WO2011019506A2 - System and method for integrally casting multilayer metallic structures - Google Patents

System and method for integrally casting multilayer metallic structures Download PDF

Info

Publication number
WO2011019506A2
WO2011019506A2 PCT/US2010/043523 US2010043523W WO2011019506A2 WO 2011019506 A2 WO2011019506 A2 WO 2011019506A2 US 2010043523 W US2010043523 W US 2010043523W WO 2011019506 A2 WO2011019506 A2 WO 2011019506A2
Authority
WO
WIPO (PCT)
Prior art keywords
casting
metallic
metallic material
multilayer
making
Prior art date
Application number
PCT/US2010/043523
Other languages
French (fr)
Other versions
WO2011019506A3 (en
Inventor
James B. Sears, Jr.
Original Assignee
Sears James B Jr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/539,333 external-priority patent/US20110036530A1/en
Application filed by Sears James B Jr filed Critical Sears James B Jr
Publication of WO2011019506A2 publication Critical patent/WO2011019506A2/en
Publication of WO2011019506A3 publication Critical patent/WO2011019506A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/007Continuous casting of metals, i.e. casting in indefinite lengths of composite ingots, i.e. two or more molten metals of different compositions being used to integrally cast the ingots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills

Definitions

  • This invention relates broadly to the field of high speed metals casting and fabrication, and more specifically to systems and methods for integrally casting a structure, and in particular a near net shape structure, that has more than one layer.
  • Dual layer metal sheets are commonly used in applications where the required properties for one side of the metal sheet are different than those properties required for the opposite side. Consideration is given to the chemical, physical, or economic requirement of the product being manufactured, whether it is for the purpose of strength, corrosion resistance, or any one of many other variables. As such those two metals are produced separately and then bonded to each other through various methods such as roll bonding or explosion welding in order to get a strong metallurgical bond.
  • Dual layer metal sheets use 2 to 3 times the manufacturing energy as single-layer metal sheets.
  • dual layer metals are made of thick or thin slabs produced individually at cast speeds ranging from 0.5 to 8.0 meters per minute. Much higher casting speeds ranging from 40 to 160 meters per minute are typically achieved by twin-roll strip casting.
  • Each of the three different casting methods can be used to produce a coil of steel for example with a final net shape of 1.2 mm thickness.
  • the amount of rolling energy required to reduce the thick slab from 220 mm thickness down to 1.2 mm thickness is much greater than the rolling energy required to reduce a near net shape of 1.6 mm thickness down to 1.2 mm thickness.
  • Dual-layer metals produced from thin or thick slabs are not cost effective due to the high levels of energy required for rolling.
  • a method of making a multilayer metallic casting according to a first aspect of the invention includes steps of simultaneously forming a first layer of a first metallic material and a second layer of a second metallic material using a high speed continuous casting process; and continuously bonding the first and second layers to form a integrally cast multilayer metallic casting.
  • a method of making a multilayer metallic casting according to a second aspect of the invention includes steps of simultaneously forming a first layer of a first metallic material and a second layer of a second metallic material; and continuously bonding the first and second layers to form a final integral multilayer metallic casting that is in near net shape form.
  • FIGURE 1 is a diagrammatical depiction of a system for making a multilayer metallic cast structure that is constructed according to a first embodiment of the invention
  • FIGURE 2 is a diagrammatical depiction of a mold assembly that is preferably used in the embodiment that is shown in FIGURE 1 ;
  • FIGURE 3 is a diagrammatical depiction of a broader system for making a multilayer metallic cast structure that may incorporate the mold assembly that is depicted in FIGURE 2;
  • FIGURE 4 is a diagrammatical depiction of a system and method for making a multilayer metallic cast structure using a belt casting configuration that is constructed according to a second embodiment of the invention.
  • a system 10 for making a multilayer metallic integrally cast structure includes a continuous casting mold 12, a first tundish 14 for supplying a molten first type of metallic material to the continuous casting mold 12 and a second tundish 16 for supplying a molten second type of metallic material to the continuous casting mold 12.
  • system 10 is constructed and arranged to continuously form by casting an integral multilayer metallic casting 48 by simultaneously forming a first layer 50 of a first type of metallic material and a second layer 52 of a second type of metallic material that are metallurgically bonded together using a continuous casting process.
  • the integral multilayer metallic casting 48 is preferably a dual-layer structure, although it is anticipated that casting of more than two layers could potentially be achieved according to the principles of the invention as is described herein.
  • system 10 includes a vertical guide roll rack 18 for receiving the cast multilayer metallic structure 48, which is preferably shaped in near net shape form as a strip, sheet or a thin plate, from the continuous casting mold 12 and guiding it vertically downward.
  • Near net shape means that the initial production of the item is very close to the final (net) shape, reducing the need for further processing such as rolling, which significantly saves time and energy usage.
  • the direct casting of the structure 48 in near net shape form is preferably performed at a high casting speed that is substantially within a range of about 40 to about 160 meters per minute, more preferably substantially within a range of about 60 to about 120 meters per minute and most preferably substantially within a range of about 80 to about 100 meters per minute. This provides significant benefits in terms of reduced energy costs and reduction of necessary downstream processing.
  • the multilayer cast structure 48 is a thin sheet having two integral layers.
  • System 10 further includes a bending roll unit 20, a curved roll rack 22 and a straightener roll rack 24 for gradually re-orienting the multilayer casting 48 from the cast vertical orientation into a horizontal orientation.
  • a horizontal roll rack 26 guides the continuous sheet of multilayer metallic casting unit 48 into a cutting, rolling and coiling assembly 28, where it is maybe subdivided into smaller portions for integration into a finished product or for further processing.
  • the curvature of the system 10 is preferably over a large radius (at least 10 meters) before it reaches a horizontal position.
  • a series of driven roll pairs may be periodically spaced along transport path to support the weight and control the withdrawal speed of the multilayer casting from the continuous casting mold 12.
  • the continuous casting mold 12 preferably includes a first mold compartment 30 and a second mold compartment 32 that is separated from the first mold compartment 30 by a separating dam 38.
  • the separating dam is preferably fabricated from a material such as a refractory or a coated refractory material.
