WO2011024224A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2011024224A1
WO2011024224A1 PCT/JP2009/004160 JP2009004160W WO2011024224A1 WO 2011024224 A1 WO2011024224 A1 WO 2011024224A1 JP 2009004160 W JP2009004160 W JP 2009004160W WO 2011024224 A1 WO2011024224 A1 WO 2011024224A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
opening
fuel cell
channel
throttle member
Prior art date
Application number
PCT/JP2009/004160
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤裕輔
小野昭彦
八木亮介
坂上英一
富松師浩
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/004160 priority Critical patent/WO2011024224A1/en
Publication of WO2011024224A1 publication Critical patent/WO2011024224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • Patent Document 1 water generated at the cathode electrode is easily moved into the atmosphere by diffusion, and the electrolyte membrane and the cathode electrode are dried. For this reason, in addition to the water required for the anode reaction, there remains a problem that it is necessary to supply extra water that permeates the electrolyte membrane from the anode side to the cathode side.
  • the present invention maintains the relative humidity of water in the cathode electrode, thereby maintaining the moisture of the electrolyte membrane and the water that permeates the electrolyte membrane from the anode side to the cathode side.
  • An object of the present invention is to provide a fuel cell capable of reducing the above.
  • the fuel cell according to the present invention includes an anode electrode, an electrolyte membrane, a cathode electrode, a first throttle member having a first opening, a cathode flow path having a second opening, and the cathode A cathode channel plate covering the channel is arranged in this order.
  • stacked the cell which concerns on 1st Embodiment The principal part schematic diagram on the cathode side which concerns on 1st Embodiment. The figure which showed the relationship between (alpha) value and RH of a cathode flow path. A sectional view of a simulation model. The figure which showed the result of simulation. The figure which showed the modification of the 1st aperture member. The figure which showed the simulation model and the result. The principal part schematic diagram on the cathode side which concerns on the modification of 1st Embodiment. The figure which showed the modification of the 1st aperture member. Sectional drawing of the cell which concerns on 2nd Embodiment. Sectional drawing of the cell which concerns on 3rd Embodiment. Sectional drawing of the cell which concerns on 4th Embodiment. Example results. Results of other examples.
  • a fuel cell stack cell 100 in which cells according to the first embodiment of the present invention are stacked includes an anode electrode, an electrolyte membrane, a cathode electrode, a first throttle member having a first opening, A cathode channel having a second opening and a cathode channel plate covering the cathode channel are arranged in this order. That is, as shown in FIG. 1, the cell 100 includes an electrolyte membrane 11, a membrane electrode assembly (MEA) 1 having an anode electrode 18 and a cathode electrode 19 facing each other with the electrolyte membrane 11 interposed therebetween, and a reaction at the anode electrode 18.
  • the gas-liquid separation layer 2 that separates the generated fluid into gas and liquid, the anode flow path plate 4 disposed facing the anode electrode 18, and the cathode flow path plate 41 facing the cathode electrode 19.
  • the anode flow path plate 4 has a fuel flow path 5 for supplying fuel to the anode electrode 18 and a gas flow path 6 for discharging gas (CO 2 or the like) generated at the anode pole.
  • Duct portions 42a and 42b are formed at the edge of the cathode flow path plate 41 of the cell 100 in the extending direction.
  • the cell 100 includes a cathode channel 44 formed so as to communicate with the duct portions 42 a and 42 b through the second opening 48 in a direction different from the extending direction of the cathode channel plate 41.
  • the first throttle member 51 is interposed between the cathode flow path plate 41 and the cathode electrode 19.
  • the first aperture member 51 has a first opening 53. In the case of a so-called passive fuel cell that does not have the air supply part 71, the duct parts 42a and 42b can be omitted.
  • the anode 18 of the membrane electrode assembly 1 in the first embodiment has an anode catalyst layer 12, a carbon dense layer 14, and an anode gas diffusion layer 16.
  • the cathode electrode 19 includes a cathode catalyst layer 13, a carbon dense layer 15, and a cathode gas diffusion layer 17.
  • the anode electrode preferably has a catalyst layer and at least one gas diffusion layer.
  • the cathode electrode preferably has a catalyst layer and at least one gas diffusion layer.
  • the solid electrolyte membrane 11 for example, a Nafion membrane manufactured by Dupont can be used.
  • the anode catalyst layer 12 is produced, for example, by mixing a Pt—Ru catalyst and an ionomer at a predetermined ratio.
  • the cathode catalyst layer 13 is produced, for example, by mixing a Pt catalyst and an ionomer at a predetermined ratio.
  • As the anode gas diffusion layer 16 and the cathode gas diffusion layer 17 carbon paper, carbon cloth, carbon non-woven fabric, or the like can be used.
  • the gas diffusion layer may be provided with a carbon dense water repellent layer (microporous layer: MPL) mainly composed of carbon powder and PTFE.
  • MPL carbon dense water repellent layer
  • the gas diffusion layer is not limited to one layer, and a plurality of gas diffusion layers can be combined to play a role as necessary.
  • the cells 100 having the cathode flow channel 41 having a flow channel length of 2 L, a flow channel width w, and a flow channel depth h are stacked at regular intervals to form a stack. Adjacent cells have an anode and a cathode electrically connected in series. When the surface of the cathode flow path plate 41 is subjected to a water repellent treatment, electrical connection cannot be obtained simply by laminating. In such a case, it is allowed to connect in series via an electrical contact for establishing electrical connection between the adjacent anode channel plate 4 and cathode channel plate 41.
  • the anode gasket 9 and the cathode gasket 10 surround the membrane electrode assembly 1 and prevent fuel from leaking from the inside of the cell 100 to the outside.
  • a fuel 32 for example, an aqueous methanol solution
  • a fuel circulation section 35 is inserted in the fuel circulation passage L1, and a pressure adjustment mechanism 36 and a methanol concentration sensor 37 are inserted in L2.
  • the fuel supplied to the fuel circulation passage L1 is supplied by the fuel circulation portion 35 to the fuel supply port 65 of the anode passage plate 4.
  • the fuel is supplied from the fuel supply port 65 to the anode 18 through the fuel supply path 5 and the gas-liquid separation layer 2.
  • the gas-liquid separation layer 2 is a porous body having lyophobic properties. For this reason, the liquid fuel hardly penetrates into the gas-liquid separation layer 2 which is a porous body.
  • gaseous fuel that is, methanol vapor and water vapor, permeate into the pores of the porous body and easily pass through the gas-liquid separation layer 2 to reach the anode 18.
  • the fuel that has reached the anode 18 is subjected to an anode reaction by the catalyst of the catalyst layer 12.
  • Electrons (e ⁇ ) generated by the anode reaction move to the cathode electrode 19 via the anode channel plate 4 also serving as a current collector, an external circuit (not shown), and the cathode channel plate 41.
  • the fuel discharged from the fuel discharge port 66 reaches the fuel circulation part 35 again through the pressure adjusting mechanism 36 and the methanol concentration sensor 37 inserted in the circulation flow path L2.
  • the methanol concentration sensor 37 monitors the concentration of methanol in the fuel in the fuel circulation passage L2, and feeds back the result to the control unit 80.
  • the controller 80 supplies new high-concentration fuel from the fuel tank 31 to the fuel circulation passage L1 when the concentration is lower than a predetermined concentration, for example, 1M or lower, so that the fuel reaches the predetermined concentration.
  • a command is issued to the supply unit 34.
  • the gas flow path 6 discharges the gas (CO 2 gas) generated by the anode reaction from the gas discharge port 66 of the anode flow path plate 4.
  • a fuel circulation section 35 such as a circulation pump and a pressure adjustment mechanism 36 such as a back pressure valve bring the pressure inside the fuel flow path 5 to a higher pressure than the pressure inside the gas flow path 6.
  • the gas (CO 2 gas) generated by the anode reaction is easily discharged to the gas flow path 6 through the pores of the gas-liquid separation layer 2 subjected to the lyophobic treatment.
  • a pressure for generating bubbles is required, but the gas-liquid separation layer is a lyophobic porous body.
  • a path through which the gas flows is formed, and the pressure for allowing the gas to pass through the porous body is smaller than the pressure for generating bubbles in the fuel flow path 5.
  • the gas-liquid separation layer 2 can efficiently separate and discharge the gas (CO 2 gas) generated by the anode reaction to the gas flow path 6.
  • the pressure adjustment mechanism 36 adjusts the gas flow path 6 to a predetermined pressure range, the gas-liquid separation of the cell 100 is less affected by the surrounding pressure fluctuation. For example, gas-liquid separation of the cell 100 functions effectively even at a high place such as a mountain peak.
  • FIG. 2 is a conceptual diagram of the cathode channel plate 41 when viewed in the y direction of the xyz coordinate shown in FIG. 1 in the cross section taken along the line AA of FIG.
  • Duct portions 42a and 42b formed in the extending direction of the cathode channel plate are formed at the edge of the cathode channel plate 41. Further, the cathode channel 44 is formed in a direction different from the extending direction of the cathode channel plate 41 (Z direction in FIG. 2). The cathode channel 44 has a second opening 48. The cathode flow path 44 communicates with at least one of the duct portions 42a and 42b via the second opening 48.
  • a first throttle member 51 is interposed between the cathode channel plate 41 and the cathode gas diffusion layer 17.
  • the first aperture member 51 is provided with a first opening 53.
  • the first opening 53 penetrates between the surface facing the cathode flow path plate 41 and the surface facing the cathode gas diffusion layer 17.
  • An oxidant and water are exchanged between the cathode channel 44 and the cathode electrode 19 through the first opening 53.
  • the cathode channel plate 41 can be made of conductive carbon having a conductivity or a metal member such as SUS. In the case of conductivity, the cathode channel plate 41 can also be used as a cathode current collector.
  • the cell 100 is provided with an air supply unit 71 (71a, 71b) for cooling the cell 100 and supplying air to the cathode electrode 19.
  • the air supply unit 71 (71a, 71b) supplies necessary air to the duct units 42a, 42b.
  • an air fan that is quiet, has low power consumption, and low discharge pressure can be used as the air supply unit 71.
  • the outside air containing oxygen as an oxidant is supplied to the cathode electrode 19 through the duct portions 42a and 42b, the second opening 48, the cathode channel 44, and the first opening. Further, the water in the cathode electrode 19 is discharged to the outside in the reverse order. That is, the cathode electrode 19 is not in direct contact with the external environment, and is always mediated through the cathode channel 44. By adopting such a configuration, the inside of the cathode channel 44 is maintained in a high RH state.
  • the provision of the first throttle member 51 reduces the area in which the cathode channel 44 and the cathode 19 circulate directly, thereby reducing the cathode 19 Drying can be reduced.
  • the first throttle member 51 faces the cathode flow channel plate 41, but the cathode flow channel plate 41 is formed so as to cover the cathode flow channel 44. For this reason, when air or water moves with respect to the cathode flow path 44, the cathode flow path plate 41 becomes an obstacle (wall) and can exchange air with the outside only through the second opening 48. It has become. For this reason, the cathode channel 44 becomes a so-called stagnation space.
  • the configuration of the present embodiment can significantly reduce the rate of water loss from the cathode electrode 19.
  • FIG. 3 shows an example of the relative humidity (RH) of the cathode channel and the amount of water that permeates the electrolyte membrane 11.
  • the amount of water f H2O that permeates the electrolyte membrane 11 is indicated by ⁇ normalized by the proton flux f H + that permeates the electrolyte membrane 11.
  • I is the current value multiplied by the number of cells
  • F is the Faraday constant.
  • is the smaller the flow rate N H2O of water to be supplied from the fuel tank, that is, the fuel cell system can be miniaturized.
  • the surface of the cathode gas diffusion layer 17 is covered with a first throttle member 51 that prevents transmission of liquid water and water vapor, and a part of the surface of the cathode gas diffusion layer 17 (first opening portion) is covered. 53)
  • the mass transfer resistance of the water discharged from the cathode electrode 19 increases.
  • the amount of water moving from the cathode electrode 19 to the anode electrode 18 increases, and the ⁇ value decreases.
  • FIG. 5A to 5D show an example of a simulation model and an analysis result when the surface of the cathode gas diffusion layer 17 is covered with the first throttle member 51.
  • FIG. 5A to 5D show an example of a simulation model and an analysis result when the surface of the cathode gas diffusion layer 17 is covered with the first throttle member 51.
  • the RH inside the cathode gas diffusion layer 17 immediately below the location covered with the first throttle member 51 is large, and the electrolyte membrane 11 facing this location has a large RH.
  • the ⁇ value becomes smaller.
  • the ⁇ value at the electrolyte membrane 11 facing directly below the first opening 53 is large.
  • the cathode electrode 19 radiates heat through the first throttle member 51. Therefore, the temperature of the first throttle member 51 is lower in the cathode electrode 19 than in the cathode catalyst layer 13. As a result, the water present as the vapor in the cathode catalyst layer 13 becomes supersaturated (RH 100%) in the region of the cathode gas diffusion layer 17 in contact with the first throttle member 51. The supersaturated water increases the humidity of the cathode catalyst layer 13 region and fulfills the moisture retention function. On the other hand, the remaining steam can move the steam from the cathode gas diffusion layer 17 toward the cathode channel 44.
  • Such a first opening can set an opening size and an opening pattern capable of satisfying both a necessary air supply and a decrease in ⁇ value according to the output and size of the cell.
  • the ⁇ value is set to 0.5 to ⁇ 1 //, for example. It became possible to reduce to 6.
  • the aperture ratio is 30% or less, the effect of reducing the ⁇ value becomes remarkable. If the aperture ratio is smaller than 5%, the supply of oxygen is insufficient, and the influence of a decrease in output is increased. An aperture ratio of 5 to 30% is suitable.
  • the aperture ratio can be obtained by the following equation.
  • Opening ratio (%) (S2 / S1) ⁇ 100
  • S1 area of the region where the first diaphragm member is projected onto the membrane electrode assembly
  • S2 the sum of the areas of the openings in the region of S1
  • the projected area is substantially used among the first diaphragm members This is because the portion contributing to power generation is the projected area onto the membrane electrode assembly.
  • FIGS. 7A to 7C show the RH state of the cathode channel 44.
  • FIG. FIG. 7A shows the RH when no cooling air flows through the duct portions 42a and 42b.
  • the RH of the cathode channel 44 tends to decrease and the ⁇ value tends to increase due to the influence of the cooling air as shown in FIG. 7B. Therefore, as shown in FIG. 7C, by arranging the first throttle member 51 between the cathode gas diffusion layer 17 and the cathode flow path 44, the influence of increasing the ⁇ value by the cooling air can be reduced. Is possible.
  • the first opening 53 of the first throttle member 51 in a region with high RH (in the vicinity of the center of the cathode channel 44 in FIG. 7C), the ⁇ value can be reduced.
  • the first opening is used to reduce flooding (excessive accumulation of water) in the cathode catalyst layer. It is preferable to make the portion 53 large.
  • the first diaphragm member 51 is preferably a conductive material such as metal or carbon from the viewpoint of conductivity or current collection.
  • the ⁇ value can be reduced and the amount of water to be held in the fuel tank can be reduced.
  • a second throttle member By further adding a second throttle member to the second opening 48, the effect of stagnation of the cathode channel 44 can be increased, and the RH in the cathode channel 44 can be kept higher.
  • a second throttle member as shown in FIG. 1 and FIG. 2, in order to reduce water evaporation and sufficiently supply oxygen, air flows in a part of the cathode channel 44.
  • the membranes 45a and 45b that allow the permeation of oxygen may be arranged.
  • a porous resin film can be used as the diaphragm.
  • the cross-sectional area of the second opening 48 may be reduced to, for example, 30% or less of the cross-sectional area of the cathode channel 44, so that a so-called second throttle member may be used.
  • a second throttle member may be provided in at least one of the second openings.
  • the cathode channel 44 is not limited to the form shown in FIG.
  • the cathode flow path plate 41 has lands (41, 41a, 41b) formed in a fishbone shape, and a cathode flow between adjacent lands (41a-41a, 41b-41b). A path 44 is formed.
  • the cathode channel plate 41 has a structure in which the cathode channel 44 and the land are repeated.
  • Such a cathode channel has an effect that the cathode electrode is difficult to dry because the supply of air to the cathode channel 44 is mainly controlled by diffusion.
  • the land of the cathode channel plate 41 also has a function of collecting electricity from the cathode gas diffusion layer 17.
  • the minimum distance ⁇ min means the minimum distance to the most adjacent opening.
  • the opening ratio of the first opening 53 increases as the distance from the second opening 48 increases, that is, the depth of the cathode flow path 44 increases” means that the region S1 having a certain area (for example, 2 cm ⁇ 2 cm area) is moved so as to “go away from the second opening 48”, that is, “go to the back of the cathode flow path 44”, and the ratio to the area S 2 of the first opening 53 ( S2 / S1), that is, changing so as to increase the aperture ratio.
  • the change here may change continuously, for example, it may change discontinuously stepwise.
  • Comparative Example 1 the case where the first diaphragm member 51 is not used is referred to as Comparative Example 1.
  • Comparative Example 1 the cathode gas diffusion layer 17 and the cathode porous body 21 are in contact with each other.
  • the temperature of the single cell 100 was controlled by a heater (not shown) so that the temperature of the anode channel plate 4 and the cathode channel plate 41 was 65 ° C.
  • a methanol aqueous solution having a fuel concentration of 1.4 M was supplied to the anode channel 5 at 0.5 mL / min.
  • the fuel cell was operated at a load of 1.2A.
  • Example 1-1 can obtain the same output while reducing ⁇ .
  • a fuel cell employing DMFC will be described as a fuel cell according to a second embodiment of the present invention.
  • the unit cell 100 of the fuel cell stack according to the second embodiment of the present invention has a porous body (cathode porous body) between the first throttle member 51 and the cathode channel 44.
  • the point from which 21 is inserted differs from a 1st embodiment.
  • the cathode porous body 21 is in contact with the land of the cathode flow path plate 41 on the surface, and is in contact with the first throttle member 51 on the back surface.
  • the cathode porous body 21 has electrical conductivity and air permeability.
  • having electric conductivity is defined under the condition that the electric resistivity is lower than that of air.
  • having air permeability is defined by having a communicating porosity. The presence or absence of porosity can be measured by mercury porosimetry.
  • cathode porous body carbon paper, carbon cloth, carbon nonwoven fabric, porous metal, or the like can be used.
  • the cathode flow path plate 41 and the first throttle member 51 are thinned while maintaining the strength to withstand the tightening of the single cell 100. Therefore, a thin metal plate such as stainless steel or titanium can be used as the cathode channel plate 41 and the first throttle member 51.
  • is not limited to a constant value depending on the differential pressure condition, and may vary.
  • the cathode porous body 21 is inserted between the first throttle member 51 and the cathode channel plate 41.
  • the cathode porous body 21 is deformed by the pressure from the first throttle member 51 and the land of the cathode flow path plate 41, and suppresses the above-described gap from being generated. This has the effect of suppressing the air flow due to the differential pressure between the cathode channels 44. Therefore, even when a differential pressure occurs, the increase or fluctuation of the ⁇ value can be suppressed.
  • the cathode porous body 21 is inserted between the cathode channel plate 41 and the first throttle member 51. Accordingly, it is possible to separately provide a surface where the land contacts the cathode porous body 21 and a surface where the first throttle member 51 contacts the cathode porous body 21.
  • a fuel cell employing a DMFC will be described as a fuel cell according to a third embodiment of the present invention.
  • the dense carbon layer 22 is formed on one surface of the cathode porous body 21 (the surface in contact with the cathode channel plate). This is different from the first and second embodiments.
  • the dense carbon layer 22 is formed on one surface of the cathode porous body 21, and the dense carbon layer 22 and the land of the cathode flow channel plate 41 are brought into contact with each other, the surface with low air permeability comes into contact with the land. The effect of suppressing the air flow due to the differential pressure between the paths 44 is increased. Further, the strength (rigidity) of the entire cathode porous body 21 can be increased.
  • the cathode flow path plate 41 is produced by press working, there is a possibility that the land has a curvature at the tip of the convex portion and the area where the land contacts the cathode porous body 21 may be reduced.
  • the land may crush the cathode porous body 21 too much, which may cause plastic deformation.
  • the surface on which the carbon dense layer 22 is formed is brought into contact with the land, the above-described deformation can be suppressed.
  • the air permeability of the cathode porous body 21 is too low. In this case, the amount of air supplied from the cathode flow path 44 to the cathode gas diffusion layer 17 decreases, and the output decreases, which is not preferable.
  • the carbon dense layer is a dense porous body mainly composed of carbon particles and PTFE and having a pore diameter smaller than the average pore diameter of the cathode porous body 21, and has a lower air permeability than the cathode porous body 21.
  • the air permeability can be determined by the Gurley test method (JIS P 8177).
  • Example 2 an example in which the cathode porous body 21 in which the carbon dense layer was provided only on the surface in contact with the land was used as Example 2.
  • Example 2-2 was taken as an example in which the cathode porous body 21 was removed and the cathode channel 44 and the first throttle member 51 were brought into contact with each other.
  • Example 2-3 An example in which the carbon porous layer 21 is not provided with the same cathode porous body 21 as in Example 2-1 was taken as Example 2-3.
  • the temperature of the single cell 100 is controlled by a heater (not shown) so that the temperature of the anode flow path plate 4 and the cathode flow path plate 41 is 65 ° C., and the anode flow path plate 4 has a fuel concentration of 1.4 M.
  • a methanol aqueous solution was supplied at 0.5 mL / min.
  • the air supply unit 71 individually supplied air of 1000 mL / min so that 44a was 1000 mL / min and 44b was 500 mL / min, and a differential pressure was provided between the cathode channels.
  • the load was operated at 1.2A.
  • Example 2-3 can reduce the ⁇ value by about 0.03, and Example 2-1 can reduce ⁇ by about 0.35. It was. Further, the output can be increased in both Examples 2-1 and 2-3 as compared with Example 2-2 having no porous material.
  • the result of FIG. 14 shows that ⁇ is relatively larger than the result of FIG. 13 under the condition that, in the case of FIG. 13, the differential pressure between the cathode channels is almost zero.
  • the air supply amount is intentionally changed between the ducts 44a and 44b so that a differential pressure is generated between the cathode flow paths.
  • the porous body 21 is not inserted in FIG. 13, it is also related that the structure is different.
  • a fuel cell employing DMFC will be described as a fuel cell according to a fourth embodiment of the present invention.
  • the cell 100 of the fuel cell stack according to the fourth embodiment of the present invention is provided with the third opening 56 around the cathode gas diffusion layer 17 by reducing the height of the cathode flow path 9. It is a cell that can generate power even at high loads.
  • the amount of air (oxygen) that can be taken into the cathode catalyst layer 13 depends on the channel height of the cathode channel 44, the air diffusion performance of the cathode porous body 21, and the structure of the first throttle member 51. If the height of the cathode flow path 44 is lowered in order to reduce the size of the single cell 100, the amount of air (oxygen) that can be taken into the cathode catalyst layer 13 decreases, and power generation at a high load cannot be performed.
  • the cathode electrode gasket 10 is thinner than the total thickness of the cathode catalyst layer 13 and the cathode gas diffusion layer 17.
  • the cathode electrode gasket 10 is in contact with the electrolyte membrane 11.
  • the total thickness of the cathode catalyst layer 13 and the cathode gas diffusion layer 17 is determined from the interface between the electrolyte membrane 11 and the cathode catalyst layer 13 when the membrane electrode assembly 1 is assembled. The thickness up to the interface of the opening member 51 is defined.
  • the side surface of the cathode gas diffusion layer 17 is not completely covered with the cathode electrode gasket 10. It is possible to take in air supplied from the air supply unit 71 from this uncovered region (third opening).
  • the cathode catalyst layer 13 in addition to the air supply path, can be supplied from the third opening 56 through the cathode gas diffusion layer 17.
  • Membrane electrode assembly (MEA) 2 ... Gas-liquid separation layer (Lipophobic porous material) 4 ... Anode channel plate (anode current collector) DESCRIPTION OF SYMBOLS 5 ... Fuel flow path 6 ... Gas flow path 9 ... Anode gasket 10 ... Cathode gasket 11 ... Electrolyte membrane 12 ... Anode catalyst layer 13 ... Cathode catalyst layer 14 ... Dense carbon layer 15 ... Dense carbon layer 16 ... Anode gas diffusion layer 17 ... Cathode gas diffusion layer 18 ... Anode electrode 19 ... Cathode electrode 21 ... Cathode porous body 22 ... Dense carbon layer 31 ... Fuel tank 32 ... Fuel 33 ...
  • Valve 34 Fuel supply part (pump) 35 ... Fuel circulation part (pump) 36 ... Pressure adjustment mechanism (back pressure valve) 37 ... Fuel concentration sensor (Methanol concentration sensor) 41, 41a, 42b ... Cathode channel plate 42, 42a, 42b ... Duct portion 44, 44a, 44b ... Cathode channel 45a, 45b ... Diaphragm 48 ... Second opening 51 ... First throttle member 53 ... First 56 ... 3rd opening 65 ... Fuel supply port 66 ... Fuel discharge port 67 ... Gas discharge port 71, 71a, 71b ... Air supply unit 80 ... Control unit 100, 100a, 100b ... Cell (stack)

Abstract

Provided is a fuel cell characterized in that an anode, an electrolyte membrane, a cathode, a first constricting member with a first opening, a cathode flow field with a second opening, and a cathode flow field plate that covers the aforementioned cathode flow field are positioned in this order.

Description

燃料電池Fuel cell
 本発明は、燃料電池に関する。 The present invention relates to a fuel cell.
 空気供給を拡散により行う直接メタノール供給型燃料電池(DMFC)の場合、含水率や湿度の調整機能を発現させるために、カソードの酸化剤が供給される側の面に、保湿層とカバー部材という水分保持機能の異なる層を設けることによって、含水率や湿度の調整機能を発現する方法が提案されている(特許文献1)。 In the case of a direct methanol supply fuel cell (DMFC) in which air supply is performed by diffusion, a moisturizing layer and a cover member are formed on the surface of the cathode on which the oxidant is supplied in order to develop a moisture content and humidity adjustment function. There has been proposed a method of expressing a moisture content and humidity adjusting function by providing layers having different moisture retention functions (Patent Document 1).
 しかし、特許文献1においても、カソード極で生成した水が拡散により大気中に容易に移動し、電解質膜およびカソード極が乾燥する。このため、アノード反応に必要な水に加え、電解質膜をアノード極側からカソード極側へ透過する水を余分に供給する必要がある、という問題が残る。 However, also in Patent Document 1, water generated at the cathode electrode is easily moved into the atmosphere by diffusion, and the electrolyte membrane and the cathode electrode are dried. For this reason, in addition to the water required for the anode reaction, there remains a problem that it is necessary to supply extra water that permeates the electrolyte membrane from the anode side to the cathode side.
特開2007-80776号公報JP 2007-80776 A
 本発明は、拡散により空気の供給を行う燃料電池において、カソード極の水の相対湿度を高い状態に保つことにより、電解質膜の保湿や、電解質膜をアノード極側からカソード極側へ透過する水の低減可能な燃料電池を提供することを目的とする。 In a fuel cell in which air is supplied by diffusion, the present invention maintains the relative humidity of water in the cathode electrode, thereby maintaining the moisture of the electrolyte membrane and the water that permeates the electrolyte membrane from the anode side to the cathode side. An object of the present invention is to provide a fuel cell capable of reducing the above.
 本発明に係る燃料電池は、アノード極と、電解質膜と、カソード極と、第1の開口部を持つ第1の絞り部材と、第2の開口部を有するカソ―ド流路と、前記カソード流路を覆うカソード流路板と、をこの順序で配置していることを特徴とする。 The fuel cell according to the present invention includes an anode electrode, an electrolyte membrane, a cathode electrode, a first throttle member having a first opening, a cathode flow path having a second opening, and the cathode A cathode channel plate covering the channel is arranged in this order.
 上記態様によれば、拡散により空気の供給を行う燃料電池において、カソード極の水の相対湿度を高い状態に保つことにより、電解質膜の保湿や、電解質膜をアノード極側からカソード極側へ透過する水の低減が可能な燃料電池を提供することができる。 According to the above aspect, in a fuel cell in which air is supplied by diffusion, by keeping the relative humidity of water in the cathode electrode high, moisture retention of the electrolyte membrane and permeation of the electrolyte membrane from the anode side to the cathode electrode side are achieved. It is possible to provide a fuel cell capable of reducing water.
第1の実施の形態に係るセルを積層したスタックの断面図。Sectional drawing of the stack which laminated | stacked the cell which concerns on 1st Embodiment. 第1の実施の形態に係るカソード側の要部模式図。The principal part schematic diagram on the cathode side which concerns on 1st Embodiment. α値とカソード流路のRHとの関係を示した図。The figure which showed the relationship between (alpha) value and RH of a cathode flow path. シミュレーションモデルの断面図。A sectional view of a simulation model. シミュレーションの結果を示した図。The figure which showed the result of simulation. 第1の絞り部材の変形例を示した図。The figure which showed the modification of the 1st aperture member. シミュレーションモデルとその結果を示した図。The figure which showed the simulation model and the result. 第1の実施の形態の変形例に係るカソード側の要部模式図。The principal part schematic diagram on the cathode side which concerns on the modification of 1st Embodiment. 第1の絞り部材の変形例を示した図。The figure which showed the modification of the 1st aperture member. 第2の実施の形態に係るセルの断面図。Sectional drawing of the cell which concerns on 2nd Embodiment. 第3の実施の形態に係るセルの断面図。Sectional drawing of the cell which concerns on 3rd Embodiment. 第4の実施の形態に係るセルの断面図。Sectional drawing of the cell which concerns on 4th Embodiment. 実施例の結果。Example results. 他の実施例の結果。Results of other examples.
 次に、図面を参照して本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに限定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the embodiment described below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, The arrangement is not limited to the following. The technical idea of the present invention can be variously modified within the scope of the claims.
〔第1の実施の形態〕
 本発明の第1の実施の形態に係る燃料電池として、DMFCを採用した燃料電池を説明する。
[First Embodiment]
A fuel cell employing DMFC will be described as the fuel cell according to the first embodiment of the present invention.
 本発明の第1の実施の形態に係るセルを積層した燃料電池用スタックのセル100は、アノード極と、電解質膜と、カソード極と、第1の開口部を持つ第1の絞り部材と、第2の開口部を有するカソ―ド流路と、前記カソード流路を覆うカソード流路板と、をこの順序で配置している。すなわち、図1に示すように、セル100は、電解質膜11、電解質膜11を挟んで対向するアノード極18及びカソード極19を有する膜電極複合体(MEA)1と、アノード極18における反応により生成した流体を気体と液体に分離する気液分離層2と、アノード極18に対向して配置されたアノード流路板4、カソード極19に対向してカソード流路板41を有する。 A fuel cell stack cell 100 in which cells according to the first embodiment of the present invention are stacked includes an anode electrode, an electrolyte membrane, a cathode electrode, a first throttle member having a first opening, A cathode channel having a second opening and a cathode channel plate covering the cathode channel are arranged in this order. That is, as shown in FIG. 1, the cell 100 includes an electrolyte membrane 11, a membrane electrode assembly (MEA) 1 having an anode electrode 18 and a cathode electrode 19 facing each other with the electrolyte membrane 11 interposed therebetween, and a reaction at the anode electrode 18. The gas-liquid separation layer 2 that separates the generated fluid into gas and liquid, the anode flow path plate 4 disposed facing the anode electrode 18, and the cathode flow path plate 41 facing the cathode electrode 19.
 アノード流路板4はアノード極18に燃料を供給する燃料流路5及びアノード極で生成される気体(CO等)を排出する気体流路6を有する。 The anode flow path plate 4 has a fuel flow path 5 for supplying fuel to the anode electrode 18 and a gas flow path 6 for discharging gas (CO 2 or the like) generated at the anode pole.
セル100のカソード流路板41の縁部にはその延伸方向に向けてダクト部42a、42bが形成されている。また、セル100は、カソード流路板41の延伸方向とは異なる方向に、第2の開口部48を介してダクト部42a、42bに連通するように形成されたカソード流路44を有する。第1の絞り部材51はカソード流路板41とカソード極19との間に介挿されている。第1の絞り部材51は第1の開口部53を有する。なお、空気供給部71を有さない、いわゆるパッシブ型の燃料電池の場合にはダクト部42a、42bを省略することができる。 Duct portions 42a and 42b are formed at the edge of the cathode flow path plate 41 of the cell 100 in the extending direction. In addition, the cell 100 includes a cathode channel 44 formed so as to communicate with the duct portions 42 a and 42 b through the second opening 48 in a direction different from the extending direction of the cathode channel plate 41. The first throttle member 51 is interposed between the cathode flow path plate 41 and the cathode electrode 19. The first aperture member 51 has a first opening 53. In the case of a so-called passive fuel cell that does not have the air supply part 71, the duct parts 42a and 42b can be omitted.
  第1の実施の形態における膜電極複合体1のアノード極18は、アノード触媒層12、カーボン緻密層14及びアノードガス拡散層16を有する。また、カソード極19は、カソード触媒層13、カーボン緻密層15及びカソードガス拡散層17を有する。このように、アノード極は触媒層と、少なくとも1枚以上のガス拡散層を有することが好ましい。また、カソード極は触媒層と、少なくとも1枚以上のガス拡散層を有することが好ましい。 The anode 18 of the membrane electrode assembly 1 in the first embodiment has an anode catalyst layer 12, a carbon dense layer 14, and an anode gas diffusion layer 16. The cathode electrode 19 includes a cathode catalyst layer 13, a carbon dense layer 15, and a cathode gas diffusion layer 17. Thus, the anode electrode preferably has a catalyst layer and at least one gas diffusion layer. Further, the cathode electrode preferably has a catalyst layer and at least one gas diffusion layer.
 固体電解質膜11としては例えばDupont社のナフィオン膜を用いることができる。アノード触媒層12は、例えばPt-Ru触媒とアイオノマを所定の比率で混合することで作製される。カソード触媒層13は、例えばPt触媒とアイオノマを所定の比率で混合することで作製される。アノードガス拡散層16、カソードガス拡散層17としてはカーボンペーパー、カーボンクロスもしくはカーボン不織布等を用いることができる。ガス拡散層は主としてカーボン粉末とPTFEから成るカーボン緻密撥水層(マイクロポーラスレイヤー:MPL)を設けても良い。また、ガス拡散層は、1層に限らず、必要に応じて複数のガス拡散層を組合せてその役割を果たすことも可能である。 As the solid electrolyte membrane 11, for example, a Nafion membrane manufactured by Dupont can be used. The anode catalyst layer 12 is produced, for example, by mixing a Pt—Ru catalyst and an ionomer at a predetermined ratio. The cathode catalyst layer 13 is produced, for example, by mixing a Pt catalyst and an ionomer at a predetermined ratio. As the anode gas diffusion layer 16 and the cathode gas diffusion layer 17, carbon paper, carbon cloth, carbon non-woven fabric, or the like can be used. The gas diffusion layer may be provided with a carbon dense water repellent layer (microporous layer: MPL) mainly composed of carbon powder and PTFE. In addition, the gas diffusion layer is not limited to one layer, and a plurality of gas diffusion layers can be combined to play a role as necessary.
 流路長さ2L、流路幅w、流路深さhのカソード流路流路41を有するセル100は、一定間隔で積層され、スタックを形成している。隣接するセル同士はアノードとカソードが電気的に直列に接続される。カソード流路板41の表面に撥水処理を施す場合には、積層するだけでは電気的接続がとれない。このような場合には、隣接するアノード流路板4とカソード流路板41との間に電気的接続を取るための電気的コンタクトを介して、直列に接続することを許容する。 The cells 100 having the cathode flow channel 41 having a flow channel length of 2 L, a flow channel width w, and a flow channel depth h are stacked at regular intervals to form a stack. Adjacent cells have an anode and a cathode electrically connected in series. When the surface of the cathode flow path plate 41 is subjected to a water repellent treatment, electrical connection cannot be obtained simply by laminating. In such a case, it is allowed to connect in series via an electrical contact for establishing electrical connection between the adjacent anode channel plate 4 and cathode channel plate 41.
 アノードガスケット9及びカソードガスケット10は、膜電極複合体1の周囲を包囲し、セル100の内部から外部へ燃料がリークすることを防止する。 The anode gasket 9 and the cathode gasket 10 surround the membrane electrode assembly 1 and prevent fuel from leaking from the inside of the cell 100 to the outside.
(アノードの構成と反応)
 燃料32、例えばメタノール水溶液、は燃料タンク31からバルブ33、燃料供給部34を介して燃料循環流路L1及びL2に供給される。燃料循環流路L1には燃料循環部35が、L2には圧力調整機構36及びメタノール濃度センサ37が介挿されている。燃料循環流路L1に供給された燃料は燃料循環部35によりアノード流路板4の燃料供給口65に供給される。燃料は燃料供給口65から燃料供給路5、気液分離層2を介してアノード極18に供給される。
(Anode configuration and reaction)
A fuel 32, for example, an aqueous methanol solution, is supplied from the fuel tank 31 to the fuel circulation channels L1 and L2 via the valve 33 and the fuel supply unit. A fuel circulation section 35 is inserted in the fuel circulation passage L1, and a pressure adjustment mechanism 36 and a methanol concentration sensor 37 are inserted in L2. The fuel supplied to the fuel circulation passage L1 is supplied by the fuel circulation portion 35 to the fuel supply port 65 of the anode passage plate 4. The fuel is supplied from the fuel supply port 65 to the anode 18 through the fuel supply path 5 and the gas-liquid separation layer 2.
 気液分離層2は疎液性を有する多孔体である。このため、液体状の燃料は多孔体である気液分離層2の内部に浸透しにくい。これに対し、気体状の燃料、すなわちメタノールの蒸気および水の蒸気、は多孔体の細孔中に浸透し、気液分離層2を透過してアノード極18に到達しやすい。アノード極18へ到達した燃料は、触媒層12の触媒によりアノード反応に供される。 The gas-liquid separation layer 2 is a porous body having lyophobic properties. For this reason, the liquid fuel hardly penetrates into the gas-liquid separation layer 2 which is a porous body. On the other hand, gaseous fuel, that is, methanol vapor and water vapor, permeate into the pores of the porous body and easily pass through the gas-liquid separation layer 2 to reach the anode 18. The fuel that has reached the anode 18 is subjected to an anode reaction by the catalyst of the catalyst layer 12.
 アノード反応で生成したプロトン(H)はプロトン導電性を有する電解質膜11を透過してカソード極19へ移動する。アノード反応で生成した電子(e-)は、集電体を兼ねるアノード流路板4、外部回路(図示省略)、カソード流路板41を経由してカソード極19へ移動する。 Protons (H + ) generated by the anode reaction pass through the electrolyte membrane 11 having proton conductivity and move to the cathode electrode 19. Electrons (e ) generated by the anode reaction move to the cathode electrode 19 via the anode channel plate 4 also serving as a current collector, an external circuit (not shown), and the cathode channel plate 41.
 アノード極18での未反応のメタノール、および水の大部分はアノード流路板4の燃料排出口66から排出される。未反応のメタノール及び水の少量は電解質膜11を透過してカソード側へ移動する。カソード反応で生成した水の一部は、電解質膜11を通してアノード触媒層12側へ逆拡散し、残りはカソード流路41、第2の開口部48を介してダクト部42a、42bから外部へ排出される。 Most of unreacted methanol and water at the anode 18 are discharged from the fuel discharge port 66 of the anode flow path plate 4. A small amount of unreacted methanol and water passes through the electrolyte membrane 11 and moves to the cathode side. A part of the water generated by the cathode reaction is reversely diffused to the anode catalyst layer 12 side through the electrolyte membrane 11, and the rest is discharged to the outside from the duct portions 42a and 42b via the cathode channel 41 and the second opening 48. Is done.
 燃料排出口66から排出された燃料は循環流路L2に介挿された圧力調整機構36、メタノール濃度センサ37を経て再び燃料循環部35に到達する。メタノール濃度センサ37は燃料循環流路L2の燃料中のメタノールの濃度をモニタリングし、その結果を制御部80にフィードバックする。制御部80はこの濃度が所定の濃度以下、例えば1M以下になった場合には、燃料タンク31から燃料循環流路L1に新たな高濃度の燃料を供給し、所定の濃度に達するように燃料供給部34に指令を出す。 The fuel discharged from the fuel discharge port 66 reaches the fuel circulation part 35 again through the pressure adjusting mechanism 36 and the methanol concentration sensor 37 inserted in the circulation flow path L2. The methanol concentration sensor 37 monitors the concentration of methanol in the fuel in the fuel circulation passage L2, and feeds back the result to the control unit 80. The controller 80 supplies new high-concentration fuel from the fuel tank 31 to the fuel circulation passage L1 when the concentration is lower than a predetermined concentration, for example, 1M or lower, so that the fuel reaches the predetermined concentration. A command is issued to the supply unit 34.
 気体流路6は、アノード反応により生成した気体(CO2ガス)をアノード流路板4の気体排出口66から排出する。循環ポンプ等の燃料循環部35、及び背圧弁等の圧力調整機構36が燃料流路5の内部の圧力を気体流路6の内部の圧力よりも高い圧力状態する。これによりアノード反応により生成した気体(COガス)は疎液性処理を施した気液分離層2の細孔を介して気体流路6に排出されやすい。アノード反応により生成した気体(COガス)を燃料流路5に気泡として排出するためには、気泡を生成するための圧力が必要であるが、疎液性の多孔体である気液分離層2には、気体が流通する経路が形成され、多孔体を気体が透過するための圧力は、燃料流路5に気泡を生成するための圧力より小さい。このため、気液分離層2はアノード反応により生成した気体(COガス)を効率的に気体流路6に分離し、排出することが出来る。なお、圧力調整機構36が気体流路6を所定の圧力範囲に調整するため、セル100の気液分離は周囲の圧力変動の影響を受けることが少ない。例えば山頂などの高所においてもセル100の気液分離は有効に機能する。 The gas flow path 6 discharges the gas (CO 2 gas) generated by the anode reaction from the gas discharge port 66 of the anode flow path plate 4. A fuel circulation section 35 such as a circulation pump and a pressure adjustment mechanism 36 such as a back pressure valve bring the pressure inside the fuel flow path 5 to a higher pressure than the pressure inside the gas flow path 6. Thereby, the gas (CO 2 gas) generated by the anode reaction is easily discharged to the gas flow path 6 through the pores of the gas-liquid separation layer 2 subjected to the lyophobic treatment. In order to discharge the gas (CO 2 gas) generated by the anodic reaction as bubbles to the fuel flow path 5, a pressure for generating bubbles is required, but the gas-liquid separation layer is a lyophobic porous body. 2, a path through which the gas flows is formed, and the pressure for allowing the gas to pass through the porous body is smaller than the pressure for generating bubbles in the fuel flow path 5. For this reason, the gas-liquid separation layer 2 can efficiently separate and discharge the gas (CO 2 gas) generated by the anode reaction to the gas flow path 6. In addition, since the pressure adjustment mechanism 36 adjusts the gas flow path 6 to a predetermined pressure range, the gas-liquid separation of the cell 100 is less affected by the surrounding pressure fluctuation. For example, gas-liquid separation of the cell 100 functions effectively even at a high place such as a mountain peak.
(カソードの構成と反応)
 図2を用いて本実施の形態について更に詳細に説明する。図2は図1のA-Aにおける断面において図1に示すx-y-z座標のy方向に見た時のカソード流路板41の概念図である。
(Cathode configuration and reaction)
This embodiment will be described in more detail with reference to FIG. FIG. 2 is a conceptual diagram of the cathode channel plate 41 when viewed in the y direction of the xyz coordinate shown in FIG. 1 in the cross section taken along the line AA of FIG.
 カソード流路板41の縁部にはカソード流路板の延伸方向に向けて形成されたダクト部42a、42bが形成されている。また、カソード流路板41の延伸方向とは異なる方向(図2においてはZ方向)に、カソード流路44が形成されている。カソード流路44は第2の開口部48を有する。カソード流路44はダクト部42a、42bの少なくとも一方に、第2の開口部48を介して連通している。 Duct portions 42a and 42b formed in the extending direction of the cathode channel plate are formed at the edge of the cathode channel plate 41. Further, the cathode channel 44 is formed in a direction different from the extending direction of the cathode channel plate 41 (Z direction in FIG. 2). The cathode channel 44 has a second opening 48. The cathode flow path 44 communicates with at least one of the duct portions 42a and 42b via the second opening 48.
 カソード流路板41とカソードガス拡散層17の間には第1の絞り部材51が介挿されている。第1の絞り部材51には第1の開口部53が設けられている。第1の開口部53はカソード流路板41に対向した面とカソードガス拡散層17に対向した面との間で貫通している。この第1の開口部53を介してカソード流路44とカソード極19との間で酸化剤や水がやり取りされる。カソード流路板41は導電性を有する導電性を有するカーボンや、SUSなどの金属製部材を用いることができる。導電性を有する場合、カソード流路板41はカソード集電体としても兼用することが可能となる。 A first throttle member 51 is interposed between the cathode channel plate 41 and the cathode gas diffusion layer 17. The first aperture member 51 is provided with a first opening 53. The first opening 53 penetrates between the surface facing the cathode flow path plate 41 and the surface facing the cathode gas diffusion layer 17. An oxidant and water are exchanged between the cathode channel 44 and the cathode electrode 19 through the first opening 53. The cathode channel plate 41 can be made of conductive carbon having a conductivity or a metal member such as SUS. In the case of conductivity, the cathode channel plate 41 can also be used as a cathode current collector.
 セル100にはセル100の冷却およびカソード極19へ空気を供給する空気供給部71(71a、71b)が取り付けられている。空気供給部71(71a、71b)はダクト部42a、42bに必要な空気を供給する。空気供給部71としては、静かで、消費電力が小さく、排出圧力の小さい空気ファンを用いることができる。 The cell 100 is provided with an air supply unit 71 (71a, 71b) for cooling the cell 100 and supplying air to the cathode electrode 19. The air supply unit 71 (71a, 71b) supplies necessary air to the duct units 42a, 42b. As the air supply unit 71, an air fan that is quiet, has low power consumption, and low discharge pressure can be used.
(技術的意義)
 上述の構成において、酸化剤である酸素を含む外気はダクト部42a、42b、第2の開口部48、カソード流路44、第1の開口部を介してカソード極19に供給される。また、カソード極19の水は、上記と逆の順序で外部に排出される。すなわち、カソード極19と外部環境に直接接触接することはなく、必ずカソード流路44を介して媒介される。このような構成を採用することで、カソード流路44の内部はRHの高い状態に維持される。カソード極19は、乾きやすく、水の蒸発も大きくなるが、第1の絞り部材51を設けることにより、カソード流路44とカソード極19が直接流通する面積を小さくすることにより、カソード極19の乾燥を低減できる。また、第1の絞り部材51はカソード流路板41と対向しているが、カソード流路板41がカソード流路44を覆うように形成されている。このため、カソード流路44に対して空気や水の移動に際し、カソード流路板41が障害物(壁)となり、第2の開口部48を介してのみ外部と空気のやり取りが可能な構成となっている。このため、カソード流路44はいわゆる澱み空間となる。すなわち、外気が第1の絞り部材51に直接接触する機会は失われている。更に、ダクト部42とカソード流路41は互いに空気が流れる向きが異なっていることからダクト部42からカソード流路41への空気の供給は拡散の寄与によるものが支配的であることから、カソード流路44の中の空気の澱みの程度はさらに強調される。このため、特許文献1のように外気が直接第1の絞り部材に接触する構成に比較し、本実施の形態の構成はカソード極19から水が損失する割合を極めて低くすることができる。
(Technical significance)
In the above-described configuration, the outside air containing oxygen as an oxidant is supplied to the cathode electrode 19 through the duct portions 42a and 42b, the second opening 48, the cathode channel 44, and the first opening. Further, the water in the cathode electrode 19 is discharged to the outside in the reverse order. That is, the cathode electrode 19 is not in direct contact with the external environment, and is always mediated through the cathode channel 44. By adopting such a configuration, the inside of the cathode channel 44 is maintained in a high RH state. Although the cathode 19 is easy to dry and the evaporation of water increases, the provision of the first throttle member 51 reduces the area in which the cathode channel 44 and the cathode 19 circulate directly, thereby reducing the cathode 19 Drying can be reduced. The first throttle member 51 faces the cathode flow channel plate 41, but the cathode flow channel plate 41 is formed so as to cover the cathode flow channel 44. For this reason, when air or water moves with respect to the cathode flow path 44, the cathode flow path plate 41 becomes an obstacle (wall) and can exchange air with the outside only through the second opening 48. It has become. For this reason, the cathode channel 44 becomes a so-called stagnation space. That is, the opportunity for the outside air to directly contact the first throttle member 51 is lost. Further, since the duct portion 42 and the cathode flow channel 41 have different directions of air flow, the supply of air from the duct portion 42 to the cathode flow channel 41 is dominated by the contribution of diffusion. The degree of air stagnation in the channel 44 is further emphasized. For this reason, compared with the configuration in which outside air is in direct contact with the first throttle member as in Patent Document 1, the configuration of the present embodiment can significantly reduce the rate of water loss from the cathode electrode 19.
(シミュレーション)
 以下、更に説明する。
(simulation)
This will be further described below.
 図3にカソード流路の相対湿度(relative humidity;RH)と、電解質膜11を透過する水の量の一例を示す。電解質膜11を透過する水の量fH2Oは、電解質膜11を透過するプロトンのフラックスfH+で規格化したαで示す。
Figure JPOXMLDOC01-appb-M000001
FIG. 3 shows an example of the relative humidity (RH) of the cathode channel and the amount of water that permeates the electrolyte membrane 11. The amount of water f H2O that permeates the electrolyte membrane 11 is indicated by α normalized by the proton flux f H + that permeates the electrolyte membrane 11.
Figure JPOXMLDOC01-appb-M000001
カソード流路のRHが高くなると、電解質膜11を透過する水の量が減少し、RHが十分に大きい場合には、カソードからアノードへ水が移動する。カソードからアノードへ水が移動する場合のαの値は負となる。燃料タンクから供給すべき水の流量NH2O
Figure JPOXMLDOC01-appb-M000002
When the RH of the cathode channel increases, the amount of water that permeates the electrolyte membrane 11 decreases, and when RH is sufficiently large, the water moves from the cathode to the anode. The value of α when water moves from the cathode to the anode is negative. The flow rate of water to be supplied from the fuel tank N H2O is
Figure JPOXMLDOC01-appb-M000002
と示される。ここで、Iは電流値にセル数をかけたもの、Fはファラデー定数である。αが小さいほど、燃料タンクから供給すべき水の流量NH2Oが小さくなる、すなわち、燃料電池システムを小型化することが可能となる。 It is shown. Here, I is the current value multiplied by the number of cells, and F is the Faraday constant. The smaller α is, the smaller the flow rate N H2O of water to be supplied from the fuel tank, that is, the fuel cell system can be miniaturized.
 図4に示すように、カソードガス拡散層17の表面を液体の水、および水蒸気の透過を妨げる第1の絞り部材51で覆い、カソードガス拡散層17の表面の一部(第1の開口部53)のみから液体の水、および水蒸気をカソード流路44に排出することにより、カソード極19から排出される水の物質移動抵抗が増加する。これにより、カソード極19からアノード極18へ移動する水の量が増加し、α値が低減する。 As shown in FIG. 4, the surface of the cathode gas diffusion layer 17 is covered with a first throttle member 51 that prevents transmission of liquid water and water vapor, and a part of the surface of the cathode gas diffusion layer 17 (first opening portion) is covered. 53) By discharging liquid water and water vapor to the cathode channel 44 only from 53), the mass transfer resistance of the water discharged from the cathode electrode 19 increases. As a result, the amount of water moving from the cathode electrode 19 to the anode electrode 18 increases, and the α value decreases.
 図5(A)~(D)にカソードガス拡散層17の表面を第1の絞り部材51で覆った場合のシミュレーションモデルとその解析結果の例を示す。 5A to 5D show an example of a simulation model and an analysis result when the surface of the cathode gas diffusion layer 17 is covered with the first throttle member 51. FIG.
 特に図5(B)を参照すれば明らかなように、第1の絞り部材51で覆われた場所の直下におけるカソードガス拡散層17の内部のRHは大きく、この箇所に対向する電解質膜11のα値は小さくなる。これに対し、第1の開口部53の直下に対向する電解質膜11でのα値は大きい。 In particular, as apparent from FIG. 5B, the RH inside the cathode gas diffusion layer 17 immediately below the location covered with the first throttle member 51 is large, and the electrolyte membrane 11 facing this location has a large RH. The α value becomes smaller. On the other hand, the α value at the electrolyte membrane 11 facing directly below the first opening 53 is large.
 カソード極19は第1の絞り部材51を介して放熱を行うようにしている。よって、カソード極19のうち、カソード触媒層13より、第1の絞り部材51の温度が低い。これによりカソード触媒層13で蒸気として存在していた水は、第1の絞り部材51と接するカソードガス拡散層17の領域において過飽和(RH100%)となる。過飽和した水は、カソード触媒層13領域の湿度上げ、保湿機能を果たす。一方、残りの蒸気は、カソードガス拡散層17から、カソード流路44の方向へと水蒸気を移動させることができる。 The cathode electrode 19 radiates heat through the first throttle member 51. Therefore, the temperature of the first throttle member 51 is lower in the cathode electrode 19 than in the cathode catalyst layer 13. As a result, the water present as the vapor in the cathode catalyst layer 13 becomes supersaturated (RH 100%) in the region of the cathode gas diffusion layer 17 in contact with the first throttle member 51. The supersaturated water increases the humidity of the cathode catalyst layer 13 region and fulfills the moisture retention function. On the other hand, the remaining steam can move the steam from the cathode gas diffusion layer 17 toward the cathode channel 44.
 このような第1の開口部は、セルの出力や寸法に応じて、必要な空気の供給とα値の低下を両立可能な開口部の大きさと開口パターンを設定することができる。 Such a first opening can set an opening size and an opening pattern capable of satisfying both a necessary air supply and a decrease in α value according to the output and size of the cell.
 具体的には、図6(A)~(C)に示すような第1の絞り部材51をカソードガス拡散層17の表面に配置することにより、α値を、例えば0.5から-1/6まで低下させることが可能になった。開口率が30%以下になるとα値の低減の効果が顕著になる。開口率を5%より小さくすると酸素供給が不足し、出力が低下の影響が大きくなる。開口率は5~30%が適している。 Specifically, by arranging the first throttle member 51 as shown in FIGS. 6A to 6C on the surface of the cathode gas diffusion layer 17, the α value is set to 0.5 to −1 //, for example. It became possible to reduce to 6. When the aperture ratio is 30% or less, the effect of reducing the α value becomes remarkable. If the aperture ratio is smaller than 5%, the supply of oxygen is insufficient, and the influence of a decrease in output is increased. An aperture ratio of 5 to 30% is suitable.
 ここで開口率は次の式で求めることができる。 Here, the aperture ratio can be obtained by the following equation.
  開口率(%)= (S2/S1)×100
  S1 = 第1の絞り部材を膜電極複合体への投影した領域の面積
  S2 = S1の領域内における開口部の面積の総和
 投影面積を用いるのは、第1の絞り部材のうち、実質的に発電に寄与する部分は、膜電極複合体への投影面積だからである。
Opening ratio (%) = (S2 / S1) × 100
S1 = area of the region where the first diaphragm member is projected onto the membrane electrode assembly S2 = the sum of the areas of the openings in the region of S1 The projected area is substantially used among the first diaphragm members This is because the portion contributing to power generation is the projected area onto the membrane electrode assembly.
 図7(A)~(C)は、カソード流路44のRHの様子を示したものである。図7(A)はダクト部42a、42bに冷却風を流さない場合のRHを示している。ダクト部42a、42bに冷却風として空気を流すと、図7(B)に示すように冷却風の影響により、カソード流路44のRHが低下し、α値が増加する傾向がある。そこで、図7(C)に示すように、カソードガス拡散層17とカソード流路44の間に第1の絞り部材51を配置することにより、冷却風によりα値が増加する影響を低減することが可能になる。さらに、第1の絞り部材51の第1の開口部53をRHの高い領域(図7(C)ではカソード流路44の中央付近)に設けることにより、α値を低減させることができる。 FIGS. 7A to 7C show the RH state of the cathode channel 44. FIG. FIG. 7A shows the RH when no cooling air flows through the duct portions 42a and 42b. When air is supplied as cooling air to the duct portions 42a and 42b, the RH of the cathode channel 44 tends to decrease and the α value tends to increase due to the influence of the cooling air as shown in FIG. 7B. Therefore, as shown in FIG. 7C, by arranging the first throttle member 51 between the cathode gas diffusion layer 17 and the cathode flow path 44, the influence of increasing the α value by the cooling air can be reduced. Is possible. Furthermore, by providing the first opening 53 of the first throttle member 51 in a region with high RH (in the vicinity of the center of the cathode channel 44 in FIG. 7C), the α value can be reduced.
 また、カソード流路44のRHが100%に近い領域では、カバーを設けなくともα値は小さいため、カソード触媒層でのフラッディング(水の過剰な蓄積)を低減させるために、第1の開口部53を大きくとることが好ましい。 Further, in the region where the RH of the cathode channel 44 is close to 100%, the α value is small without providing a cover. Therefore, the first opening is used to reduce flooding (excessive accumulation of water) in the cathode catalyst layer. It is preferable to make the portion 53 large.
 RHが100%になると、カソード流路板41の表面に結露が生じる。このため、カソード流路板41の表面を親水性にして、液体の水がカソード流路板41からダクト部42を経由し、セル100の外部に移動可能なようにすることが望ましい。 When RH reaches 100%, condensation occurs on the surface of the cathode flow path plate 41. Therefore, it is desirable to make the surface of the cathode channel plate 41 hydrophilic so that liquid water can move from the cathode channel plate 41 to the outside of the cell 100 via the duct portion 42.
 第1の絞り部材51は金属、もしくはカーボン等、導電性を有する材料が導電または集電の観点で好ましい。 The first diaphragm member 51 is preferably a conductive material such as metal or carbon from the viewpoint of conductivity or current collection.
 以上のように、絞り部材51をカソードガス拡散層17の表面に配置することにより、α値を低下させ、燃料タンクに持つべき水の量を低下させることができる。 As described above, by arranging the throttle member 51 on the surface of the cathode gas diffusion layer 17, the α value can be reduced and the amount of water to be held in the fuel tank can be reduced.
(第2の絞り部材)
 第2の開口部48に更に第2の絞り部材を付加することにより、カソード流路44のよどみの効果を増大させ、カソード流路44の中のRHを更に高く維持することが可能となる。このような第2の絞り部材として、図1、図2に示すような、水の蒸発を低減し、かつ、酸素の供給を十分に行うために、カソード流路44の一部に空気の流れは阻止するが、酸素の透過を許容する隔膜45a、45bを配置してもよい。隔膜を配することにより、カソード流路44の内部に空気の流れが生じることを抑制し、空気供給を酸素の拡散により行うことができるため、カソード流路44の内部の湿度を適切に保持しやすくなるというメリットが生じる。隔膜としては、多孔体樹脂膜を用いることができる。
(Second aperture member)
By further adding a second throttle member to the second opening 48, the effect of stagnation of the cathode channel 44 can be increased, and the RH in the cathode channel 44 can be kept higher. As such a second throttle member, as shown in FIG. 1 and FIG. 2, in order to reduce water evaporation and sufficiently supply oxygen, air flows in a part of the cathode channel 44. However, the membranes 45a and 45b that allow the permeation of oxygen may be arranged. By arranging the diaphragm, it is possible to suppress the flow of air inside the cathode flow path 44 and to supply air by diffusion of oxygen, so that the humidity inside the cathode flow path 44 is appropriately maintained. The merit that it becomes easy arises. A porous resin film can be used as the diaphragm.
 また、隔膜45a、45bの代わりに第2の開口部48の断面積を、例えばカソード流路44の断面積の30%以下に絞ることで、いわゆる第2の絞り部材としてもよい。 Further, instead of the diaphragms 45a and 45b, the cross-sectional area of the second opening 48 may be reduced to, for example, 30% or less of the cross-sectional area of the cathode channel 44, so that a so-called second throttle member may be used.
 カソード流路44の両端がダクト部42a、42bの双方に連通している場合には、第2の開口部の少なくとも一方に第2の絞り部材を設ければよい。 When both ends of the cathode channel 44 communicate with both the duct portions 42a and 42b, a second throttle member may be provided in at least one of the second openings.
(ブリージングタイプ(フィッシュボーン))
 カソード流路44は図2に示す形態に限定されるものではない。例えば、図8に示すように、カソード流路板41が魚の骨状(fishbone)にランド(41、41a、41b)が形成され、隣接するランド間(41a-41a、41b-41b)にカソード流路44が形成されている。
(Breathing type (fishbone))
The cathode channel 44 is not limited to the form shown in FIG. For example, as shown in FIG. 8, the cathode flow path plate 41 has lands (41, 41a, 41b) formed in a fishbone shape, and a cathode flow between adjacent lands (41a-41a, 41b-41b). A path 44 is formed.
 カソード流路板41は、カソード流路44とランドが繰り返された構造となっている。空気供給部71から供給される空気は、ダクト部42を流れ、主として拡散によってz=±Lの近傍領域からz=0に向けて流れる。z=0近傍で生成された排出物はz=±Lの近傍領域に運ばれ、ダクト部42を流れる空気によって単セル100の外部へと排出される。このようなカソード流路は、カソード流路44への空気の供給が主として拡散により支配されるため、カソード極が乾燥しにくいという効果を有する。 The cathode channel plate 41 has a structure in which the cathode channel 44 and the land are repeated. The air supplied from the air supply part 71 flows through the duct part 42 and flows from the vicinity of z = ± L toward z = 0 mainly by diffusion. Exhaust generated in the vicinity of z = 0 is carried to a region in the vicinity of z = ± L and is discharged to the outside of the single cell 100 by the air flowing through the duct portion 42. Such a cathode channel has an effect that the cathode electrode is difficult to dry because the supply of air to the cathode channel 44 is mainly controlled by diffusion.
 なお、カソード流路板41のランドはカソードガス拡散層17から電気を集電する機能も有する。 The land of the cathode channel plate 41 also has a function of collecting electricity from the cathode gas diffusion layer 17.
(開口率の変化)
 第2の開口部48から遠ざかるに従い、すなわちカソード流路44の奥に行くに従い、第1の開口部53の開口率が大きくなるとより大きい効果を得ることができる。その理由は次のように考えられる。
(Change in aperture ratio)
A greater effect can be obtained as the aperture ratio of the first opening 53 increases as the distance from the second opening 48 increases, that is, as the depth of the cathode channel 44 increases. The reason is considered as follows.
 すなわち、図2または図8に示す単セル100では、カソード流路板41のz=±L近傍ではダクト部42から空気がカソード流路44に流れ込む。この時、このz=±L近傍の空気は相対的に湿度が低い。このため、カソード触媒層13とカソード流路44の水の濃度勾配が大きくなるため、α値は増加する。一方、z=0近傍ではz=±L近傍に比較すると、空気の供給量が低下するため、相対的に出力が低い。 That is, in the single cell 100 shown in FIG. 2 or FIG. 8, air flows from the duct portion 42 into the cathode channel 44 in the vicinity of z = ± L of the cathode channel plate 41. At this time, the air in the vicinity of z = ± L has a relatively low humidity. For this reason, since the concentration gradient of water in the cathode catalyst layer 13 and the cathode channel 44 becomes large, the α value increases. On the other hand, in the vicinity of z = 0, the supply amount of air is lower than in the vicinity of z = ± L, so the output is relatively low.
 そこで、図6(c)や図9に示すように、z=±L近傍からz=0方向へとカソード流路44の奥に進むに従い、隣接する第1の開口部53の最小距離δminを短くすることにより、第1の開口部53の単位面積当たりの開口率を大きくすることにより以下の効果が得られる。すなわち、z=±L近傍では開口率が相対的に小さく、αを低減させることができる。逆に、z=0近傍では、開口率が相対的に大きく、空気供給量低下に伴う出力の低下を抑制することができる。なお、最小距離δminとは、最隣接する開口までの最小距離を意味する。 Therefore, as shown in FIG. 6C and FIG. 9, the minimum distance δmin of the adjacent first openings 53 is increased as it advances from the vicinity of z = ± L to the depth of the cathode flow path 44 in the z = 0 direction. The following effects can be obtained by increasing the aperture ratio per unit area of the first opening 53 by shortening. That is, in the vicinity of z = ± L, the aperture ratio is relatively small, and α can be reduced. Conversely, in the vicinity of z = 0, the aperture ratio is relatively large, and a decrease in output due to a decrease in the air supply amount can be suppressed. The minimum distance δmin means the minimum distance to the most adjacent opening.
 ここで、図2のように、カソード流路44がその両端でダクト部42a、42bに連通している場合には、「遠ざかるに従い」とはその両端から離間した「カソード流路44の中央部付近に行くほど」との意味である。一方、図8のように、カソード流路板41が背骨構造を有していて、カソード流路44がダクト部42の一方としか連通していない場合には、「遠ざかるに従い」とはカソード流路板41の背骨41cに近づくほどとの意味である。 Here, as shown in FIG. 2, when the cathode channel 44 communicates with the duct portions 42 a and 42 b at both ends thereof, “as going away” means that “the central portion of the cathode channel 44 is separated from both ends. It means "the more you go near." On the other hand, as shown in FIG. 8, when the cathode flow path plate 41 has a backbone structure and the cathode flow path 44 communicates with only one of the duct portions 42, “as moving away” This means that it is closer to the spine 41c of the road plate 41.
 そして「第2の開口部48から遠ざかるに従い、すなわちカソード流路44の奥に行くに従い、第1の開口部53の開口率が大きくなる」とは、一定の面積を有する領域S1(例えば、2cm×2cmの領域)を「第2の開口部48から遠ざかる」ように、すなわち「カソード流路44の奥に行く」ように移動させた時に、第1の開口部53の面積S2との比(S2/S1)、すなわち開口率が大きくなるように変化することをいう。ここでの変化は連続的に変化しても良いし、例えば階段状に不連続に変化しても良い。 “The opening ratio of the first opening 53 increases as the distance from the second opening 48 increases, that is, the depth of the cathode flow path 44 increases” means that the region S1 having a certain area (for example, 2 cm × 2 cm area) is moved so as to “go away from the second opening 48”, that is, “go to the back of the cathode flow path 44”, and the ratio to the area S 2 of the first opening 53 ( S2 / S1), that is, changing so as to increase the aperture ratio. The change here may change continuously, for example, it may change discontinuously stepwise.
(実施例I)
 図13に、z=±L近傍からz=0へと奥に行くに従い、開口部間の最小距離δminが短くなる第1の絞り部材51を入れた場合の実施例1-1を示す。ここで、第1の絞り部材51は、図9に示すz=±L近傍のδminを0.5mmとし、z=0近傍のδminを0.37mmとした。
Example I
FIG. 13 shows Example 1-1 in which the first diaphragm member 51 is inserted in which the minimum distance δmin between the openings decreases from the vicinity of z = ± L to the depth of z = 0. Here, in the first aperture member 51, δmin in the vicinity of z = ± L shown in FIG. 9 is set to 0.5 mm, and δmin in the vicinity of z = 0 is set to 0.37 mm.
 一方、第1の絞り部材51を用いない場合を比較例1とした。この比較例1においては、カソードガス拡散層17とカソード多孔体21が接触する構成とした。 On the other hand, the case where the first diaphragm member 51 is not used is referred to as Comparative Example 1. In Comparative Example 1, the cathode gas diffusion layer 17 and the cathode porous body 21 are in contact with each other.
 また、z=±L近傍のδminとz=0近傍のδminを同じ0.5mmにした第1の絞り部材を用いた場合を実施例1-2とした。 Further, Example 1-2 was used in which the first diaphragm member in which δmin in the vicinity of z = ± L and δmin in the vicinity of z = 0 was set to the same 0.5 mm was used.
 単セル100の温度は、アノード流路板4とカソード流路板41の温度が65℃になるようにヒーター(図示省略)で制御した。アノード流路5には、燃料濃度1.4Mの、メタノール水溶液を0.5mL/分にて供給した。空気供給部71は、1000mL/分の大気(空気)をダクト部42(z=±L)の両方に分岐管で分岐させて供給した。負荷は1.2Aとして燃料電池を運転した。 The temperature of the single cell 100 was controlled by a heater (not shown) so that the temperature of the anode channel plate 4 and the cathode channel plate 41 was 65 ° C. A methanol aqueous solution having a fuel concentration of 1.4 M was supplied to the anode channel 5 at 0.5 mL / min. The air supply unit 71 supplied 1000 mL / min of atmospheric air (air) to both the duct units 42 (z = ± L) by a branch pipe. The fuel cell was operated at a load of 1.2A.
 比較例1と比較すると、実施例1-1は、αを低減しつつ、同等の出力を得られることが確認できた。また、実施例1-2に比較すると、実施例1-1は、出力を高めつつ、同等のαを得ることが確認できた。このことから、z=±L近傍からz=0へと奥に行くに従い、第1の開口部53間の最小距離δminが短い第1の絞り部材51を用いることで、αの低減と燃料電池の出力の向上を両立させ得ることが確認できた。 As compared with Comparative Example 1, it was confirmed that Example 1-1 can obtain the same output while reducing α. In addition, compared with Example 1-2, it was confirmed that Example 1-1 obtains the same α while increasing the output. Therefore, by using the first throttle member 51 in which the minimum distance δmin between the first openings 53 is shorter from the vicinity of z = ± L toward z = 0, the α can be reduced and the fuel cell can be reduced. It was confirmed that the improvement of the output can be achieved at the same time.
〔第2の実施の形態〕
 本発明の第2の実施の形態に係る燃料電池として、DMFCを採用した燃料電池を説明する。
[Second Embodiment]
A fuel cell employing DMFC will be described as a fuel cell according to a second embodiment of the present invention.
 図10に示すように、本発明の第2の実施の形態に係る燃料電池用スタックの単セル100は、第1の絞り部材51とカソード流路44との間に多孔体(カソード多孔体)21が介挿されている点が第1の実施の形態と異なる。 As shown in FIG. 10, the unit cell 100 of the fuel cell stack according to the second embodiment of the present invention has a porous body (cathode porous body) between the first throttle member 51 and the cathode channel 44. The point from which 21 is inserted differs from a 1st embodiment.
 カソード多孔体21は、その表面をカソード流路板41のランドと接し、裏面を第1の絞り部材51と接する。カソード多孔体21は電気導電性かつ空気透過性を有する。ここで、電気導電性を有するとは、空気の電気導電性よりも電気抵抗率が低い条件で定義される。また、空気透過性を有するとは、連通した多孔性を有することで定義される。多孔性の有無は、水銀圧入法で測定することができる。 The cathode porous body 21 is in contact with the land of the cathode flow path plate 41 on the surface, and is in contact with the first throttle member 51 on the back surface. The cathode porous body 21 has electrical conductivity and air permeability. Here, having electric conductivity is defined under the condition that the electric resistivity is lower than that of air. Moreover, having air permeability is defined by having a communicating porosity. The presence or absence of porosity can be measured by mercury porosimetry.
 カソード多孔体としては、カーボンペーパー、カーボンクロス、カーボン不織布、もしくは多孔金属等を用いることができる。 As the cathode porous body, carbon paper, carbon cloth, carbon nonwoven fabric, porous metal, or the like can be used.
 第2の実施の形態も第1の実施の形態と同様に、第1の絞り部材51は、予め定められた領域に第1の開口部53を複数有する。カソード流路41a、41bから取り入れられた空気は、カソード多孔体21を経由し、第1の開口部53を通してカソードガス拡散層17へと供給される。第1の絞り部材51は、z=L、z=-L近傍からz=0の方向に行くに従い、第1の開口部53の間の最小距離δminが短くなる特性を有することが好ましいことは上述した通りである。 In the second embodiment, as in the first embodiment, the first diaphragm member 51 has a plurality of first openings 53 in a predetermined region. Air taken in from the cathode channels 41 a and 41 b is supplied to the cathode gas diffusion layer 17 through the first opening 53 via the cathode porous body 21. It is preferable that the first aperture member 51 has a characteristic that the minimum distance δmin between the first openings 53 becomes shorter from z = L, near z = −L in the direction of z = 0. As described above.
(技術的意義)
 単セル100を小型化するにあたり、カソード流路板41、第1の絞り部材51は、単セル100の締付に耐える強度を保ちつつ薄型化することが好ましい。そこで、カソード流路板41、第1の絞り部材51としては、ステンレス、チタン等の金属薄板を用いることができる。
(Technical significance)
In reducing the size of the single cell 100, it is preferable that the cathode flow path plate 41 and the first throttle member 51 are thinned while maintaining the strength to withstand the tightening of the single cell 100. Therefore, a thin metal plate such as stainless steel or titanium can be used as the cathode channel plate 41 and the first throttle member 51.
 しかし、接合することなく金属板同士を単に接触させた場合、歪みによって接触界面には隙間が形成される可能性が高い。金属同士の接触のみでガスケット機能を持たせることは困難だからである。 However, when the metal plates are simply brought into contact with each other without joining, there is a high possibility that a gap is formed at the contact interface due to strain. This is because it is difficult to provide a gasket function only by contact between metals.
 導電性を有する第1の絞り部材51がカソード流路板41と接していると、この第1の絞り部材51とカソード流路板41との間に隙間が生じる。ランドと第1の絞り部材51の間に隙間があると、隣接するカソード流路44の間で差圧が生じた場合、この差圧が原因となって空気がこの隙間を流れる。差圧が大きくなればなるほどこの隙間を流れる空気の量は増大する。 When the first throttle member 51 having conductivity is in contact with the cathode flow channel plate 41, a gap is generated between the first throttle member 51 and the cathode flow channel plate 41. If there is a gap between the land and the first throttle member 51, when a differential pressure is generated between the adjacent cathode flow paths 44, air flows through this gap due to this differential pressure. As the differential pressure increases, the amount of air flowing through this gap increases.
 この場合、第1の絞り部材51で保水した水は、上述の隙間を流れる空気によってカソードガス拡散層17から奪われ、αが増加する。また、差圧条件によってαは一定値に留まらず、変化する場合もある。 In this case, the water retained by the first throttle member 51 is taken away from the cathode gas diffusion layer 17 by the air flowing through the gap, and α increases. In addition, α is not limited to a constant value depending on the differential pressure condition, and may vary.
 第2の実施の形態では、第1の絞り部材51とカソード流路板41との間にカソード多孔体21が挿入される。カソード多孔体21は、単セル100を締め付ける際、第1の絞り部材51と、カソード流路板41のランドからの圧力によって変形し、上述の隙間が生じるのを抑制する。これにより、カソード流路44間の差圧による空気の流れを抑制する効果を有する。従って、差圧が生じた場合にも、α値の増加又は変動を抑制することができる。 In the second embodiment, the cathode porous body 21 is inserted between the first throttle member 51 and the cathode channel plate 41. When the single cell 100 is tightened, the cathode porous body 21 is deformed by the pressure from the first throttle member 51 and the land of the cathode flow path plate 41, and suppresses the above-described gap from being generated. This has the effect of suppressing the air flow due to the differential pressure between the cathode channels 44. Therefore, even when a differential pressure occurs, the increase or fluctuation of the α value can be suppressed.
 ランドと第1の絞り部材51を直接接触させる場合、ランドと接触する位置に第1の絞り部材51の第1の開口部53が設けられると、ランドと第1の開口部53の間で隙間が形成される。この隙間が原因となり、電気抵抗の増加や、締付時のたわみを招く可能性がある。これを回避するため、ランドと、第1の開口部53を除いた領域(第1の絞り部材の壁部)と、の間で接触をとる必要があった。 When the land and the first aperture member 51 are in direct contact with each other, if the first opening 53 of the first aperture member 51 is provided at a position in contact with the land, there is a gap between the land and the first aperture 53. Is formed. This gap can cause an increase in electrical resistance and deflection during tightening. In order to avoid this, it is necessary to make contact between the land and the region excluding the first opening 53 (the wall portion of the first throttle member).
 しかし、第2の実施の形態では、カソード多孔体21をカソード流路板41と第1の絞り部材51との間に挿入する。これにより、ランドがカソード多孔体21と接触する面と、第1の絞り部材51がカソード多孔体21と接触する面とを別々に設けることが可能となる。 However, in the second embodiment, the cathode porous body 21 is inserted between the cathode channel plate 41 and the first throttle member 51. Accordingly, it is possible to separately provide a surface where the land contacts the cathode porous body 21 and a surface where the first throttle member 51 contacts the cathode porous body 21.
〔第3の実施の形態〕
 本発明の第3の実施の形態に係る燃料電池として、DMFCを採用した燃料電池を説明する。
[Third Embodiment]
A fuel cell employing a DMFC will be described as a fuel cell according to a third embodiment of the present invention.
 図11に示すように、本発明の第3の実施の形態に係る燃料電池用スタックのセル100は、カソード多孔体21の一面(カソード流路板と接触する面)にカーボン緻密層22を形成した点が第1及び第2の実施の形態と異なる。 As shown in FIG. 11, in the cell 100 of the fuel cell stack according to the third embodiment of the present invention, the dense carbon layer 22 is formed on one surface of the cathode porous body 21 (the surface in contact with the cathode channel plate). This is different from the first and second embodiments.
 カソード多孔体21の一面にカーボン緻密層22を形成し、このカーボン緻密層22とカソード流路板41のランドを接触させると、空気透過性が低い面がランドと接触するため、隣接するカソード流路44間の差圧による空気の流れの抑制効果が大きくなる。また、カソード多孔体21全体の強度(剛性)を高めることができる。カソード流路板41をプレス加工で作製した場合、ランドの凸部先端に曲率がつき、ランドがカソード多孔体21と接触する面積が少なくなる虞がある。よって、所定の圧力で単セル100を締付けた場合、ランドがカソード多孔体21を押し潰しすぎ、塑性変形を招く可能性がある。これに対し、カーボン緻密層22が形成された面をランドと接触させると、上述の変形を抑制することができる。なお、カソード多孔体21の外周全面にカーボン緻密層を設けた場合、カソード多孔体21の空気透過性が低下しすぎる。この場合、カソード流路44からカソードガス拡散層17への空気供給量が低下し、出力が低下するため、好ましくない。 When the dense carbon layer 22 is formed on one surface of the cathode porous body 21, and the dense carbon layer 22 and the land of the cathode flow channel plate 41 are brought into contact with each other, the surface with low air permeability comes into contact with the land. The effect of suppressing the air flow due to the differential pressure between the paths 44 is increased. Further, the strength (rigidity) of the entire cathode porous body 21 can be increased. When the cathode flow path plate 41 is produced by press working, there is a possibility that the land has a curvature at the tip of the convex portion and the area where the land contacts the cathode porous body 21 may be reduced. Therefore, when the single cell 100 is tightened with a predetermined pressure, the land may crush the cathode porous body 21 too much, which may cause plastic deformation. On the other hand, when the surface on which the carbon dense layer 22 is formed is brought into contact with the land, the above-described deformation can be suppressed. In addition, when a carbon dense layer is provided on the entire outer periphery of the cathode porous body 21, the air permeability of the cathode porous body 21 is too low. In this case, the amount of air supplied from the cathode flow path 44 to the cathode gas diffusion layer 17 decreases, and the output decreases, which is not preferable.
 カーボン緻密層は、主としてカーボン粒子とPTFEから成る、カソード多孔体21の平均気孔径よりも小さな気孔径を有する緻密多孔体であり、空気透過性がカソード多孔体21よりも低い。ここで、空気透過性は、ガーレー試験法(JIS P 8177)により求めることができる。 The carbon dense layer is a dense porous body mainly composed of carbon particles and PTFE and having a pore diameter smaller than the average pore diameter of the cathode porous body 21, and has a lower air permeability than the cathode porous body 21. Here, the air permeability can be determined by the Gurley test method (JIS P 8177).
(実施例II)
 図14に、単セル100において、z=+L側の流路41aと、z=-L側のカソード流路41bとの間に差圧を設けた場合のα値の結果を示す。ここで、ランドと接する面のみにカーボン緻密層を設けたカソード多孔体21を用いた例を実施例2とした。実施例2-1のカソード多孔体21は、撥水処理を施したカーボンクロスの片面にカーボン緻密層を設けたものであり、厚み方向の空気透過率は、K=5×10-13(m/s)であった。
Example II
FIG. 14 shows the result of the α value when a differential pressure is provided between the z = + L side channel 41 a and the z = −L side cathode channel 41 b in the single cell 100. Here, an example in which the cathode porous body 21 in which the carbon dense layer was provided only on the surface in contact with the land was used as Example 2. The cathode porous body 21 of Example 2-1 is obtained by providing a carbon dense layer on one side of a carbon cloth subjected to water repellent treatment, and the air permeability in the thickness direction is K = 5 × 10 −13 (m 2 / s).
 そして、カソード多孔体21を外し、カソード流路44と第1の絞り部材51を接触させた場合の例を実施例2-2とした。 Then, Example 2-2 was taken as an example in which the cathode porous body 21 was removed and the cathode channel 44 and the first throttle member 51 were brought into contact with each other.
 また、実施例2-1と同じカソード多孔体21で、カーボン緻密層を設けない例を実施例2-3とした。実施例2-3のカソード多孔体21の厚み方向の空気透過率は、K=2×10-12(m/s)であった。 In addition, an example in which the carbon porous layer 21 is not provided with the same cathode porous body 21 as in Example 2-1 was taken as Example 2-3. The air permeability in the thickness direction of the cathode porous body 21 of Example 2-3 was K = 2 × 10 −12 (m 2 / s).
 単セル100の温度は、アノード流路板4およびカソード流路板41の温度が65℃になるようにヒーター(図示省略)で制御し、アノード流路板4には、燃料濃度1.4Mの、メタノール水溶液を0.5mL/分にて供給した。空気供給部71は、1000mL/分の空気を44aが1000mL/分、44bが500mL/分となるよう、それぞれ個別に供給し、カソード流路間で差圧を設けた。負荷は1.2Aにて運転を行った。 The temperature of the single cell 100 is controlled by a heater (not shown) so that the temperature of the anode flow path plate 4 and the cathode flow path plate 41 is 65 ° C., and the anode flow path plate 4 has a fuel concentration of 1.4 M. A methanol aqueous solution was supplied at 0.5 mL / min. The air supply unit 71 individually supplied air of 1000 mL / min so that 44a was 1000 mL / min and 44b was 500 mL / min, and a differential pressure was provided between the cathode channels. The load was operated at 1.2A.
 実施例2-2(多孔体なし)に比較し、実施例2-3ではα値を約0.03低減することができ、実施例2-1ではαを約0.35低減することができた。また、出力は、実施例2-1、2-3ともに多孔体のない実施例2-2に比較し、高めることが可能となった。 Compared to Example 2-2 (no porous body), Example 2-3 can reduce the α value by about 0.03, and Example 2-1 can reduce α by about 0.35. It was. Further, the output can be increased in both Examples 2-1 and 2-3 as compared with Example 2-2 having no porous material.
 ここで、図14の結果が図13の結果に比較してαが相対的に大きくなっているのは、図13の場合、カソード流路間での差圧がほぼ0になるような条件にて空気を供給したのに対し、図14の場合、カソード流路間で差圧が生じるように意図的にダクト44a、44b間で空気の供給量を変化させたことに関連する。また、図13では多孔体21が挿入されていないため、その構成が異なることも関連する。 Here, the result of FIG. 14 shows that α is relatively larger than the result of FIG. 13 under the condition that, in the case of FIG. 13, the differential pressure between the cathode channels is almost zero. In the case of FIG. 14, the air supply amount is intentionally changed between the ducts 44a and 44b so that a differential pressure is generated between the cathode flow paths. Moreover, since the porous body 21 is not inserted in FIG. 13, it is also related that the structure is different.
〔第4の実施の形態〕
 本発明の第4の実施の形態に係る燃料電池として、DMFCを採用した燃料電池を説明する。本発明の第4の実施の形態に係る燃料電池用スタックのセル100は、カソード流路9の高さを低くすることにより、カソードガス拡散層17の周囲に第3の開口部56を設け、高い負荷でも発電可能なセルである。
[Fourth Embodiment]
A fuel cell employing DMFC will be described as a fuel cell according to a fourth embodiment of the present invention. The cell 100 of the fuel cell stack according to the fourth embodiment of the present invention is provided with the third opening 56 around the cathode gas diffusion layer 17 by reducing the height of the cathode flow path 9. It is a cell that can generate power even at high loads.
 カソード触媒層13に取り込むことのできる空気(酸素)量は、カソード流路44の流路高さ、カソード多孔体21の空気拡散性能、及び第1の絞り部材51の構造によって決まる。単セル100を小型化するためにカソード流路44の高さを低くしていくと、カソード触媒層13に取り込むことのできる空気(酸素)量が減少し、高い負荷での発電ができなくなる。 The amount of air (oxygen) that can be taken into the cathode catalyst layer 13 depends on the channel height of the cathode channel 44, the air diffusion performance of the cathode porous body 21, and the structure of the first throttle member 51. If the height of the cathode flow path 44 is lowered in order to reduce the size of the single cell 100, the amount of air (oxygen) that can be taken into the cathode catalyst layer 13 decreases, and power generation at a high load cannot be performed.
 この問題に対し、本実施の形態では、カソード触媒層13とカソードガス拡散層17の合計厚みに対し、カソード極ガスケット10の厚みが薄い。なお、カソード極ガスケット10は電解質膜11に接触している。ここで、カソード触媒層13とカソードガス拡散層17の合計厚みとは、膜電極複合体1を組んだ時に、電解質膜11とカソード触媒層13の界面から、カソードガス拡散層17と第1の開口部材51の界面までの厚さで定義する。 For this problem, in this embodiment, the cathode electrode gasket 10 is thinner than the total thickness of the cathode catalyst layer 13 and the cathode gas diffusion layer 17. The cathode electrode gasket 10 is in contact with the electrolyte membrane 11. Here, the total thickness of the cathode catalyst layer 13 and the cathode gas diffusion layer 17 is determined from the interface between the electrolyte membrane 11 and the cathode catalyst layer 13 when the membrane electrode assembly 1 is assembled. The thickness up to the interface of the opening member 51 is defined.
