WO2011020233A1 - 多跳中继通信系统中对下行数据传输控制的方法和装置 - Google Patents

多跳中继通信系统中对下行数据传输控制的方法和装置 Download PDF

Info

Publication number
WO2011020233A1
WO2011020233A1 PCT/CN2009/073308 CN2009073308W WO2011020233A1 WO 2011020233 A1 WO2011020233 A1 WO 2011020233A1 CN 2009073308 W CN2009073308 W CN 2009073308W WO 2011020233 A1 WO2011020233 A1 WO 2011020233A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet data
convergence protocol
protocol layer
data convergence
rlc
Prior art date
Application number
PCT/CN2009/073308
Other languages
English (en)
French (fr)
Inventor
赵群
刘继民
郑武
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to JP2012525011A priority Critical patent/JP2013502755A/ja
Priority to BR112012003636A priority patent/BR112012003636A2/pt
Priority to KR1020127006883A priority patent/KR20120048019A/ko
Priority to PCT/CN2009/073308 priority patent/WO2011020233A1/zh
Priority to US13/390,570 priority patent/US20120140704A1/en
Priority to EP09848374.6A priority patent/EP2469750A4/en
Priority to CN200980159605.2A priority patent/CN102449944B/zh
Publication of WO2011020233A1 publication Critical patent/WO2011020233A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for controlling downlink data transmission in a multi-hop relay communication system. Background technique
  • multi-hop relay is adopted as the key technology for next-generation mobile networks.
  • Relay Node such as a relay station (RS)
  • RS relay station
  • Layer problem For example, the relay station works at the network layer (that is, layer 3 relay, L3 relay), or works at the data link layer.
  • the mobile terminal When a handover occurs, the mobile terminal still requires data transmission in sequence, so the downlink data buffered in the source base station or the relay station should be forwarded to the destination base station or relay station.
  • the sequential transmission means that the order in which the receiving end delivers the data packet to the upper layer is the same as the order in which the transmitting end receives the data packet from the upper layer, and the order in which the transmitting end receives the data packet from the upper layer is the serial number of the data packet.
  • the Packet Data Convergence Protocol (PDCP) is used to ensure the sequential transmission of downlink data.
  • PDCP Packet Data Convergence Protocol
  • the source base station sequentially forwards all the SDUs or PDUs of the downlink PDCP layer that are not confirmed by the terminal to the target base station, and the source base station will pass the S1 interface (the interface between the MME/S-GW network management system and the base station).
  • S-GW Serving Gateway
  • the scheme of relaying the RLC layer (RLC at layer 2, layer 2) is favored by many proposals.
  • the so-called RLC layer relay that is, the relay station is a layer 2 device, and the relay station can provide services of the RLC layer, the MAC layer, and the PHY layer.
  • the RLC layer relay if the original 3GPP mechanism is used, the sequential transmission of the downlink data may be destroyed at the time of handover.
  • FIG. 1 is a schematic diagram showing a downlink data transmission scheme based on RLC layer relay in the prior art.
  • Figure 1 shows the retransmission of hop-by-hop feedback retransmission (ARQ).
  • ARQ hop-by-hop feedback retransmission
  • the PDCP entity lb in the base station 1 provides a PDCP layer PDU to its lower layer RLC entity la.
  • the RLC entity la of the base station 1 segments or connects the PDCP PDU to encapsulate one or more RLC PDUs, and provides the one or more RLC PDUs to the peer entity in the relay station 2a in step S11. That is, the RLC entity in the relay station 2a.
  • the relay station 2a When the relay station 2a receives the one or more RLC PDUs, the relay station 2a transmits a corresponding positive acknowledgment message (ACK) or a negative acknowledgment message (NACK) to the RLC entity 1a of the base station 1 in step S12, and the retransmission ARQ mechanism is It is known to those skilled in the art. I will not repeat them here.
  • ACK positive acknowledgment message
  • NACK negative acknowledgment message
  • the RLC entity la of the base station 1 After the RLC entity 1a of the base station 1 receives the ACK of all the RLC PDUs corresponding to one complete RLC SDU fed back by the relay station 2a, in step 13, the RLC entity la of the base station 1 provides an indication to the PDCP entity 1b of the base station 1 Information (indication), the indication information is used to indicate that the PDCP entity lb of the base station 1 discards the PDCP SDU corresponding to the RLC Service Data Unit (SDU).
  • dication indication
  • step S14 the PDCP entity lb of the base station 1 discards the PDCP SDU corresponding to the RLC SDU, and further, if the PDCP PDU is buffered in the PDCP entity lb of the base station 1, the PDCP entity of the base station 1 is further included in step S14. Lb discards the PDCP PDU corresponding to the RLC SDU. Then, in step S15, the RLC entity of the relay station 2a re-segmentes or re-synthesizes the received RLC SDU, and wishes to transmit the corresponding RLC PDU to the mobile terminal 3 in step S16. However, in FIG.
  • step S16 is a dotted line, and there is a cross at the top, indicating that a handover occurs at this time, that is, the relay station 2a is not
  • the RLC PDU is transmitted to the mobile terminal 3, and step S16 does not actually occur.
  • step S17 the PDCP entity of the mobile terminal 3 does not receive the PDCP SDU.
  • step S14 the PDCP entity lb of the base station 1 has discarded the PDCP SDU, resulting in the loss of the PDCP SDU during the handover.
  • the foregoing handover includes handover within a cell, such as handover between a base station and a relay station under the jurisdiction of the base station, or handover of a mobile terminal between different relay stations under the jurisdiction of the same base station, including a cell Inter-switching, such as handover of a mobile terminal between different base stations (or relay stations under its jurisdiction).
  • a cell Inter-switching such as handover of a mobile terminal between different base stations (or relay stations under its jurisdiction).
  • step S15 may also occur before or between steps S12-S14.
  • the PDCP entity lb of the base station 1 deletes the corresponding PDCP SDU after the PDCP PDU transmitted by the base station 1 is successfully received by the relay station 2a. However, at this time, the UE may not have received the PDCP SDU. If the UE switches at this time, all of these PDCP SDUs that have been successfully received by the relay but have not been successfully received by the mobile terminal will be lost.
  • the relay station has a PDCP layer, so the PDCP entity in the relay station ensures the sequential transmission of the line data at the time of handover. Then, the PDCP SDU is buffered in the PDCP buffer of the relay station, and therefore, the PDCP SDU is not lost during the handover.
  • the entry of the tunnel that forwards the PDCP SDU that is not transmitted to the mobile terminal to the target base station is a relay station, and therefore, the PDCP SDU that is not transmitted to the mobile terminal and the new data are first transmitted from the source base station to the relay station, and then the relay station is tunneled to The target base station, thus wasting valuable radio resources and also increases the switching time.
  • Layer 3 trunks need to forward IP packets, and for some IP applications with a small payload size, IP header overhead is too large, such as VoIP services, messaging, and interactive games.
  • Another example is the relay below the RLC layer. Since the RLC entity is responsible for ARQ retransmission, and the RLC entity is not included in the relay station below the RLC layer, an end-to-end ARQ is performed between the base station and the mobile terminal. Therefore, until the PDCP SDU is successful When the base station forwards to the mobile terminal, and the base station receives the ACK message from the mobile terminal, the base station discards the PDCP SDU.
  • the size of its ARQ window is K times that of the single-hop ARQ retransmission scheme. Therefore, the existing SN length of the RLC PDU defined in 3GPP rel8 It may not be long enough.
  • end-to-end ARQ retransmission limits downlink throughput because retransmission always starts from the base station; further, the segmentation is performed at the RLC layer, and the upper layer packet can be segmented to fit the MAC layer packet.
  • the size, if there is no RLC entity, will lose the flexibility of scheduling.
  • the hop-by-hop NACK feedback mechanism there is also a problem that the ARQ window size is large, causing the problem that the RLC SN length defined in 3GPP rel 8 may not be sufficient, and limiting the throughput of the network.
  • the sender may not retransmit the RLC PDU. Therefore, it is necessary to design a mechanism for state synchronization of the two ends when the NACK message is lost, which will cause delay and downlink data transmission overhead.
  • the mapping between RLC PDUs received by the relay station and the transmitted RLC PDUs needs to be maintained in the relay station, thus requiring additional complexity and buffer space. Summary of the invention
  • the present invention proposes a method and apparatus.
  • the RLC entity of the base station when the next hop network device of the base station is a relay station, receives the acknowledgement message from the access relay station for confirming that the at least one PDCP PDU has been delivered to the terminal of the mobile terminal. And sending an indication message to the PDCP entity of the base station, where the PDCP entity that triggers the base station discards the PDCP SDU corresponding to the at least one PDCP PDU.
  • a terminal delivery acknowledgement message is generated when the access relay station receives a positive acknowledgment message from the mobile terminal for all RLC PDUs corresponding to the at least one PDCP PDU.
  • the status information of whether the buffered RLC SDU between the relay station and the base station is confirmed can be synchronized in an implicit manner.
  • a method for controlling downlink data transmission in a base station wherein the base station communicates with a mobile terminal via one or more relay stations, comprising the steps of: Road control layer to the path to the mobile terminal
  • the upper relay station transmits the respective radio link control layer PDUs corresponding to the one or more packet data convergence protocol layer PDUs; and determines, at the radio link control layer, whether the terminal delivery acknowledgement message is received, where the terminal
  • the acknowledgement message is sent to confirm that at least one of the one or more packet data convergence protocol layer PDUs has been delivered to the mobile terminal; after the radio link control layer receives the terminal acknowledgement message,
  • the radio link control layer sends the indication information to the packet data convergence protocol layer, where the indication information is used to indicate that the packet data convergence protocol layer discards the cache corresponding to the at least one packet data convergence protocol layer SDU/PDU.
  • Packet data convergence protocol layer SDU Packet data convergence protocol layer SDU;
  • a method for assisting a base station to control downlink data transmission in a relay station includes the following steps: Transmitting, by the convergence protocol layer PDU, each radio link control layer PDU to the mobile terminal; determining whether the mobile terminal is received from the mobile terminal and corresponding to at least one of the one or more packet data convergence protocol layer PDUs a positive acknowledgement message of each radio link control layer PDU; when receiving the positive acknowledgement message, sending a terminal acknowledgement message to the base station, wherein the terminal acknowledgement message is used to confirm the at least one A packet data convergence protocol layer PDU has been delivered to the mobile terminal.
  • FIG. 1 shows a schematic diagram of a downlink data transmission scheme based on RLC layer relay in the prior art
  • FIG. 2 is a schematic diagram showing a downlink data transmission scheme based on RLC layer relay according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a downlink data transmission scheme based on RLC layer relay, which is an example of transmission of two RLC SDUs according to an embodiment of the present invention
  • FIG. 4 is a block diagram of an apparatus for an RLC layer relay based downlink data transmission scheme in accordance with an embodiment of the present invention.
  • FIG. 2 there is shown a schematic diagram of a downlink data transmission scheme in accordance with an embodiment of the present invention.
  • 2 shows a base station 1 and two relay stations 2a and 2b, wherein the relay station 2a is an intermediate relay station, the relay station 2a is a first hop relay station on the downlink, and the relay station 2b is an access relay station (access Relay sataion ), relay station 2b is the second hop relay station on the downlink, that is, the relay station closest to mobile terminal 3.
  • the relay station 2b directly communicates with the mobile station 3.
  • step S200 the PDCP entity 1b of the base station 1 transmits a PDCP PDU to the RLC entity 1a of the base station 1.
  • the interaction of the information shown by the dashed lines following the arrow in step 200 is done by entities between different layers within the base station. Specifically, at the PDCP layer, the PDCP entity 1b of the base station 1 acquires the data packet transmitted by the IP layer, performs header compression based on, for example, the ROHC algorithm, and sequentially encapsulates the IP data packet in the order of transmission of the IP data packet, and puts the PDCP PDU header.
  • the sequence number of the PDCP PDU is added in order, the serial number of the PDCP PDU is also sequentially increased, and data encryption is performed to finally form the RLC entity of the PDCP PDIL base station 1
  • the PDCP layer lb from the upper layer, that is, the PDCP layer lb
  • the PDCP PDUs are sequentially segmented and/or concatenated to generate sequential RLC PDUs corresponding to one or more PDCP PDUs.
  • the information from the MAC layer may be based on radio resources allocated on the link between the base station 1 and the relay station 2a, such as time-frequency resources allocated for the link and transmission characteristics of the link such as link quality, and/or different The priority between the business is generated.
  • the RLC entity la of the base station 1 transmits each RLC PDU corresponding to one or more PDCP PDUs to the next-level relay station on the path to the mobile terminal 3.
  • the RLC entity la of the base station 1 transmits to the RLC entity of the relay station 2a the respective RLC PDUs corresponding to the one or more PDCP PDUs.
  • the PDCP entity lb of the base station 1 can also cache the acquired PDCP SDU. There is no obvious relationship between the step of the buffering and the step of the RLC layer transmitting the RLC PDU to the relay station 2a.
  • the PDCP entity lb may first transmit the PDCP PDU to the RLC entity 1a, and the RLC entity la splits/splices the PDCP PDU into one or After the multiple RLC PDUs are sent to the UE, the PDCP entity lb buffers the PDCP PDUs in order; or the PDCP entity lb first buffers the PDCP SDUs in order, and after the PDCP entity lb transmits the PDCP PDUs to the RLC entity la, the RLC entity la then disassembles the PDCP PDUs. Open/splicing into one or more RLC The PDU is sent to the UE.
  • step S202 the RLC entity of the relay station 2a transmits an ACK corresponding to each RLC PDU transmitted by the RLC entity 1a of the base station 1 to the peer entity of the base station 1, that is, the RLC entity 1a of the base station 1, the specific ACK.
  • the feedback process of /NACK is the same as that in the prior art, and therefore, it will not be described here.
  • the relay station 2a may, based on the information of the MAC layer from the relay station 2a, for example, the received RLC from the base station 1 according to the size of the transmission block (TB) indicated by the MAC layer of the relay station 2a.
  • One or more RLC SDUs of entity la are sequentially re-segmented and/or concatenation to generate sequential RLC PDUs corresponding to one or more RLC SDUs.
  • the information from the MAC layer may be based on radio resources allocated on the link between the relay station 2a and the relay station 2b, such as time-frequency resources allocated for the link, and transmission characteristics of the link such as link quality, and / Or the priority between different businesses is generated.
  • the resource allocation and/or transmission characteristics of the radio link between the base station 1 and the relay station 2a are likely to be different from the resource allocation and/or transmission characteristics of the radio link between the relay station 2a and the relay station 2b. Therefore, the RLC entity of the relay station 2a is also different in size from the RLC SDU segment size and the size of the segment of the RLC entity la of the base station 1 to the SDU of the RLC.
  • step S204 the relay station 2a transmits a re-segmented and/or spliced RLC PDU corresponding to one or more RLC SDUs to the relay station 2b.
  • step S205 the RLC entity of the relay station 2b transmits an ACK/NACK corresponding to each RLC PDU transmitted by the RLC entity of the relay station 2a to the RLC entity of the relay station 2a.
  • the relay station 2b may, based on the information of the MAC layer from the relay station 2b, for example, the received RLC from the relay station 2a according to the size of the transmission block (TB) indicated by the MAC layer of the relay station 2b.
  • One or more RLC SDUs of the entity are sequentially re-segmented and/or concatenated to generate respective RLC PDUs in sequence corresponding to one or more RLC SDUs.
  • the relay station 2b transmits re-segmented and/or spliced respective RLC PDUs corresponding to one or more RLC SDUs to the mobile terminal 3.
  • step S208 the access relay station 2b receives an ACK/NACK corresponding to each RLC PDU transmitted from the RLC entity of the relay station 2b, which is fed back from the mobile terminal 3.
  • step S209 the relay station 2b judges whether or not the ACK of each RLC PDU corresponding to the RLC SDU from the mobile terminal 3 is received, that is, the relay station 2b judges whether or not all the RLCs corresponding to the RLC SDU from the mobile terminal 3 are received.
  • ACK message of the PDU The RLC header of the RLC PDU includes indication information for indicating that the data portion of the RLC PDU includes several RLC SDUs or RLC SDU segments, and an end position of each RLC SDU or RLC SDU segment. Based on the above information, the RLC entity of the relay station 2b can determine when all RLC PDUs corresponding to a complete RLC SDU are received.
  • the relay station 2b When the relay station 2b determines in step S210 that the ACK of each RLC PDU corresponding to the RLC SDU is received, the relay station 2b transmits a terminal service acknowledgement message (User Equipment Delivery Acknowlegment) to the relay station 2a, wherein the terminal delivers the acknowledgement message It is used to confirm that the RLC SDU has been delivered to the mobile terminal 3.
  • the RLC SDU is a PDCP PDU.
  • the RLC SDU is exchanged between the RLC entity and the PDCP entity
  • the PDCP PDU is exchanged between the PDCP entity and the PDCP entity.
  • step S211 the relay station 2a transmits the terminal delivery acknowledgement message to the RLC entity la of the base station 1.
  • step S212 after the RLC entity 1a of the base station 1 receives the terminal acknowledgement message, the RLC entity 1a of the base station 1 sends indication information to the PDCP entity 1b of the base station 1, the indication information is used to indicate that the PDCP entity lb is discarded.
  • the interaction of the indicated indication information indicated by the dashed line following the arrow in the PDCP SDIL step 212 of the buffer is performed by an entity between different layers inside the base station.
  • the PDCP entity lb of the base station 1 discards the cache by the PDCP SDIL corresponding to the RLC SDU confirmed by the terminal acknowledgement message.
  • the PDCP SDU is pure data information that is not encrypted, and the PDCP PDU is the data packet after the PDCP SDU is encrypted. Since the data encryption algorithms of the respective base stations are different, generally, the PDCP SDU is buffered in the base station, and at the time of handover, the source base station transmits the unencrypted PDCP SDU to the target base station.
  • the step S211 further includes: deleting the PDCP PDU confirmed by the terminal delivery acknowledgement message from the cache.
  • step S300 the PDCP entity lb of the base station 1 transmits two RLC SDUs to the RLC entity la of the base station 1, which are RLC SDU1 and RLC SDU2, respectively.
  • the sequence number of the RLC SDU1 is smaller than the sequence number of the RLC SDU2. Therefore, in the subsequent segmentation and concatenation operations of each relay station, each relay station needs to ensure that the RLC SDU1 is always sorted before the RLC SDU2.
  • the RLC SDU1 is indicated by a diagonal line to distinguish it from the RLC SDU2.
  • the RLC entity la of the base station 1 is based on the information from the MAC layer of the base station 1, for example, according to the size of the Transmission Block (TB) indicated by the MAC layer and in the order of the sequence number (SN) of the PDCP PDU from the upper layer. That is, the PDCP PDU of the PDCP layer lb of the base station 1 is sequentially segmented and/or concatenation to generate three RLC PDUs, namely PI, P2 and P3.
  • the RLC entity la of the base station 1 combines the first segment of the RLC SDU1 into the data portion of the RLC PDU P1, and splicing the last segment of the RLC SDU1 and the first segment of the RLC SDU2 into the data of the RLC PDU P2.
  • the last segment of the RLC SDU 2 is formed into the data portion of the RLC PDU P3.
  • the RLC header portion of each RLC PDU includes length information for indicating each RLC SDU segment included in the data portion of the RLC PDU, that is, a Length Indicator field, and further includes a data field for indicating the RLC PDU.
  • step S301 the RLC entity la of the base station 1 sequentially transmits the RLC PDUs P1, P2, and P3 to the relay station 2a.
  • step S302 when the relay station 2a passes the CRC check or the like to verify that the PI, P2 and P3 are successfully received, the RLC entity of the relay station 2a transmits the RLC entity la of the base station 1 to the RLC entity la of the base station 1 ACK corresponding to each RLC PDU PK P2 and P3.
  • the relay station 2a may adopt a Stop-and-Wait (SAW) ARQ scheme, or may adopt a Go-Back-N ARQ scheme or a selective retransmission ARQ scheme to send an ACK message.
  • SAW Stop-and-Wait
  • the order of the RLC PDUs PI, P2 and P3 from the peer RLC entity la of the base station 1 correctly received by the RLC entity of the relay station 2a may be out of order, for example, the RLC entity of the relay station 2a first correctly receives the RLC SDU2 The corresponding RLC PDUs P2 and P3, because the check RLC PDU P1 is incorrect, the base station 1 is required to retransmit the RLC PDU P1, so the relay station 2a receives the RLC PDU P1 corresponding to the RLC SDU1.
  • the RLC entity of the relay station 2a needs to reorder the received RLC PDUs, so that the reordered RLC PDUs are sequentially incremented according to the sequence number of the RLC PDUs, that is, in the order of increasing the sequence numbers of the RLC SDUs, That is, the order of RLC PDU1, PDU2, and PDU3.
  • the order of the RLC PDUs received by the relay station 2a has been sequentially increased in the order of the SNs of the RLC PDUs, the above-described reordering steps may be omitted.
  • the relay station 2a sequentially, according to the information of the MAC layer from the relay station 2a, sequentially, according to the size of the transport block (TB) indicated by the MAC layer, sequentially the RLC PDUs from the RLC entity la of the base station 1 are sequentially arranged. Segmentation and/or concatenation are performed to generate 5 RLC PDUs, namely ⁇ , ⁇ 2, ⁇ 3, ⁇ 4, and ⁇ 5.
  • the RLC entity of the relay station 2a forms the first segment of the RLC SDU1 into the data portion of the RLC PDU
  • the second segment of the RLC SDU1 constitutes the data portion of the RLC PDU P2
  • the last one of the RLC SDU 1 Segmentation constitutes the data portion of the RLC PDU P3', which will be the first of the RLC SDU2
  • the segments form the data portion of the RLC PDU P4'
  • the last segment of the RLC SDU 2 constitutes the data portion of the RLC PDU P5'.
  • the transmission characteristics of resources and links on the radio link between the base station 1 and the relay station 2a are different from the transmission characteristics of resources and links on the radio link between the relay station 2a and the relay station 2b. Therefore, the same RLC SDU1 and RLC SDU2 are different in the number of RLC PDUs divided by the RLC entity la of the base station and the number of RLC PDUs divided by the RLC entity of the relay station 2a.
  • step S303 the relay station 2a transmits the re-segmented 5 RLC PDUs P, P2, P3, P4, and P5 to the relay station 2b.
  • step S304 when the relay station 2b passes the CRC check or the like, and the verification succeeds in receiving ⁇ , ⁇ 2, ⁇ 3, ⁇ 4, and ⁇ 5, the RLC entity of the relay station 2b transmits the relay station 2a to the RLC entity of the relay station 2a.
  • the relay station 2b sequentially performs the RLC PDUs of the RLC entities from the relay station 2a sequentially arranged according to the information of the MAC layer from the relay station 2b, for example, according to the size of the transmission block (TB) indicated by the MAC layer. Segmentation and/or concatenation to generate 3 RLC PDUs, ⁇ , ⁇ 2" and ⁇ 3". That is, the RLC entity of the relay station 2b combines all the RLC SDU1s into the data portion of the RLC PDU P1 ", the first segment of the RLC SDU2 constitutes the data portion of the RLC PDU P2", and the last segment of the RLC SDU2 constitutes the RLC. The data portion of the PDU P3". Therefore, in step S305, the relay station 2b transmits the re-segmented 3 RLC PDUs P1 ", P2" and P3" to the mobile terminal 3.
  • step S306 the mobile terminal 3 checks the discovery error for the RLC PDU P1, and does not find an error for the P2" and P3" check. Therefore, the RLC entity of the mobile terminal 3 transmits to the RLC entity of the relay station 2b. P2 "and P3" ACK, ⁇ , NACK.
  • step S307 the RLC entity of the relay station 2b retransmits the RLC PDU ⁇ .
  • step S308 the mobile terminal 3 passes the check to find that the received RLC PDU P1 is "correct”, then the RLC entity of the mobile terminal 3 sends the RLC entity of the relay station 2b to the RLC entity of the relay station 2b.
  • RLC PDU P1,, ACK the RLC entity of the relay station 2b
  • an implicit RLC SDU indication may be employed. That is, the sequence number of the explicit RLC PDU is not required to be included in the terminal delivery message.
  • the list sorts all unconfirmed RLC SDUs in order of increasing SNs of the RLC PDUs.
  • the order of arrangement of the RLC SDUs is the same as the order of the PDCP layer lb buffer PDCP SDU of the base station 1.
  • the PDCP layer 1b of the base station 1 maintains a list of buffered PDCP SDUs in the order of IP data packets acquired from the upper layer of the PDCP layer of the base station, that is, the IP layer.
  • the RLC layer 1a of the base station also sequentially transmits the PDCP transmitted by the PDCP layer.
  • the PDUs are grouped to generate RLC PDUs. Therefore, the list of the base stations 1 coincides with the order in the relay station 2b, and the starting positions are identical. Therefore, although the serial number of the RLC PDU is different from the serial number of the PDCP PDU, their order is the same. Therefore, the implicit relay station 2b that does not need the SN including the RLC PDU can be implemented by the first RLC SDU defined in the list of the relay station 2b being the first RLC SDU that has not been confirmed by the terminal acknowledgement message. Whether the RLC SDU between the base stations 1 is successfully synchronized with the information of the mobile terminal.
  • the relay station 2b when the relay station 2b receives the RLC PDUs ⁇ , ⁇ 2, ⁇ 3, ⁇ 4, and ⁇ 5 from the relay station 2a, it first marks the corresponding RLC SDU1 and RLC SDU 2 as unacknowledged delivery terminals. , ie, UE unacknowlegement.
  • the RLC SDU1 is the first unacknowledged PDCP PDU from the order of transmission by the base station
  • the RLC SDU2 is the second unacknowledged PDCP PDU from the order of transmitting by the base station.
  • the RLC SDU1 and the RLC SDU2 represent two PDCP PDUs that are consecutive in order of transmission from the base station starting from the first unacknowledged PDCP PDU in the order in which the base station transmits.
  • the relay station 2b confirms receipt of all RLC PDUs corresponding to the RLC SDU1 and the RLC SDU 2 from the mobile terminal 3, that is, the relay station 2b receives the confirmation message of the RLC PDU ⁇ , ⁇ 2" and ⁇ 3" Thereafter, according to the Framing Indication included in the header of the RLC PDU, the relay station 2b knows that the first byte of the data portion of the RLC PDU is corresponding to an RLC.
  • the first byte of the SDU and the last byte of the data portion of the RLC PDU ⁇ correspond to the last byte of the RLC SDU. According to the FI information of the header of the RLC PDU P2, the RLC PDU ⁇ 2" is known.
  • the first byte of the data portion corresponds to the first byte of an RLC SDU and the last byte of the data portion of the RLC PDU ⁇ 2" corresponds to the non-last byte of the RLC SDU, and the relay station 2b according to the RLC PDU P3 "FI information of the header, the first byte of the data portion of the RLC PDU P3" corresponds to the non-first byte of an RLC SDU and the last byte of the data portion of the RLC PDU P3" corresponds The last byte of the RLC SDU.
  • the RLC entity of the relay station 2b knows that the RLC PDU ⁇ corresponds to a complete RLC SDU, and the data portions of the RLC PDU P2" and RLC PDU P3" constitute a complete RLC SDU. Therefore, the RLC entity of the relay station 2b marks the RLC SDU1 and the RLC SDU2 as "being acknowledged to the terminal", for example, being UE acknowledged
  • the RLC entity of the relay station 2b generates a terminal delivery message (UD ACK), and the terminal delivery message includes a plurality of PDCPs consecutively transmitted by the base station starting from the first unacknowledged PDCP PDU in the order of transmission by the base station.
  • the number of PDUs that is, two.
  • the relay station 2a transmits the UD ACK ( 2 ) to the RLC entity of the relay station 2a, wherein 2 in parentheses indicates that the base station transmits the first unacknowledged PDCP PDU in the order of transmission by the base station.
  • the number of consecutive PDCP PDUs is two.
  • the RLC entity of the relay station 2b marks the RLC SDU1 and the RLC SDU2 as "confirmed delivery terminals", for example, the UE acknowledged.
  • step S311 the relay station 2a forwards the UD ACK ( 2 ) to the RLC entity la of the base station 1.
  • step S312 after the RLC entity 1a of the base station 1 receives the terminal acknowledgement message, the RLC entity 1a of the base station 1 sends the indication information to the PDCP entity 1b of the base station 1, the indication information is used to indicate that the PDCP entity lb is discarded.
  • step S313 the PDCP entity lb of the base station 1 discards the PDCP SDU corresponding to the first two PDCP PDUs confirmed by the terminal delivery acknowledgement message. If the first two PDCP PDUs are buffered in the base station, the base station 1 also deletes the corresponding PDCP PDU.
  • the UD ACK message in the above embodiment is used to indicate that the first K RLC SDUs are acknowledged to be delivered to the terminal.
  • the format of the UD ACK message may also be designed such that the UD ACK message does not need to carry the number of consecutive RLC SDUs of the acknowledged delivery terminal, that is, the UD ACK message indicates the relay station at this time. 2b performs a feedback terminal delivery acknowledgement message only for the first unacknowledged RLC SDU message in the list at a time.
  • the relay station 2b when the relay station 2b receives the ACK message corresponding to the RLC SDU1, the relay station 2b immediately feeds back the UD ACK message to the relay station 2a, indicating that the first one of the UD ACK messages has not been acknowledged.
  • the RLC SDU has been confirmed.
  • the PDCP layer lb of the base station 1 deletes the cached first PDCP SDIL.
  • the mobile terminal 3 has successfully received all of the RLC PDUs P2" and P3" corresponding to the RLC SDU 2, and the corresponding ACK is fed back in step S306.
  • the relay station 2b must wait until receiving all the RLC PDUs corresponding to the RLC SDU1.
  • the UD ACK message can be fed back to the base station.
  • a bit map may be adopted.
  • the relay station 2b receives an ACK of all RLC PDUs corresponding to the RLC SDU 2 from the mobile terminal 3, and receives the corresponding RLC SDU 1
  • the NACK of the RLC PDU can set the first bit in the bitmap to 0, and the second bit to 1 to indicate that the UD ACK of the SDU 1 is not received, and the UD ACK of the SDU 2 is received.
  • the UD ACK is sent.
  • the relay station 2b transmitting the UD ACK message is not limited to the above-described bitmap mode or implicit manner. You can also use other information expressions to send UD ACK messages, for example. For example, the run-length (RLE) method is used.
  • RLE run-length
  • a tunnel needs to be established between the source base station, e.g., base station 1 and the target base station.
  • the PDCP entity lb of the base station 1 will transmit to the PDCP entity of the target base station all PDCP SDILs that are not successfully acknowledged by the RLC entity la of the base station 1 for the mobile terminal to be accessed by the relay station, because only the RLC entity of the base station 1 receives
  • the PDCP entity lb of the base station 1 transmits an indication message indicating the successful transmission of the PDCP PDU, and then the PDCP entity 1b of the base station 1 discards the corresponding PDCP SDU.
  • the status information of whether the user data in the PDCP entity lb of the base station 1 is successfully received by the terminal is accurate because it is synchronized with the state of the mobile terminal, thereby avoiding the prior art, the base station 1 may not deliver the data in the mobile station.
  • the data is discarded at the PDCP layer before the terminal, causing data loss during the handover. Therefore, it is possible to ensure the sequential transmission at the time of switching.
  • FIG. 4 shows a block diagram of a device in accordance with an embodiment of the present invention.
  • the control device 10 is located in the base station 1.
  • the control device 10 includes a first transmitting device 100, a first determining device 101, a providing device 102, and a discarding device 103.
  • the auxiliary device 20 is located in the relay station 2b.
  • the auxiliary device 20 includes a second transmitting device 200, a second judging device 201, and a third transmitting device 202.
  • the PDCP entity lb of the base station 1 transmits the PDCP PDU to the RLC entity la of the base station 1. Specifically, at the PDCP layer, the PDCP entity 1b of the base station 1 acquires the data packets transmitted by the IP layer, performs header compression based on, for example, the ROHC algorithm, and sequentially encapsulates the IP data packets in the order of transmission of the IP data packets, and puts the PDCP PDU header. (header), and sequentially add the sequence number of the PDCP PDU in the PDCP PDU header. The serial number of the PDCP PDU is also sequentially increased, and data encryption is performed to form PDCP PDIL.
  • the RLC entity la of the base station 1 is based on the information of the MAC layer from the base station 1, for example, according to the size of the transmission block (TB) indicated by the MAC layer.
  • the PDCP PDUs from the upper layer that is, the PDCP layer lb, are sequentially segmented and/or concatenated in the order of the sequence number (SN) of the PDCP PDUs to generate corresponding sequences corresponding to one or more PDCP PDUs.
  • the information from the MAC layer may be based on radio resources allocated on the link between the base station 1 and the relay station 2a, such as time-frequency resources allocated for the link and transmission characteristics of the link such as link quality, and/or different The priority between the business is generated.
  • the first transmitting device 100 transmits each RLC PDU corresponding to one or more PDCP PDUs to the next-level relay station on the path to the mobile terminal 3.
  • the first transmitting device 100 transmits each RLC PDU corresponding to the one or more PDCP PDUs to the RLC entity of the relay station 2a.
  • the PDCP entity 1b of the base station 1 may further include a memory for buffering the acquired PDCP SDIL.
  • the step of storing the memory buffer has no obvious relationship with the step of transmitting the RLC PDU by the first transmitting device 100.
  • the PDCP entity 1b may firstly forward to the RLC.
  • the entity la transmits the PDCP PDU.
  • the memory then buffers the PDCP PDUs in order; or the memory caches the PDCP SDUs in order, and the PDCP entity lbs to the RLC.
  • the RLC entity la then splits/splices the PDCP PDU into one or more RLC PDUs and sends them to the UE.
  • the second transmitting device 200 in the relay station 2b can refer to the information from the MAC layer of the relay station 2b, for example, according to the size of the transmission block (TB) indicated by the MAC layer of the relay station 2b, the received from the relay station 2a.
  • One or more RLC SDUs of the RLC entity are sequentially re-segmented and/or concatenation to generate sequential RLC PDUs corresponding to one or more RLC SDUs.
  • the information from the MAC layer may be based on radio resources allocated on the link between the relay station 2a and the relay station 2b, such as time-frequency resources allocated for the link, and transmission characteristics of the link such as link quality, and / Or the priority between different businesses is generated.
  • the second transmitting device 200 transmits the re-segmentation and/or splicing to the mobile terminal 3.
  • Each RLC PDU corresponding to one or more RLC SDUs.
  • the access relay station 2b receives the ACK/NACK corresponding to each RLC PDU transmitted from the RLC entity of the relay station 2b fed back from the mobile terminal 3.
  • the second judging means 201 judges whether or not an ACK of each RLC PDU corresponding to the RLC SDU from the mobile terminal 3 is received, that is, the second judging means 201 judges whether or not all of the RLC SDUs corresponding to the RLC SDU from the mobile terminal 3 are received.
  • ACK message of the RLC PDU The RLC header of the RLC PDU includes indication information for indicating that the data portion of the RLC PDU includes several RLC SDUs or RLC SDU segments, and an end position of each RLC SDU or RLC SDU segment. Based on the above information, the second judging means 201 can judge when all RLC PDUs corresponding to a complete RLC SDU are received.
  • the third transmitting means 202 transmits a terminal service acknowledgement message (User Equipment Delivery Acknowlegement) to the relay station 2a, wherein the terminal delivers the acknowledgement
  • the message is used to confirm that the RLC SDU has been delivered to the mobile terminal 3.
  • the RLC SDU is a PDCP PDU.
  • the RLC SDU is exchanged between the RLC entity and the PDCP entity, and the PDCP PDU is exchanged between the PDCP entity and the PDCP entity.
  • the relay station 2a transmits the terminal delivery confirmation message to the RLC entity la of the base station 1.
  • the providing device 102 sends the indication information to the PDCP entity 1b of the base station 1, the indication information is used to indicate the PDCP.
  • the entity lb discards the buffered PDCP SDU corresponding to the RLC SDU (PDCP PDU).
  • the discarding device 103 discards the buffered PDCP SDU corresponding to the RLC SDU confirmed by the terminal delivery acknowledgement message.
  • the PDCP SDU is pure data information that is not encrypted, and the PDCP PDU is a data packet that is encrypted by the PDCP SDU. Since the data encryption algorithms of the respective base stations are different, generally, the PDCP SDU is buffered in the base station, and at the time of handover, the source base station transmits the unencrypted PDCP SDU to the target base station. Of course, when the base station also caches the confirmation confirmed by the terminal delivery acknowledgement message The PDCP PDU, the discarding device 103 also deletes the PDCP PDU confirmed by the terminal delivery acknowledgement message from the cache.

Description

多跳中继通信系统中对下行数据传输控制
的方法和装置 技术领域
本发明涉及通信领域, 尤其涉及多跳中继通信系统中对下行数据 传输进行控制的方法和装置。 背景技术
为了扩展无线网络覆盖和增加系统吞吐量, 尤其是提高小区边缘用 户的吞吐量, 采用多跳中继方式作为下一代移动网络的关键技术。
在切换的过程中, 无缝切换和低延迟是确保服务水平的重要因素。 当在无线接入网络 ( Radio Access Network ) 中引入中继节点 (Relay Node ), 例如中继站(Relay Station, RS )时, 如何实现有效的切换是一 个重要的问题, 因为需要解决中继站工作在哪一层的问题: 例如, 中继 站是工作在网络层(也即层 3中继, L3 relay ), 还是工作在数据链路层
(也即, 层 2中继, L2 relay )。 当发生切换时, 移动终端仍然要求数据 的按顺序传输 ( data transmission in sequence ), 因此, 在源基站或中继站 中緩存的下行数据应该转发至目的基站或中继站。 所述按顺序传输, 意 味着接收端将数据包递交给上层的顺序与发送端从上层接收数据包的 顺序相同, 而发送端从上层接收数据包的顺序是和数据包的序列号
( Sequence Number, SN ) 所标识的顺序相同的。
首先考虑单跳的场景, 即移动终端与基站直接通信。 分组数据汇聚 协议层( Packet Data Convergence Protocol, PDCP )用于确保下行数据的 按顺序传输。 在切换准备阶段, 将在源基站与目的基站之间建立隧道。 在切换时, 源基站按顺序将所有的未被终端所确认的下行 PDCP层的 SDU或 PDU转发至目标基站,同时,源基站将通过 S1接口( MME/S-GW 网管与基站之间的接口)接收的新到的数据转发给目的基站, 直至路径 切换 ( path switch )成功, 然后月良务网关 ( Serving gateway, S-GW ) 直 接向目标基站发送数据。 因此, 目标基站能够得知发生切换时的下行 PDCP层的由 SN所标识的 PDCP数据包的状态, 并且不会丢失任何下 行业务数据。
然而, 当移动终端与中继站直接通信, 而非直接与基站通信时, 情 形有所不同。 在众多的中继方案中, RLC层 (RLC位于层 2, layer 2 ) 中继的方案受到许多提案的青睐。 所谓 RLC层中继, 也即, 中继站为层 2设备, 中继站可以提供 RLC层、 MAC层, PHY层的服务。 然而, 对 于 RLC层中继, 如果使用原有的 3GPP机制, 在切换时, 下行数据的按 顺序传输可能被破坏。
图 1示出了现有技术中,基于 RLC层中继的下行数据传输方案的示 意图。 图 1示出了逐跳式反馈重发(ARQ, Automatic Repeat ReQuest ) 重传的场景。 在步骤 S10中, 基站 1中的 PDCP实体 lb向其低层 RLC 实体 la提供 PDCP层 PDU。然后,基站 1的 RLC实体 la对 PDCP PDU 进行分段或者连接, 以封装成一个或多个 RLC PDU,并在步骤 S11中将 该一个或多个 RLC PDU提供给中继站 2a中的对等实体,也即中继站 2a 中的 RLC实体。 当中继站 2a接收了该一个或多个 RLC PDU时, 中继 站 2a在步骤 S12中向基站 1的 RLC实体 la发送对应的肯定确认消息 ( ACK )或者否定确认消息( NACK ), 重传 ARQ机制是本领域技术人 员已知的。在此不予赘述。 当基站 1的 RLC实体 la接收到中继站 2a所 反馈的与一个完整的 RLC SDU相对应的所有 RLC PDU的 ACK后, 在 步骤 13中, 基站 1的 RLC实体 la向基站 1的 PDCP实体 lb提供指示 信息 ( indication ), 该指示信息用于指示基站 1的 PDCP实体 lb丢弃与 RLC业务数据单元( Service Data Unit, SDU )相对应的 PDCP SDU。 因 此, 在步骤 S14中, 基站 1的 PDCP实体 lb丢弃与 RLC SDU相对应的 PDCP SDU, 此外, 如果基站 1的 PDCP实体 lb中緩存了 PDCP PDU, 则在步骤 S14中还包括基站 1的 PDCP实体 lb丢弃与 RLC SDU相对应 的 PDCP PDU。 然后, 在步骤 S15中, 中继站 2a的 RLC实体对接收到 的 RLC SDU进行重分段或者重合并,并希望在步骤 S16中将对应的 RLC PDU发送给移动终端 3。 然而, 在图 1中, 步骤 S16的箭头为点划线, 且上方有叉, 表示此时发生了切换(handover ), 也即, 中继站 2a未将 RLC PDU发送至移动终端 3,步骤 S16实际并未发生。则在步骤 S17中, 移动终端 3的 PDCP实体未接收到 PDCP SDU。 而从图 1中可以看出, 在步骤 S14中, 基站 1的 PDCP实体 lb已经将该 PDCP SDU丢弃, 则 造成了在切换过程中的 PDCP SDU的丢失。上述的切换包括在小区内部 的切换, 如移动终端在基站与该基站所辖的中继站之间的切换, 或者移 动终端在由同一个基站所辖的不同的中继站之间的切换, 也包括小区之 间的切换, 如移动终端在不同基站 (或所辖的中继站)之间的切换。 图 1中, 当中继站 2a在步骤 S11中接收到来自基站 1的 RLC PDU, 就可 以对 RLC SDU进行重分段或者重合并, 因此, 步骤 S15也可以发生在 步骤 S12-S14之前或者之间。
因此, 当移动终端 3直接与中继站 2通信时, 且采用逐跳式 ARQ 方式时,基站 1的 PDCP实体 lb在其发送的 PDCP PDU被中继站 2a成 功接收后, 就删除对应的 PDCP SDU。 但是, 此时 UE可能还未接收到 该 PDCP SDU。 如果此时 UE进行切换, 所有这些已经被中继站成功接 收但尚未被移动终端成功接收的 PDCP SDU将丢失。
其他的中继方案,例如层三中继或者在 RLC层以下的中继中可能不 存在上述的问题, 但是每个方案也有各自的不足之处。
例如,对于层三中继,中继站具有 PDCP层,因此由中继站中的 PDCP 实体确保在切换时的行数据的按顺序传输。则 PDCP SDU緩存在中继站 的 PDCP緩存中, 因此, 在切换时不会造成 PDCP SDU的丢失。 但是, 向目标基站转发未传送至移动终端的 PDCP SDU 的隧道的入口是中继 站, 因此, 未传送至移动终端的 PDCP SDU以及新的数据首先从源基站 传送至中继站, 然后中继站再通过隧道传送至目标基站, 因此浪费了宝 贵的无线资源此外还增加了切换时间。 此外, 层三中继需要转发 IP数据 包, 而对于一些载荷 4艮小的 IP应用来说, IP包头的开销过大, 例如, VoIP业务, 消息和互动游戏等。
又如, 在 RLC层以下的中继。 因为 RLC实体是负责 ARQ重传的, 而在 RLC层以下的中继站中不包含 RLC实体, 因此, 在基站与移动终 端之间进行端到端 (end-to-end ) 的 ARQ。 因此, 直到 PDCP SDU成功 转发至移动终端, 且基站收到来自移动终端反馈的 ACK消息时, 基站 才会将该 PDCP SDU丢弃。 然而, 对于端到端的 ARQ重传方案, 对于 K跳中继, 其 ARQ窗口的尺寸是单跳式 ARQ重传方案的 K倍, 因此, 现有的在 3GPP rel8中定义的 RLC PDU的 SN长度可能不够长。 此外, 端到端的 ARQ重传限制了下行的吞吐量, 因为重传总是从基站开始; 再者, 分段是在 RLC层进行的, 可以将上层的数据包分段以适合 MAC 层数据包的大小, 如果没有 RLC实体, 将失去调度的灵活性。
另夕卜, 对于端到端的 ACK, 逐跳式的 NACK反馈机制, 同样存在 ARQ窗口尺寸大的问题,造成 3GPP rel 8中定义的 RLC SN长度可能不 够的问题, 并且限制了网络的吞吐量。 此外, 如果 NACK消息丢失, 发 送端可能不会重传 RLC PDU, 因此需要设计在 NACK消息丢失时的两 端的状态同步的机制, 这将造成延迟和下行数据传输的开销。 此外, 还 需要在中继站中维护中继站所接收到的 RLC PDU和传输的 RLC PDU之 间的映射关系, 因此需要额外的复杂度和緩存空间。 发明内容
为了解决现有技术中存在的上述问题, 本发明提出了方法和装 置。
根据本发明的方案, 当基站的下一跳网络设备是中继站时, 基站 的 RLC实体接收到来自接入中继站的用于确认至少一个 PDCP PDU 已送达所述移动终端的终端送达确认消息后, 向基站的 PDCP实体发 送指示消息, 用于触发基站的 PDCP实体丢弃与至少一个 PDCP PDU 对应的 PDCP SDU。 当接入中继站收到来自移动终端的与至少一个 PDCP PDU相对应的所有 RLC PDU的肯定确认消息后, 生成终端送 达确认消息。 优选地, 可以采用隐含的方式同步接入中继站和基站之 间緩存的 RLC SDU是否被确认的状态信息。
根据本发明的第一方面, 提供了一种在基站中用于控制下行链路 的数据传输的方法, 其中, 所述基站经由一个或多个中继站与移动终 端通信, 包括以下步骤: 在无线链路控制层向通往所述移动终端路径 上的下一级中继站发送与一个或多个分组数据汇聚协议层 PDU相对 应的各个无线链路控制层 PDU;在无线链路控制层判断是否接收到终 端送达确认消息, 其中, 所述终端送达确认消息用于确认所述一个或 多个中的至少一个分组数据汇聚协议层 PDU 已送达所述移动终端; 当所述无线链路控制层接收到所述终端送达确认消息后, 所述无线链 路控制层向分组数据汇聚协议层发送指示信息, 所述指示信息用于指 示所述分组数据汇聚协议层丢弃緩存的与所述至少一个分组数据汇 聚协议层 SDU/PDU相对应的分组数据汇聚协议层 SDU;
根据本发明的第二方面, 提供了一种在中继站中用于辅助基站控 制下行数据传输的方法, 其中, 所述中继站用于接入移动终端, 包括 以下步骤: 将与一个或多个分组数据汇聚协议层 PDU相对应的各个 无线链路控制层 PDU发送给所述移动终端; 判断是否接收到来自所 述移动终端的与所述一个或多个中的至少一个分组数据汇聚协议层 PDU相对应的各个无线链路控制层 PDU的肯定确认消息; 当接收到 所述肯定确认消息时, 向所述基站发送终端送达确认消息, 其中, 所 述终端送达确认消息用于确认所述至少一个分组数据汇聚协议层 PDU已送达所述移动终端。
根据本发明的方案, 具有如下优势:
1. 解决了 RLC层中继可能出现的由于切换造成的经由中继站接 入的移动终端的下行用户数据的丢失;
2. 不会影响现有的采用逐跳式的 ARQ 重传方式的下行数据传
3. 不需要额外的时序, 也不需要额外的数据传输;
4. 因为引入的确认消息大小很小, 因此具有很小的协议代价;
5. 因为在用户终端侧不需要进行改动, 而仅仅在现有的中继链 路, 也即 Un接口的信令进行改动, 具有良好的后向兼容性。 附图说明
通过参照附图阅读以下所作的对非限制性实施例的详细描述, 本发 明的其它特征、 目的和优点将会变得更明显。
图 1示出了现有技术中基于 RLC层中继的下行数据传输方案的示 意图;
图 2示出了根据本发明的一个具体实施方式的基于 RLC层中继的 下行数据传输方案的示意图;
图 3示出了才艮据本发明的一个具体实施方式的以两个 RLC SDU的 传输为例的基于 RLC层中继的下行数据传输方案的示意图;
图 4示出了根据本发明的一个具体实施例的基于 RLC层中继的下 行数据传输方案的装置框图。
其中,相同或相似的附图标记表示相同或相似的步骤特征或装置 /模块。 具体实施例
参照图 2, 图 2示出了根据本发明的一个具体实施方式的下行数 据传输方案的示意图。 图 2中示出了基站 1 以及 2个中继站 2a和 2b, 其中, 中继站 2a为中间中继站 ( intermediate relay station ), 中继站 2a 是下行链路上的第一跳中继站, 中继站 2b为接入中继站(access relay sataion ), 中继站 2b是下行链路上的第二跳中继站, 也即, 最靠近移动 终端 3的中继站。 在本实施例中, 中继站 2b直接与移动站 3进行通信。 为了便于说明, 在本实施例中仅仅示出了 2个中继站, 在实际的多跳中 继的通信系统中, 基站与移动终端之间的中继站可能为一个或多个。 在 图 2中,我们示出了基站 1中的无线链路控制层实体 la和分组数据汇聚 协议层实体 lb。 本领域技术人员可以理解, PDCP层和 RLC层均属于 数据链路层 ( Data Link layer, 也即层 2, L2 )。 本领域技术人员可以 理解, 基站 1还包含物理层、 IP层以及高层的实体, 因为这些实体与 本发明的相关程度不大,因此,在图 2中未示出其他实体。其中, PDCP 实体 lb位于 RLC实体 la的上层, PDCP实体和 RLC实体均为逻辑实 体, 可以由软件模块实现。 基站 1的 PDCP实体 lb的对等实体位于 移动站 3中, 基站 1的 RLC实体 la的对等实体位于中继站 2a、 中继 站 2b和移动终端 3中。
以下, 参照图 2, 对本发明的系统方法流程进行描述。 如图 2所 示, 在步骤 S200中, 基站 1的 PDCP实体 lb向基站 1的 RLC实体 1 a传输 PDCP PDU。步骤 200中的箭头后面的虚线所示的信息的交互 是在基站内部的不同层之间的实体完成的。 具体地, 在 PDCP层, 基 站 1的 PDCP实体 lb获取 IP层传递的数据包, 进行基于例如 ROHC 算法的头压缩, 按照 IP数据包的传输的顺序依次对 IP数据包进行封 装, 打上 PDCP PDU包头 ( header ), 并在 PDCP PDU包头中按照顺 序加入 PDCP PDU的序列号( Sequence Number ), 该 PDCP PDU的序 号也是按序依次递增的, 并进行数据加密, 最终形成 PDCP PDIL 基站 1的 RLC实体 la根据来自基站 1的 MAC层的信息,例如, 才艮据 MAC层所指示的传输块(Transmission Block, TB )的大小并按 照 PDCP PDU的序号( SN )的顺序对来自上层也即 PDCP层 lb的 PDCP PDU依次进行分段 ( segmentation )和 /或拼接 ( concatenation ), 以生 成与一个或多个 PDCP PDU相对应的按照顺序的各个 RLC PDU。 该 来自 MAC层的信息可以根据在基站 1与中继站 2a之间的链路上分配 的无线资源例如为该链路分配的时间 -频率资源以及链路的传输特性 如链路质量,和 /或不同业务之间的优先级等生成。 然后,在步骤 S201 中, 基站 1的 RLC实体 la向通往移动终端 3路径上的下一级中继站 发送与一个或多个 PDCP PDU相对应的各个 RLC PDU。 在本实施例 中, 基站 1的 RLC实体 la向中继站 2a的 RLC实体发送与该一个或 多个 PDCP PDU相对应的各个 RLC PDU。
基站 1的 PDCP实体 lb还可以緩存获取的 PDCP SDU。 该緩存 的步骤与 RLC层向中继站 2a发送 RLC PDU的步骤之间并没有明显 的先后关系, PDCP实体 lb可以先向 RLC实体 la传输 PDCP PDU, RLC实体 la将 PDCP PDU拆开 /拼接为一个或多个 RLC PDU向 UE 发送后, PDCP实体 lb再按顺序緩存 PDCP PDU; 或者 PDCP实体 lb先按顺序緩存 PDCP SDU, PDCP实体 lb向 RLC实体 la传输 PDCP PDU后, RLC实体 la再将 PDCP PDU拆开 /拼接为一个或多个 RLC PDU向 UE发送。
然后, 在步骤 S202中, 中继站 2a的 RLC实体向基站 1的对等 实体, 也即基站 1的 RLC实体 la发送与基站 1的 RLC实体 la所发 送的各个 RLC PDU相对应的 ACK, 具体的 ACK/NACK的反馈过程 与现有技术中的步骤相同, 因此, 在此不予赘述。
接着,在步骤 S203中,中继站 2a可以根据来自中继站 2a的 MAC 层的信息, 例如, 根据中继站 2a 的 MAC 层所指示的传输块 ( Transmission Block, TB ) 的大小对接收到的来自基站 1的 RLC实 体 la的一个或多个 RLC SDU依次重新进行分段 ( segmentation ) 和 / 或拼接 (concatenation ), 以生成与一个或多个 RLC SDU相对应的按 照顺序的各个 RLC PDU。 该来自 MAC层的信息可以根据在中继站 2a与中继站 2b之间的链路上分配的无线资源, 例如为该链路分配的 时间 -频率资源, 以及链路的传输特性如链路质量, 和 /或不同业务之 间的优先级等生成。 本领域技术人员可以理解, 因为基站 1与中继站 2a之间的无线链路的资源分配和 /或传输特性与中继站 2a与中继站 2b 之间的无线链路的资源分配和 /或传输特性很可能不同, 因此, 中继站 2a的 RLC实体对 RLC SDU分段大小与基站 1的 RLC实体 la对 RLC 的 SDU的分段的大小也相应地不同。
然后, 在步骤 S204中, 中继站 2a向中继站 2b发送重新分段和 / 或拼接的与一个或多个 RLC SDU相对应的 RLC PDU。
在步骤 S205中, 中继站 2b的 RLC实体向中继站 2a的 RLC实 体发送与中继站 2a的 RLC 实体所发送的各个 RLC PDU相对应的 ACK/NACK。
然后,在步骤 S206中,中继站 2b可以根据来自中继站 2b的 MAC 层的信息, 例如, 根据中继站 2b 的 MAC 层所指示的传输块 ( Transmission Block, TB ) 的大小对接收到的来自中继站 2a的 RLC 实体的一个或多个 RLC SDU依次重新进行分段 ( segmentation ) 和 / 或拼接 (concatenation ), 以生成与一个或多个 RLC SDU相对应的按 照顺序的各个 RLC PDU。 然后, 在步骤 S207中, 中继站 2b向移动终端 3发送重新分段和 /或拼接的与一个或多个 RLC SDU相对应的各个 RLC PDU。
然后, 在步骤 S208中, 接入中继站 2b接收来自移动终端 3所反 馈的与中继站 2b 的 RLC 实体所发送的各个 RLC PDU 相对应的 ACK/NACK。
在步骤 S209中, 中继站 2b判断是否接收到来自移动终端 3的与 RLC SDU相对应的各个 RLC PDU的 ACK , 也即, 中继站 2b判断是 否接收到来自移动终端 3的与 RLC SDU相对应的全部 RLC PDU的 ACK消息。 在 RLC PDU的 RLC头中包括指示信息, 用于指示 RLC PDU的数据部分中包括几个 RLC SDU或者 RLC SDU分段( segment ), 以及每个 RLC SDU或 RLC SDU分段的结束位置。 根据上述信息, 中继站 2b的 RLC实体就可以判断出何时接收到一个完整的 RLC SDU 所对应的全部 RLC PDU。
当在步骤 S210中, 中继站 2b判断接收到与 RLC SDU相对应的 各个 RLC PDU的 ACK时,中继站 2b向中继站 2a发送终端送达确认 消息 ( User Equipment Delivery Acknowlegement ) , 其中, 该终端送达 确认消息用于确认该 RLC SDU已送达移动终端 3。可以理解,该 RLC SDU即为 PDCP PDU。 一般地, 在 RLC实体与 PDCP实体之间交互 的是 RLC SDU, 而在 PDCP实体与 PDCP实体之间交互的是 PDCP PDU。
然后, 在步骤 S211中, 中继站 2a将该终端送达确认消息发送至 基站 1的 RLC实体 la。
然后, 在步骤 S212中, 当基站 1的 RLC实体 la接收到终端送 达确认消息后, 基站 1的 RLC实体 la向基站 1的 PDCP实体 lb发 送指示信息, 该指示信息用于指示 PDCP实体 lb丢弃緩存的与 RLC SDU ( PDCP PDU ) 相对应的 PDCP SDIL 步骤 212中的箭头后面的 虚线所示的指示信息的交互是在基站内部的不同层之间的实体完成 的。
然后, 在步骤 S213中, 基站 1的 PDCP实体 lb丢弃緩存的由该 终端送达确认消息所确认的 RLC SDU相对应的 PDCP SDIL 其中, PDCP SDU是未经加密的纯数据信息, 而 PDCP PDU则是对 PDCP SDU 进行加密处理后的数据包。 因为各个基站的数据加密的算法不 同, 所以, 一般地, 在基站中緩存了 PDCP SDU, 在切换时, 源基站 将未经加密的 PDCP SDU发送至目标基站。 当然, 当基站中还緩存了 由终端送达确认消息所确认的 PDCP PDU, 则在步骤 S211中还包括, 将该由终端送达确认消息所确认的 PDCP PDU从緩存中删除。
以下, 参照图 3 , 才艮据本发明的一个具体实施方式, 以两个 RLC SDU为例, 对本发明进行进一步的说明。
首先, 在步骤 S300中,基站 1的 PDCP实体 lb向基站 1的 RLC 实体 la发送两个 RLC SDU,分别为 RLC SDU1 和 RLC SDU2。其中, 可以看出, RLC SDU1 的序号小于 RLC SDU2的序号, 因此, 在后 续的各个中继站的分段、串接操作中,各个中继站需要确保 RLC SDU1 始终排序在 RLC SDU2之前。 其中, RLC SDU1用斜划线表示, 以与 RLC SDU2区分开。
基站 1的 RLC实体 la根据来自基站 1的 MAC层的信息,例如, 才艮据 MAC层所指示的传输块(Transmission Block, TB )的大小并按 照 PDCP PDU的序号 (SN ) 的顺序对来自上层也即基站 1 的 PDCP 层 lb 的 PDCP PDU 依次进行分段 ( segmentation ) 和 /或拼接 ( concatenation ), 以生成 3个 RLC PDU, 分别为 PI、 P2和 P3。 也 即,基站 1的 RLC实体 la将 RLC SDU1的第一个分段组成 RLC PDU P1的数据部分, 将 RLC SDU1的最后一个分段和 RLC SDU2的第一 个分段拼接成 RLC PDU P2的数据部分, 将 RLC SDU 2的最后一个 分段组成 RLC PDU P3的数据部分。在每个 RLC PDU的 RLC头部分 包含用于指示该 RLC PDU的数据部分所包含的各个 RLC SDU分段 的长度信息,也即 Length Indicator域,此外,还包括用于指示 RLC PDU 的数据域的第一个字节是否对应于 RLC SDU的第一个字节或者 RLC PDU的数据域的最后一个字节是否对应于 RLC SDU的最后一个字节 的信息,也即( Framing Indicator field, FI域)。注意到, 因为 RLC SDU 1的序号小于 RLC SDU2的序号, 所以, 与 RLC SDU1相对应的 RLC PDU的序号小于与 RLC SDU2相对应的 RLC PDU的序号。具体的规 定请参见 3GPP TS 36.322 rel-8。然后,在步骤 S301中,基站 1的 RLC 实体 la将 RLC PDU P1、 P2和 P3依次发送至中继站 2a。
然后, 在步骤 S302中, 当中继站 2a经过 CRC校验等, 验证成 功接收到 PI , P2和 P3时, 中继站 2a的 RLC实体向基站 1的 RLC 实体 la发送与基站 1的 RLC实体 la所发送的各个 RLC PDU PK P2 和 P3相对应的 ACK。例如,中继站 2a可以采用等待式( Stop-and-Wait, SAW ) ARQ方案, 也可以采用回退 N帧 (Go-Back-N ) ARQ方案, 或者选择性重发 ARQ方案等发送 ACK消息。
注意到, 中继站 2a的 RLC实体正确接收到的来自基站 1的对等 RLC实体 la的 RLC PDU PI、 P2和 P3的顺序可能是乱序的, 例如, 中继站 2a的 RLC实体先正确接收到 RLC SDU2所对应的 RLC PDU P2和 P3 ,因为校验 RLC PDU P1错误,所以需要基站 1重传 RLC PDU P1 , 因此中继站 2a后接收到 RLC SDU1所对应的 RLC PDU Pl。 因 此, 中继站 2a的 RLC实体需要对接收到的 RLC PDU进行重新排序, 以使得重新排序后的 RLC PDU是按照 RLC PDU的序号依次递增的 顺序, 也即与 RLC SDU的序号递增的顺序一致, 也即 RLC PDU1、 PDU2和 PDU3顺序。 当然, 如果中继站 2a所接收到的 RLC PDU的 顺序已经是按照 RLC PDU的 SN的顺序依次递增的, 则上述的重新 排序的步骤可以省略。
接着, 中继站 2a根据来自本中继站 2a的 MAC层的信息, 例如, 才艮据 MAC层所指示的传输块(Transmission Block, TB )的大小对顺 序排列的来自基站 1 的 RLC 实体 la 的 RLC PDU依次进行分段 ( segmentation ) 和 /或拼接 ( concatenation ), 以生成 5个 RLC PDU, 分别为 ΡΓ、 Ρ2,、 Ρ3,、 Ρ4,和 Ρ5,。 也即, 中继站 2a的 RLC实体将 RLC SDU1 的第一个分段组成 RLC PDU ΡΓ的数据部分, 将 RLC SDU1的第二个分段组成 RLC PDU P2,的数据部分, 将 RLC SDU 1的 最后一个分段组成 RLC PDU P3'的数据部分,将 RLC SDU2的第一个 分段组成 RLC PDU P4'的数据部分, 将 RLC SDU 2的最后一个分段 组成 RLC PDU P5'的数据部分。 本领域技术人员可以理解, 因为基站 1 与中继站 2a之间的无线链路上的资源和链路的传输特性与中继站 2a与中继站 2b之间的无线链路上的资源和链路的传输特性不同, 因 此, 相同的 RLC SDU1 和 RLC SDU2被基站的 RLC实体 la划分的 RLC PDU的个数与中继站 2a的 RLC实体划分的 RLC PDU的个数不 同。
然后,在步骤 S303中,中继站 2a将重新分段的 5个 RLC PDU ΡΓ、 P2,、 P3,、 P4,和 P5,发送至中继站 2b。
然后, 在步骤 S304中, 当中继站 2b经过 CRC校验等, 验证成 功接收到 ΡΓ、 Ρ2,、 Ρ3,、 Ρ4,和 Ρ5,时, 中继站 2b的 RLC实体向中 继站 2a的 RLC实体发送与中继站 2a的 RLC实体所发送的各个 RLC PDU P1,、 P2,、 P3,、 P4,和 P5,相对应的 ACK。
然后, 中继站 2b根据来自本中继站 2b的 MAC层的信息, 例如, 才艮据 MAC层所指示的传输块(Transmission Block, TB )的大小对顺 序排列的来自中继站 2a 的 RLC 实体的 RLC PDU依次进行分段 ( segmentation ) 和 /或拼接 ( concatenation ), 以生成 3个 RLC PDU, 分别为 ΡΓ,、 Ρ2"和 Ρ3"。 也即, 中继站 2b的 RLC实体将 RLC SDU1 的全部组成 RLC PDU P1 "的数据部分, 将 RLC SDU2的第一个分段 组成 RLC PDU P2"的数据部分, 将 RLC SDU2的最后一个分段组成 RLC PDU P3"的数据部分。 因此, 在步骤 S305中, 中继站 2b将重新 分段的 3个 RLC PDU P1 "、 P2"和 P3"发送至移动终端 3。
然后, 在步骤 S306中, 例如, 移动终端 3对 RLC PDU P1 " 校 验发现错误, 而对 P2"和 P3"校验未发现错误。 因此, 移动终端 3的 RLC实体向中继站 2b的 RLC实体发送 P2"和 P3"的 ACK, ΡΓ,的 NACK。
然后,在步骤 S307中,中继站 2b的 RLC实体重发 RLC PDU ΡΓ,。 然后,在步骤 S308中,移动终端 3经过校验发现接收的 RLC PDU P1 "正确, 则移动终端 3的 RLC实体向中继站 2b的 RLC实体发送 RLC PDU P1,,的 ACK。
在本发明中, 可以采用隐含的 RLC SDU指示的方式。 也即, 在 终端送达消息中不需要包含显性的 RLC PDU的序号。 例如, 在中继 认的信息的列表, 该列表是按照 RLC PDU的 SN依次递增的顺序对 所有未经确认的 RLC SDU进行排序。 并且, 该 RLC SDU的排列的 顺序与基站 1的 PDCP层 lb緩存 PDCP SDU的顺序是一致。 基站 1 的 PDCP层 lb是按照从基站的 PDCP层的上层, 也即 IP层获取的 IP数据包的顺序维护对 PDCP SDU进行緩存的列表,基站的 RLC层 la也是依次对由 PDCP层传送的 PDCP PDU进行分组, 以生成 RLC PDU。 因此, 基站 1的列表与中继站 2b中的顺序一致, 且起始位置 一致。 因此, 虽然 RLC的 PDU的序列号与 PDCP PDU的序列号不 同, 但是他们的次序是一致的。 因此, 可以通过限定在中继站 2b的 列表中的第一个 RLC SDU是第一个尚未经终端送达确认消息所确 认的 RLC SDU, 来实现不需要包含 RLC PDU的 SN的隐性的中继 站 2b与基站 1之间的 RLC SDU是否成功送达移动终端的信息的同 步。
具体地, 例如, 当中继站 2b接收到来自中继站 2a的 RLC PDU ΡΓ、Ρ2,、Ρ3,、Ρ4,和 Ρ5,时,其首先把对应的 RLC SDU1 和 RLC SDU 2 均标记为未确认送达终端, 也即, UE unacknowlegement。 其中, 在 RLC维护的列表中, RLC SDU1为从按基站发送顺序的第一个 尚未经确认的 PDCP PDU, RLC SDU2为从按基站发送顺序的第二 个尚未经确认的 PDCP PDU。 RLC SDU1和 RLC SDU2表示从按基 站发送顺序的第一个尚未经确认的 PDCP PDU开始的按基站发送顺 序连续的 2个 PDCP PDU。 然后, 在步骤 S309中, 中继站 2b确认 接收到来自移动终端 3的与 RLC SDU1 和 RLC SDU 2相对应的所 有 RLC PDU, 也即中继站 2b接收到 RLC PDU ΡΓ,、 Ρ2"和 Ρ3"的 确认消息后, 根据 RLC PDU的头部包含的 Framing Indication, 中继 站 2b知道 RLC PDU ΡΓ,的数据部分的第一个字节对应着一个 RLC SDU的第一个字节且 RLC PDU ΡΓ,的数据部分的最后一个字节对应 着该 RLC SDU的最后一个字节, 根据 RLC PDU P2"的头部的 FI信 息, 得知 RLC PDU Ρ2"的数据部分的第一个字节对应着一个 RLC SDU的第一个字节且 RLC PDU Ρ2"的数据部分的最后一个字节对应 着该 RLC SDU的非最后一个字节, 中继站 2b根据 RLC PDU P3" 的头部的 FI信息,得知 RLC PDU P3"的数据部分的第一个字节对应 着一个 RLC SDU的非第一个字节且 RLC PDU P3"的数据部分的最 后一个字节对应着该 RLC SDU的最后一个字节。 也即, 中继站 2b 的 RLC 实体得知 RLC PDU ΡΓ,对应着一个完整的 RLC SDU, 而 RLC PDU P2" 和 RLC PDU P3"的数据部分组成一个完整的 RLC SDU。 因此, 中继站 2b的 RLC实体将 RLC SDU1 和 RLC SDU2标 记为 "正在被确认送达终端", 例如, being UE acknowledged
然后, 中继站 2b的 RLC实体生成终端送达消息(UD ACK ), 该 终端送达消息中包括从按基站发送顺序的第一个尚未经确认的 PDCP PDU开始的按基站发送顺序连续的多个 PDCP PDU的个数, 也即, 2个。 然后, 在步骤 S310中, 中继站 2a将该 UD ACK ( 2 ) 发送至中继站 2a的 RLC实体, 其中括号内的 2表示从按基站发送 顺序的第一个尚未经确认的 PDCP PDU开始的按基站发送顺序连续 的多个 PDCP PDU的个数为 2个。 并且, 中继站 2b的 RLC实体将 RLC SDU1 和 RLC SDU2标记为 "已被确认送达终端", 例如, UE acknowledged。
然后, 在步骤 S311中, 中继站 2a将该 UD ACK ( 2 ) 转发至基 站 1的 RLC实体 la。
然后, 在步骤 S312中, 当基站 1的 RLC实体 la接收到终端送 达确认消息后, 基站 1的 RLC实体 la向基站 1的 PDCP实体 lb发 送指示信息, 该指示信息用于指示 PDCP实体 lb丢弃緩存的前 2个 PDCP SDU。
然后, 在步骤 S313中, 基站 1的 PDCP实体 lb丢弃緩存的由该 终端送达确认消息所确认的前 2个 PDCP PDU所对应的 PDCP SDU。 如果基站中緩存了与前 2个 PDCP PDU, 则基站 1还要删除相对应的 PDCP PDU。
上述实施例中的 UD ACK消息用于指示前 K个 RLC SDU被确认 送达终端。在一个变化的实施例中,也可以设计 UD ACK消息的格式, 使得 UD ACK消息中不需要携带被确认送达终端的连续的 RLC SDU 的个数信息, 也即, 此时 UD ACK消息表示中继站 2b每次仅对列表 中的第一个尚未确认的 RLC SDU消息进行反馈终端送达确认消息。 仍以上文中描述的场景为例, 当中继站 2b接收到与 RLC SDU1相对 应的 ΡΓ,的 ACK消息时, 中继站 2b立即向中继站 2a反馈 UD ACK 消息, 表示 UD ACK消息中的第一个尚未被确认的 RLC SDU已经被 确认。 相应地, 基站 1的 PDCP层 lb删除緩存的第一个 PDCP SDIL 可以理解, 上述的隐含的方式可以节省信令的开销, 因为通常 RLC PDU的序号需要占用一定的字节, 但是注意到, 在上述的隐含 方式中, 必须保证第一个 RLC SDU所对应的各个 RLC PDU已经被 终端成功接收。参照图 3 ,虽然移动终端 3已经成功接收了与 RLC SDU 2所对应的全部 RLC PDU P2" 和 P3" , 并在步骤 S306中反馈了对应 的 ACK。 但是, 因为是隐含的方式, 所以必须保证 UD ACK的消息 也是按照基站发送 RLC SDU的顺序进行反馈, 因此, 中继站 2b必须 等到接收到与 RLC SDU1所对应的全部的 RLC PDU P1 " 的 ACK消 息时, 才能向基站反馈 UD ACK消息。
针对上述问题, 在一个变化的实施例中, 可以采用 bit map的形 式, 例如, 中继站 2b接收到来自移动终端 3的 RLC SDU 2所对应的 所有 RLC PDU的 ACK,且收到了 RLC SDU 1所对应的 RLC PDU的 NACK, 则可以将位图中的第一个 bit置 0, 第 2个 bit置 1 , 表示未 收到 SDU 1的 UD ACK, 收到 SDU 2的 UD ACK。 而不需要如图 3 所示的必须等到 RLC SDU1所对应的 RLC PDU的 ACK消息全部收 到后再发 UD ACK。
当然, 中继站 2b发送 UD ACK消息不限于上述的位图方式或者 隐含的方式。还可以采用其他的信息表达方式发送 UD ACK消息, 例 如, 采用游程的 (RLE, run-length encoding) 方式等。
在切换时,需要在源基站,例如基站 1和目标基站之间建立隧道。 基站 1的 PDCP实体 lb将向目标基站的 PDCP实体发送所有未被基 站 1的 RLC实体 la指示确认成功传送的 PDCP SDIL 对于移动终端 由中继站接入的情形, 因为只有当基站 1的 RLC实体 la收到来自接 入中继站 2b的终端传送确认消息后, 才会向基站 1的 PDCP实体 lb 发送指示成功传送 PDCP PDU 的成功传送的指示信息, 然后基站 1 的 PDCP实体 lb才会丢弃对应的 PDCP SDU。 因此, 基站 1的 PDCP 实体 lb 中的用户数据是否被终端成功接收的状态信息是准确的, 因 为是与移动终端的状态同步, 因而避免了现有技术中, 基站 1在数据 可能未送达移动终端之前就将该数据在 PDCP层丢弃, 造成切换过程 中的数据丢失。 因此, 可以确保在切换时的按顺序传输。
明显地, 如果切换发生在由同一个基站所管辖的两个中继站之 间, 或者发生在中继站和管辖该中继站的基站之间时, 因为目标基站 即为源基站, 因此, 不需要建立隧道。本发明对于这种情形同样适用。
图 4示出了根据本发明的一个具体实施例的装置框图。 其中, 控 制装置 10位于基站 1中。 控制装置 10包括第一发送装置 100, 第一 判断装置 101 , 提供装置 102和丢弃装置 103。 辅助装置 20位于中继 站 2b中。 辅助装置 20包括第二发送装置 200, 第二判断装置 201和 第三发送装置 202。
基站 1的 PDCP实体 lb向基站 1的 RLC实体 la传输 PDCP PDU。 具体地, 在 PDCP层, 基站 1的 PDCP实体 lb获取 IP层传递的数据 包, 进行基于例如 ROHC算法的头压缩, 按照 IP数据包的传输的顺 序依次对 IP数据包进行封装, 打上 PDCP PDU包头 (header ), 并在 PDCP PDU 包头中按照顺序加入 PDCP PDU 的序列号 (Sequence Number ), 该 PDCP PDU的序号也是按序依次递增的, 并进行数据加 密, 最终形成 PDCP PDIL
基站 1的 RLC实体 la根据来自基站 1的 MAC层的信息,例如, 才艮据 MAC层所指示的传输块(Transmission Block, TB )的大小并按 照 PDCP PDU的序号( SN )的顺序对来自上层也即 PDCP层 lb的 PDCP PDU依次进行分段 ( segmentation )和 /或拼接 ( concatenation ), 以生 成与一个或多个 PDCP PDU相对应的按照顺序的各个 RLC PDU。 该 来自 MAC层的信息可以根据在基站 1与中继站 2a之间的链路上分配 的无线资源例如为该链路分配的时间 -频率资源以及链路的传输特性 如链路质量, 和 /或不同业务之间的优先级等生成。 然后, 第一发送装 置 100 向通往移动终端 3路径上的下一级中继站发送与一个或多个 PDCP PDU相对应的各个 RLC PDU。 在本实施例中, 第一发送装置 100向中继站 2a的 RLC实体发送与该一个或多个 PDCP PDU相对应 的各个 RLC PDU。
基站 1 的 PDCP 实体 lb还可以包括存储器, 用于緩存获取的 PDCP SDIL该存储器緩存的步骤与第一发送装置 100发送 RLC PDU 的步骤之间并没有明显的先后关系, PDCP实体 lb可以先向 RLC实 体 la传输 PDCP PDU, RLC实体 la将 PDCP PDU拆开 /拼接为一个 或多个 RLC PDU向 UE发送后, 存储器再按顺序緩存 PDCP PDU; 或者存储器先按顺序緩存 PDCP SDU, PDCP实体 lb向 RLC实体 la 传输 PDCP PDU后, RLC实体 la再将 PDCP PDU拆开 /拼接为一个或 多个 RLC PDU向 UE发送。
然后, 经过中继站 2a的转发后, 中继站 2b接收到来自中继站 2a 的 RLC PDU。 中继站 2b中的第二发送装置 200可以才艮据来自中继站 2b的 MAC层的信息, 例如,根据中继站 2b的 MAC层所指示的传输 块(Transmission Block, TB )的大小对接收到的来自中继站 2a的 RLC 实体的一个或多个 RLC SDU依次重新进行分段 ( segmentation ) 和 / 或拼接 (concatenation ), 以生成与一个或多个 RLC SDU相对应的按 照顺序的各个 RLC PDU。 该来自 MAC层的信息可以根据在中继站 2a与中继站 2b之间的链路上分配的无线资源, 例如为该链路分配的 时间 -频率资源, 以及链路的传输特性如链路质量, 和 /或不同业务之 间的优先级等生成。
然后,第二发送装置 200向移动终端 3发送重新分段和 /或拼接的 与一个或多个 RLC SDU相对应的各个 RLC PDU。
然后, 接入中继站 2b接收来自移动终端 3所反馈的与中继站 2b 的 RLC实体所发送的各个 RLC PDU相对应的 ACK/NACK。
第二判断装置 201判断是否接收到来自移动终端 3的与 RLC SDU 相对应的各个 RLC PDU的 ACK, 也即, 第二判断装置 201判断是否 接收到来自移动终端 3的与 RLC SDU相对应的全部 RLC PDU的 ACK 消息。 在 RLC PDU的 RLC头中包括指示信息, 用于指示 RLC PDU 的数据部分中包括几个 RLC SDU或者 RLC SDU分段( segment ), 以 及每个 RLC SDU或 RLC SDU分段的结束位置。 根据上述信息, 第 二判断装置 201就可以判断出何时接收到一个完整的 RLC SDU所对 应的全部 RLC PDU。
当第二判断装置 201判断接收到与 RLC SDU相对应的各个 RLC PDU的 ACK时,第三发送装置 202向中继站 2a发送终端送达确认消 息 ( User Equipment Delivery Acknowlegement ), 其中, 该终端送达确 认消息用于确认该 RLC SDU已送达移动终端 3。 可以理解, 该 RLC SDU即为 PDCP PDU。 一般地, 在 RLC实体与 PDCP实体之间交互 的是 RLC SDU, 而在 PDCP实体与 PDCP实体之间交互的是 PDCP PDU。 然后, 中继站 2a将该终端送达确认消息发送至基站 1的 RLC 实体 la。
然后, 第一判断装置 101接收到终端送达确认消息后, 也即, 判 断出接收到终端送达确认消息 , 提供装置 102向基站 1的 PDCP实 体 lb发送指示信息, 该指示信息用于指示 PDCP实体 lb丢弃緩存的 与 RLC SDU ( PDCP PDU ) 相对应的 PDCP SDU。
然后, 丢弃装置 103丢弃緩存的由该终端送达确认消息所确认的 RLC SDU相对应的 PDCP SDU。 其中, PDCP SDU是未经加密的纯 数据信息, 而 PDCP PDU则是对 PDCP SDU进行加密处理后的数据 包。 因为各个基站的数据加密的算法不同, 所以, 一般地, 在基站中 緩存了 PDCP SDU, 在切换时, 源基站将未经加密的 PDCP SDU发送 至目标基站。 当然, 当基站中还緩存了由终端送达确认消息所确认的 PDCP PDU, 则丢弃装置 103 还将该由终端送达确认消息所确认的 PDCP PDU从緩存中删除。
以上对本发明的实施例进行了描述, 但是本发明并不局限于特定 的系统、 设备和具体协议, 本领域内技术人员可以在所附权利要求的 范围内做出各种变形或修改。
那些本技术领域的一般技术人员可以通过研究说明书、公开的内 容及附图和所附的权利要求书, 理解和实施对披露的实施方式的其他 改变。 在权利要求中, 措词 "包括" 不排除其他的元素和步骤, 并且 措辞 "一个" 不排除复数。 在发明的实际应用中, 一个零件可能执行 权利要求中所引用的多个技术特征的功能。权利要求中的任何附图标 记不应理解为对范围的限制。

Claims

权 利 要 求 书
1. 一种在基站中用于控制下行链路的数据传输的方法, 其中, 所述基站经由一个或多个中继站与移动终端通信, 包括以下步骤:
A. 在无线链路控制层向通往所述移动终端路径上的下一跳中继 站发送与一个或多个分组数据汇聚协议层 PDU相对应的各个无线链 路控制层 PDU;
B. 在无线链路控制层判断是否接收到终端送达确认消息, 其中, 所述终端送达确认消息用于确认所述一个或多个中的至少一个分组 数据汇聚协议层 PDU已送达所述移动终端;
C. 当所述无线链路控制层接收到所述终端送达确认消息后, 所 述无线链路控制层向分组数据汇聚协议层发送指示信息, 所述指示信 息用于指示所述分组数据汇聚协议层丢弃緩存的与所述至少一个分 组数据汇聚协议层 PDU相对应的分组数据汇聚协议层 SDU。
2. 根据权利要求 1所述的方法, 其中, 所述步骤 C之后还包括:
D. 根据所述指示信息, 所述分组数据汇聚协议层丢弃所述緩存 的所述相对应的分组数据汇聚协议层 SDU。
3. 根据权利要求 2所述的方法, 其中, 所述分组数据汇聚协议 层按照 IP层传输的顺序緩存与所述一个或多个分组数据汇聚协议层 PDU 相对应的分组数据汇聚协议层 SDU, 所述步骤 A还包括:
- 在所述无线链路控制层按照所述传输顺序依次向所述移动终 端发送与所述一个或多个分组数据汇聚协议层 PDU相对应的各个无 线链路控制层 PDU;
所述终端送达确认消息用于确认按所述发送顺序的尚未经确认 的第一个分组数据汇聚协议层 PDU、或者从按所述发送顺序尚未经确 认的第一个分组数据汇聚协议层 PDU开始的按所述发送顺序连续的 多个分组数据汇聚协议层 PDU已送达所述移动终端;
所述步骤 D还包括:
- 所述分组数据汇聚协议层丢弃与所述第一个或者所述连续的 多个分组数据汇聚协议层 PDU相对应的分组数据汇聚协议层 SDU。
4. 根据权利要求 1或 2所述的方法,其中, 所述终端送达确认消 息以位图的形式表示, 其中, 所述位图中的各个位分别表示各个分组 数据汇聚协议层 PDU是否送达所述移动终端。
5. 根据权利要求 1至 4中任一项所述的方法,其中, 所述基站与 所述移动终端间的通信采用逐跳式 ARQ的重传机制。
6. —种在中继站中用于辅助基站控制下行数据传输的方法, 其 中, 所述中继站用于接入移动终端, 包括以下步骤:
a. 将与一个或多个分组数据汇聚协议层 PDU相对应的各个无线 链路控制层 PDU发送给所述移动终端;
b. 判断是否接收到来自所述移动终端的与所述一个或多个中的 至少一个分组数据汇聚协议层 PDU 相对应的各个无线链路控制层 PDU的肯定确认消息;
c. 当接收到所述肯定确认消息时, 向所述基站发送终端送达确 认消息, 其中, 所述终端送达确认消息用于确认所述至少一个分组数 据汇聚协议层 PDU已送达所述移动终端。
7. 根据权利要求 6所述的方法, 其中, 所述步骤 c还包括:
- 判断所述肯定确认消息是否分别对应于按基站发送顺序的第 一个尚未经确认的分组数据汇聚协议层 PDU的各个无线链路控制层 PDU, 或者分别对应于从按基站发送顺序的第一个尚未经确认的分组 数据汇聚协议层 PDU开始的按基站发送顺序连续的多个分组数据汇 聚协议层 PDU的各个无线链路控制层 PDU,
当满足上述任一对应关系时,发送所述终端送达确认消息,其中, 所述终端送达确认消息用于确认所述第一个或者所述连续的多个分 组数据汇聚协议层 PDU已送达所述移动终端。
8. 根据权利要求 7所述的方法, 其中, 当所述肯定确认消息对 应于所述连续的多个分组数据汇聚协议层 PDU时, 所述终端送达确 认消息包括所述连续的多个分组数据汇聚协议层 PDU的个数。
9. 根据权利要求 6所述的方法, 其中, 所述终端送达确认消息 以位图的形式表示, 其中, 所述位图中的各个位分别表示各个分组数 据汇聚协议层 PDU是否送达所述移动终端。
10. 一种在基站中用于控制下行链路的数据传输的控制装置, 其 中, 所述基站经由一个或多个中继站与移动终端通信, 包括:
第一发送装置, 用于在无线链路控制层向通往所述移动终端路径 上的下一跳中继站发送与一个或多个分组数据汇聚协议层 PDU相对 应的各个无线链路控制层 PDU;
第一判断装置, 用于在无线链路控制层判断是否接收到终端送达 确认消息, 其中, 所述终端送达确认消息用于确认所述一个或多个中 的至少一个分组数据汇聚协议层 PDU已送达所述移动终端;
提供装置, 用于当所述无线链路控制层接收到所述终端送达确认 消息后, 所述无线链路控制层向分组数据汇聚协议层发送指示信息, 所述指示信息用于指示所述分组数据汇聚协议层丢弃緩存的与所述 至少一个分组数据汇聚协议层 PDU 相对应的分组数据汇聚协议层 SDU。
11. 根据权利要求 10所述的控制装置, 其中, 还包括: 丢弃装置, 用于根据所述指示信息, 所述分组数据汇聚协议层丢 弃所述緩存的所述相对应的分组数据汇聚协议层 SDU。
12. 根据权利要求 11 所述的控制装置, 其中, 所述分组数据汇 聚协议层按照 IP层传输的顺序緩存与所述一个或多个分组数据汇聚 协议层 PDU 相对应的分组数据汇聚协议层 SDU, 所述第一发送装置 还用于: 在所述无线链路控制层按照所述传输顺序依次向所述移动终 端发送与所述一个或多个分组数据汇聚协议层 PDU相对应的各个无 线链路控制层 PDU;
所述终端送达确认消息用于确认按所述发送顺序的尚未经确认 的第一个分组数据汇聚协议层 PDU、或者从按所述发送顺序尚未经确 认的第一个分组数据汇聚协议层 PDU开始的按所述发送顺序连续的 多个分组数据汇聚协议层 PDU 已送达所述移动终端; 所述丢弃装置 还用于: 所述分组数据汇聚协议层丢弃与所述第一个或者所述连续的 多个分组数据汇聚协议层 PDU相对应的分组数据汇聚协议层 SDU。
13. 根据权利要求 10或 11所述的控制装置, 其中, 所述终端送 达确认消息以位图的形式表示, 其中, 所述位图中的各个位分别表示 各个分组数据汇聚协议层 PDU是否送达所述移动终端。
14. 一种在中继站中用于辅助基站控制下行数据传输的方法, 其 中, 所述中继站用于接入移动终端, 包括:
第二发送装置, 用于将与一个或多个分组数据汇聚协议层 PDU 相对应的各个无线链路控制层 PDU发送给所述移动终端;
第二判断装置, 用于判断是否接收到来自所述移动终端的与所述 一个或多个中的至少一个分组数据汇聚协议层 PDU相对应的各个无 线链路控制层 PDU的肯定确认消息;
第三发送装置, 用于当接收到所述肯定确认消息时, 向所述基站 发送终端送达确认消息, 其中, 所述终端送达确认消息用于确认所述 至少一个分组数据汇聚协议层 PDU已送达所述移动终端。
15. 根据权利要求 6所述的方法, 其中, 所述第三发送装置还包 括:
第三判断装置, 用于判断所述肯定确认消息是否分别对应于按基 站发送顺序的第一个尚未经确认的分组数据汇聚协议层 PDU的各个 无线链路控制层 PDU,或者分别对应于从按基站发送顺序的第一个尚 未经确认的分组数据汇聚协议层 PDU开始的按基站发送顺序连续的 多个分组数据汇聚协议层 PDU的各个无线链路控制层 PDU,
当满足上述任一对应关系时, 所述第三发送装置发送所述终端送 达确认消息, 其中, 所述终端送达确认消息用于确认所述第一个或者 所述连续的多个分组数据汇聚协议层 PDU已送达所述移动终端。
PCT/CN2009/073308 2009-08-17 2009-08-17 多跳中继通信系统中对下行数据传输控制的方法和装置 WO2011020233A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012525011A JP2013502755A (ja) 2009-08-17 2009-08-17 マルチホップ・リレー通信システムにおいてダウンリンク・データ伝送を制御するための方法および装置
BR112012003636A BR112012003636A2 (pt) 2009-08-17 2009-08-17 método e aparelho para controlar transmissão de dados para downlink em um sistema de comunicação de retransmissão com múltiplos saltos
KR1020127006883A KR20120048019A (ko) 2009-08-17 2009-08-17 멀티-홉 중계 통신 시스템에서 다운링크 데이터 전송 제어를 위한 방법 및 장치
PCT/CN2009/073308 WO2011020233A1 (zh) 2009-08-17 2009-08-17 多跳中继通信系统中对下行数据传输控制的方法和装置
US13/390,570 US20120140704A1 (en) 2009-08-17 2009-08-17 Method and apparatus for controlling downlink data transmission in a multi-hop relay communication system
EP09848374.6A EP2469750A4 (en) 2009-08-17 2009-08-17 METHOD AND DEVICE FOR DOWNLINK DATA TRANSMISSION CONTROL IN A MULTI-HOP RELAY COMMUNICATION SYSTEM
CN200980159605.2A CN102449944B (zh) 2009-08-17 2009-08-17 多跳中继通信系统中对下行数据传输控制的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/073308 WO2011020233A1 (zh) 2009-08-17 2009-08-17 多跳中继通信系统中对下行数据传输控制的方法和装置

Publications (1)

Publication Number Publication Date
WO2011020233A1 true WO2011020233A1 (zh) 2011-02-24

Family

ID=43606535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073308 WO2011020233A1 (zh) 2009-08-17 2009-08-17 多跳中继通信系统中对下行数据传输控制的方法和装置

Country Status (7)

Country Link
US (1) US20120140704A1 (zh)
EP (1) EP2469750A4 (zh)
JP (1) JP2013502755A (zh)
KR (1) KR20120048019A (zh)
CN (1) CN102449944B (zh)
BR (1) BR112012003636A2 (zh)
WO (1) WO2011020233A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075210A1 (zh) * 2012-11-13 2014-05-22 华为技术有限公司 传输数据的方法、基站和用户设备
US20150031376A1 (en) * 2012-02-17 2015-01-29 Zte Corporation Radio system and spectrum resource reconfiguration method thereof
CN108024295A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 中继转移方法及装置、终端、基站
CN108476435A (zh) * 2017-06-19 2018-08-31 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
CN110506404A (zh) * 2017-05-05 2019-11-26 华为技术有限公司 一种数据接收状态报告方法及装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230059A1 (en) * 2011-09-02 2013-09-05 Qualcomm Incorporated Fragmentation for long packets in a low-speed wireless network
EP3490291B1 (en) * 2012-11-29 2022-01-05 Huawei Technologies Co., Ltd. Data transmission control method, apparatus and system
CN107911201B (zh) * 2012-12-21 2021-10-15 华为技术有限公司 数据传输方法、装置及通信系统
US9648514B2 (en) * 2013-08-09 2017-05-09 Blackberry Limited Method and system for protocol layer enhancements in data offload over small cells
CN104518851A (zh) * 2013-09-27 2015-04-15 中兴通讯股份有限公司 一种数据处理方法及装置
CN104853382B (zh) 2014-02-18 2020-08-25 中兴通讯股份有限公司 一种信息交互方法、系统以及基站
US20160013976A1 (en) * 2014-07-14 2016-01-14 Futurewei Technologies, Inc. Wireless Through Link Traffic Reduction
US9929847B2 (en) * 2014-12-23 2018-03-27 Qualcomm Incorporated Shortened block acknowledgement with fragmentation acknowledgement signaling
US10021596B2 (en) * 2016-03-30 2018-07-10 Industrial Technology Research Institute Communication system, communication device, base station and method thereof for D2D communications
CN107333298B (zh) * 2016-04-29 2020-03-24 电信科学技术研究院 一种数据传输方法及相关设备
US10785679B2 (en) * 2016-05-13 2020-09-22 Telecom Italia S.P.A. Method and system for loss mitigation during device to device communication mode switching
US20180097918A1 (en) * 2016-09-30 2018-04-05 Mediatek Inc. Segmentation and Concatenation for New Radio Systems
JP2019533958A (ja) * 2016-11-04 2019-11-21 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. プロトコル・データ・ユニット(pdu)パケットを生成するための方法およびデバイス
US11419004B2 (en) * 2016-11-08 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Optimization of logical channel processing for multiple transport blocks
US10021586B1 (en) * 2016-12-23 2018-07-10 Intel IP Corporation Pushing back packet not acknowledged by base station
CN108632326B (zh) * 2017-03-24 2020-10-30 电信科学技术研究院 一种协议数据单元传输数据的方法及装置
EP3635900B1 (en) 2017-08-16 2022-01-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving duplicate packets in next-generation mobile communication system
CN109842440B (zh) 2017-11-27 2021-08-27 华为技术有限公司 一种通信方法、通信节点和系统
CN115103402A (zh) * 2018-05-10 2022-09-23 华为技术有限公司 数据处理的方法及设备
GB2574876A (en) * 2018-06-21 2019-12-25 Tcl Communication Ltd Transmission techniques in a cellular network
KR20210022639A (ko) * 2018-06-21 2021-03-03 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 시그널링 전송 방법, 장치 및 네트워크 디바이스
CN110636549B (zh) * 2018-06-21 2022-04-12 华为技术有限公司 数据传输方法、网络设备以及终端设备
US20230147845A1 (en) * 2018-06-21 2023-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Preventing / mitigating packet loss in iab systems
WO2019245442A1 (en) * 2018-06-21 2019-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Preventing/mitigating packet loss in integrated access backhaul (iab) networks
JP7189219B2 (ja) * 2018-08-08 2022-12-13 京セラ株式会社 中継装置
CN111490859A (zh) * 2019-01-29 2020-08-04 普天信息技术有限公司 一种arq模式的切换方法及装置
EP3934315A4 (en) * 2019-03-01 2022-03-30 Mitsubishi Electric Corporation WIRELESS COMMUNICATION SYSTEM
CN112584428B (zh) * 2019-09-27 2023-01-13 大唐移动通信设备有限公司 一种数据传输方法、装置及设备
CN112702752A (zh) * 2020-12-22 2021-04-23 展讯通信(上海)有限公司 通信方法、装置及设备
WO2022170612A1 (en) * 2021-02-11 2022-08-18 Qualcomm Incorporated Multiple feedback in relay-based communication
CN116962306A (zh) * 2022-04-19 2023-10-27 华为技术有限公司 数据传输的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437368A (zh) * 2002-02-08 2003-08-20 华硕电脑股份有限公司 数据传输的确认方法
CN101383685A (zh) * 2007-09-07 2009-03-11 华为技术有限公司 下行混合自动重传的方法、系统及装置
CN101471756A (zh) * 2007-12-27 2009-07-01 上海无线通信研究中心 集中式调度的多跳中继下行系统中的harq方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101116277A (zh) * 2005-02-07 2008-01-30 三星电子株式会社 用于请求/传送移动通信系统的状态报告的方法和设备
KR101234114B1 (ko) * 2005-12-22 2013-02-20 인터디지탈 테크날러지 코포레이션 무선 통신 시스템에서 데이터 보안 및 자동 반복 요청실시를 위한 방법 및 장치
AU2007268382B2 (en) * 2006-05-29 2010-12-16 Samsung Electronics Co., Ltd. Retransmission apparatus and method in wireless relay communication system
US8300570B2 (en) * 2006-06-02 2012-10-30 Research In Motion Limited Ranging regions for wireless communication relay stations
CN101047431B (zh) * 2006-06-22 2011-02-02 华为技术有限公司 在含有中继站的通信系统中实现混合自动重传的方法
KR100982688B1 (ko) * 2006-09-13 2010-09-16 삼성전자주식회사 홉 단위 재전송을 적용하는 다중 홉 릴레이 시스템에서 패킷 버퍼링 장치 및 방법
CN101150498B (zh) * 2006-09-18 2012-06-20 华为技术有限公司 多跳无线中继通信系统及其下行数据传输方法
EP2070214B1 (en) * 2006-09-19 2014-12-31 ZTE (USA) Inc. Frame structure for multi-hop relay in wireless communication systems
WO2008035935A1 (en) * 2006-09-20 2008-03-27 Samsung Electronics Co., Ltd. Handover method and apparatus in a mobile communication system
KR100938090B1 (ko) * 2006-10-19 2010-01-21 삼성전자주식회사 이동통신 시스템에서 핸드오버 수행 방법 및 장치
US7983302B2 (en) * 2006-11-07 2011-07-19 Nokia Corporation Control signaling techniques for wireless networks
KR100976733B1 (ko) * 2006-11-17 2010-08-18 삼성전자주식회사 멀티 홉 릴레이 시스템에서 효율적인 자동 재전송 요구 장치 및 방법
US8578223B2 (en) * 2007-02-09 2013-11-05 St-Ericsson Sa Method and apparatus of managing retransmissions in a wireless communication network
KR100907978B1 (ko) * 2007-09-11 2009-07-15 엘지전자 주식회사 이동통신 시스템에서 pdcp 계층의 상태보고 전송 방법 및 수신장치
EP2051454A1 (en) * 2007-10-17 2009-04-22 Nokia Siemens Networks Oy Method and device for data communication and communication system comprising such device
EP2290864B1 (en) * 2008-02-04 2014-02-19 LG Electronics Inc. Wireless communication method for transmitting a sequence of data units between a wireless device and a network
US8018890B2 (en) * 2008-06-25 2011-09-13 Intel Corporation Techniques using a hop-by-hop approach for automatic repeat request (ARQ) in wireless relay networks
US9203564B2 (en) * 2008-10-20 2015-12-01 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
US8402334B2 (en) * 2008-12-17 2013-03-19 Research In Motion Limited System and method for hybrid automatic repeat request (HARQ) functionality in a relay node
EP2393316A4 (en) * 2009-01-29 2017-04-26 Fujitsu Limited Wireless communication system
US8885575B2 (en) * 2009-03-13 2014-11-11 Blackberry Limited Relay link control channel design
RU2496263C2 (ru) * 2009-03-17 2013-10-20 Хуавэй Текнолоджиз Ко., Лтд. Способ, устройство и система для отправки пакета данных
US8687591B2 (en) * 2009-04-27 2014-04-01 Qualcomm Incorporated Relay node user plane support
CN105356926A (zh) * 2009-06-17 2016-02-24 交互数字专利控股公司 中继节点及实施切换的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1437368A (zh) * 2002-02-08 2003-08-20 华硕电脑股份有限公司 数据传输的确认方法
CN101383685A (zh) * 2007-09-07 2009-03-11 华为技术有限公司 下行混合自动重传的方法、系统及装置
CN101471756A (zh) * 2007-12-27 2009-07-01 上海无线通信研究中心 集中式调度的多跳中继下行系统中的harq方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2469750A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150031376A1 (en) * 2012-02-17 2015-01-29 Zte Corporation Radio system and spectrum resource reconfiguration method thereof
US9578516B2 (en) * 2012-02-17 2017-02-21 Zte Corporation Radio system and spectrum resource reconfiguration method thereof
WO2014075210A1 (zh) * 2012-11-13 2014-05-22 华为技术有限公司 传输数据的方法、基站和用户设备
US10110282B2 (en) 2012-11-13 2018-10-23 Huawei Technologies Co., Ltd. Data transmission method, base station, and user equipment
CN108024295A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 中继转移方法及装置、终端、基站
CN108024295B (zh) * 2016-11-03 2022-04-19 中兴通讯股份有限公司 中继转移方法及装置、终端、基站
US11219091B2 (en) 2017-05-05 2022-01-04 Huawei Technologies Co., Ltd. Data receiving status reporting method and apparatus
CN110506404A (zh) * 2017-05-05 2019-11-26 华为技术有限公司 一种数据接收状态报告方法及装置
CN114189901A (zh) * 2017-05-05 2022-03-15 华为技术有限公司 一种数据接收状态报告方法及装置
US11672046B2 (en) 2017-05-05 2023-06-06 Huawei Technologies Co., Ltd. Data receiving status reporting method and apparatus
CN108476435B (zh) * 2017-06-19 2021-07-27 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
WO2018232559A1 (zh) * 2017-06-19 2018-12-27 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
CN108476435A (zh) * 2017-06-19 2018-08-31 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
US11558494B2 (en) 2017-06-19 2023-01-17 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for processing data, user equipment and computer-readable storage medium

Also Published As

Publication number Publication date
KR20120048019A (ko) 2012-05-14
EP2469750A4 (en) 2014-07-02
CN102449944B (zh) 2015-11-25
BR112012003636A2 (pt) 2016-03-22
EP2469750A1 (en) 2012-06-27
CN102449944A (zh) 2012-05-09
US20120140704A1 (en) 2012-06-07
JP2013502755A (ja) 2013-01-24

Similar Documents

Publication Publication Date Title
WO2011020233A1 (zh) 多跳中继通信系统中对下行数据传输控制的方法和装置
KR101387537B1 (ko) 성공적으로 수신했으나 헤더 압축 복원에 실패한 패킷의 처리 방법
US9860915B2 (en) Apparatus and method for moving a receive window in a radio access network
RU2461147C2 (ru) Способ обработки радиопротокола в системе подвижной связи и передатчик подвижной связи
KR101387475B1 (ko) 복수의 네트워크 엔터티를 포함하는 이동 통신시스템에서의 데이터 처리 방법
EP2168270B1 (en) A method for handling correctly received but header compression failed packets
KR20100053625A (ko) 무선 통신 시스템에서의 핸드오버 동안 데이터의 계층 2 터널링
JP5081900B2 (ja) 再送要求送信方法及び受信側装置
WO2007098676A1 (fr) Procédé de réassemblage de données dans un système de communication sans fil et appareil associé
WO2014094613A1 (zh) 数据传输方法、装置及通信系统
WO2017185941A1 (zh) 一种数据传输方法及相关设备
JP2013513988A (ja) 中継ハンドオーバ制御
WO2007022694A1 (fr) Pile de protocoles utilisateur et procede de transfert sans perte
JP3727198B2 (ja) ゲートウェイ装置
WO2017133595A1 (zh) 数据处理的方法及装置
JP2005102340A (ja) ゲートウェイ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159605.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848374

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009848374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009848374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13390570

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1456/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012525011

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127006883

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003636

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003636

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120217