  • the refractory separating dam 38 may have a refractory metal core for additional strength, made of tungsten, molybdenum, niobium, tantalum, rhenium or one of the other Group 4, 5, 6 or 7 elements.
  • the continuous casting mold 12 is accordingly partitioned lengthwise by the separating dam 38, with the length substantially corresponding to the desired near net shape width of the product 48 that is to be cast.
  • the first mold compartment 30 is constructed and arranged to hold a first molten metallic material 34 received from the first tundish 14, and is defined in part by a first casting roll 44.
  • the second mold compartment 32 is constructed and arranged to hold a second molten metallic material 36 received from the second tundish 16, and is defined in part by a second casting roll 46.
  • a casting throat 37 is defined at a lower portion of the continuous casting mold 12 as the gap between the two casting rolls 44, 46.
  • the first casting roll 44 is preferably liquid-cooled and is mounted to rotate in a clockwise direction as viewed in FIGURE 2.
  • the second casting roll is also preferably liquid-cooled and is mounted to rotate in a counterclockwise direction as viewed in FIGURE
  • the first molten metallic material 34 preferably is formulated from an alloy of steel, aluminum, magnesium, copper, or another metallic material capable of being manufactured by the twin-roll casting process.
  • the second molten metallic material 36 preferably is formulated from another alloy of that same base metal group with a substantially similar coefficient of thermal expansion or shrinkage rate as is commonly used in continuous casting.
  • two molten metallic materials with substantially similar coefficients of thermal expansion but from entirely different base metal groups may be bonded together using this process, i.e. a copper-based alloy on one side and a stainless steel alloy on the other.
  • the lowermost end of the separating dam 38 terminates at a preferably tapered tip 40 that is proximate the casting throat 37, and in the preferred embodiment is provided with a heating element 42, which is preferably an electric resistance type heating element.
  • a multilayer metallic integral casting structure 48 having a metallurgically bonded interface 58 is continuously fabricated as a high speed thin strip having an a first layer 50 that is fabricated from the first metallic material and second layer 52 that is fabricated from the second metallic material using the continuous casting mold 12.
  • the molten first type of metallic material 34 in the first mold compartment 30 is quickly cooled by contact with the first casting roll 44, forming a semi- solidified shell 54 that increases in thickness as it nears the casting throat 37.
  • the molten second type of metallic material 36 in the second mold compartment 32 is quickly cooled by contact with the second casting roll 46, forming a semi- solidified shell 56 that increases in thickness as it nears the casting throat 37.
  • the interior surfaces of the respective shells 54, 56 are preferably heated by the heater 42 near the tapered lower tip 40 of the separating dam 38.
  • the semi-solidified shells 54, 56 are then pressed together by the casting rolls 44, 46 at the casting throat 37, thereby forming a continuous metallurgical bond between the inner surfaces thereof and forming the integral multilayer metallic casting 48 having a metallurgically bonded interface 58 between the two layers 50, 52.
  • the continuous bonding of the first and second layers 50, 52 to form the metallurgically bonded interface 58 may be performed while at least a portion of at least one of the first and second layers 50, 52 is in at least a semi-molten state, which facilitates the formation of the metallurgical bond between the layers 50, 52.
  • the degree of heating that is provided by the heater 42 the amount of mixing of the first type of metallic material and the second type of metallic material that occurs during the formation of the multilayer casting at the interface 58 can be controlled.
  • the thicknesses of each of the first and second layers 50, 52 can also be adjusted. For example, by circulating a greater volume of coolant through the casting roll 46 than is provided to casting roll 44, the thickness of the semi- solidified shell 56 can be formed to be thicker than the shell 54, causing the second layer 52 to be formed to be thicker than the first layer 50.
  • the process described above could be performed without the heater 42, or by configuring the heater 42 so that it applies heat to only one of the inner surfaces of the respective semi- solidified shells 54, 56.
  • Use of the heater 42 is preferred, however, because it promotes the control of the formation of a secure metallurgical bond between the layers 50, 52.
  • FIGURE 3 A broader system 60 for making a multilayer metallic cast structure that is constructed according to the first embodiment of the invention described above is shown in FIGURE 3.
  • System 60 includes first and second ladles 62, 64 that are adapted to respectively feed a first molten metallic material and a second molten material into first and second tundishes 66, 68.
  • the first and second tundishes 66, 68 are adapted to continuously feed the respective molten first and second metallic materials respectively through distribution nozzles 70, 72 into the first and second mold compartments 30, 32 of the continuous casting mold 12, which is otherwise constructed identically to the continuous casting mold 12 described above.
  • a twin-belt casting system 90 could be used to continuously fabricate the integral multilayer metallic casting 48 in lieu of the roll casting system 10.
  • the twin-belt casting system 90 preferably includes a first belt casting assembly 92 for casting a first metallic shell 94 and a second belt casting assembly 96 for casting a second metallic shell 98.
  • the first belt casting assembly 92 includes a first upper casting belt 100 that travels about rollers 102, 104, and a first lower casting belt 106 that travels about rollers 108, 110.
  • the second belt casting assembly includes a second upper casting belt 112 that travels about rollers 114, 116 and a second lower casting belt 118 that travels about rollers 120, 122.
  • the lower casting belts 106, 118 are constrained by rollers 110, 120 to form a casting throat in which the inner surfaces of the shells 94, 98 are pressed together in order to facilitate metallurgical bonding of the shells 94, 98.
  • twin-belt casting the initial solidification of the shells 94, 98 occurs once on the respective lower belt 106, 118 and once on the respective 100, 112 upper belt, and those two shells 94, 98 continue to grow from the liquid center of the shell until they meet at the center. Thickness of either wall of either shell 94, 98 can be adjusted by adjusting the temperature of the respective belt. In addition, by keeping the upper belts 100, 112 relatively hot, the side of the respective shells that is to be bonded with the other shell in order to form the multilayer metallic casting 48 could be kept soft in a semi-molten state order to facilitate metallurgical bonding.
  • a heating and guiding unit 124 is also preferably provided that includes a source of heat such as an electric resistance heater for applying additional heat to the upper surface of one or both of the shells 94, 98. Further softening or re-melting of the upper shell surfaces by the heating and guiding unit 124 could further facilitate metallurgical bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)

