WO2011020295A1 - 主动式消除干扰信号系统、方法以及电脑可读取的记录媒体 - Google Patents

主动式消除干扰信号系统、方法以及电脑可读取的记录媒体 Download PDF

Info

Publication number
WO2011020295A1
WO2011020295A1 PCT/CN2010/001244 CN2010001244W WO2011020295A1 WO 2011020295 A1 WO2011020295 A1 WO 2011020295A1 CN 2010001244 W CN2010001244 W CN 2010001244W WO 2011020295 A1 WO2011020295 A1 WO 2011020295A1
Authority
WO
WIPO (PCT)
Prior art keywords
transceiver
signal
interference
relay station
interference signal
Prior art date
Application number
PCT/CN2010/001244
Other languages
English (en)
French (fr)
Inventor
阙壮儒
Original Assignee
Chueh Joseph
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chueh Joseph filed Critical Chueh Joseph
Priority to CN201080036817.4A priority Critical patent/CN102484489B/zh
Publication of WO2011020295A1 publication Critical patent/WO2011020295A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present invention relates to the field of communications, and in particular, to an active interference cancellation signal communication system, method, and computer readable recording medium. Background technique
  • wireless communication bandwidth was divided into a number of independent channels to service dealers to reduce system interference problems.
  • wireless communication systems are offered to more service dealers in a shared channel.
  • a channel has at least one communication system, and each communication system modulates its own system signals in different ways, thereby guiding the communication program, and therefore, interference of the wireless communication channel is unavoidable. Interference not only affects wireless coverage and system capacity, but also reduces transmission efficiency.
  • FIG. 1A it is a schematic diagram of a communication in a wireless communication system.
  • the base stations A, B and C (or antennas A, B and C) and a system S are distributed to form a network structure, and the system S is connected to the base stations A, B and (by: a wired line by wireless transmission and base Station A communicates and there is no interference signal in this environment.
  • FIG. 1B which is a transmission coverage diagram between a transceiver T and a base station A.
  • the base station A wireless communication service range is a solid circle
  • the wireless range of the transceiver T is a dotted circle
  • the communication area between the solid line circle and the dotted circle is the communication range between the base station A and the transceiver T.
  • FIG. 1C it is a schematic diagram of the communication between a transceiver T and a base station A being affected by a base station B of the same communication system.
  • the transceiver T communicates only with the base station A through the wireless communication system, but the service range of the base station B having the same communication system overlaps with the communication range between the transceiver T and the base station A, thus causing the transceiver T to be used by the base station B.
  • Signal interference which is called internal interference.
  • FIG. 1D which is a schematic diagram of the communication between a device T and a base station A being affected by a base station 0 of a different communication system.
  • the transceiver T communicates only with the base station A through the wireless communication system, but the service range of the base station 0 having different communication systems overlaps with the communication range between the transceiver T and the base station A, thus causing the signal of the transceiver T platform 0 Interference, which is called external interference.
  • FIG. 1E it is a schematic diagram of the communication between a transceiver T and a base station A being affected by the base station B of the same communication system and the base stations 0 and P of different communication systems.
  • the transceiver T communicates only with the base station A through the wireless communication system, but has the base station B, 0 in the same environment. versus? .
  • the base station B has the same system as the base station A, but the base stations 0 and P have different systems from the base station A.
  • Figure 1E shows a simple interference state, that is, the communication between the transceiver T and the base station A is only interfered by the signal of the base station B, and the signals of the base stations 0 and P only affect the transmission and reception of the transceiver T. Scope, but does not affect its communication with base station A.
  • FIG. 1F is another schematic diagram of the communication between a transceiver T and a base station A being affected by the same station B of the same communication system and the different stations 0 and P of the different communication systems.
  • the transceiver T communicates only with the base station A through the wireless communication system, and there are base stations B, 0 and in the same environment.
  • the base station B has the same system as the base station A, but the base stations 0 and P have different systems from the base station A.
  • the communication between the device T and the base station A has an interference phenomenon, and the interference comes from the signals of the base station B including the same communication system and the base stations 0 and P of the different communication systems.
  • the present invention provides an active interference cancellation signal system, method, and computer readable recording medium, which can improve the shortcomings of the conventional wireless network co-channel interference and solve the existing conventional calculation mechanism. Overly complex and difficult to implement, and at the same time provide more efficient wireless communication. Summary of the invention
  • the object of the present invention is to overcome the shortcomings of existing systems and methods for suppressing co-channel interference in a co-operating wireless network, and to provide a new active interference cancellation signal system, method and computer readable recording medium.
  • the technical problem to be solved is that it can directly utilize the communication system to eliminate interference in the environment, is simple and easy to implement, and at the same time provides more efficient wireless communication, which is very suitable for practical use.
  • An active interference cancellation signal system is provided in accordance with the present invention.
  • the system communication connects at least one first transceiver.
  • the system includes: at least one second transceiver; and a relay station, the relay station receives a feedback signal and an environmental signal from the at least one second transceiver to perform a signal correlation operation to obtain an operation result, and According to the result of this operation, it is judged that an anti-interference signal is generated.
  • the relay station transmits the anti-interference signal to the at least one first transceiver by the at least one third transceiver to cancel the interference signal around the at least one first transceiver.
  • the at least one third transceiver has an optimal communication channel with the at least one first transceiver.
  • An active method for canceling interference signals according to the present invention is for use in a communication system of at least one first transceiver.
  • the method comprises: (a) receiving a feedback signal from at least one second transceiver by a relay station and detecting an environmental signal; (b) by using the relay station to calculate the feedback signal and the environment Signaling to obtain an operation result; (C) by means of the relay station determining to generate an anti-interference signal according to the result of the operation; and (d) by means of the relay station transmitting the anti-interference signal to the at least one third transceiver
  • the at least one first transceiver eliminates interference signals around the at least one first transceiver.
  • the at least one third transceiver has an optimal communication channel with the at least one first transceiver.
  • a recording medium for recording a control program for actively canceling an interference signal is used for a communication system of at least one first transceiver, and a control program for actively eliminating an interference signal causes the computer to execute a program including at least: (a) causing a relay station to receive a feedback signal from at least one second transceiver and detecting an environmental signal; (b) causing the relay station to correlate the feedback signal with the environmental signal to obtain an operation result; c) causing the relay station to determine an anti-interference signal based on the result of the operation; and (d) causing the relay station to transmit the anti-interference signal to the at least one first transceiver through the at least one third transceiver Eliminating the interference signal around the at least one first transceiver.
  • the at least one third transceiver has an optimal communication channel with the at least one first transceiver.
  • an active interference cancellation signal system which is communicatively coupled to at least a first transceiver.
  • the system comprises: a communication network, the communication connection is the at least one first transceiver; and a relay station, receiving a feedback signal and an environmental signal from the communication network to perform a signal correlation operation to obtain an operation result, According to the result of the operation, it is judged that an anti-interference signal is generated.
  • the relay station transmits the anti-interference signal to the at least one first transceiver by the communication network to eliminate the interference signal around the at least one first transceiver.
  • an active cancellation wireless network interference signal system includes K base stations, at least one mobile station, and a repeater station.
  • Each of the K base stations has N antennas, where K 2, 1 ⁇ ⁇ 1 and ⁇ , ⁇ is a natural number.
  • the at least one mobile station has one antenna and is in communication with one of the two base stations.
  • the repeater has one antenna and is connected to the base station, where the antennas of the M mobile stations are summed and the natural number is ⁇ .
  • the relay station receives the plurality of data transmitted by the K base stations, and performs a transmission precoding according to the plurality of data, and sends the result of the precoding of the transmission to the at least one mobile station by using the M antennas. Eliminate interference signals between the K base stations.
  • An active method for canceling wireless network interference signals comprises: (a) causing a relay station to receive a plurality of data transmitted by K base stations, wherein at least one mobile station has N antennas and communicates with one of the K base stations, each of which K Each base station has N antennas, and the relay station has M antennas, wherein K 2 , N l and ⁇ the sum of the antennas of the mobile stations, ⁇ , ⁇ , ⁇ are natural numbers; (b) make the relay station according to this Data is judged to perform a transmission precoding; The mobile station eliminates interference signals between the K base stations.
  • a recording medium for recording a control program for actively eliminating wireless network interference signals causes the computer to execute a program comprising at least: (a) receiving a relay station a plurality of data transmitted by the K base stations, wherein at least one mobile station has N antennas and is in communication with one of the K base stations, each of the K base stations having N antennas, the relay station having At least M antennas, wherein K ⁇ 2, N ⁇ 1 and M ⁇ the sum of the antennas of the mobile station, ⁇ , ⁇ , ⁇ are natural numbers; (b) causing the relay station to perform a transmission precoding according to the plurality of data judgments; And (c) causing the relay station to transmit the result of precoding the transmission to the at least one mobile station through the M antennas to cancel the interference signal between the K base stations.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the active interference cancellation signal system, method and computer readable recording medium of the invention have at least the following advantages and beneficial effects:
  • the active anti-interference communication system and method provided by the invention can directly utilize the communication system Eliminating interference in the environment is simple and easy to implement, and at the same time provides more efficient wireless communication.
  • the present invention relates to an active interference cancellation signal system, method, and computer readable recording medium.
  • the system communication is connected to at least one first device.
  • the system includes: at least one second transceiver; and a relay station, the relay station receives a feedback signal and an environmental signal from the at least one second transceiver to perform a signal correlation operation to obtain an operation result, and According to this operation, it is judged that an anti-interference signal is generated.
  • the repeater transmits the anti-interference signal to the at least one first transceiver by the at least one third transceiver to cancel the interference signal around the at least one first transceiver.
  • the at least one third transceiver has an optimal communication channel with the at least one first transceiver.
  • Figure 1A is a schematic diagram of a transceiver T communicating in a wireless communication system.
  • Figure 1B is a schematic diagram of the transmission coverage between a device T and a base station A.
  • Figure 1C is a diagram showing the communication between a transceiver T and a base station A affected by a base station B of the same communication system.
  • Figure 1D is a schematic illustration of the communication between a transceiver T and a base station A being affected by a base station 0 of a different communication system.
  • Figure IE is a schematic diagram of the communication between a device T and a base station affected by a base station B of the same communication system and base stations 0, P of different communication systems.
  • Figure 1F is another schematic diagram of the communication between a transceiver T and a base station A affected by a base station B of the same communication system and base stations 0, P of different communication systems.
  • Fig. 2 is a schematic diagram showing the reverse signal waveform in which the two signal waveforms have a phase difference of 180 degrees, one signal waveform W1 is the original signal waveform, and the other signal waveform W2 is W1.
  • Figure 3 is a schematic illustration of the interference cancellation between a transceiver T and a base station A affected by the base station B of a same communication system and the base stations 0, P of different communication systems.
  • FIG. 4 is a schematic diagram of a preferred active interference cancellation system of the present invention.
  • Figure 5 is a block diagram of a preferred system of the present invention and its flow chart.
  • Figure 6 is a schematic illustration of a preferred application of the present invention.
  • FIG. 7 is a schematic illustration of another preferred application of the present invention.
  • Figure 8 is a schematic diagram of another preferred active interference cancellation system of the present invention.
  • Figure 9 is a block diagram of another preferred system of the present invention and a flow chart thereof.
  • first device 520 second transceiver
  • A, B, C base station ⁇ : transceiver
  • RBS Repeater BSi, BSj: Base station
  • Hos t Host A, Hos t B: Host MS, MSi, MS j: Mobile station
  • the present invention provides an active communication interference cancellation system.
  • the system includes a network s gagture, a relay base, at least a first transceiver, and at least a second transceiver.
  • the network has a plurality of base stations (or antenna sets) distributed to form a communication network to connect to the repeater.
  • the first transceiver transmits signals to the repeater through the network, and these signals are interspersed with many interfering signals.
  • the repeater performs a mathematical correlation operation of these signals and obtains an operation result to determine that an anti-interference signal is generated.
  • the relay station calculates the second transceiver to the relay station related position, and transmits the anti-interference signal to the first transceiver through the second transceiver, wherein the second transceiver has the most Op ima 1 commun icat ion channel.
  • the present invention cancels each other by using two signal waves having the same waveform but having a phase opposite to 180 degrees.
  • the present invention also provides an active interference cancellation method to eliminate interference in a communication system of at least a first transceiver.
  • the method includes: receiving, by a relay station, a feedback signal (feedback s ignal) from a network and detecting an environmental signal (environmenta ls ignal); thereby, the relay station associates the feedback signal with the environmental signal to Obtaining an operation result; thereby, the relay station determines, according to the operation result, that an anti-interference signal is generated; and the relay station transmits the anti-interference signal to the first transceiver through a second transceiver to eliminate the first Interference around the transceiver.
  • the network has a plurality of base stations (or antenna groups) distributed to form a communication network and the relay station.
  • the second transceiver and the first transceiver have an optimal communication channel.
  • the present invention provides an active anti-jamming communication system and method that directly utilizes a communication system to eliminate interference in the environment.
  • the above network is constructed by signal communication between a plurality of base stations and relay stations, and its main tasks include signal reception, communication connection, and anti-interference signal transmission.
  • the relay station receives the signals transmitted from the network and performs mathematical operations. Its main tasks include signal correlation operations, anti-interference signal generation, and finding a base station having the best communication channel with the first transceiver.
  • the above transceiver includes tools (such as mobile phones, personal digital assistants (PDAs), notebook computers, etc.) for the user to send and receive signals from the base station in the network to establish communication lines and communicate with the relay station.
  • the tasks include communication connections and anti-interference signal reception.
  • the above interference signal includes channel information and other transmission data.
  • One of the main technical ideas of the present invention is to detect an interference signal (e.g., the W1 waveform shown in Figure 2) from the environment, and then reverse its phase by 180 degrees (e.g., the W2 waveform shown in Figure 2) before returning it.
  • the reason for using the mathematical weighting signal here is to enable the anti-interference signal to cancel the interference signal of the first transceiver end, and the anti-interference signal is 180 degrees of the phase of the interference signal, thereby The interfering signal will be cancelled and the interference-free signal will be received at the first transceiver.
  • This is the principle of generating an anti-jamming signal, and using the same technical concept will eliminate all types of interfering signals in the environment.
  • the repeater station described above is a central computing component that knows the immediate state of other communication systems over the network.
  • the repeater is also a control component that receives feedback signals over the network and detects environmental signals, and then calculates them based on various types of interfering signals (eg, internal (inter ra-cel) interference or external (inter-cel) interference).
  • An anti-interference signal eg, external interference is signal interference of different communication systems
  • internal interference is signal interference of the same communication system.
  • all interference, whether external or internal will be considered the same interference as long as their system is connected to the network.
  • the relay station is an active interference cancellation system signal calculation component that calculates an anti-interference signal based on an associated function algorithm.
  • the relay station When the relay station receives the feedback signal and the environmental signal from the network, it calculates the feedback signal and the environmental signal through the correlation function of the interference analysis and obtains an operation result.
  • the signal calculated by the correlation function may be an external interference signal, an internal interference signal, or both.
  • the purpose of the correlation operation is to output an operation result for judging whether an anti-interference signal is generated, and the output result is the correlation between the feedback signal and the environmental signal, which displays the main interference signal affecting the first transceiver. Therefore, the relay station reverses the interference signal by 180 degrees according to the result of this correlation operation to generate an anti-interference signal, and transmits it through the network.
  • the network by means of the relay station, finds a base station having the best communication channel with the first transceiver to send an anti-interference signal to forcibly cancel the interference around the first transceiver.
  • the relay station After the relay station finds the base station having the best communication channel with the first transceiver, the relay station transmits a location data and an anti-interference signal to the base station, and causes the base station to transmit a directional anti-interference signal.
  • the location data indicates the location of the first transceiver. If the base station does not have the location data, the anti-interference signal will be transmitted in all directions and become interference of other systems. Signal. Therefore, the location data 1 leads the base station to transmit a directional anti-interference signal to eliminate interference around the first transceiver.
  • FIG. 3 it is a schematic diagram of interference cancellation between a transceiver T and a base station A, which is affected by the same station's &i platform B and base station 0 and P of different communication systems.
  • a relay station (not shown) conducts both internal interference signals from base station B (compared to external interference signals) and external interference signals from base stations 0 and P (compared to internal interference signals).
  • An associated operation to obtain a main interference signal between the transceiver T and the base station A, and generate an anti-interference signal, and then combined with the anti-interference signal and a position data to be sent to the first transceiver through the base station A having a directional antenna T to eliminate interference.
  • FIG. 4 is a schematic diagram of a preferred active interference cancellation system 400 of the present invention.
  • System 400 is in communication with at least one first transceiver 402 and includes at least a second transceiver 420 and a relay station 410.
  • the relay station 410 receives a feedback signal from the at least one second transceiver 420 and receives an environmental signal from the other second transceiver 420 to perform a signal correlation operation and obtains an operation result, and determines an anti-interference according to the operation result. signal.
  • the relay station 410 transmits the anti-interference signal to the at least one first transceiver 402 by at least one third transceiver to eliminate the interference signal around the at least one first transceiver 402.
  • the at least one third transceiver is a second transceiver 420 having an optimal communication channel with the at least one first transceiver 402. Therefore, in some embodiments, the at least one third controller may be at least A second transceiver 420.
  • the at least one first transceiver 402 can be a fixed device or a mobile device, such as a mobile phone, a PDA, a notebook computer, a desktop computer, and the like.
  • the second transceiver 420 can be a mobile station or a base station.
  • connection between the relay station 410 and the second transceiver 420 may be a wired connection or a wireless connection, or the X second transceivers 420 and the Y second transceivers 420 may be expanded and connected by other networks 415, where X and Y respectively Greater than or equal to 1 and X and Y are natural numbers.
  • the relay station 410 when the signal correlation operation result is greater than or equal to a predetermined threshold (thresho ld), the relay station 410 generates an anti-interference signal, and the anti-interference signal is a 180-degree reverse signal of the interference signal sum waveform. Moreover, the relay station 410 further sends a location data and the anti-interference signal to the at least one third transceiver to direct the anti-interference signal to the at least one first transceiver 402, that is, the at least one third transceiver is required to Has a directional antenna.
  • a predetermined threshold thresho ld
  • the location data is generated by the relay station 410, indicating the location of the at least one first transceiver 402, and directing the at least one third transceiver to transmit the directional anti-interference signal to eliminate at least one Interference around a transceiver 402.
  • the power of the relay station 410 should be greater than a specified value depending on the power of the at least one second transceiver 420.
  • the system 400 is in communication with at least one first transceiver 402 and includes a communication network and a relay station 410.
  • the communication network is composed of a plurality of second transceivers 420 and is coupled to the at least one first transceiver 402 and the relay station 410.
  • the relay station 410 receives a feedback signal and an environmental signal from the communication network to perform a signal correlation operation to obtain an operation result, and determines to generate an anti-interference signal according to the operation result.
  • the relay station 410 transmits the anti-interference signal to the at least one first transceiver 402 through the communication network to eliminate the interference signal around the at least one first transceiver 402.
  • the relay station 410 When the operation result is greater than or equal to a preset threshold, the relay station 410 generates the anti-interference signal as a signal that the interference signal sum waveform is reversed by 180 degrees.
  • the relay station 410 receives the feedback signal from the second transceiver 420 of one of the plurality of second transceivers 420 and the at least one first transceiver 402, and from the other plurality of second transceivers. 420 receives this environmental signal.
  • the relay station 410 further transmits a location data and the anti-interference signal to the second transceiver 420 of at least one of the plurality of second transceivers 420, which has an optimal communication channel with the at least one first transceiver 402. This directs the anti-interference signal to at least one first transceiver 402. That is, the second transceiver 420 of at least one of the plurality of second transceivers 420 must have a directional antenna.
  • step 101 at least one first transceiver 510 requires at least one second transceiver 520 to establish a communication link, and then at least one second transceiver 520 responds to at least one first transceiver 510 that has waited for communication to be received in step 202.
  • step 203 the relay station 540 receives a feedback signal from the at least one second transceiver 520, and in step 404, detects an environmental signal from the other second transceiver (not shown).
  • the relay station 540 associates the feedback signal with the environmental signal to obtain an operation result, and determines to generate an anti-interference signal according to the operation result.
  • the relay station 540 transmits the anti-interference signal to the at least one first transceiver 510 via at least one third transceiver 530 to cancel the interference signal around the at least one first transceiver 510. That is, in step 406, the relay station 540 sends the anti-interference signal to the at least one third transceiver 530, and then, in step 307, the at least one third transceiver 530 transmits the anti-interference signal to the at least one first transceiver 510. To eliminate interference signals.
  • the at least one third transceiver 530 is a second transceiver 520 having an optimal communication channel with the at least one first transceiver 510. Therefore, in some embodiments, the at least one third transceiver 530 can be at least one Two transceivers 520.
  • step 405 when the operation result is greater than or equal to a predetermined threshold, the relay station 540 generates the anti-interference signal, and the anti-interference signal is a signal in which the interference signal sum waveform phase is reversed by 180 degrees.
  • the relay station 540 further sends a location data and the anti-interference signal to the at least one third transceiver 530 to direct the anti-interference signal to the at least one first transceiver 510.
  • step 307 that is, at least one The three transceivers 530 must have a directional antenna.
  • the location data is generated by the relay station 540 to indicate the location of the at least one first transceiver 510.
  • At least one third transceiver 530 is directed to transmit a directional anti-interference signal to cancel interference around at least one first transceiver 510. Moreover, in step 406, the relay station 540 further searches for at least a third transceiver 530 having an optimal communication channel with the at least one first transceiver 510. In addition, the power of the relay station 540 should be greater than a specified value depending on the power of the at least one second transceiver 520.
  • the present invention further discloses a computer readable recording medium recording a control program for actively canceling an interference signal, for a communication system having at least a first transceiver, which actively cancels an interference signal
  • the program executed by the computer causes the program executed by the computer to include at least steps 203, 404, 405, 406, and 307 shown in FIG. 5 described above. For example: receiving and detecting programs (steps 203 and 404), associating arithmetic programs (step 405), determining programs (step 405), finding programs (step 406), and eliminating programs (steps 406 and 307).
  • the control program for actively canceling the interference signal causes the computer to execute at least one first transceiver in the communication system to actively cancel the interference signal method.
  • each base station communicates with its corresponding transceiver to simply transmit its respective signals without having to consider interference from other base stations. All interference between co-work ing base stations is eliminated by a repeater. In order for the repeater to completely remove interference between all base stations, the repeater must have at least N The antenna is transmitted, and this part can be verified as follows.
  • [ ⁇ represents the symbol transmitted from all base stations, where x i is the symbol transmitted from the ith base station.
  • the signal received at the first transceiver can be expressed as
  • ⁇ ⁇ 2 — ⁇ is an N matrix and represents the channel matrix from the repeater to each transceiver, where h 'i is the channel coefficient from the repeater to the ith transceiver.
  • W is the relay station transmission weight vector.
  • "' ⁇ is the white Gaussian noise on the ith transceiver side (whi te Gaus s ian noi se).
  • the relay station maximum transmission power limiting technique can be used.
  • FIG. 6 and FIG. 7, are schematic diagrams of two preferred applications of the present invention.
  • a plurality of repeaters are distributed with a plurality of second transceivers 420 (or base stations) and connected by a plurality of networks 415 to form a cel lular communication system.
  • Each cellular communication range has at least one relay station 410 and at least one second transceiver 420, and the relay station 410 is coupled to the cellular communication system via a network 415, wherein the network 415 is connected to other cellular communication ranges.
  • Network 415 is schematic diagrams of two preferred applications of the present invention.
  • a first transceiver such as: a mobile phone, a notebook computer, etc.
  • the data associated with the first transceiver eg, channel information, location... Etc.
  • the data is transmitted to all of the relay stations 410 through the connected second transceiver 420, the connected relay station 410, and the network 415.
  • the interference around the first transmitter is also detected by all of the second transceiver 420 and the relay station 410, and is transmitted to the relay station 410 connected to the first transceiver.
  • the relay station 410 connected to the first transceiver can perform a signal correlation operation according to the interference, and determine an anti-interference signal according to the result of the correlation operation of the signal.
  • the anti-interference signal is transmitted to the first transceiver via the second transceiver 420 having the best communication channel with the first transceiver, the interference around the first transceiver in the cellular communication system is eliminated.
  • the second transceiver 420 having the best communication channel with the first transceiver may be the second transceiver 420 first coupled to the first transceiver, and may be any second transceiver of the same cellular communication range. 420, or even a second transceiver 420 of a different cellular communication range.
  • the anti-interference signal will pass through the network 415
  • the relay station in the left side of the second column is transmitted to the second transceiver 420 in the left side of the second column.
  • Figure 7 differs from Figure 6 in the size and number of cellular communication ranges.
  • a plurality of repeaters are distributed with a plurality of second transceivers 420 and connected to a cellular communication range by a plurality of networks 415. That is, each of the cellular communication ranges shown in Fig. 6 can be expanded to the cellular communication range shown in Fig. 7 according to actual conditions.
  • the relationship between the relay station 410, the network 415, and the second transceiver 420 shown in FIG. 7 is the same as that of FIG. 6, and therefore will not be described herein.
  • FIG. 8 is a schematic diagram of another preferred active interference cancellation system of the present invention.
  • K base stations are configured with K hosts connected to a trunk configured by one host through a wired network.
  • Taiwan each of which has N antennas, K ⁇ 2, N ⁇ l JL K. ⁇ is a natural number.
  • FIG. 8 only draws two base stations BSi and BSj, respectively, and two hosts Hos t A, Hos t B are connected and connected to a relay station RBS configuring a host Hos t through a wired network.
  • the relay station RBS is connected to the base stations BSi, BSj by a high-speed wired backbone (wi red backbone).
  • a plurality of mobile stations MSi, MSj, and MS communicate with the base stations BSi and BSj, respectively, and only the mobile station MSi that communicates with the base station BSi by configuring the N antennas is described as the present embodiment.
  • the base station BS i transmits S symbol streams (SN) to the mobile station MSi at the transmission power P B , and the mobile station MS i also receives the transmission power P B from the base station BSj (for the mobile station MSi That is, this is interference).
  • the two base stations BSi and BSj know the interference of the mobile station MS i through direct communication and the wired network, respectively.
  • the relay station RBS is also configured with M antennas, wherein the antennas of the M mobile stations are summed and M is a natural number.
  • the relay station RBS receives the plurality of data transmitted by the base stations BSi and BSj, and determines to perform a transmission precoding according to the plurality of data.
  • the plurality of data includes channel s tate informat ion (CSI) of all wireless links and/or data transmitted by base stations BSi and BSj.
  • the transmission precoding may be a linear transmission precoding, which includes a zero-forcing scheme (ZF scheme) and/or a minimum mean-square-error scheme (MMSE scheme).
  • the relay station RBS transmits the result of the transmission precoding through its M antennas to eliminate the interference signal between the base stations BSi and BSj, and optimizes the average bit error rate performance of the system.
  • the transmitted pre-coded node is transmitted by two of the M antennas to the base station BS i .
  • the active interference cancellation system can adjust the power of the base station to reduce the number of mobile stations to provide greater power to the relay station to eliminate interference signals.
  • FIG. 9 is a block diagram of another preferred system of the present invention and a flow chart thereof.
  • the method for actively eliminating wireless network interference signals includes the following steps.
  • a mobile station 910 requests a base station 920 to establish a communication link, and then the base station 920 responds to the mobile station 910, which has waited for communication to be received at step 9202.
  • the mobile station 910 also receives signals (i.e., interference) from a base station 930.
  • each mobile station 910 and base stations 920, 930 have N antennas, where N l and N are natural numbers.
  • mobile station 910 is in communication with base station 920.
  • a relay station 940 receives a plurality of data transmitted by the base stations 920, 930.
  • relay station 940 has M antennas, where M ⁇ the sum of the antennas of mobile station 910 and M is a natural number.
  • the relay station 940 is connected to the base stations 920 and 930 by a high speed wired backbone.
  • the plurality of data received by the relay station 940 includes channel status information of all wireless connections of the base stations 920, 930 and/or data transmitted by the base stations 920, 930.
  • the relay station 940 determines to perform a transmission precoding based on the plurality of data.
  • the transmission precoding may be a linear transmission precoding comprising a ZF scheme and/or a minimum mean square error mechanism (MMSE scheme).
  • MMSE scheme minimum mean square error mechanism
  • the relay station 940 transmits the result of the precoding of the transmission through its M antennas to eliminate the interference signal between the base stations 920 and 930.
  • the result of this transmission precoding is transmitted to the mobile station 910 by two of the M antennas.
  • the active interference cancellation method can adaptively turn off the power of the base station according to an increase in the number of mobile stations to provide more power to the relay station to eliminate interference signals.
  • the present invention further discloses a computer readable recording medium recording a control program for actively eliminating wireless network interference signals, the control program causing the computer to execute a program including at least the step 9203 shown in FIG. , 9303, 9404 and 9405.
  • the program is received (steps 9203 and 9303), the program is judged (step 9404), and the program is transmitted (step 9405).
  • the control program causes the computer to execute a program that adaptively turns off the power of the base station in accordance with an increase in the number of mobile stations.
  • the active control program for eliminating wireless network interference signals causes the computer to perform an active wireless network method for eliminating interference signals.
  • the present invention is also applicable to Orthogonal Frequency-Differential Access (OFDMA) and/or Code Divided Access (CDMA). ).
  • OFDMA Orthogonal Frequency-Differential Access
  • CDMA Code Divided Access
  • ⁇ , ⁇ , i ⁇ and ⁇ , ⁇ ⁇ respectively represent a conjugate matrix, a transpose moment P car, a conjugate transpose matrix and a pseudo inverse matrix;
  • K base stations BS simultaneously transmit signals to their corresponding mobile stations MS at the same frequency, each base station BS and mobile station MS are configured with jv antennas, and each base station BS is Transmitting s (S ⁇ N) symbol streams to the same transmission power P B Should be mobile station MS.
  • the relay station RBS is connected to the k base stations BS through a high speed wired backbone, and the relay station RBS has ⁇ transmission antennas, where ⁇ is a natural number not less than the total number of antennas of all mobile stations.
  • the relay station RBS has a transmission power / where the entire system has a total power limit P.
  • only two base stations BSi, BSj and two mobile stations MSi, MSj are used for explanation.
  • the elements of all channel matrices are independently mean identically distributed (iid) zero mean com lex Gaussian random variables with a unit variance. If the signal matrix received by the first mobile station MSi is marked as >, f ec?' vxl , it can be written as
  • X ] ⁇ is a vector of symbols transmitted from ⁇ base stations BS, ec s ⁇ is The symbol transmitted by the i-th base station BSi.
  • R x ⁇ E[xx ) 1 , where 1 is an SXS unit matrix)
  • n the noise of the MSi end of the mobile station, which is one
  • the WX 1 vector all of which are independent identically distributed (iid) zero-mean complex random variables and Ar e /2 dimensions of power spectral density on both sides. Data streams and noise cannot be related to each other.
  • the matrix, singular value decomposition (SVD), channel matrix H can be decomposed into Wherein NxW matrix ⁇ ⁇ £ and v is the unitary matrix (unitary matrix), ⁇ ⁇ , is ⁇ ⁇ ; singular values (singular value) NXN a diagonal matrix (diagonal matrix). 7 to avoid interference between the i-th base station BSi and the i-th mobile station MSi ⁇ t and the inter-link symbol stream, where the SVD is applied to the channel, pre-coded by the base station BS transmitter and moved The MS receiver is beamfonning. Precoding matrix v is, while the receiver bundling matrix ⁇ . Then the signal received at the ⁇ th mobile station MBi can be written as
  • ZF-based active mechanisms a commonly used simple linear beamforming algorithm that forces interference from other base stations to zero so that each mobile station receives only signals from the corresponding base station.
  • ZF precoding can be accomplished by multiplying the virtual reverse channel matrix by the transmitted symbols.
  • Equation (12) a simple quadratic equation with real coefficients, whose root can be expressed as fp ⁇ S8k ⁇ J (.S3k) ' ⁇ A a (»f* CP (13) in order to keep p B constant Positive real number, so the following conditions must be met (SBk) 2 ⁇ 4AS 2 (k 2 C - P) > 0. (14)
  • k shows the signal gain actually received by the mobile station MS.
  • S igna l to noisy se Rat io; SNR the signal-to-noise ratio received at each mobile station MS (S igna l to noisy se Rat io; SNR) will also be the largest. Therefore, select
  • ⁇ and subtract it from equation (13) to obtain the corresponding transmission power P S of the base station BS.
  • the MMSE method selects the best precoding weight vector by minimizing the mean square error (MSE) between the received symbol and the transmitted symbol under the total system power limit.
  • MSE mean square error
  • the weighting ⁇ 1 is substituted into the MSE definition, which can be regarded as an automatic gain control at the receiver end, e ⁇ .
  • MSE can be expressed as Subtracting equations (21) and (5), equation (21) can be rewritten into
  • Equation (24) is a quadratic equation.
  • the present invention also provides simulation results herein to compare the performance of the BER of the present invention with prior art transmission mechanisms.
  • Cooperative base station transmission mechanism base station simultaneous cooperation
  • the transmission to the mobile station is similar to the traditional multi-user broadcast MIMO transmission mechanism (a base station with M antennas transmits KS data streams to ⁇ multiplex mobile stations).
  • a base station with M antennas transmits KS data streams to ⁇ multiplex mobile stations.
  • a semi-stationary, faculty channel Quasi- stat fading channel
  • Each signal box consists of 100 symbols.
  • SE/? 1 (T S )
  • the ZF and MMSE methods of the present invention are better than the cooperative transmission mechanism using ZF and MMSE precoding at 1 dB and 4 dB, respectively, in terms of BER performance.
  • the present invention provides an active wireless network interference cancellation system that utilizes a wireless network, an add-on base station, which connects all of the co-located base stations via a high-speed wired backbone.
  • the relay station uses a linear transmission precoding algorithm with ZF and MMSE of ⁇ 5 for precoding. Under the constraints of the total system power, the precoding weight matrix is chosen so that interference between the base stations can be eliminated and the BER performance of the system can be optimized. Since all co-channel interference is eliminated by the repeater, the base station and the mobile station do not have to perform any interference cancellation actions, so the architecture of the existing transceiver can be preserved, which will considerably reduce the complexity of the system implementation.
  • Another advantage of the system is that active power (power) configuration is performed between the base station and the relay station based on the instantaneous channel conditions and the number of base stations in the network to enable all mobile stations to receive an optimized SNR.
  • the present invention also exhibits simulation results to demonstrate that the active interference cancellation system can effectively eliminate co-channel interference, and the performance of the system BER is better than that of the cooperative base station transmission mechanism BER.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Noise Elimination (AREA)

Description

主动式消除干扰信号系统、 方法以及电脑可读取的记录媒体 技术领域
本发明涉及通信领域, 特别是涉及一种主动式消除干扰信号通信系统、 方法以及电脑可读取的记录媒体。 背景技术
由于无线通信迅速发展与普及, 无线通信系统中的干扰现象变成是决 定系统表现与效率的重要因素。 因此, 如何消除系统中的干扰变成为无线 通信装置供应商以及收发器制造商的发展课题。 在以往, 无线通信频宽被 划分成许多独立频道给服务经销商以减少系统干扰问题。 然而, 在有限频 宽与高速成长的需求下, 无线通信系统是以共享频道的方式提供给更多的 服务经销商。 换句话说, 一个频道至少有一个通信系统, 并且每一个通信 系统以不同方式调变自己系统信号, 进而引导通信程序, 因此, 无线通信 频道的干扰是不可避免。 干扰现象不仅影响无线覆盖与系统容量, 并且也 降低传输效率。
请参阅图 1A所示,其为一》|½器 T在一无线通信系统中通信的示意图。基 地台 A、 B与 C (或天线 A、 B与 C)和一系统 S分布形成一网络结构, 系统 S 借由有线线路连接基地台 A、 B与(:。 收发器 T通过无线传输与基地台 A通 信且此环境中并无干扰信号。 请参阅图 1B所示, 其为一收发器 T与一基地 台 A之间的传输覆盖示意图。 基地台 A无线通信服务范围为实线圓圈,而收 发器 T的无线范围为虚线圆圈,在实线圆圈与虚线圓圈交集区域为基地台 A 与收发器 T的通信范围。
请参阅图 1C所示, 其为一收发器 T与一基地台 A之间的通信受到一相 同通信系统的基地台 B影响的示意图。 收发器 T通过无线通信系统仅与基 地台 A通信, 但具有相同通信系统的基地台 B的服务范围与收发器 T和基 地台 A间的通信范围重叠, 因此导致收发器 T被基地台 B的信号干扰, 而 此干扰称之为内部干扰。 请参阅图 1D所示, 其为一 器 T与一基地台 A 之间的通信受到一不同通信系统的基地台 0影响的示意图。 收发器 T通过 无线通信系统仅与基地台 A通信, 但具有不同通信系统的基地台 0的服务 范围与收发器 T和基地台 A间的通信范围重叠, 因此导致收发器 T 地 台 0的信号干扰, 而此干扰称之为外部干扰。
请参阅图 1E所示, 其为一收发器 T与一基地台 A之间的通信受到一相 同通信系统的基地台 B与不同通信系统之基地台 0、 P影响的示意图。 收发 器 T通过无线通信系统仅与基地台 A通信,但在相同环境中具有基地台 B、 0 与?。 在此, 基地台 B具有与基地台 A相同的系统, 但基地台 0、 P具有与 基地台 A不同的系统。 图 1E展现了一简单的干扰状态, 亦即, 收发器 T与 基地台 A之间的通信仅受到基地台 B的信号干扰, 而基地台 0、 P的信号仅 影响收发器 T的发送与接收范围, 但不影响其与基地台 A之间的通信。
请参阅图 1F所示,其为一收发器 T与一基地台 A之间的通信受到一相 同通信系统的 也台 B与不同通信系统的 也台 0、 P影响的另一示意图。 收 发器 T通过无线通信系统仅与基地台 A通信, 且在相同环境中存在着基地 台 B、 0与 。 在此, 基地台 B具有与基地台 A相同的系统, 但基地台 0、 P 具有与基地台 A不同的系统。 如图 1F所示, 在 器 T与基地台 A之间的 通信有干扰现象, 而此干扰来自包含相同通信系统的基地台 B 与不同通信 系统的基地台 0、 P的信号。
在一个极为复杂的无线通信环境中, 大部分的无线装置供应商将其收 发器配置智能过滤器与解码器以过滤解码来自实体频道的本身系统的信 号。 但由于收发器逐渐朝向轻薄短小的趋势发展且通信电路设计也变得更 为复杂,因此减少与消除无线通信一干扰 革 技术成为必 的;^展趋 。 表。 在 M. H. M. Costa, "Writing on dirty paper" , IEEE Trans. Inf. Theory, vol. 49, no.3. pp. 439-441, 1983. , 提出利用一频域重复多使 用者侦测器抑制无线蜂巢式系统下行链邻频干扰。 在 A. M. A. Ahmed, I. Mars land, " Co-channel interference cancellation in wireless cellular networks" , IEEE Vehicular Technology Conference, 2008. , 一强制归零机制, 其最佳化多使用者 MIMO传输与接收成束以消除干扰。 此 部分也被延伸借由合并 "脏纸编码" ( "dirty- paper coding" ) 于 Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing. methods for downlink spatial multiplexing in multiuser MIMO channels, " IEEE Tran. Signal Process, vol. 52, no. 2, pp. 461-471, 2004., 此极为 复杂的 "脏纸编码" 使得此机制难以实现于实际系统中。 并且, 这些演 算法要求所有使用者在发射器端的所有通道状态资讯, 然而在实际情况下, 每一使用者仅知自己的通道状态资讯于 G. J. Foschini, L arakayali, and R. A. Valenzuela, " Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency" , IEEE Proc. on Communications, vol. 153, no. 4, pp. 548-555, 2006.。 在 IEEE Std 802.11., 2003 Edition, Std. , 提出一合作预编码与成束演算法, 其在 W. Hard jawana, B. Vucetic, and Yonghui Li, "Cooperative Precoding and Beamforming in Co-working WLANs " , ICC ' 08 IEEE International Conference 2008, pp. 4759-4763. 基础上结合具有传收成束的 Toml inson- Harash ima预编码。 然而, 上述提及的所有演算机制, 其缺点在 于不仅复杂而且具有一些实际问题。 其中一个问题是, 现存基地台的传输 结构与移动台的接收结构必须更改, 这意味着制造商必须重新研发收发装 置,而此举将增加系统实现与配置的经费。 再者, 其也消耗更多能源并且也 不符合 21世纪环境友善趋势。
由此可见, 上述现有的抑制共同工作无线网络中同频干扰的系统与方 法在产品结构、 方法与使用上, 显然仍存在有不便与缺陷, 而亟待加以进 一步改进。 为了解决上述存在的问题, 相关厂商莫不费尽心思来谋求解决 之道, 但长久以来一直未见适用的设计被发展完成, 而一般产品及方法又 没有适切的结构及方法能够解决上述问题, 此显然是相关业者急欲解决的 问题。 因此如何能创设一种新的主动式消除干扰信号系统、 方法以及电脑 可读取的记录媒体,实属当前重要研发课题之一, 亦成为当前业界极需改进 的目标。
有鉴于上述之缺点,本发明系提供一种主动式消除干扰信号系统、 方法 以及电脑可读取之记录媒体,可改进现有习知无线网络同频干扰的缺点、 解 决现有习知演算机制过于复杂且难于实行的问题, 并且同时提供更有效率 的无线通信。 发明内容
本发明的目的在于, 克服现有的抑制共同工作无线网络中同频干扰的 系统与方法存在的缺陷, 而提供一种新的主动式消除干扰信号系统、 方法 以及电脑可读取的记录媒体, 所要解决的技术问题是使其可直接利用通信 系统消除环境中的干扰, 简单且易于实行, 并且同时可提供更有效率的无 线通信, 非常适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种主动式消除干扰信号系统。 此系统通信连线至少一第一 收发器。 此系统包含: 至少一第二收发器; 以及一中继台, 此中继台从此 至少一第二收发器接收一回馈信号与一环境信号以执行一信号关联运算以 得到一运算结果, 并才艮据此运算结果判断产生一反干扰信号。 其中, 此中 继台借由至少一第三收发器发送此反干扰信号到此至少一第一收发器以消 除此至少一第一收发器周围的干扰信号。 此至少一第三收发器与此至少一 第一收发器具有一最佳通信频道。
本发明的目的及解决其技术问题还采用以下技术方案来实现。 依据本 发明提出的一种主动式消除干扰信号方法, 此方法用于至少一第一收发器 的通信系统。 此方法包含: (a)借由一中继台从至少一第二收发器接收一回 馈信号并侦测一环境信号; (b)借由此中继台关联运算此回馈信号与此环境 信号以得到一运算结果; (C)借由此中继台根据此运算结果判断产生一反干 扰信号; 以及 (d)借由此中继台通过至少一第三收发器发送此反干扰信号给 此至少一第一收发器以消除此至少一第一收发器周围的干扰信号。 其中,此 至少一第三收发器与此至少一第一收发器具有一最佳通信频道。
本发明的目的及解决其技术问题另外再采用以下技术方案来实现。 依 据本发明提出的一种记录主动式消除干扰信号的控制程序的记录媒体, 其 用于至少一第一收发器的通信系统, 其主动式消除干扰信号的控制程序使 电脑执行的程序至少包含: (a)使一中继台从至少一第二收发器接收一回馈 信号并侦测一环境信号; (b)使此中继台关联运算此回馈信号与此环境信号 以得到一运算结果; (c)使此中继台才艮据此运算结果判断产生一反干扰信 号;以及 (d)使此中继台通过至少一第三收发器发送此反干扰信号给此至少 一第一收发器以消除此至少一第一收发器周围的干扰信号。 其中, 此至少 一第三收发器与此至少一第一收发器具有一最佳通信频道。
本发明的目的及解决其技术问题另外还采用以下技术方案来实现。 依 据本发明提出的一种主动式消除干扰信号系统, 此系统通信连线至少一第 一收发器。 此系统包含: 一通信网络, 是通信连线此至少一第一收发器;以 及一中继台, 是从此通信网络接收一回馈信号与一环境信号以执行一信号 关联运算以得到一运算结果,并根据此运算结果判断产生一反干扰信号。 其 中,此中继台是借由此通信网络发送此反干扰信号给此至少一第一收发器 以消除此至少一第一收发器周围的干扰信号。
本发明的目的及解决其技术问题另外还采用以下技术方案来实现。 依 据本发明提出的一种主动式消除无线网络干扰信号系统。 此系统包含 K个 基地台、 至少一移动台以及一中继台。 每一此 K个基地台具有 N个天线,其 中 K 2、 1^≥1且〖、 Ν为自然数。 此至少一移动台具有 Ν个天线且与此 Κ 个基地台其中之一通信连线。 此中继台具有 Μ个天线且与此 Κ个基地台连 线,其中 M 移动台的天线总和且 Μ为自然数。此中继台接收此 K个基地台 所传送的多个资料,并根据此多个资料判断执行一传输预编码,且通过此 M 个天线将此传输预编码的结果发送给此至少一移动台以消除此 K个基地台 间的干扰信号。
本发明的目的及解决其技术问题另外还采用以下技术方案来实现。 依 据本发明提出的一种主动式消除无线网络干扰信号方法。 此方法包含: (a) 使一中继台接收 K个基地台所传送的多个资料, 其中至少一移动台具有 N 个天线且与此 K个基地台其中之一通信连线,每一此 K个基地台具有 N个天 线,此中继台具有 M个天线,其中 K 2、 N l且 Μ 移动台的天线总和, Κ、 Ν、 Μ为自然数; (b)使此中继台根据此多个资料判断执行一传输预编码; 以 动台以消除此 K个基地台间的干扰信号。
本发明的目的及解决其技术问题另外还采用以下技术方案来实现。 依 据本发明提出的一种记录主动式消除无线网络干扰信号的控制程式的记录 媒体, 其主动式消除无线网络干扰信号的控制程序使电脑执行的程序至少 包含: (a)使一中继台接收 K个基地台所传送的多个资料, 其中至少一移动 台具有 N个天线且与此 K个基地台其中之一通信连线, 每一该 K个基地台 具有 N个天线, 此中继台具有至少 M个天线, 其中 K≥2、 N≥1且M≥移动 台的天线总和, Κ、 Ν、 Μ为自然数; (b)使此中继台根据此多个资料判断执 行一传输预编码; 以及(c)使此中继台通过此 M个天线将此传输预编码的结 果发送给此至少一移动台以消除此 K个基地台间的干扰信号。
本发明与现有技术相比具有明显的优点和有益效果。
借由上述技术方案, 本发明主动式消除干扰信号系统、 方法以及电脑 可读取的记录媒体至少具有下列优点及有益效果: 本发明提供的主动式反 干扰通信系统及方法, 可直接利用通信系统消除环境中的干扰, 简单且易 于实行, 并且同时可提供更有效率的无线通信。
综上所述,本发明是有关于一种主动式消除干扰信号系统、 方法以及电 脑可读取的记录媒体。 该系统通信连线至少一第一 4^器。 此系统包含:至 少一第二收发器; 以及一中继台, 此中继台从此至少一第二收发器接收一 回馈信号与一环境信号以执行一信号关联运算以得到一运算结果, 并 4艮据 此运算结杲判断产生一反干扰信号。 其中, 此中继台借由至少一第三收发 器发送此反干扰信号到此至少一第一收发器以消除此至少一第一收发器周 围的干扰信号。 此至少一第三收发器与此至少一第一收发器具有一最佳通 信频道。 本发明在技术上有显著的进步, 并具有明显的积极效果,诚为一新 颖、 进步、 实用的新设计。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1A是一收发器 T在 -无线通信系统中通信的示意图。
图 1B是一 器 T与 -基地台 A之间的传输覆盖示意图。
图 1C是一收发器 T与 基地台 A之间的通信受到一相同通信系统的基 地台 B影响的示意图。
图 1D是一收发器 T与 基地台 A之间的通信受到一不同通信系统的基 地台 0影响的示意图。 图 IE是一 器 T与一基地台 Α之间的通信受到一相同通信系统的基 地台 B与不同通信系统的基地台 0、 P影响的示意图。
图 1F是一收发器 T与一基地台 A之间的通信受到一相同通信系统的基 地台 B与不同通信系统的基地台 0、 P影响的另一示意图。
图 2是两信号波形具有 180度相位差,一信号波形 W1为原始信号波形, 另一信号波形 W2为 W1的反向信号波形的示意图。
图 3是一收发器 T与一基地台 A之间的通信受到一相同通信系统的基 地台 B与不同通信系统的基地台 0、 P影响的干扰消除的示意图。
图 4是本发明的一较佳主动式干扰消除系统的概略示意图。
图 5是本发明的一较佳系统的方框图及其流程图。
图 6是本发明的一较佳应用的示意图。
图 7是本发明的另一较佳应用的示意图。
图 8是本发明的另一较佳主动式干扰消除系统的概略示意图。
图 9是本发明的另一较佳系统的方框图及其流程图。
图 10是不同数量基地台的 PB/P的累积分布函数曲线图(SNR=5dB)。 图 11是本发明(K=2, Μ=4)的模拟结果与现有习知合作式传输架构在位 元错误率方面表现的比较曲线图。
图 12是本发明(Κ=3, Μ=6)的模拟结果与现有习知合作式传输架构在位 元错误率方面表现的比较曲线图。
400: 本发明的一较佳实施例
402 第一 4^器 410: 中继台
415 网络 420: 第二收发器
500 本发明的另一较佳实施例与其流程图
510 第一 器 520: 第二收发器
530 第三收发器 540: 中继台
101、 202、 203、 404、 405、 406, 307:本发明的一较佳方法的实施步骤 910: 移动台 920、 930:基地台
940: 中继台
9101、 9202、 9302、 9103、 9203, 9303、 9404、 9405:本发明的另一较佳 方法的实施步骤
A、 B、 C:基地台 Τ: 收发器
S: 系统 0、 Ρ:基地台
Wl : 干扰信号 W2: 反干扰信号
RBS:中继台 BSi、 BSj:基地台
Hos t , Host A、 Hos t B:主机 MS、 MSi、 MS j:移动台
X、 Y:第二收发器个数 M、 N:天线个数 PB: 传输功率 实现 明的聂佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的主动式消除千扰信号 系统、 方法以及电脑可读取的记录媒体其具体实施方式、 结构、 方法、 步 骤、 特征及其功效, 详细说明如后。
本发明的一些实施例将详细描述如下。 然而,除了以下描述外, 本发明 还可以广泛地在其他实施例施行, 并且本发明的保护范围并不受实施例的 限定, 其以权利要求的保护范围为准。 再者, 为提供更清楚的描述及更容 易理解本发明, 图式内各部分并没有依照其相对尺寸绘图, 某些尺寸与其 他相关尺度相比已经被夸张; 不相关的细节部分也未完全绘示出, 以求图 式的简洁。
本发明提供一种主动式通信干扰消除系统。 此系统包含一网络 (network s tructure)、 一中继台 (relay base s ta t ion)、 至少一第一收发 器与至少一第二收发器。 此网络具有多个基地台(base stat ion) (或天线组 (antenna set) )分布.形成一通信网络与此中继台连线。 此第一收发器通过 此网络传输信号给此中继台, 而这些信号夹杂着许多干扰信号。 此中继台 执行这些信号的一数学关联运算(correlat ion funct ion)并得到一运算结 果, 以判断产生一反干扰信号。 此中继台计算此第二收发器至此中继台相 关位置, 并通过此第二收发器传送此反干扰信号给此第一收发器, 其中此 第二收发器与此第一收发器具有一最佳通信频道 (opt ima 1 commun icat ion channel)。 本发明是利用两个具有相同波形但相位 180度反向的信号波抵 消彼此。
本发明也提供一种主动式干扰消除方法以消除至少一第一收发器的通 信系统中的干扰。 此方法包含: 借由一中继台从一网络接收一回馈信号 (feedback s ignal)并侦测一环境信号 (environmenta l s ignal); 借由此中 继台关联运算此回馈信号与此环境信号以得到一运算结果; 借由此中继台 根据此运算结果判断产生一反干扰信号; 以及借由此中继台通过一第二收 发器发送此反干扰信号给此第一收发器以消除第一收发器周围的干扰。 其 中, 此网络具有多个基地台(或天线组)分布形成一通信网络与此中继台连 线, 此第二收发器与此第一收发器具有一最佳通信频道。
根据本发明的背景,设计收发器内的电路是较为困难且复杂的。 因 此,本发明提供一种主动式反干扰通信系统及方法, 直接利用通信系统消除 环境中的干扰。 上述的网络是由多个基地台与中继台之间信号通信所建构 而成,其主要的任务包含信号接收、 通信连接以及反干扰信号发送。 上述的 中继台接收从网络所传输的信号并将其进行数学运算,其主要的任务包含 信号关联运算、 反干扰信号产生以及寻找一与第一收发器具有最佳通信频 道的基地台。 上述的收发器包含供使用者在网络中从基地台收发信号以建 立通信连线和与中继台通信的工具(如移动电话、 个人数字助理(PDA)、 笔 记型电脑…等), 其主要的任务包含通信连接与反干扰信号接收。 其中,上 述的干扰信号包含通道资讯以及其他的传输资料等。
本发明主要的技术构想之一是, 从环境中侦测干扰信号(例如图 2所示 的 W1波形),然后将其相位反向 180度(例如图 2所示的 W2波形)后再送回。 在此采用数学计算权重(weight ing)信号的理由为, 启用(enable)—反干扰 信号以消除第一收发器端的干扰信号, 而此反干扰信号为干扰信号相位反 向 180度, 借此, 干扰信号将被抵消, 而在第一收发器端将接收无干扰信 号。 此为产生反干扰信号的原则, 利用相同的技术构想将可消除环境中所 有类型的干扰信号。 换言之,首先收集并分析环境中所有干扰信号以计算一 权重干扰信号,然后产生一反干扰信号并发送回环境中以消除大部分的干 扰信号。 利用两具有相同波形但相位 180度相反的信号抵消彼此。 并且,此 理论可应用于通信系统中消除第一》1 ^器端的干扰。
上述的中继台为中央计算元件, 其通过网络知道其他通信系统的即时 状况。 中继台也为控制元件, 其通过网络接收回馈信号并侦测环境信号,然 后根据各种类型的干扰信号 (例如内部(int ra-cel l)干扰或外部 (inter-cel l)干扰)计算一反干扰信号。 其中, 外部干扰为不同通信系统的 信号干扰, 而内部干扰为相同通信系统的信号干扰。 然而, 从中继台的观 点, 所有的干扰不论是外部干扰还是内部干扰, 只要是他们的系统都连接 到网络, 都将视为相同的干扰。 换言之, 中继台为主动式干扰消除系统信 号计算元件, 其基于一关联函数演算法计算反干扰信号。 当中继台从网络 接收回馈信号与环境信号, 其通过干扰分析的关联函数计算此回馈信号与 此环境信号并得到一运算结果。 其中, 关联函数所计算的信号可以是外部 干扰信号、 内部干扰信号或是两者兼具。
关联运算的目的为输出一运算结果以供判断是否产生一反干扰信号,其 输出结果为回馈信号与环境信号的关联性, 其显示影响第一收发器的主要 干扰信号。 因此中继台根据此关联运算的结果将干扰信号反向 180度以产 生反干扰信号, 并通过网络发送。 网络依中继台通过演算寻找一与第一收 发器具有最佳通信频道的基地台发送反干扰信号以强制消除第一收发器周 围的干扰。 在中继台找到与第一收发器具有最佳通信频道的基地台后,中继 台传输一位置资料与反干扰信号给此基地台, 并令此基地台发送一方向性 反干扰信号。 在此, 位置资料指示第一收发器的位置所在, 如果此基地台 没有此位置资料, 那么反干扰信号将四面八方发送而变成其他系统的干扰 信号。 因此位置资料 1导此基地台发送方向性反干扰信号以消除第一收发 器周围的干扰。
请参阅图 3所示,其为一收发器 T与一基地台 A间的通信受到一相同通 信系统的 &i也台 B与不同通信系统的基地台 0、 P影响的干扰消除示意图。 在 此干扰状态中, 一中继台(未绘出)将两者来自基地台 B的内部干扰信号(对 比外部干扰信号)与来自基地台 0、 P 的外部干扰信号(对比内部干扰信号) 进行一关联运算以得到收发器 T与基地台 A间主要的干扰信号, 并产生一 反干扰信号, 然后结合此反干扰信号与一位置资料通过具有一方向性天线 的基地台 A发送给第一收发器 T以消除干扰。 借此, 器 T与基地台 A 间的干扰将被消除, 尤其是收发器 T与基地台 A间的通信范围, 无论是来 自相同系统基地台 B的干扰信号还是不同系统基地台 0、 P的干扰信号。 最 后,收发器 T与基地台 A间的通信范围将没有任何干扰, 如同图 1B所示。
请参阅图 4所示, 其为本发明的一较佳主动式干扰消除系统 400的概 略示意图。 为了简单说明及图式简洁,本实施例仅利用一第一收发器 402说 明, 但并非用以限制本发明的实施。 系统 400与至少一第一收发器 402通 信, 且包含至少一第二收发器 420以及一中继台 410。 中继台 410从至少一 第二收发器 420接收一回馈信号与从其他第二收发器 420接收一环境信号 以执行一信号关联运算并得到一运算结果,并根据此运算结果判断产生一 反干扰信号。 然后,中继台 410借由至少一第三收发器发送此反干扰信号给 至少一第一收发器 402以消除至少一第一收发器 402周围的干扰信号。 其 中,此至少一第三收发器为一与至少一第一收发器 402具有最佳通信频道的 第二收发器 420 , 因此在有些实施例中, 此至少一第三》 ^器可以是此至少 一第二收发器 420。在本实施例中, 至少一第一收发器 402可以是一固定装 置或移动装置,例如:移动电话、 PDA、 笔记型电脑、 桌上型电脑…等。 第二 收发器 420可以是移动台或基地台。 中继台 410与第二收发器 420间的连 结可以是有线连接或无线连接,也可通过其他网络 415扩充连结 X个第二收 发器 420以及 Y个第二收发器 420,其中 X、 Y分别大于或等于 1且 X、 Y为 自然数。
此外,当信号关联运算结果大于或等于一预设阀值(thresho l d)时,中 继台 410 便产生一反干扰信号,而此反干扰信号是干扰信号总和波形反向 180度信号。 并且,中继台 410更发送一位置资料与此反干扰信号给此至少 一第三收发器以引导此反干扰信号到至少一第一收发器 402,亦即,此至少 一第三收发器须具有一方向性天线。 在本实施例中,位置资料是由中继台 410所产生,其指示至少一第一收发器 402的位置所在,并引导此至少一第三 收发器发送方向性反干扰信号以消除至少一第一收发器 402周围的干扰。 此 外, 中继台 410的电源视至少一第二收发器 420的电源应大于一指定值。 从另一方面而言, 请再参阅图 4所示,此系统 400与至少一第一收发器 402通信, 且包含一通信网络与一中继台 410。 此通信网络是由多个第二收 发器 420所组成并与此至少一第一收发器 402 以及中继台 410相连结。 中 继台 410从此通信网络接收一回馈信号与一环境信号以执行一信号关联运 算而得到一运算结果, 并根据此运算结果判断产生一反干扰信号。 然后中 继台 410通过此通信网络发送此反干扰信号给此至少一第一收发器 402 以 消除此至少一第一收发器 402 周围的干扰信号。 其中, 当此运算结果大于 或等于一预设阀值时, 中继台 410产生此反干扰信号是干扰信号总和波形 反向 180度的信号。 在本实施例中,中继台 410从多个笫二收发器 420其中 之一与至少一第一收发器 402连结的第二收发器 420接收此回馈信号,并从 其他多个第二收发器 420接收此环境信号。 中继台 410更发送一位置资料 与此反干扰信号给多个第二收发器 420其中至少之一的第二收发器 420,其 与至少一第一收发器 402 具有一最佳通信频道, 借此引导此反干扰信号到 至少一第一收发器 402。 亦即, 多个第二收发器 420其中至少之一的第二收 发器 420须具有一方向性天线。
请参阅图 5所示, 其是本发明的一较佳系统 500的方框图及其流程图。 此主动式消除通信系统中至少一第一收发器干扰信号的方法, 此方法包含 下列步骤。 在步骤 101, 至少一第一收发器 510要求至少一第二收发器 520 建立通信连结, 然后至少一第二收发器 520回应至少一第一收发器 510, 其 已等待通信接收于步骤 202。 在步骤 203, —中继台 540从至少一第二收发 器 520接收一回馈信号, 并在步骤 404, 从其他第二收发器(未绘出)侦测一 环境信号。在步骤 405, 中继台 540关联运算此回馈信号与此环境信号以得 到一运算结果, 并根据此运算结果判断产生一反干扰信号。 中继台 540通 过至少一第三收发器 530发送此反干扰信号给至少一第一收发器 510以消 除至少一第一收发器 510周围的干扰信号。 亦即, 在步骤 406 , 中继台 540 发送此反干扰信号给至少一第三收发器 530,然后在步骤 307,至少一第三收 发器 530发送此反干扰信号给至少一第一收发器 510以消除干扰信号。 其 中,至少一第三收发器 530为一与至少一第一收发器 510具有最佳通信频道 的第二收发器 520, 所以在有些实施例中, 至少一第三收发器 530可以是至 少一第二收发器 520。
并且在步骤 405 , 当运算结果大于或等于一预设阀值时, 中继台 540便 产生此反干扰信号, 而此反干扰信号是干扰信号总和波形相位反向 180度 的信号。在步骤 406, 中继台 540更发送一位置资料与此反干扰信号给至少 一第三收发器 530 以引导此反干扰信号到至少一第一收发器 510 于步骤 307 , 亦即, 至少一第三收发器 530 须具有一方向天线。 在本实施例中,位 置资料是由中继台 540所产生, 用以指示至少一第一收发器 510的位置所 在,并引导至少一第三收发器 530发送方向性反干扰信号以消除至少一第一 收发器 510周围的干扰。 并且, 在步骤 406, 中继台 540更找寻至少一第三 收发器 530, 其与至少一第一收发器 510具有一最佳通信频道。 此外,中继 台 540的电源视至少一第二收发器 520的电源应大于一指定值。
如前面所述, 本发明更揭露了一种电脑可读取的记录媒体, 其记录主 动式消除干扰信号的控制程序, 用于具有至少一第一收发器的通信系统,其 主动式消除干扰信号的控制程序使电脑执行的程序至少包含前述图 5 所示 的步骤 203、 404、 405、 406以及 307。 例如: 接收及侦测程序(步骤 203及 404)、关联运算程序(步骤 405)、判断程序(步驟 405)、找寻程序(步骤 406) 以及消除程序(步骤 406及 307)。借此,主动式消除干扰信号的控制程序使 电脑执行通信系统中至少一第一收发器主动式消除干扰信号方法。
在本发明另一较佳实施例中, 每一基地台与其相对应的收发器同时通 信,简单地传输各自的信号而不需考虑消除来自其他基地台的干扰。 所有介 于共同工作(co-work ing)基地台间的干扰是由一中继台所消除, 为了使中 继台可以完全移除所有基地台之间的干扰, 此中继台必须具备至少 N个传 输天线, 而此部分可被验证如下。
令 Χ = [ ^Γ 代表从所有基地台所传输的符元(symbol),其中 xi 为 从第 i 个基地台所传送的符元。在第 个收发器所接收的信号 可以表 示成
n ≠i
s = ^ (M +∑ ;)+ HWx'. + ",·
' (1A)
其中 为从第 i 个基地台到第 i 个收发器的通道系数, 为从第 j 个基地台到第 i 个收发器的通道系数。 Η ^^Ά2— ^ 为一 N 矩阵并表示从中继台到每一收发器的通道矩阵, 其中 h'i 为从中继台到第 i 个收发器的通道系数。 W 为中继台传输权重向量。 "'· 为在第 i 个收发 器端的白高斯杂讯 (whi te Gaus s ian noi se)。
考虑所有收发器的接收信号, 则可以将上述方程式写成下列矩阵形式:
Figure imgf000013_0001
其中 Y b ^F 代表所有收发器的接收信号。 H2 = ^,y = i' '' Nj 且 Ν =
在方程式(1A)中, 仅第一部分为第 i 个收发器所需求的信号, 其第二 与第三部分是分别来自其他收发器的干扰与来自中继台的信号。 这些来自 其他收发器的干扰信号可以借由适当设计传输权重矩阵 W,将其消除至某 种程度。此外,在实际系统中也希望所有收发器具有相同的位元错误率(bi t error rate; BER)表现。 将上述两个目标列入考虑, 则最佳化问题可以被公式化设计 w, 而使 得 Y 变成下列格式:
Υ = ΧΙΧ + Ν (3Α)
其中 Υ = [> ··ΛΓ 且 X = [V J ; I 单位矩阵且 Κ为系数。 借由比 较方程式(2Α)与(3Α), W 可以被计算如下:
W = H+(KI - ¾) ( A)
基于数学关联通过利用中继台最大传输功率限制技术, 则 即可被计 算出。
请参阅图 6、 图 7所示, 其是本发明两个较佳应用的示意图。 在图 6 中,多个中继台与多个第二收发器 420 (或基地台)分布且通过多个网络 415 连接形成一蜂巢式(cel lular)通信系统。 每一蜂巢式通信范围具有至少一 中继台 410与至少一第二收发器 420,且中继台 410通过一网络 415连结至 此蜂巢式通信系统, 其中此网络 415连接不同蜂巢式通信范围的其他网络 415。 当一第一收发器(未绘出),例如: 移动电话、 笔记型电脑…等,在此蜂 巢式通信系统中通信时, 与此第一收发器相关的资料 (例如: 通道资讯、 位 置…等)将可被此蜂巢式通信系统的所有中继台辨识出。 因为这些资料通过 所连结的第二收发器 420、所连结的中继台 410以及网络 415传输给所有中 继台 410。 另一方面, 在此第一传输器周围的干扰也被所有的第二收发器 420与中继台 410所侦测,且被传送至与此第一收发器所连结的中继台 410。 因此与此第一收发器所连结的中继台 410 可以依据此干扰执行一信号关联 运算,并依据此信号关联运算结果判断产生一反干扰信号。 在反干扰信号通 过与此第一收发器具有一最佳通信频道的第二收发器 420发送给此第一收 发器后,在此蜂巢式通信系统中第一收发器周围的干扰即被消除。 其中,与 此第一收发器具有最佳通信频道的第二收发器 420可以是首先与此第一收 发器连结的第二收发器 420,可以是任一相同蜂巢式通信范围的第二收发器 420, 或者甚至可以是不同蜂巢式通信范围的第二收发器 420。 例如: 当此 第一收发器在第一列中间蜂巢通信, 而其与在第二列左侧蜂巢内的第二收 发器 420具有一最佳通信频道时,则反干扰信号将通过网络 415与第二列左 侧蜂巢内的中继台被传输至第二列左侧蜂巢内的第二收发器 420。请参阅图 7所示, 其与图 6不同处在于蜂巢式通信范围的大小与数量。 在图 7中,多 个中继台与多个第二收发器 420分布且通过多个网络 415连接于一蜂巢式 通信范围。 亦即, 图 6 所示的每一蜂巢式通信范围均可依实际情况扩充成 图 7所示的蜂巢式通信范围。 而至于图 7所示的中继台 410、 网络 415以及 第二收发器 420之间的关系, 是与图 6的说明相同, 故在此不再赘述。
请参阅图 8 所示, 其是本发明的另一较佳主动式干扰消除系统的概略 示意图。 K个基地台配置 K个主机通过有线网络连结至一配置一主机的中继 台,其中每一 K个基地台具有 N个天线, K≥ 2、 N≥l JL K. Ν为自然数。 为了 图式的简洁, 图 8仅绘制两基地台 BSi、 BSj分别配置两主机 Hos t A、 Hos t B并通过有线网络连结至配置一主机 Hos t 的一中继台 RBS。 在一较佳实施 例中,中继台 RBS是以高速有线骨干(wi red backbone)与基地台 BSi、 BSj 连线。 多个移动台(mobi le stat ion) MSi、 MSj与 MS分别与基地台 BSi、 BSj 通信, 在此仅以配置 N个天线与基地台 BSi通信的移动台 MSi作为本实施 例的说明。 在图 8中, 基地台 BS i以传输功率 PB传输 S个符元流 (S N)给 移动台 MSi, 而移动台 MS i也接收来自基地台 BSj的传输功率 PB (对移动台 MSi而言, 此为干扰)。 两基地台 BSi、 BSj分别通过直接通信以及有线网络 知道移动台 MS i的干扰。 而中继台 RBS也配置 M个天线, 其中 M 移动台的 天线总和且 M为自然数。 中继台 RBS接收基地台 BSi、 BSj所传送的多个资 料, 并根据此多个资料判断执行一传输预编码(precoding)。 其中, 此多个 资料包含所有无线连结的通道状态资讯(channel s tate informat ion; CSI) 及 /或基地台 BSi、 BSj 所传送的资料。 而此传输预编码可以是线性传输预 编码, 其包含强制归零机制(zero- forcing scheme; ZF scheme)及 /或最小 均方差机制 (minimum mean— square—error scheme; MMSE scheme)。 中继台 RBS通过其 M个天线发送传输预编码的结果以消除基地台 BSi、 BSj间的干 扰信号, 并最佳化系统的平均位元错误率表现。 在一较佳实施例中, 传输 预编码的结杲是由 M个天线中的两个天线传输给基地台 BS i。而在另一较佳 实施例中, 此主动式干扰消除系统可依移动台数量增加而调适关闭基地台 的电源(power)以提供较大功率(power)给中继台消除干扰信号。
请参阅图 9所示,其是本发明的另一较佳系统的方框图及其流程图。 此 主动式消除无线网络干扰信号方法包含下列步骤。 在图 9 中, 仅呈现一移 动台、 两基地台以及一中继台以简化图式, 但并非用以限制本发明的实施。 在步骤 9101, 一移动台 910要求一基地台 920建立通信连结, 然后基地台 920回应移动台 910, 其已等待通信接收于步骤 9202。 在步驟 9302,移动台 910也接收来自一基地台 930的信号(即干扰)。 在一较佳实施例中,每一移 动台 910与基地台 920、 930具有 N个天线, 其中 N l且 N为自然数。 在 步骤 9103, 移动台 910与基地台 920通信。 在步骤 9203、 9303, 一中继台 940接收基地台 920、 930所传送的多个资料。 在一较佳实施例中, 中继台 940具有 M个天线, 其中 M≥移动台 910的天线总和且 M为自然数。 中继台 940是以高速有线骨干与基地台 920、 930连线。 中继台 940接收的多个资 料包含基地台 920、 930所有无线连结的通道状态资讯及 /或基地台 920、 930 所传输的资料。 在步骤 9404, 中继台 940根据此多个资料判断执行一传输 预编码。 在一较佳实施例中, 此传输预编码可以是线性传输预编码, 其包 含强制归零机制(ZF scheme)及 /或最小均方差机制(MMSE scheme)。 在步骤 9405 , 中继台 940通过其 M个天线将此传输预编码的结果发送以消除基地 台 920、 930间的干扰信号。 在一较佳实施例中, 此传输预编码的结果是由 M个天线中的两个天线传输给移动台 910。 而在另一实施例中, 此主动式干 扰消除方法可依移动台数量的增加而调适地关闭基地台的电源(power)以 提供较多功率(power)给中继台消除干扰信号。
如前所述, 本发明更揭露一种电脑可读取的记录媒体,其记录主动式消 除无线网络干扰信号的控制程序,此控制程序使电脑执行的程序至少包含 前述图 9所示的步骤 9203、 9303、 9404以及 9405。 例如: 接收程序(步骤 9203及 9303)、 判断程序(步骤 9404)以及发送程序(步骤 9405)。 并且,此 控制程序使电脑执行依移动台数量的增加而调适地关闭基地台的电源 (power)的程序。 借此, 此主动式消除无线网络干扰信号的控制程序使电脑 执行主动式无线网络消除干扰信号方法。
本 发 明 也 可 应 用 于 正 交 分 频 多 工 存 取 (Or thogonal Frequency-Divi s ion Mul t iple Acces s ; OFDMA)及 /或分码多工存取(Code Divi s ion Mul t iple Access; CDMA)。
从另一方面而言,图 8所示的主动式干扰消除系统将再次被描述如下,其符 号的使用为: 粗体小写字母表示向量, 粗体大写字母表示矩阵; 上标 、
{, } 、 i } 以及 {,}分别表示共扼(conjugate)矩阵、 转置(transpose)矩 P车、 共扼转置 (conjugate transpose)矩阵与虚拟反 (pseudoinverse)矩阵;
/ 表单位(ident i ty)矩阵; π¾表实数; | · | , ||.|| 、 Ε{·} , ίτ(·}分别表 示色对值、 欧氏巨离(Eucl idean dis tance)、 巨阵期望值(expectat ion)以 及矩阵迹数(trace); 在此也定义 8(a(B))/ d(B) 为矩阵 B 的纯量(sca lar) α(5) 的导出数, 也应用下列的导出数:
Figure imgf000016_0001
其中 、 /m{ } 分别表复数实数部分与虚数部分。 在一个共同工作的无线网络中, K 个基地台 BS在相同频率同时传输 信号给其相对应的移动台 MS, 每一基地台 BS与移动台 MS配置 jv 个天线, 且每一基地台 BS是以相同传输功率 PB传输 s (S≤ N) 个符元流给其相对 应移动台 MS。 中继台 RBS是通过高速有线骨干连接 κ个基地台 BS, 且中 继台 RBS具有 Λί 个传输天线, 其中 Μ为不小于所有移动台的天线总数的 自然数。 中继台 RBS具有传输功率 / 在此^殳整个系统具有一总功率限 制 P。 为了简单说明, 在此仅以两基地台 BSi、 BSj 与两移动台 MSi、 MSj 力口以说明。
中继台 RBS知道系统中所有无线连结的通道状态资讯, 而其利用一线 性预编码借由一线性传输矩阵 l e e^^s)乘以输入至中继台 RBS 以消除 同频干扰(co-channel interference)。 令 Htj e eNXN表第 /个基地台 BSj 与第 i个移动台 MSi之间连结的通道矩阵, H『 e 表从中继台 RBS到 第 i 个移动台 MSi间的通道矩阵, 其中 i,/ = i,...,A:。 所有通道矩阵的元素 是独立相同分布(independently identically distributed; i. i.d.)具有 一单位方差(unit variance)的零均值复数高斯随机变数(zero mean com lex Gaussian random variable)。 如果第 个移动台 MSi所接收的信 号矩阵标示为 >,fec?'vxl, 则可写成
Υ = (H^ +∑ 1 ^ Hf/ ^-) + H Wx + n,, (2) 其中 X ]τ 为从 Κ 个基地台 BS 所传输符元的一向量, , e cs^ 为从第 i 个基地台 BSi所传输的符元。 假设所有资料符元是独立 且具有一单位功率(例如: Rx≡ E[xx ) = 1 ,其中 1 为一 SXS单位矩阵), n,表第 ί个移动台 MSi端的杂讯,其为一 W X 1向量,其所有元素为独立 相同分布(i. i.d.)零均值复数随机变数与两侧功率谱密度的 Are/2次元。资 料流与杂讯无法彼此关联。 在此也假设,第 £个基地台 BSi与第 i 个移动台 MSi两者都知道通道 矩阵 , 以奇异值分解 (singular value decomposition; SVD) , 通道矩 阵 H, 可以被分解成
Figure imgf000018_0001
其中 NxW 矩阵 υί£ 与 v 是单式矩阵(unitary matrix) , ∑έ, 是 Ηί; 的奇异值 (singular value)的一 N X N对角矩阵 (diagonal matrix)。 为 7 避免第 i 个基地台 BSi到第 i 个移动台 MSi^t目同连结内符元流彼此间的 干扰, 在此将 SVD应用于通道, 通过在基地台 BS传输器预编码以及在移动 台 MS接收器成束(beamfonning)。 预编码矩阵为 vis, 而接收器成束矩阵为 υϋ。 然后在第 ί 个移动台 MBi所接收的信号可以写成
其中
Figure imgf000018_0002
以及 Ai - 当所有移动台 MS 所接收 信号的矩阵被标示为 y = i】7, 则上式可以被写成
Figure imgf000018_0003
其中 n = [ ,··., f,
Figure imgf000018_0004
以及
Figure imgf000018_0005
以下两个以 ZF与 MMSE为基础的演算法将被应用于本发明, 分别称之 为以 ZF为基础的主动式机制与以 MMSE为基础的主动式机制。 ■ ZF是一普遍使用的简单线性成束演算法, 其强制来自其他基地台的干 扰归零, 以使得每一移动台仅收到相对应基地台的信号。 在一点对点的多 输入多输出(multiple— input multiple— output; MIMO)通信系统中, ZF预 编码可以借由虚拟反向通道矩阵乘以所传输的符元而完成。 在本实施例中, 为了消除同频干扰以及最佳化系统平均位元错误率, 在方程式(5) 预编码
Hlw-|-^H,) 后, 一相等的通道矩阵应为
Η^ + ^Η2 = kl, (8) 其中 k 为每一移动台 MS 等效通道增益。 fe 可为复数。 在此, 定义 fceE 。 / 为一 KNXKN单位矩阵。 然后, 传输权重阵列可以由方程式(8) 写成
\ = (&1- H2). (9) 从中继台 RBS所传输的信号具有功率 PR。所有基地台 BS与中继台 RBS 全体传输功率必须符合总功率限制 P。 因此 tr{WW } = PR) (10)
PB + KPB = P. (11)
合并方程式(9)、 (10)以及(11), 得到 PBA―
Figure imgf000019_0001
+S2(k2C - P) = 0, (12) 其中 4 = {Ηί"ΗίΗ2Η ) + /«2 、 Β = tr{HjwHj(H2+Hf)} 以及
Figure imgf000019_0002
在此不难检验 A . S 与 C 均为实数。 因此, 方程式(12) -具有实数系数的简单的二次方程式, 其根可以表示成 fp~ S8k±J (.S3k) '→A a(»f* C-P (13) 为了保持 pB 恒为一正实数, 因此必须满足下列条件 (SBk)2― 4AS2(k2C - P) > 0. (14)
SBK ± yJ S8ky一 4Α52(^ε - Ρ) > 0. 借由合并这些奈件, k 可以被导出
4AP
4AC-8" (16) k表在移动台 MS 实际收到的信号增益。 在此, 取 k 的最大绝对值, 则在每一移动台 MS所接收的信噪比(S igna l to Noi se Rat io; SNR)也将是 最大。 因此选择 |fc| = \~^~ , 并将其与方程式(13)相减, 得到相对应所 期望的基地台 BS的传输功率 PS
W ^ 。 (17)
Figure imgf000020_0001
将 fc值、 ^与方程式(9)相减, 则传输预编权重可以表示成
W = H\/¾ - »' (19)
(20)
MMSE方法是在总系统功率限制下通过最小化接收符元与传输符元间的 均方差值(mean square error; MSE), 选择最佳预编码权重向量。 在此, 以权重 β·1 代入 MSE 定义, 其可被视为在接收器端的一自动增益控制, e賤 。 MSE可以表示成
Figure imgf000020_0002
将方程式(21)与(5)相减, 则方程式(21)可以重写成
W = V- arg min Ε[\\ βχ - I^WA:— Η,,ν - η (22) 最小化 MSE的最佳预编码矩阵 w , 可被推导(推导过程稍后说明)成
W = (H H, + 1)— 1 H [βΐ - Η2), (23) 其中, σζ 为杂讯变数。 合并方程式(10)、 (11)以及(23)可得到一与 方程式(12)相似的方程式为
ΡΒΑ2 - + S2( zC2 -/>) =。, (24)
Figure imgf000021_0001
C2均为实数。 方程式(24)是一二次方程式。 为确认 PB ≥ o
选取 β 的 可推导出 FB
Figure imgf000021_0002
Figure imgf000021_0003
JK= ^P ..ifB< 0 (27) 将最大的 /?值与 ^代入方程式(23) , 则传输权重 W可以被求得。 本发明在此也提供模拟结果以比较本发明与现有习知合.作式传输机制 的 BER的表现。 合作式(cooperative)基地台传输机制(基地台同时合作传 输给移动台)是类似传统多使用者广播 MIMO传输机制(一具有 M个天线的 基地台传输 KS 个资料流给 κ 个多工移动台)。 在此模拟中, 考虑一半平 稳、衰退通道 (Quasi— stat ic fading channel) , 其通道在一信号 4匡 (f rame) 是维持相同,但从一信号框到其他信号框是独自改变。每一信号框是由 100 个符元组成。 假设所有基地台具有相同传输功率且总系统具有一总功率限 制。 SNR γ是定义成系统总功率除以每一接收器天线杂讯功率 y = - (28) 首先, 考虑一共同工作无线网络有两基地台、 两移动台 Of = 2)以及一 中继台。 每一基地台传输 S = 2个资料流给移动台。 基地台与移动台是分 别配置两天线 (W=2), 而中继台具有 4个天线 (Λί-4)。 模拟结果如图 11 所示, 当 S£/? = 10-3 时, 本发明的 ZF与 MSE的方法在 BER的表现上较合 作式传输机制使用 ZF与應 SE预编码分别较佳 2 dB与 5 dB。 图 12是本发明在基地台与移动台数量分别增加至 3 (Α' - 3)且中继台天 线数量为 6(Af = 6)时, 其与现有习知合作式传输架构在平均 BER方面表现 的比较曲线图。 在图 12中, 当 SE/? = 1(TS 时, 本发明的 ZF与 MMSE的方 法在 BER的表现上较合作式传输机制使用 ZF与 MMSE预编码分别较佳 1 dB 与 4 dB。 图 10为本发明基于方程式(17)、 (18)、 (26)与(27), ^SNR = SdB 时, 不同数量基地台 PB/P 累积分布函数(cumulative distribution function) 曲线图。在图 10中,可以看到不同数量的基地台与移动台的变化率为 0.2到
0 , 此表示大部分系统功率是配置给中继台, 仅少部分配置^^一基地台。 此功率配置是根据即时通道状况与网络内基地台数量而做调适, 其可使中 继台成功消除同频干扰以及移动台接收最佳化 SNR。 在图 1 0 中, 合作式基地台传输机制与本发明在 M == 6、 A' = 3 时的 表现差距是小于本发明在 M = 4 、 K = 2 时的表现差距。 因为当 A' 增加, 中继台消除同频干扰所要求的功率也增加, 因此基地台可用的功率便减少。 所以当基地台的数量 Κ增加时, Ρ Ρ 的比值便下降。 而当 Κ 变得很大 时, 则所有基地台实际上关机, 而此系统变成一多使用者广播 MIM0系统。 因此, 本实施例的平均 BER的表现是与合作式基地台传输机制的表现相近。
本发明提供一种主动式无线网络干扰消除系统, 此系统利用无线网络 一外加基地台, 其是通过高速有线骨干连接所有并存基地台。 而中继台采 用以 ZF与 MMSE为 ^5出的线性传输预编码演算法进行预编码程序。 在总系 统功率的限制下, 选取预编码权重矩阵, 因此在基地台之间的干扰可以被 消除且系统的 BER表现可以被最佳化。 由于所有同频干扰是由中继台消除, 因此基地台与移动台不须执行任何干扰消除动作, 所以现存收发器的架构 可以被保留, 此部分将相当大程度地减少系统实现的复杂度。 本系统的另 一项优点为, 根据即时通道状况与网络内基地台数量, 在基地台与中继台 间执行主动功率(电源)配置以使所有移动台可接收最佳化 SNR。本发明也展 示模拟结果以说明此主动式干扰消除系统可以有效消除同频干扰, 其系统 BER的表现相比较于合作式基地台传输机制 BER的表现为佳。
在此将补充说明方程式(23)的推导过程, 方程式(21)的 MSE可以被写 成
S = min £[|[ βχ― HtWjt一 ^ 2x - n ||21 min {£【1| βχ - HiWx - ^ Hzx l\z]-E[\\ n ||2]} min {Ε[ίτ{(βχ― H, Wx― Η,χ)
(βχ一 HJWJC - H2 C) 〗 + η ||2】}· (29)
受到下列总功率限制完成最佳化 tr(WWH) + KPB = P. (30) 从方程式(30) , 可以得到 (tr(WWH) + /fPs)/P = 1 , 然后方程式(28)更 可以写成 S = rain {ΕΜ(βχ― HjW - ^ Η,χ)
(fix - HxWx - ^ H2xf}] -r "(my n ]}. (31) 相关第一导出数 S , 则可得
Figure imgf000024_0001
其中利用 3fr(AB)/dA = B7 , 并令方程式(32)为零, 则预编码矩阵 W
Figure imgf000024_0002
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内, 当可利 用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实 施例, 但凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以 上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方 案的范围内。

Claims

权 利 要 求
1、 一种主动式消除干扰信号系统, 其特征在于, 该系统通信连线至少 一第一收发器, 该系统包含:
至少一第二收发器; 以及
一中继台, 是从该至少一第二收发器接收一回馈信号与一环境信号以 执行一信号关联运算以得到一运算结果, 并根据该运算结果判断产生一反 干扰信号,
其中, 该中继台是借由至少一第三收发器发送该反干扰信号以消除该 至少一第一收发器周围的干扰信号。
2、 根据权利要求 1所述的主动式消除干扰信号系统, 其特征在于其中 当该运算结果大于或等于一预设阀值时, 该中继台产生该反干扰信号。
3、 根据权利要求 1所述的主动式消除干扰信号系统, 其特征在于其中 反干扰信号是干扰信号总和相位反向 180度信号。
4、 根据权利要求 1所述的主动式消除干扰信号系统, 其特征在于其中 所述的中继台更发送一位置资料与该反干扰信号给该至少一第三收发器以 引导该反干扰信号到该至少一第一收发器。
5、 根据权利要求 1所述的主动式消除干扰信号系统, 其特征在于其中 所述的至少一第三收发器与该至少一第一收发器具有一最佳通信频道。
6、 根据权利要求 1所述的主动式消除干扰信号系统, 其特征在于其中 所述的至少一第三收发器包含一方向性天线。
7、 根据权利要求 1所述的主动式消除干扰信号系统, 其特征在于其中 所述的至少一第三收发器是该至少一第二收发器。
8、 根据权利要求 1所述的主动式消除干扰信号系统, 其特征在于其中 所述的中继台的电源依据该至少一第二收发器的电源应大于一指定值。
9、 一种主动式消除干扰信号方法, 其特征在于, 该方法是用于至少一 第一收发器的通信系统, 该方法包括以下步骤:
(a)借由一中继台从至少一第二收发器接收一回馈信号并侦测一环境 信号;
(b)借由该中继台关联运算该回馈信号与该环境信号以得到一运算结 果;
(c)借由该中继台根据该运算结果判断产生一反干扰信号; 以及
(d)借由该中继台通过至少一第三收发器发送该反干扰信号给该至少 一第一收发器以消除该至少一第一收发器周围的干扰信号。
10、 根据权利要求 9所述的主动式消除干扰信号方法, 其特征在于其 中所述的步骤(c)更包含: 当该运算结果大于或等于一预设阀值时, 该中继台产生该反干扰信号。
11、 根据权利要求 9所述的主动式消除干扰信号方法, 其特征在于其 中所述的反干扰信号是干扰信号总和相位反向 180度信号。
12、 根据权利要求 9所述的主动式消除干扰信号方法, 其特征在于其 中所述的步骤(d)更包含:
发送一位置资料与该反干扰信号给该至少一第三收发器以引导该反干 扰信号到该至少一第一收发器。
13、 根据权利要求 9所述的主动式消除干扰信号方法, 其特征在于其 中所述的步骤(d)更包含:
找寻该至少一第三收发器, 该至少一第三收发器是与该至少一第一收 发器具有一最佳通信频道。
14、 根据权利要求 9所述的主动式消除干扰信号方法, 其特征在于其 中所述的至少一第三收发器包含一方向性天线。
15、 根据权利要求 9所述的主动式消除干扰信号方法, 其特征在于其 中所述的至少一第三收发器是该至少一第二收发器。
16、 根据权利要求 9所述的主动式消除干扰信号方法, 其特征在于其 中所述的中继台的电源依据该至少一第二收发器的电源应大于一指定值。
17、 一种记录主动式消除干扰信号的控制程序的记录媒体, 其特征在 于, 其用于至少一第一收发器的通信系统, 其主动式消除干扰信号的控制 程序使电脑执行的程序至少以下步骤:
(a)使一中继台从至少一第二收发器接收一回馈信号并侦测一环境信 号;
(b)使该中继台关联运算该回馈信号与该环境信号以得到一运算结果;
(c)使该中继台根据该运算结果判断产生一反干扰信号; 以及
(d)使该中继台通过至少一第三收发器发送该反干扰信号给该至少一 第一收发器以消除该至少一第一收发器周围的干扰信号。
18、 根据权利要求 17所述的记录主动式消除干扰信号的控制程序的记 录媒体, 其特征在于其中所述的步骤 (c)更包含:
当该运算结果大于或等于一预设阀值时, 使该中继台产生该反干扰信 号。
19、 根据权利要求 17所述的记录主动式消除干扰信号的控制程序的记 录媒体, 其特征在于其中所述的反干扰信号是干扰信号总和相位反向 180 度信号。
20、 根据权利要求 17所述的记录主动式消除干扰信号的控制程序的记 录媒体, 其特征在于其中所述的步骤 (d)更包含:
发送一位置资料与该反干扰信号给该至少一第三收发器以引导该反干 扰信号到该至少一第一收发器。
21、 根据权利要求 17所述的记录主动式消除干扰信号的控制程序的记 录媒体, 其特征在于其中所述的步骤 (d)更包含:
找寻该至少一第三收发器, 该至少一第三收发器与该至少一第一收发 器具有一最佳通信频道。
22、 根据权利要求 17所述的记录主动式消除干扰信号的控制程序的记 录媒体, 其特征在于其中所述的至少一第三收发器包含一方向性天线。
23、 根据权利要求 17所述的记录主动式消除干扰信号的控制程序的记 录媒体, 其特征在于其中所述的至少一第三收发器是该至少一第二收发器。
24、 一种主动式消除干扰信号系统, 其特征在于, 该系统通信连线至 少一第一收发器, 该系统包含:
一通信网络, 是通信连线该至少一第一收发器; 以及
一中继台, 是从该通信网络接收一回馈信号与一环境信号以执行一信 号关联运算以得到一运算结果, 并根据该运算结果判断产生一反干扰信号, 其中, 该中继台是借由该通信网络发送该反干扰信号给该至少一第一 收发器以消除该至少一笫一收发器周围的干扰信号。
25、 根据权利要求 24所述的主动式消除干扰信号系统, 其特征在于其 中当该运算结果大于或等于一预设阀值时, 该中继台产生该反干扰信号。
26、 根据权利要求 24所述的主动式消除干扰信号系统, 其特征在于其 中所述的反干扰信号是干扰信号总和相位反向 180度信号。
27、 根据权利要求 24所述的主动式消除干扰信号系统, 其特征在于其 中所述的通信网络包含多个第二收发器连接该中继台。
28、 根据权利要求 27所述的主动式消除干扰信号系统, 其特征在于其 中所述的中继台从多个第二收发器其中之一与该至少一第一收发器通信连 线的第二收发器接收该回馈信号, 并从其他该多个第二收发器接收该环境 信号。
29、 根据权利要求 27所述的主动式消除干扰信号系统, 其特征在于其 中所述的中继台更发送一位置资料与该反干扰信号给至少一该多个第二收 发器以引导该反干扰信号到该至少一第一收发器。
30、 根据权利要求 29所述的主动式消除干扰信号系统, 其特征在于其 中所述的至少一该多个第二收发器与该至少一第一收发器具有一最佳通信 频道。
31、 根据权利要求 29所述的主动式消除干扰信号系统, 其特征在于其 中所述的至少一该多个第二收发器包含一方向性天线。
32、 根据权利要求 27所述的主动式消除干扰信号系统, 其特征在于其 中所述的中继台的电源依据该多个第二收发器的电源应大于一指定值。
33、 一种主动式消除无线网络干扰信号系统, 其特征在于其包含:
K个基地台, 每一该 K个基地台具有 N个天线, 其中 K≥2、 1^≥1且 Ν为自然数;
至少一移动台, 是与该 Κ个基地台其中之一通信连线, 该至少一移动 台具有 Ν个天线; 以及
一中继台, 是与该 Κ个基地台连线, 该中继台具有至少 Μ个天线, 其 中该中继台接收该 Κ个基地台所传送的多个资料以判断执行一传输预编码, 并通过该 Μ个天线将该传输预编码的结果发射以消除干扰信号,其中 M≥移 动台的天线总和且 Μ为自然数。
34、 根据权利要求 33所述的主动式消除无线网络干扰信号系统, 其特 征在于其中所述的中继台是以高速有线骨干与该 Κ个基地台连线。
35、 根据权利要求 33所述的主动式消除无线网络干扰信号系统, 其特 征在于其中所述的多个资料包含该 Κ个基地台的无线连接通道状态资讯。
36、 根据权利要求 33所述的主动式消除无线网络干扰信号系统, 其特 征在于其中所述的多个资料包含该 Κ个基地台所传送的资料。
37、 根据权利要求 33所述的主动式消除无线网络干扰信号系统, 其特 征在于其中所述的传输预编码包含线性传输预编码。
38、 根据权利要求 37所述的主动式消除无线网络干扰信号系统, 其特 征在于其中所述的线性传输预编码包含强制归零预编码。
39、 根据权利要求 37所述的主动式消除无线网络干扰信号系统, 其特 征在于其中所述的线性传输预编码包含最小均方差预编码。
40、 根据权利要求 33所述的主动式消除无线网络干扰信号系统, 其特 征在于, 更包含该 Κ个基地台的电源会依移动台个数增加而适当关闭, 以 提供较多功率给该中继台消除干扰信号。
41、 一种主动式消除无线网络干扰信号方法, 其特征在于其包括以下 步骤:
(a)使一中继台接收 K个基地台所传送的多个资料, 其中至少一移动台 是与该 K个基地台其中之一通信连线, 该至少一移动台具有 N个天线, 每 一该 K个基地台具有 N个天线, 该中继台具有至少 M个天线, 其中 Κ^ 2、 Ν ≥1且1^1≥移动台的天线总和, Κ、 Ν、 Μ为自然数;
(b)使该中继台根据该多个资料判断执行一传输预编码; 以及
(c)使该中继台通过该 M个天线将该传输预编码的结果发射以消除该 K 个基地台间的干扰信号。
42、 根据权利要求 41所述的主动式消除无线网络干扰信号方法, 其特 征在于其中所述的中继台是以高速有线骨干与该 K个基地台连线。
43、 根据权利要求 41所述的主动式消除无线网络干扰信号方法, 其特 征在于其中所述的多个资料包含该 K个基地台的无线连接通道状态资讯。
44、 根据权利要求 41所述的主动式消除无线网络干扰信号方法, 其特 征在于其中所述的多个资料包含该 K个基地台所传送的资料。
45、 根据权利要求 41所述的主动式消除无线网络干扰信号方法, 其特 征在于其中所述的传输预编码包含线性传输预编码。
46、 根据权利要求 45所述的主动式消除无线网络干扰信号方法, 其特 征在于其中所述的线性传输预编码包含强制归零预编码。
47、 根据权利要求 45所述的主动式消除无线网络干扰信号方法, 其特 征在于其中所述的线性传输预编码包含最小均方差预编码。
48、 根据权利要求 41所述的主动式消除无线网络干扰信号方法, 其特 征在于, 更包含该 K个基地台的电源会依移动台个数增加而适当关闭, 以 提供较多功率给该中继台消除干扰信号。
49、 一种记录主动式消除无线网络干扰信号的控制程序的记录媒体, 其特征在于其主动式消除无线网络干扰信号的控制程序使电脑执行的程序 至少包含以下步骤:
(a)使一中继台接收 K个基地台所传送的多个资料, 其中至少一移动台 是与该 K个基地台其中之一通信连线, 该至少一移动台具有 N个天线, 每 一该 K个基地台具有 N个天线, 该中继台具有至少 M个天线, 其中 K≥2、 Ν ≥1且^1≥移动台的天线总和, Κ、 Ν、 Μ为自然数;
(b)使该中继台根据该多个资料判断执行一传输预编码; 以及
(c)使该中继台通过该 M个天线将该传输预编码的结果发射以消除该 K 个基地台间的干扰信号。
50、 根据权利要求 49所述的记录主动式消除无线网络干扰信号的控制 程序的记录媒体, 其特征在于其中所述的中继台是以高速有线骨干与该 K 个基地台连线。
51、 根据权利要求 49所述的记录主动式消除无线网络干扰信号的控制 程序的记录媒体, 其特征在于其中所述的多个资料包含该 个基地台的无 线连接通道状态资讯。
52、 根据权利要求 49所述的记录主动式消除无线网络干扰信号的控制 程序的记录媒体, 其特征在于其中所述的多个资料包含该 K个基地台所传 送的资料。
53、 根据权利要求 49所述的记录主动式消除无线网络干扰信号的控制 程序的记录媒体, 其特征在于其中所述的传输预编码包含线性传输预编码。
54、 根据权利要求 53所述的记录主动式消除无线网络干扰信号的控制 程序的记录媒体, 其特征在于其中所述的线性传输预编码包含强制归零预 编码。
55、 根据权利要求 53所述的记录主动式消除无线网络干扰信号的控制 程序的记录媒体, 其特征在于其中所述的线性传输预编码包含最小均方差 预编码。
56、 根据权利要求 49所述的记录主动式消除无线网络干扰信号的控制 程序的记录媒体, 其特征在于, 更包含使该 K个基地台的电源会依移动台 个数增加而适当关闭, 以提供较多功率给该中继台消除干扰信号。
PCT/CN2010/001244 2009-08-17 2010-08-17 主动式消除干扰信号系统、方法以及电脑可读取的记录媒体 WO2011020295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080036817.4A CN102484489B (zh) 2009-08-17 2010-08-17 主动式消除干扰信号系统、方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/542,017 US9083481B2 (en) 2009-08-17 2009-08-17 System, method and computer-readable medium for actively cancelling interfernce signals
US12/542,017 2009-08-17

Publications (1)

Publication Number Publication Date
WO2011020295A1 true WO2011020295A1 (zh) 2011-02-24

Family

ID=43588868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001244 WO2011020295A1 (zh) 2009-08-17 2010-08-17 主动式消除干扰信号系统、方法以及电脑可读取的记录媒体

Country Status (3)

Country Link
US (1) US9083481B2 (zh)
CN (1) CN102484489B (zh)
WO (1) WO2011020295A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152703A (zh) * 2013-02-01 2013-06-12 张明亮 信息发布的方法、设备和系统及信息接收和播报设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755355B2 (en) * 2010-05-26 2014-06-17 Telefonaktiebolaget L M Ericsson (Publ) Methods and systems for user equipment positioning using intercell interference coordination
EP2883321A1 (en) * 2012-08-09 2015-06-17 Telefonaktiebolaget L M Ericsson (Publ) Microwave link control
US10560244B2 (en) * 2013-07-24 2020-02-11 At&T Intellectual Property I, L.P. System and method for reducing inter-cellsite interference in full-duplex communications
US9344257B2 (en) * 2013-09-06 2016-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Adaptation of transmission parameters
US20150336463A1 (en) * 2014-05-21 2015-11-26 Delphi Technologies, Inc. Active electromagnetic interference mitigation system and method
US9831974B1 (en) * 2016-08-09 2017-11-28 International Business Machines Corporation Selective directional mitigation of wireless signal interference
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
US11581974B1 (en) * 2021-07-23 2023-02-14 Qualcomm Incorporated Techniques for using reflecting nodes to cancel interfering signals in wireless communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411634A (zh) * 1999-10-19 2003-04-16 美商内数位科技公司 Cdma信号多用户检测接收器
CN1513231A (zh) * 2001-06-18 2004-07-14 ض� 被动干扰消除的方法和装置
CN101159462A (zh) * 2007-11-01 2008-04-09 中国科学技术大学 一种多天线多小区系统中的有限反馈预编码干扰抑制方法
US20080227422A1 (en) * 2007-03-14 2008-09-18 Samsung Electronics Co. Ltd. Apparatus and method for interference cancellation in multi-antenna system
CN101373998A (zh) * 2007-08-20 2009-02-25 上海贝尔阿尔卡特股份有限公司 低信息交互的多基站协作mimo及其调度方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731904B1 (en) * 1999-07-20 2004-05-04 Andrew Corporation Side-to-side repeater
US8369261B2 (en) * 2006-07-12 2013-02-05 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for interference reduction
US20080070510A1 (en) * 2006-09-18 2008-03-20 Nokia Corporation Interference management techniques for wireless networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411634A (zh) * 1999-10-19 2003-04-16 美商内数位科技公司 Cdma信号多用户检测接收器
CN1513231A (zh) * 2001-06-18 2004-07-14 ض� 被动干扰消除的方法和装置
US20080227422A1 (en) * 2007-03-14 2008-09-18 Samsung Electronics Co. Ltd. Apparatus and method for interference cancellation in multi-antenna system
CN101373998A (zh) * 2007-08-20 2009-02-25 上海贝尔阿尔卡特股份有限公司 低信息交互的多基站协作mimo及其调度方法和装置
CN101159462A (zh) * 2007-11-01 2008-04-09 中国科学技术大学 一种多天线多小区系统中的有限反馈预编码干扰抑制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152703A (zh) * 2013-02-01 2013-06-12 张明亮 信息发布的方法、设备和系统及信息接收和播报设备
CN103152703B (zh) * 2013-02-01 2017-01-18 张明亮 信息发布的方法、设备和系统及信息接收和播报设备

Also Published As

Publication number Publication date
US20110039496A1 (en) 2011-02-17
CN102484489B (zh) 2015-04-08
US9083481B2 (en) 2015-07-14
CN102484489A (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2011020295A1 (zh) 主动式消除干扰信号系统、方法以及电脑可读取的记录媒体
US10250309B2 (en) System and method for downlink channel estimation in massive multiple-input-multiple-output (MIMO)
US8483761B2 (en) Singular value decomposition beamforming for a multiple-input-multiple-output communication system
KR101923200B1 (ko) 통신 네트워크에서 하향링크 다중 사용자 mimo 구성을 위한 대안적인 피드백 방법 및 시스템
US8824583B2 (en) Reduced complexity beam-steered MIMO OFDM system
JP5666581B2 (ja) Mu−mimo通信システムの送信機のためのプリコーディング方法
US8064849B2 (en) Precoding for multiple anntennas
US8577310B2 (en) System and method for transceivers in a wireless network
CN105745893A (zh) 无线大量mimo系统中大尺度衰落系数估计
JP2015109665A (ja) ネットワークにおいて通信するための方法
Heath et al. Multiuser MIMO in distributed antenna systems
CN108092928B (zh) 聚合干扰导向干扰管理方法、混合蜂窝网络、无线局域网
Sangdeh et al. A practical underlay spectrum sharing scheme for cognitive radio networks
CN107852198B (zh) 用于接收器驱动预编码的装置和方法
Hu et al. Combined Transceiver Optimization for Uplink Multiuser MIMO with Limited CSI.
Singh et al. Performance improvement in large-scale MU-MIMO system with multiple antennas on user side in a single-cell downlink system
Xu et al. Linear transceiver design for multiuser MIMO downlink
Hou et al. Transmission capacity of full-duplex MIMO ad-hoc network with limited self-interference cancellation
Claudino et al. Linear MMSE Channel Estimation for Underlay Cognitive Radio Networks
WO2016074193A1 (zh) 一种设备到设备通信装置、系统及方法
WO2022067824A1 (zh) 信号传输方法及相关装置
CN102082634A (zh) 通信信息误差修正方法、装置和系统
Ananthi et al. Outage probability analysis for multiple input–multiple output ad-hoc network with quantised beamforming
Zhang et al. Minimum system-wide mean-squared error for downlink spatial multiplexing in multiuser MIMO channels
Zhang et al. MSE based optimization of multiuser MIMO MAC with partial CSI

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036817.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809429

Country of ref document: EP

Kind code of ref document: A1