの映像も表示させることができる。 Conversely, the control unit 104 may cause both transmission of the high-quality bitstream BH from the transmission unit 108 and transmission of the low-quality bitstream BL from the transmission unit 107. As a result, the receiving terminal 120 can display a high-quality image delayed from the high-quality bitstream BH by a predetermined time T, and can also display a real-time video obtained from the low-quality bitstream BL.
 また、視聴者が、受信端末120側のリモコン、又は操作ボタン110で第2の操作(以下、記録の操作と記載)をすると、制御部104は、高画質ビットストリームBHの記録を開始させる制御信号を受信し、映像信号生成部106及び記録部109に記録を開始させる。つまり、映像信号生成部106及び記録部109が動作をし、高画質ビットストリームBHが、記録部109が備えるメモリに記録される。 In addition, when the viewer performs a second operation (hereinafter referred to as a recording operation) with the remote controller on the receiving terminal 120 side or the operation button 110, the control unit 104 performs control to start recording of the high-quality bitstream BH. The signal is received, and the video signal generation unit 106 and the recording unit 109 start recording. That is, the video signal generation unit 106 and the recording unit 109 operate, and the high-quality bit stream BH is recorded in the memory included in the recording unit 109.
 さらに、視聴者が、第3の操作(以下、記録終了の操作と記載)をすると、制御部104は、高画質ビットストリームBHの記録を停止させる制御信号を受信し、映像信号生成部106及び記録部109に記録を停止させる。つまり、映像信号生成部106及び記録部109の動作が停止する。 Furthermore, when the viewer performs a third operation (hereinafter referred to as a recording end operation), the control unit 104 receives a control signal for stopping the recording of the high-quality bitstream BH, and receives the video signal generation unit 106 and The recording unit 109 stops the recording. That is, the operations of the video signal generation unit 106 and the recording unit 109 are stopped.
 さらに、視聴者が、第4の操作(以下、消去の操作と記載)をすると、制御部104は、メモリに記録された高画質ビットストリームBHを消去させる制御信号を受信し、記録部109に高画質ビットストリームBHを消去させる。これにより、任意のタイミングで高画質ビットストリームBHを消去することが可能となり、メモリ資源を有効に利用することができる。 Further, when the viewer performs a fourth operation (hereinafter referred to as an erasing operation), the control unit 104 receives a control signal for erasing the high-quality bitstream BH recorded in the memory, and the recording unit 109 receives the control signal. The high-quality bit stream BH is deleted. As a result, the high-quality bitstream BH can be erased at an arbitrary timing, and memory resources can be used effectively.
 このように、記録の開始及び終了をユーザ又は視聴者からの指示に基づいて制御することで、高画質ビットストリームBHの記録を常に行わなくてよいので、メモリの容量が不足することを防止することができる。また、記録されたデータの消去も同様にユーザ又は視聴者からの指示に基づいて制御することで、メモリの容量が不足することを防止することができる。 In this way, by controlling the start and end of recording based on an instruction from the user or the viewer, it is not always necessary to record the high-quality bitstream BH, thus preventing a shortage of memory capacity. be able to. Similarly, erasure of recorded data can be controlled based on an instruction from a user or a viewer to prevent the memory capacity from being insufficient.
 実施の形態1に係る映像配信システム10では、記録部109から再生される高画質ビットストリームBHは、映像信号生成部105から出力されて配信されていた低画質ビットストリームBLよりも時間Tだけ遅延されたビットストリームである。したがって、受信端末120での表示部123では、現時点よりも時間Tだけ遡った時点からの高画質の映像が表示開始される。すなわち、記録再生装置からの巻き戻し再生と同様の効果が高画質の映像でもって得られることになるので、視聴者の注意を喚起した場面が再度、高画質で表示させることができる。 In the video distribution system 10 according to Embodiment 1, the high-quality bit stream BH reproduced from the recording unit 109 is delayed by the time T from the low-quality bit stream BL output from the video signal generation unit 105 and distributed. Bitstream. Therefore, the display unit 123 of the receiving terminal 120 starts displaying high-quality video from the time point that is earlier by the time T than the current time point. That is, the same effect as the rewind reproduction from the recording / reproducing apparatus can be obtained with the high-quality video, so that the scene that has attracted the viewer's attention can be displayed again with the high quality.
 以下では、実施の形態1に係るカメラ100の動作について、例を挙げながら説明する。まず、比較のため、従来の撮像装置の動作について説明する。 Hereinafter, the operation of the camera 100 according to Embodiment 1 will be described with an example. First, the operation of a conventional imaging device will be described for comparison.
 図3は、従来の低画質ビットストリームBL及び高画質ビットストリームBHの生成の様子を示す図である。従来においては、撮像素子102が、常に同じ駆動信号(撮像素子102から得られる解像度が一定となるように予め決められた駆動信号)で動作している。 FIG. 3 is a diagram illustrating how the conventional low-quality bitstream BL and high-quality bitstream BH are generated. Conventionally, the image sensor 102 always operates with the same drive signal (a drive signal determined in advance so that the resolution obtained from the image sensor 102 is constant).
 低画質ビットストリームBLは、所定の間隔で得た撮像素子102からの映像信号を符号化することで生成される。高画質ビットストリームBHは、低画質ビットストリームBLよりも高いフレームレートで撮像素子102からの映像信号を符号化することで生成される。ここで、低画質ビットストリームBLは、撮像素子から得た映像信号に含まれる画像を変倍するなどして低解像度化することもある。 The low image quality bit stream BL is generated by encoding a video signal from the image sensor 102 obtained at a predetermined interval. The high-quality bit stream BH is generated by encoding the video signal from the image sensor 102 at a higher frame rate than the low-quality bit stream BL. Here, the low-quality bitstream BL may be reduced in resolution by scaling the image included in the video signal obtained from the image sensor.
 このように、従来は、撮像素子102の駆動方式を変更することができず、例えば、低画質ビットストリームBLのみが必要とされる場合であっても、撮像素子102は、高画質ビットストリームBHに応じた駆動方式で駆動するため、無駄な消費電力を必要とした。 As described above, conventionally, the driving method of the image sensor 102 cannot be changed. For example, even when only the low-quality bit stream BL is required, the image sensor 102 has the high-quality bit stream BH. Therefore, useless power consumption is required.
 図4は、実施の形態1における低画質ビットストリームBL及び高画質ビットストリームBHの生成の様子の一例を示す図である。 FIG. 4 is a diagram illustrating an example of how the low-quality bitstream BL and the high-quality bitstream BH are generated in the first embodiment.
 図4に示す例においては、駆動信号Hに基づいた第2駆動方式は、駆動信号Lに基づいた第1駆動方式で取得される映像信号よりも解像度が高く、かつ、フレームレートが同じ映像信号を取得するための駆動方式である。具体的には、DSP103は、低解像度の映像信号Lを取得するための駆動信号Lと、高解像度の映像信号Hを取得するための駆動信号Hとを交互に選択して、選択した駆動信号を出力する。このとき、低解像度の映像信号L、及び、高解像度の映像信号Hのフレームレートは同じである。これにより、撮像素子102からDSP103を介して、低解像度の画像と高解像度の画像とが交互に配列される映像信号が出力される。 In the example shown in FIG. 4, the second drive method based on the drive signal H has a higher resolution and the same frame rate as the video signal acquired by the first drive method based on the drive signal L. It is a drive system for acquiring. Specifically, the DSP 103 alternately selects the drive signal L for acquiring the low-resolution video signal L and the drive signal H for acquiring the high-resolution video signal H, and selects the selected drive signal. Is output. At this time, the frame rates of the low-resolution video signal L and the high-resolution video signal H are the same. Thus, a video signal in which low-resolution images and high-resolution images are alternately arranged is output from the image sensor 102 via the DSP 103.
 映像信号のうち低解像度の映像信号Lは、映像信号生成部105へ入力され、低画質ビットストリームBLへ変換される。つまり、映像信号生成部105は、第1駆動方式で駆動された撮像素子102から出力された映像信号を用いて、低画質ビットストリームBLを生成する。なお、映像信号生成部105は、低解像度の映像信号Lに含まれる画像をさらに変倍することにより、より低解像度の映像信号に変換してもよい。 Among the video signals, the low-resolution video signal L is input to the video signal generation unit 105 and converted into a low-quality bitstream BL. That is, the video signal generation unit 105 generates the low-quality bitstream BL using the video signal output from the image sensor 102 driven by the first driving method. Note that the video signal generation unit 105 may convert an image included in the low-resolution video signal L into a lower-resolution video signal by further scaling.
 映像信号のうち高解像度の映像信号Hは、映像信号生成部106へ入力され、高画質ビットストリームBHへ変換される。つまり、映像信号生成部106は、第2駆動方式で駆動された撮像素子102から出力された映像信号を用いて、高画質ビットストリームBHを生成する。なお、ここでは、低解像度の映像信号Lと高解像度の映像信号Hとを交互に切り替えているが、その配列については任意である。 Among the video signals, the high-resolution video signal H is input to the video signal generation unit 106 and converted into a high-quality bit stream BH. That is, the video signal generation unit 106 generates a high-quality bit stream BH using the video signal output from the image sensor 102 driven by the second driving method. Here, the low resolution video signal L and the high resolution video signal H are alternately switched, but the arrangement thereof is arbitrary.
 このように、図4に示す例では、撮像素子102の駆動方式を、低画質ビットストリームBLを生成する場合と高画質ビットストリームBHを生成する場合とで、それぞれに適した駆動方式に切り替える。つまり、映像信号生成部105は、第1駆動方式で駆動している撮像素子102から出力される映像信号を用いて、低画質ビットストリームBLを生成し、映像信号生成部106は、第2駆動方式で駆動している撮像素子102から出力される映像信号を用いて、高画質ビットストリームBHを生成する。これにより、常に高画質ビットストリームBHを生成するための駆動方式で撮像素子102を駆動する場合に比べて、消費電力を抑制することができる。 As described above, in the example shown in FIG. 4, the driving method of the image sensor 102 is switched to a driving method suitable for each of the case of generating the low image quality bit stream BL and the case of generating the high image quality bit stream BH. That is, the video signal generation unit 105 generates a low-quality bitstream BL using the video signal output from the image sensor 102 driven by the first drive method, and the video signal generation unit 106 performs the second drive. A high-quality bit stream BH is generated using a video signal output from the image sensor 102 driven by the method. Thereby, power consumption can be suppressed as compared with the case where the image sensor 102 is driven by a driving method for always generating the high-quality bit stream BH.
 さらに、高画質なビットストリームを記録することが可能となるので、視聴者からの指示などに基づいて、高画質な映像を表示部123に表示させることができる。例えば、表示部123が、高画質ビットストリームBHが示す高画質映像と、低画質ビットストリームBLが示す低画質映像とを表示することで、視聴者は、時間T前の映像を高画質で見ることができるとともに、リアルタイムの映像も見ることができる。 Furthermore, since a high-quality bitstream can be recorded, a high-quality video can be displayed on the display unit 123 based on instructions from the viewer. For example, the display unit 123 displays the high-quality video indicated by the high-quality bitstream BH and the low-quality video indicated by the low-quality bitstream BL, so that the viewer can view the video before time T with high quality. As well as real-time video.
 このように、図4に示す例では、カメラ100が低画質ビットストリームBLと高画質ビットストリームBHとの両方を受信端末120に送信する例について説明した。これに対して、図5に示すように、カメラ100は、通常時には、低画質ビットストリームBLのみを受信端末120に送信してもよい。 As described above, in the example illustrated in FIG. 4, the example in which the camera 100 transmits both the low image quality bit stream BL and the high image quality bit stream BH to the reception terminal 120 has been described. On the other hand, as shown in FIG. 5, the camera 100 may transmit only the low-quality bitstream BL to the receiving terminal 120 at the normal time.
 図5は、実施の形態1における低画質ビットストリームBL及び高画質ビットストリームBHの生成の様子の異なる一例を示す図である。 FIG. 5 is a diagram illustrating an example in which the low-quality bitstream BL and the high-quality bitstream BH are generated in the first embodiment.
 図5に示す例においては、駆動信号Hに基づいた第2駆動方式は、駆動信号Lに基づいた第1駆動方式で取得される映像信号よりも解像度、及び、フレームレートが高い映像信号を取得するための駆動方式である。ただし、解像度は同じでもよい。 In the example shown in FIG. 5, the second drive method based on the drive signal H acquires a video signal having a higher resolution and frame rate than the video signal acquired by the first drive method based on the drive signal L. This is a driving method for this purpose. However, the resolution may be the same.
 具体的には、DSP103は、低画質ビットストリームBLのみが送信されている場合には、第1駆動方式で撮像素子102を駆動するための駆動信号Lを生成している。撮像素子102は、駆動信号Lに基づき、例えば、VGAサイズ(640×480画素)で30フレーム毎秒の映像を出力するように動作している。 Specifically, when only the low-quality bit stream BL is transmitted, the DSP 103 generates a drive signal L for driving the image sensor 102 by the first drive method. Based on the drive signal L, the image sensor 102 operates to output an image of 30 frames per second with a VGA size (640 × 480 pixels), for example.
 ここで、操作ボタン110又はコントローラ122によって記録の操作を受け付けた場合、DSP103は、第2駆動方式で撮像素子を駆動するための駆動信号Hを生成するように切り替わる。撮像素子102は、駆動信号Hに基づき、例えば、HDサイズ(1920×1080画素)で120フレーム毎秒の映像(高画質映像)を出力するように動作する。 Here, when a recording operation is received by the operation button 110 or the controller 122, the DSP 103 switches to generate a drive signal H for driving the image sensor by the second drive method. Based on the drive signal H, the image sensor 102 operates to output an image (high quality image) of 120 frames per second in HD size (1920 × 1080 pixels), for example.
 映像信号生成部106は、入力される高画質映像を用いて、高画質ビットストリームBHを生成し、記録部109に出力する。記録部109は、入力される高画質ビットストリームBHをメモリに記録する。 The video signal generation unit 106 generates a high quality bit stream BH using the input high quality video and outputs it to the recording unit 109. The recording unit 109 records the input high-quality bitstream BH in the memory.
 記録部109により高画質ビットストリームBHが記録されている間は、映像信号生成部105は、第2駆動方式で駆動された撮像素子102から出力された映像信号に含まれる複数の画像から、第1フレームレートのタイミングで画像(フレーム)を選択することで、選択した画像を含む低画質ビットストリームBLを生成する。 While the high-quality bit stream BH is recorded by the recording unit 109, the video signal generation unit 105 performs a first search from a plurality of images included in the video signal output from the image sensor 102 driven by the second driving method. By selecting an image (frame) at the timing of one frame rate, a low image quality bit stream BL including the selected image is generated.
 なお、フレームレートのタイミングとは、画像が出力されるタイミングを意味し、例えば、フレームレートが、毎秒Nフレーム(Nは自然数)である場合に、N分の1秒毎のタイミングである。すなわち、毎秒Nフレームのフレームレートのタイミングで画像を選択するとは、N分の1秒毎に画像を選択することである。 Note that the frame rate timing means the timing at which an image is output. For example, when the frame rate is N frames per second (N is a natural number), the timing is every 1 / N second. That is, selecting an image at a frame rate of N frames per second means selecting an image every 1 / N second.
 具体的には、映像信号生成部105は、所定の時間間隔(第1フレームレートの逆数が示す期間)で得られたHDサイズの画像を変倍することにより、記録の操作開始前の低画質ビットストリームBLと同等の画像サイズ及び同等のフレームレートの低画質ビットストリームBLを生成する。生成された低画質ビットストリームBLは、送信部107に出力される。送信部107は、入力される低画質ビットストリームBLを、ネットワーク130を介して受信端末120に送信する。 Specifically, the video signal generation unit 105 scales an HD size image obtained at a predetermined time interval (a period indicated by the reciprocal of the first frame rate), thereby reducing the low image quality before starting the recording operation. A low image quality bit stream BL having an image size equivalent to that of the bit stream BL and an equivalent frame rate is generated. The generated low image quality bit stream BL is output to the transmission unit 107. The transmission unit 107 transmits the input low-quality bit stream BL to the reception terminal 120 via the network 130.
 このようにして、カメラ100では、記録の指示を受けた場合に、記録部109が高画質ビットストリームBHを記録するとともに、送信部108が低画質ビットストリームBLを送信する。これにより、記録の操作を受け付けた場合にのみ記録することで、視聴者が必要とする場面を含む映像を高画質で記録することができる。 Thus, in the camera 100, when receiving a recording instruction, the recording unit 109 records the high-quality bitstream BH, and the transmission unit 108 transmits the low-quality bitstream BL. Thus, by recording only when a recording operation is accepted, it is possible to record an image including a scene required by the viewer with high image quality.
 したがって、カメラ100は、通常時には(記録の操作を受け付けていない場合)、低画質ビットストリームBLを受信端末120に送信し、高画質ビットストリームBHを送信しないので、ネットワーク130の帯域を有効に利用することができる。また、記録部109は、視聴者が必要とする映像のみをメモリに記録するので、メモリ資源を有効に利用することができる。 Accordingly, the camera 100 normally uses the band of the network 130 because it transmits the low-quality bitstream BL to the receiving terminal 120 and does not transmit the high-quality bitstream BH during normal times (when no recording operation is accepted). can do. In addition, since the recording unit 109 records only the video necessary for the viewer in the memory, the memory resource can be used effectively.
 図5に示す例では、映像信号生成部105は、高画質ビットストリームBHを記録している間は、記録の操作が受け付けられる前と同じフレームレートで高解像度の画像を読み出し、読み出した高解像度の画像を変倍することで低解像度の画像を生成する。これに対して、図6に示すように、高画質ビットストリームBHと同じフレームレートで画像を読み出し、読み出した複数の画像を加算することで、低いフレームレートの映像信号を生成してもよい。 In the example illustrated in FIG. 5, the video signal generation unit 105 reads out a high-resolution image at the same frame rate as before the recording operation is accepted while the high-quality bitstream BH is being recorded, A low-resolution image is generated by scaling the image. On the other hand, as shown in FIG. 6, a video signal with a low frame rate may be generated by reading out an image at the same frame rate as that of the high-quality bit stream BH and adding the plurality of read-out images.
 図6は、実施の形態1における低画質ビットストリームBL及び高画質ビットストリームBHの生成の様子の異なる一例を示す図である。なお、映像信号生成部105以外の処理部の動作は、図5に示す例と同様である。 FIG. 6 is a diagram illustrating an example in which the low-quality bitstream BL and the high-quality bitstream BH are generated in the first embodiment. The operations of the processing units other than the video signal generation unit 105 are the same as the example shown in FIG.
 記録の操作を受け付けてから、記録終了の操作が受け付けられるまでの期間は、映像信号生成部105は、第2駆動方式で駆動された撮像素子102から出力された映像信号に含まれる複数の画像であって、第1フレームレートのタイミングの1つを含む所定の期間内に含まれる複数の画像を加算することで1枚の画像を生成し、生成した画像を含む低画質ビットストリームBLを生成する。なお、所定の期間は、例えば、第1フレームレートの逆数が示す期間である。 During the period from when the recording operation is accepted until when the recording end operation is accepted, the video signal generation unit 105 includes a plurality of images included in the video signal output from the image sensor 102 driven by the second driving method. A single image is generated by adding a plurality of images included in a predetermined period including one of the timings of the first frame rate, and a low-quality bitstream BL including the generated image is generated. To do. Note that the predetermined period is, for example, a period indicated by the reciprocal of the first frame rate.
 具体的には、映像信号生成部105は、高画質ビットストリームBHと同じフレームレートで画像を読み出し、読み出した複数の画像を加算することで、低いフレームレートの映像信号を生成する。例えば、映像信号生成部105は、加算処理として、複数の画像を構成する画素の画素値を時間的に平均化することで、1枚の画像を生成する。 Specifically, the video signal generation unit 105 reads an image at the same frame rate as that of the high-quality bitstream BH, and adds a plurality of read images to generate a video signal with a low frame rate. For example, the video signal generation unit 105 generates one image by temporally averaging pixel values of pixels constituting a plurality of images as the addition process.
 図6に示す例では、第2駆動方式で駆動された撮像素子102から出力される映像(高画質映像)のフレームレートは、第1駆動方式で駆動された撮像素子102から出力される映像(低画質映像)のフレームレートの4倍である。したがって、映像信号生成部105は、4枚の画像を加算することで1枚の画像を生成する。さらに、映像信号生成部105は、生成した画像を変倍することで、記録の操作が受け付けられる前の解像度と同じ解像度を有する画像を生成する。 In the example shown in FIG. 6, the frame rate of the image (high quality image) output from the image sensor 102 driven by the second drive method is the image (the image output from the image sensor 102 driven by the first drive method ( 4 times the frame rate of (low quality video). Therefore, the video signal generation unit 105 generates one image by adding four images. Furthermore, the video signal generation unit 105 generates an image having the same resolution as that before the recording operation is accepted by scaling the generated image.
 また、図6に示す例のように、映像信号生成部105は複数の画像を加算するのではなく、図7に示すように、複数の画像から最適な画像を選択し、選択した画像を変倍することで、低画質ビットストリームBLを生成してもよい。 Further, the video signal generation unit 105 does not add a plurality of images as in the example shown in FIG. 6, but selects an optimal image from the plurality of images and changes the selected image as shown in FIG. The low-quality bitstream BL may be generated by doubling.
 図7は、実施の形態1における低画質ビットストリームBL及び高画質ビットストリームBHの生成の様子の一例を示す図である。なお、映像信号生成部105以外の処理部の動作は、図6に示す例と同様である。 FIG. 7 is a diagram illustrating an example of how the low-quality bit stream BL and the high-quality bit stream BH are generated in the first embodiment. The operations of the processing units other than the video signal generation unit 105 are the same as the example shown in FIG.
 記録の操作を受け付けてから、記録終了の操作が受け付けられるまでの期間は、映像信号生成部105は、第2駆動方式で駆動された撮像素子102から出力された映像信号に含まれる複数の画像であって、第1フレームレートのタイミングの1つを含む所定の期間内に含まれる複数の画像から1枚の画像を選択し、選択した画像を含む低画質ビットストリームBLを生成する。なお、所定の期間は、例えば、第1フレームレートの逆数が示す期間である。 During the period from when the recording operation is accepted until when the recording end operation is accepted, the video signal generation unit 105 includes a plurality of images included in the video signal output from the image sensor 102 driven by the second driving method. Then, one image is selected from a plurality of images included within a predetermined period including one of the timings of the first frame rate, and a low quality bit stream BL including the selected image is generated. Note that the predetermined period is, for example, a period indicated by the reciprocal of the first frame rate.
 具体的には、映像信号生成部105は、高画質ビットストリームBHと同じフレームレートで画像を読み出し、読み出した複数の画像の中から1枚の画像を選択する。例えば、第1フレームレートのタイミングの近傍の画像を選択する。そして、映像信号生成部105は、選択した画像を変倍することで低解像度の画像を生成する。 Specifically, the video signal generation unit 105 reads an image at the same frame rate as that of the high-quality bitstream BH, and selects one image from the plurality of read images. For example, an image near the timing of the first frame rate is selected. Then, the video signal generation unit 105 generates a low-resolution image by scaling the selected image.
 具体的には、映像信号生成部105は、記録の操作が受け付けられる前の低画質ビットストリームBLのフレームレートと同じタイミングで、当該タイミング近傍に位置する複数の高解像度画像から1枚の画像を選択する。例えば、直前に選択した画像からの輝度値の変化が小さい画像などを選択する。これにより、蛍光灯又はLED(Light Emitting Diode)照明などの脈流光の影響による露光量の変動の影響を受けず、最適な画質の低画質ビットストリームBLを生成することができる。 Specifically, the video signal generation unit 105 obtains one image from a plurality of high resolution images located near the timing at the same timing as the frame rate of the low-quality bitstream BL before the recording operation is accepted. select. For example, an image having a small change in luminance value from the image selected immediately before is selected. As a result, it is possible to generate a low-quality bit stream BL with optimum image quality without being affected by exposure fluctuation due to the influence of pulsating light such as a fluorescent lamp or LED (Light Emitting Diode) illumination.
 また、図8に示す例のように、DSP103は、所定の周期で駆動信号Lと駆動信号Hとを選択して出力してもよい。 Further, as in the example shown in FIG. 8, the DSP 103 may select and output the drive signal L and the drive signal H at a predetermined cycle.
 図8は、実施の形態1における低画質ビットストリームBL及び高画質ビットストリームBHの生成の様子の異なる一例を示す図である。 FIG. 8 is a diagram illustrating an example in which the low-quality bit stream BL and the high-quality bit stream BH are generated in the first embodiment.
 図8に示すように、撮像素子102は、記録の操作の有無に関わらず、常に一定のタイミングで駆動信号Lが供給される。すなわち、撮像素子102は、第1フレームレートで低解像度の画像(フレーム)を出力する。低解像度の画像は、映像信号生成部105に出力される。映像信号生成部105は、入力される画像を圧縮符号化することで、低画質ビットストリームBLを生成する。 As shown in FIG. 8, the image pickup element 102 is always supplied with a drive signal L at a constant timing regardless of whether or not a recording operation is performed. That is, the image sensor 102 outputs a low-resolution image (frame) at the first frame rate. The low resolution image is output to the video signal generation unit 105. The video signal generation unit 105 generates a low-quality bitstream BL by compressing and encoding an input image.
 さらに、記録の操作が受け付けられた場合は、駆動信号Lが供給されないタイミングで駆動信号Hが供給される。したがって、撮像素子102は、低解像度の画像を出力していない期間に、高解像度の画像を出力する。高解像度の画像は、映像信号生成部106に出力される。映像信号生成部106は、入力される画像を圧縮符号化することで、高画質ビットストリームBHを生成する。 Furthermore, when a recording operation is accepted, the drive signal H is supplied at a timing when the drive signal L is not supplied. Therefore, the image sensor 102 outputs a high-resolution image during a period when a low-resolution image is not output. The high resolution image is output to the video signal generation unit 106. The video signal generation unit 106 compresses and encodes an input image to generate a high-quality bit stream BH.
 なお、図8に示す周期と順序とは、予め決められた周期であっても、制御部104によって受信される制御信号により変更されてもよい。 Note that the period and order shown in FIG. 8 may be a predetermined period or may be changed by a control signal received by the control unit 104.
 以上のように、実施の形態1に係るカメラ100は、複数の駆動方式から1つを選択し、選択した駆動方式で撮像素子102を駆動する。具体的には、低画質映像を取得するための第1駆動方式と、高画質映像を取得するための第2駆動方式とのいずれかを選択し、選択した駆動方式で撮像素子102を駆動する。第1駆動方式の方が第2駆動方式よりも消費電力が少ないので、例えば、高画質な映像を必要とする場合以外は、第1駆動方式で撮像素子102を駆動することで、消費電力を低減することができる。 As described above, the camera 100 according to Embodiment 1 selects one from a plurality of driving methods, and drives the image sensor 102 by the selected driving method. Specifically, either the first driving method for acquiring a low-quality image or the second driving method for acquiring a high-quality image is selected, and the image sensor 102 is driven by the selected driving method. . Since the first drive method consumes less power than the second drive method, for example, when the image sensor 102 is driven by the first drive method, the power consumption is reduced except when a high-quality image is required. Can be reduced.
 (実施の形態2)
 実施の形態2に係るネットワークカメラは、当該ネットワークカメラの撮影環境における異常を検出する異常検出部を備え、異常が検出された場合に、高画質ビットストリームの記録を行うことを特徴とする。さらに、実施の形態2に係るネットワークカメラは、メモリに記録された高画質ビットストリームの解像度、フレームレート及びビットレートの少なくとも1つを変換する映像変換部を備えることを特徴とする。以下では、まず、実施の形態2に係るネットワークカメラの構成の一例について、図9を用いて説明する。
(Embodiment 2)
The network camera according to Embodiment 2 includes an abnormality detection unit that detects an abnormality in the shooting environment of the network camera, and records a high-quality bitstream when an abnormality is detected. Furthermore, the network camera according to Embodiment 2 includes a video conversion unit that converts at least one of the resolution, the frame rate, and the bit rate of the high-quality bit stream recorded in the memory. Hereinafter, first, an example of the configuration of the network camera according to the second embodiment will be described with reference to FIG.
 図9は、実施の形態2に係る映像配信システム20の構成の一例を示すブロック図である。図9に示すように、映像配信システム20は、カメラ200と、受信端末120とを備える。カメラ200と受信端末120とは、ネットワーク130を介して接続されている。 FIG. 9 is a block diagram illustrating an example of the configuration of the video distribution system 20 according to the second embodiment. As shown in FIG. 9, the video distribution system 20 includes a camera 200 and a receiving terminal 120. The camera 200 and the receiving terminal 120 are connected via the network 130.
 実施の形態2に係るカメラ200は、実施の形態1に係るカメラ100と比較して、新たに、異常検出部211と、送信部212と、帯域制御部213及び214と、映像信号変換部215とを備える点が異なっている。以下では、実施の形態1と同じ点は説明を省略し、異なる点を中心に説明する。 Compared with the camera 100 according to the first embodiment, the camera 200 according to the second embodiment newly includes an abnormality detection unit 211, a transmission unit 212, band control units 213 and 214, and a video signal conversion unit 215. Is different. In the following, description of the same points as in the first embodiment will be omitted, and different points will be mainly described.
 異常検出部211は、カメラ200の撮影環境における異常を検出する。つまり、異常検出部211は、撮影環境を示す所定のパラメータが所定の閾値に達したことを異常として検出する。 The anomaly detection unit 211 detects an anomaly in the shooting environment of the camera 200. That is, the abnormality detection unit 211 detects that a predetermined parameter indicating the shooting environment has reached a predetermined threshold as an abnormality.
 例えば、異常検出部211は、撮影環境を示すパラメータとして映像信号そのものを用いて、異常を検出してもよい。具体的には、異常検出部211は、予め所定の映像信号を内部に備えるメモリなどに記憶しておき、撮像部から得られた映像信号が、記憶している映像信号に類似、又は、一致した場合に異常を検出する。例えば、カメラ200が、常に同じ視点から撮影される監視カメラなどの場合、異常検出部211は、カメラ200が撮影している範囲内に人の出入りのない状態を示す映像信号をメモリに記憶しておく。これにより、異常検出部211は、撮影の範囲内に人が入ったことを異常として検出することができる。 For example, the abnormality detection unit 211 may detect an abnormality using the video signal itself as a parameter indicating the shooting environment. Specifically, the abnormality detection unit 211 stores a predetermined video signal in advance in a memory provided therein, and the video signal obtained from the imaging unit is similar to or matches the stored video signal. If an error is detected, For example, when the camera 200 is a surveillance camera or the like that is always photographed from the same viewpoint, the abnormality detection unit 211 stores in the memory a video signal indicating a state in which no person enters or exits within the range photographed by the camera 200. Keep it. Thereby, the abnormality detection unit 211 can detect that a person has entered the photographing range as an abnormality.
 あるいは、異常検出部211は、撮影環境を示すパラメータとして明るさの変化を用いて、異常を検出してもよい。例えば、異常検出部211は、明るさを検出するセンサなどを備え、不審者の侵入などによって明るさが所定値以上に変化したことを異常として検出してもよい。または、センサを備える代わりに、取得した映像信号から明るさの変化を検出してもよい。具体的には、異常検出部211は、映像信号に含まれる映像の輝度値が所定値以上に変化したことを検出する。 Alternatively, the abnormality detection unit 211 may detect an abnormality using a change in brightness as a parameter indicating the shooting environment. For example, the abnormality detection unit 211 may include a sensor that detects brightness, and may detect that the brightness has changed to a predetermined value or more due to intrusion of a suspicious person as an abnormality. Alternatively, instead of providing a sensor, a change in brightness may be detected from the acquired video signal. Specifically, the abnormality detection unit 211 detects that the luminance value of the video included in the video signal has changed to a predetermined value or more.
 また、異常検出部211は、撮影環境を示すパラメータとして時刻を用いて、異常を検出してもよい。例えば、異常検出部211は、夜間など予め決められた時間帯を異常が検出されている状態としてもよい。具体的には、異常検出部211は、タイマーなどを備え、現在時刻が所定の第1時刻に達した場合を異常として検出する。そして、例えば、時刻が所定の第2時刻に達した場合に、異常検出部211は、異常が終了したとして通常状態であることを検出する。 Also, the abnormality detection unit 211 may detect an abnormality using time as a parameter indicating the shooting environment. For example, the abnormality detection unit 211 may set a state in which an abnormality is detected in a predetermined time zone such as at night. Specifically, the abnormality detection unit 211 includes a timer and detects a case where the current time reaches a predetermined first time as an abnormality. For example, when the time reaches a predetermined second time, the abnormality detection unit 211 detects that the abnormality has ended and is in a normal state.
 異常検出部211は、上記のような異常を検出した場合に、記録部109に高画質ビットストリームBHの記録を行わせる。また、記録終了の操作は、異常検出部211が異常を検出しなくなった場合、又は、異常を検出してから所定の時間が経過した場合に行ってもよい。このようにしておくことで、異常検出部211が異常を検出した際に、記録部109は、自動的に高画質ビットストリームBHをメモリに記録される。 The abnormality detection unit 211 causes the recording unit 109 to record the high-quality bitstream BH when the abnormality as described above is detected. The operation for ending the recording may be performed when the abnormality detection unit 211 stops detecting an abnormality or when a predetermined time has elapsed since the abnormality was detected. Thus, when the abnormality detection unit 211 detects an abnormality, the recording unit 109 automatically records the high-quality bitstream BH in the memory.
 送信部212は、異常検出部211が異常を検出したことを示す異常検出信号を受信端末120に送信する。これにより、遠隔地で監視している監視者に異常を伝達することが可能である。 The transmission unit 212 transmits an abnormality detection signal indicating that the abnormality detection unit 211 has detected an abnormality to the receiving terminal 120. As a result, it is possible to transmit the abnormality to a monitor who is monitoring at a remote place.
 帯域制御部213及び214は、ネットワーク130の帯域を有効に利用するために、低画質ビットストリームBL及び高画質ビットストリームBHを送信するのに必要な帯域を制御する。例えば、帯域制御部213及び214は、ネットワーク130の帯域のうち常に一定の帯域を利用するように、映像信号生成部105、送信部108及び映像信号変換部215を制御する。 Band control units 213 and 214 control a band necessary for transmitting the low image quality bit stream BL and the high image quality bit stream BH in order to effectively use the band of the network 130. For example, the band control units 213 and 214 control the video signal generation unit 105, the transmission unit 108, and the video signal conversion unit 215 so as to always use a certain band among the bands of the network 130.
 例えば、帯域制御部214は、送信部108の転送レートを非常に低い転送レートにする。これにより、送信部108は、通常よりも低い転送レートで高画質ビットストリームBHを送信する。したがって、送信部108は、送信部107の送信帯域を圧迫することなく、高画質ビットストリームBHを受信端末120に送信することができる。なお、通常よりも低い転送レートとは、例えば、送信部107と送信部108とが高画質ビットストリームBHのみ、又は低画質ビットストリームBLのみを送信する場合に用いる転送レートよりも低い転送レートのことである。 For example, the bandwidth control unit 214 sets the transfer rate of the transmission unit 108 to a very low transfer rate. Thereby, the transmission unit 108 transmits the high-quality bit stream BH at a transfer rate lower than normal. Therefore, the transmission unit 108 can transmit the high-quality bitstream BH to the reception terminal 120 without squeezing the transmission band of the transmission unit 107. Note that the transfer rate lower than normal is, for example, a transfer rate lower than the transfer rate used when the transmission unit 107 and the transmission unit 108 transmit only the high-quality bitstream BH or only the low-quality bitstream BL. That is.
 したがって、送信部108は、時間がかかっても全ての要求されたデータ(高画質ビットストリームBH)を受信端末120に送信することができる。これにより、低画質ビットストリームBLに含まれる映像を表示部123に表示させることで、リアルタイムな監視を続けながら、高画質ビットストリームBHを受信することもできる。 Therefore, the transmission unit 108 can transmit all requested data (high-quality bitstream BH) to the reception terminal 120 even if it takes time. Thus, by displaying the video included in the low-quality bitstream BL on the display unit 123, the high-quality bitstream BH can be received while continuing real-time monitoring.
 なお、送信部107が低画質ビットストリームBLを送信するとともに、送信部108は、高画質ビットストリームBHの一部、例えば、限られた時間分のデータを通常よりも低い転送レートで送信してもよい。これにより、送信部108は、例えば、ユーザが所望する時間分のデータなど必要なデータのみを送信すればよい。 The transmission unit 107 transmits the low-quality bitstream BL, and the transmission unit 108 transmits a part of the high-quality bitstream BH, for example, data for a limited time at a transfer rate lower than normal. Also good. Thereby, the transmission part 108 should just transmit only required data, such as data for the time which a user desires, for example.
 また、リアルタイムな監視が必要でない場合は、帯域制御部213は、解像度、フレームレート及びビットレートの少なくとも1つがより低い低画質ビットストリームBLを映像信号生成部105に生成させることで、送信部107の送信帯域を制限する。これにより、カメラ100が全体として利用する帯域を大きくすることなく、高画質ビットストリームBHを送信するための帯域を大きく確保することができる。 When real-time monitoring is not necessary, the bandwidth control unit 213 causes the video signal generation unit 105 to generate a low-quality bitstream BL having a lower resolution, frame rate, and bit rate, thereby transmitting the transmission unit 107. Limit the transmission bandwidth. Accordingly, it is possible to ensure a large band for transmitting the high-quality bitstream BH without increasing the band used by the camera 100 as a whole.
 映像信号変換部215は、記録部109に記録された高画質ビットストリームBHの解像度及びフレームレートの少なくとも一方を変換し、高画質ビットストリームBH2を生成する。生成した高画質ビットストリームBH2は、送信部108に出力される。これにより、ネットワーク130の帯域の圧迫を最小限にしながら、過去の映像を表示部123に表示させることが可能になる。 The video signal conversion unit 215 converts at least one of the resolution and the frame rate of the high quality bit stream BH recorded in the recording unit 109 to generate the high quality bit stream BH2. The generated high-quality bit stream BH2 is output to the transmission unit 108. This makes it possible to display past video on the display unit 123 while minimizing the bandwidth of the network 130.
 なお、高画質ビットストリームBHの変換を行うか否かは、例えば、操作ボタン110から、又は、受信端末120側のコントローラ122からの制御信号に基づいて、制御部104によって決定される。あるいは、帯域制御部214によって決定されてもよい。例えば、ネットワーク130の利用可能な帯域が小さく、高画質ビットストリームBHをそのまま送信することができない場合、帯域制御部214は、映像信号変換部215に変換の指示を出力し、当該指示に基づいて映像信号変換部215は、高画質ビットストリームBHの変換を行う。 Note that whether or not to convert the high-quality bitstream BH is determined by the control unit 104 based on, for example, the operation button 110 or a control signal from the controller 122 on the receiving terminal 120 side. Alternatively, it may be determined by the band control unit 214. For example, when the available bandwidth of the network 130 is small and the high-quality bitstream BH cannot be transmitted as it is, the bandwidth control unit 214 outputs a conversion instruction to the video signal conversion unit 215, and based on the instruction The video signal conversion unit 215 performs conversion of the high quality bit stream BH.
 以下では、フレームレート及び解像度の変換の様子について図10を用いて説明する。なお、図10は、実施の形態2に係る映像配信システム20における高画質ビットストリームの変換の様子の一例を示す図である。 In the following, the state of frame rate and resolution conversion will be described with reference to FIG. FIG. 10 is a diagram illustrating an example of a state of conversion of a high-quality bitstream in the video distribution system 20 according to the second embodiment.
 まず、制御部104又は帯域制御部214から変換の指示が入力されると、映像信号変換部215は、高画質ビットストリームBHをメモリから読み出し、映像信号変換部215内部のデコーダにより、映像信号に変換する。このとき、映像信号変換部215は、所定の周期の映像信号のみを抜き出す(フレームレート変換)。つまり、デコードされた映像信号から、所定のフレームレートで画像を抜き出す。 First, when a conversion instruction is input from the control unit 104 or the band control unit 214, the video signal conversion unit 215 reads the high-quality bit stream BH from the memory, and converts it into a video signal by a decoder inside the video signal conversion unit 215. Convert. At this time, the video signal conversion unit 215 extracts only a video signal having a predetermined period (frame rate conversion). That is, an image is extracted from the decoded video signal at a predetermined frame rate.
 次に、映像信号変換部215内部の変倍回路により、画像サイズの変換が行われる(解像度変換)。最後に、フレームレート及び解像度が変換された映像信号を映像信号変換部215内部のエンコーダにより、例えば、MPEGなどの符号化規格に準拠した高画質ビットストリームBH2に変換する。さらに、映像信号変換部215は、生成した高画質ビットストリームBH2のビットレートを低くしてもよい。以上のようにして生成された高画質ビットストリームBH2は送信部108に出力され、送信部108は、ネットワーク130を経由して、受信端末120に伝送する。 Next, image size conversion is performed by a scaling circuit in the video signal conversion unit 215 (resolution conversion). Finally, the video signal whose frame rate and resolution are converted is converted into a high-quality bitstream BH2 conforming to an encoding standard such as MPEG by an encoder in the video signal conversion unit 215. Furthermore, the video signal conversion unit 215 may lower the bit rate of the generated high-quality bitstream BH2. The high-quality bitstream BH2 generated as described above is output to the transmission unit 108, and the transmission unit 108 transmits it to the reception terminal 120 via the network 130.
 以上のように、実施の形態2に係るカメラ200は、撮影環境における異常を検出する異常検出部211を備え、異常が検出された場合に、高画質ビットストリームの記録を行う。これにより、カメラ200は、視聴者又はユーザなどからの指示がなくても、所定の異常が発生した場合に、高画質な映像を記録することができるので、視聴者又はユーザがきれいな映像を見ることができる。 As described above, the camera 200 according to the second embodiment includes the abnormality detection unit 211 that detects an abnormality in the shooting environment, and records a high-quality bitstream when an abnormality is detected. Thus, the camera 200 can record a high-quality video when a predetermined abnormality occurs even if there is no instruction from the viewer or the user, so that the viewer or the user can see a beautiful video. be able to.
 また、実施の形態2に係るカメラ200は、メモリに記録された高画質ビットストリームの解像度、フレームレート及びビットレートの少なくとも1つを変換する映像信号変換部215を備える。これにより、高画質ビットストリームの配信に必要なネットワーク130の帯域を抑制することで、ネットワーク130の帯域を有効に利用することができる。 Also, the camera 200 according to Embodiment 2 includes a video signal conversion unit 215 that converts at least one of the resolution, frame rate, and bit rate of the high-quality bit stream recorded in the memory. Thereby, the bandwidth of the network 130 can be effectively used by suppressing the bandwidth of the network 130 necessary for the distribution of the high-quality bitstream.
 (実施の形態3)
 実施の形態3に係るネットワークカメラは、高画質映像信号に含まれる複数の画像を縮小し、縮小した複数の画像を1枚の画像として含む映像信号に変換する映像信号生成部を備えることを特徴とする。以下では、まず、実施の形態3に係るネットワークカメラの構成の一例について、図11を用いて説明する。
(Embodiment 3)
The network camera according to Embodiment 3 includes a video signal generation unit that reduces a plurality of images included in a high-quality video signal and converts the reduced images into a video signal including the reduced images as one image. And Hereinafter, an example of the configuration of the network camera according to Embodiment 3 will be described with reference to FIG.
 図11は、実施の形態3に係る映像配信システム30の構成の一例を示すブロック図である。図11に示すように、映像配信システム30は、カメラ300と、受信端末120とを備える。カメラ300と受信端末120とは、ネットワーク130を介して接続されている。 FIG. 11 is a block diagram illustrating an example of the configuration of the video distribution system 30 according to the third embodiment. As shown in FIG. 11, the video distribution system 30 includes a camera 300 and a receiving terminal 120. The camera 300 and the receiving terminal 120 are connected via the network 130.
 実施の形態3に係るカメラ300は、実施の形態2に係るカメラ200と比較して、新たに、映像信号生成部316と、送信部317とを備える点が異なっている。以下では、実施の形態1と同じ点は説明を省略し、異なる点を中心に説明する。 The camera 300 according to the third embodiment is different from the camera 200 according to the second embodiment in that a video signal generation unit 316 and a transmission unit 317 are newly provided. In the following, description of the same points as in the first embodiment will be omitted, and different points will be mainly described.
 映像信号生成部316は、映像信号生成部106と同様に、撮像部によって生成された映像信号を用いて、第1フレームレートより高い第2フレームレートを有する高画質映像信号を中間映像信号として生成する。なお、第1フレームレートは、実施の形態1及び2と同様に、映像信号生成部105が生成する低画質映像信号のフレームレートである。 Similar to the video signal generation unit 106, the video signal generation unit 316 generates a high-quality video signal having a second frame rate higher than the first frame rate as an intermediate video signal using the video signal generated by the imaging unit. To do. The first frame rate is the frame rate of the low-quality video signal generated by the video signal generation unit 105, as in the first and second embodiments.
 さらに、映像信号生成部316は、生成した中間映像信号を用いて、第1フレームレートの映像信号を出力映像信号として生成する。例えば、中間映像信号に含まれる複数の画像を1枚の画像に合成することで、出力映像信号を生成する。1枚の画像を生成するための合成に用いる画像の枚数は、例えば、第1フレームレートに対する第2フレームレートの比によって決定される。 Further, the video signal generation unit 316 generates a video signal of the first frame rate as an output video signal using the generated intermediate video signal. For example, an output video signal is generated by combining a plurality of images included in the intermediate video signal into one image. The number of images used for composition for generating one image is determined, for example, by the ratio of the second frame rate to the first frame rate.
 送信部317は、映像信号生成部316によって生成された出力映像信号を、ネットワーク130を介して受信端末120に送信する。 The transmitting unit 317 transmits the output video signal generated by the video signal generating unit 316 to the receiving terminal 120 via the network 130.
 以下では、映像信号生成部316の動作の一例について、図12及び図13を用いて説明する。 Hereinafter, an example of the operation of the video signal generation unit 316 will be described with reference to FIGS. 12 and 13.
 図12は、実施の形態3に係る映像配信システム30における画像の取り込みタイミングの一例を示す図である。例えば、第1フレームレートは30フレーム毎秒であり、第2フレームレートは120フレーム毎秒とする。 FIG. 12 is a diagram illustrating an example of image capture timing in the video distribution system 30 according to the third embodiment. For example, the first frame rate is 30 frames per second, and the second frame rate is 120 frames per second.
 図12に示すように、第1フレームレートではT0、T4、T8、T12、T16のタイミングで画像を取り込み、第2フレームレートではT0、T1、T2、・・・、T15、T16のように全てのタイミングで画像を取り込むものとする。 As shown in FIG. 12, the first frame rate captures images at the timings T0, T4, T8, T12, and T16, and the second frame rates all include T0, T1, T2,..., T15, T16. It is assumed that an image is captured at the timing of.
 映像信号生成部316は、第2フレームレートと同じタイミングで画像を取り込むことで、中間映像信号を生成する。さらに、映像信号生成部316は、T0、T1、T2、T3で取り込んだ画像から出力画像を生成し、T4のタイミングで出力する。同じようにT4、T5、T6、T7のタイミングで取り込んだ画像から出力画像を生成し、T8のタイミングで出力する。 The video signal generation unit 316 generates an intermediate video signal by capturing an image at the same timing as the second frame rate. Further, the video signal generation unit 316 generates an output image from the images captured at T0, T1, T2, and T3, and outputs it at the timing of T4. Similarly, an output image is generated from images captured at timings T4, T5, T6, and T7, and output at timing T8.
 4枚の画像から1枚の出力画像を生成する方法は、図13に示す通りである。 The method for generating one output image from four images is as shown in FIG.
 図13は、実施の形態3に係る映像配信システム30における画像の取り込みサイズの一例を示す図である。図13に示すように、第1フレームレートでは水平m画素、垂直n画素のサイズの画像を取り込み、第2のフレームレートでは水平x画素、垂直y画素のサイズの画像を取り込むものとする。 FIG. 13 is a diagram illustrating an example of an image capture size in the video distribution system 30 according to the third embodiment. As shown in FIG. 13, an image having a size of horizontal m pixels and vertical n pixels is captured at the first frame rate, and an image having a size of horizontal x pixels and vertical y pixels is captured at the second frame rate.
 映像信号生成部316は、第2フレームレートと同じタイミングで画像を取り込み、取り込んだ画像を変倍することで、例えば、水平m/2(mの2分の1倍)画素、垂直n/2(nの2分の1倍)画素の画像サイズの中間画像を生成する。さらに、映像信号生成部316は、中間映像信号に含まれる4枚の画像(4フレームの画像)を合成することで、水平m画素、垂直n画素の出力画像を生成する。 The video signal generation unit 316 captures an image at the same timing as the second frame rate, and scales the captured image, for example, horizontal m / 2 (1/2 times m) pixels, vertical n / 2. An intermediate image having a pixel size (1/2 times n) is generated. Further, the video signal generation unit 316 generates an output image of horizontal m pixels and vertical n pixels by synthesizing four images (images of four frames) included in the intermediate video signal.
 なお、映像信号生成部316が生成する中間画像は、水平x画素、垂直y画素のサイズの第2フレームレートの画像を水平m/2画素、垂直n/2画素になるように縮小して生成してもよい。あるいは、水平x画素、垂直y画素のサイズの第2フレームレートの画像から水平m/2画素、垂直n/2画素のサイズだけ切り出して生成してもよい。 Note that the intermediate image generated by the video signal generation unit 316 is generated by reducing the image of the second frame rate having the size of horizontal x pixels and vertical y pixels to be horizontal m / 2 pixels and vertical n / 2 pixels. May be. Alternatively, a size of horizontal m / 2 pixels and vertical n / 2 pixels may be cut out from an image at a second frame rate having a size of horizontal x pixels and vertical y pixels.
 また、送信部317は、映像信号生成部316が生成した出力画像を含む出力映像信号を出力する。このとき、送信部317は、送信部107から出力される低画質ビットストリームBLと同時に出力映像信号を出力してもよく、あるいは、送信部107から低画質ビットストリームBLを送信せずに、出力映像信号だけを出力してもよい。また、送信部107、送信部108及び送信部317は、低画質映像信号である低画質ビットストリームBL、高画質映像信号である高画質ビットストリームBH及び出力映像信号のいずれか1つを送信してもよい。 Further, the transmission unit 317 outputs an output video signal including the output image generated by the video signal generation unit 316. At this time, the transmission unit 317 may output an output video signal simultaneously with the low-quality bit stream BL output from the transmission unit 107, or may output the low-quality bit stream BL without transmitting from the transmission unit 107. Only the video signal may be output. In addition, the transmission unit 107, the transmission unit 108, and the transmission unit 317 transmit any one of a low-quality bit stream BL that is a low-quality video signal, a high-quality bit stream BH that is a high-quality video signal, and an output video signal. May be.
 以上のように、実施の形態3に係るカメラ300では、映像信号生成部316は、第2フレームレートで取り込まれた複数フレームの画像を縮小し、縮小した複数フレームの画像で1フレームの出力画像を生成する。具体的には、映像信号生成部316は、第1フレームレートの画像と同等の画像サイズの出力画像を生成し、送信部317は、当該出力画像を含む出力映像信号を受信端末120に送信することで、受信端末120側では低画質ビットストリームBLに含まれる映像に加え、より時間的に詳細な画像情報を得ることができる。これにより、例えば、視聴者がより容易に異常を検知することができる。 As described above, in the camera 300 according to the third embodiment, the video signal generation unit 316 reduces a plurality of frames captured at the second frame rate, and outputs one frame of the reduced plurality of frames. Is generated. Specifically, the video signal generation unit 316 generates an output image having an image size equivalent to the image at the first frame rate, and the transmission unit 317 transmits an output video signal including the output image to the reception terminal 120. Thus, the receiving terminal 120 can obtain more detailed image information in time in addition to the video included in the low-quality bitstream BL. Thereby, for example, the viewer can more easily detect an abnormality.
 また、実施の形態3に係るカメラ300では、上述したように、映像信号生成部316は、第2フレームレートで取り込まれた複数フレームの画像の一部を切り出し、切り出した複数フレームの画像で1フレームの出力画像を生成してもよい。この場合も同様に、映像信号生成部316は、第1フレームレートの画像と同等の画像サイズの出力画像を生成し、送信部317は、当該出力画像を含む出力映像信号を受信端末120に送信することで、受信端末120側では低画質ビットストリームBLに含まれる映像に加え、ある一部分においてはより高精細な画像を得ることができる。これにより、例えば、視聴者がより容易に異常を検知することができる。 In the camera 300 according to the third embodiment, as described above, the video signal generation unit 316 cuts out a part of a plurality of frames captured at the second frame rate, and the extracted plurality of frames 1 An output image of the frame may be generated. Similarly, in this case, the video signal generation unit 316 generates an output image having an image size equivalent to the image at the first frame rate, and the transmission unit 317 transmits the output video signal including the output image to the reception terminal 120. Thus, on the receiving terminal 120 side, in addition to the video included in the low-quality bitstream BL, a higher-definition image can be obtained in a certain part. Thereby, for example, the viewer can more easily detect an abnormality.
 なお、本実施の形態においては、第1フレームレートは第2フレームレートの4倍としたが、これ以外の倍率でも構わない。また、映像信号生成部316は、4フレームで1フレームの出力画像を生成するとしたが、これ以外のフレーム数でも構わない。さらに、映像信号生成部316は、第1フレームレートと同じ画像サイズを生成するとしたが、別の画像サイズでも構わない。また、映像信号生成部316は、第1フレームレートと同じフレームレートの出力映像信号を生成するとしたが、異なるフレームレートでも構わない。 In the present embodiment, the first frame rate is four times the second frame rate, but other magnifications may be used. Further, although the video signal generation unit 316 generates one frame of output image with four frames, the number of frames may be other than this. Furthermore, although the video signal generation unit 316 generates the same image size as the first frame rate, another image size may be used. Further, although the video signal generation unit 316 generates the output video signal having the same frame rate as the first frame rate, a different frame rate may be used.
 (実施の形態4)
 実施の形態4に係るネットワークカメラは、外部の記録装置に高画質映像信号を記録させる記録制御部を備えることを特徴とする。以下では、まず、実施の形態4に係るネットワークカメラの構成の一例について、図14を用いて説明する。
(Embodiment 4)
The network camera according to Embodiment 4 includes a recording control unit that causes an external recording device to record a high-quality video signal. Hereinafter, first, an example of the configuration of the network camera according to Embodiment 4 will be described with reference to FIG.
 図14は、実施の形態4に係る映像配信システム40の構成の一例を示すブロック図である。図14に示すように、映像配信システム40は、カメラ400と、受信端末120と、記録装置440とを備える。カメラ400と受信端末120とは、ネットワーク130を介して接続され、カメラ400と記録装置440とはネットワーク430を介して接続されている。 FIG. 14 is a block diagram illustrating an example of the configuration of the video distribution system 40 according to the fourth embodiment. As shown in FIG. 14, the video distribution system 40 includes a camera 400, a receiving terminal 120, and a recording device 440. The camera 400 and the receiving terminal 120 are connected via the network 130, and the camera 400 and the recording device 440 are connected via the network 430.
 実施の形態4に係るカメラ400は、実施の形態2に係るカメラ200と比較して、記録部109の代わりに記録制御部418を備える点が異なっている。以下では、実施の形態2と同じ点は説明を省略し、異なる点を中心に説明する。 The camera 400 according to the fourth embodiment is different from the camera 200 according to the second embodiment in that a recording control unit 418 is provided instead of the recording unit 109. In the following, description of the same points as in the second embodiment will be omitted, and different points will be mainly described.
 記録制御部418は、映像信号生成部106によって生成された高画質映像信号を、ネットワーク430を介して外部の記録装置440に出力する。また、記録制御部418は、異常検出部211からの信号、又は、制御部104からの再送を要求する制御信号を受けて、外部の記録装置440からネットワーク430を介して記録データを読み出し、読み出したデータを送信部108に出力する。 The recording control unit 418 outputs the high-quality video signal generated by the video signal generation unit 106 to the external recording device 440 via the network 430. Also, the recording control unit 418 receives a signal from the abnormality detection unit 211 or a control signal requesting retransmission from the control unit 104, and reads out and reads out the recording data from the external recording device 440 via the network 430. The data is output to the transmission unit 108.
 記録装置440は、メモリを有し、カメラ400からネットワーク430を介して送信されるデータをメモリに記録する。具体的には、記録装置440は、映像信号生成部106によって生成され、ネットワーク430を介して送信された高画質ビットストリームBHを記録する。 The recording device 440 includes a memory and records data transmitted from the camera 400 via the network 430 in the memory. Specifically, the recording device 440 records the high-quality bit stream BH generated by the video signal generation unit 106 and transmitted via the network 430.
 以上のように、実施の形態4に係る映像配信システム40では、外部の記録装置440に高画質ビットストリームBHを記録させる記録制御部418を備える。 As described above, the video distribution system 40 according to Embodiment 4 includes the recording control unit 418 that causes the external recording device 440 to record the high-quality bitstream BH.
 これにより、カメラ400自体が破損した場合、又は、盗難にあった場合においても、記録データをカメラ400の外部の記録装置440に保存しておくことができるので、データ損失のリスクを回避することができる。また、受信端末120との接続に用いられるネットワーク130とは別のネットワーク430を利用するので、ネットワーク130の帯域を圧迫することもない。 Thus, even when the camera 400 itself is damaged or stolen, the recorded data can be stored in the recording device 440 outside the camera 400, thereby avoiding the risk of data loss. Can do. Further, since the network 430 different from the network 130 used for connection with the receiving terminal 120 is used, the bandwidth of the network 130 is not compressed.
 なお、記録制御部418は、映像信号生成部106によって生成された高画質ビットストリームBHだけではなく、映像信号生成部105によって生成された低画質ビットストリームBLを記録装置440に送信してもよい。 Note that the recording control unit 418 may transmit not only the high-quality bitstream BH generated by the video signal generation unit 106 but also the low-quality bitstream BL generated by the video signal generation unit 105 to the recording device 440. .
 以上、本発明に係るネットワークカメラ及び映像配信システムについて、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を当該実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 The network camera and the video distribution system according to the present invention have been described based on the embodiments. However, the present invention is not limited to these embodiments. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art will think to the said embodiment, and the form constructed | assembled combining the component in a different embodiment is also contained in the scope of the present invention. .
 (その他変形例)
 上記の各装置は、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、ハードディスクユニット、ディスプレイユニット、キーボード、マウスなどから構成されるコンピュータシステムである。RAM又はハードディスクユニットには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、各装置は、その機能を達成する。ここでコンピュータプログラムは、所定の機能を達成するために、コンピュータに対する指令を示す命令コードが複数個組み合わされて構成されたものである。
(Other variations)
Specifically, each of the above devices is a computer system including a microprocessor, a ROM (Read Only Memory), a RAM (Random Access Memory), a hard disk unit, a display unit, a keyboard, a mouse, and the like. A computer program is stored in the RAM or the hard disk unit. Each device achieves its functions by the microprocessor operating according to the computer program. Here, the computer program is configured by combining a plurality of instruction codes indicating instructions for the computer in order to achieve a predetermined function.
 上記の各装置を構成する構成要素の一部又は全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)から構成されているとしてもよい。システムLSIは、複数の構成要素を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM、RAMなどを含んで構成されるコンピュータシステムである。RAMには、コンピュータプログラムが記憶されている。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。 Some or all of the constituent elements constituting each of the above-described devices may be configured by one system LSI (Large Scale Integration). The system LSI is a super multifunctional LSI manufactured by integrating a plurality of components on one chip, and specifically, a computer system including a microprocessor, a ROM, a RAM, and the like. . A computer program is stored in the RAM. The system LSI achieves its functions by the microprocessor operating according to the computer program.
 上記の各装置を構成する構成要素の一部又は全部は、各装置に脱着可能なICカード又は単体のモジュールから構成されているとしてもよい。ICカード又はモジュールは、マイクロプロセッサ、ROM、RAMなどから構成されるコンピュータシステムである。ICカード又はモジュールは、上記の超多機能LSIを含むとしてもよい。マイクロプロセッサが、コンピュータプログラムに従って動作することにより、ICカード又はモジュールは、その機能を達成する。このICカード又はモジュールは、耐タンパ性を有するとしてもよい。 Some or all of the components constituting each of the above devices may be configured from an IC card that can be attached to and detached from each device or a single module. The IC card or module is a computer system that includes a microprocessor, ROM, RAM, and the like. The IC card or the module may include the super multifunctional LSI described above. The IC card or the module achieves its function by the microprocessor operating according to the computer program. This IC card or module may have tamper resistance.
 また、本発明は、上記に示す方法であるとしてもよい。また、これらの方法をコンピュータにより実現するコンピュータプログラムであるとしてもよいし、コンピュータプログラムからなるデジタル信号であるとしてもよい。 Further, the present invention may be the method described above. Further, the present invention may be a computer program that realizes these methods by a computer, or may be a digital signal composed of a computer program.
 また、本発明は、コンピュータプログラム又はデジタル信号をコンピュータ読み取り可能な記録媒体、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO(Magneto-Optical Disk)、DVD(Digital Versatile Disc)、DVD-ROM、DVD-RAM、BD(Blu-ray Disc)、半導体メモリなどに記録したものとしてもよい。また、これらの記録媒体に記録されているデジタル信号であるとしてもよい。 The present invention also provides a computer program or recording medium capable of reading a digital signal, such as a flexible disk, hard disk, CD-ROM, MO (Magneto-Optical Disk), DVD (Digital Versatile Disc), DVD-ROM, DVD. -It may be recorded on a RAM, a BD (Blu-ray Disc), a semiconductor memory, or the like. Further, it may be a digital signal recorded on these recording media.
 また、本発明は、コンピュータプログラム又はデジタル信号を、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク、データ放送などを経由して伝送するものとしてもよい。 In the present invention, the computer program or the digital signal may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, a data broadcast, or the like.
 また、本発明は、マイクロプロセッサとメモリを備えたコンピュータシステムであって、メモリは、上記コンピュータプログラムを記憶しており、マイクロプロセッサは、コンピュータプログラムに従って動作するとしてもよい。 Further, the present invention may be a computer system including a microprocessor and a memory. The memory may store the above computer program, and the microprocessor may operate according to the computer program.
 また、プログラム又はデジタル信号を記録媒体に記録して移送することにより、あるいは、プログラム又はデジタル信号を、ネットワークなどを経由して移送することにより、独立した他のコンピュータシステムにより実施するとしてもよい。 Further, the program or the digital signal may be recorded on a recording medium and transferred, or the program or the digital signal may be transferred via a network or the like by another independent computer system.
 本発明に係る撮像装置は、消費電力を低減することができるという効果を奏し、例えば、監視カメラ、WEBカメラなどのネットワークカメラ、又は、車載カメラ、ドライブレコーダなどの自動車搭載用カメラなどに利用することができる。 The imaging apparatus according to the present invention has an effect that power consumption can be reduced. For example, the imaging apparatus is used for a network camera such as a monitoring camera or a WEB camera, or a vehicle-mounted camera such as an in-vehicle camera or a drive recorder. be able to.
10、20、30、40 映像配信システム
100、200、300、400 カメラ
101 撮影光学系
102 撮像素子
103 DSP
104 制御部
105、106、316 映像信号生成部
107、108、212、317 送信部
109 記録部
110 操作ボタン
120 受信端末
121 デコーダ
122 コントローラ
123 表示部
130、430 ネットワーク
211 異常検出部
213、214 帯域制御部
215 映像信号変換部
418 記録制御部
440 記録装置
1031 第1駆動信号生成部
1032 第2駆動信号生成部
1033 スイッチ
 
 
10, 20, 30, 40 Video distribution system 100, 200, 300, 400 Camera 101 Imaging optical system 102 Imaging element 103 DSP
104 Control unit 105, 106, 316 Video signal generation unit 107, 108, 212, 317 Transmission unit 109 Recording unit 110 Operation button 120 Receiving terminal 121 Decoder 122 Controller 123 Display unit 130, 430 Network 211 Abnormality detection unit 213, 214 Band control Unit 215 video signal conversion unit 418 recording control unit 440 recording device 1031 first drive signal generation unit 1032 second drive signal generation unit 1033 switch

Claims (17)

  1.  撮像素子を有し、所定の駆動方式で前記撮像素子を駆動することで映像信号を生成する撮像部と、
     前記撮像部によって生成された映像信号を用いて、第1フレームレート及び第1解像度を有する低画質映像信号を生成する低画質映像信号生成部と、
     前記撮像部によって生成された映像信号を用いて、前記第1フレームレートより高い第2フレームレート、及び、前記第1解像度より高い第2解像度の少なくとも1つを有する第1高画質映像信号を生成する第1高画質映像信号生成部と、
     前記第1高画質映像信号をメモリに記録する記録部と、
     ネットワークを介して、前記低画質映像信号、及び、前記メモリに記録された第1高画質映像信号の少なくとも一方を受信端末へ送信する送信部とを備え、
     前記撮像部は、前記第1フレームレート以上のフレームレートを有する映像信号を取得するための第1駆動方式、及び、当該第1駆動方式で取得される映像信号よりフレームレート及び解像度の少なくとも1つが高い映像信号を取得するための第2駆動方式のいずれかを選択し、選択した駆動方式で前記撮像素子を駆動する
     ネットワークカメラ。
    An imaging unit that has an imaging element and generates a video signal by driving the imaging element by a predetermined driving method;
    A low-quality video signal generation unit that generates a low-quality video signal having a first frame rate and a first resolution using the video signal generated by the imaging unit;
    A first high-quality video signal having at least one of a second frame rate higher than the first frame rate and a second resolution higher than the first resolution is generated using the video signal generated by the imaging unit. A first high-definition video signal generator,
    A recording unit for recording the first high-quality video signal in a memory;
    A transmission unit for transmitting at least one of the low-quality video signal and the first high-quality video signal recorded in the memory to a receiving terminal via a network;
    The imaging unit has a first driving method for acquiring a video signal having a frame rate equal to or higher than the first frame rate, and at least one of a frame rate and a resolution from the video signal acquired by the first driving method. A network camera that selects any one of the second drive methods for acquiring a high video signal and drives the image sensor with the selected drive method.
  2.  前記第2駆動方式は、前記第1駆動方式で取得される映像信号よりも解像度が高い映像信号を取得するための駆動方式であり、
     前記低画質映像信号生成部は、前記第1駆動方式で駆動された撮像素子から出力された映像信号を用いて、前記低画質映像信号を生成し、
     前記第1高画質映像信号生成部は、前記第2駆動方式で駆動された撮像素子から出力された映像信号を用いて、前記第1高画質映像信号を生成する
     請求項1記載のネットワークカメラ。
    The second driving method is a driving method for obtaining a video signal having a higher resolution than the video signal obtained by the first driving method,
    The low-quality video signal generation unit generates the low-quality video signal using a video signal output from the image sensor driven by the first driving method,
    The network camera according to claim 1, wherein the first high-quality video signal generation unit generates the first high-quality video signal using a video signal output from an imaging device driven by the second driving method.
  3.  前記第2駆動方式は、前記第1駆動方式で取得される映像信号よりもフレームレートが高い映像信号を取得するための駆動方式であり、
     前記低画質映像信号生成部は、前記撮像素子が前記第2駆動方式で駆動されている場合には、当該撮像素子から出力された映像信号に含まれる複数の画像であって、前記第1フレームレートのタイミングの1つを含む所定の期間内に含まれる複数の画像から1枚の画像を選択することで、選択した画像を含む前記低画質映像信号を生成する
     請求項1記載のネットワークカメラ。
    The second driving method is a driving method for acquiring a video signal having a higher frame rate than the video signal acquired in the first driving method.
    When the image sensor is driven by the second driving method, the low image quality video signal generation unit is a plurality of images included in the video signal output from the image sensor, and the first frame The network camera according to claim 1, wherein the low-quality video signal including the selected image is generated by selecting one image from a plurality of images included in a predetermined period including one of rate timings.
  4.  前記低画質映像信号生成部は、前記撮像素子が前記第2駆動方式で駆動されている場合には、当該撮像素子から出力された映像信号に含まれる複数の画像から、前記第1フレームレートのタイミングで1枚の画像を選択することで、選択した画像を含む前記低画質映像信号を生成する
     請求項3記載のネットワークカメラ。
    When the image sensor is driven by the second drive method, the low image quality video signal generator generates a first frame rate from a plurality of images included in the video signal output from the image sensor. The network camera according to claim 3, wherein the low-quality video signal including the selected image is generated by selecting one image at timing.
  5.  前記低画質映像信号生成部は、前記撮像素子が前記第2駆動方式で駆動されている場合には、当該撮像素子から出力された映像信号に含まれる複数の画像であって、前記第1フレームレートのタイミングの1つを含む所定の期間内に含まれる複数の画像を加算することで1枚の画像を生成し、生成した画像を含む前記低画質映像信号を生成する
     請求項1記載のネットワークカメラ。
    When the image sensor is driven by the second driving method, the low image quality video signal generation unit is a plurality of images included in the video signal output from the image sensor, and the first frame The network according to claim 1, wherein one image is generated by adding a plurality of images included in a predetermined period including one of the rate timings, and the low-quality video signal including the generated image is generated. camera.
  6.  前記ネットワークカメラは、さらに、前記第1高画質映像信号の記録を開始又は停止させる第1制御信号を前記受信端末から受信する制御部を備え、
     前記制御部は、前記第1制御信号を受信した場合、受信した第1制御信号に基づいて、前記記録部に前記記録を開始又は停止させる
     請求項1記載のネットワークカメラ。
    The network camera further includes a control unit that receives a first control signal for starting or stopping recording of the first high-quality video signal from the receiving terminal,
    The network camera according to claim 1, wherein when the first control signal is received, the control unit causes the recording unit to start or stop the recording based on the received first control signal.
  7.  前記ネットワークカメラは、さらに、前記低画質映像信号又は前記第1高画質映像信号の送信を開始又は停止させる第2制御信号を前記受信端末から受信する制御部を備え、
     前記制御部は、前記第2制御信号を受信した場合、受信した第2制御信号に基づいて、前記送信部に前記送信を開始又は停止させる
     請求項1記載のネットワークカメラ。
    The network camera further includes a control unit that receives from the receiving terminal a second control signal for starting or stopping transmission of the low-quality video signal or the first high-quality video signal,
    The network camera according to claim 1, wherein, when receiving the second control signal, the control unit causes the transmission unit to start or stop the transmission based on the received second control signal.
  8.  前記ネットワークカメラは、さらに、前記メモリに記録された第1高画質映像信号を消去させる第3制御信号を前記受信端末から受信する制御部を備え、
     前記制御部は、前記第3制御信号を受信した場合、前記メモリに記録された第1高画質映像信号の少なくとも一部を、前記記録部に消去させる
     請求項1記載のネットワークカメラ。
    The network camera further includes a control unit that receives a third control signal for erasing the first high-quality video signal recorded in the memory from the receiving terminal,
    The network camera according to claim 1, wherein when the third control signal is received, the control unit causes the recording unit to erase at least a part of the first high-quality video signal recorded in the memory.
  9.  前記ネットワークカメラは、さらに、当該ネットワークカメラの撮影環境における異常を検出する異常検出部を備え、
     前記記録部は、前記異常検出部によって異常が検出された場合に、前記第1高画質映像信号の記録を開始する
     請求項1記載のネットワークカメラ。
    The network camera further includes an abnormality detection unit that detects an abnormality in the shooting environment of the network camera,
    The network camera according to claim 1, wherein the recording unit starts recording the first high-quality video signal when an abnormality is detected by the abnormality detection unit.
  10.  前記異常検出部は、現在時刻が予め定められた所定の時刻に達したときを異常として検出する
     請求項9記載のネットワークカメラ。
    The network camera according to claim 9, wherein the abnormality detection unit detects an abnormality when the current time reaches a predetermined time.
  11.  前記ネットワークカメラは、さらに、前記メモリに記録された第1高画質映像信号の解像度、フレームレート、及びビットレートの少なくとも1つを変換し、変換された第1高画質映像信号を送信部に出力する映像変換部を備え、
     前記送信部は、さらに、前記映像変換部によって変換された第1高画質映像信号を前記受信端末に送信する
     請求項1記載のネットワークカメラ。
    The network camera further converts at least one of the resolution, frame rate, and bit rate of the first high-quality video signal recorded in the memory, and outputs the converted first high-quality video signal to the transmission unit A video conversion unit that
    The network camera according to claim 1, wherein the transmission unit further transmits a first high-quality video signal converted by the video conversion unit to the receiving terminal.
  12.  前記ネットワークカメラは、さらに、前記第2駆動方式で駆動された撮像素子から出力された映像信号に含まれる複数の画像を縮小し、縮小した複数の画像を1枚の画像として含む第2高画質映像信号に変換する第2高画質映像信号生成部を備え、
     前記送信部は、さらに、前記第2高画質映像信号生成部によって生成された第2高画質映像信号を前記受信端末に送信する
     請求項1記載のネットワークカメラ。
    The network camera further reduces a plurality of images included in the video signal output from the image sensor driven by the second driving method, and includes a plurality of reduced images as one image. A second high-quality video signal generation unit for converting the video signal;
    The network camera according to claim 1, wherein the transmission unit further transmits the second high-quality video signal generated by the second high-quality video signal generation unit to the receiving terminal.
  13.  前記送信部は、前記第2高画質映像信号を送信する場合に、前記低画質映像信号の送信を停止する
     請求項12記載のネットワークカメラ。
    The network camera according to claim 12, wherein the transmission unit stops transmission of the low-quality video signal when transmitting the second high-quality video signal.
  14.  前記送信部は、前記低画質映像信号、前記第1高画質映像信号、及び前記第2高画質映像信号のいずれかを送信する
     請求項12記載のネットワークカメラ。
    The network camera according to claim 12, wherein the transmission unit transmits any one of the low-quality video signal, the first high-quality video signal, and the second high-quality video signal.
  15.  前記送信部は、前記記録部に記録された第1高画質映像信号の一部を前記低画質映像信号とともに、前記第1高画質映像信号のみを送信する場合より低い転送レートで送信する
     請求項1記載のネットワークカメラ。
    The transmission unit transmits a part of the first high-quality video signal recorded in the recording unit together with the low-quality video signal at a lower transfer rate than when only the first high-quality video signal is transmitted. 1. The network camera according to 1.
  16.  前記記録部は、前記メモリとして、前記ネットワークとは異なるネットワークを介して接続された外部の記録装置に前記第1高画質映像信号を記録する
     請求項1記載のネットワークカメラ。
    The network camera according to claim 1, wherein the recording unit records the first high-quality video signal as an external recording device connected via a network different from the network as the memory.
  17.  請求項1記載のネットワークカメラと、
     前記ネットワークを介して、前記ネットワークカメラから前記低画質映像信号及び前記第1高画質映像信号を受信し、受信した低画質映像信号及び第1高画質映像信号の少なくとも一方から得られる映像を表示する受信端末とを備える
     映像配信システム。
     
    A network camera according to claim 1;
    The low quality video signal and the first high quality video signal are received from the network camera via the network, and a video obtained from at least one of the received low quality video signal and the first high quality video signal is displayed. A video distribution system comprising a receiving terminal.
PCT/JP2010/003984 2009-08-27 2010-06-16 Network camera and video distribution system WO2011024361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-197306 2009-08-27
JP2009197306A JP2011049888A (en) 2009-08-27 2009-08-27 Network camera and video distribution system

Publications (1)

Publication Number Publication Date
WO2011024361A1 true WO2011024361A1 (en) 2011-03-03

Family

ID=43627484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003984 WO2011024361A1 (en) 2009-08-27 2010-06-16 Network camera and video distribution system

Country Status (2)

Country Link
JP (1) JP2011049888A (en)
WO (1) WO2011024361A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656304B1 (en) * 2014-04-09 2015-01-21 パナソニック株式会社 Surveillance camera system used for home security
CN105336016A (en) * 2014-08-13 2016-02-17 天盈健(北京)科技有限公司 Vehicle equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179179B2 (en) * 2013-05-10 2017-08-16 株式会社リコー Information processing apparatus, information processing method, and program
JP2015228565A (en) * 2014-05-30 2015-12-17 船井電機株式会社 Display device
JP6806011B2 (en) * 2017-09-14 2020-12-23 株式会社デンソー Image processing device
KR102129462B1 (en) * 2018-09-19 2020-07-03 (주)피타소프트 Method and apparatus for configuring and displaying combined image file where image streams with different resolutions are continuously recorded

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145004A1 (en) * 2006-06-13 2007-12-21 Panasonic Corporation Imaging apparatus
JP2008118607A (en) * 2006-10-11 2008-05-22 Victor Co Of Japan Ltd Network decoder apparatus
JP2008124625A (en) * 2006-11-09 2008-05-29 Sanyo Electric Co Ltd Imaging apparatus
JP2009135762A (en) * 2007-11-30 2009-06-18 Olympus Corp Camera
JP2009147730A (en) * 2007-12-14 2009-07-02 Fujifilm Corp Moving image generating apparatus, moving image shooting apparatus, moving image generating method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145004A1 (en) * 2006-06-13 2007-12-21 Panasonic Corporation Imaging apparatus
JP2008118607A (en) * 2006-10-11 2008-05-22 Victor Co Of Japan Ltd Network decoder apparatus
JP2008124625A (en) * 2006-11-09 2008-05-29 Sanyo Electric Co Ltd Imaging apparatus
JP2009135762A (en) * 2007-11-30 2009-06-18 Olympus Corp Camera
JP2009147730A (en) * 2007-12-14 2009-07-02 Fujifilm Corp Moving image generating apparatus, moving image shooting apparatus, moving image generating method, and program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656304B1 (en) * 2014-04-09 2015-01-21 パナソニック株式会社 Surveillance camera system used for home security
JP2015201088A (en) * 2014-04-09 2015-11-12 パナソニック株式会社 Monitoring camera system used for home security
US9947191B2 (en) 2014-04-09 2018-04-17 Panasonic Intellectual Property Management Co., Ltd. Monitoring system
CN105336016A (en) * 2014-08-13 2016-02-17 天盈健(北京)科技有限公司 Vehicle equipment

Also Published As

Publication number Publication date
JP2011049888A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
JP4525561B2 (en) Imaging apparatus, image processing method, and program
JP4172504B2 (en) Image processing apparatus, imaging apparatus, and method
US8743227B2 (en) Imaging apparatus and control method for reducing a load of writing image data on a recording medium
JP2006253768A (en) Digital camera
US7319480B2 (en) Method and apparatus for compressing motion image files to provide an improved image navigation display
JP2007228337A (en) Image photographing apparatus
WO2011024361A1 (en) Network camera and video distribution system
JP2007194928A (en) Remote monitoring device and method
JP2007274443A (en) Image transmitting method, transmitter, receiver and image transmitting system
KR101280443B1 (en) apparatus of processing regional image and method thereof
JP6319491B2 (en) Imaging apparatus and control method
JP4252015B2 (en) Image capturing apparatus, image reproducing apparatus, and image capturing / reproducing system
US7705890B2 (en) Apparatus and method for photographing an image in a wireless terminal
US20120020639A1 (en) Image processing apparatus and image pickup apparatus using the image processing appratus
JP6583457B2 (en) Imaging apparatus and control method
JP6119447B2 (en) Imaging system and control method
JP6583458B2 (en) Imaging apparatus and control method
JP5024331B2 (en) Video camera and information transmission method
JP2011049927A (en) Image processing device, and imaging apparatus with the same mounted thereon
JP2005277591A (en) Electronic camera apparatus and imaging signal generating method
JP5131954B2 (en) Video recorder and camera system
JP2006101227A (en) Imaging apparatus and imaging system
KR101609798B1 (en) moving picture replay device
KR100953508B1 (en) Method and System for Transmitting and Receiving Digital Video Stream
JP2012110027A (en) Video camera and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811420

Country of ref document: EP

Kind code of ref document: A1