Abstract

A process of making a multilayer metallic casting includes steps of simultaneously forming a first layer of a first metallic material and a second layer of a second metallic material using a high speed continuous casting process, and continuously bonding the first and second layers to form a integrally cast multilayer metallic casting. The process may be performed using a twin-roll type continuous casting system having a continuous casting mold that includes a first mold compartment for receiving a molten first metallic material and a second mold compartment for receiving a molten second metallic. The molten first and second types of metallic material are quickly solidified into semi-solid shells and are pressed together by opposed casting rolls, creating a metallurgical bond between the first and second types of metallic material in order to form an integrally cast multilayer metallic casting. The process permits the high speed efficient manufacturing of near net shape multilayer metallic castings.

Description

SYSTEM AND METHOD FOR INTEGRALLY CASTING
MULTILAYER METALLIC STRUCTURES
[0001] This application is a continuation-in-part of U.S. Patent Application Serial No. 12/539,333, filed August 11, 2009, the entire disclosure of which is hereby incorporated by reference as if set forth fully herein.
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0002] This invention relates broadly to the field of high speed metals casting and fabrication, and more specifically to systems and methods for integrally casting a structure, and in particular a near net shape structure, that has more than one layer.
2. Description of the Related Technology
[0003] Dual layer metal sheets are commonly used in applications where the required properties for one side of the metal sheet are different than those properties required for the opposite side. Consideration is given to the chemical, physical, or economic requirement of the product being manufactured, whether it is for the purpose of strength, corrosion resistance, or any one of many other variables. As such those two metals are produced separately and then bonded to each other through various methods such as roll bonding or explosion welding in order to get a strong metallurgical bond.
[0004] An example of one such application can be found in U.S. Patent No. 6,360,936 Bl issued on March 26, 2002 for a composite sheet of maraging steel that is resistant to penetration by flying debris caused by explosives. In order to achieve the type of bond necessary for this critical application steps are taken to remove metal from the two surfaces being bonded by machining and explosive bonding the two materials together followed by subsequent rolling. Alternative steps that may be used to bond the two materials together for this application include peripherally welding the first and second plates together and producing a vacuum between them before roll-bonding the two materials together and into the final shape. [0005] Explosive bonding of two or more materials is earlier described in U.S. Patent No. 3,137,937 issued on June 23, 1964 whereby the metal layers are separated from each other and then explosively propelled together at an impact velocity adequate to permanently bond the materials together. High powered electron scanning microscopes have since confirmed mass conversion calculations that likely indicate an extremely fine line of melting of the two materials occurs at the bond line.
[0006] A record of roll bonding can be found in U.S. Patent No. 2,522,408 issued on September 12, 1950, which describes a method of cold welding various materials together through the application of extremely high pressure at or above the flow point of the metals. Another example of roll bonding using heat and pressure is described in US Patent No.
2,414,511 issued on January 21, 1947.
[0007] When considering the numerous manufacturing steps taken to individually produce each metal and the further steps taken to bond and process those metals into the final net shape, it is easy to understand the high cost of dual layer metal sheets. Large amounts of energy are consumed in the metals industry during melting and preparing liquid metals for casting and again for rolling and shaping those cast metals into the flat sheet product. Dual layer metal sheets use 2 to 3 times the manufacturing energy as single-layer metal sheets.
[0008] Typically dual layer metals are made of thick or thin slabs produced individually at cast speeds ranging from 0.5 to 8.0 meters per minute. Much higher casting speeds ranging from 40 to 160 meters per minute are typically achieved by twin-roll strip casting.
[0009] The following chart illustrates typical casting speeds for strip, thin slab, and thick slab casting.
Figure imgf000003_0001
[00010] Each of the three different casting methods can be used to produce a coil of steel for example with a final net shape of 1.2 mm thickness. However the amount of rolling energy required to reduce the thick slab from 220 mm thickness down to 1.2 mm thickness is much greater than the rolling energy required to reduce a near net shape of 1.6 mm thickness down to 1.2 mm thickness. Dual-layer metals produced from thin or thick slabs are not cost effective due to the high levels of energy required for rolling.
[00011] There is clearly a need for a low-cost method of producing a dual layer metal sheet with a strong metallurgical bond.
[00012] A need exists for a system and method that will permit high speed fabrication of near net shape multilayer metallic structures such as sheets or thin plates more cost- effectively than has heretofore been achieved.
SUMMARY OF THE INVENTION
[00013] Accordingly, it is an object of the invention to provide a system and method that will permit high speed fabrication of multilayer metallic structures such as sheets or thin plates more cost-effectively than has heretofore been achieved.
[00014] It is further an object of one aspect of the invention to provide a method of simultaneously continuous casting two different metal materials, which can be different alloys, on opposing sides of a dual-cavity mold into a near-net shape and continuously bonding one side of each of those two metals together into a dual layer metal sheet with a strong metallurgical bond of cohesion.
[00015] It is also an object of one aspect of this invention to simultaneous continuous cast two different metal alloys and continuously bond them together while one side of each is still in a molten or semi-molten state whereby the final solidification occurs with some mixing of the two materials thus forming a permanently fused dual layer sheet.
[00016] In order to achieve the above and other objects of the invention, a method of making a multilayer metallic casting according to a first aspect of the invention includes steps of simultaneously forming a first layer of a first metallic material and a second layer of a second metallic material using a high speed continuous casting process; and continuously bonding the first and second layers to form a integrally cast multilayer metallic casting. [00017] A method of making a multilayer metallic casting according to a second aspect of the invention includes steps of simultaneously forming a first layer of a first metallic material and a second layer of a second metallic material; and continuously bonding the first and second layers to form a final integral multilayer metallic casting that is in near net shape form.
[00018] These and various other advantages and features of novelty that characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[00019] FIGURE 1 is a diagrammatical depiction of a system for making a multilayer metallic cast structure that is constructed according to a first embodiment of the invention;
[00020] FIGURE 2 is a diagrammatical depiction of a mold assembly that is preferably used in the embodiment that is shown in FIGURE 1 ;
[00021] FIGURE 3 is a diagrammatical depiction of a broader system for making a multilayer metallic cast structure that may incorporate the mold assembly that is depicted in FIGURE 2; and
[00022] FIGURE 4 is a diagrammatical depiction of a system and method for making a multilayer metallic cast structure using a belt casting configuration that is constructed according to a second embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
[00023] Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, and referring in particular to FIGURE 1, a system 10 for making a multilayer metallic integrally cast structure includes a continuous casting mold 12, a first tundish 14 for supplying a molten first type of metallic material to the continuous casting mold 12 and a second tundish 16 for supplying a molten second type of metallic material to the continuous casting mold 12.
[00024] As will be described in greater detail below, and particularly in reference to FIGURE 2, system 10 is constructed and arranged to continuously form by casting an integral multilayer metallic casting 48 by simultaneously forming a first layer 50 of a first type of metallic material and a second layer 52 of a second type of metallic material that are metallurgically bonded together using a continuous casting process. The integral multilayer metallic casting 48 is preferably a dual-layer structure, although it is anticipated that casting of more than two layers could potentially be achieved according to the principles of the invention as is described herein.
[00025] As is shown in FIGURE 1, system 10 includes a vertical guide roll rack 18 for receiving the cast multilayer metallic structure 48, which is preferably shaped in near net shape form as a strip, sheet or a thin plate, from the continuous casting mold 12 and guiding it vertically downward. Near net shape means that the initial production of the item is very close to the final (net) shape, reducing the need for further processing such as rolling, which significantly saves time and energy usage.
[00026] The direct casting of the structure 48 in near net shape form is preferably performed at a high casting speed that is substantially within a range of about 40 to about 160 meters per minute, more preferably substantially within a range of about 60 to about 120 meters per minute and most preferably substantially within a range of about 80 to about 100 meters per minute. This provides significant benefits in terms of reduced energy costs and reduction of necessary downstream processing.
[00027] In the preferred embodiment, the multilayer cast structure 48 is a thin sheet having two integral layers. System 10 further includes a bending roll unit 20, a curved roll rack 22 and a straightener roll rack 24 for gradually re-orienting the multilayer casting 48 from the cast vertical orientation into a horizontal orientation.
[00028] A horizontal roll rack 26 guides the continuous sheet of multilayer metallic casting unit 48 into a cutting, rolling and coiling assembly 28, where it is maybe subdivided into smaller portions for integration into a finished product or for further processing. The curvature of the system 10 is preferably over a large radius (at least 10 meters) before it reaches a horizontal position. A series of driven roll pairs may be periodically spaced along transport path to support the weight and control the withdrawal speed of the multilayer casting from the continuous casting mold 12.
[00029] Referring now to FIGURE 2, it will be seen that the continuous casting mold 12 preferably includes a first mold compartment 30 and a second mold compartment 32 that is separated from the first mold compartment 30 by a separating dam 38. The separating dam is preferably fabricated from a material such as a refractory or a coated refractory material. To cast wider products, the refractory separating dam 38 may have a refractory metal core for additional strength, made of tungsten, molybdenum, niobium, tantalum, rhenium or one of the other Group 4, 5, 6 or 7 elements. The continuous casting mold 12 is accordingly partitioned lengthwise by the separating dam 38, with the length substantially corresponding to the desired near net shape width of the product 48 that is to be cast.
[00030] The first mold compartment 30 is constructed and arranged to hold a first molten metallic material 34 received from the first tundish 14, and is defined in part by a first casting roll 44. The second mold compartment 32 is constructed and arranged to hold a second molten metallic material 36 received from the second tundish 16, and is defined in part by a second casting roll 46. A casting throat 37 is defined at a lower portion of the continuous casting mold 12 as the gap between the two casting rolls 44, 46.
[00031] The first casting roll 44 is preferably liquid-cooled and is mounted to rotate in a clockwise direction as viewed in FIGURE 2. The second casting roll is also preferably liquid-cooled and is mounted to rotate in a counterclockwise direction as viewed in FIGURE
2.
[00032] The first molten metallic material 34 preferably is formulated from an alloy of steel, aluminum, magnesium, copper, or another metallic material capable of being manufactured by the twin-roll casting process. The second molten metallic material 36 preferably is formulated from another alloy of that same base metal group with a substantially similar coefficient of thermal expansion or shrinkage rate as is commonly used in continuous casting. Alternatively, two molten metallic materials with substantially similar coefficients of thermal expansion but from entirely different base metal groups may be bonded together using this process, i.e. a copper-based alloy on one side and a stainless steel alloy on the other.
[00033] The lowermost end of the separating dam 38 terminates at a preferably tapered tip 40 that is proximate the casting throat 37, and in the preferred embodiment is provided with a heating element 42, which is preferably an electric resistance type heating element.
[00034] In operation, a multilayer metallic integral casting structure 48 having a metallurgically bonded interface 58 is continuously fabricated as a high speed thin strip having an a first layer 50 that is fabricated from the first metallic material and second layer 52 that is fabricated from the second metallic material using the continuous casting mold 12.
[00035] The molten first type of metallic material 34 in the first mold compartment 30 is quickly cooled by contact with the first casting roll 44, forming a semi- solidified shell 54 that increases in thickness as it nears the casting throat 37. Simultaneously, the molten second type of metallic material 36 in the second mold compartment 32 is quickly cooled by contact with the second casting roll 46, forming a semi- solidified shell 56 that increases in thickness as it nears the casting throat 37.
[00036] The interior surfaces of the respective shells 54, 56 are preferably heated by the heater 42 near the tapered lower tip 40 of the separating dam 38. The semi-solidified shells 54, 56 are then pressed together by the casting rolls 44, 46 at the casting throat 37, thereby forming a continuous metallurgical bond between the inner surfaces thereof and forming the integral multilayer metallic casting 48 having a metallurgically bonded interface 58 between the two layers 50, 52.
[00037] The continuous bonding of the first and second layers 50, 52 to form the metallurgically bonded interface 58 is thus performed while the first and second layers 50, 52 are still at elevated temperatures from the continuous casting process.
[00038] By heating the respective inner surfaces of the layers 50, 52 using the heater 42, the continuous bonding of the first and second layers 50, 52 to form the metallurgically bonded interface 58 may be performed while at least a portion of at least one of the first and second layers 50, 52 is in at least a semi-molten state, which facilitates the formation of the metallurgical bond between the layers 50, 52. By controlling the degree of heating that is provided by the heater 42, the amount of mixing of the first type of metallic material and the second type of metallic material that occurs during the formation of the multilayer casting at the interface 58 can be controlled.
[00039] By adjusting the cooling that is provided by the respective casting rolls 44, 46, the thicknesses of each of the first and second layers 50, 52 can also be adjusted. For example, by circulating a greater volume of coolant through the casting roll 46 than is provided to casting roll 44, the thickness of the semi- solidified shell 56 can be formed to be thicker than the shell 54, causing the second layer 52 to be formed to be thicker than the first layer 50.
[00040] Alternatively, the process described above could be performed without the heater 42, or by configuring the heater 42 so that it applies heat to only one of the inner surfaces of the respective semi- solidified shells 54, 56. Use of the heater 42 is preferred, however, because it promotes the control of the formation of a secure metallurgical bond between the layers 50, 52.
[00041] A broader system 60 for making a multilayer metallic cast structure that is constructed according to the first embodiment of the invention described above is shown in FIGURE 3. System 60 includes first and second ladles 62, 64 that are adapted to respectively feed a first molten metallic material and a second molten material into first and second tundishes 66, 68. The first and second tundishes 66, 68 are adapted to continuously feed the respective molten first and second metallic materials respectively through distribution nozzles 70, 72 into the first and second mold compartments 30, 32 of the continuous casting mold 12, which is otherwise constructed identically to the continuous casting mold 12 described above.
[00042] According to an alternative embodiment of the invention that is shown in FIGURE 4, a twin-belt casting system 90 could be used to continuously fabricate the integral multilayer metallic casting 48 in lieu of the roll casting system 10. The twin-belt casting system 90 preferably includes a first belt casting assembly 92 for casting a first metallic shell 94 and a second belt casting assembly 96 for casting a second metallic shell 98. The first belt casting assembly 92 includes a first upper casting belt 100 that travels about rollers 102, 104, and a first lower casting belt 106 that travels about rollers 108, 110. The second belt casting assembly includes a second upper casting belt 112 that travels about rollers 114, 116 and a second lower casting belt 118 that travels about rollers 120, 122.
[00043] The lower casting belts 106, 118 are constrained by rollers 110, 120 to form a casting throat in which the inner surfaces of the shells 94, 98 are pressed together in order to facilitate metallurgical bonding of the shells 94, 98.
[00044] In twin-belt casting, the initial solidification of the shells 94, 98 occurs once on the respective lower belt 106, 118 and once on the respective 100, 112 upper belt, and those two shells 94, 98 continue to grow from the liquid center of the shell until they meet at the center. Thickness of either wall of either shell 94, 98 can be adjusted by adjusting the temperature of the respective belt. In addition, by keeping the upper belts 100, 112 relatively hot, the side of the respective shells that is to be bonded with the other shell in order to form the multilayer metallic casting 48 could be kept soft in a semi-molten state order to facilitate metallurgical bonding.
[00045] A heating and guiding unit 124 is also preferably provided that includes a source of heat such as an electric resistance heater for applying additional heat to the upper surface of one or both of the shells 94, 98. Further softening or re-melting of the upper shell surfaces by the heating and guiding unit 124 could further facilitate metallurgical bonding. By keeping the upper shell on each side from growing very fast by keeping the belt 100, 112 hot and/or by using the heating or guiding unit 124, it would also be possible to use the system 90 to continuously cast in a horizontal or near-horizontal configuration.
[00046] It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims

WHAT IS CLAIMED IS:
1. A method of making a multilayer metallic casting, comprising: simultaneously forming a first layer of a first metallic material and a second layer of a second metallic material using a high speed continuous casting process; and continuously bonding said first and second layers to form an integrally cast multilayer metallic casting.
2. A method of making a multilayer metallic casting according to claim 1, wherein said step of continuously bonding said first and second layers is performed while said first and second layers are still at elevated temperatures.
3. A method of making a multilayer metallic casting according to claim 2, wherein said step of continuously bonding said first and second layers is performed while at least a portion of one of said first and second layers is in at least a semi-molten state.
4. A method of making a multilayer metallic casting according to claim 3, further comprising a step of providing additional heating to at least one surface of at least one of said first and second layers that is to be bonded to a surface of the other of said first and second layers in order to form the integrally cast multilayer metallic casting.
5. A method of making a multilayer metallic casting according to claim 1, wherein said step of simultaneously forming a first layer of first layer of metallic material and a second layer of a second type of metallic material using a continuous casting process is performed using a continuous casting mold having a first mold compartment holding molten metallic material of the first type; a second mold compartment holding molten metallic material of the second type; and a separating dam defining a divider between said first and second mold
compartments.
6. A method of making a multilayer metallic casting according to claim 1, wherein said step of simultaneously forming a first layer of the first type of metallic material and a second layer of the second type of metallic material is performed using a continuous casting machine having a first casting roll for forming and cooling one of said first and second layers.
7. A method of making a multilayer metallic casting according to claim 6, wherein said step of simultaneously forming a first layer of the first type of metallic material and a second layer of the second type of metallic material is further performed using a second casting roll for forming and cooling the other of said first and second layers.
8. A method of making a multilayer metallic casting according to claim 1, said first type of metallic material and said second type of metallic material are not the same material.
9. A method of making a multilayer metallic casting according to claim 1, wherein said high speed continuous casting process operates at a casting speed that is substantially within a range of about 40 to about 160 meters per minute.
10. A method of making a multilayer metallic casting according to claim 9, wherein said high speed continuous casting process operates at a casting speed that is substantially within a range of about 60 to about 120 meters per minute.
11. A method of making a multilayer metallic casting according to claim 10, wherein said high speed continuous casting process operates at a casting speed that is substantially within a range of about 80 to about 100 meters per minute.
12. A method of making a multilayer metallic casting according to claim 1, wherein said continuous casting process is performed to produce a casting that is in near net shape form.
13. A method of making a multilayer metallic casting, comprising: simultaneously forming a first layer of a first metallic material and a second layer of a second metallic material; and continuously bonding said first and second layers to form a final integral multilayer metallic casting that is in near net shape form.
14. A method of making a multilayer metallic casting according to claim 13, wherein said step of continuously bonding said first and second layers is performed while said first and second layers are still at elevated temperatures.
15. A method of making a multilayer metallic casting according to claim 14, wherein said step of continuously bonding said first and second layers is performed while at least a portion of one of said first and second layers is in at least a semi-molten state.
16. A method of making a multilayer metallic casting according to claim 15, further comprising a step of providing additional heating to at least one surface of at least one of said first and second layers that is to be bonded to a surface of the other of said first and second layers in order to form the integrally cast multilayer metallic casting.
17. A method of making a multilayer metallic casting according to claim 13, wherein said step of simultaneously forming a first layer of first layer of metallic material and a second layer of a second type of metallic material using a continuous casting process is performed using a continuous casting mold having a first mold compartment holding molten metallic material of the first type; a second mold compartment holding molten metallic material of the second type; and a separating dam defining a divider between said first and second mold compartments.
18. A method of making a multilayer metallic casting according to claim 13, wherein said step of simultaneously forming a first layer of the first type of metallic material and a second layer of the second type of metallic material is performed using a continuous casting machine having a first casting roll for forming and cooling one of said first and second layers.
19. A method of making a multilayer metallic casting according to claim 18, wherein said step of simultaneously forming a first layer of the first type of metallic material and a second layer of the second type of metallic material is further performed using a second casting roll for forming and cooling the other of said first and second layers.
20. A method of making a multilayer metallic casting according to claim 13, said first type of metallic material and said second type of metallic material are not the same material.
PCT/US2010/043523 2009-08-11 2010-07-28 System and method for integrally casting multilayer metallic structures WO2011019506A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/539,333 2009-08-11
US12/539,333 US20110036530A1 (en) 2009-08-11 2009-08-11 System and Method for Integrally Casting Multilayer Metallic Structures
US12/626,818 US20110036531A1 (en) 2009-08-11 2009-11-27 System and Method for Integrally Casting Multilayer Metallic Structures
US12/626,818 2009-11-27

Publications (2)

Publication Number Publication Date
WO2011019506A2 true WO2011019506A2 (en) 2011-02-17
WO2011019506A3 WO2011019506A3 (en) 2011-04-28

Family

ID=43586735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/043523 WO2011019506A2 (en) 2009-08-11 2010-07-28 System and method for integrally casting multilayer metallic structures

Country Status (2)

Country Link
US (1) US20110036531A1 (en)
WO (1) WO2011019506A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110711852A (en) * 2019-10-18 2020-01-21 太原科技大学 Semi-solid magnesium alloy shearing and pushing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036530A1 (en) * 2009-08-11 2011-02-17 Sears Jr James B System and Method for Integrally Casting Multilayer Metallic Structures
DE102021204091A1 (en) * 2021-04-23 2022-10-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Casting device, casting method and cast component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060052713A (en) * 2003-06-24 2006-05-19 노벨리스 인코퍼레이티드 Method for casting composite ingot
KR100621084B1 (en) * 1998-08-07 2006-09-07 카스트립 엘엘씨. Casting steel strip

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353934A (en) * 1962-08-14 1967-11-21 Reynolds Metals Co Composite-ingot
US3848658A (en) * 1973-03-16 1974-11-19 Hazelett Strip Casting Corp Carriage orientation and lift system for a twin belt continuous metal casting machine
US3949805A (en) * 1973-04-12 1976-04-13 Hazelett Strip-Casting Corporation Symmetrical belt tensioning system and apparatus for twin-belt continuous casting machines
US3963068A (en) * 1973-04-12 1976-06-15 Hazelett Strip-Casting Corporation Symmetrical synchronized belt-steering system and apparatus for twin-belt continuous metal casting machines
US3878883A (en) * 1973-04-12 1975-04-22 Hazelett Strip Casting Corp Symmetrical synchronized belt-steering and tensioning system and apparatus for twin-belt continuous metal casting machines
US3828841A (en) * 1973-05-03 1974-08-13 Hazelett Strip Casting Corp Twin-belt metal casting machine having removable core assembly including coolant applicators and back-up rollers
US3955615A (en) * 1973-09-28 1976-05-11 Hazelett Strip-Casting Corporation Twin-belt continuous casting apparatus
US3865176A (en) * 1973-09-28 1975-02-11 Hazelett Strip Casting Corp Casting method for twin-belt continuous metal casting machines
US4002197A (en) * 1973-11-09 1977-01-11 Hazelett Strip-Casting Corporation Continuous casting apparatus wherein the temperature of the flexible casting belts in twin-belt machines is controllably elevated prior to contact with the molten metal
US3937270A (en) * 1973-11-09 1976-02-10 Hazelett Strip-Casting Corporation Twin-belt continuous casting method providing control of the temperature operating conditions at the casting belts
US3866665A (en) * 1974-01-02 1975-02-18 Allis Chalmers Twin strand continuous casting apparatus with a tundish load balancing vessel
US3937274A (en) * 1974-05-15 1976-02-10 Hazelett Strip-Casting Corporation Belt back-up apparatus and coolant application means for twin-belt casting machines
DE2508369A1 (en) * 1975-02-26 1976-09-02 Siemens Ag PROCESS FOR MANUFACTURING DISC-SHAPED SILICON BODIES, IN PARTICULAR FOR SOLAR CELLS
US4062235A (en) * 1975-08-07 1977-12-13 Hazelett Strip-Casting Corporation Twin-belt continuous casting wherein the belts are sensed by mechanical probes
US4056140A (en) * 1976-10-20 1977-11-01 United States Steel Corporation Method and mechanism for controlling forces in a continuous-casting machine
US4260008A (en) * 1979-05-30 1981-04-07 Asarco Incorporated Side dam apparatus for use in twin-belt continuous casting machines
US4239081A (en) * 1979-05-30 1980-12-16 Asarco Incorporated Side dam apparatus for use in twin-belt continuous casting machines
US4291747A (en) * 1979-10-31 1981-09-29 Gus Sevastakis Cooler for twin strand continuous casting
US4323419A (en) * 1980-05-08 1982-04-06 Atlantic Richfield Company Method for ribbon solar cell fabrication
US4515650A (en) * 1980-05-15 1985-05-07 International Business Machines Corporation Method for producing large grained semiconductor ribbons
US4671341A (en) * 1981-12-14 1987-06-09 Hazelett Strip-Casting Corporation Systems for shaping the casting region in a twin-belt continuous casting machine for improving heat transfer and product uniformity and enhanced machine performance
US4552201A (en) * 1981-12-14 1985-11-12 Hazelett Strip-Casting Corp. Methods for shaping the casting region in a twin-belt continuous casting machine for improving heat transfer and product uniformity and enhanced machine performance
US4658883A (en) * 1981-12-14 1987-04-21 Hazelett Strip-Casting Corporation Systems for shaping the casting region in a twin-belt continuous casting machine for improving heat transfer and product uniformity and enhanced machine performance
US4674558A (en) * 1981-12-14 1987-06-23 Hazelett Strip-Casting Corporation Methods for shaping the casting region in a twin-belt continuous casting machine for improving heat transfer and product uniformity and enhanced machine performance
DE3431316C2 (en) * 1984-08-25 1986-01-16 Fried. Krupp Gmbh, 4300 Essen Guide device on the casting belts of a double-belt continuous casting mold
DE3444689A1 (en) * 1984-12-07 1986-01-16 Fried. Krupp Gmbh, 4300 Essen GUIDE DEVICE ON THE CASTING BELTS OF A DOUBLE-STRAND CASTING CHOCOLATE
US4546813A (en) * 1985-02-19 1985-10-15 United States Steel Corporation Adjustable insert for twin casting
JPS6233047A (en) * 1985-08-05 1987-02-13 Nisshin Steel Co Ltd Twin drum type continuous casting machine
US4712602A (en) * 1986-09-11 1987-12-15 Hazelett Strip-Casting Corporation Pool-level sensing probe and automatic level control for twin-belt continuous metal casting machines
US4934441A (en) * 1986-12-03 1990-06-19 Hazelett Strip-Casting Corporation Edge dam tensioning and sealing method and apparatus for twin-belt continuous casting machine
AU607226B2 (en) * 1987-06-08 1991-02-28 Mitsubishi Heavy Industries, Ltd. Twin belt type continuous casting
JPH01118346A (en) * 1987-10-29 1989-05-10 Sumitomo Heavy Ind Ltd Casting method and device by twin belt caster of steel
CA1315518C (en) * 1987-12-23 1993-04-06 Keiichi Katahira Twin belt type continuous casting machine
US4813471A (en) * 1988-05-05 1989-03-21 Hazelett Strip-Casting Corporation Method for determining molten metal pool level in twin-belt continuous casting machines
EP0349904B1 (en) * 1988-07-05 1994-02-23 Sumitomo Sitix Co., Ltd. Apparatus for casting silicon
US4901785A (en) * 1988-07-25 1990-02-20 Hazelett Strip-Casting Corporation Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product
JP2591098B2 (en) * 1988-07-26 1997-03-19 石川島播磨重工業株式会社 Twin roll continuous casting machine
JP2649066B2 (en) * 1988-08-03 1997-09-03 新日本製鐵株式会社 Twin roll thin plate continuous casting method
US5217061A (en) * 1988-09-30 1993-06-08 Nisshin Steel Co., Ltd. Twin roll continuous casting of metal strip
US5027888A (en) * 1989-01-31 1991-07-02 Hitachi Zosen Corporation Method and apparatus for sealing molten metal for a twin-roll type continous casting apparatus
JPH0399757A (en) * 1989-09-11 1991-04-24 Nippon Steel Corp Twin roll type strip continuous casting method
US4972900A (en) * 1989-10-24 1990-11-27 Hazelett Strip-Casting Corporation Permeable nozzle method and apparatus for closed feeding of molten metal into twin-belt continuous casting machines
US5031688A (en) * 1989-12-11 1991-07-16 Bethlehem Steel Corporation Method and apparatus for controlling the thickness of metal strip cast in a twin roll continuous casting machine
ATE140171T1 (en) * 1990-08-03 1996-07-15 Davy Mckee Poole METHOD AND DEVICE FOR CASTING BETWEEN TWO ROLLERS
GB9017042D0 (en) * 1990-08-03 1990-09-19 Davy Mckee Poole Twin roll casting
KR960004420B1 (en) * 1991-04-19 1996-04-03 신닛뽕세이데쓰 가부시끼가이샤 Twin roll-type sheet continuous casting method and apparatus
NZ242595A (en) * 1991-05-23 1993-09-27 Ishikawajima Harima Heavy Ind Casting metal strip; delivery nozzle for delivering molten metal to nip rollers
CA2104375C (en) * 1991-12-19 1998-08-25 Kenichi Miyazawa Process for producing thin sheet by continuous casting in twin-roll system
JPH0749140B2 (en) * 1992-02-17 1995-05-31 三菱重工業株式会社 Twin-drum type continuous casting machine
JPH06198397A (en) * 1993-01-07 1994-07-19 Nippon Steel Corp Method and device of continuous casting of thin thickness dual layer sheet
US6902828B2 (en) * 2001-04-09 2005-06-07 Alcoa Inc. Bright products obtained by continuous casting
US7888158B1 (en) * 2009-07-21 2011-02-15 Sears Jr James B System and method for making a photovoltaic unit
US20110036530A1 (en) * 2009-08-11 2011-02-17 Sears Jr James B System and Method for Integrally Casting Multilayer Metallic Structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100621084B1 (en) * 1998-08-07 2006-09-07 카스트립 엘엘씨. Casting steel strip
KR20060052713A (en) * 2003-06-24 2006-05-19 노벨리스 인코퍼레이티드 Method for casting composite ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110711852A (en) * 2019-10-18 2020-01-21 太原科技大学 Semi-solid magnesium alloy shearing and pushing device

Also Published As

Publication number Publication date
WO2011019506A3 (en) 2011-04-28
US20110036531A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
Emley Continuous casting of aluminium
TW318154B (en)
US11788167B2 (en) Device and method for manufacturing metal clad strips continuously
US7846554B2 (en) Functionally graded metal matrix composite sheet
EP3815813B1 (en) Device and method for manufacturing metal clad plates in way of continuous casting and rolling
KR102483849B1 (en) Manufacturing device and method for manufacturing a metal clad plate in a short-term process
KR101809112B1 (en) Energy- and yield-optimized method and plant for producing hot steel strip
US7503378B2 (en) Casting of non-ferrous metals
EP0655288B1 (en) Continuous casting process and continuous casting/rolling process for steel
CN101678458A (en) Titanium flat product production
CN101549392A (en) An electromagnetic continuous casting method and device of complex ingot blank
CN101811179A (en) Magnesium alloy wide plate casting-rolling method
EP2142324B1 (en) Strip casting of immiscible metals
JP2005536354A (en) Non-ferrous metal casting
US20110036531A1 (en) System and Method for Integrally Casting Multilayer Metallic Structures
US7125612B2 (en) Casting of non-ferrous metals
WO2009052551A1 (en) High copper low allowy steel sheet
CN102397876A (en) Continuous hot rolling mill for magnesium alloy sheet
CN101947550A (en) Reverse casting preparation method for magnesium-based aluminum-clad composite plate strip
US20110036530A1 (en) System and Method for Integrally Casting Multilayer Metallic Structures
WO1996001710A1 (en) Method of casting and rolling steel using twin-roll caster
US5293927A (en) Method and apparatus for making strips, bars and wire rods
CN1647870B (en) Metal thin plate double roller acynchronous casting and rolling mill
WO1996001708A1 (en) Twin-roll caster and rolling mill for use therewith
JP3218361B2 (en) Continuous casting of steel and continuous casting and rolling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808513

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808513

Country of ref document: EP

Kind code of ref document: A2