WO2011024339A1 - Motor driving device and motor driving method - Google Patents

Motor driving device and motor driving method Download PDF

Info

Publication number
WO2011024339A1
WO2011024339A1 PCT/JP2010/002247 JP2010002247W WO2011024339A1 WO 2011024339 A1 WO2011024339 A1 WO 2011024339A1 JP 2010002247 W JP2010002247 W JP 2010002247W WO 2011024339 A1 WO2011024339 A1 WO 2011024339A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
motor
signal
pwm frequency
drive device
Prior art date
Application number
PCT/JP2010/002247
Other languages
French (fr)
Japanese (ja)
Inventor
福田大祐
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011024339A1 publication Critical patent/WO2011024339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/181Circuit arrangements for detecting position without separate position detecting elements using different methods depending on the speed

Definitions

  • the present invention relates to a motor drive device, and more particularly to a technique for PWM driving a motor.
  • a motor driving device that drives a motor at a low PWM frequency during the startup period and drives the motor at a high PWM frequency during the steady rotation period (see, for example, Patent Document 1). .
  • FIG. 15 shows operation waveforms of a conventional motor driving device.
  • the motor rotation speed gradually increases during the start-up period, increases and decreases in the vicinity of the target rotation speed during the pull-in period after the motor rotation speed reaches the target rotation speed, and becomes constant at the target rotation speed during the steady rotation period.
  • the torque voltage is at the maximum level during the startup period, rises and falls near the low level during the pull-in period, and is constant at a low level during the steady rotation period.
  • the PWM frequency is set low during the start-up period, and is set high during the pull-in period and the steady rotation period.
  • the problem here is that, although the torque voltage is at the maximum level during the start-up period, the rotational acceleration decreases as the motor rotational speed increases, and the motor rotational speed is sluggish in the high rotational speed range. Considering the cause, the current ripple generated due to the back electromotive force generated in the motor coil increases as the motor speed increases, and the effect of canceling the current supplied to the motor coil increases. It has been found that the average electrical energy supplied to is reduced. Therefore, it is expected that the startup period of the motor can be shortened if current can be efficiently supplied to the motor coil even if the motor rotation speed increases.
  • an object of the present invention is to improve the current supply efficiency to the motor coil during the startup period.
  • the present invention has taken the following solution. That is, as a motor driving device that drives the motor by PWM, the number of rotations of the motor is detected during the start-up period from when the motor is started until the number of rotations of the motor reaches the target number of rotations. It is assumed that a rotation speed detecting means for outputting a control signal and a PWM frequency changing means for increasing the PWM frequency according to the control signal are provided.
  • the current ripple caused by the counter electromotive force generated in the motor coil is reduced by increasing the PWM frequency as the motor speed increases. Even if the rotational speed of the motor increases, the average electrical energy supplied to the motor coil can be increased.
  • the rotation speed detection means switches the control signal every time the rotation speed of the motor exceeds a set value.
  • the rotation speed detection means performs hysteresis control on the control signal.
  • the rotation speed detection means includes a rotation speed calculation means for calculating the rotation speed of the motor, and a rotation speed ratio calculation means for calculating a ratio between the rotation speed calculated by the rotation speed calculation means and the target rotation speed.
  • the rotation speed ratio calculation means switches the control signal every time the calculated ratio exceeds a set value. According to this, uniform control can be performed for any motor regardless of the target rotational speed for each motor.
  • the PWM frequency changing means sets the PWM frequency to a predetermined value when the rotational speed of the motor reaches the target rotational speed. More specifically, the rotational speed detection means outputs a detected rotational speed signal that is a pulse train having a period corresponding to the detected rotational speed, and the motor driving device uses a pulse train having a period corresponding to the target rotational speed. Synchronization detection means for detecting phase synchronization between a certain target rotation speed signal and a detected rotation speed signal is provided, and the PWM frequency changing means sets the PWM frequency to a predetermined value when the synchronization detection means detects phase synchronization. May be.
  • the motor drive device includes torque command means for outputting a torque voltage for controlling the torque of the motor, and torque voltage comparison means for comparing the torque voltage with a predetermined voltage.
  • the PWM frequency may be set to a predetermined value when the output of the comparison means indicates that the torque voltage has fallen below the predetermined voltage.
  • the rotational speed detection means outputs a detected rotational speed signal, and the motor driving device compares the phases of the target rotational speed signal and the detected rotational speed signal, and the phase of the detected rotational speed signal is the target rotational speed.
  • a phase comparison unit that outputs a deceleration signal when the phase is more than the phase of the number signal, and a latch circuit that latches the deceleration signal, and the PWM frequency changing unit performs PWM when the output of the latch circuit becomes active
  • the frequency may be set to a predetermined value.
  • the motor can be driven with high resolution.
  • the startup period of the motor can be shortened.
  • FIG. 1 is a circuit diagram showing the configuration of the motor drive device according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of the relationship between the control value of the motor drive device according to the first embodiment and the rotational speed of the motor.
  • FIG. 3 is an operation waveform diagram of the motor drive device according to the first embodiment.
  • FIG. 4 is a diagram illustrating another example of the relationship between the control value of the motor drive device according to the first embodiment and the rotational speed of the motor.
  • FIG. 5 is a diagram illustrating still another example of the relationship between the control value of the motor drive device according to the first embodiment and the rotational speed of the motor.
  • FIG. 6 is a circuit diagram showing a configuration of a motor drive device according to the second embodiment.
  • FIG. 7 is a diagram illustrating an example of the relationship between the control value of the motor drive device according to the second embodiment and the ratio of the rotational speed.
  • FIG. 8 is an operation waveform diagram of the motor drive device according to the second embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of a motor drive device according to the third embodiment.
  • FIG. 10 is an operation waveform diagram of the motor drive device according to the third embodiment.
  • FIG. 11 is a circuit diagram illustrating a configuration of a motor drive device according to the fourth embodiment.
  • FIG. 12 is an operation waveform diagram of the motor drive device according to the fourth embodiment.
  • FIG. 13 is a circuit diagram showing a configuration of a motor drive device according to the fifth embodiment.
  • FIG. 14 is an operation waveform diagram of the motor drive device according to the fifth embodiment.
  • FIG. 15 is an operation waveform diagram of the conventional motor driving device.
  • FIG. 1 is a circuit diagram showing the configuration of the motor drive device according to the first embodiment.
  • the motor drive device performs PWM control on the current supplied to the motor coils 21 to 23 of the three-phase motor, for example.
  • the position detection means 31 detects the relative position between the rotor and the stator (not shown), for example, by a position detection element such as a Hall element or a back electromotive force induced in the motor coils 21 to 23.
  • the energization switching unit 32 outputs a timing signal for switching the phases of the motor coils 21 to 23 based on the detection result of the position detection unit 31.
  • the PWM control means 33 receives the output of the energization switching means 32 and the pulse signal 74 that is the output of the pulse width control means 54, and receives the upper switching elements 41 ⁇ connected in series between the power supply VM and the power supply GND, respectively. 43 and the lower switching elements 44 to 46 are on / off controlled. Flywheel diodes 24 to 29 are connected in parallel to the upper switching elements 41 to 43 and the lower switching elements 44 to 46, respectively.
  • the torque command means 51 receives a torque control signal for controlling the torque of the motor from the outside, for example, and outputs a torque voltage 71.
  • the rotational speed detection means 52 receives a motor rotational speed detection signal such as an FG signal, for example, detects the rotational speed of the motor, and outputs a control signal 72 corresponding to the detected rotational speed.
  • a motor rotational speed detection signal such as an FG signal
  • n1-n3 are set in advance in the rotation speed detection means 52 as the rotation speed.
  • the rotational speed detection means 52 outputs a control signal 72 having a control value c1 when the rotational speed is n1 or less, and outputs a control signal 72 having a control value c2 when the rotational speed exceeds n1.
  • rotational speed detection means 52 outputs control signals 72 of control values c3 and c4, respectively.
  • the PWM frequency changing means 53 receives the control signal 72 and increases the PWM frequency according to the control value. For example, when receiving the control signal 72 of the control value c1, the PWM frequency changing means 53 sets the PWM frequency to the lowest f1, and when receiving the control signal 72 of the control value c2, the PWM frequency is changed to f2 higher than f1. Set to. Similarly, when control signals 72 of control values c3 and c4 are received, the PWM frequency is set to f3 and f4 higher than f2, respectively.
  • the PWM frequency changing means 53 outputs a PWM signal 73 corresponding to the frequencies f1 to f4.
  • the pulse width control means 54 receives the torque voltage 71 and the PWM signal 73 and generates and outputs a pulse signal 74.
  • a current detecting means for detecting a current flowing in a resistor (not shown) between the connection point of the lower switching elements 44 to 46 and the power supply GND may be provided.
  • the pulse width control means 54 receives a detection signal from the current detection means and outputs a pulse signal 74 for controlling on / off of the upper switching elements 41 to 43 and the lower switching elements 44 to 46.
  • FIG. 3 is an operation waveform diagram of the motor drive device according to the present embodiment.
  • the maximum level torque voltage 71 is output, and the PWM frequency is set to f1.
  • the PWM frequency is set to f2.
  • the PWM frequency is set to f3
  • the PWM frequency is set to f4.
  • the present embodiment it is possible to reduce the current ripple generated by the counter electromotive force generated in the motor coils 21 to 23 in the high rotation range during the motor start-up period. As a result, even if the rotational speed of the motor increases, current can be efficiently supplied to the motor coils 21 to 23, so that the motor start-up period can be shortened.
  • the rotation speed detection means 52 may change the control value of the control signal 72 linearly. Further, as shown in FIG. 5, the rotational speed detection means 52 may perform hysteresis control on the control value of the control signal 72. According to this, it is possible to suppress fluttering of the control signal 72 due to slight fluctuations in the rotational speed of the motor at the switching point of the control signal 72.
  • the rotational speed detection means 52 may receive the output of the position detection means 31 and detect the rotational speed of the motor. Further, the rotational speed detection means 52 may receive the torque voltage 71 and output a control signal corresponding to the torque voltage 71. Alternatively, the rotation speed detection means 52 may output a control signal corresponding to the elapsed time after the motor is started.
  • the on time may be gradually shortened.
  • the PWM frequency can be substantially increased gradually.
  • the on-time may be made constant.
  • FIG. 6 is a circuit diagram showing a configuration of a motor drive device according to the second embodiment. Only the differences from the first embodiment will be described below.
  • the rotation speed detection means 52 has a rotation speed calculation means 52a and a rotation speed ratio calculation means 52b.
  • the rotational speed calculation means 52a receives the motor rotational speed detection signal and calculates the rotational speed of the motor.
  • the rotation speed ratio calculation means 52b calculates the ratio of the rotation speed of the motor to the target rotation speed from the rotation speed calculated by the rotation speed calculation means 52a and the target rotation speed recorded in, for example, a register. For example, as shown in FIG. 7, m1 to m3 are set in advance as the rotation speed ratio in the rotation speed ratio calculation means 52b.
  • the rotation speed ratio calculation means 52b outputs a control signal 72 having a control value c1 when the rotation speed ratio is less than or equal to m1, and each time the rotation speed ratio exceeds m1 to m3, the rotation speed ratio calculation means 52b responds accordingly.
  • a control signal 72 having control values c2 to c4 is output.
  • the PWM frequency changing means 53 sets the PWM frequency to f1 to f4 accordingly.
  • FIG. 8 is an operation waveform diagram of the motor drive device according to the present embodiment.
  • the PWM frequency is first set to f1.
  • the rotational speed of the motor increases and the rotational speed ratio exceeds m1
  • the PWM frequency is set to f2.
  • the rotation speed ratio exceeds m2 and m3
  • the PWM frequency is set to f3 and f4, respectively.
  • each motor can be controlled uniformly by setting a predetermined rotation speed ratio in the rotation speed ratio calculation means 52b. .
  • the rotation speed ratio calculation means 52b may replace with the rotation speed ratio calculation means 52b, and may provide a means for calculating the rotation speed difference between the target rotation speed and the rotation speed of the motor.
  • the difference between the target rotational speed and the rotational speed of the motor is set in advance, and the control value is switched every time the rotational speed difference exceeds the set value.
  • the rotation speed ratio may be calculated as an analog value.
  • the rotation speed ratio calculation means 52b compares the voltage according to the target rotation speed with the voltage according to the motor rotation speed, and outputs a control signal 72 based on the ratio.
  • FIG. 9 is a circuit diagram showing a configuration of a motor drive device according to the third embodiment. Only the differences from the first embodiment will be described below.
  • the rotation speed detection means 52 outputs a control signal 72 and a detected rotation speed signal 75.
  • the detected rotational speed signal 75 is a pulse train having a period corresponding to the rotational speed detected by the rotational speed detecting means 52.
  • the synchronization detection means 56 receives the detected rotation speed signal 75 and the target rotation speed signal 76, detects that these phases are synchronized, and outputs a synchronization detection signal 77.
  • the target rotational speed signal 76 is a pulse train having a period corresponding to the target rotational speed.
  • the synchronization detecting means 56 sets the synchronization detection signal 77 to L level, for example.
  • the PWM frequency changing means 53 sets the PWM frequency to f1 to f4 according to the control value.
  • the PWM frequency changing means 53 sets the PWM frequency to f5 higher than f4 when the synchronization detection signal 77 becomes L level.
  • FIG. 10 is an operation waveform diagram of the motor drive device according to the present embodiment.
  • the PWM frequency is first set to f1.
  • the PWM frequency is set to f2 to f4 accordingly.
  • phase synchronization is detected and the synchronization detection signal 77 becomes L level.
  • the PWM frequency is set to f5.
  • the motor can be driven with high resolution by setting the PWM frequency to a high frequency when the rotational speed of the motor is equal to the target rotational speed.
  • the PWM frequency is set to f5 when the synchronization detection signal 77 becomes L level, the motor may be driven with the PWM frequency maintained at f5.
  • FIG. 11 is a circuit diagram illustrating a configuration of a motor drive device according to the fourth embodiment. Only the differences from the first embodiment will be described below.
  • the torque voltage comparison means 57 compares the torque voltage 71 with a predetermined voltage VA set in advance.
  • the torque voltage comparison unit 57 outputs, for example, an H level torque voltage comparison signal 78 when the torque voltage 71 exceeds the voltage VA.
  • the PWM frequency changing unit 53 sets the PWM frequency to f1 to f4 accordingly, and when the torque voltage comparison signal 78 becomes L level, sets it to f5 higher than f4.
  • FIG. 12 is an operation waveform diagram of the motor drive device according to the present embodiment.
  • the PWM frequency is first set to f1.
  • the PWM frequency is set to f2 to f4 accordingly.
  • torque voltage 71 starts to decrease.
  • torque voltage comparison signal 78 becomes L level.
  • the PWM frequency is set to f5.
  • the motor can be driven with high resolution in the steady rotational period. If the PWM frequency is set to f5 when the torque voltage 71 falls below the voltage VA, the motor may be driven while maintaining the PWM frequency at f5.
  • FIG. 13 is a circuit diagram showing a configuration of a motor drive device according to the fifth embodiment. Only the differences from the first embodiment will be described below.
  • the rotation speed detection means 52 outputs a control signal 72 and a detected rotation speed signal 75.
  • the detected rotational speed signal 75 is a pulse train having a period corresponding to the rotational speed detected by the rotational speed detecting means 52.
  • the phase comparison means 61 compares the phase of the detected rotational speed signal 75 with the phase of the target rotational speed signal 76.
  • the target rotational speed signal 76 is a pulse train having a period corresponding to the target rotational speed.
  • the phase comparison means 61 outputs an acceleration signal 81 when the phase of the target rotational speed signal 76 is ahead of the phase of the detected rotational speed signal 75, that is, when the rotational speed of the motor is slower than the target rotational speed.
  • the deceleration signal 82 is output.
  • the latch circuit 62 latches the deceleration signal 82.
  • the PWM frequency changing means 53 sets the PWM frequency to f1 to f4 accordingly, and sets the PWM frequency to f5 higher than f4 when the deceleration detection signal 83 becomes active. .
  • FIG. 14 is an operation waveform diagram of the motor drive device according to the present embodiment.
  • the PWM frequency is first set to f1.
  • the PWM frequency is set to f2 to f4 accordingly.
  • a deceleration signal 82 is output.
  • the deceleration detection signal 83 becomes active, and the PWM frequency is set to f5.
  • the PWM frequency changing means 53 can drive the motor with high resolution by setting a high PWM frequency when the deceleration detection signal 83 becomes active.
  • the motor may be driven while maintaining the PWM frequency at f5.
  • the torque command means 51 may output a torque voltage 71 based on the acceleration signal 81 and the deceleration signal 82.
  • the motor drive device can be driven with high resolution in the steady rotation period while shortening the motor start period, and thus is useful for information equipment and the like that require quick and stable drive.
  • Torque command means Rotational speed detection means 52a Rotational speed calculation means 52b Rotational speed ratio calculation means 53 PWM frequency change means 54 Pulse width control means 56 Synchronization detection means 57 Torque voltage comparison means 61 Phase comparison means 62 Latch circuit 71 Torque voltage 72 Control signal 75 Detected rotation speed signal 76 Target rotation speed signal 77 Synchronization detection signal 78 Torque voltage comparison signal 82 Deceleration signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A motor driving device is provided with: a rotational-speed detecting means (52) for detecting the rotational speed of a motor during a start-up period, which is from when the motor is started up to when the rotational speed of the motor reaches a target rotational speed, and outputs a control signal (72) corresponding to the detected rotational speed; and a PWM-frequency changing means (53) for increasing the PWM-frequency according to the control signal (72).

