WO2011021399A1 - Preparation method for monosaccharide, disaccharide, and/or oligosaccharide - Google Patents

Preparation method for monosaccharide, disaccharide, and/or oligosaccharide Download PDF

Info

Publication number
WO2011021399A1
WO2011021399A1 PCT/JP2010/005141 JP2010005141W WO2011021399A1 WO 2011021399 A1 WO2011021399 A1 WO 2011021399A1 JP 2010005141 W JP2010005141 W JP 2010005141W WO 2011021399 A1 WO2011021399 A1 WO 2011021399A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
fatty acid
sugar
acid
polysaccharide
Prior art date
Application number
PCT/JP2010/005141
Other languages
French (fr)
Japanese (ja)
Inventor
泰司 山田
恵悟 花木
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2011021399A1 publication Critical patent/WO2011021399A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis

Definitions

  • the present invention relates to a method for producing polysaccharides, particularly monosaccharides, disaccharides, and / or oligosaccharides (hereinafter collectively referred to as “decomposed sugars”) from biomass.
  • Enzymatic saccharification is advantageous in that it can be hydrolyzed under mild conditions compared to acid saccharification and has a high saccharification rate. It is necessary to pre-process.
  • a sulfuric acid method, an organic solvent method, a hydrothermal treatment and the like have been studied.
  • Non-patent Document 1 a method in which a raw material mixture containing lignocellulosic biomass, a weak acid and water is treated under heating and pressure conditions and decomposed into monosaccharides (Patent Document 1); under high-temperature and high-pressure conditions in which oleic acid is added
  • Patent Document 1 a method for treating cellulose with oligosaccharide to obtain oligosaccharides, cellobiose, glucose and fructose
  • Patent Document 2 A method of using a mixture of a water-insoluble solvent and water and decomposing the pulverized powder of wood-based waste material in a supercritical state or a subcritical state in which both or one of the water-insoluble solvent and water is in a supercritical state (Patent Document 2) 3) etc. have been reported.
  • JP 2009-22239 A Japanese Patent Laid-Open No. 5-31000 JP 2007-31476 A
  • the present invention provides a method for producing monosaccharides, disaccharides and / or oligosaccharides, in which a polysaccharide is subjected to a heat treatment at 140 to 300 ° C. in the presence of a fatty acid having 6 to 12 carbon atoms and water.
  • FIG. 1 is a diagram illustrating an example of a flow reactor that performs heat treatment.
  • the present invention relates to a method capable of efficiently producing a decomposed sugar from a polysaccharide while suppressing excessive decomposition of the sugar.
  • the inventors of the present invention have intensively studied in view of the above-mentioned problems.
  • the polysaccharide is subjected to heat treatment in the presence of a fatty acid having 6 to 12 carbon atoms and water, thereby efficiently decomposing the sugar while suppressing excessive decomposition of the sugar. It was found that can be manufactured.
  • the present invention it is possible to efficiently produce a decomposed sugar while suppressing excessive decomposition of the sugar.
  • the method of the present invention can also be applied to biomass containing polysaccharides, and can be expected as a technique for improving the production efficiency of useful substances such as ethanol from biomass.
  • polysaccharide used in the present invention examples include cellulose, hemicellulose, xyloglucan, pectin, starch, mannan, glucomannan, galactomannan, chitin, chitosan, inulin, alginic acid, agar, fucoidan, laminarin, ⁇ -glucan, pullulan. Natural polysaccharides such as these or derivatives thereof. These can be used alone or in combination of two or more. Of these, cellulose, hemicellulose, chitin, and chitosan are preferable, and cellulose and hemicellulose are particularly preferable because they are inexpensive and can be converted into useful substances by fermentation production after decomposition.
  • the molecular weight of the polysaccharide used in the present invention is not particularly limited, but generally it is preferably 1,000 or more and 5,000,000 or less.
  • the raw material containing the said polysaccharide for example, biomass
  • Biomass is an organic resource derived from living organisms, excluding fossil resources.
  • the biomass include cellulose-based, starch-based, and saccharide-based biomass, and these can be used alone or in combination of two or more.
  • Cellulose biomass is mainly composed of cellulose, hemicellulose, and lignin.
  • cellulose hemicellulose
  • lignin For example, cotton, wood pulp, kenaf, hemp, small-diameter wood, thinned wood, sawdust, wood waste, waste paper, newspaper, wrapping paper, tissue paper Woody materials such as toilet paper and cardboard; plant biomass such as bagasse, switchgrass, elephant grass, rice straw and wheat straw.
  • starch-based biomass include rice, wheat, corn, and potato
  • examples of the saccharide-based biomass include sugar-based biomass such as sugar cane, sugar beet, seaweed, shrimp shell, and crab shell.
  • biomass When using biomass as the polysaccharide, it is preferable from the viewpoint of improving the decomposition rate to perform pretreatment such as drying, pulverization, shredding, etc. prior to heat treatment.
  • pretreatment such as drying, pulverization, shredding, etc. prior to heat treatment.
  • a ventilation type band dryer, a shelf type hot air dryer, etc. can be used for drying.
  • pulverization and chopping for example, a known rotating ball mill, planetary ball mill, disk mill, rod mill or the like can be used.
  • the method for heat-treating the polysaccharide is not particularly limited, and a known method can be applied.
  • a batch method, a semi-batch method, a flow reaction method and the like can be mentioned.
  • the flow-type reaction method is preferable in that the reaction time can be easily controlled.
  • the heat treatment of the polysaccharide is performed in the presence of a fatty acid having 6 to 12 carbon atoms and water.
  • a fatty acid having 6 to 12 carbon atoms include linear or branched saturated or unsaturated fatty acids.
  • a saturated fatty acid having 6 to 12 carbon atoms is preferable, and a saturated fatty acid having 6 to 10 carbon atoms is more preferable from the viewpoint of suppressing the excessive decomposition of sugar and improving the decomposition rate.
  • Specific examples of the fatty acid include caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid and the like. Of these, caprylic acid is preferable.
  • fatty acids having 6 or more carbon atoms are low in water solubility, they can be easily separated from the reaction solution, and on the other hand, the yield of sugar can be improved by using fatty acids having 12 or less carbon atoms. Fatty acids having a number of 12 or less are easy to handle because of their relatively low melting points.
  • the amount of the fatty acid having 6 to 12 carbon atoms used for the heat treatment is preferably 0.01 to 0.5 as a mass ratio with respect to water from the viewpoint of suppressing the excessive decomposition of sugar and improving the decomposition rate. 0.02-0.4, particularly 0.05-0.3 is preferred.
  • the water used in the case of heat processing will not be restrict
  • a water a tap water, distilled water, ion-exchange water, and purified water are illustrated.
  • the polysaccharide is preferably used after being dispersed in water to form a slurry.
  • the content of the polysaccharide in the water slurry is preferably 1 to 200 g / L, more preferably 5 to 150 g / L, and particularly preferably 8 to 100 g / L from the viewpoint of fluidity.
  • the polysaccharide content in the water slurry is preferably 1 to 400 g / L, more preferably 5 to 300 g / L, and particularly preferably 8 to 200 g / L.
  • the temperature of the heat treatment is 140 to 300 ° C., preferably 160 to 250 ° C., particularly preferably 180 to 230 ° C. from the viewpoint of suppressing the excessive decomposition of sugar and improving the decomposition rate.
  • the heating means include water vapor and electricity.
