WO2011021389A1 - 干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局 - Google Patents

干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局 Download PDF

Info

Publication number
WO2011021389A1
WO2011021389A1 PCT/JP2010/005101 JP2010005101W WO2011021389A1 WO 2011021389 A1 WO2011021389 A1 WO 2011021389A1 JP 2010005101 W JP2010005101 W JP 2010005101W WO 2011021389 A1 WO2011021389 A1 WO 2011021389A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
macro
femto base
interference control
femto
Prior art date
Application number
PCT/JP2010/005101
Other languages
English (en)
French (fr)
Inventor
段勁松
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10809735.3A priority Critical patent/EP2469912B1/en
Priority to JP2011527585A priority patent/JP5602742B2/ja
Priority to US13/390,614 priority patent/US8666391B2/en
Priority to CN201080035233.5A priority patent/CN102498732B/zh
Publication of WO2011021389A1 publication Critical patent/WO2011021389A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to an interference control method, a macro terminal, a macro base station, and a femto base station, and in particular, a macro terminal (MUE: Macro User Equipment) is a micro wireless base station apparatus (hereinafter referred to as “Femto base station (HNB)”.
  • the present invention relates to an interference control method, a macro terminal, a macro base station, and a femto base station that detect the situation when the node approaches (denotes Node B) ”, and reduce or avoid interference with the macro terminal.
  • femto base stations into cellular systems represented by WCDMA (Wideband Code Division Multiple Access) or LTE (Long Term Evolution).
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the femto base station is installed in a building such as a general home or office where the propagation environment is relatively poor and covers an area with a radius of several tens of meters or less. Yes.
  • the base station performs transmission at the maximum power on the downlink by performing high-speed bit rate transmission on the downlink data channel (PDSCH). Therefore, the interference problem in the downlink of the LTE system is serious. That is, a user of a femto base station installed near the macro base station receives large interference from the macro base station. On the other hand, a macro cell user located near a femto base station installed near the cell edge of the macro base station receives large interference from the femto base station.
  • PDSCH downlink data channel
  • a multiple access access method such as OFDM is adopted.
  • OFDMA frequency resource block
  • interference occurs when the frequency resource block (frequency RB) assigned to the macro base station and the frequency RB assigned to the femto base station overlap at least partially.
  • the magnitude of this interference varies depending on the relative position between the macro base station and the femto base station.
  • Patent Document 1 and Patent Document 2 disclose the sharing of the frequency between the existing macro base station and the femto base station.
  • Patent Documents 1 and 2 disclose that when the macro base station and the femto base station share a frequency, the transmission power of the femto base station is fixed without being controlled. In this case, there is a description that the macro cell throughput is significantly deteriorated. The following techniques have been proposed for this problem. That is, assuming a third-generation mobile communication WCDMA system, the CPICH reception power from the macro base station with the largest common pilot channel (CPICH) reception power and the path loss (Path The transmission power of the femto base station is determined according to (Loss) (see, for example, Patent Document 1).
  • CPICH common pilot channel
  • transmission power is controlled as follows. That is, first, the femto base station measures the reception power of CPICH transmitted from each macro base station, and calculates the initial transmission power based on the largest CPICH reception power. Next, the femto base station causes the femto terminal to measure the received power of the pilot transmitted from the femto base station or the path loss from the femto base station to the femto terminal and report the measurement result. Then, the femto base station adjusts the transmission power in consideration of the CPICH reception power transmitted from the macro base station and the path loss reported from the femto terminal. By performing such transmission power control, it is possible to reduce downlink mutual interference given from the femto base station to the macro terminal or downlink mutual interference given from the macro base station to the femto terminal.
  • An object of the present invention is to provide an interference control method, a macro terminal, and a macro base capable of accurately reducing or avoiding interference with a macro terminal by a femto base station in real time when a macro terminal exists in the vicinity of the femto base station. And providing a femto base station.
  • the object of the present invention is to improve the coverage performance and bit rate of the femto terminal when there is no macro terminal in the vicinity of the femto base station, and to deteriorate the performance of the femto base station, femto terminal or macro terminal.
  • An interference control method, a macro terminal, a macro base station, and a femto base station can be provided.
  • the interference control method of the present invention is an interference used in a communication system including a macro base station, a macro terminal communicating with the macro base station, a femto base station, and a femto terminal registered in the femto base station.
  • the macro terminal measures a reference signal received quality (RSRQ) of the femto base station and an RSRQ of the macro base station, and the measured RSRQ of the femto base station.
  • RSRQ reference signal received quality
  • the difference value between the RSRQ of the macro base station and the RSRQ of the macro base station is larger than a predetermined first threshold, the macro terminal sends a request for starting interference control, the difference value, and the identification information of the femto base station.
  • Transmitting to the macro base station, and the macro base station is based on the request, the difference value, and the identification information. Transmitting an interference control activation request signaling to the femto base station specified by the identification information, and the femto base station is registered with the femto base station based on the interference control activation request signaling And performing interference control on the femto terminal.
  • the interference control method of the present invention is used for a communication system including a macro base station, a macro terminal communicating with the macro base station, a femto base station, and a femto terminal registered in the femto base station.
  • the macro terminal measures the transmission power or reception power (RSRP: Reference Signal Received Power) of the reference signal of the femto base station, and the macro terminal determines the result of the measurement.
  • RSRP Reference Signal Received Power
  • the macro terminal of the present invention includes a measurement unit that measures the RSRQ of the femto base station and the RSRQ of the macro base station, a difference value between the RSRQ of the femto base station measured by the measurement unit and the RSRQ of the macro base station, and a predetermined value. Based on the comparison result with the threshold value, when detecting a femto base station existing in the vicinity by the detecting means for detecting a femto base station existing in the vicinity, and for the femto base station existing in the vicinity A configuration is provided that includes a request for starting interference control, the difference value, and transmission means for transmitting the identification information of the femto base station to the macro base station.
  • the macro base station of the present invention is based on the request to activate interference control for the femto base station, the difference value between the RSRQ of the femto base station and the RSRQ of the macro base station, and the identification information of the femto base station, Determining means for determining whether or not to activate interference control in the femto base station specified by the identification information; and when determining that the interference control is to be activated by the determining means, interference control activation request signaling is transmitted to the femto base station. And a transmission means for transmitting to the base station.
  • the femto base station of the present invention receives a reception unit for receiving interference control activation request signaling for requesting activation of interference control, and a femto terminal registered in the own station according to the received interference control activation request signaling, And a control means for performing interference control.
  • the present invention when a macro terminal exists in the vicinity of a femto base station, it is possible to accurately reduce or avoid interference with the macro terminal by the femto base station in real time. In addition, when there is no macro terminal in the vicinity of the femto base station, the coverage performance and bit rate of the femto terminal can be improved, and performance deterioration of the femto base station, femto terminal, or macro terminal can be prevented.
  • FIG. 5 is a flowchart showing overall processing of interference control according to Embodiment 1 of the present invention; The flowchart which shows the process of the femto base station detection which exists in the vicinity in the macro terminal which concerns on Embodiment 1 of this invention.
  • Sequence diagram showing interference control according to Embodiment 1 of the present invention The figure which shows the determination method of the threshold value which concerns on Embodiment 1 of this invention.
  • the figure which shows the modification of FIG. Sequence diagram showing interference control according to Embodiment 2 of the present invention The figure which shows the content of the addition control signaling which concerns on Embodiment 2 of this invention
  • the flowchart which shows the process of the interference control which concerns on Embodiment 3 of this invention The figure which shows the determination method of the threshold value which concerns on Embodiment 3 of this invention.
  • Embodiment 1 In order to perform interference control according to the present embodiment, necessary functions are added to each of the macro terminal, the macro base station, and the femto base station.
  • the femto base station activates (turns on) interference control such as total transmission power reduction and frequency division. Further, when there is no macro terminal near the femto base station, the femto base station does not start or stops (turns off) interference control such as total transmission power reduction and frequency division.
  • the macro terminal measures the RSRQ of a CSG femto base station (CSG-HNB: a femto base station to which no macro terminal is registered) having the largest RSRP.
  • RSRP is the received power of a reference signal (pilot) of a certain cell, generally represents the strength of the received power of the downlink reference signal of that cell, and the influence of path loss from the base station of that cell Contains.
  • the RSRQ is a result of dividing the RSRP of a reference signal of a certain cell by the total interference power, and is generally a parameter representing the channel quality of the cell.
  • the macro terminal obtains a difference between the RSRQ measurement result of the CSG femto base station and the RSRQ measurement result of the Source macro base station. Further, the macro terminal compares the obtained difference with a variable threshold, and if the difference value is larger than the threshold, the difference value, the ON request for interference control, and the Cell ⁇ Global of the CSG femto base station having the largest RSRP. ID (hereinafter referred to as “CGI”) is reported (transmitted) to the macro base station. Thereafter, the macro base station that has received the report notifies the CSG femto base station with the largest RSRP of interference control activation request (IC ON Request) signaling. The received femto base station starts interference control (transmission power reduction, frequency division, etc.) for the femto terminal registered in the femto base station according to the notification.
  • CGI interference control activation request
  • the macro base station may notify the femto base station of the interference control activation request signaling via a server, or the macro base station and the femto base through communication using wired or wireless communication. You may hand it directly to the station.
  • the difference between the RSRQ of the Target cell (femto base station) having the largest RSRP measured by the macro terminal and the RSRQ of the Cell (Source macro base station) is used. That is, determination is made by comparing the measured value of Target-Soucecell RSRQ ⁇ ⁇ ⁇ Offset with a predetermined threshold value (Threshold).
  • the threshold value is variable and is determined according to the measured value of the source macro base station (MNB) MNRSRP (S- RSRP).
  • the macro terminal uses the RSRQ of the femto base station (CSG-HNB) having the largest RSRP and the RSRQ of the source macro base station (MNB). Measure the difference value. Then, the macro terminal compares the difference value with a predetermined threshold (Target-Source cell RSRQ offset Threshold).
  • the above-mentioned threshold is variable, and when the RSRP of the macro base station measured at the macro terminal is small, the threshold is set small, and when the RSRP of the macro base station measured at the macro terminal is large, the threshold is set large.
  • the above threshold value setting method has an advantage that interference control can be easily activated at a macro cell edge that is susceptible to interference from a femto base station existing in the vicinity of the macro terminal.
  • FIG. 1 is a diagram showing a concept of interference control according to the present embodiment.
  • detection means for detecting the presence of a femto base station in the vicinity of the macro terminal, and whether the femto base station exists in the vicinity of the macro terminal in the above femto base station. And means for adaptively starting or stopping the interference control.
  • the macro terminal becomes the starting point (Trigger Driven) and detects the approach of the femto base station. Further, the macro terminal measures a difference value (Target-Source cell RSRQ Offset) between the RSRQ of the femto base station and the RSRQ of the macro base station, and compares the measurement result with a predetermined threshold value. Based on the comparison result, the macro terminal determines whether there is a femto base station in the vicinity. If the macro terminal detects the presence of the femto base station in the vicinity as a result of the determination, the macro terminal sends the difference value as the measurement result, the femto base station CGI in the vicinity, and the interference control ON request to the local station.
  • a difference value (Target-Source cell RSRQ Offset) between the RSRQ of the femto base station and the RSRQ of the macro base station
  • the source macro base station that has received the report notifies the interference control request signaling to the femto base station specified by the CGI using network signaling (step ST11 and step ST12).
  • the femto base station identified by the CGI receives the interference control request signaling and activates (turns on) the interference control.
  • the interference control means that the total transmission power reduction of the femto base station or the frequency division operation between the macro cell and the femto cell is executed. Also, the total transmission power reduction is to reduce the total transmission power of the femto base station in a predetermined period in order to reduce the interference power to the macro terminal when there is a macro terminal near the femto base station.
  • frequency division means that when a macro terminal exists in the vicinity of a femto base station, the femto base station uses a macro base station that communicates with the macro terminal in order to reduce interference power to the macro terminal. This means that another frequency is scheduled to the femto terminal (HUE) of the own cell while avoiding the frequency to be transmitted.
  • FIG. 2 is a diagram showing a configuration of mobile communication system 100 according to Embodiment 1 of the present invention.
  • FIG. 2 shows a case where the femto base station 104 is installed in the macro cell 111 covered by the macro base station 101.
  • one macro base station 101 and one femto base station 104 are arranged, but the number of macro base stations and the number of femto base stations are not limited to this.
  • the mobile communication system 100 includes a macro base station 101, macro terminals 102 and 103, a femto base station 104, and a femto terminal 105.
  • the macro base station 101 generally forms one wide macro cell 111 with high transmission power (for example, a maximum of 43 dBm to 46 dBm).
  • the macro base station 101 transmits downlink data to the macro terminals 102 and 103 existing in the macro cell 111. Further, the macro base station 101 receives uplink data from the macro terminals 102 and 103 existing in the macro cell 111.
  • macrocells range from hundreds of meters to tens of kilometers.
  • the maximum transmission power of the femto base station 104 is limited to a low value (generally, 20 dBm or less). That is, the femto base station 104 forms one small femto cell 112.
  • the femto base station 104 transmits downlink data to the femto terminal 105 that exists in the femto cell 112 and is registered in the femto base station 104, and receives uplink data from the femto terminal 105.
  • femtocells range from a few meters to tens of meters.
  • the femto cell range (that is, coverage) is determined by the ratio of desired wave signal power and interference power, it is greatly influenced by the set position of the macro base station 101.
  • the interference power from the macro base station 101 is large immediately below the macro base station 101 (that is, the macro cell 101). Therefore, when the femto base station 104 is installed here, the femto cell 112 is small. Tend to shrink.
  • the interference power from the macro base station 101 is small at the macro cell edge (Macro cell edge), the femto cell 112 tends to expand greatly when the femto base station 104 is installed here.
  • the femto base station 104 When the femto base station 104 is installed in the macro cell 111, the femto base station 104 can provide one femto cell 112 to the femto terminal 105 and perform high bit rate data transmission.
  • the macro terminals 102 and 103 an area with a large interference is formed. Therefore, depending on the situation, there may be a case where communication between the macro terminals 102 and 103 becomes impossible due to large interference from the femtocell 112. This is called a macro terminal service hall (MUE Service Hole).
  • MUE Service Hole MUE Service Hole
  • the macro cell 111 includes two macro terminals, that is, the macro terminal 102 and the macro terminal 103. Further, the macro terminal 102 is approaching the femto base station 104. Further, the macro terminal 103 is away from the femto base station 104.
  • the macro terminal 102 approaches the femto base station 104 and exists at the cell edge of the femto cell 112. This means that the macro terminal 102 is approaching the macro terminal service hole formed by the femto base station 104, and there is a high possibility that the macro terminal 102 will be unable to communicate. Therefore, when there is a macro terminal approaching the femto base station 104 (macro terminal 102 in FIG. 2), the femto base station 104 determines whether or not the macro terminal is close (that is, the macro terminal It is necessary to detect the presence of a terminal) and to perform interference control on the femto terminal 105 registered in the own cell.
  • a macro terminal (macro terminal 103 in FIG. 2) exists at a location away from the femto base station 104, interference from the femto base station 104 to the macro terminal is weak enough to be ignored. Therefore, when all the macro terminals are located away from the femto base station 104, the femto base station 104 is less likely to take interference control measures such as transmission power reduction or frequency division, and depending on the situation, interference may occur. There is no need to take control.
  • the femto base station 104 takes a transmission power reduction measure, there is a possibility that the femto terminal 105 of the own cell may reduce the femto cell 112 or lower the bit rate.
  • the femto terminal 105 of the own cell may lead to a decrease in usable frequency or a decrease in bit rate. is there.
  • the femto base station 104 it is necessary for the femto base station 104 to take interference control measures such as transmission power reduction or frequency division only when the macro terminals 102 and 103 exist in the vicinity of the femto base station 104.
  • the femto base station 104 turns off interference control and increases transmission power or transmits / receives using all frequencies, so that the femto terminal 105 of its own cell.
  • FIG. 3 is a block diagram showing a configuration of the macro terminal 102. Since the macro terminal 103 has the same configuration as the macro terminal 102, the description thereof is omitted.
  • the macro terminal 102 includes an antenna 301, a transmission unit 307, a reception unit 310, and an interference measurement report unit 311.
  • the reception unit 310 includes a demodulation unit 302, a decoding unit 303, and a received power measurement unit 304.
  • the interference measurement report unit 311 includes a neighborhood femto detection unit 305 and a measurement report / interference control request unit 306.
  • the antenna 301 receives a signal and outputs it to the demodulator 302.
  • the antenna 301 transmits the transmission signal input from the transmission unit 307.
  • Demodulation section 302 performs predetermined demodulation on the signal input from antenna 301 and outputs the demodulated signal to decoding section 303 and received power measurement section 304.
  • the decoding unit 303 performs predetermined decoding such as error correction decoding on the signal output from the demodulation unit 302. Specifically, when detecting the femto base station existing in the vicinity of the macro terminal 102, the decoding unit 303 detects the RSRP and RSRQ measurement results of the strongest femto base station measured by the receiving unit 310, or the femto in the vicinity. Broadcast information (BCH: Broadcast Channel) from the base station is decoded. Decoding section 303 then outputs the decoded data to neighboring femto detection section 305 in interference measurement reporting section 311.
  • BCH Broadcast Channel
  • the received power measuring unit 304 measures the RSRP of the femto base station existing in the vicinity of the macro terminal 102 using the signal output from the demodulating unit 302, and the measured value is measured in the vicinity femto detecting unit in the interference measurement reporting unit 311. 305 and the measurement report / interference control requesting unit 306.
  • Received power measurement section 304 uses the signal output from demodulation section 302 to measure the RSRP of its own macro base station, and measures the measured values in the vicinity femto detection section 305 and measurement report / interference control request section 306. Output to.
  • the neighboring femto detection unit 305 acquires the RSRP of the source macro base station of the macro terminal 102 or the path loss measurement value from the macro base station 101 included in the decoded data input from the decoding unit 303.
  • the neighborhood femto detection unit 305 uses a threshold (Target) as a criterion for determining whether or not to notify an interference control request (Interference Control Request) according to the acquired RSRP of the source macro base station or the measured value of path loss.
  • a threshold a threshold for determining whether or not to notify an interference control request (Interference Control Request) according to the acquired RSRP of the source macro base station or the measured value of path loss.
  • -Source RSRQ Offset Threshold a threshold for determining whether or not to notify an interference control request (Interference Control Request) according to the acquired RSRP of the source macro base station or the measured value of path loss.
  • the neighborhood femto detection unit 305 acquires the RSRQ measurement result of the CSG femto base station having the largest RSRP, which is included in the decoded data input from the decoding unit 303. Also, the nearby femto detection unit 305 uses the acquired RSRQ measurement result to calculate the difference between the RSRQ of the CSG femto base station with the largest RSRP and the RSRQ of the source macro base station (that is, Target-Source RSRQ Offset). calculate.
  • the vicinity femto detection unit 305 compares the calculation result with the above-described threshold value, and detects the comparison result of the femto base station existing in the vicinity (when viewed from the femto base station, the vicinity femto base station exists. Macro terminal detection).
  • the vicinity femto detection unit 305 determines whether or not the femto base station 104 exists in the vicinity of the macro terminal 102 using the determination index calculated above. Specifically, the vicinity femto detection unit 305 determines that the femto base station 104 exists in the vicinity when the measurement value of Target-Source RSRQ Offset is larger than the above threshold value. On the other hand, when the measured value of Target-Source RSRQ Offset is equal to or less than the above threshold, the neighborhood femto detection unit 305 determines that the femto base station does not exist in the vicinity.
  • the neighboring femto detection unit 305 outputs the determination result to the measurement report / interference control request unit 306.
  • the measurement report / interference control request unit 306 reports to the source macro base station of its own station when the determination result input from the vicinity femto detection unit 305 is a determination result that a femto base station exists in the vicinity of the macro terminal 102. Therefore, the measurement value of Target-Source RSRQ Offset, the CGI of the corresponding CSG femto base station, and the transmission unit 307 are output. In addition, the measurement report / interference control requesting unit 306 also outputs an interference control ON request for the corresponding femto base station to the transmitting unit 307 in order to report to the source macro base station of the own station.
  • the measurement report / interference control request unit 306 does not need to make an interference control request to the femto base station in the case of a determination result that the femto base station does not exist in the vicinity of the macro terminal.
  • the data is not output to the transmission unit 307.
  • the transmission unit 307 generates a transmission signal by encoding and modulating the measurement value of Target-Source RSRQ Offset input from the measurement report / interference control request unit 306, the CGI of the corresponding CSG femto base station, and transmission data. To do. In addition, the transmission unit 307 outputs the generated transmission signal to the antenna 301.
  • FIG. 4 is a block diagram showing a configuration of the macro base station 101.
  • the macro base station 101 includes an antenna 401, a transmission unit 407, a reception unit 410, and an interference control unit 411.
  • the reception unit 410 includes a demodulation unit 402, a decoding unit 403, and a received power measurement unit 404.
  • the interference control unit 411 includes a MUE measurement report reception and interference control determination unit 405, and an interference control ON / OFF request unit 406.
  • the antenna 401 receives a signal and outputs it to the demodulator 402.
  • the antenna 401 transmits the transmission signal input from the transmission unit 407.
  • Demodulation section 402 performs predetermined demodulation on the signal input from antenna 401 and outputs the demodulated signal to decoding section 403 and received power measurement section 404.
  • the decoding unit 403 performs predetermined decoding such as error correction decoding on the signal output from the demodulation unit 402 and outputs the decoded data to the MUE measurement report reception and interference control determination unit 405.
  • Received power measurement section 404 measures uplink total received power or total interference power at a macro base station including neighboring femtocells, and outputs the measured value to interference control ON / OFF request section 406.
  • the MUE measurement report reception and interference control determination unit 405 obtains a measurement result report from the macro terminal included in the decoded data input from the decoding unit 403. Also, the MUE measurement report reception and interference control determination unit 405 determines whether or not to request interference control from the corresponding femto base station based on the acquired report. In addition, if the MUE measurement report reception and interference control determination unit 405 determines that the interference control is requested, an interference control request is transmitted in order to notify the corresponding femto base station of the interference control request signaling using network signaling. Signaling is output to the interference control ON / OFF request unit 406.
  • the MUE measurement report reception and interference control determination unit 405 acquires a measurement result report away from the femto base station existing in the vicinity of the macro terminal included in the decoded data input from the decoding unit 403, or the macro terminal
  • the interference control ON / OFF request unit 406 is controlled to turn off the interference control.
  • the interference control ON / OFF request unit 406 outputs an interference control ON request to the transmission unit 407 when the interference control request signaling is input from the MUE measurement report reception and the interference control determination unit 405. Further, the interference control ON / OFF request unit 406 outputs an interference control OFF request to the transmission unit 407 in accordance with control for turning off the interference control of the MUE measurement report reception and the interference control determination unit 405.
  • the transmission unit 407 encodes and modulates the interference control ON request or the interference control OFF request input from the interference control ON / OFF request unit 406 and the transmission data, and generates a transmission signal. In addition, the transmission unit 407 outputs the generated transmission signal to the antenna 401.
  • FIG. 5 is a block diagram showing the configuration of the femto base station 104.
  • the femto base station 104 includes an antenna 501, a transmission unit 507, a reception unit 510, and an interference control unit 511.
  • the reception unit 510 includes a demodulation unit 502, a decoding unit 503, and a received power measurement unit 504.
  • the interference control unit 511 includes an MNB interference control signaling (Signaling) receiving unit 505 and a transmission power / frequency division control unit 506.
  • the antenna 501 receives a signal and outputs it to the demodulator 502.
  • the antenna 501 transmits the transmission signal input from the transmission unit 507.
  • Demodulation section 502 demodulates the received signal input from antenna 501 and outputs the demodulated signal to decoding section 503 and received power measurement section 504.
  • Decoding section 503 performs predetermined decoding such as error correction decoding on the signal output from demodulation section 502 and outputs the decoded data to MBS interference control signaling receiving section 505.
  • Received power measuring section 504 measures the uplink total received power or total interference power at the femto base station, and outputs the measured value as auxiliary information to transmission power / frequency division control section 506. .
  • the transmission power / frequency division control unit 506 of the present invention starts or stops interference control mainly using interference control signaling from the macro base station. A method of using auxiliary information from the received power measuring unit 504 is omitted here.
  • the MNB interference control signaling receiving unit 505 checks whether or not the decoded data output from the decoding unit 503 includes an interference control ON request or an interference control OFF request from the macro base station 101. Further, when an interference control ON request from the macro base station is included, the MNB interference control signaling reception unit 505 activates (turns on) the interference control to the transmission power / frequency division control unit 506. Instruct. Also, the MNB interference control signaling receiving unit 505 stops (turns off) interference control to the transmission power / frequency division control unit 506 when an interference control OFF request from the macro base station is included. Instruct.
  • the transmission power / frequency division control unit 506 starts or stops the interference control according to an instruction from the MNB interference control signaling reception unit 505.
  • the femto base station 104 uses a timer to turn on the interference control.
  • the elapsed time may be measured, and interference control may be stopped (turned off) when a certain time has elapsed.
  • FIG. 6 is a flowchart showing the entire process of interference control according to the present embodiment.
  • the interference control In the interference control according to the present embodiment, first, when the macro terminals 102 and 103 become the starting point and approach the femto base station 104, the state of interference from the femto base station 104 is measured by itself, and the measured value Is compared with a predetermined variable threshold. If the measurement value is larger than the threshold value as a result of the comparison, the macro terminals 102 and 103 report the measurement value and the CGI of the femto base station 104 to the source macro base station 101. Further, the source macro base station 101 that has received the report notifies the corresponding femto base station 104 of an interference control ON request through network signaling. Further, the corresponding femto base station 104 that has received the notification starts interference control.
  • the entire process of interference control will be described in detail.
  • step ST601 the macro terminals 102 and 103 measure the RSRP of the wideband (or subband) of their own source macro base station.
  • the macro terminals 102 and 103 receive the BCH signal of their own source macro base station, measure all the absolute values of RSRP transmission power, RSRP, and the like from the macro base station.
  • the path loss may be calculated.
  • step ST601 it becomes a criterion for determining whether or not to notify an interference control request (Interference Control Request) according to the RSRP of its own source macro base station (or a measured value of path loss from the macro base station).
  • TS RSRQ Offset TH the threshold for determining whether or not to notify an interference control request (Interference Control Request) according to the RSRP of its own source macro base station (or a measured value of path loss from the macro base station).
  • step ST602 the RSRQ of the strongest CSG femto base station and the source macro base are measured using the RSRQ measurement results of the CSG femto base station (CSG-HNB) having the largest RSRP, starting from the macro terminals 102 and 103.
  • the difference value (TS RSRQ Offset) from the RSRQ of the station is calculated.
  • the calculation result is compared with the threshold value calculated in step ST601.
  • the comparison result is used as a determination index for detection of a femto base station existing in the vicinity (detection of a macro terminal existing in the vicinity when viewed from the femto base station).
  • a comparison value between the difference value (TS RSRQ Offset) between the RSRQ of the strongest CSG femto base station and the RSRQ of the source macro base station and the threshold is used as a determination index for determining whether or not a femto base station exists in the vicinity.
  • the present embodiment is not limited to this, and the comparison result between the difference value between the RSRP of the strongest CSG femto base station and the RSRP of the source macro base station and the threshold value, and whether or not the femto base station exists in the vicinity. It may be a determination index.
  • Step ST603 it is determined whether or not there is a femto base station in the vicinity of the macro terminal using the index calculated as described above. Specifically, when the difference value is larger than the threshold value (YES in step ST603), it is determined that a femto base station exists in the vicinity.
  • step ST603 when the difference value is equal to or smaller than the threshold value (NO in step ST603), it is determined that there is no femto base station in the vicinity.
  • step 604 if the determination result in step 603 is a determination result in which a femto base station exists in the vicinity of the macro terminal, the difference value, the RSRP and RSRQ of the corresponding femto base station are transmitted to the source macro base station. Together with the measured CGI of the CSG femto base station to the source macro base station of the local station. Also, an interference control ON request for the corresponding femto base station is reported to the source macro base station.