Description

モータ駆動装置およびモータ駆動方法Motor driving apparatus and motor driving method
 本発明は、モータ駆動装置に関し、特に、モータをPWM駆動する技術に関する。 The present invention relates to a motor drive device, and more particularly to a technique for PWM driving a motor.
 従来、モータをPWM(Pulse Width Modulation)駆動するモータ駆動装置において、モータを迅速に起動して、起動後には回転むらを抑制する駆動制御が行われている。モータを迅速に起動するためには、モータの回転数が目標回転数に達するまでの起動期間において、大電流をモータコイルに供給する。また、回転むらを抑制するためには、モータが起動した後の定常回転期間において、高い分解能でモータを駆動する。高い分解能でモータを駆動するためには、PWM周波数を高くすることが望ましい。ところが、起動期間においてPWM周波数を高くするとスイッチング素子が頻繁にオン・オフすることによるスイッチングロスが発生して発熱してしまう。 Conventionally, in a motor drive device that drives a motor by PWM (Pulse Width Modulation), drive control is performed to quickly start the motor and suppress rotation unevenness after startup. In order to quickly start the motor, a large current is supplied to the motor coil during the starting period until the rotational speed of the motor reaches the target rotational speed. Further, in order to suppress the rotation unevenness, the motor is driven with high resolution in the steady rotation period after the motor is started. In order to drive the motor with high resolution, it is desirable to increase the PWM frequency. However, if the PWM frequency is increased during the start-up period, a switching loss due to frequent switching on and off of the switching element occurs and heat is generated.
 このような問題を解決するものとして、起動期間では低いPWM周波数でモータを駆動し、定常回転期間では高いPWM周波数でモータを駆動するモータ駆動装置が開示されている(例えば、特許文献1参照)。 As a solution to such a problem, a motor driving device is disclosed that drives a motor at a low PWM frequency during the startup period and drives the motor at a high PWM frequency during the steady rotation period (see, for example, Patent Document 1). .
特開2004-7894号公報JP 2004-7894 A
 図15は、従来のモータ駆動装置の動作波形を示す。モータ回転数は、起動期間では徐々に上昇し、モータ回転数が目標回転数に達した後の引き込み期間では目標回転数の近傍で上下し、定常回転期間では目標回転数で一定となる。トルク電圧は、起動期間では最大レベルであり、引き込み期間では低レベル近傍で上下し、定常回転期間では低レベルで一定となる。PWM周波数は、起動期間では低く設定され、引き込み期間および定常回転期間では高く設定される。 FIG. 15 shows operation waveforms of a conventional motor driving device. The motor rotation speed gradually increases during the start-up period, increases and decreases in the vicinity of the target rotation speed during the pull-in period after the motor rotation speed reaches the target rotation speed, and becomes constant at the target rotation speed during the steady rotation period. The torque voltage is at the maximum level during the startup period, rises and falls near the low level during the pull-in period, and is constant at a low level during the steady rotation period. The PWM frequency is set low during the start-up period, and is set high during the pull-in period and the steady rotation period.
 ここで問題なのは、起動期間においてトルク電圧を最大レベルにしているにもかかわらず、モータ回転数が上昇するにつれて回転加速度が減少し、高回転域ではモータ回転数が伸び悩むという点である。その原因について考察したところ、モータ回転数が上昇するにつれてモータコイルに生じる逆起電力に起因して発生する電流リップルが大きくなることでモータコイルに供給される電流の相殺効果が大きくなり、モータコイルに供給される平均電気エネルギが減少することがわかった。したがって、モータ回転数が上昇してもモータコイルに効率よく電流を供給できればモータの起動期間が短縮できると期待される。 The problem here is that, although the torque voltage is at the maximum level during the start-up period, the rotational acceleration decreases as the motor rotational speed increases, and the motor rotational speed is sluggish in the high rotational speed range. Considering the cause, the current ripple generated due to the back electromotive force generated in the motor coil increases as the motor speed increases, and the effect of canceling the current supplied to the motor coil increases. It has been found that the average electrical energy supplied to is reduced. Therefore, it is expected that the startup period of the motor can be shortened if current can be efficiently supplied to the motor coil even if the motor rotation speed increases.
 そこで、本発明は、起動期間においてモータコイルへの電流供給効率を向上することを課題とする。 Therefore, an object of the present invention is to improve the current supply efficiency to the motor coil during the startup period.
 上述課題を解決するため本発明によって次のような解決手段を講じた。すなわち、モータをPWM駆動するモータ駆動装置として、モータが起動してからモータの回転数が目標回転数に達するまでの起動期間において、モータの回転数を検出し、当該検出した回転数に応じた制御信号を出力する回転数検出手段と、制御信号に応じてPWM周波数を高くするPWM周波数変更手段とを備えているものとする。 In order to solve the above problems, the present invention has taken the following solution. That is, as a motor driving device that drives the motor by PWM, the number of rotations of the motor is detected during the start-up period from when the motor is started until the number of rotations of the motor reaches the target number of rotations. It is assumed that a rotation speed detecting means for outputting a control signal and a PWM frequency changing means for increasing the PWM frequency according to the control signal are provided.
 これによると、モータを起動させるために大電流を要する起動期間において、モータの回転数が上昇するにつれてPWM周波数を高くすることで、モータコイルに生じる逆起電力に起因する電流リップルが小さくなるため、モータの回転数が上昇してもモータコイルに供給される平均電気エネルギを大きくすることができる。 According to this, in the start-up period that requires a large current to start the motor, the current ripple caused by the counter electromotive force generated in the motor coil is reduced by increasing the PWM frequency as the motor speed increases. Even if the rotational speed of the motor increases, the average electrical energy supplied to the motor coil can be increased.
 具体的には、回転数検出手段は、モータの回転数が設定値を超える毎に制御信号を切り替える。好ましくは、回転数検出手段は、制御信号をヒステリシス制御するものとする。 Specifically, the rotation speed detection means switches the control signal every time the rotation speed of the motor exceeds a set value. Preferably, the rotation speed detection means performs hysteresis control on the control signal.
 好ましくは、回転数検出手段は、モータの回転数を算出する回転数算出手段と、回転数算出手段で算出された回転数と目標回転数との比を算出する回転数比算出手段とを有するものであり、回転数比算出手段は、算出した比が設定値を超える毎に制御信号を切り替えるものとする。これによると、モータ毎の目標回転数にかかわらず、どのモータについても一様の制御をすることができる。 Preferably, the rotation speed detection means includes a rotation speed calculation means for calculating the rotation speed of the motor, and a rotation speed ratio calculation means for calculating a ratio between the rotation speed calculated by the rotation speed calculation means and the target rotation speed. The rotation speed ratio calculation means switches the control signal every time the calculated ratio exceeds a set value. According to this, uniform control can be performed for any motor regardless of the target rotational speed for each motor.
 具体的には、PWM周波数変更手段は、モータの回転数が目標回転数に達したときにPWM周波数を所定値に設定するものである。より具体的に、回転数検出手段は、検出した回転数に応じた周期のパルス列である検出回転数信号を出力するものであり、上記モータ駆動装置は、目標回転数に応じた周期のパルス列である目標回転数信号と検出回転数信号との位相同期を検出する同期検出手段を備え、PWM周波数変更手段は、同期検出手段が位相同期を検出したときにPWM周波数を所定値に設定するようにしてもよい。あるいは、上記モータ駆動装置は、モータのトルクを制御するトルク電圧を出力するトルク指令手段と、トルク電圧と所定の電圧とを比較するトルク電圧比較手段とを備え、PWM周波数変更手段は、トルク電圧比較手段の出力がトルク電圧が所定の電圧よりも下回ったことを示すときにPWM周波数を所定値に設定するようにしてもよい。あるいは、回転数検出手段は、検出回転数信号を出力するものであり、上記モータ駆動装置は、目標回転数信号と検出回転数信号との位相を比較し、検出回転数信号の位相が目標回転数信号の位相よりも進んでいるときに減速信号を出力する位相比較手段と、減速信号をラッチするラッチ回路とを備え、PWM周波数変更手段は、ラッチ回路の出力がアクティブになったときにPWM周波数を所定値に設定するようにしてもよい。 Specifically, the PWM frequency changing means sets the PWM frequency to a predetermined value when the rotational speed of the motor reaches the target rotational speed. More specifically, the rotational speed detection means outputs a detected rotational speed signal that is a pulse train having a period corresponding to the detected rotational speed, and the motor driving device uses a pulse train having a period corresponding to the target rotational speed. Synchronization detection means for detecting phase synchronization between a certain target rotation speed signal and a detected rotation speed signal is provided, and the PWM frequency changing means sets the PWM frequency to a predetermined value when the synchronization detection means detects phase synchronization. May be. Alternatively, the motor drive device includes torque command means for outputting a torque voltage for controlling the torque of the motor, and torque voltage comparison means for comparing the torque voltage with a predetermined voltage. The PWM frequency may be set to a predetermined value when the output of the comparison means indicates that the torque voltage has fallen below the predetermined voltage. Alternatively, the rotational speed detection means outputs a detected rotational speed signal, and the motor driving device compares the phases of the target rotational speed signal and the detected rotational speed signal, and the phase of the detected rotational speed signal is the target rotational speed. A phase comparison unit that outputs a deceleration signal when the phase is more than the phase of the number signal, and a latch circuit that latches the deceleration signal, and the PWM frequency changing unit performs PWM when the output of the latch circuit becomes active The frequency may be set to a predetermined value.
 これらによると、モータの回転数が目標回転数に達した後は、高い分解能でモータを駆動することができる。 According to these, after the motor speed reaches the target speed, the motor can be driven with high resolution.
 本発明によると、起動期間においてモータコイルへの電流供給効率を向上することができるため、モータの起動期間を短縮することができる。 According to the present invention, since the current supply efficiency to the motor coil can be improved during the startup period, the startup period of the motor can be shortened.
図1は、第1の実施形態に係るモータ駆動装置の構成を示す回路図である。FIG. 1 is a circuit diagram showing the configuration of the motor drive device according to the first embodiment. 図2は、第1の実施形態に係るモータ駆動装置の制御値とモータの回転数との関係の例を示す図である。FIG. 2 is a diagram illustrating an example of the relationship between the control value of the motor drive device according to the first embodiment and the rotational speed of the motor. 図3は、第1の実施形態に係るモータ駆動装置の動作波形図である。FIG. 3 is an operation waveform diagram of the motor drive device according to the first embodiment. 図4は、第1の実施形態に係るモータ駆動装置の制御値とモータの回転数との関係の別の例を示す図である。FIG. 4 is a diagram illustrating another example of the relationship between the control value of the motor drive device according to the first embodiment and the rotational speed of the motor. 図5は、第1の実施形態に係るモータ駆動装置の制御値とモータの回転数との関係のさらに別の例を示す図である。FIG. 5 is a diagram illustrating still another example of the relationship between the control value of the motor drive device according to the first embodiment and the rotational speed of the motor. 図6は、第2の実施形態に係るモータ駆動装置の構成を示す回路図である。FIG. 6 is a circuit diagram showing a configuration of a motor drive device according to the second embodiment. 図7は、第2の実施形態に係るモータ駆動装置の制御値と回転数の比との関係の例を示す図である。FIG. 7 is a diagram illustrating an example of the relationship between the control value of the motor drive device according to the second embodiment and the ratio of the rotational speed. 図8は、第2の実施形態に係るモータ駆動装置の動作波形図である。FIG. 8 is an operation waveform diagram of the motor drive device according to the second embodiment. 図9は、第3の実施形態に係るモータ駆動装置の構成を示す回路図である。FIG. 9 is a circuit diagram showing a configuration of a motor drive device according to the third embodiment. 図10は、第3の実施形態に係るモータ駆動装置の動作波形図である。FIG. 10 is an operation waveform diagram of the motor drive device according to the third embodiment. 図11は、第4の実施形態に係るモータ駆動装置の構成を示す回路図である。FIG. 11 is a circuit diagram illustrating a configuration of a motor drive device according to the fourth embodiment. 図12は、第4の実施形態に係るモータ駆動装置の動作波形図である。FIG. 12 is an operation waveform diagram of the motor drive device according to the fourth embodiment. 図13は、第5の実施形態に係るモータ駆動装置の構成を示す回路図である。FIG. 13 is a circuit diagram showing a configuration of a motor drive device according to the fifth embodiment. 図14は、第5の実施形態に係るモータ駆動装置の動作波形図である。FIG. 14 is an operation waveform diagram of the motor drive device according to the fifth embodiment. 図15は、従来のモータ駆動装置の動作波形図である。FIG. 15 is an operation waveform diagram of the conventional motor driving device.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 <第1の実施形態>
 図1は、第1の実施形態に係るモータ駆動装置の構成を示す回路図である。モータ駆動装置は、例えば3相モータのモータコイル21~23に供給する電流をPWM制御する。位置検出手段31は、例えばホール素子等の位置検出素子あるいはモータコイル21~23に誘起される逆起電力等によりロータとステータ(図示省略)との相対位置を検出する。通電切替手段32は、位置検出手段31の検出結果に基づいて、モータコイル21~23の相を切り替えるためのタイミング信号を出力する。PWM制御手段33は、通電切替手段32の出力とパルス幅制御手段54の出力であるパルス信号74とを受けて、電源VMと電源GNDとの間にそれぞれ直列に接続された上側スイッチング素子41~43と下側スイッチング素子44~46とをオンオフ制御する。上側スイッチング素子41~43および下側スイッチング素子44~46にはフライホイールダイオード24~29がそれぞれ並列接続されている。トルク指令手段51は、モータのトルクを制御するためのトルク制御信号を例えば外部から受けて、トルク電圧71を出力する。
<First Embodiment>
FIG. 1 is a circuit diagram showing the configuration of the motor drive device according to the first embodiment. The motor drive device performs PWM control on the current supplied to the motor coils 21 to 23 of the three-phase motor, for example. The position detection means 31 detects the relative position between the rotor and the stator (not shown), for example, by a position detection element such as a Hall element or a back electromotive force induced in the motor coils 21 to 23. The energization switching unit 32 outputs a timing signal for switching the phases of the motor coils 21 to 23 based on the detection result of the position detection unit 31. The PWM control means 33 receives the output of the energization switching means 32 and the pulse signal 74 that is the output of the pulse width control means 54, and receives the upper switching elements 41˜ connected in series between the power supply VM and the power supply GND, respectively. 43 and the lower switching elements 44 to 46 are on / off controlled. Flywheel diodes 24 to 29 are connected in parallel to the upper switching elements 41 to 43 and the lower switching elements 44 to 46, respectively. The torque command means 51 receives a torque control signal for controlling the torque of the motor from the outside, for example, and outputs a torque voltage 71.
 回転数検出手段52は、例えばFG信号などのモータ回転数検出信号を受けて、モータの回転数を検出するとともに、その検出した回転数に応じた制御信号72を出力する。例えば回転数検出手段52には図2に示すように、あらかじめ回転数としてn1~n3が設定されている。回転数検出手段52は、回転数がn1以下である場合には、制御値がc1の制御信号72を出力し、回転数がn1を超えると制御値c2の制御信号72を出力する。同様に回転数がn2およびn3を超えると、回転数検出手段52は、それぞれ制御値c3およびc4の制御信号72を出力する。 The rotational speed detection means 52 receives a motor rotational speed detection signal such as an FG signal, for example, detects the rotational speed of the motor, and outputs a control signal 72 corresponding to the detected rotational speed. For example, as shown in FIG. 2, n1-n3 are set in advance in the rotation speed detection means 52 as the rotation speed. The rotational speed detection means 52 outputs a control signal 72 having a control value c1 when the rotational speed is n1 or less, and outputs a control signal 72 having a control value c2 when the rotational speed exceeds n1. Similarly, when the rotational speed exceeds n2 and n3, rotational speed detection means 52 outputs control signals 72 of control values c3 and c4, respectively.
 PWM周波数変更手段53は、制御信号72を受けて、その制御値に応じてPWM周波数を高くする。例えば、PWM周波数変更手段53は、制御値c1の制御信号72を受けているときはPWM周波数を最も低いf1に設定し、制御値c2の制御信号72を受けるとPWM周波数をf1よりも高いf2に設定する。同様に、制御値c3およびc4の制御信号72を受けると、それぞれに応じてPWM周波数をf2よりも高いf3およびf4にそれぞれ設定する。PWM周波数変更手段53は、周波数f1~f4に応じたPWM信号73を出力する。 The PWM frequency changing means 53 receives the control signal 72 and increases the PWM frequency according to the control value. For example, when receiving the control signal 72 of the control value c1, the PWM frequency changing means 53 sets the PWM frequency to the lowest f1, and when receiving the control signal 72 of the control value c2, the PWM frequency is changed to f2 higher than f1. Set to. Similarly, when control signals 72 of control values c3 and c4 are received, the PWM frequency is set to f3 and f4 higher than f2, respectively. The PWM frequency changing means 53 outputs a PWM signal 73 corresponding to the frequencies f1 to f4.
 パルス幅制御手段54は、トルク電圧71とPWM信号73とを受けて、パルス信号74を生成して出力する。なお、下側スイッチング素子44~46の接続点と電源GNDとの間の図示しない抵抗に流れる電流を検出する電流検出手段を設けてもよい。この場合、パルス幅制御手段54は、電流検出手段の検出信号を受けて上側スイッチング素子41~43および下側スイッチング素子44~46をオンオフ制御するパルス信号74を出力する。 The pulse width control means 54 receives the torque voltage 71 and the PWM signal 73 and generates and outputs a pulse signal 74. A current detecting means for detecting a current flowing in a resistor (not shown) between the connection point of the lower switching elements 44 to 46 and the power supply GND may be provided. In this case, the pulse width control means 54 receives a detection signal from the current detection means and outputs a pulse signal 74 for controlling on / off of the upper switching elements 41 to 43 and the lower switching elements 44 to 46.
 次に、本実施形態に係るモータ駆動装置の動作について説明する。図3は、本実施形態に係るモータ駆動装置の動作波形図である。まず、起動期間において、最大レベルのトルク電圧71が出力され、PWM周波数はf1に設定される。モータの回転数がn1を超えると、PWM周波数はf2に設定される。回転数がn2を超えると、PWM周波数はf3に設定され、回転数がn3を超えると、PWM周波数はf4に設定される。 Next, the operation of the motor drive device according to this embodiment will be described. FIG. 3 is an operation waveform diagram of the motor drive device according to the present embodiment. First, during the start-up period, the maximum level torque voltage 71 is output, and the PWM frequency is set to f1. When the rotational speed of the motor exceeds n1, the PWM frequency is set to f2. When the rotational speed exceeds n2, the PWM frequency is set to f3, and when the rotational speed exceeds n3, the PWM frequency is set to f4.