  • the pressure during the heat treatment is preferably set to be equal to or higher than the saturated vapor pressure of water, and is preferably 0.3 to 10 MPa, more preferably 0.9 to 8 MPa, particularly 1.3 to 6 MPa, and particularly preferably 2 to 6 MPa.
  • the gas used for pressurization include inert gas, water vapor, nitrogen gas, and helium gas. You may adjust by a back pressure valve, without using gas.
  • the heat treatment time (average residence time) varies depending on the reaction method and the type of polysaccharide, but from the viewpoint of the decomposition rate and production efficiency, for example, in the case of the flow reaction method, it is 0 after the slurry reaches the set temperature. 5 to 30 minutes are preferable, 1 to 15 minutes are more preferable, and 1 to 8 minutes are particularly preferable.
  • the heat treatment time (average residence time) is calculated by dividing the volume of the high-temperature and high-pressure part of the reactor by the slurry supply rate.
  • the reaction solution may be cooled to 100 ° C. or lower, preferably 60 ° C. or lower, and the solution containing the decomposed sugar and the fatty acid may be separated.
  • the method for separating the solution containing the decomposed sugar and the fatty acid is not particularly limited, and can be performed, for example, by centrifugation or decantation.
  • the recovered fatty acid may be reused.
  • examples of monosaccharides obtained by heat treatment include glucose, fructose, mannose, galactose, xylose, and arabinose.
  • examples of the disaccharide include cellobiose, maltose, di-N-acetylchitobiose and the like
  • examples of the oligosaccharide include those having 3 to 10 monosaccharide units, such as cellotriose, cellotetraose, Cellopentaose, cellohexaose, maltotriose, maltotetraose, maltopentaose, maltohexaose, tri-N-acetylchitotriose, tetra-N-acetylchitotetraose, penta-N-acetylchitopentaose And hexa-N-acetylchitohexaose.
  • the flow reactor includes a water slurry tank (11) containing a polysaccharide, a water slurry supply tank (13), a fatty acid supply tank (21), a reactor (31) provided with a heating furnace (32), and a cooler (41 ), A filter (51), and a reaction liquid recovery tank (61).
  • the reactor (31) is equipped with a pressure gauge and a thermometer. For example, the pressure during the heat treatment is adjusted by a back pressure valve.
  • water slurry is supplied to the water slurry supply tank (13) from the water slurry tank (11) containing polysaccharides using the supply pump (12). Subsequently, the water slurry is supplied to the reactor (31) pressurized and heated to a predetermined temperature and pressure by the heating furnace (32), and the fatty acid supplied from the fatty acid supply tank (21) using the supply pump (22). In the presence of water, the polysaccharide in the water slurry is hydrolyzed under high temperature and high pressure.
  • the flow rate of the water slurry supplied from the water slurry supply tank (13) varies depending on the volume of the reactor.
  • the reactor volume is 100 mL, it is preferably 3.3 to 200 mL / min, particularly 6.7 to 100 mL / min is preferred.
  • the flow rate of the fatty acid supplied from the fatty acid supply tank (21) is preferably 0.03 to 100 mL / min, particularly preferably 0.15 to 60 mL / min.
  • the hot reaction liquid that has exited the reactor (31) is quickly cooled by the cooler (41).
  • the flow rate of the reaction liquid discharged from the reactor outlet is the sum of the slurry supply flow rate and the fatty acid supply flow rate.
  • the reaction solution is passed through the filter (51), unreacted polysaccharide is separated, and decomposed sugar is obtained in the reaction solution recovery tank (61).
  • the degradation sugar obtained by the production method of the present invention is preferably rich in monosaccharides typified by glucose.
  • concentration of monosaccharides such as glucose in the degraded sugar is preferably 60 to 99% by mass, more preferably 65 to 99% by mass, and still more preferably 70 to 99% by mass.
  • the reaction liquid containing the decomposition sugar preferably has a low HMF content and a monosaccharide / HMF mass ratio of 5 or more, more preferably 5 to 1000, more preferably 8 to 200, particularly 10 to 200, and particularly preferably 12 to 200. .
  • the decomposed saccharide obtained by the production method of the present invention can be used for usual enzymatic saccharification using cellulase or the like. Furthermore, useful substances such as ethanol, polylactic acid, amino acids, xylitol and erythritol can be produced by microbial fermentation or chemical conversion using these decomposed sugars as a sugar source. Decomposed sugar-containing compositions having a monosaccharide / HMF mass ratio of 5 or more are particularly useful for the production of these useful substances.
  • Example 1 Heat treatment was performed using the flow reactor shown in FIG.
  • Microcrystalline powdery cellulose (Sigma Aldrich) was dispersed in distilled water at 1.11 wt% and uniformly stirred in a water slurry supply tank.
  • a 100 mL stainless steel flow reactor manufactured by Nitto Koatsu Co., Ltd.
  • water slurry of cellulose and caprylic acid (Wako Pure Chemical Industries, Ltd., density 0.91 g / mL (20 ° C.)) were flowed at a flow rate of 45 mL / min, respectively. It was fed at 5 mL / min and reacted at 220 ° C. (average residence time 2 minutes).
  • the pressure was adjusted to 3 MPa with an outlet valve.
  • the reaction solution was extracted from the reactor outlet at a flow rate of 50 mL / min, and the extracted reaction solution was cooled to room temperature (25 ° C.) and collected in a tank.
  • the reaction solution was washed three times with the same volume of hexane to remove fatty acids, and then the monosaccharide (glucose) concentration, disaccharide (cellobiose) concentration, oligosaccharide (cellotriose) concentration, and HMF concentration were measured.
  • the results are shown in Table 1.
  • Example 2 A reaction solution was obtained in the same manner as in Example 1 except that the reaction temperature was 200 ° C., and the flow rates of the cellulose slurry and caprylic acid were 22.5 mL / min and 2.5 mL / min, respectively.
  • Example 3 A reaction solution was obtained in the same manner as in Example 1 except that the concentration of the water slurry of cellulose was 1.25 wt%, the flow rate was 40 mL / min, and the caprylic acid flow rate was 10 mL / min.
  • Comparative Example 1 A reaction liquid was obtained in the same manner as in Example 1 except that the concentration of the cellulose slurry was 1.00 wt% and the flow rate was 50 mL / min without supplying the fatty acid.
  • Comparative Example 2 A reaction solution was obtained in the same manner as in Example 1 except that oleic acid (density 0.90 g / mL (20 ° C.)) was used instead of caprylic acid.
  • Example 4 10 g of microcrystalline powder cellulose (Sigma Aldrich) and 90 g of water were mixed. This water slurry and 9 g of caprylic acid (Wako Pure Chemical Industries, density 0.91 g / mL (20 ° C.)) were placed in a batch hydrothermal apparatus (Start 200 New Quick, volume 180 mL manufactured by Nitto Koatsu), and the upper space was purged with nitrogen. Heated with stirring. The heating rate was 3.4 ° C./min. After reaching 180 ° C., it was cooled to room temperature. The time during which the slurry temperature was 180 ° C. was 3 minutes.
  • Example 4 in which cellulose was heat-treated in the presence of C8 fatty acid and water, the production amount of glucose, cellobiose and cellotriose was large, while the production amount of HMF relative to the glucose production amount was We were able to keep it low.
  • Comparative Example 3 in which no fatty acid was added, the production amounts of glucose, cellobiose and cellotriose were small, and the HMF production amount was large with respect to the glucose production amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

Provided is a preparation method for a monosaccharide, a disaccharide, and/or an oligosaccharide in which a polysaccharide is heat treated at 140°C to 300°C in the presence of a C6-12 fatty acid and water.

Description

単糖類、二糖類、及び/又はオリゴ糖の製造方法Method for producing monosaccharide, disaccharide and / or oligosaccharide
 本発明は、多糖類、特にバイオマスから単糖類、二糖類、及び/又はオリゴ糖(以下、総称して「分解糖」ともいう)を製造する方法に関する。 The present invention relates to a method for producing polysaccharides, particularly monosaccharides, disaccharides, and / or oligosaccharides (hereinafter collectively referred to as “decomposed sugars”) from biomass.
 近年、化石資源に代えてセルロース系、デンプン系、或いは糖質系のバイオマスからエタノールや乳酸等の有用物質を製造する技術の開発が望まれている。とりわけ、非食糧資源であるセルロース系バイオマスを有効利用する技術への関心が高まっている。
 バイオマスからのエタノール等の製造は、バイオマスを糖化工程において糖に分解した後、これを発酵工程においてエタノール等に変換することにより行うことができる。糖化は、硫酸等を用いる酸糖化と酵素糖化に大別される。
In recent years, development of technology for producing useful substances such as ethanol and lactic acid from cellulose-based, starch-based, or saccharide-based biomass in place of fossil resources has been desired. In particular, there is a growing interest in technologies that make effective use of cellulosic biomass, which is a non-food resource.
Production of ethanol or the like from biomass can be performed by decomposing biomass into sugar in the saccharification step and then converting it to ethanol or the like in the fermentation step. Saccharification is roughly divided into acid saccharification using sulfuric acid or the like and enzyme saccharification.
 酵素糖化は、酸糖化に比して緩和な条件で加水分解でき、また糖化率が高い等の利点があるが、特にセルロース系バイオマスを利用する場合、酵素を作用させ易くするため、予めバイオマスを前処理する必要がある。この前処理方法としては、硫酸法、有機溶媒法、水熱処理等が検討されている。
 例えば、リグノセルロース系バイオマス、弱酸及び水を含む原料混合物を加温及び加圧条件下で処理し、単糖類に分解する方法(特許文献1);高温・高圧条件下、オレイン酸を添加した水中でセルロースを処理し、オリゴ糖、セロビオース、グルコース及びフルクトースを得る方法(非特許文献1)等が報告されている。
Enzymatic saccharification is advantageous in that it can be hydrolyzed under mild conditions compared to acid saccharification and has a high saccharification rate. It is necessary to pre-process. As this pretreatment method, a sulfuric acid method, an organic solvent method, a hydrothermal treatment and the like have been studied.
For example, a method in which a raw material mixture containing lignocellulosic biomass, a weak acid and water is treated under heating and pressure conditions and decomposed into monosaccharides (Patent Document 1); under high-temperature and high-pressure conditions in which oleic acid is added In other words, a method for treating cellulose with oligosaccharide to obtain oligosaccharides, cellobiose, glucose and fructose (Non-patent Document 1) has been reported.
 一方、超臨界流体又は亜臨界流体を用いた分解処理方法が提案され、例えば、超臨界状態又は亜臨界状態の水を用いて天然又は合成高分子化合物を加水分解及び/又は熱分解する方法(特許文献2);非水溶系溶剤と水の混合物を用い、非水溶系溶剤と水の両方又は一方が超臨界状態又は亜臨界状態で、木質系廃材の粉砕粉末を分解処理する方法(特許文献3)等が報告されている。 Meanwhile, a decomposition method using a supercritical fluid or a subcritical fluid has been proposed. For example, a method of hydrolyzing and / or thermally decomposing a natural or synthetic polymer compound using water in a supercritical state or a subcritical state ( Patent Document 2): A method of using a mixture of a water-insoluble solvent and water and decomposing the pulverized powder of wood-based waste material in a supercritical state or a subcritical state in which both or one of the water-insoluble solvent and water is in a supercritical state (Patent Document 2) 3) etc. have been reported.
特開2009-22239号公報JP 2009-22239 A 特開平5-31000号公報Japanese Patent Laid-Open No. 5-31000 特開2007-313476号公報JP 2007-31476 A
 本発明は、多糖類を炭素数6~12の脂肪酸及び水の存在下、140~300℃の加熱処理を行う単糖類、二糖類、及び/又はオリゴ糖の製造方法を提供するものである。 The present invention provides a method for producing monosaccharides, disaccharides and / or oligosaccharides, in which a polysaccharide is subjected to a heat treatment at 140 to 300 ° C. in the presence of a fatty acid having 6 to 12 carbon atoms and water.
図1は、加熱処理を行う流通式反応器の一例を示す図である。FIG. 1 is a diagram illustrating an example of a flow reactor that performs heat treatment.
 従来の超臨界状態又は亜臨界状態の水等を用いる方法や、酵素糖化の前処理工程で弱酸やオレイン酸を用いる方法では、生成した糖が過分解されてしまい、全体として糖の生成量が少なくなる場合があることが判明した。特に、糖の過分解により生成するヒドロキシメチルフルフラール(HMF)は、発酵工程において糖からエタノール等への発酵を阻害することがあるため、その生成を抑制することはエタノ-ル等有用物質製造全般の効率化に重要である。また、酵素糖化の前処理工程で弱酸を添加する場合は、弱酸は水溶性であるため処理後に除去が困難で中和作業も必要になり、操作が煩雑になる。
 一方で、酵素糖化の前処理条件が緩やか過ぎると、加水分解が十分に進まないという問題がある。
In the conventional method using water in a supercritical state or subcritical state or the method using weak acid or oleic acid in the pretreatment step of enzymatic saccharification, the generated sugar is excessively decomposed, and the amount of sugar produced as a whole It has been found that there may be fewer cases. In particular, since hydroxymethylfurfural (HMF) produced by the excessive decomposition of sugar may inhibit the fermentation of sugar to ethanol, etc. in the fermentation process, the production of useful substances such as ethanol is generally controlled. It is important for efficiency improvement. In addition, when a weak acid is added in the pretreatment step of enzymatic saccharification, the weak acid is water-soluble, so that it is difficult to remove after the treatment and a neutralization operation is required, and the operation becomes complicated.
On the other hand, if the pretreatment conditions for enzymatic saccharification are too gentle, there is a problem that hydrolysis does not proceed sufficiently.
 従って、本発明は、糖の過分解を抑えつつも効率よく多糖類から分解糖を製造することのできる方法に関する。 Therefore, the present invention relates to a method capable of efficiently producing a decomposed sugar from a polysaccharide while suppressing excessive decomposition of the sugar.
 本発明者らは、上記課題に鑑み鋭意検討したところ、多糖類を炭素数6~12の脂肪酸及び水の存在下で加熱処理することにより、糖の過分解を抑えつつも、効率良く分解糖を製造できることを見出した。 The inventors of the present invention have intensively studied in view of the above-mentioned problems. As a result, the polysaccharide is subjected to heat treatment in the presence of a fatty acid having 6 to 12 carbon atoms and water, thereby efficiently decomposing the sugar while suppressing excessive decomposition of the sugar. It was found that can be manufactured.
 本発明によれば、糖の過分解を抑えつつ、分解糖を効率良く製造することができる。本発明方法は、多糖類を含むバイオマスにも適用可能であり、バイオマスからのエタノ-ル等有用物質の製造を高効率化する技術として期待できる。 According to the present invention, it is possible to efficiently produce a decomposed sugar while suppressing excessive decomposition of the sugar. The method of the present invention can also be applied to biomass containing polysaccharides, and can be expected as a technique for improving the production efficiency of useful substances such as ethanol from biomass.
 本発明で用いられる多糖類としては、例えば、セルロース、ヘミセルロース、キシログルカン、ペクチン、澱粉、マンナン、グルコマンナン、ガラクトマンナン、キチン、キトサン、イヌリン、アルギン酸、寒天、フコイダン、ラミナリン、β-グルカン、プルラン等の天然多糖又はこれらの誘導体が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。なかでも、安価かつ分解後の発酵生産により有用物質に変換可能である点から、セルロース、ヘミセルロース、キチン、キトサンが好ましく、特にセルロース、ヘミセルロースが好ましい。本発明で用いられる多糖類の分子量は、特に限定されないが、一般的には1,000以上5,000,000以下であることが好ましい。 Examples of the polysaccharide used in the present invention include cellulose, hemicellulose, xyloglucan, pectin, starch, mannan, glucomannan, galactomannan, chitin, chitosan, inulin, alginic acid, agar, fucoidan, laminarin, β-glucan, pullulan. Natural polysaccharides such as these or derivatives thereof. These can be used alone or in combination of two or more. Of these, cellulose, hemicellulose, chitin, and chitosan are preferable, and cellulose and hemicellulose are particularly preferable because they are inexpensive and can be converted into useful substances by fermentation production after decomposition. The molecular weight of the polysaccharide used in the present invention is not particularly limited, but generally it is preferably 1,000 or more and 5,000,000 or less.
 また、本発明における多糖類として、前記多糖類を含む原料、例えば、バイオマスを用いることもできる。バイオマスとは、生物由来の有機資源で、化石資源を除いたものである。バイオマスとしては、セルロース系、デンプン系、或いは糖質系のバイオマスが挙げられ、これらは単独で又は2種以上を組み合わせて用いることができる。
 なかでも、資源の有効活用の点から、セルロースを含有するセルロース系バイオマスを用いることが好ましい。
Moreover, the raw material containing the said polysaccharide, for example, biomass, can also be used as a polysaccharide in this invention. Biomass is an organic resource derived from living organisms, excluding fossil resources. Examples of the biomass include cellulose-based, starch-based, and saccharide-based biomass, and these can be used alone or in combination of two or more.
Especially, it is preferable to use the cellulose biomass containing a cellulose from the point of effective utilization of resources.
 セルロース系バイオマスは、セルロース、ヘミセルロース及びリグニンを主成分とするものであり、例えば、綿、木材系パルプ、ケナフ、麻、小径木、間伐材、おが屑、木屑、古紙、新聞紙、包装紙、ティッシュペーパー、トイレットペーパー、ダンボール等の木質系;バガス、スイッチグラス、エレファントグラス、稲ワラ、ムギワラ等の草木系のバイオマスが挙げられる。また、デンプン系バイオマスとしては、例えば、米、麦、トウモロコシ、イモ等が挙げられ、糖質系バイオマスとしては、サトウキビ、テンサイ、海藻、エビ殻、カニ殻等の糖質系バイオマスが挙げられる。 Cellulose biomass is mainly composed of cellulose, hemicellulose, and lignin. For example, cotton, wood pulp, kenaf, hemp, small-diameter wood, thinned wood, sawdust, wood waste, waste paper, newspaper, wrapping paper, tissue paper Woody materials such as toilet paper and cardboard; plant biomass such as bagasse, switchgrass, elephant grass, rice straw and wheat straw. Examples of the starch-based biomass include rice, wheat, corn, and potato, and examples of the saccharide-based biomass include sugar-based biomass such as sugar cane, sugar beet, seaweed, shrimp shell, and crab shell.
 多糖類としてバイオマスを用いる場合は、加熱処理に先立って乾燥、粉砕、細断等の前処理を施すのが分解率向上の点から好ましい。例えば、乾燥は通気式バンド乾燥機、棚段式熱風乾燥機等を用いることができる。粉砕、細断は、例えば公知の回転ボールミル、遊星型ボールミル、ディスクミル、ロッドミル等を用いることができる。 When using biomass as the polysaccharide, it is preferable from the viewpoint of improving the decomposition rate to perform pretreatment such as drying, pulverization, shredding, etc. prior to heat treatment. For example, a ventilation type band dryer, a shelf type hot air dryer, etc. can be used for drying. For the pulverization and chopping, for example, a known rotating ball mill, planetary ball mill, disk mill, rod mill or the like can be used.
 多糖類を加熱処理する方法としては、特に制限されず、公知の方法を適用できる。例えば、回分法、半回分法、流通式反応方法等が挙げられる。なかでも、流通式反応方法は、反応時間の制御が容易である点で好ましい。 The method for heat-treating the polysaccharide is not particularly limited, and a known method can be applied. For example, a batch method, a semi-batch method, a flow reaction method and the like can be mentioned. Among these, the flow-type reaction method is preferable in that the reaction time can be easily controlled.
 本発明において、多糖類の加熱処理は、炭素数6~12の脂肪酸及び水の存在下で行われる。
 ここで、炭素数6~12の脂肪酸としては、直鎖又は分岐鎖状の飽和又は不飽和の脂肪酸が挙げられる。特に、糖の過分解を抑制する点、及び分解率向上の点から、炭素数6~12の飽和脂肪酸が好ましく、炭素数6~10の飽和脂肪酸がより好ましい。
 脂肪酸は、具体的には、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸等が挙げられる。なかでも、カプリル酸が好ましい。炭素数が6以上の脂肪酸は水溶性が低いため、反応液からの分離が容易であり、他方、炭素数が12以下の脂肪酸を用いることで糖の収率を向上させることができ、また炭素数が12以下の脂肪酸は融点が比較的低いため取り扱いが容易となる。
In the present invention, the heat treatment of the polysaccharide is performed in the presence of a fatty acid having 6 to 12 carbon atoms and water.
Here, examples of the fatty acid having 6 to 12 carbon atoms include linear or branched saturated or unsaturated fatty acids. In particular, a saturated fatty acid having 6 to 12 carbon atoms is preferable, and a saturated fatty acid having 6 to 10 carbon atoms is more preferable from the viewpoint of suppressing the excessive decomposition of sugar and improving the decomposition rate.
Specific examples of the fatty acid include caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid and the like. Of these, caprylic acid is preferable. Since fatty acids having 6 or more carbon atoms are low in water solubility, they can be easily separated from the reaction solution, and on the other hand, the yield of sugar can be improved by using fatty acids having 12 or less carbon atoms. Fatty acids having a number of 12 or less are easy to handle because of their relatively low melting points.
 加熱処理に用いる炭素数6~12の脂肪酸の使用量は、糖の過分解を抑制する点、及び分解率向上の点から、水に対する質量比として0.01~0.5が好ましく、更に0.02~0.4、特に0.05~0.3が好ましい。 The amount of the fatty acid having 6 to 12 carbon atoms used for the heat treatment is preferably 0.01 to 0.5 as a mass ratio with respect to water from the viewpoint of suppressing the excessive decomposition of sugar and improving the decomposition rate. 0.02-0.4, particularly 0.05-0.3 is preferred.
 また、加熱処理の際に用いる水は、高温高圧状態下にある水であれば特に制限されず、水としては、水道水、蒸留水、イオン交換水、精製水が例示される。
 加熱処理を流通式反応方法で行う場合、多糖類は水に分散してスラリー状にしてから用いるのが好ましい。水スラリー中の多糖類の含有量は、流動性の点から、1~200g/L、更に5~150g/L、特に8~100g/Lとするのが好ましい。
 また、加熱処理を回分法で行う場合は、水スラリー中の多糖類の含有量は、1~400g/L、更に5~300g/L、特に8~200g/Lとするのが好ましい。
Moreover, the water used in the case of heat processing will not be restrict | limited especially if it is the water under a high temperature / high pressure state, As a water, a tap water, distilled water, ion-exchange water, and purified water are illustrated.
When the heat treatment is performed by a flow reaction method, the polysaccharide is preferably used after being dispersed in water to form a slurry. The content of the polysaccharide in the water slurry is preferably 1 to 200 g / L, more preferably 5 to 150 g / L, and particularly preferably 8 to 100 g / L from the viewpoint of fluidity.
When the heat treatment is carried out by a batch method, the polysaccharide content in the water slurry is preferably 1 to 400 g / L, more preferably 5 to 300 g / L, and particularly preferably 8 to 200 g / L.
 加熱処理の温度としては、糖の過分解を抑制する点、及び分解率向上の点から、140~300℃であり、160~250℃が好ましく、特に180~230℃が好ましい。加熱の手段は、例えば、水蒸気、電気が挙げられる。 The temperature of the heat treatment is 140 to 300 ° C., preferably 160 to 250 ° C., particularly preferably 180 to 230 ° C. from the viewpoint of suppressing the excessive decomposition of sugar and improving the decomposition rate. Examples of the heating means include water vapor and electricity.
 また、加熱処理時の圧力は、水の飽和蒸気圧以上に設定するのが好ましく、0.3~10MPa、更に0.9~8MPa、特に1.3~6MPa、殊更2~6MPaが好ましい。加圧に用いられるガスは、例えば、不活性ガス、水蒸気、窒素ガス、ヘリウムガス等が挙げられる。ガスを用いず、背圧弁により調整しても良い。 Also, the pressure during the heat treatment is preferably set to be equal to or higher than the saturated vapor pressure of water, and is preferably 0.3 to 10 MPa, more preferably 0.9 to 8 MPa, particularly 1.3 to 6 MPa, and particularly preferably 2 to 6 MPa. Examples of the gas used for pressurization include inert gas, water vapor, nitrogen gas, and helium gas. You may adjust by a back pressure valve, without using gas.
 加熱処理の時間(平均滞留時間)は、反応方法や多糖類の種類によって異なるが、分解率及び生産効率の点から、例えば、流通式反応方法で行う場合、スラリーが設定温度に達してから0.5~30分が好ましく、更に1~15分、特に1~8分が好ましい。
 加熱処理の時間(平均滞留時間)は、反応器の高温高圧部の体積をスラリーの供給速度で割ることにより算出される。
The heat treatment time (average residence time) varies depending on the reaction method and the type of polysaccharide, but from the viewpoint of the decomposition rate and production efficiency, for example, in the case of the flow reaction method, it is 0 after the slurry reaches the set temperature. 5 to 30 minutes are preferable, 1 to 15 minutes are more preferable, and 1 to 8 minutes are particularly preferable.
The heat treatment time (average residence time) is calculated by dividing the volume of the high-temperature and high-pressure part of the reactor by the slurry supply rate.
 加熱処理後、反応液を100℃以下、好ましくは60℃以下に冷却してもよく、さらに分解糖を含む溶液と脂肪酸を分離してもよい。分解糖を含む溶液と脂肪酸とを分離する方法としては、特に制限されず、例えば遠心分離やデカンテーションにより行うことができる。回収した脂肪酸は、再利用してもよい。 After the heat treatment, the reaction solution may be cooled to 100 ° C. or lower, preferably 60 ° C. or lower, and the solution containing the decomposed sugar and the fatty acid may be separated. The method for separating the solution containing the decomposed sugar and the fatty acid is not particularly limited, and can be performed, for example, by centrifugation or decantation. The recovered fatty acid may be reused.
 かくして、加熱処理により得られる単糖類としては、例えば、グルコース、フルクトース、マンノース、ガラクトース、キシロース、アラビノース等が挙げられる。また、二糖類としては、セロビオース、マルトース、ジ-N-アセチルキトビオース等が挙げられ、オリゴ糖としては3~10の単糖単位を有するものが挙げられ、例えば、セロトリオース、セロテトラオース、セロペンタオース、セロヘキサオース、マルトトリオース、マルトテトラオース、マルトペンタオース、マルトヘキサオース、トリ-N-アセチルキトトリオース、テトラ-N-アセチルキトテトラオース、ペンタ-N-アセチルキトペンタオース、ヘキサ-N-アセチルキトヘキサオース等が挙げられる。 Thus, examples of monosaccharides obtained by heat treatment include glucose, fructose, mannose, galactose, xylose, and arabinose. Examples of the disaccharide include cellobiose, maltose, di-N-acetylchitobiose and the like, and examples of the oligosaccharide include those having 3 to 10 monosaccharide units, such as cellotriose, cellotetraose, Cellopentaose, cellohexaose, maltotriose, maltotetraose, maltopentaose, maltohexaose, tri-N-acetylchitotriose, tetra-N-acetylchitotetraose, penta-N-acetylchitopentaose And hexa-N-acetylchitohexaose.
 本発明の製造方法に用いられる流通式反応器の一例を図1に示す。流通式反応器は、多糖類を含む水スラリー槽(11)、水スラリー供給タンク(13)、脂肪酸供給槽(21)、加熱炉(32)を備えた反応器(31)、冷却器(41)、フィルター(51)、反応液回収タンク(61)から構成されている。なお、反応器(31)、には、圧力計、温度計が備え付けられており、例えば、背圧弁により加熱処理時の圧力を調整する。 An example of a flow reactor used in the production method of the present invention is shown in FIG. The flow reactor includes a water slurry tank (11) containing a polysaccharide, a water slurry supply tank (13), a fatty acid supply tank (21), a reactor (31) provided with a heating furnace (32), and a cooler (41 ), A filter (51), and a reaction liquid recovery tank (61). The reactor (31) is equipped with a pressure gauge and a thermometer. For example, the pressure during the heat treatment is adjusted by a back pressure valve.
 先ず、水スラリー供給タンク(13)に、供給ポンプ(12)を用いて多糖類を含む水スラリー槽(11)から水スラリーが供給される。次いで、加熱炉(32)により所定の温度・圧力に加圧加熱された反応器(31)へ水スラリーが供給され、脂肪酸供給槽(21)から供給ポンプ(22)を用いて供給された脂肪酸の存在下、高温高圧状態で水スラリー中の多糖類が加水分解される。
 水スラリー供給タンク(13)から供給される水スラリーの流速は、反応器の体積によって異なるが、例えば、反応器体積が100mLの場合、3.3~200mL/分が好ましく、特に6.7~100mL/分が好ましい。
 また、脂肪酸供給槽(21)から供給される脂肪酸の流速は、0.03~100mL/分が好ましく、特に0.15~60mL/分が好ましい。
First, water slurry is supplied to the water slurry supply tank (13) from the water slurry tank (11) containing polysaccharides using the supply pump (12). Subsequently, the water slurry is supplied to the reactor (31) pressurized and heated to a predetermined temperature and pressure by the heating furnace (32), and the fatty acid supplied from the fatty acid supply tank (21) using the supply pump (22). In the presence of water, the polysaccharide in the water slurry is hydrolyzed under high temperature and high pressure.
The flow rate of the water slurry supplied from the water slurry supply tank (13) varies depending on the volume of the reactor. For example, when the reactor volume is 100 mL, it is preferably 3.3 to 200 mL / min, particularly 6.7 to 100 mL / min is preferred.
The flow rate of the fatty acid supplied from the fatty acid supply tank (21) is preferably 0.03 to 100 mL / min, particularly preferably 0.15 to 60 mL / min.
 反応器(31)から出た高温の反応液は冷却器(41)にて迅速に冷却される。流通式の場合、反応器出口から吐出される反応液の流速はスラリー供給流速と脂肪酸供給流速の和になる。
 次いで、反応液をフィルター(51)に通し、未反応の多糖類を分離し、分解糖を反応液回収タンク(61)に得る。
The hot reaction liquid that has exited the reactor (31) is quickly cooled by the cooler (41). In the case of the flow type, the flow rate of the reaction liquid discharged from the reactor outlet is the sum of the slurry supply flow rate and the fatty acid supply flow rate.
Next, the reaction solution is passed through the filter (51), unreacted polysaccharide is separated, and decomposed sugar is obtained in the reaction solution recovery tank (61).
 本発明の製造方法により得られる分解糖は、グルコースに代表される単糖類に富むものが好ましい。分解糖中のグルコース等の単糖類濃度は好ましくは60~99質量%、より好ましくは65~99質量%、さらに好ましくは70~99質量%である。
 また、分解糖を含む反応液は、HMF含有量が少なく、単糖類/HMF質量比が5以上、さらに5~1000、さらに8~200、特に10~200、殊更12~200であるのが好ましい。
The degradation sugar obtained by the production method of the present invention is preferably rich in monosaccharides typified by glucose. The concentration of monosaccharides such as glucose in the degraded sugar is preferably 60 to 99% by mass, more preferably 65 to 99% by mass, and still more preferably 70 to 99% by mass.
In addition, the reaction liquid containing the decomposition sugar preferably has a low HMF content and a monosaccharide / HMF mass ratio of 5 or more, more preferably 5 to 1000, more preferably 8 to 200, particularly 10 to 200, and particularly preferably 12 to 200. .
 本発明の製造方法により得られる分解糖は、通常行われているセルラーゼ等を用いた酵素糖化に用いることができる。さらに、これら分解糖を糖源として、微生物発酵を行ったり、化学変換したりすることにより、エタノール、ポリ乳酸、アミノ酸、キシリトールやエリスリトール等の有用物質を製造することができる。単糖類/HMF質量比が5以上である分解糖含有組成物は、特にこれらの有用物質製造に有用である。 The decomposed saccharide obtained by the production method of the present invention can be used for usual enzymatic saccharification using cellulase or the like. Furthermore, useful substances such as ethanol, polylactic acid, amino acids, xylitol and erythritol can be produced by microbial fermentation or chemical conversion using these decomposed sugars as a sugar source. Decomposed sugar-containing compositions having a monosaccharide / HMF mass ratio of 5 or more are particularly useful for the production of these useful substances.
<単糖類濃度、二糖類濃度及びオリゴ糖濃度の測定>
 日立製作所製高速液体クロマトグラフを用い、昭和電工製カラムAsahipak NH2P-50 4E (4.5mmφ×250m)を装着し、カラム温度20℃でグラジエント法により行った。移動相A液はアセトニトリル、B液は30%メタノール水とし、1.00mL/分で送液した。グラジエント条件は以下のとおりである。
  時間(分)  A液(%)   B液(%)
   0      20     80
  45      50     50
  45.1    20     80
  55      20     80
試料注入量は5μL、検出はESA Biosciences社製コロナCAD検出器を用いた。
<Measurement of monosaccharide concentration, disaccharide concentration and oligosaccharide concentration>
Using a high performance liquid chromatograph manufactured by Hitachi, Ltd., a column Asahipak NH2P-50 4E (4.5 mmφ × 250 m) manufactured by Showa Denko was installed, and a gradient method was performed at a column temperature of 20 ° C. The mobile phase A solution was acetonitrile, and the B solution was 30% methanol water, and the solution was sent at 1.00 mL / min. The gradient conditions are as follows.
Time (min) A liquid (%) B liquid (%)
0 20 80
45 50 50
45.1 20 80
55 20 80
The sample injection amount was 5 μL, and detection was performed using a corona CAD detector manufactured by ESA Biosciences.
<ヒドロキシメチルフルフラール(HMF)濃度の測定>
 日立製作所製高速液体クロマトグラフを用い、ジーエルサイエンス社製カラムInertsil ODS-3 (3.0mmφ×150m)を装着し、カラム温度40℃でグラジエント法により行った。移動相A液はアセトニトリル、B液は水とし、0.40mL/分で送液した。グラジエント条件は以下のとおりである。
  時間(分)  A液(%)   B液(%)
   0      10     90
  10      10     90
  30      90     10
  40      90     10
  40.1    10     90
  60      10     10
試料注入量は10μL、検出は波長275nmの吸光度により定量した。
<Measurement of hydroxymethylfurfural (HMF) concentration>
Using a high-performance liquid chromatograph manufactured by Hitachi, Ltd., a column Inertsil ODS-3 (3.0 mmφ × 150 m) manufactured by GL Sciences Inc. was mounted, and a gradient method was performed at a column temperature of 40 ° C. The mobile phase A solution was acetonitrile and the B solution was water, and the solution was fed at 0.40 mL / min. The gradient conditions are as follows.
Time (min) A liquid (%) B liquid (%)
0 10 90
10 10 90
30 90 10
40 90 10
40.1 10 90
60 10 10
The sample injection amount was 10 μL, and detection was quantified by absorbance at a wavelength of 275 nm.
実施例1
 図1に示した流通式反応器を用いて加熱処理を行った。
 微結晶粉末セルロース(シグマアルドリッチ)を蒸留水に1.11wt%で分散し、水スラリー供給タンク内で均一攪拌した。内容積100mLのステンレス製流通式反応器(日東高圧社製)に、セルロースの水スラリーとカプリル酸(和光純薬工業、密度0.91g/mL(20℃))をそれぞれ、流速45mL/分と5mL/分で供給し、220℃で反応を行った(平均滞留時間2分)。圧力は出口バルブにより3MPaに調整した。反応器出口から反応液を流速50mL/分で抜き出し、抜き出した反応液を室温(25℃)まで冷却してタンクに回収した。反応液は同体積のヘキサンで3回洗浄して脂肪酸を除去した後、単糖類(グルコース)濃度、二糖類(セロビオース)濃度、オリゴ糖(セロトリオース)濃度及びHMF濃度をそれぞれ測定した。結果を表1に示す。
Example 1
Heat treatment was performed using the flow reactor shown in FIG.
Microcrystalline powdery cellulose (Sigma Aldrich) was dispersed in distilled water at 1.11 wt% and uniformly stirred in a water slurry supply tank. In a 100 mL stainless steel flow reactor (manufactured by Nitto Koatsu Co., Ltd.), water slurry of cellulose and caprylic acid (Wako Pure Chemical Industries, Ltd., density 0.91 g / mL (20 ° C.)) were flowed at a flow rate of 45 mL / min, respectively. It was fed at 5 mL / min and reacted at 220 ° C. (average residence time 2 minutes). The pressure was adjusted to 3 MPa with an outlet valve. The reaction solution was extracted from the reactor outlet at a flow rate of 50 mL / min, and the extracted reaction solution was cooled to room temperature (25 ° C.) and collected in a tank. The reaction solution was washed three times with the same volume of hexane to remove fatty acids, and then the monosaccharide (glucose) concentration, disaccharide (cellobiose) concentration, oligosaccharide (cellotriose) concentration, and HMF concentration were measured. The results are shown in Table 1.
実施例2
 反応温度を200℃、セルロースの水スラリーとカプリル酸の流速をそれぞれ22.5mL/分と2.5mL/分とした以外は実施例1と同様にして反応液を得た。
Example 2
A reaction solution was obtained in the same manner as in Example 1 except that the reaction temperature was 200 ° C., and the flow rates of the cellulose slurry and caprylic acid were 22.5 mL / min and 2.5 mL / min, respectively.
実施例3
 セルロースの水スラリーの濃度を1.25wt%、流速を40mL/分、カプリル酸の流速を10mL/分とした以外は実施例1と同様にして反応液を得た。
Example 3
A reaction solution was obtained in the same manner as in Example 1 except that the concentration of the water slurry of cellulose was 1.25 wt%, the flow rate was 40 mL / min, and the caprylic acid flow rate was 10 mL / min.
比較例1
 脂肪酸を供給せずに、セルロースの水スラリーの濃度を1.00wt%、流速を50mL/分とした以外は実施例1と同様にして反応液を得た。
Comparative Example 1
A reaction liquid was obtained in the same manner as in Example 1 except that the concentration of the cellulose slurry was 1.00 wt% and the flow rate was 50 mL / min without supplying the fatty acid.
比較例2
 カプリル酸の代わりにオレイン酸(密度0.90g/mL(20℃))を用いた以外は実施例1と同様にして反応液を得た。
Comparative Example 2
A reaction solution was obtained in the same manner as in Example 1 except that oleic acid (density 0.90 g / mL (20 ° C.)) was used instead of caprylic acid.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、セルロースを炭素数6~12の脂肪酸及び水の存在下で加熱処理した実施例1-3ではいずれもグルコース、セロビオース及びセロトリオースの生成量が多く、一方でグルコース生成量に対するHMFの生成量を抑えることができた。これに対し、脂肪酸を供給しなかった比較例1では、グルコース、セロビオース及びセロトリオースの生成量は少なかった。また、オレイン酸を供給した比較例2では、脂肪酸無添加の比較例1に比べグルコース、セロビオース及びセロトリオースの生成量がやや増加したものの、グルコース生成量に対するHMF生成量は多いという結果であった。 As is apparent from Table 1, in Examples 1-3 in which cellulose was heat-treated in the presence of a fatty acid having 6 to 12 carbon atoms and water, all of glucose, cellobiose and cellotriose were produced, while the amount of glucose produced was It was possible to suppress the amount of HMF produced relative to. On the other hand, in Comparative Example 1 in which no fatty acid was supplied, the production amounts of glucose, cellobiose and cellotriose were small. Further, in Comparative Example 2 in which oleic acid was supplied, the amount of HMF produced relative to the amount of glucose produced was large, although the amount of glucose, cellobiose and cellotriose produced was slightly increased compared to Comparative Example 1 in which no fatty acid was added.
実施例4
 微結晶粉末セルロース(シグマアルドリッチ)10gと水90gを混合した。この水スラリーとカプリル酸(和光純薬工業、密度0.91g/mL(20℃))9gをバッチ式水熱処理装置(日東高圧製Start200New Quick、容積180mL)に入れ、上部空間を窒素置換し、攪拌しながら加熱した。昇温速度は3.4℃/分とした。180℃に到達後、室温まで冷却した。スラリー温度が180℃であった時間は3分であった。反応液を同体積のヘキサンで3回洗浄して脂肪酸を除去した後、単糖類(グルコース)濃度、二糖類(セロビオース)濃度、オリゴ糖(セロトリオース)濃度及びHMF濃度をそれぞれ測定した。結果を表2に示す。
Example 4
10 g of microcrystalline powder cellulose (Sigma Aldrich) and 90 g of water were mixed. This water slurry and 9 g of caprylic acid (Wako Pure Chemical Industries, density 0.91 g / mL (20 ° C.)) were placed in a batch hydrothermal apparatus (Start 200 New Quick, volume 180 mL manufactured by Nitto Koatsu), and the upper space was purged with nitrogen. Heated with stirring. The heating rate was 3.4 ° C./min. After reaching 180 ° C., it was cooled to room temperature. The time during which the slurry temperature was 180 ° C. was 3 minutes. After the reaction solution was washed three times with the same volume of hexane to remove fatty acids, the monosaccharide (glucose) concentration, disaccharide (cellobiose) concentration, oligosaccharide (cellotriose) concentration, and HMF concentration were measured. The results are shown in Table 2.
比較例3
 カプリル酸を添加しなかった以外は実施例4と同様にして反応液を得た。
Comparative Example 3
A reaction solution was obtained in the same manner as in Example 4 except that caprylic acid was not added.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、セルロースを炭素数8の脂肪酸及び水の存在下で加熱処理した実施例4ではグルコース、セロビオース及びセロトリオースの生成量が多く、一方でグルコース生成量に対するHMFの生成量を低く抑えることができた。これに対し、脂肪酸を添加しなかった比較例3では、グルコース、セロビオース及びセロトリオースの生成量は少なく、グルコース生成量に対するHMF生成量は多いという結果であった。 As apparent from Table 2, in Example 4 in which cellulose was heat-treated in the presence of C8 fatty acid and water, the production amount of glucose, cellobiose and cellotriose was large, while the production amount of HMF relative to the glucose production amount was We were able to keep it low. On the other hand, in Comparative Example 3 in which no fatty acid was added, the production amounts of glucose, cellobiose and cellotriose were small, and the HMF production amount was large with respect to the glucose production amount.
 多糖類を含む水スラリー槽(11)
 供給ポンプ(12)
 水スラリー供給タンク(13)
 脂肪酸供給槽(21)
 供給ポンプ(22)
 反応器(31)
 加熱炉(32)
 冷却器(41)
 フィルター(51)
 反応液回収タンク(61)
Water slurry tank containing polysaccharides (11)
Supply pump (12)
Water slurry supply tank (13)
Fatty acid supply tank (21)
Supply pump (22)
Reactor (31)
Heating furnace (32)
Cooler (41)
Filter (51)
Reaction liquid recovery tank (61)

Claims (6)

  1.  多糖類を、炭素数6~12の脂肪酸及び水の存在下、140~300℃の加熱処理を行う、単糖類、二糖類、及び/又はオリゴ糖の製造方法。 A method for producing monosaccharides, disaccharides, and / or oligosaccharides, in which a polysaccharide is heated at 140 to 300 ° C. in the presence of a fatty acid having 6 to 12 carbon atoms and water.
  2.  水に対する炭素数6~12の脂肪酸の質量比が0.01~0.5である請求項1記載の単糖類、二糖類、及び/又はオリゴ糖の製造方法。 The method for producing monosaccharides, disaccharides and / or oligosaccharides according to claim 1, wherein the mass ratio of the fatty acid having 6 to 12 carbon atoms to water is 0.01 to 0.5.
  3.  加熱処理を水の飽和蒸気圧以上の圧力で行う、請求項1又は2記載の単糖類、二糖類、及び/又はオリゴ糖の製造方法。 The method for producing monosaccharides, disaccharides and / or oligosaccharides according to claim 1 or 2, wherein the heat treatment is performed at a pressure equal to or higher than a saturated vapor pressure of water.
  4.  加熱処理を0.3~10MPaの圧力で行う、請求項1~3のいずれか1項に記載の単糖類、二糖類、及び/又はオリゴ糖の製造方法。 The method for producing monosaccharides, disaccharides and / or oligosaccharides according to any one of claims 1 to 3, wherein the heat treatment is performed at a pressure of 0.3 to 10 MPa.
  5.  多糖類としてセルロース含有バイオマスを用いる、請求項1~4のいずれか1項に記載の単糖類、二糖類、及び/又はオリゴ糖の製造方法。 The method for producing monosaccharides, disaccharides and / or oligosaccharides according to any one of claims 1 to 4, wherein cellulose-containing biomass is used as the polysaccharide.
  6.  単糖類/HMF質量比が5以上である、単糖類、二糖類、及び/又はオリゴ糖含有組成物。 Monosaccharide / disaccharide and / or oligosaccharide-containing composition having a monosaccharide / HMF mass ratio of 5 or more.
PCT/JP2010/005141 2009-08-21 2010-08-20 Preparation method for monosaccharide, disaccharide, and/or oligosaccharide WO2011021399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009192299 2009-08-21
JP2009-192299 2009-08-21

Publications (1)

Publication Number Publication Date
WO2011021399A1 true WO2011021399A1 (en) 2011-02-24

Family

ID=43606857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005141 WO2011021399A1 (en) 2009-08-21 2010-08-20 Preparation method for monosaccharide, disaccharide, and/or oligosaccharide

Country Status (3)

Country Link
JP (1) JP2011062196A (en)
MY (1) MY169490A (en)
WO (1) WO2011021399A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102389709B1 (en) * 2019-11-29 2022-04-22 씨제이제일제당 주식회사 Composition for producing allulose and method of producing allulose using thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113041A (en) * 1977-03-09 1978-10-03 Ajinomoto Kk Sugar solution making method
JP2005110609A (en) * 2003-10-09 2005-04-28 Japan Organo Co Ltd Method and apparatus for refining sugar solution
JP2005533494A (en) * 2002-06-27 2005-11-10 ダニスコ スイートナーズ オイ Sugar crystallization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113041A (en) * 1977-03-09 1978-10-03 Ajinomoto Kk Sugar solution making method
JP2005533494A (en) * 2002-06-27 2005-11-10 ダニスコ スイートナーズ オイ Sugar crystallization
JP2005110609A (en) * 2003-10-09 2005-04-28 Japan Organo Co Ltd Method and apparatus for refining sugar solution

Also Published As

Publication number Publication date
JP2011062196A (en) 2011-03-31
MY169490A (en) 2019-04-15

Similar Documents

Publication Publication Date Title
Han et al. An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid
Chen et al. Co-production of oligosaccharides and fermentable sugar from wheat straw by hydrothermal pretreatment combined with alkaline ethanol extraction
de CM Miranda et al. Pineapple crown delignification using low-cost ionic liquid based on ethanolamine and organic acids
Manaf et al. Fractionation of oil palm fronds (OPF) hemicellulose using dilute nitric acid for fermentative production of xylitol
JP5126728B2 (en) Lignocellulosic biomass processing method
Ávila et al. Cello-oligosaccharides production from lignocellulosic biomass and their emerging prebiotic applications
Valladares-Diestra et al. Citric acid assisted hydrothermal pretreatment for the extraction of pectin and xylooligosaccharides production from cocoa pod husks
US20090098616A1 (en) Enzymatic treatment of lignocellulosic materials
Sukhbaatar et al. Optimization of hot-compressed water pretreatment of bagasse and characterization of extracted hemicelluloses
Fang et al. Co-production of xylooligosaccharides and glucose from birch sawdust by hot water pretreatment and enzymatic hydrolysis
Su et al. Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis
JP2012504937A (en) Enzymatic treatment of lignocellulosic material under vacuum
JP5136984B2 (en) Method for producing sugar
Kodama et al. Enhancing pressurized water extraction of β-glucan from barley grain by adding CO2 under hydrothermal conditions
JP2012504936A (en) Treatment of lignocellulosic materials using disc refining and enzymatic hydrolysis
Ji et al. Production of xylose from diluted sulfuric acid hydrolysis of wheat straw
Yang et al. Delignification of poplar for xylo-oligosaccharides production using lactic acid catalysis
Wu et al. Characterize the physicochemical structure and enzymatic efficiency of agricultural residues exposed to γ-irradiation pretreatment
CA2777130A1 (en) Process for treating biomass to increase accessibility of polysaccharides contained therein to hydrolysis and subsequent fermentation, and polysaccharides with increased accessibility
Sujithra et al. Production and optimization of xanthan gum from three-step sequential enzyme treated cassava bagasse hydrolysate
Cheng et al. Production of bacterial cellulose by Acetobacter xylinum through utilizing acetic acid hydrolysate of bagasse as low-cost carbon source
Su et al. Coproduction of xylooligosaccharides and monosaccharides from hardwood by a combination of acetic acid pretreatment, mechanical refining and enzymatic hydrolysis
CA2906917A1 (en) Carbon purification of concentrated sugar streams derived from pretreated biomass
US20150087030A1 (en) Pretreatment Composition for Biomass Conversion Process
Vandenbossche et al. Bio-catalytic action of twin-screw extruder enzymatic hydrolysis on the deconstruction of annual plant material: case of sweet corn co-products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012500185

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000630

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 10809745

Country of ref document: EP

Kind code of ref document: A1