  • the interference control ON request is not reported to the source macro base station.
  • the source macro base station receives the measurement result report from the macro terminal and determines whether or not to request interference control from the corresponding femto base station.
  • the source macro base station notifies the corresponding femto base station of the interference control request signaling using the network signaling.
  • the corresponding femto base station receives the interference control request signaling and activates (or turns on) the interference control.
  • Step 606 the femto base station checks whether there is an interference control ON request from the macro base station. When there is an interference control ON request from the macro base station, the femto base station activates (turns on) the interference control.
  • step ST607 the femto base station activates interference control.
  • step ST608 it is determined whether or not the macro terminal existing in the vicinity of the femto base station has left the vicinity of the femto base station (ie, femto cell or service hole).
  • the interference control is stopped (or turned off). Further, when the macro terminal is not away from the vicinity of the femto base station, the interference control is continued.
  • step 608 the femto base station checks whether there is an interference control OFF request from the macro base station. When there is an interference control OFF request from the macro base station, the interference control is stopped (OFF).
  • the femto base station measures the elapsed time from the start of the interference control by a timer, and when a certain time has elapsed, the interference control May be stopped (turned off).
  • step ST609 if the macro terminal existing in the vicinity of the femto base station is not detected using the determination result in step ST608, the interference control is stopped (or turned off).
  • FIG. 7 is a flowchart showing processing for detecting a femto base station existing in the vicinity in the macro terminals 102 and 103.
  • step ST701 the macro terminal measures the RSRP of the wideband (or subband) of its own source macro base station.
  • the macro terminal determines a threshold value that is a criterion for determining whether or not to notify the interference control request according to the RSRP of its own source macro base station (or the measured value of path loss from the macro base station).
  • step ST702 using the RSRQ measurement result of the CSG femto base station with the largest RSRP starting from the macro terminal, the difference between the RSRQ of the CSG femto base station with the largest RSRP and the RSRQ of the source macro base station Calculate Moreover, the difference value which is the calculation result is compared with the threshold value calculated in step ST701, and the comparison result is detected in the vicinity of the femto base station (when viewed from the femto base station, the macro terminal existing in the vicinity. Detection index).
  • step ST703 the macro terminal determines whether or not a femto base station exists in the vicinity of the macro terminal using the index calculated above. Specifically, when the difference value is larger than the threshold value, it is determined that a femto base station exists in the vicinity.
  • Step ST704 when the macro terminal detects the presence of the femto base station in the vicinity of the macro terminal, the macro terminal detects the difference value and the RSPG and RSRQ of the femto base station as measured CSG. Along with the CGI of the femto base station, report to your source macro base station. Also, an interference control ON request for the corresponding femto base station is reported to the source macro base station.
  • FIG. 8 is a sequence diagram showing interference control according to the present embodiment.
  • the macro terminal when the macro terminal starts from the macro terminal and approaches the femto base station, the macro terminal itself measures the interference state from the femto base station. Then, the macro terminal reports the measurement result and the CGI together to the source macro base station. The source macro base station that has received the report notifies the corresponding femto base station of the interference control ON request through network signaling. The corresponding femto base station that has received the notification starts interference control.
  • Macro terminal measures RSRP of wideband (or subband) of its source macro base station.
  • the macro terminal determines a threshold value that is a criterion for determining whether or not to notify an interference control request (InterfernceControl) Request) according to the RSRP of the source macro base station (or the measured value of the path loss from the macro base station). To do.
  • InterfernceControl InterfernceControl
  • the difference between the RSRQ of the CSG femto base station with the largest RSRP and the RSRQ of the source macro base station is calculated using the RSRQ measurement result of the CSG femto base station with the largest RSRP starting from the macro terminal.
  • the difference value which is the calculation result is compared with a threshold value, and the comparison result is a determination index of detection of a femto base station existing in the vicinity (when viewed from the femto base station, detection of a macro terminal existing in the vicinity).
  • the macro terminal determines whether there is a femto base station in the vicinity of the macro terminal using the index calculated above. Specifically, when the difference value is larger than the threshold value, it is determined that a femto base station exists in the vicinity.
  • the CSG femto base that has measured the difference value and the RSRP and RSRQ of the femto base station with respect to the source macro base station. Report with the station's CGI. Also, an interference control ON request for the corresponding femto base station is reported to the source macro base station.
  • the Source macro base station receives the report of the measurement result from the macro terminal, and determines whether or not to make an interference control ON request to the corresponding femto base station. If it is determined that an interference control ON request is to be made, the interference control request signaling is notified to the corresponding femto base station using network signaling.
  • the corresponding femto base station activates (or turns on) the interference control in response to the interference control request signaling.
  • the femto base station transmits to the macro base station signaling (Interference Control ACK) that it has started interference control.
  • the femto base station checks whether there is an interference control ON request from the macro base station. When there is an interference control ON request from the macro base station, the femto base station activates (turns on) the interference control.
  • the sequence of interference control OFF at the femto base station when the macro terminal leaves the femto base station is as follows.
  • the macro terminal also detects when it starts from itself and leaves a nearby femto base station. Similarly, the difference between the RSRQ of the CSG femto base station with the largest RSRP and the RSRQ of the source macro base station can be used as the determination index.
  • the macro terminal determines that it is away from the femto base station existing in the vicinity.
  • the macro terminal When it is determined that the macro terminal is away from a nearby femto base station, the macro terminal notifies the source macro base station of an interference control stop (OFF) request.
  • OFF interference control stop
  • the macro base station notifies the corresponding femto base station of an interference control OFF request.
  • the femto base station checks whether there is an interference control OFF request from the macro base station. When there is an interference control OFF request from the macro base station, the femto base station stops (turns OFF) the interference control. At the same time, the femto base station transmits signaling to the macro base station that it has stopped interference control (Interference Control ⁇ ⁇ OFF).
  • the femto base station uses the timer to measure the elapsed time since the start of the interference control, and the fixed time has elapsed. In such a case, the interference control may be stopped (turned off).
  • FIG. 9 is a diagram illustrating a threshold value determination method.
  • the RSRQ of the CSG femto base station having the largest RSRP is used.
  • the difference from the RSRQ of the source macro base station is obtained.
  • the macro terminal compares the obtained difference value with a variable threshold value. When the difference value is larger than the threshold value, the macro terminal reports the CSG CGI to the source macro base station, and the macro base station notifies the corresponding CSG femto base station of the interference control request signaling. Further, the femto base station that has received the notification starts interference control according to the notification.
  • the threshold value can be set to be variable. Specifically, the macro terminal sets the threshold value lower as it approaches the macro cell edge.
  • the adaptive calculation can be performed linearly as shown in FIG. 9 according to the measurement value of Macro RSRP.
  • Target-Source RSRQ Offset Threshold is the relative position between the macro base station or femto base station and the macro terminal, the path loss of the macro base station or femto base station, the path loss of the macro terminal, and their difference, And it calculates in consideration of the coverage of the femto base station.
  • the Target-Source RSRQ Offset Threshold is set to be smaller as the RSRP of the macro base station measured at the macro terminal is smaller, and is set to be larger as the RSRP of the macro base station measured at the macro terminal is larger.
  • the horizontal axis in FIG. 9 is the RSRP of the macro base station having the largest value measured at the macro terminal.
  • RSRP is related to the position of the macro terminal in the macro cell.
  • RSRP varies depending on the position of the macro terminal in the macro cell, and is directly related to the geometry of the macro cell. When RSRP is large, it can be generally determined that the macro terminal is located immediately below the macro cell. On the other hand, when the RSRP is small, it can be generally determined that the macro terminal is located at the macro cell edge.
  • FIG. 10 is a diagram showing a modification of FIG.
  • the threshold value is set to be variable for detection of a femto base station (or a macro terminal existing in the vicinity) existing in the vicinity.
  • Threshold values are calculated for each of a plurality of sections in consideration of the position of the femto cell in the macro cell. As an example of how to divide the sections, the RSRP of the macro base station is divided into three sections.
  • FIG. 10 shows the concept of Target-Source RSRQ ⁇ ⁇ ⁇ ⁇ ⁇ Offset Threshold in three stages by dividing RSRP into three sections.
  • the coverage performance and bit rate of the femto terminal can be improved, and the femto base station, femto terminal, or macro can be improved. It is possible to prevent terminal performance degradation.
  • FIG. 11 is a sequence diagram showing interference control according to Embodiment 2 of the present invention.
  • the source macro base station when the source macro base station notifies the femto base station of the interference control ON request, the macro terminal QoS, GBR (Guaranteed Bit Rate), Period, restriction / use are compared with FIG. Additional control signaling such as frequency and used Bandwidth is notified to the target femto base station (Target Femto), and the target femto base station performs interference control with reference to the signaling.
  • FIG. 12 is a diagram showing the contents of additional control signaling according to the present embodiment.
  • the macro terminal QoS is a type of service quality request of the macro terminal receiving the interference.
  • GBR is the bit rate that the macro terminal wants to guarantee.
  • Period is a desired time interval for performing interference control in the femto base station in order to reduce interference with the macro terminal.
  • the limited frequency is a frequency that is avoided during interference control at the femto base station.
  • the used frequency is the frequency currently used by the macro terminal.
  • the used bandwidth is the bandwidth currently used by the macro terminal.
  • the QoS, data size, communication time, frequency used, and the like of the macro terminal existing in the vicinity of the femto base station are considered. Interference control in the femto base station can be realized.
  • FIG. 13 is a flowchart showing processing of interference control according to Embodiment 3 of the present invention.
  • FIG. 13 uses an index different from that in FIG. 7 as a criterion for detection of the femto base station existing in the vicinity of the macro terminal, as compared with FIG. Specifically, the path loss of the largest femto base station is used as a criterion.
  • step ST1301 the macro terminal determines a threshold value as a criterion for determining whether to notify the interference control ON request according to the RSRP of its own source macro base station (or the path loss from the macro base station).
  • the macro terminal uses the BCH of the CSG femto base station with the largest RSRP, the RSRP transmission power, and the RSRP measurement result as a starting point, and calculates the path loss of the femto base station. Compare the calculation result with the threshold value calculated above, and determine the detection of the femto base station existing in the vicinity (when viewed from the femto base station, the detection of the macro terminal existing in the vicinity). Use as an indicator.
  • Step ST1303 it is determined whether or not there is a femto base station in the vicinity of the macro terminal using the index calculated above. Specifically, when the path loss value of the femto base station existing in the vicinity is smaller than a predetermined threshold, the macro terminal determines that the femto base station exists in the vicinity.
  • the macro terminal determines that there is no femto base station in the vicinity.
  • step ST1304 when it is detected that a femto base station exists in the vicinity of the macro terminal based on the above determination result, the macro terminal detects the corresponding femto base station from the source macro base station.
  • the path loss value of the femto base station is reported to its own source macro base station together with the measured CGI of the CSG femto base station.
  • an interference control ON request for the corresponding femto base station is reported to the source macro base station.
  • the macro terminal When the presence of a femto base station is not detected in the vicinity of the macro terminal, the macro terminal does not report an interference control ON request to the corresponding femto base station to the source macro base station.
  • the macro terminal measures the RSRP transmission power or RSRP of the RSRP CSG femto base station having the largest value, and the femto base station Calculate the path loss.
  • the macro terminal also compares the calculated path loss with a variable threshold value. When the path loss is larger than the threshold, CSG CGI is reported to the source macro base station.
  • the macro base station that has received the report notifies the corresponding CSG femto base station of interference control activation request signaling. Further, the femto base station that has received the notification starts interference control according to the notification.
  • RSRP differs depending on the location of the macro terminal in the macro cell, and is directly related to the macro cell geometry. When RSRP is large, it can be generally determined that the macro terminal is located immediately below the macro base station. On the other hand, when the RSRP is small, it can be generally determined that the macro terminal is located at the macro cell edge.
  • the path loss value of the femto base station with the largest RSRP calculated by the macro terminal is compared with a predetermined threshold (Threshold).
  • the threshold value is variable and is determined according to the measured value of the source macro base station (MNB) MNRSRP (S- RSRP).
  • FIG. 14 is a diagram illustrating a method for determining a threshold (Femto Path Loss Threshold).
  • the horizontal axis of FIG. 14 is the RSRP in the largest RSRP macro base station.
  • RSRP relates to a position where a macro terminal exists in a macro cell.
  • shaft of FIG. 14 is a threshold value.
  • Threshold value can be set variable. Specifically, the threshold is set higher as the macro cell edge is approached.
  • the threshold can be calculated linearly and adaptively according to the RSRP of the macro base station. According to such a threshold setting method, interference control can be easily activated at the macro cell edge.
  • the determination function for determining the threshold value includes the relative position between the macro base station or the femto base station and the macro terminal, the path loss of the macro base station or the femto base station, the path loss of the macro terminal and their difference, and the coverage of the femto base station. It is calculated considering
  • the coverage performance and bit rate of the femto terminal can be improved, and the femto base station, femto terminal, or macro can be improved. It is possible to prevent terminal performance degradation.
  • the interference control method between the macro base station and the CSG femto base station is mainly described.
  • the present invention is not limited to this, and the methods are not limited to this.
  • the present invention may be applied for interference control between a macro base station, an OSG (Open Subscriber Group) femto base station, and a hybrid femto base station.
  • OSG Open Subscriber Group
  • a hybrid femto base station it is used for interference control between a macro base station and a base station that controls a cell in a narrower range than a macro base station (for example, a base station forming a pico cell) other than a femto base station. Also good.
  • the present invention can be applied to cell mobile communication systems, macro cell and femto cell interference reduction, interference avoidance, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 フェムト基地局の近辺にマクロ端末が存在しない場合に、フェムト端末のカバレッジ性能及びビットレートを向上させることができるとともに、フェムト基地局、フェムト端末またはマクロ端末の性能劣化を防ぐことができる干渉制御方法。この方法では、フェムト基地局(104)のRSRQとマクロ基地局(101)のRSRQとの差分値が所定の閾値よりも大きい場合に、マクロ端末(102)、(103)が、干渉制御を起動させる要求と、差分値と、フェムト基地局(104)の識別情報とをマクロ基地局(101)に送信する。マクロ基地局(101)が、要求と、差分値と、識別情報とに基づいて、識別情報により特定されるフェムト基地局(104)に対して干渉制御起動要求シグナリングを送信する。フェムト基地局(104)が、干渉制御起動要求シグナリングに基づいて、フェムト基地局(104)に登録されたフェムト端末(105)に対して、干渉制御を行う。

Description

干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局
 本発明は、干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局に関し、特にマクロ端末(MUE:Macro User Equipment)が超小型無線基地局装置(以下、「フェムト基地局(HNB:Femto, Home Node B)」と記載する)に接近した場合に、それを検出し、フェムト基地局がマクロ端末への干渉を低減、または回避する干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局に関する。
 WCDMA(Wideband Code Division Multiple Access)またはLTE(Long Term Evolution)に代表されるセルラーシステムに、フェムト基地局を導入する検討が盛んに行われている。フェムト基地局が比較的伝搬環境の悪い一般家庭またはオフィス等の建物内へ設置され、半径数十メートル以下のエリアをカバーすることにより、フェムト基地局設置エリア内の無線伝送高速化が期待されている。
 既存のセルラーシステムは、都市部では、全運用周波数バンドを使用していることが想定される。このため、フェムト基地局専用周波数バンドの確保は、困難である。従って、フェムト基地局の導入に際しては、既存のマクロ基地局(MNB:Macro NodeB)とフェムト基地局とで周波数が共用されることが有力である。また、フェムト基地局設置者のみがそのフェムト基地局を使って通信を行えるCSG(Closed Subscriber Group)によるアクセス制限機能がサポートされる見込みである。
 これらの条件の下でフェムト基地局を既存のセルラーシステムに導入すると、フェムト基地局から既存のマクロ端末に与える下り回線の相互干渉、または、既存のマクロ基地局からフェムトセルユーザ(つまり、フェムト端末(HUE:Home User Equipment)に与える下り回線の相互干渉が問題となる。
 特に、LTEシステムでは、下りデータチャネル(PDSCH)で高速ビットレート伝送が行われることにより、基地局が下り回線において最大電力での送信を行う。従って、LTEシステムの下り回線における干渉問題は深刻である。即ち、マクロ基地局の近くに設置されるフェムト基地局のユーザは、マクロ基地局から大きな干渉を受ける。一方、マクロ基地局のセルエッジ付近に設置されるフェムト基地局の近くに位置するマクロセルユーザは、フェムト基地局から大きな干渉を受ける。
 また、LTEシステムの下り回線では、OFDMのような多元接続アクセス方式が採用されている。OFDMAシステムでは、マクロ基地局に割り当てられた周波数リソースブロック(周波数RB)とフェムト基地局に割り当てられた周波数RBとが少なくとも一部だけ重なるときに、干渉が発生する。この干渉の大きさは、マクロ基地局とフェムト基地局との相対位置よって変化する。
 特許文献1及び特許文献2には、上記した既存のマクロ基地局とフェムト基地局との間の周波数の共用についての開示がある。また、特許文献1及び特許文献2には、マクロ基地局とフェムト基地局とが周波数を共用する場合に、フェムト基地局の送信電力を制御せずに固定とすることが開示されている。そして、この場合に、マクロセルスループットは、著しく劣化するとの記載がある。この問題に対して、次の技術が提案されている。即ち、第3世代移動通信であるWCDMAシステムを想定して、共通パイロットチャネル(CPICH)の受信電力が一番大きいマクロ基地局からのCPICH受信電力、及び、フェムト基地局自身が確保したいパスロス(Path Loss)に応じて、フェムト基地局の送信電力が決定される(例えば、特許文献1参照)。
 具体的には、特許文献1に記載されたフェムト基地局では、次のようにして送信電力が制御される。すなわち、まず、フェムト基地局が、各マクロ基地局から送信されるCPICHの受信電力を測定し、一番大きいCPICH受信電力に基づいて初期送信電力を算出する。次に、フェムト基地局は、フェムト端末に対して、フェムト基地局から送信されたパイロットの受信電力、又は、フェムト基地局からフェムト端末までのパスロスを測定させ、測定結果を報告させる。そして、フェムト基地局は、マクロ基地局から送信されたCPICHの受信電力及びフェムト端末から報告されたパスロスを考慮して、送信電力を調整する。このような送信電力制御が行われることにより、フェムト基地局からマクロ端末に与える下り回線の相互干渉、又は、マクロ基地局からフェムト端末に与える下り回線の相互干渉を低減することができる。
米国特許出願公開第2009/0042594明細書 米国特許出願公開第2009/0042596明細書
 しかしながら、上記した従来の干渉低減方法には、以下のような問題点がある。
 (1)マクロ端末がフェムト基地局の近傍に存在する場合には両者間の干渉が問題となる一方、フェムト基地局の近傍にマクロ端末が存在しない場合に、フェムト基地局がマクロ基地局への影響を考慮した干渉制御を実施すると、必要以上にフェムト基地局の総送信電力が削減される。このため、フェムト基地局のスループット及びカバレッジ性能が劣化する。従って、フェムト基地局の近辺にマクロ端末が存在する場合と存在しない場合とに応じて、異なる干渉制御対策が必要である。
 (2)フェムト基地局からマクロ端末に対する干渉の深刻さは、マクロ内でのフェムト基地局の設置位置に依存する。まず、マクロセルのエッジにフェムト基地局が設置される場合に、干渉の問題が大きくなる。従って、マクロ基地局とフェムト基地局との位置関係に応じた干渉制御が必要となる。
 本発明の目的は、フェムト基地局の近辺にマクロ端末が存在する場合に、リアルタイムでフェムト基地局によるマクロ端末への干渉を的確に削減または回避することができる干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局を提供することである。
 また、本発明の目的は、フェムト基地局の近辺にマクロ端末が存在しない場合に、フェムト端末のカバレッジ性能及びビットレートを向上させることができるとともに、フェムト基地局、フェムト端末またはマクロ端末の性能劣化を防ぐことができる干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局を提供することである。
 本発明の干渉制御方法は、マクロ基地局と、前記マクロ基地局と通信するマクロ端末と、フェムト基地局と、前記フェムト基地局に登録されたフェムト端末と、を備えた通信システムに用いられる干渉制御方法であって、前記マクロ端末において、前記フェムト基地局のリファレンス信号の受信品質(RSRQ:Reference Signal Received Quality)及び前記マクロ基地局のRSRQを測定するステップと、前記測定したフェムト基地局のRSRQとマクロ基地局のRSRQとの差分値が所定の第1の閾値よりも大きい場合に、前記マクロ端末が、干渉制御を起動させる要求と、前記差分値と、前記フェムト基地局の識別情報とを前記マクロ基地局に送信するステップと、前記マクロ基地局が、前記要求と、前記差分値と、前記識別情報とに基づいて、前記識別情報により特定される前記フェムト基地局に対して干渉制御起動要求シグナリングを送信するステップと、前記フェムト基地局が、前記干渉制御起動要求シグナリングに基づいて、前記フェムト基地局に登録された前記フェムト端末に対して、干渉制御を行うステップと、を有するようにした。
 また、本発明の干渉制御方法は、マクロ基地局と、前記マクロ基地局と通信するマクロ端末と、フェムト基地局と、前記フェムト基地局に登録されたフェムト端末と、を備えた通信システムに用いられる干渉制御方法であって、前記マクロ端末において、前記フェムト基地局のリファレンス信号の送信電力または受信電力(RSRP:Reference Signal Received Power)を測定するステップと、前記マクロ端末において、前記測定の結果に基づいて前記フェムト基地局との間のパスロスの値を算出するステップと、算出した前記パスロスの値が所定の閾値以下の場合に、前記マクロ端末が、干渉制御を起動させる要求と、前記パスロスの値と、前記フェムト基地局の識別情報とを前記マクロ基地局に送信するステップと、前記マクロ基地局において、前記要求と、前記パスロスの値と、前記識別情報とに基づいて、前記識別情報により特定される前記フェムト基地局に対して、干渉制御起動要求シグナリングを送信するステップと、前記フェムト基地局において、前記干渉制御起動要求シグナリングに基づいて、前記フェムト基地局に登録された前記フェムト端末に対して、干渉制御を行うステップと、を有するようにした。
 本発明のマクロ端末は、フェムト基地局のRSRQ及びマクロ基地局のRSRQを測定する測定手段と、前記測定手段により測定したフェムト基地局のRSRQとマクロ基地局のRSRQとの差分値と、所定の閾値との比較結果に基づいて、近辺に存在するフェムト基地局を検出する検出手段と、前記検出手段により前記近辺に存在するフェムト基地局を検出した場合に、前記近辺に存在するフェムト基地局に対する干渉制御を起動させる要求と、前記差分値と、前記フェムト基地局の識別情報とをマクロ基地局に送信する送信手段と、を具備する構成を採る。
 本発明のマクロ基地局は、フェムト基地局に対する干渉制御を起動させる要求と、前記フェムト基地局のRSRQとマクロ基地局のRSRQとの差分値と、前記フェムト基地局の識別情報とに基づいて、前記識別情報により特定される前記フェムト基地局において干渉制御を起動させるか否かを判断する判断手段と、前記判断手段により干渉制御を起動させるものと判断した場合に干渉制御起動要求シグナリングを前記フェムト基地局に送信する送信手段と、を具備する構成を採る。
 本発明のフェムト基地局は、干渉制御の起動を要求する干渉制御起動要求シグナリングを受信する受信手段と、受信した前記干渉制御起動要求シグナリングに従って、自局に登録されているフェムト端末に対して、干渉制御を行う制御手段と、を具備する構成を採る。
 本発明によれば、フェムト基地局の近辺にマクロ端末が存在する場合に、リアルタイムでフェムト基地局によるマクロ端末への干渉を的確に削減または回避することができる。また、フェムト基地局の近辺にマクロ端末が存在しない場合に、フェムト端末のカバレッジ性能及びビットレートを向上させることができるとともに、フェムト基地局、フェムト端末またはマクロ端末の性能劣化を防ぐことができる。
本発明の実施の形態1に係る干渉制御のコンセプトを示す図 本発明の実施の形態1に係る移動通信システムの構成を示す図 本発明の実施の形態1に係るマクロ端末の構成を示すブロック図 本発明の実施の形態1に係るマクロ基地局の構成を示すブロック図 本発明の実施の形態1に係るフェムト基地局の構成を示すブロック図 本発明の実施の形態1に係る干渉制御の全体処理を示すフロー図 本発明の実施の形態1に係るマクロ端末における、近辺に存在するフェムト基地局検出の処理を示すフロー図 本発明の実施の形態1に係る干渉制御を示すシーケンス図 本発明の実施の形態1に係る閾値の決定方法を示す図 図9の変形例を示す図 本発明の実施の形態2に係る干渉制御を示すシーケンス図 本発明の実施の形態2に係る付加制御シグナリングの内容を示す図 本発明の実施の形態3に係る干渉制御の処理を示すフロー図 本発明の実施の形態3に係る閾値の決定方法を示す図
 以下本発明の実施の形態について、図面を参照しながら説明する。
 (実施の形態1) 
 本実施の形態に係る干渉制御を行うために、マクロ端末と、マクロ基地局と、フェムト基地局との各々において、必要な機能を追加する。フェムト基地局の近傍にマクロ端末が存在する場合には、フェムト基地局は、総送信電力削減及び周波数分割等の干渉制御を起動(ONに)する。また、フェムト基地局の近傍にマクロ端末が存在しない場合には、フェムト基地局は、総送信電力削減及び周波数分割等の干渉制御を起動しないかまたは停止(OFFに)する。
 本実施の形態において、マクロ端末は、RSRPが最も大きいCSGフェムト基地局(CSG-HNB:マクロ端末が登録されていないフェムト基地局)のRSRQを測定する。RSRPとは、あるセルのリファレンス信号(パイロット)の受信電力であり、一般的にそのセルの下りリンクのリファレンス信号の受信電力の強さを表し、またそのセルの基地局からのパスロスの影響も含んでいる。RSRQとは、あるセルのレファレンス信号のRSRPを総干渉電力で除算した結果であり、一般的にそのセルの通信路品質を表すパラメータである。
 また、マクロ端末は、CSGフェムト基地局のRSRQの測定結果と、Sourceマクロ基地局のRSRQの測定結果との差分を求める。また、マクロ端末は、求めた差分と可変の閾値とを比較し、差分値が閾値よりも大きい場合には、差分値、干渉制御のON要求、及びRSRPが最も大きいCSGフェムト基地局のCell Global ID(以下、「CGI」と記載する)をマクロ基地局に報告(送信)する。その後、報告を受けたマクロ基地局は、RSRPが最も大きいCSGフェムト基地局に対して、干渉制御起動要求(IC ON Request)シグナリングを通知する。また、通知を受けたフェムト基地局は、通知に従って、フェムト基地局に登録されているフェムト端末に対して、干渉制御(送信電力削減及び周波数分割等)を開始する。
 なお、マクロ基地局がフェムト基地局に対して、干渉制御起動要求シグナリングを通知する方法は、サーバーを介して行っても良いし、有線または無線等を用いた通信により、マクロ基地局とフェムト基地局との間で直接受け渡ししても良い。
 干渉制御ON要求の判定基準としては、マクロ端末が測定したRSRPが一番大きいTarget cell(フェムト基地局)のRSRQとCell(Sourceマクロ基地局)のRSRQとの差分を用いる。すなわち、Target - Soucecell RSRQ Offsetの測定値を、所定の閾値(Threshold)と比較して判定する。また、その閾値は可変であり、Sourceマクロ基地局(MNB) RSRP (S- RSRP)の測定値に応じて決定する。
 具体的には、マクロ端末が検出するフェムト基地局が複数ある場合に、マクロ端末は、RSRPの最も大きいフェムト基地局(CSG-HNB)のRSRQと、Sourceマクロ基地局(MNB)のRSRQとの差分値を測定する。そして、マクロ端末は、差分値と所定の閾値(Target-Source cell RSRQ offset Threshold)とを比較する。
 上記の閾値は可変であり、マクロ端末において測定したマクロ基地局のRSRPが小さい場合には閾値を小さく設定し、マクロ端末において測定したマクロ基地局のRSRPが大きい場合には閾値を大きく設定する。
 上記の閾値の設定方法によれば、マクロ端末の近辺に存在するフェムト基地局からの干渉を受けやすいマクロセルエッジ(Macro Cell Edge)では、容易に干渉制御を起動することができるメリットを有する。
 まず、本実施の形態における干渉制御のコンセプトについて説明する。
 図1は、本実施の形態に係る干渉制御のコンセプトを示す図である。
 本実施の形態に係る干渉制御では、マクロ端末の近傍にフェムト基地局の存在を検出する検出手段、及び上記のフェムト基地局において、マクロ端末の近傍にフェムト基地局が存在するか否かに応じて、適応的に干渉制御を起動または停止する手段を有する。
 図1より、マクロ端末は、起点(Trigger Driven)となって、フェムト基地局の接近を検出する。また、マクロ端末は、フェムト基地局のRSRQとマクロ基地局のRSRQの差分値(Target-Source cell RSRQ Offset)を測定し、測定結果と所定の閾値とを比較する。この比較結果に基づいて、マクロ端末は、近辺にフェムト基地局が存在するか否かを判定する。マクロ端末は、判定の結果、近辺にフェムト基地局の存在を検出した場合には、測定結果である差分値と、近辺に存在するフェムト基地局CGIと、干渉制御ON要求とを、自局のSourceマクロ基地局に報告する(ステップST10)。報告を受けたSourceマクロ基地局は、ネットワーク・シグナリング(Network Signaling)を用いて、上記のCGIにより特定されるフェムト基地局に対して、干渉制御要求シグナリングを通知する(ステップST11及びステップST12)。上記のCGIにより特定されるフェムト基地局は、干渉制御要求シグナリングを受けて、干渉制御を起動(ONに)する。
 ここで、干渉制御とは、フェムト基地局の総送信電力削減、またはマクロセルとフェムトセルとの間の周波数分割の動作を実行させることを意味する。また、総送信電力削減とは、フェムト基地局の近辺にマクロ端末が存在する場合に、そのマクロ端末への干渉電力を減らすために、フェムト基地局の総送信電力を所定期間において削減することを意味する。また、周波数分割とは、フェムト基地局の近辺にマクロ端末が存在する場合に、フェムト基地局は、そのマクロ端末への干渉電力を減らすために、そのマクロ端末と通信を行うマクロ基地局が使用する周波数を避けて、別の周波数を自セルのフェムト端末(HUE)にスケジュール(Schedule)することを意味する。
 以下に、上記の干渉制御について、詳細に説明する。
 図2は、本発明の実施の形態1に係る移動通信システム100の構成を示す図である。図2は、フェムト基地局104がマクロ基地局101のカバーするマクロセル111内に設置される場合を示す。また、図2では、1つのマクロ基地局101と1つのフェムト基地局104とが配置されているが、マクロ基地局の数及びフェムト基地局の数はこれに限定されるものではない。
 図2において、移動通信システム100は、マクロ基地局101と、マクロ端末102、103と、フェムト基地局104と、フェムト端末105とを有する。
 マクロ基地局101は、一般的に、高い送信電力(例えば、最大43dBm~46dBm)で1つの広いマクロセル111を形成する。マクロ基地局101は、マクロセル111に存在するマクロ端末102、103に対して下り回線(Downlink)データを送信する。また、マクロ基地局101は、マクロセル111に存在するマクロ端末102、103からの上り回線(Uplink)データを受信する。一般的に、マクロセルは、数百メートルから数十キロに及ぶ。
 フェムト基地局104がマクロセル111内に設置される場合には、フェムト基地局104の最大送信電力は、低い値(一般的には、20dBm以下)に制限される。即ち、フェムト基地局104は、1つの小さいフェムトセル112を形成する。フェムト基地局104は、フェムトセル112に存在し、且つ、フェムト基地局104に登録されたフェムト端末105に対して下り回線データを送信し、そのフェムト端末105からの上り回線データを受信する。一般的に、フェムトセルは、数メートルから数十メートルに及ぶ。
 また、フェムトセルの範囲(つまり、カバレッジ:Coverage)は、所望波信号電力と干渉電力との比で決まるため、マクロ基地局101の設定位置によって大きく影響される。一般的に、マクロ基地局101の直下(つまり、Macro cell site)では、マクロ基地局101からの干渉電力が大きいので、ここにフェムト基地局104が設置される場合には、フェムトセル112が小さく収縮する傾向にある。一方、マクロセルエッジ(Macro cell edge)では、マクロ基地局101からの干渉電力が小さいので、ここにフェムト基地局104が設置される場合には、フェムトセル112が大きく膨張する傾向にある。
 また、フェムト基地局104がマクロセル111内に設置される場合には、フェムト基地局104は、フェムト端末105に対して1つのフェムトセル112を提供し、高いビットレートのデータ伝送を行うことができるメリットがある一方、マクロ端末102、103にとっては、干渉の大きなエリアが形成されることになる。従って、状況によっては、フェムトセル112からの大きな干渉によって、マクロ端末102、103の通信が不能となるケースが発生する。これを、マクロ端末サービスホール(MUE Service Hole)と呼ぶ。
 図2において、マクロセル111には、マクロ端末102とマクロ端末103の2つのマクロ端末が存在する。また、マクロ端末102は、フェムト基地局104に接近している。また、マクロ端末103は、フェムト基地局104から離れている。ここで、フェムト基地局104からマクロ端末102、103への下り回線における干渉に関しては、マクロ端末102、103がフェムト基地局104に接近する程、干渉が大きくなる一方、マクロ端末102、103がフェムト基地局104から離れる程、干渉が小さくなる。
 図2において、マクロ端末102は、フェムト基地局104に接近し、フェムトセル112のセルエッジに存在している。これは、マクロ端末102がフェムト基地局104によって形成されたマクロ端末サービスホールに接近していることを意味し、マクロ端末102が通信不能に落ちる可能性が高くなる。従って、フェムト基地局104に接近するマクロ端末(図2において、マクロ端末102)が存在する場合には、フェムト基地局104は、マクロ端末が近接しているか否か(つまり、フェムトセル112にマクロ端末が存在しているか否か)を検出し、自セルに登録されたフェムト端末105に対して、干渉制御を実施することが必要である。
 一方、フェムト基地局104から離れた場所にマクロ端末(図2において、マクロ端末103)が存在する場合には、マクロ端末に対するフェムト基地局104からの干渉は、無視できる程度に弱い。従って、すべてのマクロ端末がフェムト基地局104から離れた場所に存在する場合には、フェムト基地局104は、送信電力削減または周波数分割などの干渉制御措置を取る必要性が低く、状況によっては干渉制御を取る必要が全く無い。
 また、フェムト基地局104が送信電力削減措置を取る場合には、自セルのフェムト端末105にとってフェムトセル112の縮小またはビットレートの低下に繋がる可能性がある。
 また、フェムト基地局104は、周波数分割等により、一部の周波数だけを使用する場合には、自セルのフェムト端末105においては、使用可能な周波数の低減またはビットレートの低下に繋がる可能性がある。
 従って、フェムト基地局104が送信電力削減または周波数分割などの干渉制御措置を取るのは、マクロ端末102、103がフェムト基地局104の近辺に存在する場合に限定する必要がある。一方、フェムト基地局104は、マクロ端末が近くに存在しない場合には、干渉制御をOFFにし、送信電力を増加するかまたはすべての周波数を用いて送受信することにより、自セルのフェムト端末105において、フェムトセル112の拡大またはビットレートの向上というメリットがある。
 次に、マクロ端末102、103の構成について、図3を用いて説明する。図3は、マクロ端末102の構成を示すブロック図である。なお、マクロ端末103は、マクロ端末102と同一構成を有するので、その説明を省略する。
 マクロ端末102は、アンテナ301と、送信部307と、受信部310と、干渉測定報告部311とを有する。受信部310は、復調部302と、復号部303と、受信電力測定部304とを有する。また、干渉測定報告部311は、近辺フェムト検出部305と、測定報告/干渉制御要求部306とを有する。
 アンテナ301は、信号を受信して復調部302へ出力する。また、アンテナ301は、送信部307から入力した送信信号を送信する。
 復調部302は、アンテナ301から入力した信号に所定の復調を行い、復調した信号を復号部303と受信電力測定部304とに出力する。
 復号部303は、復調部302から出力された信号に対して、誤り訂正復号などの所定の復号を行う。具体的には、復号部303は、マクロ端末102の近辺に存在するフェムト基地局を検出する際に、受信部310において測定した最強のフェムト基地局のRSRP及びRSRQの測定結果、または近辺のフェムト基地局からの報知情報(BCH:Broadcast Channel)を復号する。そして、復号部303は、復号データを干渉測定報告部311内の近辺フェムト検出部305に出力する。
 受信電力測定部304は、復調部302から出力された信号を用いて、マクロ端末102の近辺に存在するフェムト基地局のRSRPを測定し、測定値を干渉測定報告部311内の近辺フェムト検出部305及び測定報告/干渉制御要求部306に出力する。また、受信電力測定部304は、復調部302から出力された信号を用いて、自局のマクロ基地局のRSRPを測定し、測定値を近辺フェムト検出部305及び測定報告/干渉制御要求部306に出力する。
 近辺フェムト検出部305は、復号部303から入力した復号データに含まれる、マクロ端末102のSourceマクロ基地局のRSRP、またはマクロ基地局101からのパスロスの測定値を取得する。また、近辺フェムト検出部305は、取得したSourceマクロ基地局のRSRP、またはパスロスの測定値に応じて、干渉制御要求(Interference Control Request)を通知するか否かの判断基準となる、閾値(Target-Source RSRQ Offset Threshold)を決定する。また、近辺フェムト検出部305は、復号部303から入力した復号データに含まれる、RSRPの一番大きいCSGフェムト基地局のRSRQの測定結果を取得する。また、近辺フェムト検出部305は、取得したRSRQの測定結果を用いて、RSRPの一番大きいCSGフェムト基地局のRSRQとSourceマクロ基地局のRSRQとの差分(つまり、Target-Source RSRQ Offset)を計算する。また、近辺フェムト検出部305は、その計算結果と上記の閾値とを比較し、その比較結果を近辺に存在するフェムト基地局の検出(フェムト基地局から見ると、フェムト基地局の近辺に存在するマクロ端末の検出)の判定指標とする。
 また、近辺フェムト検出部305は、上記により計算した判定指標を用いて、マクロ端末102の近辺にフェムト基地局104が存在するか否かを判定する。具体的には、近辺フェムト検出部305は、Target-Source RSRQ Offsetの測定値が、上記の閾値より大きい場合には、フェムト基地局104が近辺に存在するものと判定する。一方、近辺フェムト検出部305は、Target-Source RSRQ Offsetの測定値が、上記の閾値以下の場合には、フェムト基地局が近辺に存在しないものと判定する。
 そして、近辺フェムト検出部305は、判定結果を測定報告/干渉制御要求部306に出力する。
 測定報告/干渉制御要求部306は、近辺フェムト検出部305から入力した判定結果が、マクロ端末102の近辺にフェムト基地局が存在する判定結果の場合に、自局のSourceマクロ基地局に報告するために、Target-Source RSRQ Offsetの測定値と、該当するCSGフェムト基地局のCGIと、送信部307へ出力する。また、測定報告/干渉制御要求部306は、自局のSourceマクロ基地局に報告するために、該当フェムト基地局に対する干渉制御ON要求も送信部307へ出力する。
 また、測定報告/干渉制御要求部306は、マクロ端末の近辺にフェムト基地局が存在しない判定結果の場合には、フェムト基地局に対する干渉制御要求を行う必要はないので、干渉制御ON要求等を送信部307へ出力しない。
 送信部307は、測定報告/干渉制御要求部306から入力したTarget-Source RSRQ Offsetの測定値と、該当するCSGフェムト基地局のCGIと、送信データとを符号化及び変調して送信信号を生成する。また、送信部307は、生成した送信信号をアンテナ301へ出力する。
 以上で、マクロ端末102の構成の説明を終える。
 次に、マクロ基地局101の構成について、図4を用いて説明する。図4は、マクロ基地局101の構成を示すブロック図である。
 マクロ基地局101は、アンテナ401と、送信部407と、受信部410と、干渉制御部411とを有する。また、受信部410は、復調部402と、復号部403と、受信電力測定部404とを有する。また、干渉制御部411は、MUE測定報告受信と干渉制御判断部405と、干渉制御ON/OFF要求部406とを有する。
 アンテナ401は、信号を受信して復調部402へ出力する。また、アンテナ401は、送信部407から入力した送信信号を送信する。
 復調部402は、アンテナ401から入力した信号に所定の復調を行い、復調した信号を復号部403と受信電力測定部404とに出力する。
 復号部403は、復調部402から出力された信号に対して、誤り訂正復号などの所定の復号を行い、復号したデータをMUE測定報告受信と干渉制御判断部405に出力する。
 受信電力測定部404は、周辺フェムトセルを含むマクロ基地局での上りリンク(Uplink)総受信電力または総干渉電力を測定し、測定値を干渉制御ON/OFF要求部406に出力する。
 MUE測定報告受信と干渉制御判断部405は、復号部403から入力した復号データに含まれる、マクロ端末からの測定結果の報告を取得する。また、MUE測定報告受信と干渉制御判断部405は、取得した報告に基づいて、該当フェムト基地局に対して、干渉制御を要求するか否かを判断する。また、MUE測定報告受信と干渉制御判断部405は、干渉制御を要求すると判断した場合には、ネットワーク・シグナリングを用いて、該当フェムト基地局に干渉制御要求シグナリングを通知するために、干渉制御要求シグナリングを干渉制御ON/OFF要求部406に出力する。また、MUE測定報告受信と干渉制御判断部405は、復号部403から入力した復号データに含まれる、マクロ端末の近辺に存在するフェムト基地局から離れる測定結果の報告を取得する場合、またはマクロ端末から干渉制御OFF要求を取得する場合には、干渉制御をOFFにするように干渉制御ON/OFF要求部406を制御する。
 干渉制御ON/OFF要求部406は、MUE測定報告受信と干渉制御判断部405から干渉制御要求シグナリングが入力した場合には、干渉制御ON要求を送信部407へ出力する。また、干渉制御ON/OFF要求部406は、MUE測定報告受信と干渉制御判断部405の干渉制御をOFFする制御に従って、干渉制御OFF要求を送信部407へ出力する。
 送信部407は、干渉制御ON/OFF要求部406から入力した干渉制御ON要求または干渉制御OFF要求と、送信データとを符号化及び変調して送信信号を生成する。また、送信部407は、生成した送信信号をアンテナ401へ出力する。
 以上で、マクロ基地局101の構成の説明を終える。
 次に、フェムト基地局104の構成について、図5を用いて説明する。図5は、フェムト基地局104構成を示すブロック図である。
 フェムト基地局104は、アンテナ501と、送信部507と、受信部510と、干渉制御部511とを有する。受信部510は、復調部502と、復号部503と、受信電力測定部504とを有する。また、干渉制御部511は、MNB干渉制御シグナリング(Signaling)受信部505と、送信電力/周波数分割制御部506とを有する。
 アンテナ501は、信号を受信して復調部502へ出力する。また、アンテナ501は、送信部507から入力した送信信号を送信する。
 復調部502は、アンテナ501から入力した受信信号を復調して復号部503及び受信電力測定部504へ出力する。
 復号部503は、復調部502から出力された信号に対して、誤り訂正復号などの所定の復号を行い、復号したデータをMBS干渉制御シグナリング受信部505へ出力する。
 受信電力測定部504は、そのフェムト基地局での上りリンク(Uplink)総受信電力または総干渉電力を測定し、測定値を補助的な情報として、送信電力/周波数分割制御部に506に出力する。本発明の送信電力/周波数分割制御部506は主にマクロ基地局からの干渉制御シグナリングを用いて、干渉制御を起動または停止する。受信電力測定部504からの補助的な情報の活用方法がここで省略する。
 MNB干渉制御シグナリング受信部505は、復号部503から出力された復号データに、マクロ基地局101からの干渉制御ON要求または干渉制御OFF要求が含まれているか否かをチェックする。また、MNB干渉制御シグナリング受信部505は、マクロ基地局からの干渉制御ON要求が含まれている場合には、送信電力/周波数分割制御部506に対して、干渉制御を起動(ONに)することを指示する。また、MNB干渉制御シグナリング受信部505は、マクロ基地局からの干渉制御OFF要求が含まれている場合には、送信電力/周波数分割制御部506に対して、干渉制御を停止(OFFに)することを指示する。
 送信電力/周波数分割制御部506は、MNB干渉制御シグナリング受信部505の指示に従って、干渉制御を起動または停止する。
 なお、フェムト基地局104において、マクロ基地局101からの干渉制御OFF要求を受信することが定義されていない場合には、フェムト基地局104は、タイマーを用いて、干渉制御をONにしてからの経過時間を測定し、一定時間経過した場合に、干渉制御を停止(OFFに)するようにしてもよい。
 以上で、フェムト基地局104の構成の説明を終える。
 図6は、本実施の形態に係る干渉制御の全体処理を示すフロー図である。
 本実施の形態に係る干渉制御において、最初に、マクロ端末102、103が起点となって、フェムト基地局104に接近する場合に、自らフェムト基地局104からの干渉状況などを測定し、測定値と可変の所定な閾値とを比較する。比較の結果、測定値が閾値より大きい場合には、マクロ端末102、103は、測定値とそのフェムト基地局104のCGIとを、Sourceマクロ基地局101に報告する。また、報告を受けたSourceマクロ基地局101は、ネットワーク・シグナリングを通じて、該当フェムト基地局104に対して、干渉制御ON要求を通知する。また、通知を受けた該当フェムト基地局104は、干渉制御を開始する。以下に、干渉制御の全体処理について、詳細に説明する。
 図6より、ステップST601において、マクロ端末102、103は、自分のSourceマクロ基地局のワイドバンド(Wideband)(またはサブバンド(Subband))のRSRPを測定する。
 また、ステップST601の変形例としては、マクロ端末102、103は、自分のSourceマクロ基地局のBCH信号を受信して、RSRPの送信電力の絶対値及びRSRPなどを全て測定し、マクロ基地局からのパスロスを計算することもある。
 また、ステップST601において、自分のSourceマクロ基地局のRSRP(またはマクロ基地局からのパスロスの測定値)に応じて、干渉制御要求(Interference Control Request)を通知するか否かの判断基準となる、閾値(T-S RSRQ Offset TH)を決定する。
 また、ステップST602において、マクロ端末102、103が起点となって、RSRPの最も大きなCSGフェムト基地局(CSG-HNB)のRSRQの測定結果を用い、最強のCSGフェムト基地局のRSRQとSourceマクロ基地局のRSRQとの差分値(T-S RSRQ Offset)を計算する。その計算結果をステップST601で計算した閾値と比較する。また、その比較結果を近辺に存在するフェムト基地局の検出(フェムト基地局から見た場合、近辺に存在するマクロ端末の検出)の判定指標とする。
 上記では、最強のCSGフェムト基地局のRSRQとSourceマクロ基地局のRSRQとの差分値(T-S RSRQ Offset)と、閾値との比較結果を、近辺にフェムト基地局が存在するか否かの判定指標にした。しかしながら、本実施の形態はこれに限らず、最強のCSGフェムト基地局のRSRPとSourceマクロ基地局のRSRPとの差分値と、閾値との比較結果を、近辺にフェムト基地局が存在するか否かの判定指標としても良い。
 また、ステップST603において、上記により計算した指標を用いて、マクロ端末の近辺にフェムト基地局が存在するか否かを判定する。具体的には、差分値が閾値より大きい場合(ステップST603においてYES)には、近辺にフェムト基地局が存在するものと判定する。
 また、差分値が閾値以下の場合(ステップST603においてNO)には、近辺にフェムト基地局が存在しないものと判定する。
 また、ステップ604において、ステップ603における判定結果が、マクロ端末の近辺にフェムト基地局が存在する判定結果の場合には、Sourceマクロ基地局に、差分値と、該当するフェムト基地局のRSRP及びRSRQとを、測定したCSGフェムト基地局のCGIと一緒に、自局のSourceマクロ基地局に報告する。また、該当するフェムト基地局に対する干渉制御ON要求もSourceマクロ基地局に報告する。
 一方、マクロ端末の近辺にフェムト基地局が存在しない判定結果の場合には、干渉制御ON要求をSourceマクロ基地局に報告しない。
 ステップ605において、Sourceマクロ基地局は、マクロ端末からの測定結果の報告を受信し、該当するフェムト基地局に対して、干渉制御を要求するか否かの判断を行う。干渉制御を要求するものと判断した場合には、Sourceマクロ基地局は、ネットワーク・シグナリングを用いて、該当するフェムト基地局に対して、干渉制御要求シグナリングを通知する。
 そして、該当するフェムト基地局は、干渉制御要求シグナリングを受けて、干渉制御を起動(またはONに)する。
 また、ステップ606において、フェムト基地局は、マクロ基地局から干渉制御ON要求があるか否かをチェックする。マクロ基地局から干渉制御ON要求がある場合には、フェムト基地局は、干渉制御を起動(ONに)する。
 ステップST607において、フェムト基地局は、干渉制御を起動する。
 また、ステップST608において、フェムト基地局の近辺に存在するマクロ端末が、フェムト基地局の近辺(即ち、フェムトセルまたはサービス・ホール)から離れた否かを判定する。マクロ端末が、フェムト基地局の近辺から離れる場合には、干渉制御を停止(またはOFFに)する。また、マクロ端末が、フェムト基地局の近辺から離れていない場合には、干渉制御を継続する。
 また、ステップ608において、フェムト基地局は、マクロ基地局から干渉制御OFF要求があるか否かをチェックする。マクロ基地局からの干渉制御OFF要求がある場合には、干渉制御を停止(OFFに)する。
 なお、マクロ基地局からの干渉制御OFF要求が定義されない場合には、フェムト基地局は、タイマーにより、干渉制御を開始してからの経過時間を測定し、一定時間が経過した場合に、干渉制御を停止(OFFに)するようにしてもよい。
 また、ステップST609において、ステップST608における判断結果を用いて、フェムト基地局の近辺に存在するマクロ端末を検出しない場合には、干渉制御を停止(またはOFFに)する。
 以上で、干渉制御の全体処理の説明を終える。
 次に、マクロ端末102、103における、近辺に存在するフェムト基地局の検出の処理について、図7を用いて説明する。図7は、マクロ端末102、103における、近辺に存在するフェムト基地局の検出の処理を示すフロー図である。
 ステップST701において、マクロ端末は、自分のSourceマクロ基地局のワイドバンド(またはサブバンド)のRSRPを測定する。
 マクロ端末は、自分のSourceマクロ基地局のRSRP(またはマクロ基地局からのパスロスの測定値)に応じて、干渉制御要求を通知するか否かの判断基準となる、閾値を決定する。
 また、ステップST702において、マクロ端末が起点となって、RSRPの最も大きいCSGフェムト基地局のRSRQの測定結果を用い、RSRPの最も大きいCSGフェムト基地局のRSRQとSourceマクロ基地局のRSRQとの差分を計算する。また、その計算結果である差分値とステップST701で計算した閾値とを比較し、比較結果を近辺に存在するフェムト基地局の検出(フェムト基地局から見た場合には、近辺に存在するマクロ端末の検出)の判定指標とする。
 ステップST703において、マクロ端末は、上記により計算した指標を用いて、マクロ端末の近辺にフェムト基地局が存在するか否かを判定する。具体的には、上記の差分値が、閾値より大きい場合には、近辺にフェムト基地局が存在するものと判定する。
 また、ステップST704において、マクロ端末は、マクロ端末の近辺にフェムト基地局の存在を検出した場合には、Sourceマクロ基地局に、差分値と、フェムト基地局のRSRP及びRSRQとを、測定したCSGフェムト基地局のCGIと一緒に、自分のSourceマクロ基地局に報告する。また、該当するフェムト基地局に対する干渉制御ON要求もSourceマクロ基地局に報告する。
 マクロ端末の近辺においてフェムト基地局の存在を検出しない場合には、該当するフェムト基地局に対する干渉制御ON要求をSourceマクロ基地局に報告しない。
 以上で、マクロ端末102、103における、近辺に存在するフェムト基地局の検出の処理についての説明を終える。
 次に、本実施の形態に係る干渉制御について、図8を用いてさらに詳細に説明する。
 図8は、本実施の形態に係る干渉制御を示すシーケンス図である。
 図8において、マクロ端末が起点となって、マクロ端末がフェムト基地局に接近する場合に、マクロ端末は自らフェムト基地局からの干渉状況などを測定する。そして、マクロ端末は、測定結果とCGIとを一緒に、Sourceマクロ基地局に報告する。報告を受けたSourceマクロ基地局は、ネットワーク・シグナリングを通じて、該当するフェムト基地局に干渉制御ON要求を通知する。通知を受けた該当フェムト基地局は、干渉制御を開始する。
 マクロ端末、マクロ基地局及びフェムト基地局の制御シーケンスを下記に説明する。
 マクロ端末は、自分のSourceマクロ基地局のワイドバンド(またはサブバンド)のRSRPを測定する。
 マクロ端末は、自分のSourceマクロ基地局のRSRP(またはマクロ基地局からのパスロスの測定値)に応じて、干渉制御要求(InterfernceControl Request)を通知するか否かの判断基準となる、閾値を決定する。
 マクロ端末が起点となって、RSRPの最も大きいCSGフェムト基地局のRSRQの測定結果を用いて、RSRPの最も大きいCSGフェムト基地局のRSRQとSourceマクロ基地局のRSRQとの差分を計算する。その計算結果である差分値と閾値とを比較し、その比較結果を近辺に存在するフェムト基地局の検出(フェムト基地局から見た場合には、近辺に存在するマクロ端末の検出)の判定指標とする。
 マクロ端末は、上記により計算した指標を用いて、マクロ端末の近辺にフェムト基地局が存在するか否かを判定する。具体的には、上記の差分値が、閾値より大きい場合には、近辺にフェムト基地局が存在するとものと判定する。
 また、マクロ端末は、マクロ端末の近辺にフェムト基地局の存在を検出した場合には、Sourceマクロ基地局に対して、差分値と、フェムト基地局のRSRP及びRSRQとを、測定したCSGフェムト基地局のCGIと一緒に報告する。また、該当するフェムト基地局に対する干渉制御ON要求もSourceマクロ基地局に報告する。
 また、Sourceマクロ基地局(図8において、Source eNB)は、マクロ端末からの測定結果の報告を受信し、該当するフェムト基地局に対して、干渉制御ON要求をするか否かについて判断する。干渉制御ON要求するものと判断した場合には、ネットワーク・シグナリングを用いて、該当するフェムト基地局に対して、干渉制御要求シグナリングを通知する。
 また、該当するフェムト基地局は、干渉制御要求シグナリングを受けて、干渉制御を起動(またはONに)する。同時に、フェムト基地局は、自分が干渉制御を起動したというシグナリング(Interference Control ACK)をマクロ基地局に送信する。
 また、フェムト基地局は、マクロ基地局からの干渉制御ON要求があるか否かをチェックする。フェムト基地局は、マクロ基地局からの干渉制御ON要求がある場合には、干渉制御を起動(ONに)する。
 一方、マクロ端末がフェムト基地局から離れる場合におけるフェムト基地局での干渉制御OFFのシーケンスは、以下の通りである。
 マクロ端末は、自らが起点となって、近辺に存在するフェムト基地局から離れる場合の検出も行う。その判断指標として、同じく、RSRPの最も大きいCSGフェムト基地局のRSRQとSourceマクロ基地局のRSRQとの差分を利用することができる。
 上記の差分値が、所定の閾値以下の場合には、マクロ端末は、近辺に存在するフェムト基地局から離れるものと判断する。
 マクロ端末は、近辺に存在するフェムト基地局から離れるものと判断した場合には、Sourceマクロ基地局に対して、干渉制御停止(OFF)要求を通知する。
 また、マクロ基地局は、該当するフェムト基地局に対して、干渉制御OFF要求を通知する。
 また、フェムト基地局は、マクロ基地局からの干渉制御OFF要求があるか否かをチェックする。マクロ基地局からの干渉制御OFF要求がある場合には、フェムト基地局は、干渉制御を停止(OFFに)する。同時に、フェムト基地局は、自分が干渉制御を停止したというシグナリング(Interference Control OFF)をマクロ基地局に送信する。
 なお、マクロ基地局からの干渉制御OFF要求の通知が定義されていない場合には、フェムト基地局は、タイマーを用いて、干渉制御を開始してからの経過時間を測定し、一定時間が経過した場合に、干渉制御を停止(OFFに)するようにしてもよい。
 以上で、本実施の形態に係る干渉制御の説明を終える。
 次に、近辺に存在するフェムト基地局を検出するための閾値の決定方法について説明する。
 図9は、閾値の決定方法を示す図である。
 マクロ端末の近辺に存在するフェムト基地局(またはフェムト基地局から見た場合には、フェムト端末の近辺に存在するマクロ端末)の検出方法として、マクロ端末がRSRPの最も大きいCSGフェムト基地局のRSRQを測定し、Sourceマクロ基地局のRSRQとの差分を求める。また、マクロ端末は、求めた差分値と可変の閾値とを比較する。差分値が閾値よりも大きい場合には、マクロ端末は、Sourceマクロ基地局にCSG CGIを報告し、マクロ基地局は、該当するCSGフェムト基地局に対して、干渉制御要求シグナリングを通知する。また、通知を受けたフェムト基地局は、通知に従って干渉制御を開始する。
 このように、閾値は、可変にして設定することができる。具体的には、マクロ端末は、マクロセルエッジに近づくほど、閾値を低く設定する。Macro RSRPの測定値に応じた図9のように線形的に適応算出できる。
 Target-Source RSRQ Offset Threshold(閾値)を決定する決定関数は、マクロ基地局またはフェムト基地局とマクロ端末との相対位置、マクロ基地局またはフェムト基地局のパスロスとマクロ端末のパスロス及びこれらの差分、及びフェムト基地局のカバレッジを考慮して算出する。
 具体的に、上記Target-Source RSRQ Offset Thresholdは、マクロ端末において測定したマクロ基地局のRSRPが小さいほど小さく設定され、マクロ端末において測定したマクロ基地局のRSRPが大きいほど大きく設定される。
 図9の横軸は、マクロ端末において測定した、最も大きな値のマクロ基地局のRSRPである。
 RSRPは、マクロセルにおいて、マクロ端末の存在する位置に関係する。RSRPは、マクロセルにおいて、マクロ端末の存在する位置によって異なり、マクロセルのGeometryとも直接関係する。RSRPが大きい場合には、一般的に、マクロ端末がマクロセルの直下に位置するものと判断することができる。一方、RSRPが小さい場合には、一般的に、マクロ端末がマクロセルエッジに位置するものと判断することができる。
 図10は、図9の変形例を示す図である。
 図10を用いて、以下に説明する。
 図10において、近辺に存在するフェムト基地局(または近辺に存在するマクロ端末)の検出のために、閾値を可変にして設定する。
 閾値は、マクロセルにおけるフェムトセルの位置を考慮し、複数の区間に分けてそれぞれ算出する。区間の分け方の一例としては、マクロ基地局のRSRPを、三つの区間に分ける。
 三つの区間では、実装機能の簡単化のために、各区間において、一定のTarget-Source RSRQ Offset Threshold値を使用する。
 図10では、RSRPを三つの区間に分けて、3段階のTarget-Source RSRQ Offset Thresholdのコンセプトを示している。
 このように、本実施の形態によれば、フェムト基地局の近辺にマクロ端末が存在しない場合に、フェムト端末のカバレッジ性能及びビットレートを向上させることができるとともに、フェムト基地局、フェムト端末またはマクロ端末の性能劣化を防ぐことができる。
 (実施の形態2)
 図11は、本発明の実施の形態2に係る干渉制御を示すシーケンス図である。
 図11において、図8と比較して、Sourceマクロ基地局は、フェムト基地局に対し、干渉制御ON要求を通知する際には、マクロ端末QoS、GBR(Guaranteed Bit Rate)、Period、制限/使用周波数、使用Bandwidth等の付加制御シグナリングをターゲット・フェムト基地局(Target Femto)に通知し、ターゲット・フェムト基地局は、それらのシグナリングを参考に干渉制御を行う。
 なお、図11において、Sourceマクロ基地局からTargetマクロ基地局へ付加制御シグナリングを送信する以外は図8と同一であるので、その説明を省略する。
 図12は、本実施の形態に係る付加制御シグナリングの内容を示す図である。
 マクロ端末QoSとは、干渉を受けているマクロ端末のサービス・クオリティ(Service Quality)要求の種別(Type)である。
 GBRは、マクロ端末の保証してほしいビットレートである。
 Periodとは、マクロ端末に対する干渉低減のために、フェムト基地局において干渉制御を実施する希望時間間隔である。
 制限周波数とは、フェムト基地局における干渉制御の際に、使用を避ける周波数である。
 使用周波数とは、マクロ端末が現在使用している周波数である。
 使用Bandwidthとは、マクロ端末が現在使用している帯域幅である。
 このように、本実施の形態によれば、上記の実施の形態1の効果に加えて、フェムト基地局の近辺に存在するマクロ端末のQoS、データサイズ、通信時間、及び使用周波数等を考慮したフェムト基地局における干渉制御を実現することができる。
 (実施の形態3)
 図13は、本発明の実施の形態3に係る干渉制御の処理を示すフロー図である。
 図13では、図7と比較して、マクロ端末の近辺に存在するフェムト基地局の検出の判断基準として、図7と異なる指標を使用する。具体的には、最も大きな値のフェムト基地局のパスロスを判断基準とする。
 ステップST1301において、マクロ端末は、自分のSourceマクロ基地局のRSRP(またはマクロ基地局からのパスロス)に応じて、干渉制御ON要求を通知するか否かの判断基準となる閾値を決定する。
 また、ステップST1302において、マクロ端末は、起点となって、RSRPの最も大きなCSGフェムト基地局のBCH、RSRPの送信電力、及びRSRPの測定結果を用い、フェムト基地局のパスロスを計算する。その計算結果と上記により計算された閾値とを比較し、その比較結果を近辺に存在するフェムト基地局の検出(フェムト基地局から見た場合には、近辺に存在するマクロ端末の検出)の判定指標とする。
 また、ステップST1303において、上記により計算した指標を用いて、マクロ端末の近辺にフェムト基地局が存在するか否かを判定する。具体的には、近辺に存在するフェムト基地局のパスロスの値が、所定の閾値より小さい場合には、マクロ端末は、近辺にフェムト基地局が存在するものと判定する。
 近辺に存在するフェムト基地局のパスロスの値が、所定の閾値以上の場合には、マクロ端末は、近辺にフェムト基地局が存在しないものと判定する。
 また、ステップST1304において、上記の判定結果に基づき、マクロ端末の近辺にフェムト基地局が存在することを検出した場合には、マクロ端末は、Sourceマクロ基地局に対して、該当するフェムト基地局の測定結果、フェムト基地局のパスロスの値を、測定したCSGフェムト基地局のCGIと一緒に、自分のSourceマクロ基地局に報告する。また、該当するフェムト基地局に対する干渉制御ON要求もSourceマクロ基地局に報告する。
 マクロ端末の近辺において、フェムト基地局の存在を検出しない場合には、マクロ端末は、該当するフェムト基地局に対する干渉制御ON要求を、Sourceマクロ基地局に報告しない。
 このように、近傍するフェムト基地局(または近傍するマクロ端末)の検出方法として、マクロ端末は、最も大きな値のRSRPのCSGフェムト基地局の、RSRPの送信電力またはRSRPを測定し、フェムト基地局のパスロスを計算する。また、マクロ端末は、計算したパスロスと可変の閾値とを比較する。パスロスが閾値よりも大きい場合には、Sourceマクロ基地局に対して、CSG CGIを報告する。報告を受けたマクロ基地局は、該当するCSGフェムト基地局に対して、干渉制御起動要求シグナリングを通知する。また、通知を受けたフェムト基地局は、通知に従って干渉制御を開始する。
 また、RSRPは、マクロセル内におけるマクロ端末の存在する場所によって異なり、マクロセルのGeometryとも直接関係する。RSRPが大きい場合には、一般的に、マクロ端末はマクロ基地局の直下に位置するものと判断することができる。一方、RSRPが小さい場合には、一般的に、マクロ端末はマクロセルエッジに位置するものと判断することができる。
 干渉制御ON要求の判定基準としては、マクロ端末が算出したRSRPが一番大きいフェムト基地局のパスロスの値を、所定の閾値(Threshold)と比較して判定する。また、その閾値は可変であり、Sourceマクロ基地局(MNB) RSRP (S- RSRP)の測定値に応じて決定する。
 次に、マクロ端末の近辺に存在するフェムト基地局を検出するための閾値の決定方法について、図14を用いて説明する。図14は、閾値(Femto Path Loss Threshold)の決定方法を示す図である。
 図14の横軸は、最も大きいRSRPのマクロ基地局におけるRSRPである。RSRPは、マクロセル内におけるマクロ端末の存在する位置に関係する。また、図14の縦軸は、閾値である。
 閾値は、可変にして設定することができる。具体的には、マクロセルエッジに近づく程、閾値を高く設定する。また、閾値は、マクロ基地局のRSRPに応じて、線形的且つ適応的に算出することができる。このような閾値設定方法によれば、マクロセルエッジでは、干渉制御を容易に起動することができる。
 また、閾値を決定する決定関数は、マクロ基地局またはフェムト基地局とマクロ端末との相対位置、マクロ基地局またはフェムト基地局のパスロスとマクロ端末のパスロス及びこれらの差分、及びフェムト基地局のカバレッジを考慮して算出する。
 このように、本実施の形態によれば、フェムト基地局の近辺にマクロ端末が存在しない場合に、フェムト端末のカバレッジ性能及びビットレートを向上させることができるとともに、フェムト基地局、フェムト端末またはマクロ端末の性能劣化を防ぐことができる。
 なお、上記の実施の形態1~実施の形態3において、主にマクロ基地局とCSGフェムト基地局との間の干渉制御の方法として記載したが、本発明はこれに限らず、それらの方法は、マクロ基地局と、OSG(Open Subscriber Group)フェムト基地局、ハイブリット(Hybrid)フェムト基地局との間の干渉制御のために適用しても良い。また、フェムト基地局以外の、マクロ基地局に比較して狭い範囲のセルを制御する基地局(例えば、ピコ(Pico)セルを形成する基地局)とマクロ基地局との干渉制御に使用しても良い。
 2009年8月19日出願の特願2009-190433の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明は、セル移動通信システム、マクロセル及びフェムトセルの干渉低減、または干渉回避等に応用できる。

Claims (11)

  1.  マクロ基地局と、前記マクロ基地局と通信するマクロ端末と、フェムト基地局と、前記フェムト基地局に登録されたフェムト端末と、を備えた通信システムに用いられる干渉制御方法であって、
     前記マクロ端末において、前記フェムト基地局のリファレンス信号の受信品質(RSRQ:Reference Signal Received Quality)及び前記マクロ基地局のRSRQを測定するステップと、
     前記測定したフェムト基地局のRSRQとマクロ基地局のRSRQとの差分値が所定の第1の閾値よりも大きい場合に、前記マクロ端末が、干渉制御を起動させる要求と、前記差分値と、前記フェムト基地局の識別情報とを前記マクロ基地局に送信するステップと、
     前記マクロ基地局が、前記要求と、前記差分値と、前記識別情報とに基づいて、前記識別情報により特定される前記フェムト基地局に対して干渉制御起動要求シグナリングを送信するステップと、
     前記フェムト基地局が、前記干渉制御起動要求シグナリングに基づいて、前記フェムト基地局に登録された前記フェムト端末に対して、干渉制御を行うステップと、
     を有する干渉制御方法。
  2.  前記マクロ端末において、前記フェムト基地局のRSRQに基づいて近辺に存在する前記フェムト基地局を検出するステップをさらに有し、
     前記マクロ端末において検出する前記フェムト基地局が複数ある場合に、最も大きい値の前記フェムト基地局のRSRQと前記マクロ基地局のRSRQとの前記差分値を求める請求項1記載の干渉制御方法。
  3.  前記マクロ端末において測定した前記マクロ基地局のリファレンス信号の受信電力(RSRP:Reference Signal Received Power)が小さいほど前記第1の閾値を小さく設定する請求項1記載の干渉制御方法。
  4.  前記干渉制御の後において、前記マクロ端末が、最も大きい値の前記フェムト基地局のRSRQを検出するステップと、
     検出した最も大きい値の前記フェムト基地局のRSRQと前記マクロ基地局のRSRQとの差分値が第2の閾値以下の場合に、前記マクロ基地局に前記識別情報を報告するステップと、
     前記識別情報の報告を受けた前記マクロ基地局が、前記最も大きい値のRSRQの前記フェムト基地局に干渉制御停止要求シグナリングを通知するステップと、
     前記干渉制御停止要求シグナリングの通知を受けた前記フェムト基地局が、前記干渉制御停止要求シグナリングに従って前記干渉制御を停止するステップと、
     をさらに含む請求項1記載の干渉制御方法。
  5.  前記干渉制御起動要求シグナリングに加えて、前記マクロ端末のQoSと、前記マクロ端末の保証ビットレートと、前記干渉制御の時間と、使用を避ける周波数と、前記マクロ端末が使用している周波数と、前記マクロ端末が使用している帯域幅とのうち、少なくとも一つを前記マクロ端末から前記フェムト基地局に送信し、
     前記フェムト基地局が、前記干渉制御起動要求シグナリングに加えて、前記少なくとも一つの情報に基づいて、前記干渉制御を行う請求項1記載の干渉制御方法。
  6.  マクロ基地局と、前記マクロ基地局と通信するマクロ端末と、フェムト基地局と、前記フェムト基地局に登録されたフェムト端末と、を備えた通信システムに用いられる干渉制御方法であって、
     前記マクロ端末において、前記フェムト基地局のRSRPの送信電力または受信電力を測定するステップと、
     前記マクロ端末において、前記測定の結果に基づいて前記フェムト基地局との間のパスロスの値を算出するステップと、
     算出した前記パスロスの値が所定の閾値以下の場合に、前記マクロ端末が、干渉制御を起動させる要求と、前記パスロスの値と、前記フェムト基地局の識別情報とを前記マクロ基地局に送信するステップと、
     前記マクロ基地局において、前記要求と、前記パスロスの値と、前記識別情報とに基づいて、前記識別情報により特定される前記フェムト基地局に対して、干渉制御起動要求シグナリングを送信するステップと、
     前記フェムト基地局において、前記干渉制御起動要求シグナリングに基づいて、前記フェムト基地局に登録された前記フェムト端末に対して、干渉制御を行うステップと、
     を有する干渉制御方法。
  7.  前記マクロ端末において、前記フェムト基地局のリファレンス信号の送信電力と受信電力(RSRP)から算出したパスロスに基づいて近辺に存在する前記フェムト基地局を検出するステップをさらに有し、
     前記マクロ端末において検出する前記フェムト基地局が複数ある場合に、最も小さい前記パスロスの値と閾値とを比較する請求項6記載の干渉制御方法。
  8.  前記マクロ端末において測定した前記マクロ基地局のRSRPが小さいほど前記閾値を大きく設定する請求項6記載の干渉制御方法。
  9.  フェムト基地局のRSRQ及びマクロ基地局のRSRQを測定する測定手段と、
     前記測定手段により測定したフェムト基地局のRSRQとマクロ基地局のRSRQとの差分値と、所定の閾値との比較結果に基づいて、近辺に存在するフェムト基地局を検出する検出手段と、
     前記検出手段により前記近辺に存在するフェムト基地局を検出した場合に、前記近辺に存在するフェムト基地局に対する干渉制御を起動させる要求と、前記差分値と、前記フェムト基地局の識別情報とをマクロ基地局に送信する送信手段と、
     を具備するマクロ端末。
  10.  フェムト基地局に対する干渉制御を起動させる要求と、前記フェムト基地局のRSRQとマクロ基地局のRSRQとの差分値と、前記フェムト基地局の識別情報とに基づいて、前記識別情報により特定される前記フェムト基地局において干渉制御を起動させるか否かを判断する判断手段と、
     前記判断手段により干渉制御を起動させるものと判断した場合に干渉制御起動要求シグナリングを前記フェムト基地局に送信する送信手段と、
     を具備するマクロ基地局。
  11.  干渉制御の起動を要求する干渉制御起動要求シグナリングを受信する受信手段と、
     受信した前記干渉制御起動要求シグナリングに従って、自局に登録されているフェムト端末に対して、干渉制御を行う制御手段と、
     を具備するフェムト基地局。
     
PCT/JP2010/005101 2009-08-19 2010-08-18 干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局 WO2011021389A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10809735.3A EP2469912B1 (en) 2009-08-19 2010-08-18 Interference control methods, macro terminal and macro base station
JP2011527585A JP5602742B2 (ja) 2009-08-19 2010-08-18 干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局
US13/390,614 US8666391B2 (en) 2009-08-19 2010-08-18 Interference control method, macro terminal, macro base station, and femtocell base station
CN201080035233.5A CN102498732B (zh) 2009-08-19 2010-08-18 干扰控制方法、宏终端、宏基站以及毫微微基站

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009190433 2009-08-19
JP2009-190433 2009-08-19

Publications (1)

Publication Number Publication Date
WO2011021389A1 true WO2011021389A1 (ja) 2011-02-24

Family

ID=43606848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005101 WO2011021389A1 (ja) 2009-08-19 2010-08-18 干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局

Country Status (5)

Country Link
US (1) US8666391B2 (ja)
EP (1) EP2469912B1 (ja)
JP (1) JP5602742B2 (ja)
CN (1) CN102498732B (ja)
WO (1) WO2011021389A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001357A3 (en) * 2011-06-30 2013-02-28 France Telecom Method for mitigating interference in a network using comp method
WO2013042289A1 (ja) * 2011-09-21 2013-03-28 日本電気株式会社 移動通信システム、基地局、移動局、基地局の制御方法、及びコンピュータ可読媒体
WO2013065841A1 (ja) * 2011-11-03 2013-05-10 京セラ株式会社 通信制御方法、移動通信システム、及び基地局
WO2013120265A1 (en) * 2012-02-16 2013-08-22 Qualcomm Incorporated Srs power control for coordinated scheduling in tdd heterogeneous networks
EP2692174A1 (en) * 2011-03-28 2014-02-05 Nokia Corp. Methods and apparatuses for facilitating triggered mobility
JP5432293B2 (ja) * 2010-02-15 2014-03-05 京セラ株式会社 低電力基地局及び通信制御方法
CN103781133A (zh) * 2013-12-31 2014-05-07 北京邮电大学 一种异构蜂窝网下的切换方法
JP2016042722A (ja) * 2011-09-26 2016-03-31 華為技術有限公司Huawei Technologies Co.,Ltd. 干渉制御方法および装置
JP2016077017A (ja) * 2012-05-17 2016-05-12 インテル コーポレイション 異種ネットワークにおける干渉低減のためのシステムおよび方法
JP2017510163A (ja) * 2014-02-05 2017-04-06 クアルコム,インコーポレイテッド 共有スペクトルまたは無認可帯域上での事業者間の共存のための方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498588B (en) * 2012-01-20 2014-08-20 Toshiba Res Europ Ltd Wireless communication methods and apparatus
JP5960481B2 (ja) * 2012-04-12 2016-08-02 株式会社日立製作所 無線通信システム及び無線通信システムの干渉制御方法
EP2869636B1 (en) * 2012-08-10 2020-03-18 Huawei Technologies Co., Ltd. Mobility control method and device
WO2014075708A1 (en) * 2012-11-13 2014-05-22 Nokia Solutions And Networks Oy Method and apparatus
EP2978278A4 (en) * 2013-03-22 2016-11-09 Sharp Kk TERMINAL DEVICE, BASE STATION DEVICE, AND CONTROL DEVICE
US9357404B2 (en) 2013-05-03 2016-05-31 Opentv, Inc. Interference control in wireless communication
CN104185203B (zh) * 2013-05-27 2018-02-23 中国移动通信集团公司 一种检测乒乓切换的方法和装置
WO2015123814A1 (en) * 2014-02-19 2015-08-27 Harman International Industries, Incorporated Spectrum sharing
CN104105179A (zh) * 2014-07-10 2014-10-15 北京北方烽火科技有限公司 一种小小区基站控制方法及装置
JPWO2018173163A1 (ja) * 2017-03-22 2020-02-27 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10313982B1 (en) * 2017-04-27 2019-06-04 Thales Avionics, Inc. Cooperative realtime management of noise interference in ISM band

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129405A (ja) * 2005-11-02 2007-05-24 Kddi Corp 無線通信システム及び無線通信制御方法
WO2007139680A2 (en) * 2006-05-22 2007-12-06 Lucent Technologies Inc. Controlling transmit power of picocell base units
US20090042594A1 (en) 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power based on maximum received signal strength
WO2009047972A1 (ja) * 2007-10-09 2009-04-16 Nec Corporation 無線通信システム、無線通信方法、基地局、基地局の制御方法、及び基地局の制御プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042799A1 (en) * 2005-06-03 2007-02-22 Samsung Electronics Co., Ltd. Auto adaptive technique to provide adequate coverage and mitigate RF interference
KR20090004267A (ko) 2007-07-06 2009-01-12 엘지전자 주식회사 방송 수신이 가능한 텔레매틱스 단말기 및 방송 신호 처리방법
US20100027510A1 (en) * 2008-08-04 2010-02-04 Qualcomm Incorporated Enhanced idle handoff to support femto cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129405A (ja) * 2005-11-02 2007-05-24 Kddi Corp 無線通信システム及び無線通信制御方法
WO2007139680A2 (en) * 2006-05-22 2007-12-06 Lucent Technologies Inc. Controlling transmit power of picocell base units
US20090042594A1 (en) 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power based on maximum received signal strength
US20090042596A1 (en) 2007-08-10 2009-02-12 Qualcomm Incorporated Adaptation of transmit power based on channel quality
WO2009047972A1 (ja) * 2007-10-09 2009-04-16 Nec Corporation 無線通信システム、無線通信方法、基地局、基地局の制御方法、及び基地局の制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2469912A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432293B2 (ja) * 2010-02-15 2014-03-05 京セラ株式会社 低電力基地局及び通信制御方法
US9220102B2 (en) 2010-02-15 2015-12-22 Kyocera Corporation Low power base station and communication control method
EP2692174A1 (en) * 2011-03-28 2014-02-05 Nokia Corp. Methods and apparatuses for facilitating triggered mobility
EP2692174A4 (en) * 2011-03-28 2015-04-22 Nokia Corp METHODS AND APPARATUS FOR PROMOTING MOBILITY TRIGGERED
WO2013001357A3 (en) * 2011-06-30 2013-02-28 France Telecom Method for mitigating interference in a network using comp method
WO2013042289A1 (ja) * 2011-09-21 2013-03-28 日本電気株式会社 移動通信システム、基地局、移動局、基地局の制御方法、及びコンピュータ可読媒体
JP2016042722A (ja) * 2011-09-26 2016-03-31 華為技術有限公司Huawei Technologies Co.,Ltd. 干渉制御方法および装置
JP2016129412A (ja) * 2011-11-03 2016-07-14 京セラ株式会社 通信制御方法及び基地局
WO2013065841A1 (ja) * 2011-11-03 2013-05-10 京セラ株式会社 通信制御方法、移動通信システム、及び基地局
US9693358B2 (en) 2011-11-03 2017-06-27 Kyocera Corporation Communication control method, mobile communication system, and base station
JPWO2013065841A1 (ja) * 2011-11-03 2015-04-02 京セラ株式会社 通信制御方法、移動通信システム、及び基地局
WO2013120265A1 (en) * 2012-02-16 2013-08-22 Qualcomm Incorporated Srs power control for coordinated scheduling in tdd heterogeneous networks
JP2016077017A (ja) * 2012-05-17 2016-05-12 インテル コーポレイション 異種ネットワークにおける干渉低減のためのシステムおよび方法
CN103781133A (zh) * 2013-12-31 2014-05-07 北京邮电大学 一种异构蜂窝网下的切换方法
JP2017510163A (ja) * 2014-02-05 2017-04-06 クアルコム,インコーポレイテッド 共有スペクトルまたは無認可帯域上での事業者間の共存のための方法

Also Published As

Publication number Publication date
US8666391B2 (en) 2014-03-04
US20120142339A1 (en) 2012-06-07
EP2469912A4 (en) 2017-04-19
EP2469912A1 (en) 2012-06-27
CN102498732B (zh) 2015-05-13
JP5602742B2 (ja) 2014-10-08
JPWO2011021389A1 (ja) 2013-01-17
CN102498732A (zh) 2012-06-13
EP2469912B1 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
JP5602742B2 (ja) 干渉制御方法、マクロ端末、マクロ基地局及びフェムト基地局
EP2469910B1 (en) Interference-control method and femto base station
JP5823511B2 (ja) フェムトセル配置において干渉を緩和するための方法および装置
JP5720578B2 (ja) 無線通信システム、基地局装置、基地局制御装置、基地局の送信電力制御方法、及びプログラム
JP5680753B2 (ja) フェムトセル展開におけるアップリンク干渉を緩和するための、デバイスのハンドオーバのための方法および装置
US8285293B2 (en) Femtocell base station, and a method of radio communication in a network comprising a femtocell base station
JP4955810B2 (ja) Wcdmaシステムにおける干渉回避
JP5882300B2 (ja) イントラ・クローズド加入者グループ・ハンドオーバを実行するための方法および装置
KR20130033477A (ko) 무선 통신들에서의 디바이스 전송 전력 캐핑을 위한 방법 및 장치
CN103477687A (zh) 用于校准毫微微节点的发射功率的方法和装置
WO2012108153A1 (ja) サーバ装置、小型基地局装置及び干渉制御方法
US20220225243A1 (en) First and second communication devices for power control in groupcast communication
KR20120049535A (ko) 무선 통신 시스템에서 레인징 신호를 이용한 상향 링크 전력 제어 방법 및 장치
KR20120139804A (ko) 저전력 기지국 및 통신 제어 방법
MX2011012966A (es) Metodo para el manejo de la comunicacion entre un equipo de usuario y un controlador de red de radio y programa para el control de un controlador de red de radio.
WO2011152527A1 (ja) 移動通信システム、基地局及び移動通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035233.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527585

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13390614

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010809735

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE