WO2011021262A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2011021262A1
WO2011021262A1 PCT/JP2009/064390 JP2009064390W WO2011021262A1 WO 2011021262 A1 WO2011021262 A1 WO 2011021262A1 JP 2009064390 W JP2009064390 W JP 2009064390W WO 2011021262 A1 WO2011021262 A1 WO 2011021262A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
transmission
doppler
frequency
transmission wave
Prior art date
Application number
PCT/JP2009/064390
Other languages
French (fr)
Japanese (ja)
Inventor
俊夫 若山
洋 酒巻
論季 小竹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011527499A priority Critical patent/JP5398838B2/en
Priority to PCT/JP2009/064390 priority patent/WO2011021262A1/en
Publication of WO2011021262A1 publication Critical patent/WO2011021262A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements

Definitions

  • This invention relates to a radar apparatus that measures the distance to a target by transmitting and receiving electromagnetic waves.
  • a device such as a coherent rider is known as a device for measuring wind at a remote point.
  • the coherent rider cuts out a reception IF (intermediate frequency) signal for each transmission pulse width, and calculates a Doppler frequency by frequency analysis such as Fourier transform (see, for example, Non-Patent Document 1).
  • the Doppler frequency is ⁇ 50 ⁇ 50MHz. That is, since it is necessary to measure a Doppler frequency with a bandwidth of 100 MHz, based on the sampling theorem, the received signal is collected by AD conversion of 200 MSsample / s or more, and the frequency analysis is executed.
  • the distance measurement is executed by applying pulse modulation to the transmission laser beam and measuring a transmission / reception time difference. Therefore, the distance resolution is determined by the pulse width. For example, in the coherent rider of Non-Patent Document 1, if the transmission pulse width is 200 ns, the distance resolution is 30 m.
  • the speed resolution is determined by the resolution of the Doppler frequency.
  • the resolution of the Doppler frequency is the reciprocal of the observation time of the received signal, the resolution of the Doppler frequency becomes higher as the observation time becomes longer.
  • the observation time of the received signal is at most the transmission pulse width.
  • the transmission pulse width is 200 ns
  • the resolution of the Doppler frequency is 5 MHz
  • the speed resolution when the transmission wavelength is 1.5 ⁇ m is 3.75 m / s. Therefore, both the distance resolution and the speed resolution are determined by the transmission pulse width. Also, there is a relationship that the distance resolution is higher when the transmission pulse width is shorter, but the speed resolution is lower.
  • the prior art has the following problems.
  • the distance resolution when the transmission pulse width is 200 ns is 30 m.
  • the diameter of one vortex of the wake turbulence generated behind the aircraft is about several tens of meters, It is not always sufficient distance resolution to accurately capture the structure of the vortex.
  • it is not realistic to reduce the velocity resolution below 3.75 m / s after all, sufficient distance resolution cannot be obtained.
  • the conventional coherent rider since the beam hardly spreads at a short distance, an extremely high angular resolution can be obtained as compared with a radar that transmits and receives radio waves.
  • the distance resolution is insufficient.
  • the conventional coherent rider has a problem in that the distance resolution and the speed resolution are in a trade-off relationship with each other, so that both cannot be improved at the same time.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a radar apparatus capable of improving both distance resolution and speed resolution at the same time.
  • a radar apparatus radiates a transmission wave including a plurality of pulses generated by a transmission unit to a space and reflects a reception wave received by a target existing in the space using the transmission wave.
  • a radar device that generates a received signal by frequency conversion and measures the distance to a target based on the delay time of the received signal with respect to the transmitted wave, and has the same width as the pulse included in the transmitted wave from the received signal.
  • the frequency of the power value is maximized from the Fourier transform unit that extracts the signal of the section having, and performs the Fourier transform on this signal to generate the received signal after the Fourier transform, and the received signal after the Fourier transform
  • a peak extraction unit that extracts the signal component of the point as the maximum power frequency component and any two of the plurality of maximum power frequency components obtained at the same time interval as the interval of the pulses included in the transmission wave are selected.
  • the complex conjugate product to calculate the complex conjugate product, the complex conjugate product calculated by the multiplication unit is added for a plurality of observations, a multiplication value integration unit to calculate the integrated complex conjugate product, and an integrated complex conjugate product And a speed calculation unit that calculates the Doppler speed from the phase.
  • the Fourier transform unit converts the pulse included in the transmission wave from the reception signal.
  • a signal in a section having the same width is extracted, and a Fourier transform is performed on this signal to generate a received signal after the Fourier transform.
  • the peak extraction unit extracts, as a maximum power frequency component, a signal component at a frequency point at which the power value is maximum from the received signal after Fourier transform.
  • the multiplier selects any two of the plurality of maximum power frequency components obtained at the same time interval as the pulse interval included in the transmission wave, and calculates a complex conjugate product.
  • the multiplication value integration unit adds the complex conjugate product calculated by the multiplication unit for a plurality of observations, and calculates a post-integration complex conjugate product.
  • the velocity calculation unit calculates the Doppler velocity from the phase of the complex conjugate product after integration. Thereby, the distance resolution can be determined by the pulse width, and the velocity resolution can be determined by the pulse interval. Therefore, it is possible to obtain a radar apparatus that can improve both distance resolution and velocity resolution at the same time.
  • Example 1 It is a block block diagram which shows the radar apparatus which concerns on Embodiment 1 of this invention.
  • Example 1 It is a schematic diagram which shows the amplitude shape of the transmission wave of the radar apparatus which concerns on Embodiment 1 of this invention.
  • Example 1 It is a schematic diagram which shows the relationship between the transmission timing of the transmission wave in the radar apparatus which concerns on Embodiment 1 of this invention, and the reception timing of a received signal.
  • Example 1 It is a block block diagram which shows the signal processing part of the radar apparatus which concerns on Embodiment 1 of this invention.
  • Example 1 It is explanatory drawing explaining the generation
  • Example 1 It is a schematic diagram which shows the Doppler spectrum of the received signal in the radar apparatus which concerns on Embodiment 1 of this invention.
  • Example 1 In the radar apparatus which concerns on Embodiment 2 of this invention, it is explanatory drawing explaining the generation
  • Example 2 It is a block block diagram which shows the signal processing part of the radar apparatus which concerns on Embodiment 2 of this invention.
  • Example 2 It is a schematic diagram which shows the amplitude shape of the transmission wave of the radar apparatus which concerns on Embodiment 3 of this invention. (Example 3)
  • FIG. 1 is a block diagram showing a radar apparatus according to Embodiment 1 of the present invention.
  • the radar apparatus includes a transmission unit 1, a switching unit 2, a radiation unit 3, a reception unit 4, an AD (Analog to Digital) conversion unit 5, and a signal processing unit 6.
  • AD Analog to Digital
  • the transmission unit 1 generates and outputs a transmission wave including a plurality of transmission pulses generated by amplitude-modulating a single frequency continuous wave. Further, the transmission unit 1 outputs a transmission wave to the reception unit 4.
  • the transmission wave is a laser beam.
  • the transmission wave is not limited to the laser beam, but may be a general electromagnetic wave or a sound wave other than the frequency region of the light. However, the same can be applied.
  • the switching unit 2 outputs the transmission wave from the transmission unit 1 to the radiation unit 3 and outputs the reception wave from the radiation unit 3 to the reception unit 4.
  • the radiating unit 3 radiates the transmission wave from the switching unit 2 to the space, and receives a part of the transmission wave reflected by the target 100 existing in the space as a reception wave.
  • the receiving unit 4 converts the received wave input from the radiating unit 3 via the switching unit 2 into a received signal having an intermediate frequency (IF) using the transmitted wave from the transmitting unit 1.
  • the intermediate frequency reception signal (IF reception signal) frequency-converted by the reception unit 4 is an analog signal.
  • the AD conversion unit 5 performs AD conversion (analog-digital conversion) on the IF reception signal from the reception unit 4 in order to digitally execute the signal processing, and digitized IF reception signal (hereinafter referred to as “reception signal”). Is abbreviated as ".”
  • the signal processing unit 6 performs signal processing based on the received signal from the AD conversion unit 5.
  • the amplitude shape of the transmission wave generated by the transmission unit 1 and radiated into the space by the radiation unit 3 is schematically shown in FIG.
  • the transmission wave includes two transmission pulses generated by amplitude-modulating a single frequency continuous wave.
  • a transmission wave shape composed of the pulse 101a and the pulse 101b is referred to as a frame.
  • the pulse width 102a of the pulse 101a and the pulse width 102b of the pulse 101b are equal to each other. Further, the transmission wave of one frame has a shape interrupted by the time interval 103, and the pulse interval 104a is an interval from the center of the pulse 101a to the center of the pulse 101b. The frame of the transmission wave is repeated at the time interval 105.
  • the pulse width 102a and the pulse width 102b are determined according to the distance resolution to be realized.
  • the pulse width ⁇ is expressed by the following equation (1).
  • c represents the speed of light.
  • T is set so as to satisfy the following expression (2).
  • Rmax indicates the maximum observation distance.
  • Equation (2) means that the next frame is transmitted after the transmission wave reflected by the target existing at the maximum observation distance is received.
  • FIG. 3 data recording by the AD conversion unit 5 is executed in a period from timing 116 to timing 117.
  • the timing 116 is set to be after the end of transmission of the pulse 101b
  • the timing 117 is set to be before the start of the next transmission frame determined by the time interval 105.
  • the received signal obtained during this period is assumed to be 110.
  • the received signal 110 is sampled at a sampling interval ⁇ t.
  • the sample interval ⁇ t is set so as to satisfy the following expression (3).
  • represents the transmission wavelength
  • Va represents the width of the Doppler speed range to be measured.
  • the width Va of the Doppler velocity range to be measured is expressed by the following equation (4).
  • the samples in the section 112a and the section 112b among the samples obtained by the AD conversion unit 5 are used. Assume that the widths of the section 112a and the section 112b are equal to the pulse width 102a and the pulse width 102b, respectively.
  • the time interval 113 is also assumed to be equal to the time interval 103 between the pulse 101a and the pulse 101b.
  • the time interval 114a from the center of the section 112a to the center of the section 112b is equal to the pulse interval 104a from the center of the pulse 101a to the center of the pulse 101b.
  • tr is expressed by the following equation (5).
  • Tr 2r / c (5)
  • the above-described processing flow from the transmission unit 1 to the signal processing unit 6 is a conventional one.
  • the feature of the radar apparatus according to the first embodiment of the present invention resides in signal processing by the signal processing unit 6 described below.
  • FIG. 4 is a block configuration diagram showing the signal processing unit 6 of the radar apparatus according to Embodiment 1 of the present invention.
  • the signal processing unit 6 includes a Fourier transform unit 11, a spectrum integration unit 12, a peak detection unit 13, a peak extraction unit 14, a multiplication unit 15, a multiplication value integration unit 16, a speed calculation unit 17, and a loop correction unit 18.
  • a Fourier transform unit 11 a spectrum integration unit 12
  • a peak detection unit 13 a peak detection unit 13
  • a peak extraction unit 14 a multiplication unit
  • a multiplication value integration unit 16 a speed calculation unit 17
  • the Fourier transform unit 11 performs Fourier transform on the received signal from the AD conversion unit 5 for each of the pulse 112a and the pulse 112b.
  • the received signal after Fourier transform obtained in this way has a peak at a frequency point corresponding to the Doppler frequency.
  • the spectrum integration unit 12 obtains the power spectrum of the received signal by calculating the power value of the received signal after the Fourier transform from the Fourier transform unit 11.
  • the spectrum integrator 12 adds power, that is, integrates the power spectrum obtained by a plurality of transmissions in order to improve detection performance when performing peak detection from the obtained power spectrum.
  • the peak detection unit 13 performs a peak detection process on the integrated power spectrum from the spectrum integration unit 12, detects a peak at which the power spectrum is maximum, and sets the frequency point at the peak position to the peak extraction unit 14 and The result is output to the aliasing correction unit 18.
  • the peak extraction unit 14 extracts the signal component at the frequency point detected by the peak detection unit 13 from the received signal after the Fourier transform obtained by the Fourier transform unit 11.
  • the signal component is extracted from the output of the Fourier transform unit 11 including the phase information.
  • the power spectrum integrated by the spectrum integration part 12 is a power value, it does not include phase information. Therefore, the power spectrum information is used only for extracting the frequency point at the peak position.
  • the peak extraction unit 14 extracts a signal component from both the pulse 112a and the pulse 112b.
  • the extracted signal components be a (i) and b (i), respectively.
  • i has shown that it is a signal obtained by observation by the i-th transmission.
  • the multiplication unit 15 takes the complex conjugate product of the two signal components a (i) and b (i), thereby expressing the two signal components a (i) and b ( The cross-correlation value R (i) of i) is calculated.
  • the signal components a (i) and b (i) include unnecessary components.
  • unnecessary components included in the signal components a (i) and b (i) will be described with reference to FIG. In FIG. 5, the horizontal direction indicates time, and the vertical direction indicates distance.
  • the pulse 101a and the pulse 101b of the transmission wave generated by the transmission unit 1 and radiated into the space from the radiation unit 3 are reflected by the target existing at the distance B, received by the section 112a and the section 112b, respectively, and after Fourier transform A signal component is extracted by the peak extraction unit 14 to become a signal component a (i) and a signal component b (i).
  • the signal component a (i) includes an unnecessary reflection component in which the pulse 101b is reflected at the distance C
  • the signal component b (i) includes an unnecessary reflection component in which the pulse 101a is reflected at the distance A. Therefore, the cross-correlation value R (i) includes the influence of unnecessary reflection components from the distance A and the distance C.
  • the multiplication value integration unit 16 integrates the cross-correlation value R (i) as expressed by the following equation (7) in order to remove the influence of the unnecessary reflection component, and the cross-correlation value R (tilde) after integration. Is calculated.
  • the unnecessary reflection component at the distance C is included only in the signal component a (i), there is no correlation with the signal component b (i), and the unnecessary reflection component at the distance A is the signal component b (i). Therefore, there is no correlation with the signal component a (i). Therefore, by taking an average of a plurality of observations, the unnecessary reflection component at the distance A and the distance C becomes relatively smaller than the reflection component from the distance B. Therefore, from Equation (7), if the number of integrations N is sufficiently large, the influence of the unnecessary reflection components from the distance A and the distance C on the post-integral cross-correlation value R (tilde) is sufficiently small.
  • the velocity calculation unit 17 calculates the Doppler velocity v D using the following equation (8) from the phase of the post-integral cross-correlation value R (tilde) in which the influence of the unnecessary reflection component is reduced.
  • the velocity resolution is determined by the pulse interval.
  • the Doppler velocity v D calculated by the equation (8) is a value calculated based on the phase difference at the time interval Ti. Therefore, when there is a phase rotation exceeding 2 ⁇ during the time interval Ti, the calculated Doppler velocity v D includes ambiguity. That is, the interval of the Doppler velocity v D that can be calculated without ambiguity is ⁇ / (2Ti).
  • the speed calculation ambiguity is determined by the above-described sample interval ⁇ t. Therefore, if the AD conversion unit 5 executes a sample with a sufficiently small sample interval ⁇ t, the Doppler speed v D is not ambiguous. Therefore, the ambiguity of the Doppler speed v D calculated by the speed calculation unit 17 can be resolved by using the detection result of the peak detection unit 13.
  • the Doppler frequency resolution is 1 / ⁇ and the Doppler velocity resolution is ⁇ / (2 ⁇ ).
  • the resolution of the Doppler velocity by the Fourier transform becomes larger than the ambiguity included in the Doppler velocity v D calculated by the velocity calculation unit 17. This means that the Fourier transform is not accurate enough to completely eliminate the ambiguity of the speed calculation result of the speed calculation unit 17.
  • an estimated value is obtained with accuracy finer than the velocity resolution in the velocity estimation by Fourier transform.
  • a sequence of 0 is added (padded with 0) after a sequence of received signals input to the Fourier transform unit 11.
  • the actual length of the received signal cannot be increased, but the apparent signal length can be increased.
  • FIG. 6 schematically shows the result when the Fourier transform is performed on the received signal after zero padding.
  • a broken line represents a true Doppler spectrum.
  • the resolution of the Doppler frequency is 1 / ⁇ , and the result of the Fourier transform is obtained as indicated by the black circle in FIG.
  • the Fourier transform is executed after adding 0 having the same length as the original received signal, the signal length to be subjected to the Fourier transform is doubled. Therefore, the resolution of the Doppler frequency can be halved. Therefore, in this case, the result of the Fourier transform can be obtained at the position of the white circle in FIG. As a result, the peak frequency extraction accuracy can be improved.
  • the Doppler velocity v D can be calculated with higher accuracy than the velocity resolution determined from the conventional observation time.
  • the received signal contains noise, there is a limit to the improvement in speed resolution by the above-described method.
  • n is an integer
  • v a denotes a Doppler velocity corresponding to 2 [pi.
  • the aliasing correction unit 18 has a true Doppler velocity v D that is the closest to the Doppler velocity obtained at the peak of the power spectrum detected by the peak detector 13 among the Doppler velocities v D obtained by changing the integer n. Assuming there is a measured value.
  • the loopback correction unit 18 performs such ambiguity resolution, that is, speed loopback correction.
  • the Fourier transform unit is included in the transmission wave from the reception signal.
  • a signal in a section having the same width as the pulse to be extracted is extracted, and a Fourier transform is performed on this signal to generate a received signal after the Fourier transform.
  • the peak extraction unit extracts, as a maximum power frequency component, a signal component at a frequency point at which the power value is maximum from the received signal after Fourier transform.
  • the multiplier selects any two of the plurality of maximum power frequency components obtained at the same time interval as the pulse interval included in the transmission wave, and calculates a complex conjugate product.
  • the multiplication value integration unit adds the complex conjugate product calculated by the multiplication unit for a plurality of observations, and calculates a post-integration complex conjugate product.
  • the velocity calculation unit calculates the Doppler velocity from the phase of the complex conjugate product after integration. Thereby, the distance resolution can be determined by the pulse width, and the velocity resolution can be determined by the pulse interval. Therefore, it is possible to obtain a radar apparatus that can improve both distance resolution and velocity resolution at the same time.
  • the aliasing correction unit receives the frequency obtained by extracting the maximum power frequency component by the peak extraction unit, obtains a coarsely accurate Doppler velocity from the frequency, and matches the coarsely accurate Doppler velocity with the velocity calculating unit.
  • the loopback correction of the calculated Doppler speed is executed.
  • the Fourier transform unit adds a series of 0 to the received signal before Fourier transform. Therefore, the ambiguity included in the Doppler speed can be resolved and the Doppler speed can be calculated with high accuracy.
  • the aliasing correction unit estimates the frequency that is the center of gravity of the power value distribution in the vicinity of the frequency from which the maximum power frequency component is extracted by the peak extraction unit, and the Doppler speed with coarse accuracy from the frequency.
  • the loop correction of the Doppler speed calculated by the speed calculation unit may be executed so as to match the Doppler speed with coarse accuracy.
  • the aliasing correction unit estimates a frequency at which the power value is maximum by applying a theoretical power distribution model to the power value distribution, and calculates a coarsely accurate Doppler speed from the frequency.
  • the loop correction of the Doppler speed calculated by the speed calculation unit may be executed so as to match the coarse Doppler speed.
  • the transmission unit generates a transmission wave so that the interval of the pulses included in the transmission wave changes at a predetermined period for each transmission, and the aliasing correction unit performs the observation with the transmission waves having different pulse intervals.
  • the loop correction of the Doppler speed may be executed so as to be consistent with all the Doppler speeds calculated by the speed calculation unit. In these cases, the same effect as in the first embodiment can be obtained.
  • FIG. 7 is an explanatory view schematically showing a state of transmission and reception in the radar apparatus according to Embodiment 2 of the present invention.
  • the number of transmission wave pulses 101c is increased, and the interval 112c of the received signal is increased.
  • the received signal includes reflected waves from distances D, E, and F in addition to reflected waves from distances A, B, and C.
  • the reflected wave from the distance B is received in a plurality of sections among the three sections 112a, 112b, and 112c of the received signal. Therefore, for example, the Doppler speed v1 calculated using the received signals of the sections 112a and 112b and the Doppler speed v2 calculated using the received signals of the sections 112b and 112c are correct except for the return of the speed. Value.
  • the Doppler speed v1 and the Doppler speed v2 are different in the time interval of the received signals to be used, the method of returning the speed is different between the two. Therefore, if a value that can be matched between the Doppler speed v1 and the Doppler speed v2 calculated in consideration of ambiguity is selected, a correct Doppler speed without aliasing can be obtained.
  • FIG. 8 is a block diagram showing a signal processing unit 6A of the radar apparatus according to Embodiment 2 of the present invention.
  • the signal processing unit 6A includes a Fourier transform unit 11, a switching unit 19, spectral integration units 12a and 12b, peak detection units 13a and 13b, peak extraction units 14a and 14b, multiplication units 15a and 15b, and a multiplication value integration unit. 16a, 16b, speed calculation units 17a, 17b, and a speed correction unit 20.
  • the spectrum integration units 12a and 12b to the speed calculation units 17a and 17b are doubled.
  • symbol is a system which processes the received signal of the area 112a and the area 112b
  • symbol is a system which processes the received signal of the area 112b and the area 112c. That is, the switching unit 19 outputs a signal corresponding to the section 112a and the section 112b among the received signals after the Fourier transform from the Fourier transform section 11 to a system in which a symbol is added to the section 112b and the section 112c. The corresponding signal is output to a system with b added to the code.
  • the Doppler speed calculated by the speed calculation unit 17a and the Doppler speed calculated by the speed calculation unit 17b are equal to each other except for the return of the speed. Therefore, the speed correction unit 20 calculates a Doppler speed candidate assuming a plurality of numbers of folds for the Doppler speeds calculated by the speed calculation unit 17a and the speed calculation unit 17b, and sets a value that matches both to the correct Doppler. Select as speed.
  • the transmission unit generates a transmission wave including three or more pulses
  • the multiplication unit calculates a complex conjugate product with a combination of different time intervals
  • a speed calculation unit Computes the Doppler velocity to match all of the post-integral complex conjugate products computed for different time interval combinations. Therefore, even when the pulse interval is shortened in order to improve the distance resolution, the Doppler velocity can be calculated with high accuracy. Further, since three or more transmission pulses are included in the transmission waveform, aliasing correction is possible, and the Doppler speed can be calculated with high accuracy.
  • Embodiment 3 the transmission wave including three or more transmission pulses in the transmission waveform has been described as an example.
  • the present invention is not limited to this, and two transmission pulses included in the transmission waveform are used for transmission.
  • a plurality of pulse intervals may be changed every time.
  • a case will be described in which observation is performed by using a transmission wave including two transmission pulses and changing a plurality of pulse intervals for each transmission. Since the configuration of the signal processing unit of the radar apparatus according to Embodiment 3 of the present invention is the same as that of Embodiment 2 described above, description thereof is omitted.
  • FIG. 9 is a schematic diagram showing the amplitude shape of the transmission wave of the radar apparatus according to Embodiment 3 of the present invention.
  • the transmission wave is transmitted at the pulse interval 104a in the first transmission, the pulse interval 104b in the second transmission, the pulse interval 104c in the third transmission, and the pulse interval 104d in the fourth transmission. Thereafter, it is continuously transmitted.
  • the pulse interval 104a and the pulse interval 104c are the same interval, and the pulse interval 104b and the pulse interval 104d are also the same interval.
  • the pulse intervals 104b and 104d are longer than the pulse intervals 104a and 104c.
  • the Doppler velocity calculated using the reception signal corresponding to the transmission wave of the pulse intervals 104a and 104c and the Doppler velocity calculated using the reception signal corresponding to the transmission wave of the pulse interval 104b and 104d are: Each value is correct except for the return of speed.
  • the Doppler speed calculated by the speed calculation unit 17a (corresponding to the transmission waves of the pulse intervals 104a and 104c) and the speed calculation unit 17b are used.
  • a Doppler speed candidate is calculated assuming a plurality of folding numbers, and a value matching both is selected as the correct Doppler speed.
  • the transmission unit generates a transmission wave so that the interval between pulses included in the transmission wave changes at a predetermined cycle for each transmission, and the multiplication unit has an equal pulse.
  • the complex conjugate product is calculated by the combination of intervals, and the velocity calculation unit calculates the Doppler velocity so as to match all of the post-integration complex conjugate products calculated for the combination of equal pulse intervals. Therefore, similarly to the above-described second embodiment, the Doppler speed can be calculated with high accuracy even when the pulse interval is shortened in order to improve the distance resolution.
  • the Doppler velocity can be calculated at a plurality of pulse intervals. The speed can be calculated with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Provided is a radar device capable of improving both distance resolution and velocity resolution at the same time. The radar device is provided with a Fourier transformation section (11) for extracting a signal in a section having the same width as pulses included in a transmission wave from a received signal, executing Fourier transformation on the extracted signal, and generating the received signal after the Fourier transformation, a peak extraction section (14) for extracting the signal component at the frequency point where the value of power is maximized from the received signal after the Fourier transformation as a maximum power frequency component, a multiplication section (15) for selecting two arbitrary components out of a plurality of the maximum power frequency components obtained at the same time intervals as the intervals of the pulses included in the transmission wave to calculate a complex conjugate product, and a multiplied-value integration section (16) for adding the complex conjugate product calculated by the multiplication section to a plurality of times of observations to calculate the complex conjugate product after the integration, and a velocity calculating section (17) for calculating the Doppler velocity from the phase of the complex conjugate product after the integration.

Description

レーダ装置Radar equipment
 この発明は、電磁波を送受信して目標物までの距離等を計測するレーダ装置に関する。 This invention relates to a radar apparatus that measures the distance to a target by transmitting and receiving electromagnetic waves.
 従来から、遠隔点の風を計測する装置として、コヒーレントライダ等の装置が知られている。コヒーレントライダは、送信パルス幅毎に受信IF(中間周波数:Intermediate Frequency)信号を切り出し、フーリエ変換等の周波数解析によってドップラ周波数を算出している(例えば、非特許文献1参照)。 Conventionally, a device such as a coherent rider is known as a device for measuring wind at a remote point. The coherent rider cuts out a reception IF (intermediate frequency) signal for each transmission pulse width, and calculates a Doppler frequency by frequency analysis such as Fourier transform (see, for example, Non-Patent Document 1).
 ここで、非特許文献1に示されたように、送信波長1.5μm程度のレーザ光を用いて、-37~37m/sの視線方向の風速を計測する場合、そのドップラ周波数は、-50~50MHzとなる。すなわち、100MHzの帯域幅のドップラ周波数を計測する必要があるので、標本化定理に基づいて、200MSample/s以上のAD変換により受信信号を収集して周波数解析を実行する。 Here, as shown in Non-Patent Document 1, when measuring the wind speed in the viewing direction of −37 to 37 m / s using laser light having a transmission wavelength of about 1.5 μm, the Doppler frequency is −50 ~ 50MHz. That is, since it is necessary to measure a Doppler frequency with a bandwidth of 100 MHz, based on the sampling theorem, the received signal is collected by AD conversion of 200 MSsample / s or more, and the frequency analysis is executed.
 また、距離計測は、送信レーザ光にパルス変調を施し、送受信の時間差を計測することによって実行される。したがって、距離分解能は、パルス幅によって決定される。例えば、上記非特許文献1のコヒーレントライダにおいて、送信パルス幅を200nsとすると、距離分解能は30mとなる。 Further, the distance measurement is executed by applying pulse modulation to the transmission laser beam and measuring a transmission / reception time difference. Therefore, the distance resolution is determined by the pulse width. For example, in the coherent rider of Non-Patent Document 1, if the transmission pulse width is 200 ns, the distance resolution is 30 m.
 一方、速度分解能は、ドップラ周波数の分解能によって決定される。ここで、ドップラ周波数の分解能は、受信信号の観測時間の逆数となるので、観測時間が長くなるほどドップラ周波数の分解能は高くなる。しかしながら、受信信号の観測時間は、最大でも送信パルス幅となる。 On the other hand, the speed resolution is determined by the resolution of the Doppler frequency. Here, since the resolution of the Doppler frequency is the reciprocal of the observation time of the received signal, the resolution of the Doppler frequency becomes higher as the observation time becomes longer. However, the observation time of the received signal is at most the transmission pulse width.
 そのため、上記非特許文献1のコヒーレントライダにおいて、送信パルス幅が200nsの場合には、ドップラ周波数の分解能は5MHzとなり、送信波長が1.5μmのときの速度分解能は3.75m/sとなる。このことから、距離分解能と速度分解能とは、ともに送信パルス幅によって決定される。また、送信パルス幅が短い方が距離分解能は高くなるが、逆に速度分解能は低くなるという関係がある。 Therefore, in the coherent lidar of Non-Patent Document 1, when the transmission pulse width is 200 ns, the resolution of the Doppler frequency is 5 MHz, and the speed resolution when the transmission wavelength is 1.5 μm is 3.75 m / s. Therefore, both the distance resolution and the speed resolution are determined by the transmission pulse width. Also, there is a relationship that the distance resolution is higher when the transmission pulse width is shorter, but the speed resolution is lower.
 しかしながら、従来技術には、以下のような課題がある。
 上記非特許文献1のコヒーレントライダでは、送信パルス幅を200nsとしたときの距離分解能が30mとなるが、例えば航空機の後方に生じる後方乱気流の1つの渦の直径が数10m程度であることから、渦の構造を正確に捉えるには、必ずしも十分な距離分解能であるとは言えない。また、このとき、速度分解能を3.75m/sよりも落とすことは現実的ではないので、結局のところ、十分な距離分解能を得ることができない。
However, the prior art has the following problems.
In the coherent lidar of Non-Patent Document 1, the distance resolution when the transmission pulse width is 200 ns is 30 m. For example, since the diameter of one vortex of the wake turbulence generated behind the aircraft is about several tens of meters, It is not always sufficient distance resolution to accurately capture the structure of the vortex. At this time, since it is not realistic to reduce the velocity resolution below 3.75 m / s, after all, sufficient distance resolution cannot be obtained.
 なお、コヒーレントライダでは、ビームが近距離ではほとんど広がらないので、電波を送受信するレーダと比較して、極めて高い角度分解能を得ることができるものの、上述したように、距離分解能は不十分である。
 以上のように、従来のコヒーレントライダでは、距離分解能と速度分解能とが互いにトレードオフの関係にあるので、両者を同時に向上させることができないという問題がある。
In the coherent rider, since the beam hardly spreads at a short distance, an extremely high angular resolution can be obtained as compared with a radar that transmits and receives radio waves. However, as described above, the distance resolution is insufficient.
As described above, the conventional coherent rider has a problem in that the distance resolution and the speed resolution are in a trade-off relationship with each other, so that both cannot be improved at the same time.
 この発明は、上記のような課題を解決するためになされたものであり、距離分解能および速度分解能の両方を同時に向上させることができるレーダ装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a radar apparatus capable of improving both distance resolution and speed resolution at the same time.
 この発明に係るレーダ装置は、送信部で生成された、複数のパルスを含む送信波を空間に放射し、空間に存在する目標物で反射して受信される受信波を、送信波を用いて周波数変換して受信信号を生成するとともに、送信波に対する受信信号の遅延時間に基づいて、目標物までの距離を計測するレーダ装置であって、受信信号から、送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成するフーリエ変換部と、フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出するピーク抽出部と、送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する乗算部と、乗算部で算出された複素共役積を複数回の観測について加算し、積分後複素共役積を算出する乗算値積分部と、積分後複素共役積の位相から、ドップラ速度を算出する速度算出部とを備えたものである。 A radar apparatus according to the present invention radiates a transmission wave including a plurality of pulses generated by a transmission unit to a space and reflects a reception wave received by a target existing in the space using the transmission wave. A radar device that generates a received signal by frequency conversion and measures the distance to a target based on the delay time of the received signal with respect to the transmitted wave, and has the same width as the pulse included in the transmitted wave from the received signal The frequency of the power value is maximized from the Fourier transform unit that extracts the signal of the section having, and performs the Fourier transform on this signal to generate the received signal after the Fourier transform, and the received signal after the Fourier transform A peak extraction unit that extracts the signal component of the point as the maximum power frequency component and any two of the plurality of maximum power frequency components obtained at the same time interval as the interval of the pulses included in the transmission wave are selected. The complex conjugate product to calculate the complex conjugate product, the complex conjugate product calculated by the multiplication unit is added for a plurality of observations, a multiplication value integration unit to calculate the integrated complex conjugate product, and an integrated complex conjugate product And a speed calculation unit that calculates the Doppler speed from the phase.
 この発明に係るレーダ装置によれば、送信波に対する受信信号の遅延時間に基づいて、目標物までの距離を計測するレーダ装置において、フーリエ変換部は、受信信号から、送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成する。ピーク抽出部は、フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出する。乗算部は、送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する。乗算値積分部は、乗算部で算出された複素共役積を複数回の観測について加算し、積分後複素共役積を算出する。速度算出部は、積分後複素共役積の位相から、ドップラ速度を算出する。これにより、距離分解能をパルスの幅で決定し、速度分解能をパルスの間隔で決定することができる。
 そのため、距離分解能および速度分解能の両方を同時に向上させることができるレーダ装置を得ることができる。
According to the radar apparatus according to the present invention, in the radar apparatus that measures the distance to the target based on the delay time of the reception signal with respect to the transmission wave, the Fourier transform unit converts the pulse included in the transmission wave from the reception signal. A signal in a section having the same width is extracted, and a Fourier transform is performed on this signal to generate a received signal after the Fourier transform. The peak extraction unit extracts, as a maximum power frequency component, a signal component at a frequency point at which the power value is maximum from the received signal after Fourier transform. The multiplier selects any two of the plurality of maximum power frequency components obtained at the same time interval as the pulse interval included in the transmission wave, and calculates a complex conjugate product. The multiplication value integration unit adds the complex conjugate product calculated by the multiplication unit for a plurality of observations, and calculates a post-integration complex conjugate product. The velocity calculation unit calculates the Doppler velocity from the phase of the complex conjugate product after integration. Thereby, the distance resolution can be determined by the pulse width, and the velocity resolution can be determined by the pulse interval.
Therefore, it is possible to obtain a radar apparatus that can improve both distance resolution and velocity resolution at the same time.
この発明の実施の形態1に係るレーダ装置を示すブロック構成図である。(実施例1)It is a block block diagram which shows the radar apparatus which concerns on Embodiment 1 of this invention. Example 1 この発明の実施の形態1に係るレーダ装置の送信波の振幅形状を示す模式図である。(実施例1)It is a schematic diagram which shows the amplitude shape of the transmission wave of the radar apparatus which concerns on Embodiment 1 of this invention. Example 1 この発明の実施の形態1に係るレーダ装置における送信波の送信タイミングと受信信号の受信タイミングとの関係を示す模式図である。(実施例1)It is a schematic diagram which shows the relationship between the transmission timing of the transmission wave in the radar apparatus which concerns on Embodiment 1 of this invention, and the reception timing of a received signal. Example 1 この発明の実施の形態1に係るレーダ装置の信号処理部を示すブロック構成図である。(実施例1)It is a block block diagram which shows the signal processing part of the radar apparatus which concerns on Embodiment 1 of this invention. Example 1 この発明の実施の形態1に係るレーダ装置において、受信信号に含まれる不要反射成分の発生状況を説明する説明図である。(実施例1)It is explanatory drawing explaining the generation | occurrence | production state of the unnecessary reflection component contained in a received signal in the radar apparatus which concerns on Embodiment 1 of this invention. Example 1 この発明の実施の形態1に係るレーダ装置における受信信号のドップラスペクトルを示す模式図である。(実施例1)It is a schematic diagram which shows the Doppler spectrum of the received signal in the radar apparatus which concerns on Embodiment 1 of this invention. Example 1 この発明の実施の形態2に係るレーダ装置において、受信信号に含まれる不要反射成分の発生状況を説明する説明図である。(実施例2)In the radar apparatus which concerns on Embodiment 2 of this invention, it is explanatory drawing explaining the generation | occurrence | production state of the unnecessary reflection component contained in a received signal. (Example 2) この発明の実施の形態2に係るレーダ装置の信号処理部を示すブロック構成図である。(実施例2)It is a block block diagram which shows the signal processing part of the radar apparatus which concerns on Embodiment 2 of this invention. (Example 2) この発明の実施の形態3に係るレーダ装置の送信波の振幅形状を示す模式図である。(実施例3)It is a schematic diagram which shows the amplitude shape of the transmission wave of the radar apparatus which concerns on Embodiment 3 of this invention. (Example 3)
 以下、この発明のレーダ装置の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。 Hereinafter, preferred embodiments of a radar apparatus according to the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts will be described with the same reference numerals.
 実施の形態1.
 図1は、この発明の実施の形態1に係るレーダ装置を示すブロック構成図である。
 図1において、このレーダ装置は、送信部1、切り替え部2、放射部3、受信部4、AD(Analog to Digital)変換部5および信号処理部6を備えている。
Embodiment 1 FIG.
1 is a block diagram showing a radar apparatus according to Embodiment 1 of the present invention.
In FIG. 1, the radar apparatus includes a transmission unit 1, a switching unit 2, a radiation unit 3, a reception unit 4, an AD (Analog to Digital) conversion unit 5, and a signal processing unit 6.
 以下、このレーダ装置の機能について説明する。
 送信部1は、単一周波数の連続波を振幅変調して発生された送信パルスを複数含む送信波を生成して出力する。また、送信部1は、送信波を受信部4に出力する。
 なお、この実施の形態1では、送信波がレーザ光である場合について説明するが、送信波はレーザ光に限定されるものではなく、光の周波数領域以外の一般の電磁波、または音波等であっても同様に適用することができる。
The function of this radar apparatus will be described below.
The transmission unit 1 generates and outputs a transmission wave including a plurality of transmission pulses generated by amplitude-modulating a single frequency continuous wave. Further, the transmission unit 1 outputs a transmission wave to the reception unit 4.
In the first embodiment, the case where the transmission wave is a laser beam will be described. However, the transmission wave is not limited to the laser beam, but may be a general electromagnetic wave or a sound wave other than the frequency region of the light. However, the same can be applied.
 切り替え部2は、送信部1からの送信波を放射部3に出力するとともに、放射部3からの受信波を受信部4に出力する。
 放射部3は、切り替え部2からの送信波を空間に放射するとともに、空間中に存在する目標物100で反射した送信波の一部を、受信波として受信する。
The switching unit 2 outputs the transmission wave from the transmission unit 1 to the radiation unit 3 and outputs the reception wave from the radiation unit 3 to the reception unit 4.
The radiating unit 3 radiates the transmission wave from the switching unit 2 to the space, and receives a part of the transmission wave reflected by the target 100 existing in the space as a reception wave.
 受信部4は、放射部3から切り替え部2を経由して入力された受信波を、送信部1からの送信波を用いて、中間周波数(IF:Intermediate Frequency)の受信信号に周波数変換する。受信部4で周波数変換された中間周波数の受信信号(IF受信信号)は、アナログ信号である。 The receiving unit 4 converts the received wave input from the radiating unit 3 via the switching unit 2 into a received signal having an intermediate frequency (IF) using the transmitted wave from the transmitting unit 1. The intermediate frequency reception signal (IF reception signal) frequency-converted by the reception unit 4 is an analog signal.
 AD変換部5は、信号処理をデジタル的に実行するために、受信部4からのIF受信信号をAD変換(アナログ-デジタル変換)し、デジタル化されたIF受信信号(以下、「受信信号」と略称する)を出力する。
 信号処理部6は、AD変換部5からの受信信号に基づいて、信号処理を実行する。
The AD conversion unit 5 performs AD conversion (analog-digital conversion) on the IF reception signal from the reception unit 4 in order to digitally execute the signal processing, and digitized IF reception signal (hereinafter referred to as “reception signal”). Is abbreviated as "."
The signal processing unit 6 performs signal processing based on the received signal from the AD conversion unit 5.
 ここで、送信部1が生成し、放射部3が空間に放射する送信波の振幅形状を、図2に模式的に示す。
 図2において、送信波は、単一周波数の連続波を振幅変調して発生された送信パルスを2つ含んでいる。ここでは、パルス101aとパルス101bとからなる送信波形状をフレームと呼ぶことにする。
Here, the amplitude shape of the transmission wave generated by the transmission unit 1 and radiated into the space by the radiation unit 3 is schematically shown in FIG.
In FIG. 2, the transmission wave includes two transmission pulses generated by amplitude-modulating a single frequency continuous wave. Here, a transmission wave shape composed of the pulse 101a and the pulse 101b is referred to as a frame.
 パルス101aのパルス幅102aとパルス101bのパルス幅102bとは、互いに等しい。また、1フレームの送信波は、時間間隔103だけ途切れた形状となっており、パルス間隔104aは、パルス101aの中心からパルス101bの中心までの間隔となる。そして、送信波のフレームは、時間間隔105の間隔で繰り返される。 The pulse width 102a of the pulse 101a and the pulse width 102b of the pulse 101b are equal to each other. Further, the transmission wave of one frame has a shape interrupted by the time interval 103, and the pulse interval 104a is an interval from the center of the pulse 101a to the center of the pulse 101b. The frame of the transmission wave is repeated at the time interval 105.
 パルス幅102aおよびパルス幅102bは、実現する距離分解能に応じて決定される。所望の距離分解能がΔrのとき、パルス幅τは、次式(1)で表される。式(1)において、cは光速を示している。 The pulse width 102a and the pulse width 102b are determined according to the distance resolution to be realized. When the desired distance resolution is Δr, the pulse width τ is expressed by the following equation (1). In the formula (1), c represents the speed of light.
  τ=2Δr/c           (1) Τ = 2Δr / c (1)
 また、時間間隔105をTと表したときに、Tは、次式(2)を満足するように設定される。式(2)において、Rmaxは最大観測距離を示している。 Further, when the time interval 105 is expressed as T, T is set so as to satisfy the following expression (2). In Expression (2), Rmax indicates the maximum observation distance.
  T>2Rmax/c         (2) T> 2Rmax / c (2)
 式(2)は、最大観測距離に存在する目標物で反射した送信波が受信された後に、次のフレームを送信することを意味している。 Equation (2) means that the next frame is transmitted after the transmission wave reflected by the target existing at the maximum observation distance is received.
 続いて、送信波の送信タイミングと受信信号の受信タイミングとの関係を、図3に模式的に示す。
 図3において、AD変換部5によるデータ収録は、タイミング116からタイミング117までの期間で実行される。ここで、タイミング116は、パルス101bの送信の終了以降となり、タイミング117は、時間間隔105によって決まる次の送信フレームの開始よりも前となるように設定されている。また、この期間に得られた受信信号を110とする。
Subsequently, the relationship between the transmission timing of the transmission wave and the reception timing of the reception signal is schematically shown in FIG.
In FIG. 3, data recording by the AD conversion unit 5 is executed in a period from timing 116 to timing 117. Here, the timing 116 is set to be after the end of transmission of the pulse 101b, and the timing 117 is set to be before the start of the next transmission frame determined by the time interval 105. The received signal obtained during this period is assumed to be 110.
 なお、受信信号110は、サンプル間隔Δtでサンプルされるものとする。また、サンプル間隔Δtは、次式(3)を満足するように設定される。式(3)において、λは送信波長、Vaは計測するドップラ速度の範囲の幅を示している。 Note that the received signal 110 is sampled at a sampling interval Δt. The sample interval Δt is set so as to satisfy the following expression (3). In Equation (3), λ represents the transmission wavelength, and Va represents the width of the Doppler speed range to be measured.
  Δt<λ/Va           (3) Δt <λ / Va (3)
 例えば、ドップラ速度の計測範囲が-Vmaxから+Vmax(Vmax>0)の場合には、計測するドップラ速度の範囲の幅Vaは、次式(4)のようになる。 For example, when the measurement range of the Doppler velocity is from −Vmax to + Vmax (Vmax> 0), the width Va of the Doppler velocity range to be measured is expressed by the following equation (4).
  Va=2Vmax          (4) Va = 2Vmax (4)
 また、距離rの速度計測を実行する場合には、AD変換部5で得られたサンプルのうち、区間112aおよび区間112bのサンプルを用いる。区間112aおよび区間112bの幅は、それぞれパルス幅102aおよびパルス幅102bと等しいとする。また、時間間隔113も、パルス101aとパルス101bとの間の時間間隔103と等しいとする。 Further, when the speed measurement of the distance r is executed, the samples in the section 112a and the section 112b among the samples obtained by the AD conversion unit 5 are used. Assume that the widths of the section 112a and the section 112b are equal to the pulse width 102a and the pulse width 102b, respectively. The time interval 113 is also assumed to be equal to the time interval 103 between the pulse 101a and the pulse 101b.
 そのため、区間112aの中心から区間112bの中心までの時間間隔114aは、パルス101aの中心からパルス101bの中心までのパルス間隔104aと等しくなる。このとき、パルス101aとパルス111aとの時間差118をtrとすると、trは、次式(5)で表される。 Therefore, the time interval 114a from the center of the section 112a to the center of the section 112b is equal to the pulse interval 104a from the center of the pulse 101a to the center of the pulse 101b. At this time, when the time difference 118 between the pulse 101a and the pulse 111a is tr, tr is expressed by the following equation (5).
  tr=2r/c           (5) Tr = 2r / c (5)
 なお、上述した送信部1から信号処理部6までの処理の流れは、従来からある一般的なものである。この発明の実施の形態1に係るレーダ装置の特徴は、以降に説明する信号処理部6による信号処理にある。 Note that the above-described processing flow from the transmission unit 1 to the signal processing unit 6 is a conventional one. The feature of the radar apparatus according to the first embodiment of the present invention resides in signal processing by the signal processing unit 6 described below.
 図4は、この発明の実施の形態1に係るレーダ装置の信号処理部6を示すブロック構成図である。
 図4において、信号処理部6は、フーリエ変換部11、スペクトル積分部12、ピーク検出部13、ピーク抽出部14、乗算部15、乗算値積分部16、速度算出部17および折り返し補正部18を有している。
FIG. 4 is a block configuration diagram showing the signal processing unit 6 of the radar apparatus according to Embodiment 1 of the present invention.
In FIG. 4, the signal processing unit 6 includes a Fourier transform unit 11, a spectrum integration unit 12, a peak detection unit 13, a peak extraction unit 14, a multiplication unit 15, a multiplication value integration unit 16, a speed calculation unit 17, and a loop correction unit 18. Have.
 以下、信号処理部6の機能について説明する。
 フーリエ変換部11は、AD変換部5からの受信信号に対して、パルス112aおよびパルス112bのそれぞれについてフーリエ変換を実行する。これによって得られるフーリエ変換後の受信信号は、ドップラ周波数に対応する周波数点にピークを有するものとなる。
Hereinafter, functions of the signal processing unit 6 will be described.
The Fourier transform unit 11 performs Fourier transform on the received signal from the AD conversion unit 5 for each of the pulse 112a and the pulse 112b. The received signal after Fourier transform obtained in this way has a peak at a frequency point corresponding to the Doppler frequency.
 スペクトル積分部12は、フーリエ変換部11からのフーリエ変換後の受信信号の電力値を算出することにより、受信信号のパワースペクトルを得る。ここで、スペクトル積分部12は、得られたパワースペクトルからピーク検出を実行する際の検出性能を向上させるために、複数回の送信で得られるパワースペクトルを電力加算、すなわち積分する。
 ピーク検出部13は、スペクトル積分部12からの積分されたパワースペクトルに対してピーク検出処理を実行し、パワースペクトルが最大となるピークを検出して、ピーク位置の周波数点をピーク抽出部14および折り返し補正部18に出力する。
The spectrum integration unit 12 obtains the power spectrum of the received signal by calculating the power value of the received signal after the Fourier transform from the Fourier transform unit 11. Here, the spectrum integrator 12 adds power, that is, integrates the power spectrum obtained by a plurality of transmissions in order to improve detection performance when performing peak detection from the obtained power spectrum.
The peak detection unit 13 performs a peak detection process on the integrated power spectrum from the spectrum integration unit 12, detects a peak at which the power spectrum is maximum, and sets the frequency point at the peak position to the peak extraction unit 14 and The result is output to the aliasing correction unit 18.
 ピーク抽出部14は、フーリエ変換部11で得られたフーリエ変換後の受信信号から、ピーク検出部13で検出された周波数点の信号成分を抽出する。ここで、抽出する信号の位相情報を用いて後段のドップラ速度の算出が実行されることから、位相情報を含んでいるフーリエ変換部11の出力から信号成分を抽出する。なお、スペクトル積分部12で積分されるパワースペクトルは、電力値となっているので、位相情報を含んでいない。そのため、パワースペクトルの情報は、ピーク位置の周波数点を取り出すことにのみ使用される。 The peak extraction unit 14 extracts the signal component at the frequency point detected by the peak detection unit 13 from the received signal after the Fourier transform obtained by the Fourier transform unit 11. Here, since the subsequent Doppler velocity is calculated using the phase information of the signal to be extracted, the signal component is extracted from the output of the Fourier transform unit 11 including the phase information. In addition, since the power spectrum integrated by the spectrum integration part 12 is a power value, it does not include phase information. Therefore, the power spectrum information is used only for extracting the frequency point at the peak position.
 具体的には、ピーク抽出部14は、パルス112aとパルス112bとの両方から信号成分を抽出する。抽出された信号成分をそれぞれa(i)、b(i)とする。ただし、iは、i番目の送信による観測で得られた信号であることを示している。
 乗算部15は、2つの信号成分a(i)、b(i)の複素共役積を取ることにより、次式(6)で表されるように、2つの信号成分a(i)、b(i)の相互相関値R(i)を算出する。
Specifically, the peak extraction unit 14 extracts a signal component from both the pulse 112a and the pulse 112b. Let the extracted signal components be a (i) and b (i), respectively. However, i has shown that it is a signal obtained by observation by the i-th transmission.
The multiplication unit 15 takes the complex conjugate product of the two signal components a (i) and b (i), thereby expressing the two signal components a (i) and b ( The cross-correlation value R (i) of i) is calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 この相互相関値R(i)の位相は、図3に示した時間間隔114a(=パルス間隔104a)の間に、信号の位相がどれだけ進んだかを表している。したがって、相互相関値R(i)の位相から、ドップラ周波数を算出することができる。しかしながら、信号成分a(i)、b(i)には、不要成分が含まれている。
 以下、図5を参照しながら、信号成分a(i)、b(i)に含まれる不要成分について説明する。図5において、水平方向は時間を示し、垂直方向は距離を示している。
The phase of the cross-correlation value R (i) represents how much the phase of the signal has advanced during the time interval 114a (= pulse interval 104a) shown in FIG. Therefore, the Doppler frequency can be calculated from the phase of the cross-correlation value R (i). However, the signal components a (i) and b (i) include unnecessary components.
Hereinafter, unnecessary components included in the signal components a (i) and b (i) will be described with reference to FIG. In FIG. 5, the horizontal direction indicates time, and the vertical direction indicates distance.
 送信部1で生成されて放射部3から空間に放射された送信波のパルス101aおよびパルス101bは、距離Bに存在する目標物で反射され、区間112aおよび区間112bでそれぞれ受信され、フーリエ変換後にピーク抽出部14で信号成分が抽出されて信号成分a(i)および信号成分b(i)となる。
 ここで、信号成分a(i)は、パルス101bが距離Cで反射された不要反射成分を含み、信号成分b(i)は、パルス101aが距離Aで反射された不要反射成分を含む。そのため、相互相関値R(i)は、距離Aおよび距離Cからの不要反射成分の影響を含む。
The pulse 101a and the pulse 101b of the transmission wave generated by the transmission unit 1 and radiated into the space from the radiation unit 3 are reflected by the target existing at the distance B, received by the section 112a and the section 112b, respectively, and after Fourier transform A signal component is extracted by the peak extraction unit 14 to become a signal component a (i) and a signal component b (i).
Here, the signal component a (i) includes an unnecessary reflection component in which the pulse 101b is reflected at the distance C, and the signal component b (i) includes an unnecessary reflection component in which the pulse 101a is reflected at the distance A. Therefore, the cross-correlation value R (i) includes the influence of unnecessary reflection components from the distance A and the distance C.
 乗算値積分部16は、上記不要反射成分の影響を取り除くために、次式(7)で表されるように、相互相関値R(i)を積分し、積分後相互相関値R(チルダ)を算出する。 The multiplication value integration unit 16 integrates the cross-correlation value R (i) as expressed by the following equation (7) in order to remove the influence of the unnecessary reflection component, and the cross-correlation value R (tilde) after integration. Is calculated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 距離Cでの不要反射成分は信号成分a(i)にしか含まれないので、信号成分b(i)とは相関を持たず、また、距離Aでの不要反射成分は信号成分b(i)にしか含まれないので、信号成分a(i)とは相関を持たない。したがって、複数回の観測の平均を取ることにより、距離Aおよび距離Cでの不要反射成分は、距離Bからの反射成分と比較して、相対的に小さくなる。そこで、式(7)より、積分回数Nを十分に大きくすれば、距離Aおよび距離Cからの不要反射成分の、積分後相互相関値R(チルダ)への影響は十分に小さくなる。 Since the unnecessary reflection component at the distance C is included only in the signal component a (i), there is no correlation with the signal component b (i), and the unnecessary reflection component at the distance A is the signal component b (i). Therefore, there is no correlation with the signal component a (i). Therefore, by taking an average of a plurality of observations, the unnecessary reflection component at the distance A and the distance C becomes relatively smaller than the reflection component from the distance B. Therefore, from Equation (7), if the number of integrations N is sufficiently large, the influence of the unnecessary reflection components from the distance A and the distance C on the post-integral cross-correlation value R (tilde) is sufficiently small.
 速度算出部17は、不要反射成分の影響が低減された積分後相互相関値R(チルダ)の位相から、次式(8)を用いて、ドップラ速度vDを算出する。式(8)において、Tiは時間間隔114a(=パルス間隔104a)を示している。 The velocity calculation unit 17 calculates the Doppler velocity v D using the following equation (8) from the phase of the post-integral cross-correlation value R (tilde) in which the influence of the unnecessary reflection component is reduced. In the equation (8), Ti represents a time interval 114a (= pulse interval 104a).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(8)より、速度分解能がパルス間隔によって決定されることが分かる。また、式(8)で算出したドップラ速度vDは、時間間隔Tiでの位相差に基づいて算出した値である。したがって、時間間隔Tiの間に2πを超える位相回転が存在している場合には、算出したドップラ速度vDに曖昧さが含まれることとなる。すなわち、曖昧さを含まずに算出できるドップラ速度vDの間隔は、λ/(2Ti)となる。 From equation (8), it can be seen that the velocity resolution is determined by the pulse interval. Further, the Doppler velocity v D calculated by the equation (8) is a value calculated based on the phase difference at the time interval Ti. Therefore, when there is a phase rotation exceeding 2π during the time interval Ti, the calculated Doppler velocity v D includes ambiguity. That is, the interval of the Doppler velocity v D that can be calculated without ambiguity is λ / (2Ti).
 一方、区間112aまたは区間112bのフーリエ変換では、上述したサンプル間隔Δtによって、速度算出の曖昧さが決定される。したがって、サンプル間隔Δtが十分に小さくなるようなサンプルをAD変換部5で実行すれば、ドップラ速度vDの曖昧さは生じない。そのため、ピーク検出部13での検出結果を用いることにより、速度算出部17で算出されたドップラ速度vDの曖昧さを解消することができる。 On the other hand, in the Fourier transform of the section 112a or the section 112b, the speed calculation ambiguity is determined by the above-described sample interval Δt. Therefore, if the AD conversion unit 5 executes a sample with a sufficiently small sample interval Δt, the Doppler speed v D is not ambiguous. Therefore, the ambiguity of the Doppler speed v D calculated by the speed calculation unit 17 can be resolved by using the detection result of the peak detection unit 13.
 しかしながら、このフーリエ変換では、区間112aの時間長で決定されるドップラ周波数の分解能しか得ることができない。具体的には、区間112aの時間幅がパルス101aのパルス幅τと等しいので、ドップラ周波数の分解能は1/τとなり、ドップラ速度の分解能はλ/(2τ)となる。 However, with this Fourier transform, only the resolution of the Doppler frequency determined by the time length of the section 112a can be obtained. Specifically, since the time width of the section 112a is equal to the pulse width τ of the pulse 101a, the Doppler frequency resolution is 1 / τ and the Doppler velocity resolution is λ / (2τ).
 ここで、時間間隔Tiがパルス幅τよりも大きくなると、フーリエ変換によるドップラ速度の分解能が、速度算出部17で算出されたドップラ速度vDに含まれる曖昧さよりも大きくなる。
 このことは、速度算出部17の速度算出結果の曖昧さを完全に解消できるほどの精度が、フーリエ変換にないことを意味している。
Here, when the time interval Ti becomes larger than the pulse width τ, the resolution of the Doppler velocity by the Fourier transform becomes larger than the ambiguity included in the Doppler velocity v D calculated by the velocity calculation unit 17.
This means that the Fourier transform is not accurate enough to completely eliminate the ambiguity of the speed calculation result of the speed calculation unit 17.
 そこで、フーリエ変換による速度推定において、速度分解能よりも細かい精度で推定値を得ることを考える。その一例として、例えばフーリエ変換部11に入力される受信信号の系列の後に、0の系列を付加(0詰め)することが挙げられる。これにより、実際の受信信号の長さを長くすることはできないが、みかけの信号長を長くすることはできる。 Therefore, it is considered that an estimated value is obtained with accuracy finer than the velocity resolution in the velocity estimation by Fourier transform. As an example, for example, a sequence of 0 is added (padded with 0) after a sequence of received signals input to the Fourier transform unit 11. As a result, the actual length of the received signal cannot be increased, but the apparent signal length can be increased.
 このような0詰め後の受信信号に対してフーリエ変換を実行したときの結果を、図6に模式的に示す。図6において、破線は真のドップラスペクトルを表している。
 0詰めをしていない受信信号に対するフーリエ変換では、上述したように、ドップラ周波数の分解能は1/τとなり、図6中の黒丸のようにフーリエ変換の結果が得られる。
FIG. 6 schematically shows the result when the Fourier transform is performed on the received signal after zero padding. In FIG. 6, a broken line represents a true Doppler spectrum.
In the Fourier transform for a received signal that is not zero-padded, as described above, the resolution of the Doppler frequency is 1 / τ, and the result of the Fourier transform is obtained as indicated by the black circle in FIG.
 このとき、例えば元の受信信号と同じ長さの0を付加した後にフーリエ変換を実行すると、フーリエ変換の対象となる信号長が2倍になる。そのため、ドップラ周波数の分解能を半分にすることができる。したがって、この場合には、図6中の白丸の位置にもフーリエ変換の結果を得ることができる。その結果、ピーク周波数の抽出精度を向上させることができる。 At this time, for example, if the Fourier transform is executed after adding 0 having the same length as the original received signal, the signal length to be subjected to the Fourier transform is doubled. Therefore, the resolution of the Doppler frequency can be halved. Therefore, in this case, the result of the Fourier transform can be obtained at the position of the white circle in FIG. As a result, the peak frequency extraction accuracy can be improved.
 このように、フーリエ変換による速度の算出において、従来の観測時間から決定される速度分解能よりも高い精度でドップラ速度vDを算出することができる。しかしながら、受信信号に雑音が含まれている場合には、上述した方法による速度分解能の向上にも限界がある。 Thus, in the calculation of the velocity by Fourier transform, the Doppler velocity v D can be calculated with higher accuracy than the velocity resolution determined from the conventional observation time. However, when the received signal contains noise, there is a limit to the improvement in speed resolution by the above-described method.
 そこで、より高い精度でドップラ速度vDを算出するために、より長い受信信号の観測時間によってドップラ速度vDを算出すること、すなわち、速度算出部17において、時間間隔114a(=パルス間隔104a)の観測時間によって算出されたドップラ速度vDを組み合わせることを考える。 Therefore, in order to calculate the Doppler velocity v D with higher accuracy, to calculate the Doppler velocity v D by observation time longer received signal, i.e., the velocity calculation unit 17, the time interval 114a (= pulse interval 104a) Consider combining Doppler velocities v D calculated according to the observation time.
 具体的には、曖昧さを考慮すると、速度算出部17によるドップラ速度vDの算出結果は、次式(9)で表される。式(9)において、nは整数、vaは2πに相当するドップラ速度を示している。 Specifically, in consideration of ambiguity, the calculation result of the Doppler velocity v D by the velocity calculation unit 17 is expressed by the following equation (9). In the formula (9), n is an integer, v a denotes a Doppler velocity corresponding to 2 [pi.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 折り返し補正部18は、整数nを変えて得られるドップラ速度vDのうち、ピーク検出部13で検出されたパワースペクトルのピークで得られるドップラ速度に最も近い値が、真のドップラ速度vDであるとして、測定値を算出する。折り返し補正部18は、このような、曖昧さの解消、すなわち速度折り返し補正を実行する。 The aliasing correction unit 18 has a true Doppler velocity v D that is the closest to the Doppler velocity obtained at the peak of the power spectrum detected by the peak detector 13 among the Doppler velocities v D obtained by changing the integer n. Assuming there is a measured value. The loopback correction unit 18 performs such ambiguity resolution, that is, speed loopback correction.
 以上のように、実施の形態1によれば、送信波に対する受信信号の遅延時間に基づいて、目標物までの距離を計測するレーダ装置において、フーリエ変換部は、受信信号から、送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成する。ピーク抽出部は、フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出する。乗算部は、送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する。乗算値積分部は、乗算部で算出された複素共役積を複数回の観測について加算し、積分後複素共役積を算出する。速度算出部は、積分後複素共役積の位相から、ドップラ速度を算出する。これにより、距離分解能をパルスの幅で決定し、速度分解能をパルスの間隔で決定することができる。
 そのため、距離分解能および速度分解能の両方を同時に向上させることができるレーダ装置を得ることができる。
As described above, according to the first embodiment, in the radar apparatus that measures the distance to the target based on the delay time of the reception signal with respect to the transmission wave, the Fourier transform unit is included in the transmission wave from the reception signal. A signal in a section having the same width as the pulse to be extracted is extracted, and a Fourier transform is performed on this signal to generate a received signal after the Fourier transform. The peak extraction unit extracts, as a maximum power frequency component, a signal component at a frequency point at which the power value is maximum from the received signal after Fourier transform. The multiplier selects any two of the plurality of maximum power frequency components obtained at the same time interval as the pulse interval included in the transmission wave, and calculates a complex conjugate product. The multiplication value integration unit adds the complex conjugate product calculated by the multiplication unit for a plurality of observations, and calculates a post-integration complex conjugate product. The velocity calculation unit calculates the Doppler velocity from the phase of the complex conjugate product after integration. Thereby, the distance resolution can be determined by the pulse width, and the velocity resolution can be determined by the pulse interval.
Therefore, it is possible to obtain a radar apparatus that can improve both distance resolution and velocity resolution at the same time.
 また、折り返し補正部は、ピーク抽出部で最大電力周波数成分を抽出した周波数を入力し、その周波数から粗い精度のドップラ速度を得るとともに、粗い精度のドップラ速度と整合するように、速度算出部で算出されたドップラ速度の折り返し補正を実行する。また、フーリエ変換部は、フーリエ変換前の受信信号に0の系列を付加する。
 そのため、ドップラ速度に含まれる曖昧さを解消して、ドップラ速度を高精度に算出することができる。
The aliasing correction unit receives the frequency obtained by extracting the maximum power frequency component by the peak extraction unit, obtains a coarsely accurate Doppler velocity from the frequency, and matches the coarsely accurate Doppler velocity with the velocity calculating unit. The loopback correction of the calculated Doppler speed is executed. The Fourier transform unit adds a series of 0 to the received signal before Fourier transform.
Therefore, the ambiguity included in the Doppler speed can be resolved and the Doppler speed can be calculated with high accuracy.
 なお、上記実施の形態1において、折り返し補正部は、ピーク抽出部で最大電力周波数成分を抽出した周波数の近傍において、電力値分布の重心となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、粗い精度のドップラ速度と整合するように、速度算出部で算出されたドップラ速度の折り返し補正を実行してもよい。
 また、上記実施の形態1において、折り返し補正部は、電力値分布に理論的な電力分布モデルを適用することによって、電力値が最大となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、粗い精度のドップラ速度と整合するように、速度算出部で算出されたドップラ速度の折り返し補正を実行してもよい。
 さらに、このとき、送信部が、送信波に含まれるパルスの間隔が送信毎に所定の周期で変化するように送信波を生成し、折り返し補正部が、パルス間隔の互いに異なる送信波による観測において、速度算出部で算出された全てのドップラ速度と整合するように、ドップラ速度の折り返し補正を実行してもよい。
 これらの場合も、上記実施の形態1と同様の効果を得ることができる。
In the first embodiment, the aliasing correction unit estimates the frequency that is the center of gravity of the power value distribution in the vicinity of the frequency from which the maximum power frequency component is extracted by the peak extraction unit, and the Doppler speed with coarse accuracy from the frequency. In addition, the loop correction of the Doppler speed calculated by the speed calculation unit may be executed so as to match the Doppler speed with coarse accuracy.
In the first embodiment, the aliasing correction unit estimates a frequency at which the power value is maximum by applying a theoretical power distribution model to the power value distribution, and calculates a coarsely accurate Doppler speed from the frequency. In addition, the loop correction of the Doppler speed calculated by the speed calculation unit may be executed so as to match the coarse Doppler speed.
Furthermore, at this time, the transmission unit generates a transmission wave so that the interval of the pulses included in the transmission wave changes at a predetermined period for each transmission, and the aliasing correction unit performs the observation with the transmission waves having different pulse intervals. The loop correction of the Doppler speed may be executed so as to be consistent with all the Doppler speeds calculated by the speed calculation unit.
In these cases, the same effect as in the first embodiment can be obtained.
 実施の形態2.
 上記実施の形態1では、送信波形内に2つの送信パルスを含む送信波を例に挙げて説明したが、これに限定されず、送信波には3つ以上の送信パルスが含まれていてもよい。
 以下、3つの送信パルスを含む送信波を用いる場合について説明する。
 図7は、この発明の実施の形態2に係るレーダ装置における送信および受信の状況を模式的に示す説明図である。図7では、図5と比較して、送信波のパルス101cが増え、また、受信信号の区間112cが増えている。
Embodiment 2. FIG.
In the first embodiment, the transmission wave including two transmission pulses in the transmission waveform has been described as an example. However, the present invention is not limited to this, and the transmission wave may include three or more transmission pulses. Good.
Hereinafter, a case where a transmission wave including three transmission pulses is used will be described.
FIG. 7 is an explanatory view schematically showing a state of transmission and reception in the radar apparatus according to Embodiment 2 of the present invention. In FIG. 7, as compared with FIG. 5, the number of transmission wave pulses 101c is increased, and the interval 112c of the received signal is increased.
 図7において、受信信号には、距離A、B、Cからの反射波の他に、距離D、E、Fからの反射波も含まれることとなる。しかしながら、受信信号の3つの区間112a、112b、112cのうち、複数の区間で受信されるのは、距離Bからの反射波のみである。そのため、例えば区間112aおよび区間112bの受信信号を用いて算出されるドップラ速度v1と、区間112bおよび区間112cの受信信号を用いて算出されるドップラ速度v2とは、速度の折り返しを除いてそれぞれ正しい値となる。 In FIG. 7, the received signal includes reflected waves from distances D, E, and F in addition to reflected waves from distances A, B, and C. However, only the reflected wave from the distance B is received in a plurality of sections among the three sections 112a, 112b, and 112c of the received signal. Therefore, for example, the Doppler speed v1 calculated using the received signals of the sections 112a and 112b and the Doppler speed v2 calculated using the received signals of the sections 112b and 112c are correct except for the return of the speed. Value.
 ここで、ドップラ速度v1とドップラ速度v2とは、用いる受信信号の時間間隔が互いに異なるために、速度の折り返し方が両者で異なることとなる。そこで、曖昧さを考慮して算出されるドップラ速度v1およびドップラ速度v2の候補のうち、両者で整合の取れる値を選択すれば、折り返しのない正しいドップラ速度を得ることができる。 Here, since the Doppler speed v1 and the Doppler speed v2 are different in the time interval of the received signals to be used, the method of returning the speed is different between the two. Therefore, if a value that can be matched between the Doppler speed v1 and the Doppler speed v2 calculated in consideration of ambiguity is selected, a correct Doppler speed without aliasing can be obtained.
 図8は、この発明の実施の形態2に係るレーダ装置の信号処理部6Aを示すブロック構成図である。
 図8において、信号処理部6Aは、フーリエ変換部11、切り替え部19、スペクトル積分部12a、12b、ピーク検出部13a、13b、ピーク抽出部14a、14b、乗算部15a、15b、乗算値積分部16a、16b、速度算出部17a、17bおよび速度修正部20を有している。
FIG. 8 is a block diagram showing a signal processing unit 6A of the radar apparatus according to Embodiment 2 of the present invention.
In FIG. 8, the signal processing unit 6A includes a Fourier transform unit 11, a switching unit 19, spectral integration units 12a and 12b, peak detection units 13a and 13b, peak extraction units 14a and 14b, multiplication units 15a and 15b, and a multiplication value integration unit. 16a, 16b, speed calculation units 17a, 17b, and a speed correction unit 20.
 また、図8において、スペクトル積分部12a、12bから速度演算部17a、17bまでは、2重になっている。なお、符号にaを付けたものは、区間112aおよび区間112bの受信信号を処理する系であり、符号にbを付けたものは、区間112bおよび区間112cの受信信号を処理する系である。すなわち、切り替え部19は、フーリエ変換部11からのフーリエ変換後の受信信号のうち、区間112aおよび区間112bに対応する信号を、符号にaを付けた系に出力し、区間112bおよび区間112cに対応する信号を、符号にbを付けた系に出力する。 Further, in FIG. 8, the spectrum integration units 12a and 12b to the speed calculation units 17a and 17b are doubled. In addition, what added a to the code | symbol is a system which processes the received signal of the area 112a and the area 112b, and what added b to the code | symbol is a system which processes the received signal of the area 112b and the area 112c. That is, the switching unit 19 outputs a signal corresponding to the section 112a and the section 112b among the received signals after the Fourier transform from the Fourier transform section 11 to a system in which a symbol is added to the section 112b and the section 112c. The corresponding signal is output to a system with b added to the code.
 速度算出部17aで算出されるドップラ速度と、速度算出部17bで算出されるドップラ速度とは、速度の折り返しを除いて互いに等しい。そこで、速度修正部20は、速度算出部17aおよび速度算出部17bで算出されるドップラ速度について、それぞれ複数の折り返し数を想定してドップラ速度の候補を算出し、両者で一致する値を正しいドップラ速度として選択する。 The Doppler speed calculated by the speed calculation unit 17a and the Doppler speed calculated by the speed calculation unit 17b are equal to each other except for the return of the speed. Therefore, the speed correction unit 20 calculates a Doppler speed candidate assuming a plurality of numbers of folds for the Doppler speeds calculated by the speed calculation unit 17a and the speed calculation unit 17b, and sets a value that matches both to the correct Doppler. Select as speed.
 以上のように、実施の形態2によれば、送信部は、3つ以上のパルスを含む送信波を生成し、乗算部は、異なる時間間隔の組み合わせで複素共役積を算出し、速度算出部は、異なる時間間隔の組み合わせについて算出された積分後複素共役積の全てと整合するようにドップラ速度を算出する。
 そのため、距離分解能を向上させるためにパルス間隔を短くした場合であっても、ドップラ速度を高精度に算出することができる。また、送信波形内に3つ以上の送信パルスが含まれているので、折返し補正も可能となり、ドップラ速度を高精度に算出することができる。
As described above, according to the second embodiment, the transmission unit generates a transmission wave including three or more pulses, the multiplication unit calculates a complex conjugate product with a combination of different time intervals, and a speed calculation unit. Computes the Doppler velocity to match all of the post-integral complex conjugate products computed for different time interval combinations.
Therefore, even when the pulse interval is shortened in order to improve the distance resolution, the Doppler velocity can be calculated with high accuracy. Further, since three or more transmission pulses are included in the transmission waveform, aliasing correction is possible, and the Doppler speed can be calculated with high accuracy.
 実施の形態3.
 上記実施の形態2では、送信波形内に3つ以上の送信パルスを含む送信波を例に挙げて説明したが、これに限定されず、送信波形内に含まれる送信パルスを2つとし、送信毎にパルス間隔を複数通りに変えてもよい。
 以下、2つの送信パルスを含む送信波を用い、送信毎にパルス間隔を複数通りに変えて観測を実行する場合について説明する。
 なお、この発明の実施の形態3に係るレーダ装置の信号処理部の構成は、上述した実施の形態2と同様なので、その説明を省略する。
Embodiment 3 FIG.
In the second embodiment, the transmission wave including three or more transmission pulses in the transmission waveform has been described as an example. However, the present invention is not limited to this, and two transmission pulses included in the transmission waveform are used for transmission. A plurality of pulse intervals may be changed every time.
Hereinafter, a case will be described in which observation is performed by using a transmission wave including two transmission pulses and changing a plurality of pulse intervals for each transmission.
Since the configuration of the signal processing unit of the radar apparatus according to Embodiment 3 of the present invention is the same as that of Embodiment 2 described above, description thereof is omitted.
 図9は、この発明の実施の形態3に係るレーダ装置の送信波の振幅形状を示す模式図である。
 図9において、送信波は、1番目の送信ではパルス間隔104aで、2番目の送信ではパルス間隔104bで、3番目の送信ではパルス間隔104cで、4番目の送信ではパルス間隔104dでそれぞれ送信され、以後継続して送信される。
FIG. 9 is a schematic diagram showing the amplitude shape of the transmission wave of the radar apparatus according to Embodiment 3 of the present invention.
In FIG. 9, the transmission wave is transmitted at the pulse interval 104a in the first transmission, the pulse interval 104b in the second transmission, the pulse interval 104c in the third transmission, and the pulse interval 104d in the fourth transmission. Thereafter, it is continuously transmitted.
 ここで、パルス間隔104aおよびパルス間隔104cは、互いに同じ間隔とし、また、パルス間隔104bおよびパルス間隔104dも、互いに同じ間隔とする。なお、パルス間隔104b、104dは、パルス間隔104a、104cよりも長い間隔となっている。このとき、パルス間隔104a、104cの送信波に対応する受信信号を用いて算出されるドップラ速度と、パルス間隔104b、104dの送信波に対応する受信信号を用いて算出されるドップラ速度とは、速度の折り返しを除いてそれぞれ正しい値となる。 Here, the pulse interval 104a and the pulse interval 104c are the same interval, and the pulse interval 104b and the pulse interval 104d are also the same interval. The pulse intervals 104b and 104d are longer than the pulse intervals 104a and 104c. At this time, the Doppler velocity calculated using the reception signal corresponding to the transmission wave of the pulse intervals 104a and 104c and the Doppler velocity calculated using the reception signal corresponding to the transmission wave of the pulse interval 104b and 104d are: Each value is correct except for the return of speed.
 そこで、上述した実施の形態2と同様に、速度修正部20において、速度算出部17aで算出されるドップラ速度(パルス間隔104a、104cの送信波に対応)、および速度算出部17bで算出されるドップラ速度(パルス間隔104b、104dの送信波に対応)について、それぞれ複数の折り返し数を想定してドップラ速度の候補を算出し、両者で一致する値を正しいドップラ速度として選択する。 Therefore, similarly to the second embodiment described above, in the speed correction unit 20, the Doppler speed calculated by the speed calculation unit 17a (corresponding to the transmission waves of the pulse intervals 104a and 104c) and the speed calculation unit 17b are used. With regard to the Doppler speed (corresponding to the transmission waves of the pulse intervals 104b and 104d), a Doppler speed candidate is calculated assuming a plurality of folding numbers, and a value matching both is selected as the correct Doppler speed.
 以上のように、実施の形態3によれば、送信部は、送信波に含まれるパルスの間隔が、送信毎に所定の周期で変化するように送信波を生成し、乗算部は、等しいパルス間隔の組み合わせで複素共役積を算出し、速度算出部は、等しいパルス間隔の組み合わせについて算出された積分後複素共役積の全てと整合するようにドップラ速度を算出する。
 そのため、上述した実施の形態2と同様に、距離分解能を向上させるためにパルス間隔を短くした場合であっても、ドップラ速度を高精度に算出することができる。また、送信波形内に2つの送信パルスのみが含まれているので、不要反射成分の発生が少なく、かつ複数通りのパルス間隔でドップラ速度を算出することができるので、折返し補正も可能となり、ドップラ速度を高精度に算出することができる。
As described above, according to the third embodiment, the transmission unit generates a transmission wave so that the interval between pulses included in the transmission wave changes at a predetermined cycle for each transmission, and the multiplication unit has an equal pulse. The complex conjugate product is calculated by the combination of intervals, and the velocity calculation unit calculates the Doppler velocity so as to match all of the post-integration complex conjugate products calculated for the combination of equal pulse intervals.
Therefore, similarly to the above-described second embodiment, the Doppler speed can be calculated with high accuracy even when the pulse interval is shortened in order to improve the distance resolution. In addition, since only two transmission pulses are included in the transmission waveform, the generation of unnecessary reflection components is small, and the Doppler velocity can be calculated at a plurality of pulse intervals. The speed can be calculated with high accuracy.

Claims (10)

  1.  送信部で生成された、複数のパルスを含む送信波を空間に放射し、空間に存在する目標物で反射して受信される受信波を、前記送信波を用いて周波数変換して受信信号を生成するとともに、前記送信波に対する前記受信信号の遅延時間に基づいて、前記目標物までの距離を計測するレーダ装置であって、
     前記受信信号から、前記送信波に含まれるパルスと同じ幅を有する区間の信号を抽出し、この信号に対してフーリエ変換を実行して、フーリエ変換後の受信信号を生成するフーリエ変換部と、
     前記フーリエ変換後の受信信号から、電力値が最大となる周波数点の信号成分を、最大電力周波数成分として抽出するピーク抽出部と、
     前記送信波に含まれるパルスの間隔と同じ時間間隔で得られる複数の前記最大電力周波数成分のうち、任意の2つを選択して複素共役積を算出する乗算部と、
     前記乗算部で算出された前記複素共役積を複数回の観測について加算し、積分後複素共役積を算出する乗算値積分部と、
     前記積分後複素共役積の位相から、ドップラ速度を算出する速度算出部と、
     を備えたレーダ装置。
    A transmission wave including a plurality of pulses generated by the transmission unit is radiated to the space, and the reception wave reflected and received by the target existing in the space is frequency-converted using the transmission wave to obtain a reception signal. A radar device that generates and measures a distance to the target based on a delay time of the received signal with respect to the transmission wave,
    A Fourier transform unit that extracts a signal in a section having the same width as the pulse included in the transmission wave from the received signal, performs Fourier transform on the signal, and generates a received signal after Fourier transform;
    A peak extraction unit that extracts a signal component of a frequency point at which the power value is maximum from the received signal after the Fourier transform, as a maximum power frequency component;
    A multiplying unit that selects any two of the plurality of maximum power frequency components obtained at the same time interval as a pulse interval included in the transmission wave, and calculates a complex conjugate product;
    A multiplication value integration unit that adds the complex conjugate product calculated by the multiplication unit for a plurality of observations and calculates a complex conjugate product after integration;
    A velocity calculation unit for calculating a Doppler velocity from the phase of the complex conjugate product after integration;
    A radar apparatus comprising:
  2.  前記送信部は、前記送信波に含まれるパルスの間隔が、パルスの幅と同じ、またはパルスの幅よりも広くなるように前記送信波を生成する請求項1に記載のレーダ装置。 The radar apparatus according to claim 1, wherein the transmission unit generates the transmission wave so that an interval between pulses included in the transmission wave is equal to or wider than a pulse width.
  3.  前記送信部は、想定する最大観測距離に対応する前記受信信号の遅延時間よりも長い時間間隔で繰り返し前記送信波を生成する請求項1または請求項2に記載のレーダ装置。 The radar device according to claim 1 or 2, wherein the transmission unit repeatedly generates the transmission wave at a time interval longer than a delay time of the reception signal corresponding to an assumed maximum observation distance.
  4.  前記送信部は、3つ以上のパルスを含む前記送信波を生成し、
     前記乗算部は、異なる時間間隔の組み合わせで前記複素共役積を算出し、
     前記速度算出部は、異なる時間間隔の組み合わせについて算出された前記積分後複素共役積の全てと整合するように前記ドップラ速度を算出する
     請求項1から請求項3までの何れか1項に記載のレーダ装置。
    The transmission unit generates the transmission wave including three or more pulses,
    The multiplication unit calculates the complex conjugate product with a combination of different time intervals,
    The said speed calculation part calculates the said Doppler speed so that it may match with all the said post-integration complex conjugate products calculated about the combination of a different time interval. Radar device.
  5.  前記送信部は、前記送信波に含まれるパルスの間隔が、送信毎に所定の周期で変化するように前記送信波を生成し、
     前記乗算部は、等しいパルス間隔の組み合わせで前記複素共役積を算出し、
     前記速度算出部は、等しいパルス間隔の組み合わせについて算出された前記積分後複素共役積の全てと整合するように前記ドップラ速度を算出する
     請求項1から請求項3までの何れか1項に記載のレーダ装置。
    The transmission unit generates the transmission wave so that an interval of pulses included in the transmission wave changes at a predetermined cycle for each transmission,
    The multiplication unit calculates the complex conjugate product with a combination of equal pulse intervals,
    The said speed calculation part calculates the said Doppler speed so that it may match with all the said post-integration complex conjugate products calculated about the combination of an equal pulse interval, The statement of any one of Claim 1- Claim 3 Radar device.
  6.  前記ピーク抽出部で前記最大電力周波数成分を抽出した周波数を入力し、その周波数から粗い精度のドップラ速度を得るとともに、前記粗い精度のドップラ速度と整合するように、前記速度算出部で算出された前記ドップラ速度の折り返し補正を実行する折り返し補正部をさらに備えた
     請求項1から請求項3までの何れか1項に記載のレーダ装置。
    A frequency obtained by extracting the maximum power frequency component by the peak extraction unit is input, and a coarsely accurate Doppler velocity is obtained from the frequency, and is calculated by the velocity calculating unit so as to match the coarsely accurate Doppler velocity. The radar apparatus according to any one of claims 1 to 3, further comprising a folding correction unit that performs loop correction of the Doppler speed.
  7.  前記フーリエ変換部は、フーリエ変換前の前記受信信号に0の系列を付加する請求項6に記載のレーダ装置。 The radar device according to claim 6, wherein the Fourier transform unit adds a series of 0 to the received signal before Fourier transform.
  8.  前記ピーク抽出部で前記最大電力周波数成分を抽出した周波数の近傍において、電力値分布の重心となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、前記粗い精度のドップラ速度と整合するように、前記速度算出部で算出された前記ドップラ速度の折り返し補正を実行する折り返し補正部をさらに備えた
     請求項1から請求項3までの何れか1項に記載のレーダ装置。
    In the vicinity of the frequency where the maximum power frequency component is extracted by the peak extraction unit, a frequency serving as the center of gravity of the power value distribution is estimated, and a coarsely accurate Doppler velocity is obtained from the frequency, and is matched with the coarsely accurate Doppler velocity. The radar apparatus according to any one of claims 1 to 3, further comprising a folding correction unit that performs looping correction of the Doppler speed calculated by the speed calculation unit.
  9.  前記ピーク抽出部で前記最大電力周波数成分を抽出した周波数の近傍において、電力値分布に理論的な電力分布モデルを適用することによって、電力値が最大となる周波数を推定し、その周波数から粗い精度のドップラ速度を得るとともに、前記粗い精度のドップラ速度と整合するように、前記速度算出部で算出された前記ドップラ速度の折り返し補正を実行する折り返し補正部をさらに備えた
     請求項1から請求項3までの何れか1項に記載のレーダ装置。
    By applying a theoretical power distribution model to the power value distribution in the vicinity of the frequency from which the maximum power frequency component is extracted by the peak extraction unit, the frequency at which the power value is maximum is estimated, and coarse accuracy is determined from the frequency. The apparatus further comprises a folding correction unit that performs looping correction of the Doppler speed calculated by the speed calculation unit so as to obtain a Doppler speed of the same and match the coarse Doppler speed. The radar apparatus according to any one of the above.
  10.  前記送信部は、前記送信波に含まれるパルスの間隔が、送信毎に所定の周期で変化するように前記送信波を生成し、
     前記折り返し補正部は、パルス間隔の互いに異なる前記送信波による観測において、前記速度算出部で算出された全てのドップラ速度と整合するように、前記ドップラ速度の折り返し補正を実行する
     請求項6から請求項9までの何れか1項に記載のレーダ装置。
    The transmission unit generates the transmission wave so that an interval of pulses included in the transmission wave changes at a predetermined cycle for each transmission,
    The loopback correction unit executes loopback correction of the Doppler speed so that the Doppler speed is matched with all the Doppler speeds calculated by the speed calculation unit in observation using the transmission waves having different pulse intervals. Item 10. The radar device according to any one of Items 9 to 9.
PCT/JP2009/064390 2009-08-17 2009-08-17 Radar device WO2011021262A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011527499A JP5398838B2 (en) 2009-08-17 2009-08-17 Radar equipment
PCT/JP2009/064390 WO2011021262A1 (en) 2009-08-17 2009-08-17 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064390 WO2011021262A1 (en) 2009-08-17 2009-08-17 Radar device

Publications (1)

Publication Number Publication Date
WO2011021262A1 true WO2011021262A1 (en) 2011-02-24

Family

ID=43606728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064390 WO2011021262A1 (en) 2009-08-17 2009-08-17 Radar device

Country Status (2)

Country Link
JP (1) JP5398838B2 (en)
WO (1) WO2011021262A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190349A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Radar device
JP2020506399A (en) * 2016-12-30 2020-02-27 パノセンス インコーポレイテッド Rider system
CN113109779A (en) * 2020-02-28 2021-07-13 加特兰微电子科技(上海)有限公司 Method for improving target detection precision, integrated circuit, radio device and electronic equipment
CN117111109A (en) * 2023-08-28 2023-11-24 南京威翔科技有限公司 Time sequence control method for low-altitude monitoring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064777B1 (en) * 2014-05-22 2020-01-13 주식회사 만도 Apparatus and method for multi FMCW radar transceiver
JP2017146273A (en) * 2016-02-19 2017-08-24 パナソニック株式会社 Radar system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281333A (en) * 1992-03-31 1993-10-29 Mitsubishi Electric Corp Radar signal processor
JPH11183616A (en) * 1997-12-22 1999-07-09 Mitsubishi Electric Corp Weather radar device
JP2001133544A (en) * 1999-11-02 2001-05-18 Mitsubishi Electric Corp Radar device and its coherent integrating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281333A (en) * 1992-03-31 1993-10-29 Mitsubishi Electric Corp Radar signal processor
JPH11183616A (en) * 1997-12-22 1999-07-09 Mitsubishi Electric Corp Weather radar device
JP2001133544A (en) * 1999-11-02 2001-05-18 Mitsubishi Electric Corp Radar device and its coherent integrating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190349A (en) * 2012-03-14 2013-09-26 Mitsubishi Electric Corp Radar device
JP2020506399A (en) * 2016-12-30 2020-02-27 パノセンス インコーポレイテッド Rider system
JP7048640B2 (en) 2016-12-30 2022-04-05 ズークス インコーポレイテッド Rider system
CN113109779A (en) * 2020-02-28 2021-07-13 加特兰微电子科技(上海)有限公司 Method for improving target detection precision, integrated circuit, radio device and electronic equipment
CN113109779B (en) * 2020-02-28 2024-03-22 加特兰微电子科技(上海)有限公司 Method for improving target detection precision, integrated circuit, radio device and electronic equipment
CN117111109A (en) * 2023-08-28 2023-11-24 南京威翔科技有限公司 Time sequence control method for low-altitude monitoring

Also Published As

Publication number Publication date
JP5398838B2 (en) 2014-01-29
JPWO2011021262A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5871559B2 (en) Radar equipment
US7342651B1 (en) Time modulated doublet coherent laser radar
JP5398838B2 (en) Radar equipment
CN103048650B (en) Method and system for simulating echo based on stepping frequency radar
US6232913B1 (en) Method and system for measuring radar reflectivity and doppler shift by means of a pulse radar
JP5197138B2 (en) Multi static radar device
JP5620216B2 (en) Parameter detector, radar device, guidance device, and parameter detection method
JP5660973B2 (en) Radar equipment
JP5491877B2 (en) Radar apparatus, flying object guidance apparatus, and target detection method
JP2006177907A (en) Interference-type radar
CN104919331A (en) Radar device
CN101788671B (en) Multicycle modulation method applied to laser ranging device using chirp amplitude modulation based on heterodyne detection
JP6546109B2 (en) Radar equipment
CN109613507B (en) Detection method for high-order maneuvering target radar echo
JP6324327B2 (en) Passive radar equipment
CN102121989A (en) Method for simultaneously measuring speed and distance of high-speed moving targets
JP6164918B2 (en) Radar equipment
JP2010175457A (en) Radar apparatus
WO2019010259A1 (en) Radar systems and methods utilizing composite waveforms for customization of resolution requirements
JP2010169671A (en) Radar device
JP2010216884A (en) Pulse-doppler radar apparatus
CN104111450B (en) A kind of method and system utilizing dipulse detection target micro-Doppler feature
JP3799337B2 (en) FM-CW radar apparatus and interference wave removing method in the apparatus
JP5464001B2 (en) Radar apparatus, radar signal processing method, and radar signal processing program
JP5004139B2 (en) Radar equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011527499

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848462

Country of ref document: EP

Kind code of ref document: A1