 モータの回転数が目標回転数に達すると引き込み期間に遷移する。引き込み期間では、モータの回転数のオーバーシュートやアンダーシュートが発生するためトルク電圧71が上下する不安定な状態となる。また、引き込み期間では、PWM周波数はf4で固定される。引き込み期間が終了し、モータの回転数が一定となる定常回転期間に遷移すると、トルク電圧71は低レベルになる。 と Transition to the pull-in period when the motor speed reaches the target speed. In the pull-in period, an overshoot or undershoot of the motor rotation speed occurs, so that the torque voltage 71 is in an unstable state in which it rises and falls. In the pull-in period, the PWM frequency is fixed at f4. When the pull-in period ends and a transition is made to a steady rotation period in which the rotation speed of the motor is constant, the torque voltage 71 becomes a low level.
 以上、本実施形態によると、モータの起動期間において高回転域におけるモータコイル21~23に生じる逆起電力によって発生する電流リップルを小さくすることができる。これにより、モータの回転数が上昇してもモータコイル21~23に効率よく電流を供給することができるため、モータの起動期間を短縮することができる。 As described above, according to the present embodiment, it is possible to reduce the current ripple generated by the counter electromotive force generated in the motor coils 21 to 23 in the high rotation range during the motor start-up period. As a result, even if the rotational speed of the motor increases, current can be efficiently supplied to the motor coils 21 to 23, so that the motor start-up period can be shortened.
 なお、図4に示すように、回転数検出手段52は、制御信号72の制御値をリニアに変化させてもよい。また、図5に示すように、回転数検出手段52は、制御信号72の制御値をヒステリシス制御してもよい。これによると、制御信号72の切り替わり点でモータの回転数が微少に変動することによる制御信号72のばたつきを抑制することができる。 In addition, as shown in FIG. 4, the rotation speed detection means 52 may change the control value of the control signal 72 linearly. Further, as shown in FIG. 5, the rotational speed detection means 52 may perform hysteresis control on the control value of the control signal 72. According to this, it is possible to suppress fluttering of the control signal 72 due to slight fluctuations in the rotational speed of the motor at the switching point of the control signal 72.
 また、回転数検出手段52は、位置検出手段31の出力を受けてモータの回転数を検出するようにしてもよい。また、回転数検出手段52は、トルク電圧71を受けてトルク電圧71に応じた制御信号を出力するようにしてもよい。あるいは、回転数検出手段52は、モータが起動してからの経過時間に応じた制御信号を出力するようにしてもよい。 Further, the rotational speed detection means 52 may receive the output of the position detection means 31 and detect the rotational speed of the motor. Further, the rotational speed detection means 52 may receive the torque voltage 71 and output a control signal corresponding to the torque voltage 71. Alternatively, the rotation speed detection means 52 may output a control signal corresponding to the elapsed time after the motor is started.
 また、上側スイッチング素子41~43および下側スイッチング素子44~46のオフ時間を一定にしてモータを駆動制御する場合には、オン時間を徐々に短くすればよい。これにより、実質的にPWM周波数を徐々に高くすることができる。これとは逆に、オン時間を一定にするようにしてもよい。 In addition, when the motor is driven and controlled while the off times of the upper switching elements 41 to 43 and the lower switching elements 44 to 46 are constant, the on time may be gradually shortened. Thereby, the PWM frequency can be substantially increased gradually. On the contrary, the on-time may be made constant.
 <第2の実施形態>
 図6は、第2の実施形態に係るモータ駆動装置の構成を示す回路図である。以下、第1の実施形態との相違点についてのみ説明する。
<Second Embodiment>
FIG. 6 is a circuit diagram showing a configuration of a motor drive device according to the second embodiment. Only the differences from the first embodiment will be described below.
 回転数検出手段52は、回転数算出手段52aと回転数比算出手段52bとを有している。回転数算出手段52aは、モータ回転数検出信号を受けてモータの回転数を算出する。回転数比算出手段52bは、回転数算出手段52aで算出された回転数および例えばレジスタなどに記録された目標回転数から目標回転数に対するモータの回転数の比を算出する。例えば回転数比算出手段52bには、図7に示すように、あらかじめ回転数の比としてm1~m3が設定されている。回転数比算出手段52bは、回転数の比がm1以下である場合には制御値がc1である制御信号72を出力し、回転数の比がm1~m3を超える毎に、それぞれに応じた制御値c2~c4の制御信号72を出力する。PWM周波数変更手段53は、起動期間において制御信号72を受けると、それに応じてPWM周波数をf1~f4にそれぞれ設定する。 The rotation speed detection means 52 has a rotation speed calculation means 52a and a rotation speed ratio calculation means 52b. The rotational speed calculation means 52a receives the motor rotational speed detection signal and calculates the rotational speed of the motor. The rotation speed ratio calculation means 52b calculates the ratio of the rotation speed of the motor to the target rotation speed from the rotation speed calculated by the rotation speed calculation means 52a and the target rotation speed recorded in, for example, a register. For example, as shown in FIG. 7, m1 to m3 are set in advance as the rotation speed ratio in the rotation speed ratio calculation means 52b. The rotation speed ratio calculation means 52b outputs a control signal 72 having a control value c1 when the rotation speed ratio is less than or equal to m1, and each time the rotation speed ratio exceeds m1 to m3, the rotation speed ratio calculation means 52b responds accordingly. A control signal 72 having control values c2 to c4 is output. When receiving the control signal 72 during the startup period, the PWM frequency changing means 53 sets the PWM frequency to f1 to f4 accordingly.
 次に、本実施形態に係るモータ駆動装置の動作について説明する。図8は、本実施形態に係るモータ駆動装置の動作波形図である。起動期間において、まずPWM周波数はf1に設定される。モータの回転数が上昇して回転数の比がm1を超えるとPWM周波数はf2に設定される。同様に回転数の比がm2およびm3を超えると、それぞれに応じてPWM周波数はf3およびf4に設定される。 Next, the operation of the motor drive device according to this embodiment will be described. FIG. 8 is an operation waveform diagram of the motor drive device according to the present embodiment. In the start-up period, the PWM frequency is first set to f1. When the rotational speed of the motor increases and the rotational speed ratio exceeds m1, the PWM frequency is set to f2. Similarly, when the rotation speed ratio exceeds m2 and m3, the PWM frequency is set to f3 and f4, respectively.
 以上、本実施形態によると、目標回転数が異なるモータを制御する場合でも、回転数比算出手段52bに所定の回転数の比を設定することで、各モータを一様に制御することができる。 As described above, according to the present embodiment, even when motors with different target rotation speeds are controlled, each motor can be controlled uniformly by setting a predetermined rotation speed ratio in the rotation speed ratio calculation means 52b. .
 なお、回転数比算出手段52bに代えて、目標回転数とモータの回転数との回転数差を算出する手段を設けてもよい。この場合には、目標回転数とモータの回転数との差をあらかじめ設定しておき、回転数差がその設定値を超える毎に制御値を切り替えるようにする。 In addition, it may replace with the rotation speed ratio calculation means 52b, and may provide a means for calculating the rotation speed difference between the target rotation speed and the rotation speed of the motor. In this case, the difference between the target rotational speed and the rotational speed of the motor is set in advance, and the control value is switched every time the rotational speed difference exceeds the set value.
 また、回転数の比をアナログ値で算出してもよい。この場合、回転数比算出手段52bは目標回転数に応じた電圧とモータの回転数に応じた電圧とを比較して、その比に基づいて制御信号72を出力する。 Also, the rotation speed ratio may be calculated as an analog value. In this case, the rotation speed ratio calculation means 52b compares the voltage according to the target rotation speed with the voltage according to the motor rotation speed, and outputs a control signal 72 based on the ratio.
 <第3の実施形態>
 図9は、第3の実施形態に係るモータ駆動装置の構成を示す回路図である。以下、第1の実施形態との相違点についてのみ説明する。
<Third Embodiment>
FIG. 9 is a circuit diagram showing a configuration of a motor drive device according to the third embodiment. Only the differences from the first embodiment will be described below.
 回転数検出手段52は、制御信号72と検出回転数信号75とを出力する。検出回転数信号75は、回転数検出手段52で検出した回転数に応じた周期のパルス列である。同期検出手段56は、検出回転数信号75と目標回転数信号76とを受けて、これらの位相が同期したことを検出して同期検出信号77を出力する。目標回転数信号76は、目標回転数に応じた周期のパルス列である。同期検出手段56は、位相同期を検出すると同期検出信号77を例えばLレベルにする。PWM周波数変更手段53は、制御信号72を受けると、その制御値に応じてPWM周波数をf1~f4にそれぞれ設定する。PWM周波数変更手段53は、同期検出信号77がLレベルになるとPWM周波数をf4よりも高いf5に設定する。 The rotation speed detection means 52 outputs a control signal 72 and a detected rotation speed signal 75. The detected rotational speed signal 75 is a pulse train having a period corresponding to the rotational speed detected by the rotational speed detecting means 52. The synchronization detection means 56 receives the detected rotation speed signal 75 and the target rotation speed signal 76, detects that these phases are synchronized, and outputs a synchronization detection signal 77. The target rotational speed signal 76 is a pulse train having a period corresponding to the target rotational speed. When detecting the phase synchronization, the synchronization detecting means 56 sets the synchronization detection signal 77 to L level, for example. When receiving the control signal 72, the PWM frequency changing means 53 sets the PWM frequency to f1 to f4 according to the control value. The PWM frequency changing means 53 sets the PWM frequency to f5 higher than f4 when the synchronization detection signal 77 becomes L level.
 次に、本実施形態に係るモータ駆動装置の動作について説明する。図10は、本実施形態に係るモータ駆動装置の動作波形図である。起動期間において、まずPWM周波数はf1に設定される。モータの回転数が上昇して回転数がn1~n3のそれぞれを超える毎に、それぞれに応じてPWM周波数はf2~f4に設定される。 Next, the operation of the motor drive device according to this embodiment will be described. FIG. 10 is an operation waveform diagram of the motor drive device according to the present embodiment. In the start-up period, the PWM frequency is first set to f1. Each time the number of rotations of the motor increases and the number of rotations exceeds n1 to n3, the PWM frequency is set to f2 to f4 accordingly.
 モータの回転数が目標回転数に達すると、位相同期が検出されて同期検出信号77がLレベルになる。同期検出信号77がLレベルになると、PWM周波数はf5に設定される。 When the rotational speed of the motor reaches the target rotational speed, phase synchronization is detected and the synchronization detection signal 77 becomes L level. When the synchronization detection signal 77 becomes L level, the PWM frequency is set to f5.
 以上、本実施形態によると、モータの回転数と目標回転数とが等しくなったときにPWM周波数を高い周波数に設定することで、高い分解能でモータを駆動することができる。なお、同期検出信号77がLレベルになった時点でPWM周波数がf5に設定されている場合には、PWM周波数をf5に維持してモータを駆動してもよい。 As described above, according to the present embodiment, the motor can be driven with high resolution by setting the PWM frequency to a high frequency when the rotational speed of the motor is equal to the target rotational speed. When the PWM frequency is set to f5 when the synchronization detection signal 77 becomes L level, the motor may be driven with the PWM frequency maintained at f5.
 <第4の実施形態>
 図11は、第4の実施形態に係るモータ駆動装置の構成を示す回路図である。以下、第1の実施形態との相違点についてのみ説明する。
<Fourth Embodiment>
FIG. 11 is a circuit diagram illustrating a configuration of a motor drive device according to the fourth embodiment. Only the differences from the first embodiment will be described below.
 トルク電圧比較手段57は、トルク電圧71とあらかじめ設定された所定の電圧VAとを比較する。トルク電圧比較手段57は、トルク電圧71が電圧VAを上回る場合に例えばHレベルのトルク電圧比較信号78を出力する。PWM周波数変更手段53は、起動期間において制御信号72を受けると、それに応じてPWM周波数をf1~f4にそれぞれ設定し、トルク電圧比較信号78がLレベルになるとf4よりも高いf5に設定する。 The torque voltage comparison means 57 compares the torque voltage 71 with a predetermined voltage VA set in advance. The torque voltage comparison unit 57 outputs, for example, an H level torque voltage comparison signal 78 when the torque voltage 71 exceeds the voltage VA. When receiving the control signal 72 during the start-up period, the PWM frequency changing unit 53 sets the PWM frequency to f1 to f4 accordingly, and when the torque voltage comparison signal 78 becomes L level, sets it to f5 higher than f4.
 次に、本実施形態に係るモータ駆動装置の動作について説明する。図12は、本実施形態に係るモータ駆動装置の動作波形図である。起動期間において、まずPWM周波数はf1に設定される。モータの回転数が上昇して回転数がn1~n3のそれぞれを超える毎に、それぞれに応じてPWM周波数はf2~f4に設定される。 Next, the operation of the motor drive device according to this embodiment will be described. FIG. 12 is an operation waveform diagram of the motor drive device according to the present embodiment. In the start-up period, the PWM frequency is first set to f1. Each time the number of rotations of the motor increases and the number of rotations exceeds n1 to n3, the PWM frequency is set to f2 to f4 accordingly.
 モータの回転数が上昇を続けて目標回転数を超えると、トルク電圧71は低下し始める。そして、トルク電圧71が電圧VAを下回ると、トルク電圧比較信号78がLレベルになる。トルク電圧比較信号78がLレベルになると、PWM周波数はf5に設定される。 When the motor rotation speed continues to increase and exceeds the target rotation speed, the torque voltage 71 starts to decrease. When torque voltage 71 falls below voltage VA, torque voltage comparison signal 78 becomes L level. When the torque voltage comparison signal 78 becomes L level, the PWM frequency is set to f5.
 以上、本実施形態によると、トルク電圧71と電圧VAとを比較することでモータの回転数が目標回転数を超えたことを検出できる。これにより、目標回転数に応じた信号が得られない場合であっても、定常回転期間において高い分解能でモータを駆動することができる。なお、トルク電圧71が電圧VAを下回った時点でPWM周波数がf5に設定されている場合には、PWM周波数をf5に維持してモータを駆動してもよい。 As described above, according to the present embodiment, it is possible to detect that the rotational speed of the motor has exceeded the target rotational speed by comparing the torque voltage 71 and the voltage VA. As a result, even when a signal corresponding to the target rotational speed cannot be obtained, the motor can be driven with high resolution in the steady rotational period. If the PWM frequency is set to f5 when the torque voltage 71 falls below the voltage VA, the motor may be driven while maintaining the PWM frequency at f5.
 <第5の実施形態>
 図13は、第5の実施形態に係るモータ駆動装置の構成を示す回路図である。以下、第1の実施形態との相違点についてのみ説明する。
<Fifth Embodiment>
FIG. 13 is a circuit diagram showing a configuration of a motor drive device according to the fifth embodiment. Only the differences from the first embodiment will be described below.
 回転数検出手段52は、制御信号72と検出回転数信号75とを出力する。検出回転数信号75は、回転数検出手段52で検出した回転数に応じた周期のパルス列である。位相比較手段61は、検出回転数信号75の位相と目標回転数信号76の位相とを比較する。目標回転数信号76は、目標回転数に応じた周期のパルス列である。位相比較手段61は、目標回転数信号76の位相が検出回転数信号75の位相よりも進んでいる場合、すなわちモータの回転数が目標回転数よりも遅い場合に加速信号81を出力する。目標回転数信号76の位相が検出回転数信号75の位相よりも遅れている場合、すなわちモータの回転数が目標回転数よりも早い場合に減速信号82を出力する。 The rotation speed detection means 52 outputs a control signal 72 and a detected rotation speed signal 75. The detected rotational speed signal 75 is a pulse train having a period corresponding to the rotational speed detected by the rotational speed detecting means 52. The phase comparison means 61 compares the phase of the detected rotational speed signal 75 with the phase of the target rotational speed signal 76. The target rotational speed signal 76 is a pulse train having a period corresponding to the target rotational speed. The phase comparison means 61 outputs an acceleration signal 81 when the phase of the target rotational speed signal 76 is ahead of the phase of the detected rotational speed signal 75, that is, when the rotational speed of the motor is slower than the target rotational speed. When the phase of the target rotational speed signal 76 is delayed from the phase of the detected rotational speed signal 75, that is, when the rotational speed of the motor is earlier than the target rotational speed, the deceleration signal 82 is output.
 ラッチ回路62は、減速信号82をラッチする。PWM周波数変更手段53は、起動期間において制御信号72を受けると、それに応じてPWM周波数をf1~f4にそれぞれ設定し、減速検出信号83がアクティブになるとPWM周波数をf4よりも高いf5に設定する。 The latch circuit 62 latches the deceleration signal 82. When receiving the control signal 72 during the startup period, the PWM frequency changing means 53 sets the PWM frequency to f1 to f4 accordingly, and sets the PWM frequency to f5 higher than f4 when the deceleration detection signal 83 becomes active. .
 次に、本実施形態に係るモータ駆動装置の動作について説明する。図14は、本実施形態に係るモータ駆動装置の動作波形図である。起動期間において、まずPWM周波数はf1に設定される。モータの回転数が上昇して回転数がn1~n3のそれぞれを超える毎に、それぞれに応じてPWM周波数はf2~f4に設定される。 Next, the operation of the motor drive device according to this embodiment will be described. FIG. 14 is an operation waveform diagram of the motor drive device according to the present embodiment. In the start-up period, the PWM frequency is first set to f1. Each time the number of rotations of the motor increases and the number of rotations exceeds n1 to n3, the PWM frequency is set to f2 to f4 accordingly.
 モータの回転数が目標回転数を超えると、減速信号82が出力される。減速信号82がラッチされると減速検出信号83がアクティブになり、PWM周波数がf5に設定される。 When the motor speed exceeds the target speed, a deceleration signal 82 is output. When the deceleration signal 82 is latched, the deceleration detection signal 83 becomes active, and the PWM frequency is set to f5.
 以上、本実施形態によると、PWM周波数変更手段53は減速検出信号83がアクティブとなったときに高いPWM周波数に設定することで、高い分解能でモータを駆動することができる。なお、減速検出信号83がアクティブになった時点でPWM周波数がf5に設定されている場合には、PWM周波数をf5に維持してモータを駆動してもよい。また、トルク指令手段51は、加速信号81および減速信号82に基づいたトルク電圧71を出力するようにしてもよい。 As described above, according to the present embodiment, the PWM frequency changing means 53 can drive the motor with high resolution by setting a high PWM frequency when the deceleration detection signal 83 becomes active. When the PWM frequency is set to f5 when the deceleration detection signal 83 becomes active, the motor may be driven while maintaining the PWM frequency at f5. Further, the torque command means 51 may output a torque voltage 71 based on the acceleration signal 81 and the deceleration signal 82.
 本発明に係るモータ駆動装置は、モータの起動期間を短縮しつつ、定常回転期間において高い分解能で駆動できるため、迅速かつ安定した駆動が求められる情報機器等に有用である。 The motor drive device according to the present invention can be driven with high resolution in the steady rotation period while shortening the motor start period, and thus is useful for information equipment and the like that require quick and stable drive.
 51     トルク指令手段
 52     回転数検出手段
 52a    回転数算出手段
 52b    回転数比算出手段
 53     PWM周波数変更手段
 54     パルス幅制御手段
 56     同期検出手段
 57     トルク電圧比較手段
 61     位相比較手段
 62     ラッチ回路
 71     トルク電圧
 72     制御信号
 75     検出回転数信号
 76     目標回転数信号
 77     同期検出信号
 78     トルク電圧比較信号
 82     減速信号
51 Torque command means 52 Rotational speed detection means 52a Rotational speed calculation means 52b Rotational speed ratio calculation means 53 PWM frequency change means 54 Pulse width control means 56 Synchronization detection means 57 Torque voltage comparison means 61 Phase comparison means 62 Latch circuit 71 Torque voltage 72 Control signal 75 Detected rotation speed signal 76 Target rotation speed signal 77 Synchronization detection signal 78 Torque voltage comparison signal 82 Deceleration signal

Claims (9)

  1.  モータをPWM(Pulse Width Modulation)駆動するモータ駆動装置であって、
     前記モータが起動してから前記モータの回転数が目標回転数に達するまでの起動期間において、前記モータの回転数を検出し、当該検出した回転数に応じた制御信号を出力する回転数検出手段と、
     前記制御信号に応じてPWM周波数を高くするPWM周波数変更手段とを備えている
    ことを特徴とするモータ駆動装置。
    A motor driving device that drives a motor by PWM (Pulse Width Modulation),
    Rotational speed detection means for detecting the rotational speed of the motor and outputting a control signal corresponding to the detected rotational speed during the startup period from when the motor is started until the rotational speed of the motor reaches the target rotational speed When,
    A motor drive device comprising: PWM frequency changing means for increasing the PWM frequency according to the control signal.
  2.  請求項1のモータ駆動装置において、
     前記回転数検出手段は、前記モータの回転数が設定値を超える毎に前記制御信号を切り替える
    ことを特徴とするモータ駆動装置。
    The motor driving device according to claim 1,
    The motor drive device according to claim 1, wherein the rotation number detection means switches the control signal every time the rotation number of the motor exceeds a set value.
  3.  請求項2のモータ駆動装置において、
     前記回転数検出手段は、前記制御信号をヒステリシス制御する
    ことを特徴とするモータ駆動装置。
    In the motor drive device of Claim 2,
    The rotational speed detection means performs hysteresis control on the control signal.
  4.  請求項1のモータ駆動装置において、
     前記回転数検出手段は、
      前記モータの回転数を算出する回転数算出手段と、
      前記回転数算出手段で算出された回転数と前記目標回転数との比を算出する回転数比算出手段とを有するものであり、
     前記回転数比算出手段は、前記算出した比が設定値を超える毎に前記制御信号を切り替える
    ことを特徴とするモータ駆動装置。
    The motor driving device according to claim 1,
    The rotation speed detecting means is
    A rotational speed calculating means for calculating the rotational speed of the motor;
    A rotational speed ratio calculating means for calculating a ratio between the rotational speed calculated by the rotational speed calculating means and the target rotational speed;
    The motor drive apparatus characterized in that the rotation speed ratio calculation means switches the control signal every time the calculated ratio exceeds a set value.
  5.  請求項1のモータ駆動装置において、
     前記PWM周波数変更手段は、前記モータの回転数が前記目標回転数に達したときに前記PWM周波数を所定値に設定する
    ことを特徴とするモータ駆動装置。
    The motor driving device according to claim 1,
    The PWM frequency changing means sets the PWM frequency to a predetermined value when the rotational speed of the motor reaches the target rotational speed.
  6.  請求項5のモータ駆動装置において、
     前記回転数検出手段は、前記検出した回転数に応じた周期のパルス列である検出回転数信号を出力するものであり、
     当該モータ駆動装置は、
      前記目標回転数に応じた周期のパルス列である目標回転数信号と前記検出回転数信号との位相同期を検出する同期検出手段を備え、
     前記PWM周波数変更手段は、前記同期検出手段が前記位相同期を検出したときに前記PWM周波数を前記所定値に設定する
    ことを特徴とするモータ駆動装置。
    In the motor drive device of Claim 5,
    The rotational speed detection means outputs a detected rotational speed signal that is a pulse train having a period according to the detected rotational speed,
    The motor drive device is
    Synchronization detecting means for detecting phase synchronization between the target rotational speed signal and the detected rotational speed signal, which is a pulse train having a period according to the target rotational speed,
    The PWM frequency changing means sets the PWM frequency to the predetermined value when the synchronization detecting means detects the phase synchronization.
  7.  請求項5のモータ駆動装置において、
     前記モータのトルクを制御するトルク電圧を出力するトルク指令手段と、
     前記トルク電圧と所定の電圧とを比較するトルク電圧比較手段とを備え、
     前記PWM周波数変更手段は、前記トルク電圧比較手段の出力が前記トルク電圧が前記所定の電圧よりも下回ったことを示すときに前記PWM周波数を前記所定値に設定する
    ことを特徴とするモータ駆動装置。
    In the motor drive device of Claim 5,
    Torque command means for outputting a torque voltage for controlling the torque of the motor;
    A torque voltage comparison means for comparing the torque voltage with a predetermined voltage;
    The PWM frequency changing means sets the PWM frequency to the predetermined value when the output of the torque voltage comparing means indicates that the torque voltage is lower than the predetermined voltage. .
  8.  請求項5のモータ駆動装置において、
     前記回転数検出手段は、前記検出した回転数に応じた周期のパルス列である検出回転数信号を出力するものであり、
     当該モータ駆動装置は、
      前記目標回転数に応じた周期のパルス列である目標回転数信号と前記検出回転数信号との位相を比較し、前記検出回転数信号の位相が前記目標回転数信号の位相よりも進んでいるときに減速信号を出力する位相比較手段と、
      前記減速信号をラッチするラッチ回路とを備え、
     前記PWM周波数変更手段は、前記ラッチ回路の出力がアクティブになったときに前記PWM周波数を前記所定値に設定する
    ことを特徴とするモータ駆動装置。
    In the motor drive device of Claim 5,
    The rotational speed detection means outputs a detected rotational speed signal that is a pulse train having a period according to the detected rotational speed,
    The motor drive device is
    When the phase of the target rotational speed signal, which is a pulse train having a period corresponding to the target rotational speed, is compared with the detected rotational speed signal, and the phase of the detected rotational speed signal is ahead of the phase of the target rotational speed signal Phase comparison means for outputting a deceleration signal to
    A latch circuit for latching the deceleration signal,
    The PWM frequency changing means sets the PWM frequency to the predetermined value when the output of the latch circuit becomes active.
  9.  モータをPWM駆動するモータ駆動方法であって、
     前記モータが起動してから前記モータの回転数が目標回転数に達するまでの起動期間において、前記モータの回転数を検出するステップと、
     前記検出した回転数に応じた制御信号を出力するステップと、
     前記制御信号に応じてPWM周波数を高くするステップとを備えている
    ことを特徴とするモータ駆動方法。
    A motor driving method for PWM driving a motor,
    Detecting the rotational speed of the motor in a startup period from when the motor is started until the rotational speed of the motor reaches a target rotational speed;
    Outputting a control signal according to the detected number of revolutions;
    And a step of increasing the PWM frequency according to the control signal.
PCT/JP2010/002247 2009-08-24 2010-03-29 Motor driving device and motor driving method WO2011024339A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009192737A JP2011045209A (en) 2009-08-24 2009-08-24 Motor drive device and method
JP2009-192737 2009-08-24

Publications (1)

Publication Number Publication Date
WO2011024339A1 true WO2011024339A1 (en) 2011-03-03

Family

ID=43627463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002247 WO2011024339A1 (en) 2009-08-24 2010-03-29 Motor driving device and motor driving method

Country Status (2)

Country Link
JP (1) JP2011045209A (en)
WO (1) WO2011024339A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087503A1 (en) * 2013-12-10 2015-06-18 株式会社デンソー Motor control device and motor control method
JPWO2014168205A1 (en) * 2013-04-11 2017-02-16 株式会社根本杏林堂 Chemical injection device and chemical injection system
WO2018024569A1 (en) * 2016-08-03 2018-02-08 Arcelik Anonim Sirketi Household appliance having a power module with dynamically controlled switching frequency
EP3343759A1 (en) * 2017-01-02 2018-07-04 LG Electronics Inc. Motor control device and method for controlling motor control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341600A (en) * 1997-06-10 1998-12-22 Hitachi Ltd Motor control method and motor control system
JP2004007894A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Driving device for brushless motor, and motor using the same
JP2008072868A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd Motor controller for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341600A (en) * 1997-06-10 1998-12-22 Hitachi Ltd Motor control method and motor control system
JP2004007894A (en) * 2002-05-31 2004-01-08 Matsushita Electric Ind Co Ltd Driving device for brushless motor, and motor using the same
JP2008072868A (en) * 2006-09-15 2008-03-27 Nissan Motor Co Ltd Motor controller for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014168205A1 (en) * 2013-04-11 2017-02-16 株式会社根本杏林堂 Chemical injection device and chemical injection system
WO2015087503A1 (en) * 2013-12-10 2015-06-18 株式会社デンソー Motor control device and motor control method
JP2015116007A (en) * 2013-12-10 2015-06-22 株式会社デンソー Motor control device and motor control method
CN105684296A (en) * 2013-12-10 2016-06-15 株式会社电装 Motor control device and motor control method
CN105684296B (en) * 2013-12-10 2018-01-02 株式会社电装 Control device of electric motor and method of motor control
US9866156B2 (en) 2013-12-10 2018-01-09 Denso Corporation Motor control device and motor control method
WO2018024569A1 (en) * 2016-08-03 2018-02-08 Arcelik Anonim Sirketi Household appliance having a power module with dynamically controlled switching frequency
EP3343759A1 (en) * 2017-01-02 2018-07-04 LG Electronics Inc. Motor control device and method for controlling motor control device
US10411623B2 (en) 2017-01-02 2019-09-10 Lg Electronics Inc. Motor control device and method for controlling motor control device
US10651768B2 (en) 2017-01-02 2020-05-12 Lg Electronics Inc. Motor control device and method for controlling motor control device

Also Published As

Publication number Publication date
JP2011045209A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5651301B2 (en) Motor drive circuit
US9431951B2 (en) Direct torque control motor controller with transient current limiter
WO2012029451A1 (en) Drive system of synchronized electric motor
US9444384B2 (en) Direct torque control motor controller with transient current limiter
US20110234140A1 (en) Motor drive unit
CN102948069A (en) Method and device for starting an electric motor
US20160065101A1 (en) Bldc motor control system and control method
US9871485B2 (en) Stepper motor driver circuit
WO2011024339A1 (en) Motor driving device and motor driving method
JP2014075931A (en) Drive control device for stepping motor
US9806650B1 (en) Motor driving apparatus
US10944351B2 (en) Motor drive control device and motor drive control method
JP2015089198A (en) Motor drive unit and motor device
JP2020129921A (en) Motor drive control device and drive control method of motor
JP2003111469A (en) Control method and controller of motor
JP2006149097A (en) Motor controller
JP4556927B2 (en) Motor drive device
JP2008289248A (en) Controller for fan motor, and air conditioner
US8829834B2 (en) Motor driving control apparatus and method, and motor using the same
JP5784361B2 (en) Drive control device for brushless motor
US20200036306A1 (en) Pump control device
JP2008220035A (en) Brushless motor starter
JP2018207612A (en) Motor drive control device and drive control method of motor
US11296625B2 (en) Control device and control method for synchronous electric motor
JP5606899B2 (en) Drive control device for brushless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811399

Country of ref document: EP

Kind code of ref document: A1