 本実施の形態では、カソードガス拡散層17の側面はカソード極ガスケット10に完全には覆われていない。この覆われていない領域(第3の開口部)から、空気供給部71から供給される空気を取り込むことが可能である。 In the present embodiment, the side surface of the cathode gas diffusion layer 17 is not completely covered with the cathode electrode gasket 10. It is possible to take in air supplied from the air supply unit 71 from this uncovered region (third opening).
 第1の絞り部材51のz=0近傍における開口率がz=±L近傍の開口率に対して大きい場合、カソード流路板41のダクト部42を流れる空気は、z=±L近傍で酸素の消費量が抑えられる結果、z=0近傍まで送られる。そして、空気はカソード多孔体21、第1の絞り部材51、カソードガス拡散層17を経てカソード触媒層13に供給される。 When the aperture ratio in the vicinity of z = 0 of the first throttle member 51 is larger than the aperture ratio in the vicinity of z = ± L, the air flowing through the duct portion 42 of the cathode flow path plate 41 is oxygen in the vicinity of z = ± L. As a result of suppressing the consumption amount, z is sent to near zero. The air is supplied to the cathode catalyst layer 13 through the cathode porous body 21, the first throttle member 51, and the cathode gas diffusion layer 17.
 本実施の形態では、この空気供給経路に加え、第3の開口部56からカソードガス拡散層17を介してカソード触媒層13に供給することができる。 In the present embodiment, in addition to the air supply path, the cathode catalyst layer 13 can be supplied from the third opening 56 through the cathode gas diffusion layer 17.
 よって、カソード極ガスケット10の高さを調整することでz=±Lの端部領域のカソード触媒層13に供給される空気供給量を制御することができ、かつ第1の絞り部材51の開口率、開口距離等のパラメーターを任意に設計することで、z=0の中心領域の供給される空気供給量を制御することができ、z=0近傍及びz=±Lの各領域ごとに個別の空気供給制御が可能となる。 Therefore, the amount of air supplied to the cathode catalyst layer 13 in the end region of z = ± L can be controlled by adjusting the height of the cathode electrode gasket 10 and the opening of the first throttle member 51 can be controlled. By arbitrarily designing parameters such as rate and opening distance, the amount of air supplied to the central region at z = 0 can be controlled, and each region near z = 0 and each region of z = ± L It is possible to control the air supply.
 第3の開口部56からの空気の取り込みを行わず、カソード流路44からの空気のみを用いてカソード触媒層13での反応に必要な空気を供給する場合、z=±L近傍のカソード触媒層13での酸素消費があるため、カソード流路44の高さを低くすると、z=0近傍の酸素濃度は低下する傾向があった。これに対し、本実施の形態によれば、z=±L近傍のカソード触媒層13への酸素の供給は別途第3の開口部56から行われるため、結果としてz=0近傍での酸素濃度の低下を抑制することができる。よって、カソード流路44の高さを低くした場合においても、高出力化を達成することが可能となる。
When the air necessary for the reaction in the cathode catalyst layer 13 is supplied using only the air from the cathode flow path 44 without taking in the air from the third opening 56, the cathode catalyst in the vicinity of z = ± L. Since there is oxygen consumption in the layer 13, when the height of the cathode channel 44 is lowered, the oxygen concentration in the vicinity of z = 0 tends to decrease. In contrast, according to the present embodiment, oxygen is supplied to the cathode catalyst layer 13 in the vicinity of z = ± L from the third opening 56 separately, and as a result, the oxygen concentration in the vicinity of z = 0. Can be suppressed. Therefore, even when the height of the cathode channel 44 is lowered, it is possible to achieve high output.
 1…膜電極複合体(MEA)
 2…気液分離層(疎液性多孔体)
 4…アノード流路板(アノード集電体)
 5…燃料流路
 6…気体流路
 9…アノードガスケット
 10…カソードガスケット
 11…電解質膜
 12…アノード触媒層
 13…カソード触媒層
 14…カーボン緻密層
 15…カーボン緻密層
 16…アノードガス拡散層
 17…カソードガス拡散層
 18…アノード極
 19…カソード極
 21…カソード多孔体
 22…カーボン緻密層
 31…燃料タンク
 32…燃料
 33…バルブ
 34…燃料供給部(ポンプ)
 35…燃料循環部(ポンプ)
 36…圧力調整機構(背圧弁)
 37…燃料濃度センサ(メタノール濃度センサ)
 41、41a、42b…カソード流路板
 42、42a、42b…ダクト部
 44、44a、44b…カソード流路
 45a、45b…隔膜
 48…第2の開口部
 51…第1の絞り部材
 53…第1の開口部
 56…第3の開口部
 65…燃料供給口
 66…燃料排出口
 67…気体排出口
 71、71a、71b…空気供給部
 80…制御部
 100、100a、100b…セル(スタック)
1 ... Membrane electrode assembly (MEA)
2 ... Gas-liquid separation layer (Lipophobic porous material)
4 ... Anode channel plate (anode current collector)
DESCRIPTION OF SYMBOLS 5 ... Fuel flow path 6 ... Gas flow path 9 ... Anode gasket 10 ... Cathode gasket 11 ... Electrolyte membrane 12 ... Anode catalyst layer 13 ... Cathode catalyst layer 14 ... Dense carbon layer 15 ... Dense carbon layer 16 ... Anode gas diffusion layer 17 ... Cathode gas diffusion layer 18 ... Anode electrode 19 ... Cathode electrode 21 ... Cathode porous body 22 ... Dense carbon layer 31 ... Fuel tank 32 ... Fuel 33 ... Valve 34 ... Fuel supply part (pump)
35 ... Fuel circulation part (pump)
36 ... Pressure adjustment mechanism (back pressure valve)
37 ... Fuel concentration sensor (Methanol concentration sensor)
41, 41a, 42b ... Cathode channel plate 42, 42a, 42b ... Duct portion 44, 44a, 44b ... Cathode channel 45a, 45b ... Diaphragm 48 ... Second opening 51 ... First throttle member 53 ... First 56 ... 3rd opening 65 ... Fuel supply port 66 ... Fuel discharge port 67 ... Gas discharge port 71, 71a, 71b ... Air supply unit 80 ... Control unit 100, 100a, 100b ... Cell (stack)

Claims (10)

  1.  アノード極と、電解質膜と、カソード極と、第1の開口部を持つ第1の絞り部材と、第2の開口部を有するカソ―ド流路と、前記カソード流路を覆うカソード流路板と、をこの順序で配置していることを特徴とする燃料電池。 An anode electrode, an electrolyte membrane, a cathode electrode, a first throttle member having a first opening, a cathode channel having a second opening, and a cathode channel plate covering the cathode channel Are arranged in this order.
  2.  前記カソード流路板の縁部の少なくとも一部にダクト部を有し、
    前記ダクト部と前記カソード流路とは前記第2の開口部を介して連通していること
    を特徴とする請求項1に燃料電池。
    Having a duct portion at least at a part of an edge of the cathode flow path plate;
    2. The fuel cell according to claim 1, wherein the duct portion and the cathode channel communicate with each other through the second opening.
  3.  前記第1の絞り部材と前記カソード流路との間に多孔体が介挿されていることを特徴とする請求項2に記載の燃料電池。 3. The fuel cell according to claim 2, wherein a porous body is interposed between the first throttle member and the cathode channel.
  4.  前記第1の開口部の開口率は5~30%であることを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the opening ratio of the first opening is 5 to 30%.
  5.  前記第2の開口部から遠ざかるに従い、前記第1の開口部の開口率は大きくなることを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein an opening ratio of the first opening portion increases as the distance from the second opening portion increases.
  6.  前記カソード極は触媒層を有し、前記第1の絞り部材は前記カソード触媒層と熱的に接続する構成を有することにより、前記第1の絞り部材の温度が前記カソード極の触媒層の温度よりも低いことを特徴とする請求項1に記載の燃料電池。 The cathode electrode has a catalyst layer, and the first throttle member is configured to be thermally connected to the cathode catalyst layer, whereby the temperature of the first throttle member is the temperature of the catalyst layer of the cathode electrode. The fuel cell according to claim 1, wherein the fuel cell is lower.
  7.  前記第1の絞り部材は導電性を有することを特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the first throttle member has conductivity.
  8.  前記第2の開口部は更に第2の絞り部材を有することを特徴とする特徴とする請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, wherein the second opening further includes a second throttle member.
  9.  前記多孔体は、前記カソード流路板と対向する面の空気透過率が、前記絞り部材と接する面の空気透過率よりも小さいことを特徴とする請求項3に記載の燃料電池。 4. The fuel cell according to claim 3, wherein the porous body has an air permeability of a surface facing the cathode channel plate smaller than an air permeability of a surface in contact with the throttle member.
  10.  前記カソード多孔体は、前記カソード流路板と対向する面にカーボン緻密層を含むことを特徴とする請求項9に記載の燃料電池。 10. The fuel cell according to claim 9, wherein the cathode porous body includes a dense carbon layer on a surface facing the cathode channel plate.
PCT/JP2009/004160 2009-08-27 2009-08-27 Fuel cell WO2011024224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004160 WO2011024224A1 (en) 2009-08-27 2009-08-27 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004160 WO2011024224A1 (en) 2009-08-27 2009-08-27 Fuel cell

Publications (1)

Publication Number Publication Date
WO2011024224A1 true WO2011024224A1 (en) 2011-03-03

Family

ID=43627354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004160 WO2011024224A1 (en) 2009-08-27 2009-08-27 Fuel cell

Country Status (1)

Country Link
WO (1) WO2011024224A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080776A (en) * 2005-09-16 2007-03-29 Nec Corp Solid polymer fuel cell, solid polymer fuel cell stack, and portable electronic apparatus
JP2007095581A (en) * 2005-09-29 2007-04-12 Toshiba Corp Fuel cell and fuel cell system
JP2007335367A (en) * 2006-06-19 2007-12-27 Toshiba Corp Fuel cell
JP2008243741A (en) * 2007-03-28 2008-10-09 Toshiba Corp Fuel cell
JP2008310995A (en) * 2007-06-12 2008-12-25 Toshiba Corp Fuel cell
JP2009080965A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell
JP2009080948A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell power generation system and its manufacturing method
JP2009158411A (en) * 2007-12-27 2009-07-16 Toshiba Corp Fuel cell
JP2009295338A (en) * 2008-06-03 2009-12-17 Toshiba Corp Fuel cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080776A (en) * 2005-09-16 2007-03-29 Nec Corp Solid polymer fuel cell, solid polymer fuel cell stack, and portable electronic apparatus
JP2007095581A (en) * 2005-09-29 2007-04-12 Toshiba Corp Fuel cell and fuel cell system
JP2007335367A (en) * 2006-06-19 2007-12-27 Toshiba Corp Fuel cell
JP2008243741A (en) * 2007-03-28 2008-10-09 Toshiba Corp Fuel cell
JP2008310995A (en) * 2007-06-12 2008-12-25 Toshiba Corp Fuel cell
JP2009080965A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell
JP2009080948A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell power generation system and its manufacturing method
JP2009158411A (en) * 2007-12-27 2009-07-16 Toshiba Corp Fuel cell
JP2009295338A (en) * 2008-06-03 2009-12-17 Toshiba Corp Fuel cell

Similar Documents

Publication Publication Date Title
JP5500254B2 (en) Fuel cell
US10026977B2 (en) Humidification device for humidifying process gases and fuel cell arrangement comprising same
JP2009080965A (en) Fuel cell
US8221932B2 (en) Fuel cell
JP2010073626A (en) Fuel cell separator and fuel cell stack
JP2011044297A (en) Fuel cell
JP2005197150A (en) Fuel cell
JP2009043688A (en) Fuel cell
JP5480082B2 (en) Fuel cell
JP2010135268A (en) Power generation cell for fuel battery
JP2009099262A (en) Fuel cell
WO2011024224A1 (en) Fuel cell
WO2012161206A1 (en) Fuel cell
JP2009087844A (en) Structure of a power generation cell for a fuel cell and wetting method for power generation cell
JP4453426B2 (en) Fuel cell
JP5981205B2 (en) Electrolyte membrane / electrode structure
JP2010232083A (en) Fuel cell
JP6546951B2 (en) Electrolyte membrane electrode structure
JP2008091278A (en) Fuel cell
JP4543645B2 (en) Fuel cell and gas separator for fuel cell
JP4923386B2 (en) Fuel cell with porous separator
JP2005129431A (en) Fuel cell and gas separator for fuel cell
JP2014017083A (en) Fuel battery cell and fuel battery
JP4635465B2 (en) Fuel cell and gas separator for fuel cell
JP2012018854A (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP