WO2011023108A1 - 跳纤连接状态检测方法、装置及系统 - Google Patents
跳纤连接状态检测方法、装置及系统 Download PDFInfo
- Publication number
- WO2011023108A1 WO2011023108A1 PCT/CN2010/076343 CN2010076343W WO2011023108A1 WO 2011023108 A1 WO2011023108 A1 WO 2011023108A1 CN 2010076343 W CN2010076343 W CN 2010076343W WO 2011023108 A1 WO2011023108 A1 WO 2011023108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- port
- fiber
- optical signal
- optical
- jumper
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3895—Dismountable connectors, i.e. comprising plugs identification of connection, e.g. right plug to the right socket or full engagement of the mating parts
Definitions
- the embodiments of the present invention relate to communication technologies, and in particular, to a method, device, and system for detecting a fiber jumper connection state.
- Optical fiber access (FTTX) technology is mainly used for network fiberization, ranging from central office equipment in regional telecommunication equipment rooms to user terminal equipment.
- the optical fiber distribution frame Optical Di s tr ibut ion Frame; hereinafter referred to as 0DF
- 0DF optical Di s tr ibut ion Frame
- the optical fiber line connection can be easily realized through the ODF , Allocation and scheduling.
- the operation and maintenance of ODF are mainly done manually.
- optical fiber jumper detection method in the prior art, two electrical connection ports are respectively added to any two connected ports, and the plugs at both ends of the optical fiber jumper are respectively added with pins corresponding to the electrical connections of the two ports, and The pins between the two ports are electrically connected.
- the detection device detects whether the loop formed by the two ports and the optical jumper is closed, and then it can be judged whether the two ports are connected.
- each fiber jumper is electrically connected to two ports, and the two ports are electrically connected.
- the electromagnetic field coupling between the multiple fiber jumpers will interfere with the signal detection between other fiber jumpers; the electrical connection between the plug and the port is prone to sparking, making the detection process unsafe.
- the fiber jumper is plugged and unplugged multiple times, which is prone to wear and tear, which affects the reliability of electrical contacts.
- the embodiments of the present invention provide a method, device, and system for detecting the connection state of a fiber jumper, so as to solve the problem of unsafe detection process and easy generation of interference signals in the prior art.
- an embodiment of the present invention provides a signal generation method for a fiber patch connection state, including: generating an optical signal corresponding to a first port; The optical signal is sent to the second port through a first optical fiber, the first optical fiber is connected to two ends of a jumper fiber, and the two ends of the jumper fiber are respectively connected to the first port and the second port.
- the embodiment of the present invention also provides a method for detecting the connection state of a fiber jumper, including:
- connection state of the second port and the first port is determined according to whether the optical signal sent from the first port to the second port through the first optical fiber is received, and both ends of the fiber jumper are respectively connected to the first port and The second port;
- the port identifier corresponding to the first port is obtained according to the optical signal.
- an embodiment of the present invention provides a signal generating device for a fiber jumper connection state, including: a generating module, configured to generate an optical signal corresponding to a first port;
- a sending module configured to send the optical signal to a second port through a first optical fiber, the first optical fiber is connected to two ends of a jumper fiber, and both ends of the jumper fiber are connected to the first port and the second port, respectively Two ports.
- the embodiment of the present invention also provides a device for detecting the connection state of a fiber jumper, including:
- the judging module is configured to judge whether an optical signal sent from the first port to the second port through the first optical fiber is received. Port and the second port;
- a first obtaining module configured to obtain a connection state between the second port and the first port according to the judgment result of the judgment module
- the second acquiring module is configured to, if the determining module determines that the optical signal is received, acquire the port identifier corresponding to the first port according to the optical signal.
- the embodiment of the present invention further provides a fiber jumper connection state detection system, including:
- the signal generating device is used to generate an optical signal corresponding to the first port, and send the optical signal to the second port through the first optical fiber, the first optical fiber is connected to the two ends of the fiber jumper, and the two Terminals are respectively connected to the first port and the second port;
- the detection device is configured to determine the connection state of the second port and the first port according to whether the optical signal sent from the first port to the second port through the first optical fiber is received, and if the optical signal is received, according to The optical signal obtains the port identifier corresponding to the first port.
- an optical fiber is arranged in parallel on the jumper fiber connecting any two ports, so that the optical fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports.
- Send to another port through optical fiber, and receive optical signal through another port The situation detects the port identification that sends the optical signal and the connection status of the two ports.
- the optical paths of different fiber jumpers are independent of each other, there will be no interference signals between the optical paths in the detection process, and the detection process is safer.
- the connection status of each port can be updated in real time, which facilitates the corresponding processing of the wrong operation of the port.
- Fig. 1 is a flowchart of a signal generation method for a fiber patch connection state according to an embodiment of the present invention
- Fig. 2 is a flowchart of a signal generation method for a fiber patch connection state provided by another embodiment of the present invention
- Fig. 3 is an implementation of the present invention The flow chart of the method for detecting the connection state of the fiber jumper provided by the example;
- Fig. 4 is a flowchart of a method for detecting a fiber patch connection state according to another embodiment of the present invention
- Fig. 5 is a schematic structural diagram of a signal generating device for a fiber patch connection state according to an embodiment of the present invention
- Fig. 6 is a schematic structural diagram of a signal generating device in a fiber patch connection state provided by another embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a fiber jumper connection state detection device provided by an embodiment of the present invention
- Fig. 8 is a schematic structural diagram of a fiber jumper connection state detection device provided by another embodiment of the present invention
- Fig. 9 shows an embodiment of the present invention using TS555 A circuit diagram for detecting the connection state of a fiber jumper
- FIG. 10 is a schematic structural diagram of a system for detecting the connection state of a fiber jumper according to an embodiment of the present invention.
- Fig. 1 is a flowchart of a method for generating a signal of a fiber patch connection state according to an embodiment of the present invention. As shown in Fig. 1, the method includes:
- the first port and the second port are any two ports connected to the ODF of the FTTX operator’s computer room.
- the first port and the second port are connected by patch cords with plugs at both ends respectively, and the first port and the second port are detected.
- the connection between the second ports is to detect the connection between the plugs at both ends of the fiber jumper and the first port and the second port.
- the first fiber for transmitting the detection signal can be added to the fiber jumper.
- the first fiber can be (Plastic Optica l Fiber; hereinafter referred to as P0F), of course, it can also be other types of fibers with large numerical apertures to facilitate optical coupling.
- Such as optical crystals or polymers, etc. can also be polyvinyl chloride (Polyvinylchlor ide; hereinafter referred to as: PVC) special optical fiber such as optical fiber.
- PVC polyvinyl chloride
- the length of the first optical fiber can be set according to the length of the jumper fiber, and its position is placed parallel to the jumper fiber, and the two ends of the first optical fiber are respectively fixed on the plugs at both ends of the jumper fiber. In this way, if the optical signal sent from the first port to the second port via the first optical fiber can be received by the second port, it can be considered that the first port and the second port are in a connected state.
- the second port does not receive the optical signal sent from the first port to the second port via the first optical fiber, it means that the first port and the second port are in a disconnected state.
- the detection signal is an optical signal.
- the optical signal corresponding to the first port can be generated according to certain rules. The signal is used to distinguish the first port from other ports. If the second port receives the optical signal, it can detect the current and Which port is connected to the second port.
- an optical fiber is arranged in parallel on the jumper fiber connecting any two ports, so that the fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports and sent through the optical fiber.
- the connection status of the two ports can be detected by receiving the optical signal at the other port.
- the optical paths of different fiber jumpers are independent of each other, there will be no interference signals between the optical paths in the detection process, and the detection process is safer.
- FIG. 2 is a flowchart of a method for generating a signal of a fiber patch connection state according to another embodiment of the present invention. As shown in FIG. 2, the method includes:
- a logic device can be used to generate an identification (identification; hereinafter referred to as ID) electrical signal for each port that is different from other ports.
- ID identification
- a conversion device such as a light emitting diode (Light Emitting Diode; hereinafter referred to as LED), converts the ID electrical signal into an optical signal. If the optical signal sent from the first port to the second port via the first optical fiber can be received by the second port, it can be considered that the first port and the second port are in a connected state, and the current and Which port is connected to the second port. If the second port does not receive the optical signal sent from the first port to the second port via the first optical fiber, it means that the first port and the second port are in a disconnected state.
- LED Light Emitting Diode
- the jumper connecting any two ports is The optical fiber is arranged in parallel on the fiber, so that the optical fiber is connected to the two ends of the fiber jumper, and the optical signal is generated at one port and sent to the other port through the optical fiber.
- the two ports can be detected by receiving the optical signal at the other port. Connection status.
- the optical paths of different fiber jumpers are independent of each other, there will be no interference signals between the optical paths in the detection process, and the detection process is safer.
- Fig. 3 is a flowchart of a method for detecting a fiber jumper connection state according to an embodiment of the present invention. As shown in Fig. 3, the method includes:
- S301 Determine the connection state between the second port and the first port according to whether the optical signal sent from the first port to the second port through the first optical fiber is received.
- the first port and the second port are any two ports connected to the ODF of the FTTX operator’s computer room.
- the first port and the second port are connected by patch cords with plugs at both ends, in order to test the fiber patch cords.
- a first optical fiber for transmitting the detection signal can be added to the jumper.
- the first optical fiber can be a POF, of course, it can also be other types of large numerical aperture optical fibers.
- the length of the first optical fiber can be set according to the length of the jumper fiber, and its position is placed parallel to the jumper fiber, and two ends of the first optical fiber are respectively fixed on the plugs at both ends of the jumper fiber.
- the first port sends the optical signal corresponding to the first port to the second port via the first optical fiber. If the second port can receive the optical signal, the first port and the second port are in a connected state, because the optical signal is The first port is different from the optical signals of other ports. Therefore, the port identifier of the first port can be identified according to the generation rule of the optical signal, that is, it can be known which port is currently connected to the second port.
- an optical fiber is arranged in parallel on a jumper fiber connecting any two ports, and the fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports and sent to The other port detects the identification of the port sending the optical signal and the connection status of the two ports by receiving the optical signal at the other port.
- the optical paths of different fiber jumpers are independent of each other, and there will be no interference signals between the optical paths during the detection process, and the detection process is safer.
- FIG. 4 is a flowchart of a method for detecting a fiber jumper connection state according to another embodiment of the present invention. As shown in FIG. 4, the method includes:
- S401 Determine the connection state between the second port and the first port according to whether the optical signal sent from the first port to the second port through the first optical fiber is received, the first optical fiber is connected to two ends of the fiber jumper, and the two ends of the fiber jumper are respectively connected The first port and the second port; S402: If an optical signal is received, convert the optical signal into an electrical signal;
- S403 Detect the frequency of the electrical signal, and identify the port identifier corresponding to the first port and the connection quality between the second port and the first port according to the frequency.
- S404 Record the port identifier corresponding to the first port and the connection state between the second port and the first port;
- S405 Generate an alarm signal according to the connection status and/or connection quality of the second port and the first port.
- a logic device can be used to generate an ID electrical signal for the first port that is different from other ports. Then some photoelectric conversion devices, such as LEDs, convert the ID electrical signals into optical signals. If the second port can receive the optical signal sent by the first port, it means that the second port and the first port are in a connected state; if the second port cannot receive the optical signal sent by the first port, then the second port is connected to the first port. The port is disconnected. Further, after the second port receives the optical signal sent by the first port via the first optical fiber, it first converts the received optical signal into an electrical signal.
- the weak electrical signal can be converted into a corresponding pulse signal according to the principle of pulse code modulation. Then the pulse signal is detected.
- the specific detection can be divided into two steps: First, determine whether the signal sent by the opposite end is 0 or 1. If the signal sent by the opposite end is 0, no pulse is output. If the signal sent by the opposite end is 1, then the corresponding number of pulses will be output. Comparing the number of output pulses with the detection threshold, the peer output 1 can be identified, and the quality of the connection can be identified according to the number of pulses, that is, if there are more pulses, the corresponding connection quality is better. Then detect the port number corresponding to the ID number sent by the opposite end.
- the port identifier of the sending end that is, the port number
- the port number is identified, so that the two connected ports can be identified.
- the quality of the fiber jumper connecting the first port and the second port is obtained. Since there are a large number of fiber jumpers connected to the 0DF, and the operations of inserting and removing the fiber jumpers or changing the connection ports may not be recorded in time, each port can be detected in real time, and the ports connected to each port can be monitored in real time. After the detection, the port identification corresponding to the port currently connected to the port can be recorded or updated, and the status of the connection between the ports and the quality of the connection can be recorded at the same time. If the port connection is loose or disconnected, an alarm message can be sent out in time to remind the management personnel to deal with it in time.
- an optical fiber is arranged in parallel on a jumper fiber connecting any two ports, and the fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports and sent to
- the other port detects the identification of the port sending the optical signal and the connection status of the two ports by receiving the optical signal at the other port.
- the optical paths of different fiber jumpers are independent of each other. There will be no interference signals between the optical paths during the measurement process, and the detection process is safer.
- the connection status of each port can be updated in real time, which facilitates the corresponding processing of the wrong operation of the port.
- a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
- the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: various media capable of storing program codes, such as ROM, RAM, magnetic disks, or optical disks.
- Fig. 5 is a schematic structural diagram of a signal generating device for a fiber patch connection state provided by an embodiment of the present invention.
- the device includes: a generating module 51 and a sending module 52; The optical signal corresponding to the port; the sending module 52 is used to send the optical signal to the second port through the first optical fiber, the first optical fiber is connected to both ends of the jumper fiber, and the two ends of the jumper fiber are respectively connected to the first port and the second port.
- the first port and the second port are any two ports on the 0DF of the FTTX operator’s computer room.
- the first port and the second port are connected by patch cords with plugs at both ends.
- a first optical fiber for transmitting the detection signal can be added to the jumper.
- the first optical fiber can be a POF, of course, it can also be other types of large numerical aperture optical fibers.
- the length of the first optical fiber can be set according to the length of the jumper fiber, and its position is placed parallel to the jumper fiber, and two ends of the first optical fiber are respectively fixed on the plugs at both ends of the jumper fiber.
- the device and the first port are also connected by an optical fiber of the same material as the first optical fiber, such as POF.
- the optical fiber between the device and the first port and the cross-section of the first optical fiber need to be aligned to ensure that the optical signal sent by the transmitting module 52 in the device can smoothly enter the first optical fiber.
- the cross section between the device and the first port and the cross section of the first optical fiber should be flat. The unevenness will affect the quality of the optical signal received by the second port, thereby affecting the judgment of the connection state of the first port and the second port.
- the generating module 51 generates an optical signal corresponding to the first port.
- the optical signal is sent to the second port via the first optical fiber through the sending module 52. If the signal can be received by the second port, the first port and the second port Is connected. If the second port does not receive the optical signal sent from the first port to the second port via the first optical fiber, it means that the first port and the second port are in a disconnected state.
- the optical signal corresponding to the first port can be generated according to certain rules, that is, the first port can be used to generate the optical signal for distinguishing from other ports, and if the second port receives the optical signal sent by the first port, it can be generated according to The optical signal generation rule determines which port is currently connected to the second port.
- an optical fiber is arranged in parallel on a jumper fiber connecting any two ports, so that the fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports and sent to The other port detects the identification of the port sending the optical signal and the connection status of the two ports by receiving the optical signal at the other port.
- the optical paths of different fiber jumpers are independent of each other, there will be no interference signals between the optical paths in the detection process, and the detection process is safer.
- the device includes: a generating module 51 and a sending module 52; the generating module 51 may also include: an acquiring unit 511 And the conversion unit 512; the obtaining unit 51 1 is used to obtain the identification electrical signal corresponding to the first port; the conversion unit 512 is used to convert the identification electrical signal into an optical signal.
- the acquisition unit 511 may first generate an ID electrical signal for each port that is different from other ports, and then the conversion unit 512 converts the ID electrical signal into an optical signal.
- the obtaining unit 511 may be some logic devices, and the conversion unit 512 may be a photoelectric conversion device, such as an LED.
- the wavelength of the optical signal can be selected according to the optical characteristics of the first optical fiber and the conversion unit 512. Taking the first optical fiber as the POF and the conversion unit 512 as the LED as an example, light with a wavelength of 650 ⁇ m can be selected as the optical signal, and a square wave output by a 10-pin of the acquisition unit 511 can be used to directly drive the LED with a center wavelength of 650 ⁇ m.
- the frequency of the square wave is less than the cut-off frequency of the LED, which can generally be several kilohertz.
- the sending module 52 sends the optical signal to the second port via the first optical fiber. If it can be received by the second port, it can be considered that the first port and the second port are in a connected state, and can detect the current and the second port according to the optical signal generation rules. Which port is connected to the second port. If the second port does not receive the optical signal sent from the first port to the second port via the first optical fiber, it means that the first port and the second port are in a disconnected state.
- an optical fiber is arranged in parallel on a jumper fiber connecting any two ports, so that the fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports and sent to The other port detects the identification of the port sending the optical signal and the connection status of the two ports by receiving the optical signal at the other port.
- the optical paths of different fiber jumpers are independent of each other, and there will be no interference signals between the optical paths during the detection process, and the detection process is safer.
- Figure 7 is a schematic structural diagram of a fiber jumper connection state detection device according to another embodiment of the present invention.
- the device includes: a receiving module 61, a determining module 62, a first acquiring module 63, and a second acquiring module 64;
- the receiving module 61 is configured to receive the optical signal sent from the first port to the second port through the first optical fiber, the first optical fiber is connected to two ends of the jumper fiber, and the two ends of the jumper fiber are respectively connected to the first port and the second end.
- the judging module 62 is used to judge whether the receiving module 61 receives the optical signal; the first obtaining module 63 is used to obtain the connection state of the second port and the first port according to the judgment result of the judging module 62; the second obtaining module 64 is used to If the receiving module 61 receives the optical signal, it obtains the port identifier corresponding to the first port according to the optical signal.
- the first port and the second port are any two ports connected to the ODF of the FTTX operator’s computer room.
- the first port and the second port are connected by patch cords with plugs at both ends, in order to test the fiber patch cords.
- a first optical fiber for transmitting the detection signal can be added to the jumper.
- the first optical fiber may be a POF, of course, it may also be other types of large numerical aperture optical fibers.
- the length of the first optical fiber can be set according to the length of the jumper fiber, and its position is placed parallel to the jumper fiber, and the two ends of the first optical fiber are respectively fixed on the plugs at both ends of the jumper fiber.
- the device and the second port are connected through an optical fiber of the same material as the first optical fiber, such as POF.
- the cross section of the optical fiber between the device and the second port and the first optical fiber need to be aligned, so as to ensure that the receiving module 61 in the device can smoothly receive the optical signal through the first optical fiber.
- the cross-section between the device and the second port and the cross-section of the first optical fiber should be flat. If the cross-section is not flat, the quality of the optical signal received by the second port will be affected. Affect the judgment of the connection status of the first port and the second port.
- the first port sends the optical signal corresponding to the first port to the second port via the first optical fiber.
- the first acquiring module 63 can acquire the first port and The second port is in a connected state; if the determining module 62 determines that the receiving module 61 cannot receive the optical signal, the first acquiring module 63 can acquire that the first port and the second port are in a disconnected state.
- the receiving module 61 can receive the optical signal, since the optical signal is an optical signal of the first port that is different from other ports, the second acquiring module 64 can identify the port of the first port according to the generation rule of the optical signal. The identifier, that is, the port number, can then know which port is currently connected to the second port.
- an optical fiber is arranged in parallel on a jumper fiber connecting any two ports, so that the fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports and sent to The other port detects the identification of the port sending the optical signal and the connection status of the two ports by receiving the optical signal at the other port.
- the optical paths of different fiber jumpers are independent of each other, and there will be no interference signals between the optical paths during the detection process, and the detection process is safer.
- FIG. 8 is a schematic structural diagram of a fiber patch connection state detection device provided by another embodiment of the present invention. As shown in FIG. 8, the device includes: a receiving module 61, a judging module 62, a first acquiring module 63, and a second acquiring module.
- the device may also include: a recording module 65, a third acquisition module 66, and an alarm module 67; the recording module 65 is used to record the port identification of the first port acquired by the first acquisition module 63, If the receiving module 61 receives the optical signal, it records the port identification corresponding to the first port acquired by the second acquisition module 64; the second acquisition module 64 may include a photoelectric conversion unit 641, a detection unit 642, and an identification unit 643; The conversion unit 641 is used to convert the optical signal into an electrical signal; the detection unit 642 is used to detect the frequency of the electrical signal; the identification unit 643 is used to identify the port identifier corresponding to the first port based on the frequency; the third acquisition module 66 uses To identify the connection quality between the second port and the first port according to the frequency detected by the detection unit 642; the alarm module 67 is used to identify the connection status between the second port and the first port and/or the third port acquired by the first acquisition module 63.
- the connection quality between the second port and the first port obtained by the obtaining
- a logic device can be used to generate an ID electrical signal for the first port that is different from other ports. Then some photoelectric conversion devices, such as LEDs, convert the ID electrical signals into optical signals. If the determining module 62 determines that the receiving module 61 receives the optical signal, the first acquiring module 63 can acquire that the second port and the first port are in a connected state; if the determining module 62 determines that the receiving module 61 cannot receive the first port If the optical signal is sent, the first acquiring module 63 can acquire that the second port is in a disconnected state from the first port.
- the receiving module 61 After the receiving module 61 receives the optical signal sent by the first port via the first optical fiber, it first converts the received optical signal into an electrical signal by the photoelectric conversion unit 641, and then is detected by the detection unit 642 and identified by the identification unit 643 The port identifier corresponding to the port that sends the optical signal and the connection quality between the second port and the first port. Among them, light with a wavelength of 65 Onm can be selected as the optical signal according to the optical characteristics of the POF and the optical characteristics of the PD. After the optical signal received by the receiving module 61 is converted by the photoelectric conversion unit 641, its voltage is only about 200 millivolts.
- the detection unit 642 may use some integrated chips, such as a TS555 chip, etc. As shown in FIG. 9 is a circuit diagram for detecting the connection state of a fiber jumper using TS555 in an embodiment of the present invention. And the connection quality between the fiber jumper and the first port or the second port is judged by the number of pulses of the electrical signal.
- the operations of inserting and removing the fiber jumpers or changing the connection ports may not be recorded in time, so each port can be detected in real time, and the port connected to each port can be monitored in real time.
- the recording module 65 can record the port label corresponding to the port currently connected to the port. Record or update the knowledge, and record the status of the connection between the ports and the quality of the connection at the same time. If the port connection is loose or disconnected, an alarm message can be sent out in time to remind the management personnel to deal with it in time.
- an optical fiber is arranged in parallel on a jumper fiber connecting any two ports, so that the fiber is connected to both ends of the jumper fiber respectively, and an optical signal is generated at one of the ports and sent to
- the other port detects the identification of the port sending the optical signal and the connection status of the two ports by receiving the optical signal at the other port.
- the optical paths of different fiber jumpers are independent of each other, and there will be no interference signals between the optical paths during the detection process, and the detection process is safer.
- the connection status of each port can be updated in real time, which facilitates the corresponding processing of the wrong operation of the port.
- Figure 10 is a schematic structural diagram of a fiber patch connection state detection system provided by an embodiment of the present invention, as shown in the figure
- the system includes: a signal generating device 1 and a detecting device 2; wherein, the signal generating device 1 is used to generate an optical signal corresponding to the first port, and send the optical signal to the second port through the first optical fiber.
- An optical fiber is connected to both ends of the fiber jumper, and the two ends of the fiber jumper are respectively connected to the first port and the second port; The connection state between the second port and the first port, and if an optical signal is received, the port identifier corresponding to the first port is acquired according to the optical signal.
- the system can be connected to each port, and the first optical fiber connection can be used between the system and each port.
- the first optical fiber may be POF or other types of large numerical aperture optical fibers.
- the detection device 2 If it is necessary to detect the connection status between the first port and the second port, first use the signal generating device 1 to generate an optical signal corresponding to the first port, and send the signal to the second port through a fiber jumper.
- the detection device 2 connected to the two ports receives the optical signal, the detection device 2 can further recognize the port identification of the first port connected to the second port through the optical signal, that is, the port number, and learn which port the second port is currently in.
- the port connection state if the detection device 2 cannot receive the optical signal, the first port and the second port are in a disconnected state. Similarly, for any port, the received optical signal can be used to detect which port the port is connected to.
- the method, device, and system for detecting the connection state of a fiber jumper provided by the embodiments of the present invention are connected to any two
- the fiber jumpers are arranged in parallel on the fiber jumpers of the two ports, so that the fibers are connected to the two ends of the fiber jumper respectively.
- An optical signal is generated at one port and sent to the other port through the fiber.
- the optical signal is detected by the other port.
- the optical paths of different fiber jumpers are independent of each other, there will be no interference signals between the optical paths in the detection process, and the detection process is safer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Description
跳纤连接状态检测方法、 装置及系统 技术领域
本发明实施例涉及通信技术, 特别涉及一种跳纤连接状态检测方法、 装置 及系统。
背景技术
光纤接入 ( FTTX )技术主要用于网络光纤化, 范围从区域电信机房的局端 设备到用户终端设备。 目前 FTTX运营商机房的光纤配线架 ( Opt i ca l Di s tr ibut ion Frame;以下简称: 0DF )用于光纤通信系统中局端主干光缆的分 配, 通过 0DF可方便地实现光纤线路的连接、 分配和调度。 目前 0DF的操作及维 护主要由人工完成。 但由于 0DF上的光跳纤数量庞大, 对光跳纤操作之后的数 据记录更新不及时,或者对光跳纤的操作未授权或其他人为错误等造成的错误 连接及插拔等原因都会使对光跳纤的操作引入错误。而这些对光跳纤的错误操 作会进一步导致无法快速找到待连接的两个端口,无法实时获知光跳纤的连接 状态,数据库的端口连接记录无法实时自动更新以及无法实时获得准确的告警 信息和进行故障排除等问题。
现有技术的一种光跳纤检测方法, 在任意两个被连接的端口上分别增加两 个电连接端口, 光跳纤两端的插头上分别增加与两个端口电连接对应的插针, 且两个端口之间的插针电连接。通过检测装置检测两个端口与光跳纤组成的环 路是否闭合, 进而可以判断两个端口是否连接。
在实现本发明过程中, 发明人发现现有技术中至少存在如下问题: 由于每 根跳纤两端的插头与两个端口电连接 , 且两个端口之间电连接。 当 0DF架上有 多根跳纤时, 多根跳纤间通过电磁场耦合会千扰其他跳纤间的信号检测; 插头 与端口的电连接易出现打火现象, 使检测过程不安全。 且多次插拔跳纤, 容易 产生磨损, 影响电接触的可靠性。
发明内容
本发明实施例提供一种跳纤连接状态检测方法、 装置及系统, 用以解决现 有技术中检测过程不安全及易产生千扰信号的问题。
一方面, 本发明实施例提供了一种跳纤连接状态的信号产生方法, 包括: 生成与第一端口对应的光信号;
通过第一光纤将所述光信号发送至第二端口, 所述第一光纤连接跳纤的两 端, 所述跳纤的两端分别连接所述第一端口和所述第二端口。
本发明实施例还提供了一种跳纤连接状态检测方法, 包括:
根据是否接收到第一端口通过第一光纤发送至第二端口的光信号判断所 述第二端口与所述第一端口的连接状态,所述跳纤的两端分别连接所述第一端 口和所述第二端口;
若接收到所述光信号 , 则根据所述光信号获取所述第一端口对应的端口标 识。
另一方面,本发明实施例提供了一种跳纤连接状态的信号产生装置, 包括: 生成模块, 用于生成与第一端口对应的光信号;
发送模块, 用于通过第一光纤将所述光信号发送至第二端口, 所述第一光 纤连接跳纤的两端, 所述跳纤的两端分别连接所述第一端口和所述第二端口。
本发明实施例还提供了一种跳纤连接状态检测装置, 包括:
判断模块, 用于判断是否接收到第一端口通过第一光纤发送至第二端口的 光信号, 所述第一光纤连接跳纤的两端, 所述跳纤的两端分别连接所述第一端 口和所述第二端口;
第一获取模块, 用于根据所述判断模块的判断结果获取所述第二端口与所 述第一端口的连接状态;
第二获取模块, 用于若所述判断模块判断出接收到所述光信号, 则根据所 述光信号获取所述第一端口对应的端口标识。
本发明实施例又提供了一种跳纤连接状态检测系统, 包括:
信号产生装置, 用于生成与第一端口对应的光信号, 并通过第一光纤将所 述光信号发送至第二端口, 所述第一光纤连接跳纤的两端, 所述跳纤的两端分 别连接所述第一端口和所述第二端口;
检测装置, 用于根据是否接收到第一端口通过第一光纤发送至第二端口的 光信号判断所述第二端口与所述第一端口的连接状态, 若接收到所述光信号, 则根据所述光信号获取所述第一端口对应的端口标识。
本发明实施例提供的跳纤连接状态检测方法、 装置及系统, 在连接任意两 个端口的跳纤上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口 处产生光信号并通过光纤发送至另一个端口,通过另一个端口处接收光信号的
情况检测发送光信号的端口标识以及这两个端口的连接状态。不同跳纤的光路 相互独立, 检测过程不会出现光路间的千扰信号, 并且使检测过程更加安全。 同时, 能够对每个端口的连接状态进行实时的更新, 方便对端口的错误操作进 行相应处理。
附图说明
图 1为本发明一个实施例提供的跳纤连接状态的信号产生方法流程图; 图 2为本发明另一个实施例提供的跳纤连接状态的信号产生方法流程图; 图 3为本发明一个实施例提供的跳纤连接状态检测方法流程图;
图 4为本发明另一个实施例提供的跳纤连接状态检测方法流程图; 图 5为本发明一个实施例提供的跳纤连接状态的信号产生装置结构示意 图;
图 6为本发明另一个实施例提供的跳纤连接状态的信号产生装置结构示意 图;
图 7为本发明一个实施例提供的跳纤连接状态检测装置结构示意图; 图 8为本发明另一个实施例提供的跳纤连接状态检测装置结构示意图; 图 9所示为本发明实施例采用 TS555的检测跳纤连接状态的电路图; 图 10为本发明一个实施例提供的跳纤连接状态检测系统结构示意图。
具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。
图 1为本发明一个实施例提供的跳纤连接状态的信号产生方法流程图, 如 图 1所示, 该方法包括:
5101、 生成与第一端口对应的光信号;
5102、通过第一光纤将光信号发送至第二端口,第一光纤连接跳纤的两端, 跳纤的两端分别连接第一端口和第二端口。
具体的, 第一端口和第二端口为 FTTX运营商机房的 0DF上连接的任意两个 端口, 第一端口和第二端口之间通过两端分别带插头的跳纤连接,检测第一端 口和第二端口之间的连接情况即为检测跳纤两端的插头与第一端口和第二端 口的连接情况。可以在跳纤上增加传递检测信号的第一光纤,该第一光纤可以 为 (Plas t ic Opt ica l Fiber; 以下简称: P0F ), 当然也可以为其他类型大数 值孔径的光纤以利于光耦合, 例如光晶体或聚合物等, 还可以为聚氯乙烯
( Polyvinylchlor ide; 以下筒称: PVC )光纤等特种光纤。 第一光纤的长度可 以才艮据跳纤的长度设置,其位置与跳纤平行放置, 第一光纤的两端分别固定在 跳纤的两端插头上。这样,从第一端口经由第一光纤发送至第二端口的光信号, 若可以被第二端口接收, 则可以认为第一端口与第二端口处于连接状态。若第 二端口没有接收到第一端口经由第一光纤发送至第二端口的光信号,则说明第 一端口与第二端口之间处于断开状态。其中, 由于选用第一光纤作为传递检测 信号的路径, 则检测信号为光信号。与第一端口对应的光信号可以根据一定的 规则生成, 该信号用以使第一端口区别于其他端口, 第二端口若接收到该光信 号后, 可以根据光信号的生成规则检测到目前与第二端口连接的是哪一个端 口。
本发明实施例提供的跳纤连接状态的检测方法, 在连接任意两个端口的跳 纤上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信 号并通过光纤发送至另一个端口 ,可以通过对另一个端口处接收光信号的情况 检测这两个端口的连接状态。 不同跳纤的光路相互独立,检测过程不会出现光 路间的干扰信号, 并且使检测过程更加安全。
图 2为本发明另一个实施例提供的跳纤连接状态的信号产生方法流程图 , 如图 2所示, 该方法包括:
5201、 生成第一端口的标识电信号;
5202、 将标识电信号转换成光信号;
S203、通过第一光纤将光信号发送至第二端口,第一光纤连接跳纤的两端, 跳纤的两端分别连接第一端口和第二端口。
在上一实施例的基 上, 由于电信号的生成较为容易, 可以通过逻辑器件 为每个端口生成区别于其他端口的标识( ident if icat ion; 以下简称: ID )电 信号, 再通过一些光电转换器件, 例如发光二极管 (Light Emi t t ing Diode; 以下筒称: LED )等将 ID电信号转换成光信号。 从第一端口经由第一光纤发送 至第二端口的光信号, 若可以被第二端口接收, 则可以认为第一端口与第二端 口处于连接状态 ,并且可以根据光信号的生成规则检测目前与第二端口连接的 是哪一个端口。若第二端口没有接收到第一端口经由第一光纤发送至第二端口 的光信号 , 则说明第一端口与第二端口之间处于断开状态。
本发明实施例提供的跳纤连接状态的检测方法, 在连接任意两个端口的跳
纤上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信 号并通过光纤发送至另一个端口,可以通过对另一个端口处接收光信号的情况 检测这两个端口的连接状态。 不同跳纤的光路相互独立,检测过程不会出现光 路间的千扰信号, 并且使检测过程更加安全。
图 3为本发明一个实施例提供的跳纤连接状态检测方法流程图 , 如图 3所 示, 该方法包括:
S301、 根据是否接收到第一端口通过第一光纤发送至第二端口的光信号判 断第二端口与第一端口的连接状态第一光纤连接跳纤的两端,跳纤的两端分别 连接第一端口和第二端口;
S302、 若接收到光信号, 则根据光信号获取第一端口对应的端口标识。 具体的, 第一端口和第二端口为 FTTX运营商机房的 0DF上连接的任意两个 端口, 第一端口和第二端口之间通过两端分别带插头的跳纤连接, 为了测试跳 纤两端的插头与第一端口和第二端口的连接情况,可以在跳纤上增加传递检测 信号的第一光纤, 该第一光纤可以为 P0F, 当然也可以为其他类型大数值孔径 的光纤。 第一光纤的长度可以根据跳纤的长度设置, 其位置与跳纤平行放置, 第一光纤的两端分别固定在跳纤的两端插头上。第一端口经由第一光纤将与第 一端口对应的光信号发送至第二端口, 若第二端口能够接收到该光信号, 则第 一端口与第二端口处于连接状态 ,由于该光信号为第一端口区别于其他端口的 光信号, 因此, 可以根据光信号的生成规则识别出第一端口的端口标识, 即可 以得知目前与第二端口连接的是哪一个端口。
本发明实施例提供的跳纤连接状态检测方法, 在连接任意两个端口的跳纤 上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信号 并通过光纤发送至另一个端口,通过另一个端口处接收光信号的情况检测发送 光信号的端口标识以及这两个端口的连接状态。 不同跳纤的光路相互独立,检 测过程不会出现光路间的千扰信号, 并且使检测过程更加安全。
图 4为本发明另一个实施例提供的跳纤连接状态检测方法流程图 , 如图 4所 示, 该方法包括:
S401、 根据是否接收到第一端口通过第一光纤发送至第二端口的光信号判 断第二端口与第一端口的连接状态, 第一光纤连接跳纤的两端,跳纤的两端分 别连接第一端口和第二端口;
5402、 若接收到光信号, 则将光信号转换成电信号;
5403、 对电信号的频率进行检测, 并才艮据频率识别第一端口对应的端口标 识及第二端口与第一端口的连接质量;
S404、 对第一端口对应的端口标识及第二端口与第一端口的连接状态进行 记录;
S405、 根据第二端口与第一端口的连接状态和 /或连接质量产生报警信号。 在上一实施例的基础上, 可以通过逻辑器件为第一端口生成区别于其他端 口的 ID电信号。 然后通过一些光电转换器件, 例如 LED等将 ID电信号转换成光 信号。若第二端口可以接收到第一端口发送的光信号, 则说明第二端口与第一 端口处于连接状态; 若第二端口无法接收到第一端口发送的光信号, 则第二端 口与第一端口处于断开状态。进一步的, 当第二端口接收到第一端口经由第一 光纤发送的光信号以后, 首先将接收到的光信号转换成电信号。 具体的, 由于 转换后得到的电信号很微弱, 无法直接对其进行检测。 因此, 可以根据脉冲编 码调制原理,将弱的电信号转换成相应的脉冲信号。再对该脉冲信号进行检测, 具体检测可分为两步: 首先判别对端发送的信号是 0还是 1。若对端发送的信号 是 0, 则不输出脉冲。 若对端发送的信号是 1 , 则输出对应的脉冲个数。 将输出 的脉冲个数与检测门限对比, 可判别出对端输出 1 , 同时根据脉冲数可识别连 接的质量, 即脉冲个数多的, 相应连接质量较好。 然后检测对端发送的 ID电信 号对应的端口号。根据检测窗内检测的 0和 1的个数和位置,识别出发送端的端 口标识, 即端口号, 从而可以判别出被连接的两个端口。 并且依据检测出的脉 冲数得出跳纤连接第一端口与第二端口的质量。由于 0DF中连接有大量的跳纤, 而对跳纤进行插拔或更换连接端口的操作以后可能没有及时记录,因此可以对 每个端口进行实时检测, 进而实时监控出与每个端口所连接端口的变化情况, 在检测之后可以记录对端口目前连接的端口对应的端口标识进行记录或更新, 同时记录端口之间连接的状态以及连接的质量情况。若出现端口连接松动或脱 落等情况可以及时发出报警信息, 提示管理人员及时进行相应处理。
本发明实施例提供的跳纤连接状态检测方法, 在连接任意两个端口的跳纤 上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信号 并通过光纤发送至另一个端口,通过另一个端口处接收光信号的情况检测发送 光信号的端口标识以及这两个端口的连接状态。 不同跳纤的光路互相独立,检
测过程不会出现光路间的千扰信号, 并且使检测过程更加安全。 同时, 能够对 每个端口的连接状态进行实时的更新, 方便对端口的错误操作进行相应处理。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步驟可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
图 5为本发明一个实施例提供的跳纤连接状态的信号产生装置结构示意 图, 如图 5所示, 该装置包括: 生成模块 51和发送模块 52; 其中, 生成模块 51 用于生成与第一端口对应的光信号;发送模块 52用于通过第一光纤将光信号发 送至第二端口, 第一光纤连接跳纤的两端,跳纤的两端分别连接第一端口和第 二端口。
具体的 , 第一端口和第二端口为 FTTX运营商机房的 0DF上的任意两个端口, 第一端口和第二端口之间通过两端分别带插头的跳纤连接,为了测试跳纤两端 的插头与第一端口和第二端口的连接情况,可以在跳纤上增加传递检测信号的 第一光纤, 该第一光纤可以为 P0F, 当然也可以为其他类型大数值孔径的光纤。 第一光纤的长度可以根据跳纤的长度设置, 其位置与跳纤平行放置, 第一光纤 的两端分别固定在跳纤的两端插头上。该装置与第一端口之间也通过与第一光 纤相同材质的光纤连接, 例如 P0F。 值得注意的是, 该装置与第一端口之间的 光纤与第一光纤的截面需要对准放置, 这样可以确保该装置中的发送模块 52 发送的光信号能够顺利进入第一光纤。 另外, 为了保证发送模块 52发送的光信 号能够最大限度地进入第一光纤,减少光信号发送过程中的损耗, 该装置与第 一端口之间的截面以及第一光纤的截面要平整,若截面不平整会影响第二端口 接收到的光信号的质量,从而影响对第一端口和第二端口连接状态的判断。 首 先, 生成模块 51生成与第一端口对应的光信号, 该光信号通过发送模块 52经由 第一光纤发送至第二端口, 若该信号可以被第二端口接收, 则第一端口与第二 端口处于连接状态。若第二端口没有接收到第一端口经由第一光纤发送至第二 端口的光信号, 则说明第一端口与第二端口之间处于断开状态。 其中, 与第一 端口对应的光信号可以根据一定的规则生成,即可以为第一端口生成用于区别 于其他端口的光信号, 第二端口若接收到第一端口发送的光信号, 可以根据光 信号的生成规则判断目前与第二端口连接的是哪一个端口。
本发明实施例提供的跳纤连接状态检测装置, 在连接任意两个端口的跳纤 上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信号 并通过光纤发送至另一个端口,通过另一个端口处接收光信号的情况检测发送 光信号的端口标识以及这两个端口的连接状态。 不同跳纤的光路相互独立 ,检 测过程不会出现光路间的千扰信号, 并且使检测过程更加安全。
图 6为本发明另一个实施例提供的跳纤连接状态的信号产生装置结构示意 图, 如图 6所示, 该装置包括: 生成模块 51和发送模块 52; 生成模块 51还可以 包括: 获取单元 511和转换单元 512; 获取单元 51 1用于获取与第一端口对应的 标识电信号; 转换单元 512用于将标识电信号转换成光信号。
在上一实施例的基础上, 可以首先通过获取单元 511为每个端口生成区别 于其他端口的 ID电信号,再通过转换单元 512将 ID电信号转换成光信号。其中, 获取单元 511可以为一些逻辑器件,转换单元 512可以为光电转换器件,例如 LED 等。 可以根据第一光纤和转换单元 512的光特性来选择光信号的波长。 以第一 光纤为 P0F、 转换单元 512为 LED为例, 可以选用波长为 650謹的光作为光信号, 并采用获取单元 511的一个 10管脚输出的方波直接驱动中心波长为 650謹的 LED, 该方波的频率小于 LED的截止频率, 该频率一般可以为几千赫。 发送模块 52将光信号经由第一光纤发送至第二端口, 若可以被第二端口接收, 则可以认 为第一端口与第二端口处于连接状态,并且可以根据光信号的生成规则检测目 前与第二端口连接的是哪一个端口。若第二端口没有接收到第一端口经由第一 光纤发送至第二端口的光信号, 则说明第一端口与第二端口之间处于断开状 态。
本发明实施例提供的跳纤连接状态检测装置, 在连接任意两个端口的跳纤 上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信号 并通过光纤发送至另一个端口 ,通过另一个端口处接收光信号的情况检测发送 光信号的端口标识以及这两个端口的连接状态。 不同跳纤的光路相互独立,检 测过程不会出现光路间的千扰信号 , 并且使检测过程更加安全。
图 7为本发明又一个实施例提供的跳纤连接状态检测装置结构示意图, 如 图 7所示, 该装置包括: 接收模块 61、 判断模块 62、 第一获取模块 63和第二获 取模块 64; 其中,接收模块 61用于接收第一端口通过第一光纤发送至第二端口 的光信号, 第一光纤连接跳纤的两端,跳纤的两端分别连接第一端口和第二端
口; 判断模块 62用于判断接收模块 61是否接收到光信号; 第一获取模块 63用于 根据判断模块 62的判断结果获取第二端口与第一端口的连接状态;第二获取模 块 64用于若接收模块 61接收到光信号,则根据光信号获取第一端口对应的端口 标识。
具体的, 第一端口和第二端口为 FTTX运营商机房的 0DF上连接的任意两个 端口, 第一端口和第二端口之间通过两端分别带插头的跳纤连接, 为了测试跳 纤两端的插头与第一端口和第二端口的连接情况,可以在跳纤上增加传递检测 信号的第一光纤, 该第一光纤可以为 P0F, 当然也可以为其他类型的大数值孔 径的光纤。第一光纤的长度可以根据跳纤的长度设置,其位置与跳纤平行放置, 第一光纤的两端分别固定在跳纤的两端插头上。该装置与第二端口之间的通过 与第一光纤相同材质的光纤连接, 例如 P0F。 该装置与第二端口之间的光纤与 第一光纤的截面需要对准放置 ,这样可以确保该装置中的接收模块 61能够通过 第一光纤顺利接收到光信号。 另外, 为了减少光信号在接收过程中的损耗, 该 装置与第二端口之间的截面以及第一光纤的截面要平整,若截面不平整会影响 第二端口接收到的光信号的质量,从而影响对第一端口和第二端口连接状态的 判断。 第一端口经由第一光纤将与第一端口对应的光信号发送至第二端口, 若 判断模块 62判断出接收模块 61接收到该光信号 ,则第一获取模块 63可以获取到 第一端口与第二端口处于连接状态;若判断模块 62判断出接收模块 61无法接收 到该光信号, 则第一获取模块 63可以获取到第一端口与第二端口处于断开状 态。 另外, 若接收模块 61能够接收到该光信号, 由于该光信号为第一端口区别 于其他端口的光信号, 因此, 第二获取模块 64可以根据光信号的生成规则识别 出第一端口的端口标识, 即端口号, 进而可以得知目前与第二端口连接的是哪 一个端口。
本发明实施例提供的跳纤连接状态检测装置, 在连接任意两个端口的跳纤 上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信号 并通过光纤发送至另一个端口,通过另一个端口处接收光信号的情况检测发送 光信号的端口标识以及这两个端口的连接状态。 不同跳纤的光路相互独立,检 测过程不会出现光路间的千扰信号, 并且使检测过程更加安全。
图 8为本发明再一个实施例提供的跳纤连接状态检测装置结构示意图, 如 图 8所示, 该装置包括: 接收模块 61、 判断模块 62、 第一获取模块 63和第二获
取模块 64; 进一步的, 该装置还可以包括: 记录模块 65、 第三获取模块 66和报 警模块 67;记录模块 65用于对第一获取模块 63获取到的第一端口的端口标识进 行记录, 若接收模块 61接收到光信号, 则对第二获取模块 64获取到的第一端口 对应的端口标识进行记录; 第二获取模块 64可以包括光电转换单元 641、 检测 单元 642和识别单元 643; 光电转换单元 641用于将光信号转换成电信号; 检测 单元 642用于对电信号的频率进行检测;识别单元 643用于 ^据频率识别第一端 口对应的端口标识; 第三获取模块 66 , 用于根据检测单元 642检测出的频率识 别第二端口与第一端口的连接质量;报警模块 67用于根据第一获取模块 63获取 到的第二端口与第一端口的连接状态和 /或第三获取模块 66获取到的第二端口 与第一端口的连接质量产生报警信号。
在上一实施例的基础上, 由于可以通过逻辑器件为第一端口生成区别于其 他端口的 ID电信号。 然后通过一些光电转换器件, 例如 LED等将 ID电信号转换 成光信号。若判断模块 62判断出接收模块 61接收到该光信号, 则第一获取模块 63可以获取到第二端口与第一端口处于连接状态;若判断模块 62判断出接收模 块 61无法接收到第一端口发送的光信号 ,则第一获取模块 63可以获取到第二端 口与第一端口处于断开状态。进一步的, 当接收模块 61接收到第一端口经由第 一光纤发送的光信号以后, 首先通过光电转换单元 641将接收到的光信号转换 成电信号,再通过检测单元 642检测和识别单元 643识别发送光信号的端口对应 的端口标识以及第二端口与第一端口之间的连接质量。其中, 根据 P0F的光特 性和 PD的光特性可以选用波长为 65 Onm的光作为光信号。 接收模块 61接收到的 光信号经过光电转换单元 641的转换后, 其电压只有 2百亳伏左右。这样微弱的 电信号检测, 通常可以先对其进行信号放大, 再采用模数转换器件进行转换。 但此检测方案成本高。 另一种可行的方法是采用脉冲编码调制的原理,将弱的 电信号转换为脉冲个数的变化,通过检测脉冲的个数, 达到检测弱电信号的目 的。 检测单元 642可以采用一些集成芯片, 例如 TS555芯片等等, 如图 9所示为 本发明实施例采用 TS555的检测跳纤连接状态的电路图。 并且通过电信号的脉 冲数判断跳纤与第一端口或第二端口的连接质量。 由于 0DF中连接有大量的跳 纤, 而对跳纤进行插拔或更换连接端口的操作以后可能没有及时记录, 因此可 以对每个端口进行实时检测 ,进而实时监控出与每个端口所连接端口的变化情 况,在检测之后可以通过记录模块 65记录对端口目前连接的端口对应的端口标
识进行记录或更新, 同时记录端口之间连接的状态以及连接的质量情况。若出 现端口连接松动或脱落等情况可以及时发出报警信息,提示管理人员及时进行 相应处理。
本发明实施例提供的跳纤连接状态检测装置, 在连接任意两个端口的跳纤 上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口处产生光信号 并通过光纤发送至另一个端口 ,通过另一个端口处接收光信号的情况检测发送 光信号的端口标识以及这两个端口的连接状态。 不同跳纤的光路相互独立 ,检 测过程不会出现光路间的千扰信号, 并且使检测过程更加安全。 同时, 能够对 每个端口的连接状态进行实时的更新, 方便对端口的错误操作进行相应处理。
图 10为本发明一个实施例提供的跳纤连接状态检测系统结构示意图, 如图
10所示, 该系统包括: 信号产生装置 1和检测装置 2; 其中, 信号产生装置 1用 于生成与第一端口对应的光信号, 并通过第一光纤将光信号发送至第二端口, 第一光纤连接跳纤的两端,跳纤的两端分别连接第一端口和第二端口;检测装 置 2用于根据是否接收到第一端口通过第一光纤发送至第二端口的光信号判断 所述第二端口与所述第一端口的连接状态, 并若接收到光信号, 则根据光信号 获取第一端口对应的端口标识。
为了对 0DF和局域网端的每个端口进行实时检测 , 实时监控每个端口与其 他端口的连接情况, 可以将该系统与每个端口相连接, 该系统与每个端口之间 可以采用第一光纤连接, 该第一光纤可以为 P0F , 也可以为其他类型大数值孔 径的光纤。 这样, 在 0DF和局域网端之间连接的任意两个端口上都分别连接有 跳纤连接状态检测系统 , 令 0DF和局域网端之间连接的任意两个端口分别为第 一端口和第二端口 , 第一端口和第二端口分别连接有信号产生装置 1和检测装 置 2。 若需要对第一端口和第二端口之间的连接状态进行检测, 首先采用信号 产生装置 1生成与第一端口对应的光信号, 并将该信号通过跳纤发送至第二端 口, 若与第二端口连接的检测装置 2接收到该光信号, 则检测装置 2可以进一步 通过该光信号识别出与第二端口连接的第一端口的端口标识, 即端口号, 获知 第二端口正处于与哪个端口连接的状态, 若检测装置 2无法接收到该光信号, 则第一端口和第二端口之间处于断开状态。 同样, 对于任何一个端口, 都可以 通过接收到的光信号检测出该端口与哪个端口处于连接状态。
本发明实施例提供的跳纤连接状态检测方法、 装置及系统, 在连接任意两
个端口的跳纤上平行设置光纤,使光纤分别与跳纤两端连接,在其中一个端口 处产生光信号并通过光纤发送至另一个端口,通过另一个端口处接收光信号的 情况检测发送光信号的端口标识以及这两个端口的连接状态。不同跳纤的光路 相互独立, 检测过程不会出现光路间的千扰信号, 并且使检测过程更加安全。
以上对本发明实施例进行了详细介绍, 本文中应用了具体个例对本发明的 原理及实施方式进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及 其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体 实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为 对本发明的限制。
Claims
1、 一种跳纤连接状态的信号产生方法, 其特征在于, 包括:
生成与第一端口对应的光信号;
通过第一光纤将所述光信号发送至第二端口, 所述第一光纤连接跳纤的两 端, 所述跳纤的两端分别连接所述第一端口和所述第二端口。
2、 根据权利要求 1所述的方法, 其特征在于, 所述生成与第一端口对应的 光信号包括:
生成所述第一端口的标识电信号;
将所述标识电信号转换成所述光信号。
3、 一种跳纤连接状态的信号产生装置, 其特征在于, 包括:
生成模块, 用于生成与第一端口对应的光信号;
发送模块, 用于通过第一光纤将所述光信号发送至第二端口, 所述第一光 纤连接跳纤的两端, 所述跳纤的两端分别连接所述第一端口和所述第二端口。
4、 根据权利要求 3所述的装置, 其特征在于, 所述生成模块包括: 生成单元, 用于生成所述第一端口的标识电信号;
转换单元, 用于将所述标识电信号转换成所述光信号。
5、 一种跳纤连接状态检测方法, 其特征在于, 包括:
根据是否接收到第一端口通过第一光纤发送至第二端口的光信号判断所 述第二端口与所述第一端口的连接状态, 所述第一光纤连接跳纤的两端, 所述 跳纤的两端分别连接所述第一端口和所述第二端口;
若接收到所述光信号 , 则根据所述光信号获取所述第一端口对应的端口标 识。
6、 根据权利要求 5所述的方法, 其特征在于, 还包括:
对所述第二端口与所述第一端口的连接状态进行记录; 若接收到所述光信 号, 则对所述第一端口对应的端口标识进行记录。
7、 根据权利要求 5或 6所述的方法, 其特征在于, 所述根据所述光信号获 取所述第一端口对应的端口标识包括:
将所述光信号转换成电信号;
对所述电信号的频率进行检测, 并才艮据所述频率识别所述第一端口对应的 端口标识。
8、 根据权利要求 7所述的方法, 其特征在于, 还包括:
根据所述频率识别所述第二端口与所述第一端口的连接质量。
9、 根据权利要求 8所述的方法, 其特征在于, 还包括:
根据所述第二端口与所述第一端口的连接状态和 /或所述第二端口与所述 第一端口的连接质量产生报警信号。
10、 一种跳纤连接状态检测装置, 其特征在于, 包括:
接收模块, 用于接收第一端口通过第一光纤发送至第二端口的光信号, 所 述第一光纤连接跳纤的两端,所述跳纤的两端分别连接所述第一端口和所述第 二端口;
判断模块, 用于判断所述接收模块是否接收到所述光信号;
第一获取模块, 用于根据所述判断模块的判断结果获取所述第二端口与所 述第一端口的连接状态;
第二获取模块, 用于若所述接收模块接收到所述光信号, 则根据所述光信 号获取所述第一端口对应的端口标识。
11、 根据权利要求 10所述的装置, 其特征在于, 还包括:
记录模块, 用于对所述第一获取模块获取到的所述第二端口与所述第一端 口的连接状态进行记录; 若所述接收模块接收到所述光信号, 则对所述第二获 取模块获取到的所述第一端口对应的端口标识进行记录。
12、 根据权利要求 10或 11所述的装置, 其特征在于, 所述第二获取模块包 括:
光电转换单元, 用于将所述光信号转换成电信号;
检测单元, 用于对所述电信号的频率进行检测;
识别单元, 用于才艮据所述频率识别所述第一端口对应的端口标识。
13、 根据权利要求 12所述的装置, 其特征在于, 还包括: 口与所述第一端口的连接质量。
14、 根据权利要求 13所述的装置, 其特征在于, 还包括:
报警模块, 用于根据所述第一获取模块获取到的所述第二端口与所述第一 端口的连接状态和 /或所述第三获取模块获取到的所述第二端口与所述第一端 口的连接质量产生报警信号。
15、 一种跳纤连接状态检测系统, 其特征在于, 包括:
信号产生装置, 用于生成与第一端口对应的光信号, 并通过第一光纤将所 述光信号发送至第二端口, 所述第一光纤连接跳纤的两端, 所述跳纤的两端分 别连接所述第一端口和所述第二端口;
检测装置, 用于根据是否接收到第一端口通过第一光纤发送至第二端口的 光信号判断所述第二端口与所述第一端口的连接状态, 若接收到所述光信号, 则根据所述光信号获取所述第一端口对应的端口标识。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES10811268T ES2530945T3 (es) | 2009-08-25 | 2010-08-25 | Método para detectar el estado de conexión de un puente de fibras ópticas |
EP10811268.1A EP2472746B1 (en) | 2009-08-25 | 2010-08-25 | Method for detecting the connection state of fiber optic jumper |
US13/301,469 US8965200B2 (en) | 2009-08-25 | 2011-11-21 | Method, apparatus and system for detecting connection status of optical fiber jumper |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910091786.1 | 2009-08-25 | ||
CN 200910091786 CN101995612B (zh) | 2009-08-25 | 2009-08-25 | 跳纤连接状态检测方法、装置及系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/301,469 Continuation US8965200B2 (en) | 2009-08-25 | 2011-11-21 | Method, apparatus and system for detecting connection status of optical fiber jumper |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011023108A1 true WO2011023108A1 (zh) | 2011-03-03 |
Family
ID=43627267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/076343 WO2011023108A1 (zh) | 2009-08-25 | 2010-08-25 | 跳纤连接状态检测方法、装置及系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8965200B2 (zh) |
EP (1) | EP2472746B1 (zh) |
CN (1) | CN101995612B (zh) |
ES (1) | ES2530945T3 (zh) |
WO (1) | WO2011023108A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102684784B (zh) * | 2012-05-30 | 2015-02-25 | 华为技术有限公司 | 跳纤连接检测方法和跳纤连接检测装置 |
CN103297120B (zh) * | 2013-05-13 | 2016-04-06 | 成都优博创技术有限公司 | 一种检测光纤跳纤是否正确插入光模块的方法 |
CN104062714B (zh) * | 2014-06-18 | 2015-08-12 | 浙江一舟电子科技股份有限公司 | 一种光纤电子配线架端口检测方法 |
CN105515672A (zh) * | 2014-09-23 | 2016-04-20 | 华为技术有限公司 | 光纤机柜资源梳理装置、方法及光纤机柜 |
CN105511025B (zh) | 2014-10-20 | 2018-08-24 | 南京中兴新软件有限责任公司 | 石英塑料复合光纤组件、识别方法及装置 |
CN105703833A (zh) * | 2014-11-26 | 2016-06-22 | 华为技术有限公司 | 光纤接入系统资源梳理装置、方法及光纤接入系统 |
CN107493135B (zh) * | 2016-06-12 | 2020-02-14 | 中兴通讯股份有限公司 | 光纤跳线的配对系统、设备、方法及装置 |
CN110617946B (zh) * | 2018-06-19 | 2021-12-28 | 通号工程局集团电气工程有限公司 | 光缆接续质量快速检测装置 |
CN109212691B (zh) * | 2018-10-30 | 2024-03-15 | 菲尼萨光电通讯(上海)有限公司 | 具有互联和故障指示功能的光通信模块 |
CN109951226A (zh) * | 2019-04-04 | 2019-06-28 | 南京杰德科技有限公司 | 光纤另一端光设备连接状态检测装置及方法 |
CN110377553B (zh) * | 2019-06-26 | 2021-02-09 | 苏州浪潮智能科技有限公司 | 一种检测硬盘背板与主板port对应关系的方法及装置 |
CN116582176B (zh) * | 2023-07-13 | 2023-09-26 | 天津瑞利通科技有限公司 | 光纤自动配线方法、装置、电子设备和可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6554485B1 (en) * | 2000-09-11 | 2003-04-29 | Corning Cable Systems Llc | Translucent dust cap and associated method for testing the continuity of an optical fiber jumper |
CN200997008Y (zh) * | 2006-12-29 | 2007-12-26 | 江苏通光光电子有限公司 | 含有金属检测线的软光缆跳线 |
CN201035186Y (zh) * | 2006-12-29 | 2008-03-12 | 江苏通光信息有限公司 | 具有配线编码识别功能的配线架 |
CN201039187Y (zh) * | 2007-03-22 | 2008-03-19 | 飞博创(成都)科技有限公司 | 光收发器检测装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5353367A (en) * | 1993-11-29 | 1994-10-04 | Northern Telecom Limited | Distribution frame and optical connector holder combination |
CN1142497C (zh) | 1999-04-06 | 2004-03-17 | 开博索福公司 | 监测数据端口连接状态的系统和设备 |
DE10041438B4 (de) * | 2000-08-23 | 2014-10-30 | Ccs Technology, Inc. | Anordnung zum Kuppeln einer Mehrzahl erster Lichtwellenleiter-Fasern mit einer Mehrzahl zweiter Lichtwellenleiter-Fasern |
DE10126351A1 (de) * | 2001-05-30 | 2002-12-12 | Ccs Technology Inc | Optische Verteilereinrichtung und Lichtwellenleiter-Verbindungskabel |
US7120347B2 (en) * | 2004-01-27 | 2006-10-10 | Corning Cable Systems Llc | Multi-port optical connection terminal |
WO2006010326A1 (fr) * | 2004-07-26 | 2006-02-02 | Peijun Xu | Dispositif et procede de bobinage d'une fibre optique |
CN200959639Y (zh) * | 2006-09-29 | 2007-10-10 | 刘大川 | 户外积木化组合多功能通信集成箱 |
US7547150B2 (en) * | 2007-03-09 | 2009-06-16 | Corning Cable Systems, Llc | Optically addressed RFID elements |
CN201047880Y (zh) * | 2007-06-14 | 2008-04-16 | 常州太平电器有限公司 | 用于光纤配线架上的一体化盘组件 |
US8184970B2 (en) * | 2008-07-31 | 2012-05-22 | Finisar Corporation | Optical transceiver with LED link information indicator |
US8687966B2 (en) * | 2008-08-28 | 2014-04-01 | Finisar Corporation | Fiber optic transceiver module with optical diagnostic data output |
-
2009
- 2009-08-25 CN CN 200910091786 patent/CN101995612B/zh active Active
-
2010
- 2010-08-25 WO PCT/CN2010/076343 patent/WO2011023108A1/zh active Application Filing
- 2010-08-25 ES ES10811268T patent/ES2530945T3/es active Active
- 2010-08-25 EP EP10811268.1A patent/EP2472746B1/en active Active
-
2011
- 2011-11-21 US US13/301,469 patent/US8965200B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6554485B1 (en) * | 2000-09-11 | 2003-04-29 | Corning Cable Systems Llc | Translucent dust cap and associated method for testing the continuity of an optical fiber jumper |
CN200997008Y (zh) * | 2006-12-29 | 2007-12-26 | 江苏通光光电子有限公司 | 含有金属检测线的软光缆跳线 |
CN201035186Y (zh) * | 2006-12-29 | 2008-03-12 | 江苏通光信息有限公司 | 具有配线编码识别功能的配线架 |
CN201039187Y (zh) * | 2007-03-22 | 2008-03-19 | 飞博创(成都)科技有限公司 | 光收发器检测装置 |
Also Published As
Publication number | Publication date |
---|---|
ES2530945T3 (es) | 2015-03-09 |
US8965200B2 (en) | 2015-02-24 |
EP2472746A4 (en) | 2012-08-29 |
EP2472746A1 (en) | 2012-07-04 |
US20120063767A1 (en) | 2012-03-15 |
EP2472746B1 (en) | 2014-12-03 |
CN101995612A (zh) | 2011-03-30 |
CN101995612B (zh) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011023108A1 (zh) | 跳纤连接状态检测方法、装置及系统 | |
US10361782B2 (en) | Cabling connectivity monitoring and verification | |
US9203512B2 (en) | Distinguishing light in single fiber transceivers | |
WO2017118149A1 (zh) | 快速收集光纤互连信息的方法及装置 | |
US9749009B2 (en) | Cable with field-writeable memory | |
CN105591770A (zh) | 无源光纤网络pon中故障类别的确定方法及装置 | |
CN105871604A (zh) | 一种光纤衰耗全程在线监测系统及监测方法 | |
WO2013181953A1 (zh) | 光纤配线方法、设备及系统 | |
CN116582180B (zh) | 光纤配线机器人的任务执行方法、装置、电子设备及介质 | |
CN103840879B (zh) | 一种光纤局向识别方法、装置和系统 | |
CN102611498A (zh) | 光纤标识的发送和接收方法及装置、光纤检测方法及装置 | |
US20220116109A1 (en) | Communication monitor method and communication monitor device | |
US11719890B2 (en) | Passive optical couplers having passive optical activity indicators and methods of operating the same | |
US11611394B1 (en) | Systems and methods for mapping optical connections in a fiber distribution hub of a passive optical network | |
CN109217916A (zh) | 一种光路全数据检测方法 | |
CN113110268A (zh) | 一种轨道交通控制网络的监测系统、数据采集设备及方法 | |
JP5064352B2 (ja) | 光通信ネットワークシステムおよびその通信方法 | |
WO2019242266A1 (zh) | 一种端口连接状态监测系统和方法 | |
US20110313692A1 (en) | Enhanced Intelligent Patch Panel Diagnostic Management | |
CN105337664A (zh) | 一种新型以太网通信回路监测装置 | |
US11350061B1 (en) | Systems and methods for collecting information regarding optical connections in a fiber distribution hub of a passive optical network | |
CN106506067B (zh) | 智能光纤配线装置 | |
CN112636826B (zh) | 具有oam功能的光模块的测试系统及测试方法 | |
CN220711490U (zh) | 一种光纤通断及节点环境实时监测装置 | |
CN209692769U (zh) | 一种针对odf终端光纤配线网络的智能监控管理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10811268 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010811268 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |