WO2011020941A1 - Método y dispositivo para la predicción de la inestabilidad de un compresor axial - Google Patents

Método y dispositivo para la predicción de la inestabilidad de un compresor axial Download PDF

Info

Publication number
WO2011020941A1
WO2011020941A1 PCT/ES2010/070563 ES2010070563W WO2011020941A1 WO 2011020941 A1 WO2011020941 A1 WO 2011020941A1 ES 2010070563 W ES2010070563 W ES 2010070563W WO 2011020941 A1 WO2011020941 A1 WO 2011020941A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
compressor
blades
instability
axial
Prior art date
Application number
PCT/ES2010/070563
Other languages
English (en)
French (fr)
Inventor
Efrén MORENO BENAVIDES
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Priority to EP10766075A priority Critical patent/EP2469098A1/en
Priority to US13/266,793 priority patent/US20120141251A1/en
Publication of WO2011020941A1 publication Critical patent/WO2011020941A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control

Definitions

  • the present invention is applicable to the aerospace and industrial field, specifically to the field of single or multi-stage axial compressors.
  • the invention relates to a method and a device for the prediction of the instability of an axial compressor that allows the protection of said compressor against the instabilities of this type of devices.
  • the present invention could be used in all those products that require the use of said compressors, such as air-reactors, turbofan, turboshafts, or turboprops in the aerospace sector, gas turbines in the energy sector, air conditioning systems in the civil sector , gas compression systems in the chemical or oil industry.
  • the instability of the compression system is the instability of the compression system.
  • the abscissa axis represents the pressure difference and the coordinate axis represents the mass expenditure. This same graph can be defined for a single row of blades.
  • the compressor's operating point will be located at a point on the plane.
  • the plane comprises two regions, a stable region and an unstable region. Both regions are separated by a line that is what is called the "stability line" and establishes the border between one region and another.
  • the stability line is such that, its intersection with a horizontal line corresponding to a constant pressure path, leaves the unstable region on the left (lower mass expenditures) and the right (higher mass expenditures) the stable region.
  • To predict instability in a compressor is to predict that a certain operating regime is to the left of the stability line.
  • the loss conditions indicate that in the rotor blades there is a detachment of the boundary layer because the flow is not able to follow the blade profile and therefore said aerodynamic profile no longer exerts a correct "lift” action .
  • the yield falls, and the situation may occur in which it is not possible to maintain the pressure difference in the compression stage.
  • stall With the terms “stall”, “rotating stall” and “deep stall” are called different physical phenomena whose effect is the derangement of the compressor's internal flow from less to a greater degree.
  • JP 2008223624 is known a prediction system where a loss signal is established that warns of the proximity of the point of operation to instability, together with a control system that corrects the situation. This system calculates an index to assess the risk that exists at a given moment of instability. In the system, a temporary and a circumferential averaging appear to assess the risk index, as well as a temporary correction to compensate for possible temporary delays generated in the averages only made on the pressure existing at different points of the compressor.
  • WO 2007135991 is known as an apparatus for calculating a risk index, which warns of the proximity to the unstable region, based on the analysis of the time series produced by one or several pressure sensors placed on the compressor wall and distributed circumferentially. In this way, it is claimed to obtain a stable and high-precision risk assessment index, capable of managing active control systems.
  • the patent JP 2003227497 can be consulted, which describes a system of slots that open and close depending on the signal produced by a risk index, so that the compressor can be kept running in Ia stable region thanks to the increase in air consumption that crosses it.
  • JP 2001132685 A somewhat simpler prediction and control system can be found in JP 2001132685.
  • instability is avoided by a pressure sensor installed in the compressor housing and an amplifier that obtains the pressure variations, which are subsequently converted to a Continuous level
  • the active control system is activated, which may consist of stopping the installation, or opening bleeding valves that increase the expense.
  • This system although with a slightly different prediction technique from the previous ones, continues to compromise its accuracy by making use of pressure exclusively as the only risk variable.
  • patent US 5908462 a completely different approach appears to solve this technological problem.
  • This system uses the dimensional analysis, the similarity of the system when written in dimensionless notation, to derive a limit of invariant stability against the compressor suction conditions that can vary, for example, by changing the geometry of the guide vanes to the entry.
  • the method uses the combination, linear or non-linear, of dimensionless variables different from those previously used.
  • the main limitation of this patent is that it is unknown what is the optimal ratio of dimensionless variables that makes the risk index predictable with greater reliability.
  • WO 9403862 a method for monitoring and controlling a compressor is described.
  • the device is based again on measuring pressure fluctuations with at least one pressure sensor and obtaining a frequency signal that has at least one peak in the region of characteristic frequencies assigned to one of the compression stages and that is used for generate at least one parameter indicative of the operating state of the compressor. In case this parameter goes out of a predetermined range, a signal is generated that is used to control the compressor.
  • this patent dispenses with physical parameters other than pressure.
  • the invention resolves and improves existing limitations in the state of the art with respect to the aforementioned patents, which perform an average only on the pressure that exists at different points of the compressor.
  • the present invention makes a measurement in which a greater number of fluid variables is involved, such as the speed of rotation of the compressor, or the outlet temperature thereof. .
  • this measure involves an average of the acquired values. In this way, a measure is obtained for the prediction of the most complete and stable instability since it adds more relevant physical information for the calculation of the risk index.
  • the invention resolves the ignorance of the optimal relationship between dimensionless variables so that the risk index is predictable with greater reliability and robustness at all compressor operating points.
  • a first aspect of the invention refers to a method capable of predicting the instabilities of an axial compressor of one or several stages. More specifically, it refers to a method capable of calculating a risk index so that a control system that is installed in the engine or machine where the compressor operates will have the necessary information to assess the degree of danger existing in said point of operation and will carry out the necessary actions to avoid instabilities that would lead to the dangerous situation.
  • a device adapted to carry out the method of predicting instability is also the object of this invention. at some or all stages of the compressor as well as the protection of each stage using control means capable of changing its operating conditions.
  • the proposed device comprises a series of measuring devices (in the exemplary embodiment it will be seen that it comprises calculators, sensors and signal conditioning systems) whose objective is to provide, either by direct measurement, or by calculation from indirect measurements, or by estimating the parameters necessary for the calculation, a value of the pressures, temperatures and speeds at the exit of each stage, average if they are weighted; and of a calculation device whose objective is to calculate a risk index for each stage from the values provided by the measuring devices.
  • a control system is fed that allows the situation to be corrected both in operation and in design.
  • a device capable of producing a risk signal, a function of the proximity of the operating point to the stability line, for each row of blades that can be used to manage an active control system.
  • a row of blades is each of the rotors or stators that make up the compressor.
  • the device consists of a calculation unit that takes for each row of blades (rotor or stator) the static pressures at the entrance and exit of the row, the static enthalpy at the exit, the speed of rotation of the row, the speed absolute (magnitude and direction) of the fluid at the exit of the row and the axial solidity of the same and generates a risk index that is a claim of the present invention.
  • This risk index is defined below.
  • Table 1 Set of variables used to define the risk index of a row of blades.
  • this risk index predicts instability in the row j, and therefore in the compressor, when IR 1 is less than a reference value U f , preferably the unit.
  • This risk index predicts a stable behavior of stage j when IR 1 is greater than the reference value
  • the compressor is considered completely stable when all its rows are, that is, when IR 1 is greater than the unit for any value of j (including rotors and stators).
  • the compressor is considered operationally stable when all its rotors are, although not its stators, that is, when IR 1 is greater than the unit for any value of j for which let U 1 > O.
  • the variables of Table 1, necessary to calculate the risk index, must be understood in the context of the present invention as characteristic values of the row, both temporally and spatially. For this reason, these variables can be obtained by gathering information from various spatial and temporal positions through filtering techniques that eliminate fluctuations and rapid variations while retaining slow ones: in this sense they are averaged variables both spatially and temporally.
  • they can be the instantaneous pressures or velocities existing in a certain axial and azimuthal position of the row, for example on the carcass of greater radius in a certain angular position thereof, or they can be a spatial averaging of the values measured in various points distributed angularly on the outer and inner casing, or measurements can be taken within the current away from the walls, or be the result of a weighting of all of them.
  • the speeds and pressures can be understood, although not necessarily, as a value temporarily averaged over a time interval greater than the natural fluctuations generated by the passage of the blades and the noise of the engine or machine.
  • the axial strength ( ⁇ ) must be understood as the characteristic value obtained by multiplying the number of blades Z of the row j by the axial rope c x and dividing said result by 2 ⁇ r, r being a characteristic value of the radius of the blade in the row j and x x a characteristic value of the axial rope in the row j.
  • the characteristic value of the axial rope and the radius the values of some intermediate section of the blade could be taken, or those of the section of the tip of the blade, or those of the section with less axial strength.
  • variables of Table 1 can be obtained both by direct measurement, and by derivation from the measurements of the corresponding indirect magnitudes, as by calculation from the corresponding physical equations. For example, they can be obtained:
  • thermocouples located so that they acquire static temperature and subsequent calculation of enthalpy using thermodynamic laws implemented in the device; - and the speeds:
  • the device is a detector of the compressor instability, if the compression system is provided with one or a plurality of sensors, each placed in any position of the set of possible positions, so that a characteristic signal is generated, preferably temporarily stable, which feeds a calculation device, where Equation 1 is implemented, which generates the IR index 1 that will be used to assess the risk of instability. In this way, an index or set of indexes is obtained that allow the risk of compression loss to be assessed.
  • the device there is a signal with the ability to detect the loss of compression in the row j, which is more important, to predict the point where it will occur. It is a device that depends on variables, averaged or not both spatially and temporarily, that feed an analytical expression, well defined for all points of operation, so that reliable, robust and stable control systems can be achieved.
  • the input variables can be obtained by means of direct and subsequent temporal and spatial average measurement, so that the criterion is independent of the input or output disturbances caused by the rows of blades before or after the monitored one and by the active systems themselves of control.
  • the reference value is a value (usually close to the unit) that takes into account the possible deviations from the theoretical value produced by measurement errors, averaging and parameter estimation.
  • the IR 1 value of the actual operating point is a number that can be used to implement instability prevention algorithms because it is a signal that specifies the level of safety of the operating point in each row and therefore could be used to control the compressor or the machine in which it is installed.
  • the prevention of loss of compression or the appearance of instability can be carried out by means of control algorithms that could, for example, vary the suction conditions, by changing the angle of incidence of the guide vanes, by opening valves of bleeding, etc. This is so thanks to the fact that the risk index of each stage is calculated in real time by means of the information captured by the sensors installed in the monitored row.
  • the technological problem that solves the present invention is that of being able to determine the degree of safety that the operating point of the compression system has in order to inform the operation of the compressor and prevent this compressor from becoming lost, or a potentially dangerous region, without prior notice.
  • Equation 1 the relevant physics of the problem is collected, not only the evolution of the pressure at different points of the compressor, at the same time that it presents good mathematical properties such as that the equation is well defined, it is continuous and derivable at all points of operation. In this way, an index or set of indexes is obtained that allow the risk of compression loss to be assessed, provided with high noise immunity, high sensitivity and high stability, which implies high reliability in the active control systems that are implemented in the control devices.
  • the main advantage of the present invention with respect to other possible solutions is that it allows to implement an analytical algorithm for predicting instabilities that is simple, precise, reliable and robust.
  • your information can be used to perform corrective actions that in each case are considered appropriate in order to maintain the security and integrity of the entire system.
  • TaI and as described, the invention presented contemplates a method for predicting the instability of an axial compressor according to claim 1
  • the risk index evaluation is carried out in at least one row. If the measurement is carried out in a plurality of rows, as soon as the risk index of any of them is less than one, the method determines that there is a condition of instability.
  • the measures allow a stable method so that a device adapted to carry out said method will be able to predict instability in any circumstance.
  • the prediction of instability allows the achievement of subsequent steps in the method that give rise to compressor protection.
  • One of these stages is the action by means of corrective measures on the working conditions of the compressor moving it to a stable region.
  • the method for prediction can comprise the use of control means that generate a control signal as a function of IR 1 and act on the geometry and parameters of the compressor.
  • Another step that can be carried out in the method of the invention is the generation of an alarm signal.
  • the IR 1 value corresponding to the triggering of one or more alarms in the prediction method treated is less than or equal to one or a previously set value depending on the desired safety margin.
  • the device according to claim 10, and in particular of dependent claims 1 1 to 16, adapted to carry out the method of predicting instability is also object of this invention; Y optionally Ia subsequent action with alarm measures, correction of the operating conditions of the compressor or both.
  • the conditioning means of the measuring means can be configured to calculate, from the measurements obtained by the sensor means, the variables used by the calculation device for the calculation of the IR ⁇ and to make a time average and spatial of them.
  • PJ t i 1 J , PJ t i ⁇ w , ( ⁇ V ⁇ ) / j 7 O and (VV ⁇ u 'j, O, are associated with values selected from:
  • obtaining the necessary variables to generate the risk index can be selected from:
  • Figure 1 schematically shows the basic geometry of an axial multi-row axial compressor.
  • Figure 2 shows the block diagram corresponding to the device object of the invention.
  • Figure 3 schematically shows a characteristic section of the row of blades to be monitored.
  • Figure 4 shows the decomposition of the absolute velocity V into the axial velocity V x and the tangential velocity V ⁇ .
  • Figure 5 shows a possible scheme for executing a measuring device at the output of a row of the axial compressor.
  • Figure 6 illustrates a possible measurement procedure
  • the present invention is applied to axial compressors of one or several rows 100 of blades whose basic geometry is schematized in Figure 1.
  • This figure has no greater objective than to illustrate the application of the device object of the invention, so that the compressor could have a different number of axes, rotors R or stators E, or different relative positions between them, or different mechanisms or auxiliary elements.
  • several rows 100 of blades appear, some of them are stators E1, E2, ... and others, rotors, R1, R2, ...
  • Ia Figure 1 shows two axes, 103 and 104, so that the rotors shown R1 and R2 can have a different rotation regime from the rest.
  • each entry or exit of a row 100 of blades appears named with the number of the row and a semicolon (;) followed by a letter I or O depending on whether it is respectively the input or output of The row.
  • the output of the row j coincides with the input of the row / + 1, so that it is verified that the properties of the fluid in section j; Or they coincide with those of section j + ⁇ , I, as shown in the figure.
  • the stators E do not have any speed of rotation, while the rotors R have the speed of rotation imposed by the axis that supports them.
  • the tangential velocity of a wing of the row j imposed by the rotation will be called U 1 .
  • U 1 will be zero.
  • the measuring devices at the entrance of the row j are referenced as 101 and the measuring devices at the exit of the row j as 102.
  • Figure 2 represents a diagram of the device object of the invention.
  • the measuring devices 101 and 102 in each row 100 of blades to be monitored are distributed along the compressor so that they take information on the input and output of each row of blades 100.
  • the calculation device 201 calculates, by means of Equation 1, its IR 1 instability risk index.
  • each calculated risk index is used in the control means 202 to feed a control algorithm responsible for generating a control signal that finally changes the geometry, or the operating point of the compressor, of the machine or of the engine 203.
  • the control means 202 is any device that acts on the geometry of the compressor, on the power it receives, or on the conditions of the air consumption it manages both at the entrance and at the exit.
  • FIG 3 a characteristic section of the row 100 of blades to be monitored is schematized.
  • the input measuring device 101 appears before the blades 300, while the output measuring device 102 appears later.
  • the risk index depends on the absolute output speed V j 0 .
  • This speed is represented in the figure next to the absolute input speed V 1 1 and the translation speed U 1 .
  • the axial rope c x and the 2 ⁇ r IZ spacing of the section taken as a characteristic section of the row 100 of blades that determine the axial strength thereof thereof also appear.
  • the module and the direction of the velocity must be known.
  • Figure 4 shows the decomposition of the absolute velocity V into the axial velocity V x and the tangential velocity V ⁇ . For this reason, the output measuring devices 102 must be able to measure or estimate, directly or indirectly, the absolute speed of the gas at the exit of the row 100.
  • the output measuring device 102 of the row j 100 is constituted with a set of sensors 501 and a signal conditioning and treatment device 502.
  • the number of sensors and their position will depend on the possibilities of the installation.
  • a device has been schematized with five measuring stations, 511 to 515, which, in order to have a better characterization of the fluid field at the exit of the row 100, may alternatively be distributed on the outer housing and inside the compressor and angularly offset.
  • each measuring station 511 to 515 will be composed of a group of sensors whose purpose will be to provide the measured information, 521 to 525, necessary to prepare the pressure, speed and temperature data that appear in Table 1 and that are necessary to calculate the risk index by means of Equation 1.
  • the signals present in the measured information, 521 to 525, at the output of each group of sensors correspond to the temporal evolution of the measured quantities in each determined spatial position by the corresponding station.
  • the conditioning and processing device of the signal 502 is responsible for obtaining a temporal and spatial averaging from the measured information, 521 to 525, by the set of sensors 501.
  • the temporary averaging can be performed by applying a pass filter low to each sensor of the sensor set 501.
  • This temporary averaging can be physical (for example, if the lengths of the conduits that carry the pressure signal to the piezoresistive sensor are sufficiently large) or electronic (if a low pass filter is incorporated at the output of the piezoresistive sensor or thermocouple).
  • These filtering devices, 531 to 535 eliminate rapid fluctuations in the measurement signal. In this way, it Eliminate noises and high frequency temporal variations such as those induced by the passage of the blades in front of the sensors.
  • the low frequency signals obtained, 541 to 545 differ from each other because they come from measurement stations, 51 1 to 515, located in different spatial positions.
  • the spatial filtering device 550 is established.
  • the spatial averaging can be performed by taking the average value of the low frequency signals obtained, 541 to 545, from the temporal filtering .
  • the resulting signal 551, at the output of the spatial filtering device 550 is the average value of the low frequency signals obtained 541 to 545.
  • any other weighting of the low frequency signals obtained 541 to 545 could be taken to generate the output of the spatial filtering device 550.
  • all those devices in which the spatial averaging and then the temporal averaging, or those in which both are performed at the same time could also be examples of application.
  • the set of resulting signals 551, for each of the rows 100 of the compressor characterizes the operating point of the compressor stably and reliably. They are a set of signals necessary to elaborate the pressure, speed and temperature data that appear in Table 1 and that are necessary to calculate the risk index by means of Equation 1.
  • the set of resulting signals 551 will be received in the device of calculation 201 for the subsequent calculation of the risk index of row 100 of blades.
  • the calculation device 201 also requires information of the measuring device 101 at the entrance of the row, whose practical embodiment can be executed in the same way as described here for the measuring device 102 at the output of the row.
  • FIG. 6 shows a possible execution of each of these measuring stations 51 1 to 515.
  • Each of these stations say for example Ia 51 1, consists of a set of four sensors.
  • the device consists of three pressure taps 601, 602 and 603 that end at their respective pressure sensors and a temperature sensor 604.
  • the three pressure taps, 601 to 603, are oriented with respect to the gas stream, of so that the pressure outlet 602 is oriented axially and 603 tangentially.
  • the 601 socket is oriented so transverse to the movement of the gas with the intention of acquiring the static pressure of the gas stream.
  • the temperature sensor 604 is configured to acquire the static temperature.
  • the resulting signals 551 can be used to power the device object of the invention.
  • the calculation device 201 can obtain (for example, by interpolation in the corresponding thermodynamic tables of the gas being compressed) the static enthalpy h j 0 and the ratio of specific heats ⁇ j 0 .
  • the calculation device 201 can obtain the absolute axial and tangential speeds, applying to each axis the following expression (or any of those obtained by the laws of fluid mechanics, or by the laws of calibration of the speed sensors that were used):
  • P (601), P (602) and P (603) are the temporal and spatial averages of the pressures measured by the pressure taps 601, 602 and 603 respectively. Subsequently, the set of speed signals, static pressures and static enthalpies can be used to calculate the risk index provided by Equation 1.
  • MODE 3 This mode of operation is the same as mode 2, except that pressure taps 601, 602 and 603 are replaced by hot wire anemometers.
  • This mode of operation is the same as mode 1, except that the speeds, pressures and temperatures are calculated using a numerical code of solution of the fluid field.
  • the measuring stations 51 1 to 515 are, instead of a set of sensors, a numerical calculation code and the signals corresponding to the information measured 521 to 525, the solutions provided by the numerical calculation code at certain points of The calculation mesh as a function of time.
  • the invention comprises a device that manages a risk index with the ability to notify in real time of whether the compressor's operating point is stable or not, and if so, is able to report the safety margin.
  • This risk index can be used to stabilize the system (engine or machine where the compressor is installed) by means of an active control device. It can also be used during design to stabilize the turbomachinery system operating points through an optimization process.
  • the procedure can be implemented in the control units of said systems, in hardware or software devices, in digital integrated circuits such as integrated circuits for specific applications (ASICs acronym for Application Specific Integrated Circuits), Field Programmable Door Arrays (FPGAs) , acronym for Field Programmable Gate Arrays) and in the memory of the microprocessors.
  • ASICs acronym for Application Specific Integrated Circuits
  • FPGAs Field Programmable Door Arrays
  • FPGAs Field Programmable Gate Arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La presente invención es aplicable al campo aeroespacial e industrial, concretamente al campo de los compresores axiales de una o varias etapas. La invención se refiere a un método y un dispositivo para la predicción de la inestabilidad de un compresor axial que permite la protección de dicho compresor frente a las inestabilidades de este tipo de dispositivos. La presente invención podría ser utilizada en todos aquellos productos que requieran el uso de dichos compresores, tales como aerorreactores, turbofanes, turboejes, o turboprops en el sector aeroespacial, turbinas de gas en el sector energético, sistemas de acondicionamiento de aire en el sector civil, sistemas de compresión de gases en la industria química o petrolera.

Description

MÉTODO Y DISPOSITIVO PARA LA PREDICCIÓN DE LA INESTABILIDAD DE UN COMPRESOR AXIAL
CAMPO DE LA INVENCIÓN
La presente invención es aplicable al campo aeroespacial e industrial, concretamente al campo de los compresores axiales de una o varias etapas.
La invención se refiere a un método y un dispositivo para Ia predicción de Ia inestabilidad de un compresor axial que permite Ia protección de dicho compresor frente a las inestabilidades de este tipo de dispositivos. La presente invención podría ser utilizada en todos aquellos productos que requieran el uso de dichos compresores, tales como aerorreactores, turbofanes, turboejes, o turboprops en el sector aeroespacial, turbinas de gas en el sector energético, sistemas de acondicionamiento de aire en el sector civil, sistemas de compresión de gases en Ia industria química o petrolera.
ESTADO DE LA TÉCNICA
Uno de los aspectos más importantes para determinar las actuaciones de las máquinas equipadas con compresores de flujo axial es Ia inestabilidad del sistema de compresión. Para un compresor axial es posible definir una gráfica bidimensional donde el eje de abscisas representa Ia diferencia de presión y el eje de coordenadas representa el gasto másico. Esta misma gráfica se puede definir para una única hilera de alabes. Dependiendo del régimen de trabajo definido por una y otra variable y según las condiciones de trabajo, el punto de operación del compresor estará situado en un punto del plano. El plano comprende dos regiones, una región estable y una región inestable. Ambas regiones están separadas por una línea que es Ia que se denomina "línea de estabilidad" y establece Ia frontera entre una y otra región. Habitualmente, Ia línea de estabilidad es tal que, su intersección con una línea horizontal correspondiente a una trayectoria de presión constante, deja a Ia izquierda (gastos másicos menores) Ia región inestable y Ia derecha (gastos másicos superiores) Ia región estable. Predecir en un compresor Ia inestabilidad es predecir que determinado régimen operativo se encuentra a Ia izquierda de Ia línea de estabilidad. Aunque existen trabajos con resultados analíticos y también con resultados numéricos que permiten establecer condiciones de trabajo estables con un cierto grado de seguridad (Mediante experimentos; por ejemplo, siguiendo condiciones de presión constante y variando el gasto másico, es posible ir determinando puntos del plano donde aparecen inestabilidades), Ia determinación y configuración de esta línea de estabilidad (habitualmente representada mediante una función creciente) no ha sido establecida hasta ahora analíticamente,.
Esta inestabilidad puede manifestarse de distintos modos y en consecuencia suele recibir distintos nombres. En español inestabilidad, pérdida, descompresión, o en inglés "stall", "rotating stall", "deep stall" y "surge".
En particular, las condiciones de pérdida indican que en los alabes del rotor existe un desprendimiento de Ia capa límite porque el flujo no es capaz de seguir el perfil del alabe y por Io tanto dicho perfil aerodinámico ya no ejerce una acción de "sustentación" correcta. Como resultado, el rendimiento cae, pudiendo darse Ia situación en Ia que no es posible mantener Ia diferencia de presión en Ia etapa de compresión.
Con los términos "stall", "rotating stall" y "deep stall" se denominan distintos fenómenos físicos cuyo efecto es el desarreglo de menor a mayor grado del flujo interno del compresor.
Con el término "surge" se denomina a Ia condición límite en Ia que hay una fuerte pérdida de compresión.
Los esfuerzos por comprender y mejorar Ia estabilidad de los compresores axiales, sobre todo para aplicaciones de propulsión aeronáuticas, que se han venido realizando durante las últimas décadas, han permitido comprender que existen varios desencadenantes o iniciadores del fenómeno. Se conoce un posible mecanismo, llamado en inglés "modal inception", que se produce cuando aparecen perturbaciones de una longitud de onda grande cuya amplitud aumenta gradualmente bajo las condiciones de inestabilidad del sistema de compresión completo. Se conoce otro posible mecanismo llamado en inglés "spike inception", que involucra perturbaciones de longitud de onda corta cuya amplitud crece rápidamente bajo grandes ángulos de incidencia del rotor. Sin embargo, todavía pueden existir otros mecanismos. De hecho, se ha afirmado que las perturbaciones de corta y larga longitud de onda no son suficientes por sí solas para predecir Ia inestabilidad y que se deberían considerar todas las longitudes de onda para describir el fenómeno. Además, Ia situación es aún más compleja puesto que, como se sabe, los precursores de Ia inestabilidad pueden estar acoplados.
Así, en Ia publicación de Day et al. [Day, IJ. , Breuer, T. Escuret, J., Cherrett, M. and Wilson, A., Stall Inception and the prospects for active control in four high speed compressors, ASME J. Turbomachinery, VoI. 121 , pp. 18-27] se muestra el estudio de cuatro compresores de alta velocidad para aplicaciones aeronáuticas en el que se concluye que, en el momento de su publicación, los precursores de las inestabilidades aún no eran bien conocidos en este tipo de motores y para demostrarlo se aportaron las siguientes evidencias experimentales:
1 ) en dos de los compresores, cuando operaban a máximo régimen, se detectaba un nuevo tipo de precursor de Ia inestabilidad de alta frecuencia,
2) aunque en Ia mayoría de los casos el fallo por "rotating stall" precedía al fallo por "surge", no se pod ía identificar el origen de Ia inestabilidad en términos de perturbaciones de baja o alta longitud de onda,
3) en uno de los compresores Ia inestabilidad ocurría tan rápidamente que no se podía detectar Ia aparición de "rotating stall" antes de Ia pérdida de Ia compresión, y
4) en todos los compresores existían perturbaciones en todos los regímenes de giro.
Hoy en día los precursores de las inestabilidades siguen siendo desconocidos en este tipo de motores.
Por otra parte, las estructuras fluidas de las regiones donde el compresor entra en pérdida también han sido objeto de un profundo estudio. Por ejemplo, se afirma que durante Ia evolución de una inestabilidad iniciada por perturbaciones de baja frecuencia pueden aparecer y desaparecer perturbaciones de alta frecuencia, pero que finalmente estas terminan por permanecer. Con una reducción adicional del gasto de aire que atraviesa el compresor, ambas perturbaciones coexisten simultáneamente y Ia inestabilidad conduce a Ia entrada en pérdida de una gran región del compresor y a una condición de "deep stall". También se afirma, que aunque parece obvio que -A- ambos fenómenos están asociados con Ia inestabilidad, no se conoce cuál es el comportamiento de las perturbaciones de baja y alta frecuencia en el proceso. La complejidad del fenómeno también ha sido discutida e investigada numéricamente en un compresor de una única etapa elaborado por Ia NASA, del que se dedujo que los modos de baja frecuencia dominaban el flujo para gastos másicos de aire por debajo y por encima de un determinado intervalo de gastos másicos. Sin embargo, posteriormente se argumentó que este resultado contradecía Ia explicación que afirmaba que Ia pérdida de Ia compresión se debe a perturbaciones de baja frecuencia cuyo tiempo característico excede el tiempo de residencia. También se ha puesto de manifiesto, que aún no se han aclarado cuáles son los factores que condicionan Ia evolución del compresor hacia Ia entrada en pérdida.
Por otra parte, tal y como Greitzer estableció en su publicación [Greitzer, E. M. Surge and Rotating Stall in Axial Flow Compressors. Part I: Theoretical Compression System Model. Engineering for power, VoI. 98, No.2, 1976, pp. 190, 198.], los tiempos que se necesitan para que se desarrolle una región en pérdida dentro del compresor pueden ser Io suficientemente grandes como para que el flujo que atraviesa el compresor sufra cambios significativos. Así, generó un modelo matemático de primer orden para simular el efecto que este retraso temporal producía en Ia evolución de los transitorios durante Ia inestabilidad. Sin embargo, el procedimiento de predicción no era completo puesto que Ie faltaba el modelo que predecía las actuaciones del compresor en las regiones de gastos másicos bajos donde las inestabilidades estaban presentes.
Por Ia patente JP 2008223624 se conoce un sistema de predicción donde se establece una señal de pérdida que avisa de Ia proximidad del punto de operación a Ia inestabilidad, junto con un sistema de control que corrige Ia situación. Este sistema calcula un índice para evaluar el riesgo que existe en un determinado momento de que se produzca Ia inestabilidad. En el sistema aparecen un promediado temporal y otro circunferencial para evaluar el índice de riesgo, así como una corrección temporal para compensar los posibles retrasos temporales generados en los promediados únicamente realizados sobre Ia presión existente en distintos puntos del compresor.
Por Ia patente WO 2007135991 se conoce un aparato para calcular un índice de riesgo, que avisa de Ia proximidad a Ia región inestable, basado en el análisis de las series temporales producidas por uno o varios sensores de presión colocados en Ia pared del compresor y distribuidos circunferencialmente. De este modo, se afirma obtener un índice de evaluación de riesgos estable y de alta precisión, capaz de gestionar los sistemas activos de control. Como ejemplo del tipo de sistema de control puede consultarse Ia patente JP 2003227497 donde se describe un sistema de ranuras que se abren y se cierran en función de Ia señal producida por un índice de riesgo, de modo que se puede mantener el compresor funcionando en Ia región estable gracias al aumento del gasto de aire que Io atraviesa.
Un sistema de predicción y control algo más sencillo puede encontrarse en JP 2001132685. En este dispositivo, Ia inestabilidad se evita mediante un sensor de presión instalado en Ia carcasa del compresor y un amplificador que obtiene las variaciones de presión, que son posteriormente convertidas a un nivel de continua. Cuando este nivel de continua excede un valor previamente predeterminado, se activa el sistema activo de control que puede consistir en parar Ia instalación, o bien en abrir válvulas de sangrado que aumenten el gasto. Este sistema, aunque con una técnica de predicción ligeramente diferente a las anteriores, sigue comprometiendo su precisión por hacer uso exclusivamente de Ia presión como única variable de riesgo.
En Ia patente US 5908462 aparece un enfoque completamente diferente para solucionar este problema tecnológico. Este sistema emplea el análisis dimensional, Ia similitud del sistema cuando se escribe en notación adimensional, para derivar un límite de estabilidad invariante frente a las condiciones de succión del compresor que pueden variar, por ejemplo, al cambiar Ia geometría de los alabes guía a Ia entrada. El método utiliza Ia combinación , lineal o no lineal , de variables adimensionales diferentes de las empleadas con anterioridad. No obstante, Ia principal limitación de esta patente es que se desconoce cuál es Ia relación óptima de las variables adimensionales que hace predecible el índice de riesgo con mayor fiabilidad.
Finalmente en WO 9403862 se describe un método para monitorizar y controlar un compresor. El dispositivo se fundamenta de nuevo en medir las fluctuaciones de presión con al menos un sensor de presión y obtener una señal de frecuencia que tiene al menos un pico en Ia región de frecuencias características asignadas a una de las etapas de compresión y que se usa para generar al menos un parámetro indicativo del estado operativo del compresor. En caso de que este parámetro se salga de un rango predeterminado, se genera una señal que es usada para controlar el compresor. Nuevamente, esta patente prescinde de parámetros físicos diferentes de Ia presión.
Era por tanto deseable un método y un dispositivo de protección que permitiera conocer Ia inminente aparición de Ia inestabilidad, así como el margen de seguridad existente en un punto de operación tanto en operación como en diseño, evitando los inconvenientes existentes en los anteriores sistemas del estado de Ia técnica.
DESCRIPCIÓN DE LA INVENCIÓN
La invención resuelve y mejora limitaciones existentes en el estado de Ia técnica respecto a las patentes anteriormente comentadas, las cuales realizan un promediado únicamente sobre Ia presión que existe en distintos puntos del compresor. Con el fin de evitar que el compresor entre en pérdida sin aviso previo, Ia presente invención realiza una medida en Ia que está involucrado un mayor número de variables fluidas, como pueden ser Ia velocidad de rotación del compresor, o Ia temperatura de salida del mismo. En un ejemplo de realización esta medida conlleva un promediado de los valores adquiridos. De esta manera, se obtiene una medida para Ia predicción de Ia inestabilidad más completa y estable ya que añade más información física relevante para el cálculo del índice de riesgo. Por otra parte, Ia invención resuelve el desconocimiento de Ia relación óptima entre las variables adimensionales de forma que se hace predecible el índice de riesgo con una mayor fiabilidad y robustez en todos los puntos de operación del compresor.
Un primer aspecto de Ia invención se refiere a un método capaz de predecir las inestabilidades de un compresor axial de una o varias etapas. Más concretamente, se refiere a un método capaz de calcular un índice de riesgo de modo que un sistema de control que se instale en el motor o máquina donde opera el compresor dispondrá de Ia información necesaria para evaluar el grado de peligro existente en dicho punto de operación y llevará a cabo las acciones necesarias para evitar las inestabilidades que conducirían a Ia situación de peligro.
Según un segundo aspecto de Ia invención es también objeto de esta invención un dispositivo adaptado para llevar a cabo el método de predicción de Ia inestabilidad en alguna o en todas las etapas del compresor así como Ia protección de cada etapa haciendo uso de medios de control capaces de cambiar sus condiciones operativas.
El dispositivo propuesto comprende una serie de dispositivos de medida (en el ejemplo de realización se verá que comprende calculadores, sensores y sistemas de acondicionamiento de Ia señal) cuyo objetivo es proporcionar, bien por medida directa, bien por cálculo a partir de mediciones indirectas, o bien por estimación de los parámetros necesarios para el cálculo, un valor de las presiones, temperaturas y velocidades a Ia salida de cada etapa, medias si éstas están ponderadas; y de un dispositivo de cálculo cuyo objetivo es calcular un índice de riesgo para cada etapa a partir de los valores proporcionados por los dispositivos de medida. Con el conjunto de índices de riesgo según un ejemplo de realización se alimenta un sistema de control que permite corregir Ia situación tanto en operación como en diseño.
Por tanto, según un ejemplo de realización de este segundo aspecto de Ia invención, se proporciona un dispositivo capaz de producir una señal de riesgo, función de Ia proximidad del punto de operación a Ia línea de estabilidad, para cada hilera de alabes que puede ser utilizada para gestionar un sistema de control activo. En esta invención una hilera de alabes es cada uno de los rotores o estatores que componen el compresor.
El dispositivo consta de una unidad de cálculo que toma para cada hilera de alabes (rotor o estator) las presiones estáticas en Ia entrada y Ia salida de Ia hilera, Ia entalpia estática a Ia salida, Ia velocidad de rotación de Ia hilera, Ia velocidad absoluta (magnitud y dirección) del fluido a Ia salida de Ia hilera y Ia solidez axial de Ia misma y genera un índice de riesgo que es reivindicación de Ia presente invención. Este índice de riesgo se define a continuación.
Sea el subíndice j el encargado de identificar Ia hilera (puede ser un rotor o un estator) del compresor evaluado, sea / el subíndice que especifica las propiedades a Ia entrada de Ia hilera, y sea O el subíndice que especifica las propiedades a Ia salida de Ia hilera, entonces el índice de riesgo para Ia hilera j se evalúa mediante Ia expresión: IR = exp 1 (Ecuación 1 )
Figure imgf000010_0001
En esta expresión las variables que aparecen se definen tal y como aparecen en Ia Tabla 1.
índice de riesgo de Ia hilera /
IR,
Ko Entalpia estática del gas a Ia salida de Ia hilera j
Presión estática del gas a Ia entrada de Ia hilera j
Presión estática del gas a Ia salida de Ia hilera j
P,.o
Cociente de calores específicos del gas en Ia hilera
y, j
Velocidad axial del gas a Ia salida de Ia hilera j
(V°l.o Velocidad tangencial absoluta del gas a Ia salida de Ia hilera j
Velocidad tangencial de Ia hilera (su valor es cero si Ia hilera es un estator)
K), Solidez axial de Ia hilera j .
Tabla 1 : Conjunto de variables empleadas para definir el índice de riesgo de una hilera de alabes.
Según Ia presente invención, este índice de riesgo predice una inestabilidad en Ia hilera j , y por tanto en el compresor, cuando IR1 es menor que un valor de referencia Uf, preferentemente Ia unidad. Este índ ice de riesgo pred ice u n comportamiento estable de Ia etapa j cuando IR1 es mayor que el valor de referencia
Uf. Por tanto, Ia línea de inestabilidad de Ia hilera se encuentra en aquellos puntos de operación donde IR1 es igual a Uf.
Cuando el valor de referencia Uf es Ia unidad se tiene un criterio para establecer una predicción sobre Ia inestabilidad. No obstante, es posible considerar un valor de referencia Uf desplazado. Si se define un valor de seguridad vseg>0 y Uf es 1 +Vseg entonces Ia predicción para las condiciones de trabajo del compresor es de inestabilidad con un margen de seguridad definido por vseg. Las acciones de protección adoptadas haciendo uso de esta predicción actuarán antes que si se utilizase el valor 1 para Uf en Ia valoración del índice de riesgo IR1 .
Por el contrario, habrá situaciones en las que, asumiendo el riesgo, se permita al compresor entrar ligeramente en Ia región de inestabilidad. En este caso, definido un valor de riesgo vr>0 el valor a tomar para Uf es 1-vr.
No obstante Io dicho, se considera el valor preferente para Uf como Ia unidad y los siguientes descripciones y razonamientos se llevarán a cabo haciendo uso de Ia unidad sin que por ello no sea aplicable Ia generalización anterior para el valor de referencia Uf.
Dado que Ia información relevante se encuentra en Ia condición IR1 =1 y en las buenas propiedades matemáticas de Ia función que aparece en Ia Ecuación 1 , ya que está bien definida en todo punto de operación, es continua y derivable, son también objeto de Ia presente invención todos aquellos índices de riesgo derivados del anterior tales que reproducen Ia misma condición de estabilidad con las mismas propiedades matemáticas. Por ejemplo, también son índices de riesgo: IR1 -X cuando IR1 -X = Q ;
Xn[IR1) cuando Xn[IR1) = Q ; In(TK,) -1 cuando Xn[IR^ - X = -X ; IR} 2 cuando IR^ = X ; así como expresiones equivalentes obtenidas de realizar operaciones matemáticas sobre los índices anteriores. Por tanto, se considerarán expresiones equivalentes aquellas que se deducen de Ia condición dada por Ia ecuación 1 igualada a 1 aplicando cambios por manipulación algebraica tales que únicamente modifican el modo de expresar Ia misma condición. Lo mismo es aplicable al caso en el que Uf no es Ia unidad, el valor preferido.
Con el criterio de estabilidad objeto de Ia presente invención, el compresor se considera completamente estable cuando Io son todas sus hileras, es decir, cuando IR1 es mayor que Ia unidad para todo valor de j (incluyendo rotores y estatores).
Con el criterio de estabilidad objeto de Ia presente invención, el compresor se considera operacionalmente estable cuando Io son todos sus rotores, aunque no Io sean sus estatores, es decir, cuando IR1 es mayor que Ia unidad para todo valor de j para el cuál sea U1 > O . Las variables de Ia Tabla 1 , necesarias para calcular el índice de riesgo, deben entenderse en el contexto de Ia presente invención como valores característicos de Ia hilera, tanto temporal, como espacialmente. Por este motivo, dichas variables pueden obtenerse al reunir Ia información proveniente de varias posiciones espaciales y temporales mediante técnicas de filtrado que eliminan las fluctuaciones y variaciones rápidas mientras que retienen las lentas: en este sentido son variables promediadas tanto espacial como temporalmente. Es decir, pueden ser las presiones o velocidades instantáneas existentes en una determinada posición axial y acimutal de Ia hilera, por ejemplo sobre Ia carcasa de mayor radio en una determinada posición angular de Ia misma, o pueden ser un promediado espacial de los valores medidos en diversos puntos distribuidos angularmente sobre Ia carcasa tanto exterior como interior, o pueden tomarse medidas en el seno de Ia corriente alejada de las paredes, o bien ser el resultado de una ponderación de todos ellos. De igual modo, las velocidades y las presiones pueden entenderse, aunque no necesariamente, como un valor promediado temporalmente sobre un intervalo de tiempo superior a las fluctuaciones naturales generadas por el paso de los alabes y al ruido propio del motor o máquina. Así mismo, Ia solidez axial (σ ) debe entenderse como el valor característico obtenido de multiplicar el número de alabes Z de Ia hilera j por Ia cuerda axial cx y de dividir dicho resultado por 2πr , siendo r un valor característico del radio del alabe en Ia hilera j y cx un valor característico de Ia cuerda axial en Ia hilera j . Por ejemplo, como valor característico de Ia cuerda axial y del radio podrían tomarse los valores de alguna sección intermedia del alabe, o los de Ia sección de Ia punta del alabe, o bien los de Ia sección con menor solidez axial.
De igual modo, las variables de Ia Tabla 1 pueden ser obtenidas tanto por medición directa, como por derivación a partir de las mediciones de las magnitudes indirectas correspondientes, como por cálculo a partir de las ecuaciones físicas correspondientes. Por ejemplo, pueden obtenerse:
- las presiones estáticas mediante captadores de presión piezorresistivos, piezoeléctricos, o una combinación de ambos;
- Ia entalpia estática mediante termopares situados de modo que adquieran Ia temperatura estática y posterior cálculo de Ia entalpia haciendo uso de leyes termodinámicas implementadas en el dispositivo; - y las velocidades:
1 ) Ia axial y acimutal mediante anemómetros de hilo o placa caliente;
2) de modo indirecto mediante Ia medición de las presiones estáticas y de remanso, por ejemplo usando tubos pitot;
3) pueden ser estimadas mediante cálculo a partir de Ia geometría del compresor, del mapa del compresor; etc.
Así, el dispositivo es un detector de Ia inestabilidad del compresor, si se dota al sistema de compresión de uno o una pluralidad de sensores, colocados cada uno en una posición cualquiera del conjunto de posiciones posibles, de modo que se genere una señal característica, preferentemente estable temporalmente, que alimenta un dispositivo de cálculo, donde se encuentra implementada Ia Ecuación 1 , que genera el índice IR1 que servirá para evaluar el riesgo de inestabilidad. De este modo, se obtiene un índice o conjunto de índices que permiten evaluar el riesgo de pérdida de compresión.
Así, en el dispositivo se tiene una señal con capacidad de detectar Ia pérdida de Ia compresión en Ia hilera j y, Io que es más importante, de predecir el punto donde ocurrirá. Es un dispositivo que depende de variables, promediadas o no tanto espacial como temporalmente, que alimentan una expresión analítica, bien definida para todos los puntos de operación, de modo que se pueden lograr sistemas fiables, robustos y estables de control. Además, las variables de entrada pueden obtenerse mediante medición directa y posterior promedio temporal y espacial, por Io que el criterio es independiente de las perturbaciones de entrada o salida provocadas por las hileras de alabes anteriores o posteriores a Ia monitorizada y por los propios sistemas activos de control. El límite de estabilidad de Ia hilera, dado por Ia condición IR1 = 1 es independiente de las condiciones de operación, de modo que un punto de operación puede tener un IR1 que puede estar lejos o próximo a dicha línea. Tal y como se ha descrito anteriormente aunque el valor teórico en el que se produce Ia inestabilidad viene fijado por IRj = I , son también objeto de Ia presente invención aquellos dispositivos que utilicen el criterio IR1 =lref donde en Ia práctica Uf, el valor de referencia, es un valor (normalmente próximo a Ia unidad) que tiene en cuenta las posibles desviaciones del valor teórico producidas por los errores de medida, promediado y estimación de parámetros.
El valor IR1 que tiene el punto de operación real es un número que puede ser utilizado para implementar los algoritmos de prevención de inestabilidades gracias a que es una señal que especifica el nivel de seguridad del punto operativo en cada hilera y por tanto que podría ser utilizada para controlar el compresor o Ia máquina en Ia que se encuentra instalado. La prevención de Ia pérdida de Ia compresión o de Ia aparición de Ia inestabilidad se puede realizar mediante algoritmos de control que podrían, por ejemplo, variar las condiciones de succión, mediante cambios del ángulo de incidencia de los alabes guía, mediante Ia apertura de válvulas de sangrado, etc. Esto es así gracias a que el índice de riesgo de cada etapa se calcula en tiempo real mediante Ia información capturada por los sensores instalados en Ia hilera monitorizada.
Por tanto, el problema tecnológico que resuelve Ia presente invención es el de poder determinar el grado de seguridad que tiene el punto de operación del sistema de compresión con el fin de informar del funcionamiento del compresor y evitar que este compresor entre en pérdida, o en una región potencialmente peligrosa, sin aviso previo. Mediante Ia Ecuación 1 se recoge Ia física relevante del problema, no sólo Ia evolución de Ia presión en diferentes puntos del compresor, al mismo tiempo que presenta buenas propiedades matemáticas tales como que Ia ecuación está bien definida, es continua y derivable en todo punto de operación. De este modo, se obtiene un índice o conjunto de índices que permiten evaluar el riesgo de pérdida de compresión, dotado de alta inmunidad al ruido, alta sensibilidad y alta estabilidad, Io que implica una alta fiabilidad en los sistemas de control activo que se implementan en los dispositivos de control.
Por tanto, Ia principal ventaja de Ia presente invención respecto a otras posibles soluciones, es que permite implementar un algoritmo analítico de predicción de inestabilidades que es sencillo, preciso, fiable y robusto. Así, su información puede utilizarse para realizar las acciones correctoras que en cada caso se consideren oportunas con el objeto de mantener Ia seguridad e integridad del sistema completo. TaI y como se ha descrito, Ia invención que se presenta contempla un método para Ia predicción de Ia inestabilidad de un compresor axial según Ia reivindicación 1
En un compresor axial, que comprende una o más hileras de alabes de rotores y estatores, se lleva a cabo Ia evaluación del índice de riesgo en al menos una hilera. Si Ia medida se lleva a cabo en una pluralidad de hileras, en cuanto el índice de riesgo de alguna de ellas es menor que uno el método determina que hay una condición de inestabilidad.
Las medidas, si se encuentran promediadas, permiten un método estable de modo que un dispositivo adaptado para llevar a cabo dicho método será capaz de predecir Ia inestabilidad en cualquier circunstancia.
La predicción de Ia inestabilidad permite Ia consecución de pasos posteriores en el método que dan lugar a Ia protección del compresor. Una de estas etapas es Ia actuación mediante medidas correctoras sobre las condiciones de trabajo del compresor desplazándolo a una región estable.
En una realización preferente, el método para Ia predicción puede comprender el uso de unos medios de control que generan una señal de control en función de IR1 y actúan sobre Ia geometría y parámetros del compresor.
Otra etapa que se puede llevar a cabo en el método de Ia invención es Ia generación de una señal de alarma. De manera preferente, el valor de IR1 correspondiente al disparo de una o varias alarmas en el método de predicción tratado, es menor o igual a uno o a un valor previamente fijado en función del margen de seguridad deseado.
Se considera incorporado por referencia a esta descripción todos aquellos métodos determinados por cualquiera de las combinaciones dadas por las reivindicaciones dependientes 2 a 9.
Es también objeto de esta invención el dispositivo de acuerdo a Ia reivindicación 10, y en particular de las reivindicaciones dependientes 1 1 a 16, adaptado para llevar a cabo el método de predicción de Ia inestabilidad; y opcionalmente Ia posterior actuación con medidas de alarma, corrección de las condiciones operativas del compresor o ambas.
En este dispositivo, los medios de acondicionamiento de los medios de medida pueden estar configurados para calcular, a partir de las medidas obtenidas por los medios sensores, las variables utilizadas por el dispositivo de cálculo para el cálculo del IR} y para realizar un promedio temporal y espacial de las mismas.
Preferentemente P Jti1 J , P Jt iΩ w , ( \V χ ) / j 7O y ( VVΛ u ' j ,O , están asociados a valores seleccionados entre:
o valores determinados por una posición espacial y temporal obtenidos en Ia hilera j de alabes;
o valores determinados por un promedio espacial y temporal de valores obtenidos en Ia hilera j de alabes;
o y a una combinación de las anteriores.
Finalmente, Ia obtención de las variables necesarias para generar el índice de riesgo puede estar seleccionada entre:
o obtención directa por medición;
o obtención indirecta por cálcu lo a partir de medición de magnitudes relacionadas;
o obtención indirecta por cálculo a partir de ecuaciones físicas relacionadas.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
A continuación, para facilitar Ia comprensión de Ia invención, a modo ilustrativo pero no limitativo se describirá una realización de Ia invención que hace referencia a una serie de figuras.
La figura 1 muestra de forma esquemática Ia geometría básica de un compresor axial de varias hileras de alabes.
La figura 2 muestra el diagrama de bloques correspondiente al dispositivo objeto de Ia invención.
La figura 3 muestra de forma esquemática una sección característica de Ia hilera de alabes que se desea monitorizar. La figura 4 muestra Ia descomposición de Ia velocidad absoluta V en Ia velocidad axial Vx y Ia velocidad tangencial Vθ .
La figura 5 muestra un posible esquema para ejecutar un dispositivo de medida en Ia salida de una hilera del compresor axial.
La figura 6 ilustra un posible procedimiento de medición.
DESCRIPCIÓN DETALLADA DE UN MODO DE REALIZACIÓN
La presente invención se aplica a compresores axiales de una o varias hileras 100 de alabes cuya geometría básica se esquematiza en Ia figura 1. Esta figura no tiene mayor objetivo que ilustrar Ia aplicación del dispositivo objeto de Ia invención, de modo que el compresor podría tener un número diferente de ejes, de rotores R o de estatores E, o distintas posiciones relativas entre ellos, o distintos mecanismos o elementos auxiliares. En Ia figura aparecen varias hileras 100 de alabes, algunas de ellas son estatores E1 , E2,... y otras, rotores, R1 , R2,.... Además pueden existir ejes diferentes para mover los rotores R. Por ejemplo en Ia figura 1 se han esquematizado dos ejes, 103 y 104, de modo que los rotores representados R1 y R2 pueden tener un régimen de giro diferente del resto. En Ia figura, cada entrada o salida de una hilera 100 de alabes aparece denominada con el número de Ia hilera y un punto y coma (;) seguido de una letra I o O dependiendo de si se trata respectivamente de Ia entrada o Ia salida de Ia hilera. Por conveniencia, en este ejemplo de realización Ia salida de Ia hilera j coincide con Ia entrada de Ia hilera / + 1 , de modo que se verifica que las propiedades del fluido en Ia sección j; O coinciden con las de Ia sección j + ϊ,I , tal y como aparece esquematizado en Ia figura. Por otra parte, los estatores E no tienen velocidad de giro alguna, mientras que los rotores R tienen Ia velocidad de giro impuesta por el eje que los soporta. Así, de modo general, Ia velocidad tangencial de un alabe de Ia hilera j impuesta por Ia rotación se denominará U1 . Evidentemente cuando Ia hilera j sea un estator E, U1 será cero. Los dispositivos de medida en Ia entrada de Ia hilera j aparecen referenciados como 101 y los dispositivos de medida en Ia salida de Ia hilera j como 102.
La figura 2 representa un esquema del dispositivo objeto de Ia invención. En él puede encontrarse, para un compresor completo cualquiera, sirva de ejemplo el de Ia figura 1 , los dispositivos de medida 101 y 102 en cada hilera 100 de alabes que se quiera monitorizar. Estos dispositivos de medida 101 y 102, se distribuyen a Io largo del compresor de modo que tomen información de Ia entrada y Ia salida de cada hilera 100 de alabes. Para cada hilera 100 que se quiera monitorizar, el dispositivo de cálculo 201 , calcula, mediante Ia Ecuación 1 , su índice de riesgo de inestabilidad IR1 .
Posteriormente, el valor de cada índice de riesgo calculado se utiliza en los medios de control 202 para alimentar un algoritmo de control encargado de generar una señal de control que finalmente cambie Ia geometría, o el punto de operación del compresor, de Ia máquina o del motor 203. El medio de control 202 es cualquier dispositivo que actúe sobre Ia geometría del compresor, sobre Ia potencia que este recibe, o sobre las condiciones del gasto de aire que gestiona tanto en Ia entrada como en Ia salida.
El dispositivo de cálculo 201 compara el índice de riesgo de cada hilera 100 de alabes con Ia unidad. En este punto, dado que Ia condición IR1 = 1 es justo el límite de estabilidad, es posible que en determinadas aplicaciones convenga introducir un posible factor de seguridad en el dispositivo de cálculo 201 de modo que se comience a corregir mediante los medios de control 202 cuando el índice de riesgo desciende hasta un valor algo superior a Ia unidad. Por ejemplo, se puede fijar el factor de seguridad en IR1 = 1.05 , de modo que queda un margen de seguridad del 5% hasta Ia situación de peligro inminente. De este modo, se tomarían las decisiones adecuadas antes de Ia pérdida inminente de Ia compresión y se tendrían en cuenta posibles desviaciones debidas a errores de medida, promediado y estimación de parámetros.
En Ia figura 3 se esquematiza una sección característica de Ia hilera 100 de alabes que se desea monitorizar. El dispositivo de medida de entrada 101 aparece antes de los alabes 300, mientras que el dispositivo de medida de salida 102 aparece después. Es una característica fundamental de Ia presente invención que el índice de riesgo dependa de Ia velocidad absoluta de salida Vj 0 . Esta velocidad está representada en Ia figura junto a Ia velocidad absoluta de entrada V1 1 y Ia velocidad de traslación U1 . También aparecen Ia cuerda axial cx y el espaciado 2πr I Z de Ia sección tomada como sección característica de Ia hilera 100 de alabes que determinan Ia solidez axial de Ia misma. Para determinar completamente el vector característico V se debe conocer el módulo y Ia dirección de Ia velocidad. La figura 4 muestra Ia descomposición de Ia velocidad absoluta V en Ia velocidad axial Vx y Ia velocidad tangencial Vθ . Por tal motivo, los dispositivos de medida de salida 102 deberán ser capaces de medir o estimar, directa o indirectamente, Ia velocidad absoluta del gas a Ia salida de Ia hilera 100.
A modo de ejemplo, y sin pretender ser limitativos de su alcance, se describen cuatro posibles modos de realización de Ia invención.
MODO 1 :
En este modo de realización de Ia invención, esquematizado en Ia figura 5, el dispositivo de medida de salida 102 de Ia hilera j 100, se constituye con un conjunto de sensores 501 y un dispositivo de acondicionamiento y tratamiento de Ia señal 502. En general el número de sensores y su posición dependerá de las posibilidades de Ia instalación. Como ejemplo, en Ia figura 5, se ha esquematizado un dispositivo con cinco estaciones de medida, 511 a 515, las cuales, para tener una mejor caracterización del campo fluido a Ia salida de Ia hilera 100, podrán estar distribuidas alternativamente sobre Ia carcasa exterior e interior del compresor y equiespaciadas angularmente. A su vez, cada estación de medida 511 a 515 estará compuesta por un grupo de sensores cuya finalidad será proporcionar Ia información medida, 521 a 525, necesaria para elaborar los datos de presión, velocidad y temperatura que aparecen en Ia Tabla 1 y que son necesarios para calcular el índice de riesgo mediante Ia Ecuación 1. Así, las señales presentes en Ia información medida, 521 a 525, a Ia salida de cada grupo de sensores, se corresponden con Ia evolución temporal de las magnitudes medidas en cada posición espacial determinada por Ia estación correspondiente.
El dispositivo de acondicionamiento y tratamiento de Ia señal 502 es el encargado de obtener un promediado temporal y espacial a partir de Ia información medida, 521 a 525, por el conjunto de sensores 501. El promediado temporal puede realizarse mediante Ia aplicación de un filtro pasa bajos a cada sensor del conjunto de sensores 501 . Este promediado temporal puede ser físico (por ejemplo, si las longitudes de los conductos que llevan Ia señal de presión al captador piezorresistivo son suficientemente grandes) o electrónico (si se incorpora a Ia salida del captador piezorresistivo o del termopar un filtro pasa bajos). Estos dispositivos de filtrado, 531 a 535, eliminan las fluctuaciones rápidas en Ia señal de medida. De este modo, se eliminan los ruidos y las variaciones temporales de alta frecuencia tales como las inducidas por el paso de los alabes frente a los sensores. Las señales de baja frecuencia obtenidas, 541 a 545, difieren entre sí por proceder de estaciones de medida, 51 1 a 515, situadas en posiciones espaciales diferentes. Para establecer una medida que caracterice toda Ia salida de Ia hilera 100 de alabes, se establece el dispositivo de filtrado espacial 550. El promediado espacial puede realizarse tomando el valor medio de las señales de baja frecuencia obtenidas, 541 a 545, provenientes del filtrado temporal. Así, Ia señal resultante 551 , a Ia salida del dispositivo de filtrado espacial 550, es el valor medio de las señales de baja frecuencia obtenidas 541 a 545. Pero igualmente podría tomarse cualquier otra ponderación de las señales de baja frecuencia obtenidas 541 a 545 para generar Ia salida del dispositivo de filtrado espacial 550. De Ia misma forma, también podrían ser ejemplos de aplicación todos aquellos dispositivos en los que se realiza primero el promediado espacial y posteriormente el temporal, o aquellos en los que se realizan ambos al mismo tiempo.
El conjunto de señales resultantes 551 , para cada una de las hileras 100 del compresor, caracteriza el punto de operación del compresor de forma estable y fiable. Son un conjunto de señales necesarias para elaborar los datos de presión, velocidad y temperatura que aparecen en Ia Tabla 1 y que son necesarios para calcular el índice de riesgo mediante Ia Ecuación 1. Así el conjunto de señales resultantes 551 serán recibidas en el dispositivo de cálculo 201 para el posterior cálculo del índice de riesgo de Ia hilera 100 de alabes. Evidentemente, el dispositivo de cálculo 201 , requiere también información del dispositivo de medida 101 en Ia entrada de Ia hilera, cuya realización práctica puede ejecutarse del mismo modo que se ha descrito aquí para el dispositivo de medida 102 en Ia salida de Ia hilera.
MODO 2:
Este modo de realización es igual al modo 1 , pero en él se especifica un modo de realizar las estaciones de medida 51 1 a 515 de Ia figura 5. Así, a título de ejemplo, Ia figura 6 muestra una posible ejecución de cada una de estas estaciones de medida 51 1 a 515. Cada una de estas estaciones, digamos por ejemplo Ia 51 1 , consta de un conjunto de cuatro sensores. El dispositivo consta de tres tomas de presión 601 , 602 y 603 que terminan en sus respectivos sensores de presión y de un sensor de temperatura 604. Las tres tomas de presión, 601 a 603, se encuentran orientadas respecto de Ia corriente de gas, de modo que Ia toma de presión 602 se encuentra orientada axialmente y Ia 603 tangencialmente. La toma 601 está orientada de modo transversal al movimiento del gas con Ia intención de adquirir Ia presión estática de Ia corriente de gas. A su vez, el sensor de temperatura 604 está configurado para adquirir Ia temperatura estática.
Tras los correspondientes dispositivos de filtrado 531 a 535 temporales y del dispositivo de filtrado espacial 550 las señales resultantes 551 pueden ser utilizadas para alimentar el dispositivo objeto de Ia invención. Por ejemplo, con el valor de Ia temperatura estática presente en el conjunto de señales resultantes 551 , el dispositivo de cálcu lo 201 puede obtener (por ejemplo, mediante interpolación en las correspondientes tablas termodinámicas del gas que se comprime) Ia entalpia estática hj 0 y el cociente de calores específicos γj 0 . Así, a partir de los dispositivos de medida 101 y 102, y de los valores promediados de presión y entalpia el dispositivo de cálculo 201 puede obtener las velocidades absolutas axial y tangencial, aplicando a cada eje Ia expresión siguiente (o alguna de las obtenidas por las leyes de Ia mecánica de fluidos, o por las leyes de calibración de los sensores de velocidad que se empleasen):
Figure imgf000021_0001
(rβ),.0 (Ecuación 3)
Figure imgf000021_0002
Donde P(601 ), P(602) y P(603) son los promedios temporales y espaciales de las presiones medidas por las tomas de presión 601 , 602 y 603 respectivamente. Posteriormente, el conjunto de señales de velocidad, presiones estáticas y entalpias estáticas pueden ser usadas para calcular el índice de riesgo proporcionado por Ia Ecuación 1.
Evidentemente, esta figura esquematiza el funcionamiento de un posible sensor de velocidad, que puede ser sustituido por sistemas más complejos como son los tubos pitot comerciales o los anemómetros de hilo o placa caliente, entre otros, sin restringir el alcance de Ia invención.
MODO 3: Este modo de funcionamiento es igual que el modo 2, salvo que las tomas de presión 601 , 602 y 603 se sustituyen por anemómetros de hilo caliente.
MODO 4:
Este modo de funcionamiento es igual q ue el modo 1 , salvo q ue las velocidades, presiones y temperaturas se calculan mediante un código numérico de solución del campo fluido. Así, las estaciones de medida 51 1 a 515 son, en lugar de un conjunto de sensores, un código de cálculo numérico y las señales correspondientes a Ia información medida 521 a 525, las soluciones proporcionadas por el código de cálculo numérico en determinados puntos de Ia malla de cálculo como función del tiempo.
Finalmente, se concluye que Ia invención comprende un dispositivo que maneja un índice de riesgo con capacidad para avisar en tiempo real de si el punto de operación del compresor es estable o no, y en caso de serlo es capaz de informar del margen de seguridad. Este índice de riesgo puede ser empleado para estabilizar el sistema (motor o máquina donde está instalado el compresor) mediante un dispositivo de control activo. También puede ser empleado durante el diseño para estabilizar mediante un proceso de optimización los puntos de operación del sistema de turbomaquinaria. El procedimiento puede ser implementado en las unidades de control de dichos sistemas, en dispositivos de hardware o software, en circuitos integrados digitales tales como circuitos integrados para aplicaciones específicas (ASICs siglas de Application Specific Integrated Circuits), Arrays de puertas programables de campo (FPGAs, siglas de Field Programmable Gate Arrays) y en Ia memoria de los microprocesadores.
Su aplicación industrial inmediata se encuentra en todos aquellos sectores donde Ia seguridad de Ia operación sea fundamental. Tal es el caso del sector aeroespacial. Y su implementación, como parte del sistema de control de las máquinas equipadas con compresores axiales, permite reducir costes de operación y mantenimiento, así como aumentar Ia fiabilidad de los sistemas de compresión.
Una vez descrita de forma clara Ia invención , se hace constar que las realizaciones particulares anteriormente descritas son susceptibles de modificaciones de detalle siempre que no alteren el principio fundamental y Ia esencia de Ia invención.

Claims

REIVINDICACIONES
1. Método para Ia predicción de Ia inestabilidad de un compresor axial que comprende una o más hileras (100) de alabes de rotores y estatores, caracterizado porque comprende, en al menos una hilera j (100) de alabes de una etapa del compresor axial, los siguientes pasos:
a) llevar a cabo Ia medida de las siguientes variables:
• Pjj : presión estática a Ia entrada de Ia hilera j (100) de alabes;
• Pj 0 : presión estática a Ia salida de Ia hilera j (100) de alabes;
• hj 0 : entalpia estática a Ia salida de Ia hilera j (100) de alabes;
• Uj : velocidad tangencial de Ia hilera j (100) de alabes;
• (Vx ) o -- velocidad axial a Ia salida de Ia hilera j (100) de alabes;
• (Vg ) 0 -- velocidad tangencial a Ia salida de Ia hilera j (100) de alabes;
• Yj : cociente de calores específicos de Ia hilera j (100) de alabes;
b) evaluar el índice de riesgo para Ia hilera j (100), IR1 , según Ia ecuación:
Figure imgf000023_0001
donde, para un valor de referencia lref, en el caso de que para alguna de las hileras j (100) de rotores para las que se ha evaluado el valor del índice de riesgo IR1 sea menor o igual que /ref el resultado de Ia predicción para las condiciones de trabajo del compresor es de inestabilidad.
2.- Método según Ia reivindicación 1 caracterizado porque Uf es 1.
3.- Método según Ia reivindicación 1 caracterizado porque, establecido un valor de seguridad vseg>0, lref es 1 +vseg.
4.- Método según Ia reivindicación 1 caracterizado porque, establecido un valor de riesgo vr>0, Uf es 1-vr.
5.- Método según Ia reivindicación 1 caracterizado porque las medidas llevadas a cabo en Ia etapa a) son promediadas en el espacio, en el tiempo o en ambos.
6. Método de protección de un compresor axial caracterizado porque ante una predicción de inestabilidad según cualquiera de las reivindicaciones 1 a 4 se lleva a cabo una corrección de las condiciones de trabajo del compresor axial para desplazarlo hacia Ia región de estabilidad.
7.- Método de protección de un compresor axial caracterizado porque ante una predicción de inestabilidad según cualquiera de las reivindicaciones 1 a 4 se provee de una señal de alarma.
8.- Método según Ia reivindicación 7 caracterizado porque el índice de riesgo IRj es evaluado en una pluralidad de etapas y Ia señal de alarma se provee cuando cualquiera de los índices de riesgo IR1 da lugar a una predicción de inestabilidad.
9. Método según cualquiera de las reivindicaciones anteriores caracterizado porque Ia medida de cualquiera de las variables necesarias para generar el índice de riesgo IR1 se lleva a cabo mediante cualquiera de los siguientes medios:
o obtención directa por medición;
o obtención indirecta por cálculo a partir de medición de magnitudes relacionadas;
o obtención indirecta por cálculo a partir de ecuaciones físicas relacionadas.
10. Dispositivo para Ia predicción de Ia inestabilidad de un compresor axial adaptado para llevar a ca bo u n método de acuerdo a cualquiera de las reivindicaciones anteriores, caracterizado porque comprende, en al menos una hilera j (100) de alabes de una etapa del compresor axial:
• unos medios de medida (101 , 102) para obtener valores de presión, temperatura y velocidad;
• un dispositivo de cálculo (201 ), configurado para: o realizar cálculos, a partir de las medidas obtenidas por los medios de medida (101 , 102) para obtener las variables:
• Pjj : presión estática a Ia entrada de Ia hilera j (100);
• Pj 0 : presión estática a Ia salida de Ia hilera j (100);
• hj 0 : entalpia estática a Ia salida de Ia hilera j (100);
• Uj : velocidad tangencial de Ia hilera j (100);
• (Vx ) o -- ve'oc'dad axial a Ia salida de Ia hilera j (100);
• (Vg ) 0 -- velocidad tangencial a Ia salida de Ia hilera j
(100);
• Yj : cociente de calores específicos de Ia hilera j (100); o generar un índice de riesgo para Ia hilera j (100), IR1 , según Ia ecuación:
Figure imgf000025_0001
1 1. Dispositivo según Ia reivindicación 10, caracterizado porque comprende medios de control (202) adaptados para recibir los valores de los índices de riesgo para cada hilera j (100), IR1 de tal modo que a partir de éstos proveen de una señal de control para actuar sobre Ia geometría y parámetros del compresor.
12. Dispositivo según Ia reivindicación 10 u 1 1 , caracterizado porque dispone de medios para proveer de una señal de alarma cuando cualquiera de los valores de IR son menores o iguales a un valor de referencia Uf.
13.- Dispositivo según Ia reivindicación 12 caracterizado porque los medios para proveer de una señal de alarma son tales que Ia señal de alarma se provee cuando cualquiera de los valores de IR1 son menores o iguales al valor de de referencia Uf.
14.-. Dispositivo según cualquiera de las reivindicaciones 10 a 13 caracterizado porque los medios de medida (101 , 102) disponen de medios de acondicionamiento de Ia señal.
15.- Dispositivo según Ia reivindicación 14 caracterizado porque los medios de medida (101 , 102) disponen de medios de promediado espacial, temporal o ambos de Ia señal medida.
16.- Dispositivo según cualquiera de las reivindicaciones 10 a 15 caracterizado porque Ia obtención de las variables necesarias para generar el índice de riesgo se lleva a cabo mediante cualquiera de las siguientes opciones:
o medios para Ia obtención directa por medición;
o medios para Ia obtención indirecta por cálculo a partir de medición de magnitudes relacionadas;
o medios para Ia obtención indirecta por cálculo a partir de ecuaciones físicas relacionadas.
PCT/ES2010/070563 2009-08-21 2010-08-20 Método y dispositivo para la predicción de la inestabilidad de un compresor axial WO2011020941A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10766075A EP2469098A1 (en) 2009-08-21 2010-08-20 Method and device for predicting the instability of an axial compressor
US13/266,793 US20120141251A1 (en) 2009-08-21 2010-08-20 Method and device for predicting the instability of an axial compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200930614 2009-08-21
ES200930614 2009-08-21

Publications (1)

Publication Number Publication Date
WO2011020941A1 true WO2011020941A1 (es) 2011-02-24

Family

ID=43513591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070563 WO2011020941A1 (es) 2009-08-21 2010-08-20 Método y dispositivo para la predicción de la inestabilidad de un compresor axial

Country Status (3)

Country Link
US (1) US20120141251A1 (es)
EP (1) EP2469098A1 (es)
WO (1) WO2011020941A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9471057B2 (en) * 2011-11-09 2016-10-18 United Technologies Corporation Method and system for position control based on automated defect detection feedback
DE102017104414B3 (de) 2017-03-02 2018-07-19 Technische Universität Berlin Verfahren und Vorrichtung zum Bestimmen eines Indikators für eine Vorhersage einer Instabilität in einem Verdichter sowie Verwendung
BE1025194B1 (fr) * 2017-05-05 2018-12-07 Safran Aero Boosters S.A. Capteur de turbulences dans un compresseur de turbomachine
CN108254206B (zh) * 2017-12-27 2020-04-07 中国航发四川燃气涡轮研究院 一种用于高总压比多级压气机性能试验的状态调节方法
CN114936501B (zh) * 2022-07-20 2022-09-30 深圳市城市公共安全技术研究院有限公司 针对立式储油罐在风压下的填充度评估方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366219A2 (en) * 1988-10-26 1990-05-02 Compressor Controls Corporation Method and apparatus for preventing surge in a dynamic compressor
WO1994003862A1 (en) 1992-08-10 1994-02-17 Dow Deutschland Inc. Process and device for monitoring and for controlling of a compressor
US5599161A (en) * 1995-11-03 1997-02-04 Compressor Controls Corporation Method and apparatus for antisurge control of multistage compressors with sidestreams
US5908462A (en) 1996-12-06 1999-06-01 Compressor Controls Corporation Method and apparatus for antisurge control of turbocompressors having surge limit lines with small slopes
JP2001132685A (ja) 1999-11-10 2001-05-18 Mitsubishi Heavy Ind Ltd ターボ機械におけるサージング回避システム
US6503048B1 (en) * 2001-08-27 2003-01-07 Compressor Controls Corporation Method and apparatus for estimating flow in compressors with sidestreams
JP2003227497A (ja) 2002-02-06 2003-08-15 Ishikawajima Harima Heavy Ind Co Ltd 可変ケーシングトリートメント装置とその制御方法
EP1406018A2 (en) * 2002-10-04 2004-04-07 General Electric Company Method and system for detecting precursors to compressor stall and surge
WO2007135991A1 (ja) 2006-05-19 2007-11-29 Ihi Corporation ストール予兆検知装置及び方法、並びにエンジン制御システム
JP2008223624A (ja) 2007-03-13 2008-09-25 Ihi Corp ストール予兆検知方法及びエンジン制御システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705491A (en) * 1970-06-30 1972-12-12 Richard W Foster Pegg Jet engine air compressor
SE460315B (sv) * 1988-10-13 1989-09-25 Ludwik Jan Liszka Saett att fortloepande oevervaka drifttillstaandet hos en maskin
US8348592B2 (en) * 2007-12-28 2013-01-08 General Electric Company Instability mitigation system using rotor plasma actuators
US8282337B2 (en) * 2007-12-28 2012-10-09 General Electric Company Instability mitigation system using stator plasma actuators
US8282336B2 (en) * 2007-12-28 2012-10-09 General Electric Company Instability mitigation system
US8317457B2 (en) * 2007-12-28 2012-11-27 General Electric Company Method of operating a compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366219A2 (en) * 1988-10-26 1990-05-02 Compressor Controls Corporation Method and apparatus for preventing surge in a dynamic compressor
WO1994003862A1 (en) 1992-08-10 1994-02-17 Dow Deutschland Inc. Process and device for monitoring and for controlling of a compressor
US5599161A (en) * 1995-11-03 1997-02-04 Compressor Controls Corporation Method and apparatus for antisurge control of multistage compressors with sidestreams
US5908462A (en) 1996-12-06 1999-06-01 Compressor Controls Corporation Method and apparatus for antisurge control of turbocompressors having surge limit lines with small slopes
JP2001132685A (ja) 1999-11-10 2001-05-18 Mitsubishi Heavy Ind Ltd ターボ機械におけるサージング回避システム
US6503048B1 (en) * 2001-08-27 2003-01-07 Compressor Controls Corporation Method and apparatus for estimating flow in compressors with sidestreams
JP2003227497A (ja) 2002-02-06 2003-08-15 Ishikawajima Harima Heavy Ind Co Ltd 可変ケーシングトリートメント装置とその制御方法
EP1406018A2 (en) * 2002-10-04 2004-04-07 General Electric Company Method and system for detecting precursors to compressor stall and surge
WO2007135991A1 (ja) 2006-05-19 2007-11-29 Ihi Corporation ストール予兆検知装置及び方法、並びにエンジン制御システム
JP2008223624A (ja) 2007-03-13 2008-09-25 Ihi Corp ストール予兆検知方法及びエンジン制御システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAY, I.J.; BREUER, T.; ESCURET, J.; CHERRETT, M.; WILSON, A.: "Stall Inception and the prospects for active control in four high speed compressors", ASME J. TURBOMACHINERY, vol. 121, pages 18 - 27
GREITZER, E.M. SURGE; ROTATING STALL: "Axial Flow Compressors. Part I: Theoretical Compression System Model", ENGINEERING FOR POWER, vol. 98, no. 2, 1976, pages 190,198

Also Published As

Publication number Publication date
EP2469098A1 (en) 2012-06-27
US20120141251A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2011020941A1 (es) Método y dispositivo para la predicción de la inestabilidad de un compresor axial
ES2347345T3 (es) Metodo y sistema para supervisar estados de proceso de un motor de combustion.
O'Mahoney et al. Large-eddy simulation of rim seal ingestion
Palafox et al. A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR): Part I—Experimental Test Vehicle, Measurement Capability and Baseline Results
AU2016381065B2 (en) System and method for identifying and recovering from a temporary sensor failure
JP2022516479A (ja) 圧力下または真空下のガスネットワーク内の漏れを検出するための方法、およびガスネットワーク
Clark et al. The effect of airfoil scaling on the predicted unsteady loading on the blade of a 1 and 1/2 stage transonic turbine and a comparison with experimental results
JP6924114B2 (ja) 制御センサのオーバーライドの検出のための方法およびシステム
RU2017126183A (ru) Способ обнаружения утечки текучей среды в турбомашине и система распределения текучей среды
CN113361216A (zh) 基于轴流风机性能曲线及风机开度的流量实时在线计算方法
Hualca et al. The effect of vanes and blades on ingress in gas turbines
CN107315403B (zh) 用校准的性能模型控制机械
Monge-Concepción et al. Unsteady Turbine Rim Sealing and Vane Trailing Edge Flow Effects
Bozak et al. Evaluating the aerodynamic impact of circumferentially grooved fan casing treatments with integrated acoustic liners on a turbofan rotor
Aldi et al. Cross validation of multistage compressor map generation by means of computational fluid dynamics and stage-stacking techniques
Padzillah et al. Numerical and experimental investigation of pulsating flow effect on a nozzled and nozzleless mixed flow turbine for an automotive turbocharger
González Díez et al. Predictability of rotating stall and surge in a centrifugal compressor stage with dynamic simulations
JP4763713B2 (ja) 予測診断のためのスライディングモード方法
Orsini et al. On the use of PSP to Determine the Rim Sealing Effectiveness
Paradiso et al. Design and operation of a low speed test turbine facility
Vo¨ lker et al. The influence of lean and sweep in a low pressure steam turbine: throughflow modelling and experimental measurements
Marpu et al. Comparison of numerical methods for the prediction of time-averaged flow quantities in a cooled multistage turbine
KR100543674B1 (ko) 회전하는 파의 에너지를 이용한 압축기 선회 실속 경고 장치 및 방법
Balasubramanian et al. Experimental Study of Ingestion in the Rotor-Stator Disk Cavity of a Subscale Axial Turbine Stage
Polanský et al. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010766075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13266793

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE