WO2011018841A1 - Inkjet recording device and printing head - Google Patents

Inkjet recording device and printing head Download PDF

Info

Publication number
WO2011018841A1
WO2011018841A1 PCT/JP2009/064170 JP2009064170W WO2011018841A1 WO 2011018841 A1 WO2011018841 A1 WO 2011018841A1 JP 2009064170 W JP2009064170 W JP 2009064170W WO 2011018841 A1 WO2011018841 A1 WO 2011018841A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
nozzles
print
charging
nozzle
Prior art date
Application number
PCT/JP2009/064170
Other languages
French (fr)
Japanese (ja)
Inventor
原田 信浩
宮尾 明
堀川 康治
久 梅津
拓也 盛合
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to US13/389,609 priority Critical patent/US8764169B2/en
Priority to PCT/JP2009/064170 priority patent/WO2011018841A1/en
Priority to CN200980160867.0A priority patent/CN102470669B/en
Priority to JP2011526657A priority patent/JP5190146B2/en
Priority to IN864DEN2012 priority patent/IN2012DN00864A/en
Priority to EP09848260.7A priority patent/EP2465681B1/en
Publication of WO2011018841A1 publication Critical patent/WO2011018841A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • B41J2/085Charge means, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • B41J2/09Deflection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/095Ink jet characterised by jet control for many-valued deflection electric field-control type

Definitions

  • the present invention relates to an ink jet recording apparatus (ink jet printer) and a print head used therefor, for example, an industrial ink jet recording apparatus used for product marking and a print head used therefor.
  • ink particles ejected from one nozzle are used when printing on a printing object (also referred to as “work”).
  • the charging voltage is applied by regarding the ink particles ejected from one nozzle as a charging target at a ratio of one to a plurality of ink particles.
  • the upper part of FIG. 1 shows an example in which one of the two created ink particles is to be charged, and this is defined as a particle usage rate of 1/2.
  • the particle usage rate is changed to 1/1.
  • the print character width can be controlled by leaving each scan interval.
  • the creation cycle of the ink particles ejected from the nozzles is set constant so as to obtain an optimal ink particle shape based on the ink pressure and ink viscosity, etc., and the ink particles are charged and deflected to a predetermined position. It is supposed to be.
  • the character width of the printing result tends to increase as the conveyance speed of the printing object increases.
  • FIG. 1 shows an example of performing one-step printing.
  • Patent Document 1 in the case where two or more stages of printing are performed, two or more nozzles are arranged in a print head, and an ink jet recording apparatus that performs printing corresponding to each nozzle and stage Has been devised.
  • the system has a system of charging voltage and deflection voltage according to the number of each nozzle, and in order to reduce the character width of the printing result in high-speed printing when performing multi-stage printing. It is an effective method.
  • the particle usage rate used for printing the ink ejected from the nozzle described in the previous stage It is effective to increase the value or to shorten the production cycle of the ink ejected from the nozzles.
  • the particle usage rate 1/1 is the limit, and the range that can cope with high speed is limited.
  • the latter is a specification that is set in advance so as to obtain an optimal ink particle shape based on ink pressure, ink viscosity, etc., and if only the ink creation cycle is changed, printing defects will occur due to defective ink particle formation. Have a factor that occurs.
  • Patent Document 1 realizes printing of two or more stages at a printing speed of one stage. As described above, when the conveyance speed of the substrate is increased, the printing result is The character width cannot be prevented from widening.
  • a plurality of nozzles are housed in the print head, and the charging voltage is binarized to charge the ink particles, thereby separating the presence and absence of deflection in the deflection electrode, and the ink particles collected by the gutter
  • the charging voltage is binarized to charge the ink particles, thereby separating the presence and absence of deflection in the deflection electrode, and the ink particles collected by the gutter
  • the present invention has been made in view of such a situation, and in an ink jet recording apparatus, even when the conveyance speed of an object to be printed is increased, the character width of the printing result is not increased, and the printing quality is improved.
  • the technology for improving is provided.
  • the present invention is configured so that the arrangement direction of a plurality of nozzles is orthogonal to the deflection direction of ink particles in an ink jet recording apparatus.
  • the ink ejected from a plurality of nozzles is charged by the same number of charging electrodes as the nozzles, and each charged particle is deflected in one deflection electric field formed by a pair of positive and negative deflection electrodes, and applied to each charging electrode.
  • the voltage value of the charging voltage to be applied and the application timing of the charging voltage are configured to have a function that can be adjusted independently.
  • an ink jet recording apparatus is an ink jet recording apparatus that prints on a substrate to be conveyed, and includes a plurality of nozzles, a plurality of charging electrodes, a deflection electrode, an input unit, and a control unit. It is equipped with.
  • the plurality of charging electrodes are arranged corresponding to the plurality of nozzles, and charge the ink particles ejected from each of the plurality of nozzles.
  • the deflection electrode is a means for deflecting charged ink particles.
  • the arrangement direction of the plurality of nozzles is orthogonal to the deflection direction of the charged ink particles.
  • the control unit expands the print characters input from the input unit into a dot matrix, assigns each dot data to a plurality of nozzles, ejects ink from the plurality of nozzles, and the value of the charging voltage applied to the plurality of charging electrodes. And the application timing are controlled. With such a configuration, it is possible to print a character string of one stage on a printing object using a plurality of nozzles.
  • the deflection electrode is composed of a pair of flat plate electrodes regardless of the number of nozzles and charging electrodes.
  • the control unit prints one row of character strings on the printing object by sequentially printing dot rows from a plurality of nozzles.
  • the input unit has a printing condition setting unit that can set printing conditions independently for each of the plurality of nozzles.
  • the control unit controls the ink ejection operation, the charging voltage value, and the application timing in accordance with the printing conditions set by the printing condition input unit.
  • the control unit adjusts the value of the charging voltage applied to the charging electrode corresponding to the nozzle whose print character height should be adjusted. To do.
  • the control unit adjusts the application timing of the charging voltage applied to the charging electrode corresponding to the nozzle whose print start timing is to be adjusted.
  • the control unit creates ink particles that do not print in the print row interval according to the adjustment value of the print row interval for each nozzle. By applying a charging voltage that is inserted in units of dots to the charging electrode, the print row interval is adjusted.
  • the control unit controls the inclination of the dot row generated by each nozzle based on the usage rate. By doing so, a special print pattern is realized.
  • the present invention it is possible to improve the printing quality by preventing the character width of the printing result from being widened even when the conveyance speed of the substrate is increased.
  • FIG. 1 is a block diagram showing an overall circuit configuration of an ink jet recording apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a schematic configuration of a print head.
  • FIG. 9 shows the example of printing (high-speed printing) in the 2 nozzle print head structure of this embodiment, and the example of a charging voltage waveform (1). It is a figure which shows the example of printing (high-speed printing) in the 2 nozzle print head structure of this embodiment, and the example of a charging voltage waveform (2). It is a figure which shows the example of defective printing in the 2 nozzle print head structure of this embodiment, the example of improvement printing (high-speed printing), and the example of a charging voltage waveform. It is a figure which shows the example of application printing (special pattern) which becomes possible when the 2 nozzle print head structure of this embodiment is implemented.
  • the upper part of FIG. 9 shows the case where the print start timing is controlled for each nozzle, and the lower part of FIG.
  • FIG. 9 shows the case where the particle usage rate is controlled for each nozzle. It is a figure which shows the example of a setting on the setting screen (GUI) by this embodiment. It is a print control example using the setting screen (GUI) by this embodiment, Comprising: It is a figure which shows a print start timing chart. It is a print control example using the setting screen (GUI) by this embodiment, Comprising: It is a figure which shows a print result and the example of a charging voltage. It is a figure which shows the example of distribution control of the printing dot data by this embodiment.
  • the character width of the printed result is not increased even when the conveyance speed of the substrate is increased.
  • the first problem is that the vertical dot pitch printed from each of the plurality of nozzles is not uniform, that is, the print character height is different due to the difference in the print character height of the ink ejected from each nozzle. It is.
  • the print character height is determined by the speed of the ink particles ejected from the nozzle, the amount of charge charged by the charging electrode, the strength of the deflection electric field formed in the deflection electrode, etc. fluctuate. Therefore, for this problem, it is necessary to have a mechanism for adjusting the print character height for each nozzle.
  • the means for adjusting the charging voltage value independently for each nozzle is most effective.
  • the second problem can be considered that the print quality is deteriorated due to the fact that the horizontal dot pitches printed from a plurality of nozzles are not uniform.
  • FIG. 4 is a block diagram showing an overall circuit configuration of the ink jet recording apparatus according to the embodiment of the present invention.
  • FIG. 4 shows a circuit configuration of an ink jet recording apparatus having two nozzles, but the number of nozzles may be three or more.
  • the ink jet recording apparatus includes an MPU (microprocessing unit) 1 that controls the entire ink jet recording apparatus, a ROM (read only memory) 2 that stores programs and the like, and a temporary storage in the ink jet recording apparatus.
  • Random access memory (RAM) 3 for storing data
  • an input panel 4 for inputting contents to be printed, which also has a display device, a pump for pressurizing ink, a pressure reducing valve and a solenoid valve for adjusting pressure, etc.
  • a circulation control circuit 5 for controlling the circulation system component 6, a deflection D / A converter 20 for digital-analog conversion of data instructed by the MPU 1, an AMP 21 for amplifying a signal after D / A conversion, and a charging system circuit A_51
  • the charging system circuit B_52, the print head 47, and the object to be printed (work) 49 are detected.
  • a work sensor 48 is provided with a printing object detecting circuit 34 to determine the print start timing based on the detection result of the work sensor 48 is a desired timing, the.
  • Each block other than the print head 47 and the work sensor 48 is connected to the MPU 1 via the bus line 7 and controlled by the MPU 1.
  • the charging system circuit A_51 includes a print start signal command circuit A_8 that outputs a print start signal in accordance with a command from the MPU 1, a charge voltage generation circuit A_9 that generates a charge voltage in response to the timing of the print start signal, and a digital charge voltage value.
  • the charging system circuit B_52 has the same configuration as that of the charging system circuit A_51, the description thereof is omitted.
  • the print head 47 has two print head components.
  • the print head constituting unit A operates a nozzle A_35 that discharges ink, an electrostrictive element A_36 that operates according to an excitation voltage to atomize ink, a charging electrode A_37 that charges ink particles, and a timing for creating ink particles.
  • a phase search sensor A_38 for searching, deflection electrodes 45 and 46 for deflecting ink particles, and a gutter A_39 for collecting ink particles that have not been used for printing are provided.
  • the other print head component B has the same configuration as the print head component A.
  • the charging signal generation circuit A_9 creates and stores various data such as voltage data and timing data for charging the ink particles based on the printing content data input from the input panel 4, and the printing start signal command circuit A_8.
  • the data is transferred to the charging D / A converter A_14 in accordance with the print start timing in accordance with the instruction from.
  • the voltage value converted into analog by the charging D / A converter A_14 is amplified by the AMP 15 and applied to the charging electrode A_37 in accordance with the print start timing.
  • the operator uses the particle usage rate switch A_10 to set the usage rate of the charged particles used for printing. The higher the usage rate, the higher the printing speed becomes possible, but the printing quality deteriorates due to the influence of printing distortion, and vice versa when the usage rate is low.
  • the operator uses the excitation setting switch A_11 to determine the creation cycle of the ink particles ejected from the nozzles.
  • the oscillation clock output from the oscillator A_12 is divided by the frequency division counter A_16 based on the information of the particle usage rate switch A10 and the excitation setting switch A11, a timing signal is generated, and the charging signal generation circuit A_9 and the excitation voltage generation are generated. It is input to the circuit A_17.
  • the signal output from the excitation voltage generation circuit A_17 is amplified by the AMP 18 and applied to the electrostrictive element A_41.
  • the electrostrictive element A_36 converts the electric signal from the AMP 18 into vibration, pressurizes the ink, and ejects ink particles.
  • the phase search sensor A_38 searches the creation timing of the ejected ink particles. In order to perform optimal printing, it is necessary to apply a charging voltage in synchronization with the ink particle creation timing. Therefore, the detected timing is fed back to cause a phase shift (the timing of ink particle ejection and charging voltage application timing). Shift) is adjusted. More specifically, the signal detected by the phase search sensor A_38 is amplified by the AMP 19 and digitally converted by the phase detection circuit A_13, and then the ink particle creation timing is determined by the MPU1. Then, the charging timing (phase) information at which the MPU 1 is optimal is output to the charging signal generation circuit A_9.
  • Ink particles charged by the charging electrode A_37 are deflected by flying through an electric field formed by applying a DC voltage to the plus deflection electrode 46 and grounding the minus deflection electrode 45, and are used for printing. Jumps over the gutter A44 and is ejected from the print head 47, adheres to the work 49, which is the object to be printed, and is used for printing. At this time, deflection is performed according to the charge amount of the ink particles, the deflection amount of the ink particles having a large charge amount is large, and the deflection amount of the particles having a small charge amount is small.
  • the magnitude of the DC voltage applied to the plus deflection electrode 46 is obtained by converting the data instructed from the MPU 1 into digital / analog by the deflection D / A converter 20 according to the character height information set from the input panel 4, and by the AMP 21.
  • the configuration is variable depending on the configuration to be amplified.
  • Ink that was not used for printing that is, ink particles that were not charged and ink particles that were charged for phase search, are collected from the gutter A44 and supplied again to the nozzle A_35 by the circulation system component 6 such as a pump.
  • the printed material 49 is conveyed on the conveyor 50, and is printed in a direction substantially perpendicular to the ink ejection direction and the ink deflection direction (when the print head 47 is inclined (see FIG. 5)). (Only the ink outflow direction is orthogonal to the transport direction).
  • the print start timing is controlled by the MPU 1 through the workpiece detection circuit 34 that detects the position of the workpiece by the workpiece sensor 48 and determines whether the print start timing is correct.
  • the components in the print head component B including the nozzle B_40 are the same as the components for performing printing with the ink ejected from the nozzle A_35 except for the plus deflection electrode and the minus deflection electrode.
  • a control circuit for performing printing with ink ejected from the nozzle A_35 is defined as a charging system circuit A_51
  • a control circuit for performing printing with ink ejected from the nozzle B_40 is defined as a charging system circuit B_52.
  • the constituent elements of the charging system circuit B_52 are configured by elements and parts equivalent to the charging system circuit A_51.
  • a configuration in which a plurality of nozzles are arranged in the print head 47 is employed, but the arrangement direction of the plurality of nozzles is substantially orthogonal to the deflection direction by the deflection electrodes.
  • the charged ink particles produced from each nozzle are deflected by a pair of deflection electrodes regardless of the number of nozzles and charging electrode pairs.
  • the direction of the electric field at the charging electrode and the direction of the electric field at the deflection electrode are almost orthogonal to each other.
  • FIG. 5 is a diagram showing an arrangement relationship between the print head 47 and the work and an arrangement configuration of each component inside the print head 47.
  • the print head 47 is preferably disposed obliquely with respect to the conveyance direction of the work (printed object) 49. Thereby, it is possible to prevent the printed characters from being inclined (see, for example, FIG. 2).
  • FIGS. 1 to 3 show the operation principle when printing is performed using a known technique for one nozzle. It explains using.
  • FIG. 1 is a diagram showing an example of a printing result and a charging voltage waveform when printing is performed when a work is conveyed at a certain speed in one nozzle as described above.
  • the upper part of FIG. 1 shows the case where the particle usage rate is 1/2.
  • a particle usage rate of 1/2 means that the voltage waveform makes one ink particle to be charged with respect to two ink particles ejected from the nozzle.
  • the particle usage rate 1/1 means that all ink particles ejected from the nozzles are to be charged
  • the particle usage rate 1/3 means that the 3 ink particles ejected from the nozzles are to be charged. This means that the number of ink particles is one.
  • FIG. 1 is a diagram showing an example of a printing result when the charging voltage waveform is changed in the case where the work conveyance speed is the same as that in the upper stage of FIG.
  • the middle row in FIG. 1 shows the printing result with a particle usage rate of 1/1.
  • the horizontal direction that is, the column spacing in the workpiece conveyance direction is halved and the printing inclination angle is also in the vertical direction in principle.
  • the lower part of FIG. 1 shows the printing result when the particle usage rate is 1/1, but uncharged particles that are not charged are inserted between the columns.
  • the column spacing can be controlled by changing the number of uncharged particles.
  • FIG. 2 is a diagram for explaining the principle in the case of printing an actual print character (here, “A” is taken as an example).
  • the upper part of FIG. 2 shows the printing result at the same speed and the same charging voltage waveform as the upper part of FIG.
  • the positional relationship between the print head 47 and the work 49 is not twisted.
  • the charging voltage waveform and the printing result on the work when the control is performed to print “A” at a particle usage rate of 1/1 are shown in the middle of FIG.
  • FIG. 3 is a diagram showing an example of a printing result when the work conveyance speed is increased in the same charging voltage waveform as that in FIG. Although the timing period when the charged ink particles land on the work is the same, the transport speed is increased, so the print interval is increased as shown in the lower part of FIG. Although the quality is deteriorated because it is extended, there is a problem that printing cannot be performed in a narrow work area due to widening of the print character width.
  • the means for increasing the particle usage rate is the most effective method for reducing the print character width even when the work conveyance speed is increased.
  • the particle usage rate of 1/1 is the maximum printing speed. Therefore, it is necessary to perform one-stage printing using two or more nozzles in order to cope with further increase in the conveyance speed. is there.
  • FIG. 6 is a diagram showing an example of a printing result when printing is performed with two nozzles and an example of a waveform of a charging voltage applied to ink particles ejected from the two nozzles.
  • Printing is performed so that the printing row of nozzle B is inserted between the printing row intervals of nozzle A (printing from nozzle A and printing from nozzle B are performed alternately).
  • it is possible to narrow the interval between the print columns, that is, to narrow the print character width, and it is possible to cope with high-speed printing.
  • the printing row interval by printing of the nozzle A and the printing row interval by printing of the nozzle B can be printed at a certain uniform interval on the principle of operation of the ink jet recording apparatus.
  • problems such as variations in the structural arrangement of the nozzles A and B, variations in the flying speed of each ink particle, that is, variations in timing from when the charging voltage is applied to the ink landing on the workpiece, the nozzle A Even if the interval between the print row and the print row of the nozzle B is not controlled, uniform row print cannot be realized. Therefore, with regard to this problem, it has a function that can independently adjust the timing of applying the charging voltage applied to the ink particles ejected from each nozzle, so that it is possible to evenly control the print row interval and print quality.
  • test printing is performed, and based on the printing result, the operator uses a GUI described later (see the example of the input panel 4 (FIG. 10)) and the charging voltage generation circuit A_9 in FIG.
  • the timing of generating the charging voltage by the charging voltage generation circuit B_23 may be adjusted.
  • FIG. 7 is a diagram showing an example of the result of printing on the workpiece and the example of charging voltage waveforms of nozzle A and nozzle B when the printing content “A” is actually printed.
  • FIG. 7 by rotating the print head, the inclination of characters in the print result on the work is improved, and high-quality printing as shown in FIG. 7 can be performed. It becomes.
  • FIG. 8 shows an example of defective printing on a workpiece when the same charging voltage value is applied to each nozzle.
  • a charging voltage is applied to the charging electrode to give charges to the ink particles, and the workpiece is deflected in the deflection electrode according to the amount of the charges.
  • the principle of forming printed characters by traveling in a direction substantially perpendicular to the particle flight direction and the charged ink particle deflection direction is used.
  • the amount of deflection of the charged ink particles varies due to the variation in the charge amount of the charged ink particles of the ink ejected from each nozzle and the ink flight speed.
  • the variation is mainly caused by variations in the positional relationship between the flying ink particles and the charging electrode, the ink ejection pressure, the ink viscosity, and the like. That is, even if the repetition accuracy of a single nozzle is good, the variation between the nozzles is large, and even if the same charging voltage waveform is actually applied to the charging electrode A and the charging electrode B, the deflection amount of the charged ink particles is different. Defective printing as shown in the upper part of FIG. 8 may occur.
  • the inkjet recording apparatus has a function of independently adjusting the charging voltage value using the input panel 4 (GUI example (see FIG. 10)).
  • GUI example the charging voltage value changes when the character height setting value input from the input panel is varied. That is, in the case of the upper part of FIG. 8, since the voltage value applied to the charging electrode B of the nozzle B is too large (the charge amount of the ink particles is too large), the deflection amount of the ink particles from the nozzle B is the nozzle A.
  • the amount of deflection of the ink particles is significantly different from the amount of deflection of the ink particles, but the amount of deflection of the ink particles is adjusted by adjusting the voltage value applied to the charging electrode B of the nozzle B to a small value as shown in the lower part of FIG. And is controlled to a good character height.
  • the print quality can be improved by making adjustments while comparing with the print result on the actual workpiece.
  • FIG. 9 is a diagram illustrating a printing example (special pattern) that can be performed by the printing method according to the present embodiment.
  • the upper part of FIG. 9 shows a method for realizing printing of bold characters, and the lower part of FIG. 9 shows a method for realizing printing of characters for special purposes.
  • the particle usage rate is changed.
  • the usage rate of particles from nozzle A is set to 1/1
  • the usage rate of particles from nozzle B is set to 1/2.
  • the method can be used for special printing applications such as symbols and logos.
  • FIG. 10 shows an example of the setting screen
  • FIG. 11 shows a timing chart showing the charging voltage output timing for the ink particles ejected from the nozzle A and the nozzle B from the detection to the work sensor
  • FIG. 12 shows the printing result at the time of this setting And an example of a charging voltage waveform.
  • the charging voltage output timing applied to each nozzle from the work sensor detection is arbitrarily changed according to each nozzle in accordance with the print start position setting information of each nozzle input by the operator. It has a possible configuration. As shown in FIGS. 4 and 5, the circuit configuration and outline of the appearance of the ink jet recording apparatus are provided with a plurality of nozzles arranged in the traveling direction of the work that is the printing object. In this case, considering the response when the moving speed of the workpiece changes and the speed of the ink particles ejected from each nozzle are not exactly the same speed, fine adjustment of the print row interval of the ink particles ejected from a plurality of nozzles You must be able to do it. Therefore, with respect to this problem, a setting screen 54 is prepared, and the charging voltage output timing is set by allowing specific numerical values to be input for the print start position, the character height, the particle usage rate, and the print row interval adjustment. Each can be fine tuned.
  • the print start position will be described. Since the print dot and print row (scan) clocks as fine adjustment units are generated by the frequency dividing counter 16, the charging voltage output timing is delayed based on the timing signal in order to realize fine adjustment. As shown in FIG. 11, the timing for outputting the charging voltage is determined based on the print start position of each nozzle input from the setting screen 54. For example, when the print start positions from the nozzles are slightly shifted and overlapped, bold characters can be printed as described in the upper part of FIG. In the case of normal printing (when printing one stage of character string with two nozzles), the timing is set so that the print row from nozzle B is arranged in the middle between the print rows from nozzle A. (See FIG. 6).
  • each nozzle shares a deflection electrode. Can be adjusted.
  • each nozzle has a character height setting function, and the setting voltage can be input independently to adjust the charging voltage width.
  • the charging voltage width here means the difference between the charging voltage printed at the lowest level and the charging voltage printed at the highest level. The height of the printed character changes according to the charging voltage width.
  • the inclination of the print row (dot row) from each nozzle is adjusted by enabling the setting of the particle usage rate to be adjusted for each nozzle. (See the lower part of FIG. 9).
  • the print row interval adjustment value as shown in FIG. 12, non-print dots that do not print in the print row interval are inserted for each nozzle in accordance with the print row interval adjustment value for each nozzle.
  • FIG. 13 is a diagram for explaining the concept of print dot data control. Specifically, the printing dot control is based on the setting information of the input panel 4 shown in FIG. 4 as hardware components, and the MPU 1 expands the dot data in the RAM 3, and the charging voltage generation circuit A_9 and the charging voltage generation circuit B_23. Is executed by instructing the charging voltage value to be applied and the timing.
  • FIG. 13 shows an example of print dot data on the input panel and data assigned to the nozzles A and B with respect to the input print dot data.
  • the dot data is printed by the MPU 1 using two nozzles such as the print dot data (b) of the nozzle A and the print dot data (c) of the nozzle B using the temporary storage area of the RAM 3.
  • the dot data of the odd-numbered rows are alternately developed for the nozzle A
  • the dot data of the even-numbered rows are alternately developed for the nozzle B for each row.
  • the odd and even columns may be reversed, but they are alternately developed for each column.
  • the first, fourth and seventh rows are developed on nozzle A, the second, fifth and eighth rows on nozzle B, and the third, sixth and ninth rows on nozzle C.
  • the control in the present invention can be realized.
  • a plurality of nozzles, and charging electrodes and deflection electrodes are arranged corresponding to the plurality of nozzles.
  • the arrangement direction of the plurality of nozzles is orthogonal to the deflection direction of the charged ink particles.
  • the control unit (MPU) of the ink jet recording apparatus expands the print characters input from the input unit into a dot matrix, assigns each dot data to a plurality of nozzles, performs an ink ejection operation from a plurality of nozzles, a plurality of The value of the charging voltage applied to the charging electrode and the application timing are controlled, and a single character string is printed on the printing object by a plurality of nozzles.
  • a single-stage character string is printed on the printing object.
  • the deflection electrode is composed of a pair of flat plate electrodes regardless of the number of nozzles and charging electrodes.
  • the deflection electrode and the DC voltage for forming the deflection electric field can be implemented in one system, an inexpensive apparatus can be provided. That is, only one power source for applying a voltage to the deflection electrode is required, and the cost of the apparatus can be reduced.
  • there are a plurality of pairs of deflecting electrodes there is a possibility that discharge occurs in the slit (gap) between the electrode pairs. According to this embodiment, such a situation can be prevented and ink particles can be deflected stably. Will be able to.
  • a printing condition setting unit capable of setting printing conditions independently for each of the plurality of nozzles.
  • the control unit controls the ink ejection operation, the charging voltage value, and the application timing in accordance with the printing conditions set by the printing condition input unit. Since printing can be executed while changing the printing conditions in units of nozzles in this way, fine adjustment of the printing operation can be performed in units of nozzles.
  • the control unit adjusts the value of the charging voltage applied to the charging electrode corresponding to the nozzle whose print character height should be adjusted. To do.
  • the same voltage value is set for each nozzle, even if the printing height varies among nozzles, the height of the one-stage character string realized by a plurality of nozzles is made constant by fine adjustment. Will be able to.
  • the control unit adjusts the application timing of the charging voltage applied to the charging electrode corresponding to the nozzle whose print start timing is to be adjusted. In this way, by adjusting the print start timing between the nozzles, it is possible to adjust a subtle print timing shift between the nozzles. Further, if the print start timing is adjusted so that the print dots between the nozzles overlap, it is possible to cope with printing of special characters such as bold characters (printing of decorative characters).
  • the control unit creates ink particles that do not print in the print row interval according to the adjustment value of the print row interval for each nozzle.
  • the print row interval is adjusted. By doing so, it is possible to realize printing of a one-stage character string with a plurality of nozzles while adjusting the print string interval in accordance with the input character string mark.
  • the control unit controls the inclination of the dot row generated by each nozzle based on the usage rate. By doing so, a special print pattern is realized. By doing so, it is possible to cope with printing of a character string having a special shape.
  • various one-stage character strings can be printed by adjusting the combination of the character height, the print start timing, the print string interval, and the particle usage rate.
  • print start signal command circuit B 23 ... charge voltage generation circuit B, 24 ... particle usage rate switch B , 25 ... Excitation setting switch B, 26 ... Transmitter B, 27 ... Phase detection circuit B, 28 ... Charging D / A converter B, 29 ... AMP, 30 ... Frequency division counter B, 31 ... Excitation voltage generation circuit B, 32 ... AMP, 33 ... AM 34 ... Printed object detection circuit, 35 ... Nozzle A, 36 ... Electrostrictive element A, 37 ... Charging electrode A, 38 ... Phase search sensor A, 39 ... Gutter A, 40 ... Nozzle B, 41 ... Electrostrictive element B 42 ... Charging electrode B, 43 ... Phase search sensor B, 44 ... Gutter B, 45 ...

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

Provided is an inkjet printing technology which prevents the character widths of printing results from increasing, even when the transfer speed of a subject to which printing is to be performed is high. In an inkjet recording device, a plurality of nozzles are arranged such that the nozzles are orthogonally intersecting with the deflecting direction determined by deflection electrodes, an ink jetted from the nozzles is electrostatically charged by means of charging electrodes of the same number as the number of the nozzles, and each electrostatically charged particle is deflected within one deflection field wherein the deflection electrodes are composed of a pair of positive and negative deflection electrodes. Furthermore, the inkjet recording device is provided with a function of independently adjusting the value of a charging voltage to be applied to each of the charging electrodes and application timing of the charging voltage.

Description

インクジェット記録装置、及び印字ヘッドInk jet recording apparatus and print head
 本発明は、インクジェット記録装置(インクジェットプリンタ)、及びそれに用いられる印字ヘッドに関し、例えば、製品のマーキングに使用される産業用インクジェット記録装置及びそれに用いられる印字ヘッドに関するものである。 The present invention relates to an ink jet recording apparatus (ink jet printer) and a print head used therefor, for example, an industrial ink jet recording apparatus used for product marking and a print head used therefor.
 まず、図1を用いて、従来のインクジェット記録装置の被印字物の搬送速度が変化した場合の制御技術について説明する。インクジェット記録装置では、被印字物(「ワーク」とも言う)への印字を行うに際し、1個のノズルから噴出されたインク粒子が利用される。被印字物の搬送速度が比較的低速である場合には、1個のノズルから噴出されたインク粒子を複数個に1個の割合で帯電対象と見て帯電電圧が印加される。図1上段は、作成された2個のインク粒子に対して1個を帯電対象とした例を示しており、これを粒子使用率1/2と定義する。同じ搬送速度において、印字結果の文字幅を狭くするためには、図1中段のように粒子使用率を高くすることで対応可能となる。本例では粒子使用率1/1に変化させている。 First, the control technique when the conveyance speed of the substrate to be printed of the conventional ink jet recording apparatus is changed will be described with reference to FIG. In an ink jet recording apparatus, ink particles ejected from one nozzle are used when printing on a printing object (also referred to as “work”). When the conveyance speed of the printed material is relatively low, the charging voltage is applied by regarding the ink particles ejected from one nozzle as a charging target at a ratio of one to a plurality of ink particles. The upper part of FIG. 1 shows an example in which one of the two created ink particles is to be charged, and this is defined as a particle usage rate of 1/2. In order to reduce the character width of the printed result at the same conveyance speed, it is possible to increase the particle usage rate as shown in the middle of FIG. In this example, the particle usage rate is changed to 1/1.
 また、図1下段に示されるように、各スキャン間隔を空けることでも印字文字幅を制御可能である。この場合、ノズルから噴出されるインク粒子の作成周期は、インク圧力及びインク粘度等から最適のインク粒子形状になるように一定に設定されており、インク粒子が帯電し、所定の位置に偏向飛行するようになっている。帯電電圧が固定の場合には、被印字物の搬送速度が高速になるほど印字結果の文字幅は広がる傾向になる。 Also, as shown in the lower part of FIG. 1, the print character width can be controlled by leaving each scan interval. In this case, the creation cycle of the ink particles ejected from the nozzles is set constant so as to obtain an optimal ink particle shape based on the ink pressure and ink viscosity, etc., and the ink particles are charged and deflected to a predetermined position. It is supposed to be. When the charging voltage is fixed, the character width of the printing result tends to increase as the conveyance speed of the printing object increases.
 図1は1段印字を行う例を示している。一方、例えば、特許文献1に示されるように、2段以上の複数段の印字を行う場合に2つ以上のノズルを印字ヘッドに配置し、各ノズルと段に対応した印字を行うインクジェット記録装置が考案されている。本方式によると、各ノズルの本数に合わせて帯電電圧、偏向電圧の系統を各々持つ構成となっており、複数段の印字を行う際に高速印字での印字結果の文字幅を狭くする為に有効な方式である。 FIG. 1 shows an example of performing one-step printing. On the other hand, for example, as shown in Patent Document 1, in the case where two or more stages of printing are performed, two or more nozzles are arranged in a print head, and an ink jet recording apparatus that performs printing corresponding to each nozzle and stage Has been devised. According to this method, the system has a system of charging voltage and deflection voltage according to the number of each nozzle, and in order to reduce the character width of the printing result in high-speed printing when performing multi-stage printing. It is an effective method.
米国5457484特許公報US Pat. No. 5,457,484
 しかしながら、特許文献1の開示の技術を用いて1段の印字を行う場合には、高速印字での印字結果の文字幅を狭くすることはできない。印字結果の文字幅が広がってしまうと被印字物の印字エリアからはみ出してしまい不良印字となることが考えられる。従って、被印字物の搬送速度が高速になった場合でも文字幅が広がらないような印字制御を実現する必要がある。 However, when one-step printing is performed using the technique disclosed in Patent Document 1, the character width of the printing result in high-speed printing cannot be reduced. If the character width of the printing result is widened, it is considered that the printed matter protrudes from the printing area of the printing object, resulting in defective printing. Therefore, it is necessary to realize printing control so that the character width does not increase even when the conveyance speed of the substrate to be printed becomes high.
 ところで、被印字物の搬送速度が高速になった場合にも、印字結果の文字幅を広がらないようにする技術としては、前段に説明したノズルから噴出されたインクの印字に使用する粒子使用率を高くするか、ノズルから噴出されるインクの作成周期を短くする手段が有効である。 By the way, as a technique for preventing the character width of the printing result from being widened even when the conveyance speed of the substrate to be printed becomes high, the particle usage rate used for printing the ink ejected from the nozzle described in the previous stage It is effective to increase the value or to shorten the production cycle of the ink ejected from the nozzles.
 しかしながら、前者は粒子使用率1/1が限界であり、高速化に対応できる範囲が限定されてしまう。また、後者は、インク圧力及びインク粘度等から、あらかじめ最適のインク粒子形状になるよう一定周期に設定しておく仕様であり、インク作成周期のみ変更した場合にはインク粒子化の不良により印字不具合が発生する要因を持っている。 However, in the former, the particle usage rate 1/1 is the limit, and the range that can cope with high speed is limited. The latter is a specification that is set in advance so as to obtain an optimal ink particle shape based on ink pressure, ink viscosity, etc., and if only the ink creation cycle is changed, printing defects will occur due to defective ink particle formation. Have a factor that occurs.
 そこで、粒子使用率1/1以上の高速化を実現するには、複数のノズルを使用して印字を行うことが挙げられる。ただし、特許文献1に示す技術は、2段以上の印字を1段の印字スピードで実現するものであり、前述のように、被印字物の搬送速度が高速になった場合に、印字結果の文字幅を広がらないようにすることはできない。 Therefore, in order to realize speeding up of a particle usage rate of 1/1 or more, it is possible to perform printing using a plurality of nozzles. However, the technique shown in Patent Document 1 realizes printing of two or more stages at a printing speed of one stage. As described above, when the conveyance speed of the substrate is increased, the printing result is The character width cannot be prevented from widening.
 また、複数のノズルを印字ヘッド内に収納し、帯電電圧を2値化してインク粒子を帯電することにより、偏向電極内で偏向の有りと無しの分離を行い、ガターで回収されるインク粒子と印字に使用する粒子を分離する方式がある。ただし、本方式には、ノズルの本数が増大し、信頼性の悪化と高価格化になるという問題がある。 In addition, a plurality of nozzles are housed in the print head, and the charging voltage is binarized to charge the ink particles, thereby separating the presence and absence of deflection in the deflection electrode, and the ink particles collected by the gutter There is a method of separating particles used for printing. However, this method has a problem that the number of nozzles increases, reliability is deteriorated, and cost is increased.
 本発明はこのような状況に鑑みてなされたものであり、インクジェット記録装置において、被印字物の搬送速度が高速になった場合にも、印字結果の文字幅を広がらないようにし、印字品質を向上させるための技術を提供するものである。 The present invention has been made in view of such a situation, and in an ink jet recording apparatus, even when the conveyance speed of an object to be printed is increased, the character width of the printing result is not increased, and the printing quality is improved. The technology for improving is provided.
 上記課題を解決するために、本発明は、インクジェット記録装置において、複数のノズルの配列方向をインク粒子の偏向方向と直交するようにしている。そして、複数のノズルから噴出されたインクをノズルと同数の帯電電極で帯電し、偏向電極を正負一対で形成した1つの偏向電界中で各帯電粒子を偏向させる構成とし、各々の帯電電極に印加する帯電電圧の電圧値および帯電電圧の印加タイミングを各々独立して調整できる機能を有する構成とする。 In order to solve the above-described problems, the present invention is configured so that the arrangement direction of a plurality of nozzles is orthogonal to the deflection direction of ink particles in an ink jet recording apparatus. The ink ejected from a plurality of nozzles is charged by the same number of charging electrodes as the nozzles, and each charged particle is deflected in one deflection electric field formed by a pair of positive and negative deflection electrodes, and applied to each charging electrode. The voltage value of the charging voltage to be applied and the application timing of the charging voltage are configured to have a function that can be adjusted independently.
 即ち、本発明によるインクジェット記録装置は、搬送される被印字物に対して印字するインクジェット記録装置であって、複数のノズルと、複数の帯電電極と、偏向電極と、入力部と、制御部と、を備えている。複数の帯電電極は、複数のノズルに対応して配置され、複数のノズルのそれぞれから噴出されたインク粒子を帯電させる。偏向電極は、帯電したインク粒子を偏向する手段である。そして、複数のノズルの配列方向は、帯電したインク粒子の偏向方向と直交している。制御部は、入力部より入力された印字文字をドットマトリックス状に展開し、各ドットデータを複数のノズルに割り当て、複数のノズルからのインク噴出動作、複数の帯電電極に印加する帯電電圧の値、及び印加タイミングを制御する。このような構成により、複数のノズルによって1段の文字列を被印字物に印字することを可能としている。なお、偏向電極は、ノズル及び帯電電極の設置個数に関係なく、1対の平板電極で構成されている。また、制御部は、複数のノズルからのドット列の印字を順番に実行することにより、1段の文字列を被印字物に印字する。 That is, an ink jet recording apparatus according to the present invention is an ink jet recording apparatus that prints on a substrate to be conveyed, and includes a plurality of nozzles, a plurality of charging electrodes, a deflection electrode, an input unit, and a control unit. It is equipped with. The plurality of charging electrodes are arranged corresponding to the plurality of nozzles, and charge the ink particles ejected from each of the plurality of nozzles. The deflection electrode is a means for deflecting charged ink particles. The arrangement direction of the plurality of nozzles is orthogonal to the deflection direction of the charged ink particles. The control unit expands the print characters input from the input unit into a dot matrix, assigns each dot data to a plurality of nozzles, ejects ink from the plurality of nozzles, and the value of the charging voltage applied to the plurality of charging electrodes. And the application timing are controlled. With such a configuration, it is possible to print a character string of one stage on a printing object using a plurality of nozzles. The deflection electrode is composed of a pair of flat plate electrodes regardless of the number of nozzles and charging electrodes. In addition, the control unit prints one row of character strings on the printing object by sequentially printing dot rows from a plurality of nozzles.
 また、入力部は、複数のノズルのそれぞれについて独立に印字条件の設定可能な印字条件設定部を有している。この場合、制御部は、印字条件入力部によって設定された印字条件に従って、インク噴出動作、帯電電圧の値、及び印加タイミングを制御する。 Also, the input unit has a printing condition setting unit that can set printing conditions independently for each of the plurality of nozzles. In this case, the control unit controls the ink ejection operation, the charging voltage value, and the application timing in accordance with the printing conditions set by the printing condition input unit.
 より具体的には、印字条件設定部で印字文字高さの調整が指示された場合、制御部は、印字文字高さを調整すべきノズルに対応する帯電電極に印加する帯電電圧の値を調整する。また、印字条件設定部で印字開始タイミングの調整が指示された場合、制御部は、印字開始タイミングを調整すべきノズルに対応する帯電電極に印加する帯電電圧の印加タイミングを調整する。さらに、印字条件設定部で印字列間隔の調整が指示された場合、制御部は、ノズル毎の印字列間隔の調整値に応じて、印字列間隔に印字を行わない無印字ドットをインク粒子作成ドット単位で挿入するような帯電電圧を帯電電極に印加することにより、印字列間隔を調整する。また、印字条件設定部で各ノズルから噴出されるインク粒子の粒子使用率が異なるように設定された場合、制御部は、使用率に基づいて、各ノズルによって生成されるドット列の傾きを制御することにより、特殊印字パターンを実現する。 More specifically, when adjustment of the print character height is instructed by the print condition setting unit, the control unit adjusts the value of the charging voltage applied to the charging electrode corresponding to the nozzle whose print character height should be adjusted. To do. When the print condition setting unit instructs the adjustment of the print start timing, the control unit adjusts the application timing of the charging voltage applied to the charging electrode corresponding to the nozzle whose print start timing is to be adjusted. In addition, when the print condition setting unit is instructed to adjust the print row interval, the control unit creates ink particles that do not print in the print row interval according to the adjustment value of the print row interval for each nozzle. By applying a charging voltage that is inserted in units of dots to the charging electrode, the print row interval is adjusted. In addition, when the printing condition setting unit is set so that the particle usage rate of the ink particles ejected from each nozzle is different, the control unit controls the inclination of the dot row generated by each nozzle based on the usage rate. By doing so, a special print pattern is realized.
 さらなる本発明の特徴は、以下本発明を実施するための最良の形態および添付図面によって明らかになるものである。 Further features of the present invention will become apparent from the best mode for carrying out the present invention and the accompanying drawings.
 本発明によれば、被印字物の搬送速度が高速になった場合にも、印字結果の文字幅を広がらないようにし、印字品質を向上させることができる。 According to the present invention, it is possible to improve the printing quality by preventing the character width of the printing result from being widened even when the conveyance speed of the substrate is increased.
従来の1ノズルにおける印字例(中速印字)と帯電電圧波形例(1)を示す図である。It is a figure which shows the example of printing (medium-speed printing) in the conventional 1 nozzle, and the charging voltage waveform example (1). 従来の1ノズルにおける印字例(中速印字)と帯電電圧波形例(2)を示す図である。It is a figure which shows the example of printing (medium speed printing) in the conventional 1 nozzle, and the example (2) of a charging voltage waveform. ワーク速度が高速化した場合の、従来の1ノズルにおける印字例と帯電電圧波形例を示す図である。It is a figure which shows the example of a printing in the conventional 1 nozzle, and the example of a charging voltage waveform when a workpiece | work speed is increased. 本発明の実施形態によるインクジェット記録装置の全体回路構成を示すブロック図である。1 is a block diagram showing an overall circuit configuration of an ink jet recording apparatus according to an embodiment of the present invention. 印字ヘッドの概略構成を示す図である。FIG. 2 is a diagram illustrating a schematic configuration of a print head. 本実施形態の2ノズル印字ヘッド構成における印字例(高速印字)と帯電電圧波形例(1)を示す図である。It is a figure which shows the example of printing (high-speed printing) in the 2 nozzle print head structure of this embodiment, and the example of a charging voltage waveform (1). 本実施形態の2ノズル印字ヘッド構成における印字例(高速印字)と帯電電圧波形例(2)を示す図である。It is a figure which shows the example of printing (high-speed printing) in the 2 nozzle print head structure of this embodiment, and the example of a charging voltage waveform (2). 本実施形態の2ノズル印字ヘッド構成における不良印字例と改善印字例(高速印字)、及び帯電電圧波形例を示す図である。It is a figure which shows the example of defective printing in the 2 nozzle print head structure of this embodiment, the example of improvement printing (high-speed printing), and the example of a charging voltage waveform. 本実施形態の2ノズル印字ヘッド構成を実施した場合に可能となる応用印字例(特殊なパターン)を示す図である。図9上段はノズル毎に印字開始タイミングを制御する場合を示し、図9下段はノズル毎に粒子使用率を制御する場合を示している。It is a figure which shows the example of application printing (special pattern) which becomes possible when the 2 nozzle print head structure of this embodiment is implemented. The upper part of FIG. 9 shows the case where the print start timing is controlled for each nozzle, and the lower part of FIG. 9 shows the case where the particle usage rate is controlled for each nozzle. 本実施形態による設定画面(GUI)での設定例を示す図である。It is a figure which shows the example of a setting on the setting screen (GUI) by this embodiment. 本実施形態による設定画面(GUI)を用いた印字制御例であって、印字開始タイミングチャートを示す図である。It is a print control example using the setting screen (GUI) by this embodiment, Comprising: It is a figure which shows a print start timing chart. 本実施形態による設定画面(GUI)を用いた印字制御例であって、印字結果と帯電電圧例を示す図である。It is a print control example using the setting screen (GUI) by this embodiment, Comprising: It is a figure which shows a print result and the example of a charging voltage. 本実施形態による印字ドットデータの振り分け制御例を示す図である。It is a figure which shows the example of distribution control of the printing dot data by this embodiment.
 本発明は、複数のノズルを用いて1段印字を実行することにより、被印字物の搬送速度が高速になった場合でも印字結果の文字幅を広がらないようにするものである。 In the present invention, by executing one-step printing using a plurality of nozzles, the character width of the printed result is not increased even when the conveyance speed of the substrate is increased.
 しかし、当該技術を実現するためには、主に以下の2つの課題があると思われる。つまり、1つ目の課題は、複数のノズル毎から印字される垂直方向のドットピッチを揃わないこと、即ち各ノズルから噴出されたインクによる印字文字高さが異なることで印字品質が悪化することである。印字文字高さは、ノズルから噴出されるインク粒子の速度、帯電電極にて帯電される帯電電荷量と、偏向電極内で形成される偏向電界強度等によって決定されるが、各々要素のバラツキにより変動する。よって、本課題に対しては、各ノズル毎に印字文字高さを調整する機構を持つことが必要となる。本発明においては各々のノズル毎に独立して帯電電圧値を調整する手段が最も効果的であると考えられる。 However, in order to realize this technology, there are two main issues. That is, the first problem is that the vertical dot pitch printed from each of the plurality of nozzles is not uniform, that is, the print character height is different due to the difference in the print character height of the ink ejected from each nozzle. It is. The print character height is determined by the speed of the ink particles ejected from the nozzle, the amount of charge charged by the charging electrode, the strength of the deflection electric field formed in the deflection electrode, etc. fluctuate. Therefore, for this problem, it is necessary to have a mechanism for adjusting the print character height for each nozzle. In the present invention, it is considered that the means for adjusting the charging voltage value independently for each nozzle is most effective.
 また、2つ目の課題は、複数のノズル毎から印字される水平方向のドットピッチが揃わないことによる印字品質の悪化することが考えられる。本課題に対しては、ノズルを水平方向に(偏向方向と直交するように)配列させる構成とし、各々のノズルより印字を開始するタイミングを独立して制御することが最も効果的であると考えられる。 Also, the second problem can be considered that the print quality is deteriorated due to the fact that the horizontal dot pitches printed from a plurality of nozzles are not uniform. For this problem, it is most effective to use a configuration in which the nozzles are arranged in the horizontal direction (perpendicular to the deflection direction) and to independently control the timing for starting printing from each nozzle. It is done.
 以下、添付図面を参照して本発明の実施形態について説明する。ただし、本実施形態は本発明を実現するための一例に過ぎず、本発明の技術的範囲を限定するものではないことに注意すべきである。また、各図において共通の構成については同一の参照番号が付されている。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, it should be noted that this embodiment is merely an example for realizing the present invention, and does not limit the technical scope of the present invention. In each drawing, the same reference numerals are assigned to common components.
 <インクジェット記録装置の回路構成>
 図4は、本発明の実施形態によるインクジェット記録装置の全体回路構成を示すブロック図である。図4は2つのノズルを有するインクジェット記録装置の回路構成を示しているが、ノズルの数は3つ以上でも良い。
<Circuit configuration of inkjet recording apparatus>
FIG. 4 is a block diagram showing an overall circuit configuration of the ink jet recording apparatus according to the embodiment of the present invention. FIG. 4 shows a circuit configuration of an ink jet recording apparatus having two nozzles, but the number of nozzles may be three or more.
 インクジェット記録装置は、図4に示されるように、インクジェット記録装置全体を制御するMPU(マイクロプロセッシングユニット)1と、プログラムなどをあらかじめ記憶するROM(リードオンリーメモリー)2と、インクジェット記録装置内で一時的にデータを記憶しておくRAM(ランダムアクセスメモリー)3と、表示装置などを兼ね備えた印字する内容を入力する入力パネル4と、インクを加圧するポンプや圧力を調整する減圧弁や電磁弁など循環系部品6を制御する循環制御回路5と、MPU1から指示されたデータをデジタルアナログ変換する偏向D/Aコンバータ20と、D/A変換後の信号を増幅するAMP21と、帯電系回路A_51と、帯電系回路B_52と、印字ヘッド47と、被印字物(ワーク)49を検出するワークセンサ48と、ワークセンサ48の検出結果に基づいて印字開始タイミングが所望のタイミングとなっているかを判断する被印字物検知回路34と、を備えている。印字ヘッド47、ワークセンサ48以外の各ブロックはバスライン7を介してMPU1に接続され、MPU1によって制御される。 As shown in FIG. 4, the ink jet recording apparatus includes an MPU (microprocessing unit) 1 that controls the entire ink jet recording apparatus, a ROM (read only memory) 2 that stores programs and the like, and a temporary storage in the ink jet recording apparatus. Random access memory (RAM) 3 for storing data, an input panel 4 for inputting contents to be printed, which also has a display device, a pump for pressurizing ink, a pressure reducing valve and a solenoid valve for adjusting pressure, etc. A circulation control circuit 5 for controlling the circulation system component 6, a deflection D / A converter 20 for digital-analog conversion of data instructed by the MPU 1, an AMP 21 for amplifying a signal after D / A conversion, and a charging system circuit A_51 The charging system circuit B_52, the print head 47, and the object to be printed (work) 49 are detected. A work sensor 48 is provided with a printing object detecting circuit 34 to determine the print start timing based on the detection result of the work sensor 48 is a desired timing, the. Each block other than the print head 47 and the work sensor 48 is connected to the MPU 1 via the bus line 7 and controlled by the MPU 1.
 帯電系回路A_51は、MPU1の命令に従って印字開始信号を出力する印字開始信号指令回路A_8と、印字開始信号のタイミングに応答して帯電電圧を発生させる帯電電圧発生回路A_9と、帯電電圧値をデジタルアナログ変換する帯電D/AコンバータA_14と、D/A変換された帯電電圧値を増幅するAMP15と、粒子使用率を設定するための粒子使用率スイッチA_10と、インク粒子の作成周期を設定するための励振設定スイッチA_11と、発振器A_12と、ノズルから出射されるインク粒子の位相を検知する位相検知回路A_13と、発振クロックを使用率及びインク粒子の作成周期の情報に基づいて分周する分周カウンタA_16と、励振電圧を発生する励振電圧発生回路17と、励振電圧値を増幅するAMP18と、を備えている。なお、帯電系回路B_52は、帯電系回路A_51の構成と同じなので、その説明は省略する。 The charging system circuit A_51 includes a print start signal command circuit A_8 that outputs a print start signal in accordance with a command from the MPU 1, a charge voltage generation circuit A_9 that generates a charge voltage in response to the timing of the print start signal, and a digital charge voltage value. Charging D / A converter A_14 for analog conversion, AMP 15 for amplifying the D / A converted charging voltage value, particle usage rate switch A_10 for setting the particle usage rate, and setting the ink particle creation cycle Excitation setting switch A_11, oscillator A_12, phase detection circuit A_13 for detecting the phase of the ink particles emitted from the nozzle, and frequency division for dividing the oscillation clock based on information on the usage rate and the ink particle creation cycle A counter A_16; an excitation voltage generating circuit 17 for generating an excitation voltage; and an AMP 18 for amplifying the excitation voltage value. There. Since the charging system circuit B_52 has the same configuration as that of the charging system circuit A_51, the description thereof is omitted.
 印字ヘッド47は、2つの印字ヘッド構成部を有する。印字ヘッド構成部Aは、インクを排出するノズルA_35と、励振電圧によって動作し、インクを粒子化する電歪素子A_36と、インク粒子を帯電させるための帯電電極A_37と、インク粒子の作成タイミングを検索する位相検索センサA_38と、インク粒子を偏向させるための偏向電極45及び46と、印字に用いられなかったインク粒子を回収するためのガターA_39と、を備えている。もう1つの印字ヘッド構成部Bは、印字ヘッド構成部Aと同じ構成である。 The print head 47 has two print head components. The print head constituting unit A operates a nozzle A_35 that discharges ink, an electrostrictive element A_36 that operates according to an excitation voltage to atomize ink, a charging electrode A_37 that charges ink particles, and a timing for creating ink particles. A phase search sensor A_38 for searching, deflection electrodes 45 and 46 for deflecting ink particles, and a gutter A_39 for collecting ink particles that have not been used for printing are provided. The other print head component B has the same configuration as the print head component A.
 続いて、ノズルA_35から噴出されるインクで印字を行うための制御動作の概略について説明する。まず、帯電信号発生回路A_9が、入力パネル4から入力された印字内容データに基づいてインク粒子に帯電するための電圧データ、タイミングデータなど各種のデータを作成、保存し、印字開始信号指令回路A_8からの指示により印字開始タイミングに合わせてデータを帯電D/AコンバータA_14に転送する。帯電D/AコンバータA_14によりアナログに変換された電圧値は、AMP15によって増幅され、帯電電極A_37に上記印字開始タイミングに合わせて印加される。 Subsequently, an outline of a control operation for performing printing with ink ejected from the nozzle A_35 will be described. First, the charging signal generation circuit A_9 creates and stores various data such as voltage data and timing data for charging the ink particles based on the printing content data input from the input panel 4, and the printing start signal command circuit A_8. The data is transferred to the charging D / A converter A_14 in accordance with the print start timing in accordance with the instruction from. The voltage value converted into analog by the charging D / A converter A_14 is amplified by the AMP 15 and applied to the charging electrode A_37 in accordance with the print start timing.
 操作者は、粒子使用率スイッチA_10を用いて、印字に使用する帯電粒子の使用率を設定する。使用率を高くするほど高速印字が可能となるが、印字歪の影響により印字品質が劣化する、使用率が低い場合には、その逆となるものである。また、操作者は、励振設定スイッチA_11を用いて、ノズルから噴出されるインク粒子の作成周期を決定する。 The operator uses the particle usage rate switch A_10 to set the usage rate of the charged particles used for printing. The higher the usage rate, the higher the printing speed becomes possible, but the printing quality deteriorates due to the influence of printing distortion, and vice versa when the usage rate is low. In addition, the operator uses the excitation setting switch A_11 to determine the creation cycle of the ink particles ejected from the nozzles.
 発振器A_12から出力される発振クロックは、分周カウンタA_16によって、粒子使用率スイッチA10及び励振設定スイッチA11の情報に基づいて分周され、タイミング信号が作成され、帯電信号発生回路A_9及び励振電圧発生回路A_17に入力される。励振電圧発生回路A_17から出力された信号は、AMP18によって増幅され、電歪素子A_41に印加される。電歪素子A_36は、AMP18からの電気信号を振動に変換してインクに加圧し、インク粒子を噴出する。 The oscillation clock output from the oscillator A_12 is divided by the frequency division counter A_16 based on the information of the particle usage rate switch A10 and the excitation setting switch A11, a timing signal is generated, and the charging signal generation circuit A_9 and the excitation voltage generation are generated. It is input to the circuit A_17. The signal output from the excitation voltage generation circuit A_17 is amplified by the AMP 18 and applied to the electrostrictive element A_41. The electrostrictive element A_36 converts the electric signal from the AMP 18 into vibration, pressurizes the ink, and ejects ink particles.
 位相検索センサA_38は、噴出されたインク粒子の作成タイミングを検索する。最適な印字を行うためにはインク粒子の作成タイミングに同期して帯電電圧を印加する必要があるので、ここで検出されたタイミングをフィードバックして位相ずれ(インク粒子噴出及び帯電電圧印加のタイミングのずれ)が調整される。より具体的に説明すると、位相検索センサA_38で検出された信号は、AMP19で増幅され、位相検知回路A_13によってデジタル変換された後、MPU1にてインク粒子作成タイミングが判定される。そして、MPU1が最適となる帯電タイミング(位相)情報を帯電信号発生回路A_9に出力する。 The phase search sensor A_38 searches the creation timing of the ejected ink particles. In order to perform optimal printing, it is necessary to apply a charging voltage in synchronization with the ink particle creation timing. Therefore, the detected timing is fed back to cause a phase shift (the timing of ink particle ejection and charging voltage application timing). Shift) is adjusted. More specifically, the signal detected by the phase search sensor A_38 is amplified by the AMP 19 and digitally converted by the phase detection circuit A_13, and then the ink particle creation timing is determined by the MPU1. Then, the charging timing (phase) information at which the MPU 1 is optimal is output to the charging signal generation circuit A_9.
 帯電電極A_37で帯電されたインク粒子は、プラス偏向電極46に直流電圧を印加しマイナス偏向電極45を接地することによって形成される電界を飛行通過することにより偏向され、印字に使用する帯電インク粒子はガターA44を飛び越えて印字ヘッド47から噴出され、被印字物であるワーク49に付着し、印字に供される。その際、インク粒子の帯電量に応じて偏向され、帯電量の大きいインク粒子の偏向量が大きく、帯電量の小さい粒子の偏向量が小さいこととなる。また、プラス偏向電極46に印加する直流電圧の大きさは、入力パネル4から設定される文字高さ情報によって、MPU1から指示されたデータを偏向D/Aコンバータ20でデジタルアナログ変換し、AMP21で増幅する構成により、可変できる構成となっている。 Ink particles charged by the charging electrode A_37 are deflected by flying through an electric field formed by applying a DC voltage to the plus deflection electrode 46 and grounding the minus deflection electrode 45, and are used for printing. Jumps over the gutter A44 and is ejected from the print head 47, adheres to the work 49, which is the object to be printed, and is used for printing. At this time, deflection is performed according to the charge amount of the ink particles, the deflection amount of the ink particles having a large charge amount is large, and the deflection amount of the particles having a small charge amount is small. Further, the magnitude of the DC voltage applied to the plus deflection electrode 46 is obtained by converting the data instructed from the MPU 1 into digital / analog by the deflection D / A converter 20 according to the character height information set from the input panel 4, and by the AMP 21. The configuration is variable depending on the configuration to be amplified.
 印字に使用されなかったインク、すなわち、帯電されなかったインク粒子及び位相検索用に帯電したインク粒子は、ガターA44より回収され、ポンプ等の循環系部品6によって再びノズルA_35へ供給される。 Ink that was not used for printing, that is, ink particles that were not charged and ink particles that were charged for phase search, are collected from the gutter A44 and supplied again to the nozzle A_35 by the circulation system component 6 such as a pump.
 被印字物49は、コンベア50の上で搬送され、インク噴出方向、インク偏向方向とほぼ直角方向に進行することで印字文字が形成される(印字ヘッド47を斜めにした場合(図5参照)にはインクの旬出方向のみ搬送方向と直交)。印字開始タイミングは、ワークセンサ48でワークの位置が検出され、印字開始タイミングが合っているかを判断する被印字物検知回路34を介してMPU1によって制御される。 The printed material 49 is conveyed on the conveyor 50, and is printed in a direction substantially perpendicular to the ink ejection direction and the ink deflection direction (when the print head 47 is inclined (see FIG. 5)). (Only the ink outflow direction is orthogonal to the transport direction). The print start timing is controlled by the MPU 1 through the workpiece detection circuit 34 that detects the position of the workpiece by the workpiece sensor 48 and determines whether the print start timing is correct.
 なお、ノズルB_40を備える印字ヘッド構成部B内の構成部品は、プラス偏向電極、マイナス偏向電極を除き、ノズルA_35から噴出されるインクで印字を行うための構成部品と同等である。また、ノズルA_35から噴出されるインクで印字を行うための制御回路を帯電系回路A_51と定義すると、ノズルB_40から噴出されるインクで印字を行うための制御回路を帯電系回路B_52と定義し、帯電系回路B_52の構成要素は帯電系回路A_51と同等の要素、部品で構成される。 Note that the components in the print head component B including the nozzle B_40 are the same as the components for performing printing with the ink ejected from the nozzle A_35 except for the plus deflection electrode and the minus deflection electrode. When a control circuit for performing printing with ink ejected from the nozzle A_35 is defined as a charging system circuit A_51, a control circuit for performing printing with ink ejected from the nozzle B_40 is defined as a charging system circuit B_52. The constituent elements of the charging system circuit B_52 are configured by elements and parts equivalent to the charging system circuit A_51.
 本実施形態では、印字ヘッド47に複数のノズルを配置する構成を採用しているが、複数のノズルの配列方向は、偏向電極による偏向方向とほぼ直交している。また、各々のノズルから作成され帯電されたインク粒子は、ノズル及び帯電電極対の個数に関係なく、1対の偏向電極で偏向する構成となっている。さらに、帯電電極における電界の方向と、偏向電極における電界の方向は互いにほぼ直交している。 In this embodiment, a configuration in which a plurality of nozzles are arranged in the print head 47 is employed, but the arrangement direction of the plurality of nozzles is substantially orthogonal to the deflection direction by the deflection electrodes. In addition, the charged ink particles produced from each nozzle are deflected by a pair of deflection electrodes regardless of the number of nozzles and charging electrode pairs. Furthermore, the direction of the electric field at the charging electrode and the direction of the electric field at the deflection electrode are almost orthogonal to each other.
 <印字ヘッドとワークとの配置関係及び印字ヘッド内部の部品配置構成>
 図5は、印字ヘッド47とワークとの配置関係及び印字ヘッド47内部の各部品の配置構成を示す図である。インクジェット記録装置を用いてワークへ印字する場合、印字ヘッドカバー53を取り付けて使用する。印字ヘッドカバー53を取り外した時の印字ヘッド内部は図5に示す部品で構成される。
<Disposition relationship between the print head and the workpiece and the arrangement of components inside the print head>
FIG. 5 is a diagram showing an arrangement relationship between the print head 47 and the work and an arrangement configuration of each component inside the print head 47. When printing on a workpiece using an ink jet recording apparatus, a print head cover 53 is attached and used. The interior of the print head when the print head cover 53 is removed is composed of the components shown in FIG.
 図5に示されるように、印字ヘッド47は、ワーク(被印字物)49の搬送方向に対して斜めに配置するのが好ましい。これにより、印刷される文字が斜めになるのを防止することができる(例えば、図2参照)。 As shown in FIG. 5, the print head 47 is preferably disposed obliquely with respect to the conveyance direction of the work (printed object) 49. Thereby, it is possible to prevent the printed characters from being inclined (see, for example, FIG. 2).
 <2ノズル構成の印字動作概要>
(1)次に、本発明における印字動作を具体的に説明するが、理解をより深くするために、まず1ノズルにおける公知技術を使用して印字を行う場合の動作原理について図1乃至3を用いて説明する。
<Outline of printing operation with 2-nozzle configuration>
(1) Next, the printing operation according to the present invention will be described in detail. For better understanding, FIGS. 1 to 3 show the operation principle when printing is performed using a known technique for one nozzle. It explains using.
 図1は、前述のように、1ノズルにおける、ワークがある速度で搬送される場合に印字を行う場合の印字結果例と帯電電圧波形を示す図である。図1上段は粒子使用率1/2の場合を示している。粒子使用率1/2とは本電圧波形はノズルから噴出されたインク粒子2個に対して帯電対象とするインク粒子を1個にすることを意味する。また、粒子使用率1/1とはノズルから噴出された全インク粒子を帯電対象とすることを意味し、粒子使用率1/3とはノズルから噴出されたインク粒子3個に対して帯電対象とするインク粒子を1個にすることを意味する。本方式のインクジェット記録装置においては帯電したインク粒子を飛行させて印字を行う原理上、粒子使用率は大きいほど、帯電インク粒子間のクーロン反発力が低減することなどにより精度良くワークへのインク着弾が可能になり良好な印字品質が可能となるが、本図においては、そこまで配慮した図にはしていないことを説明しておく。 FIG. 1 is a diagram showing an example of a printing result and a charging voltage waveform when printing is performed when a work is conveyed at a certain speed in one nozzle as described above. The upper part of FIG. 1 shows the case where the particle usage rate is 1/2. A particle usage rate of 1/2 means that the voltage waveform makes one ink particle to be charged with respect to two ink particles ejected from the nozzle. In addition, the particle usage rate 1/1 means that all ink particles ejected from the nozzles are to be charged, and the particle usage rate 1/3 means that the 3 ink particles ejected from the nozzles are to be charged. This means that the number of ink particles is one. In the ink jet recording apparatus of this method, on the principle of performing printing by flying charged ink particles, the larger the particle usage rate, the less the Coulomb repulsion between charged ink particles, and the more precisely the ink landing on the workpiece. However, in this drawing, it is explained that the drawing is not considered so much.
 図1中段及び下段は、ワークの搬送速度は図1上段と同じ場合において、帯電電圧波形を変化させたときの印字結果例を示す図である。図1中段は粒子使用率1/1の印字結果であり、図1上段に比較して横方向、即ちワークの搬送方向の列間隔を半減すると共に印字の傾き角度も原理的に垂直方向になる。図1下段は粒子使用率1/1であるが、列間に帯電を行わない無荷電粒子を挿入した場合の印字結果である。無荷電粒子数を変化させることで列間隔を制御可能とする。 1 is a diagram showing an example of a printing result when the charging voltage waveform is changed in the case where the work conveyance speed is the same as that in the upper stage of FIG. The middle row in FIG. 1 shows the printing result with a particle usage rate of 1/1. In comparison with the upper row in FIG. 1, the horizontal direction, that is, the column spacing in the workpiece conveyance direction is halved and the printing inclination angle is also in the vertical direction in principle. . The lower part of FIG. 1 shows the printing result when the particle usage rate is 1/1, but uncharged particles that are not charged are inserted between the columns. The column spacing can be controlled by changing the number of uncharged particles.
 図2は、実際の印字文字(ここでは「A」を例にしている)を印字する場合の原理について説明するための図である。図2上段は、図1上段と同速度、同帯電電圧波形の時の印字結果を示している。この時の印字ヘッド47とワーク49の位置関係は、捻りなしの状態になっている。この位置関係において、粒子使用率1/1で「A」を印字するための制御をした場合の帯電電圧波形とワークへの印字結果が図2中段に示されている。 FIG. 2 is a diagram for explaining the principle in the case of printing an actual print character (here, “A” is taken as an example). The upper part of FIG. 2 shows the printing result at the same speed and the same charging voltage waveform as the upper part of FIG. At this time, the positional relationship between the print head 47 and the work 49 is not twisted. In this positional relationship, the charging voltage waveform and the printing result on the work when the control is performed to print “A” at a particle usage rate of 1/1 are shown in the middle of FIG.
 印字ヘッドとワークの位置関係が捻りなしの状態のときに、ワークへの印字結果が図2中段のように傾いていた場合、印字ヘッドを捻ることで図2下段のような傾きのない良好な印字品質を得ることが可能となる。 When the positional relationship between the print head and the workpiece is not twisted, if the print result on the workpiece is tilted as shown in the middle of FIG. 2, twisting the print head is good without tilting as shown in the lower portion of FIG. Print quality can be obtained.
 図3は、図2と同じ帯電電圧波形においてワークの搬送速度を高速化した場合の印字結果例を示す図である。帯電されたインク粒子がワークへ着弾するタイミング周期は同じであるのに対して搬送速度は高速化しているので、印字結果としては図3下段のようにワーク搬送方向の列間隔が増長し、印字品質としても間伸びする為悪化するが、印字文字幅が広がることで狭いワークエリアには印字ができなくなるという問題がある。 FIG. 3 is a diagram showing an example of a printing result when the work conveyance speed is increased in the same charging voltage waveform as that in FIG. Although the timing period when the charged ink particles land on the work is the same, the transport speed is increased, so the print interval is increased as shown in the lower part of FIG. Although the quality is deteriorated because it is extended, there is a problem that printing cannot be performed in a narrow work area due to widening of the print character width.
 以上の動作原理により、ワークの搬送速度が高速化した場合にでも印字文字幅を狭める為には粒子使用率を大きくしていく手段が最も有効な方式であるが、1ノズルにて1段の印字を行う場合には粒子使用率1/1が最高印字速度になるため、更なる搬送速度の高速化に対応するためには2本以上のノズルを利用して1段の印字を行う必要がある。 Based on the above operation principle, the means for increasing the particle usage rate is the most effective method for reducing the print character width even when the work conveyance speed is increased. When printing is performed, the particle usage rate of 1/1 is the maximum printing speed. Therefore, it is necessary to perform one-stage printing using two or more nozzles in order to cope with further increase in the conveyance speed. is there.
(2)以上を踏まえて、次に、2本以上の複数ノズルを使用して一段の文字列を印字する場合(本発明)の動作について、図6~9を用いて説明する。 (2) Based on the above, the operation in the case of printing a character string of one stage using two or more nozzles (the present invention) will be described with reference to FIGS.
 図6は、2本のノズルで印字を行う場合の印字結果例及び2つのノズルから噴出されたインク粒子への帯電電圧波形例を示す図である。ノズルAの印字列間隔の間にノズルBの印字列を挿入するように印字を行う(ノズルAからの印字とノズルBからの印字を交互に行う)。これにより、印字列間隔を狭めること、即ち印字文字幅を狭めることが可能となり、高速印字に対応できる。 FIG. 6 is a diagram showing an example of a printing result when printing is performed with two nozzles and an example of a waveform of a charging voltage applied to ink particles ejected from the two nozzles. Printing is performed so that the printing row of nozzle B is inserted between the printing row intervals of nozzle A (printing from nozzle A and printing from nozzle B are performed alternately). As a result, it is possible to narrow the interval between the print columns, that is, to narrow the print character width, and it is possible to cope with high-speed printing.
 ここで、ノズルAの印字による印字列間隔およびノズルBの印字による印字列間隔は、本インクジェット記録装置の動作原理上、ある程度均等の間隔での印字が可能である。しかし、ノズルAとノズルBの構造上の配置のバラツキ、各インク粒子の飛行速度のバラツキ、即ち帯電電圧を印加してインクがワークに着弾するまでのタイミングのバラツキ等の問題により、ノズルAの印字列とノズルBの印字列との間隔を制御しなければ均等間隔の列印字を実現できない。そこで、当該課題に関しては、各ノズルから噴出されるインク粒子に印加する帯電電圧の印加タイミングを各々独立して調整できる機能を有することで、印字列間隔を均等に制御することが可能となり印字品質を高品質化することが可能となる。より具体的には、まず試し印字を行い、その印字結果に基づいて、操作者が後述のGUI(入力パネル4の例(図10)参照)を用いて、図4における帯電電圧発生回路A_9及び帯電電圧発生回路B_23による帯電電圧生成のタイミングをそれぞれ調節すればよい。 Here, the printing row interval by printing of the nozzle A and the printing row interval by printing of the nozzle B can be printed at a certain uniform interval on the principle of operation of the ink jet recording apparatus. However, due to problems such as variations in the structural arrangement of the nozzles A and B, variations in the flying speed of each ink particle, that is, variations in timing from when the charging voltage is applied to the ink landing on the workpiece, the nozzle A Even if the interval between the print row and the print row of the nozzle B is not controlled, uniform row print cannot be realized. Therefore, with regard to this problem, it has a function that can independently adjust the timing of applying the charging voltage applied to the ink particles ejected from each nozzle, so that it is possible to evenly control the print row interval and print quality. Can be improved in quality. More specifically, first, test printing is performed, and based on the printing result, the operator uses a GUI described later (see the example of the input panel 4 (FIG. 10)) and the charging voltage generation circuit A_9 in FIG. The timing of generating the charging voltage by the charging voltage generation circuit B_23 may be adjusted.
 図7は、実際に印字内容「A」を印字する場合のワークへの印字結果例及びノズルA、ノズルBの帯電電圧波形例を示す図である。この場合も、図2で示される場合と同様に、印字ヘッドを回転させることで、ワークへの印字結果における文字の傾きは改善され、図7に示すような高品質な印字を行うことが可能となる。 FIG. 7 is a diagram showing an example of the result of printing on the workpiece and the example of charging voltage waveforms of nozzle A and nozzle B when the printing content “A” is actually printed. In this case, as in the case shown in FIG. 2, by rotating the print head, the inclination of characters in the print result on the work is improved, and high-quality printing as shown in FIG. 7 can be performed. It becomes.
 図8を用いて、2ノズルによる印字例における2つ目の課題(複数のノズル毎から印字される水平方向のドットピッチが揃わないことによる印字品質の悪化すること)に対する解決策について説明する。 Referring to FIG. 8, a solution to the second problem in the printing example using two nozzles (deterioration of printing quality due to inconsistent horizontal dot pitches printed from a plurality of nozzles) will be described.
 図8上段は、各ノズルに同じ帯電電圧値を印加した場合のワークへの不良印字例を示している。本実施形態によるインクジェット記録装置においては、帯電電極内でインク粒子切断時に帯電電圧を帯電電極に印加してインク粒子に電荷を与え、本電荷量に応じて偏向電極内で偏向し、ワークがインク粒子飛行方向および帯電インク粒子偏向方向とほぼ直角方向に進行することで印字文字を形成する原理を用いている。しかし、この場合、各ノズルから噴出されるインクの帯電インク粒子の電荷量とインク飛行速度のバラツキにより帯電インク粒子の偏向量にバラツキが発生する。当該バラツキは、飛行インク粒子と帯電電極の位置関係やインク噴出圧力、インク粘度等のバラツキが主要因として生じるものである。つまり、単独のノズルにおける繰り返し精度は良いとしても、各ノズル間のバラツキは大きく、実際に帯電電極Aと帯電電極Bに同じ帯電電圧波形を印加しても帯電インク粒子の偏向量が異なるため、図8上段に示すような不良印字となることがある。 The upper part of FIG. 8 shows an example of defective printing on a workpiece when the same charging voltage value is applied to each nozzle. In the ink jet recording apparatus according to the present embodiment, when the ink particles are cut in the charging electrode, a charging voltage is applied to the charging electrode to give charges to the ink particles, and the workpiece is deflected in the deflection electrode according to the amount of the charges. The principle of forming printed characters by traveling in a direction substantially perpendicular to the particle flight direction and the charged ink particle deflection direction is used. However, in this case, the amount of deflection of the charged ink particles varies due to the variation in the charge amount of the charged ink particles of the ink ejected from each nozzle and the ink flight speed. The variation is mainly caused by variations in the positional relationship between the flying ink particles and the charging electrode, the ink ejection pressure, the ink viscosity, and the like. That is, even if the repetition accuracy of a single nozzle is good, the variation between the nozzles is large, and even if the same charging voltage waveform is actually applied to the charging electrode A and the charging electrode B, the deflection amount of the charged ink particles is different. Defective printing as shown in the upper part of FIG. 8 may occur.
 当該課題に関しては、インクジェット記録装置が入力パネル4(GUI例(図10参照))を用いて帯電電圧値を各々独立して調整できる機能を有する構成とする。例えば、図8下段に示すように、入力パネルからの文字高さ設定値入力を可変させると帯電電圧値が変化するようになっている。つまり、図8上段の場合には、ノズルBの帯電電極Bに印加される電圧値が大きすぎるため(インク粒子の電荷量が大きすぎるため)、ノズルBからのインク粒子の偏向量がノズルAからのインク粒子の偏向量と大幅に異なってしまっているが、図8下段に示すように、ノズルBの帯電電極Bに印加する電圧値を小さく調整することにより、インク粒子の偏向量が調整され、丁度良い文字高さに制御される。これにより、実際のワークへの印字結果と比較しながら調整することで印字品質を改善することが可能となる。 Regarding the problem, the inkjet recording apparatus has a function of independently adjusting the charging voltage value using the input panel 4 (GUI example (see FIG. 10)). For example, as shown in the lower part of FIG. 8, the charging voltage value changes when the character height setting value input from the input panel is varied. That is, in the case of the upper part of FIG. 8, since the voltage value applied to the charging electrode B of the nozzle B is too large (the charge amount of the ink particles is too large), the deflection amount of the ink particles from the nozzle B is the nozzle A. The amount of deflection of the ink particles is significantly different from the amount of deflection of the ink particles, but the amount of deflection of the ink particles is adjusted by adjusting the voltage value applied to the charging electrode B of the nozzle B to a small value as shown in the lower part of FIG. And is controlled to a good character height. As a result, the print quality can be improved by making adjustments while comparing with the print result on the actual workpiece.
 図9は、本実施形態による印字方法によって可能となる印字例(特殊なパターン)を示す図である。図9上段は太文字の印字を実現する方法を示し、図9下段は特殊用途の文字の印字を実現する方法を示している。 FIG. 9 is a diagram illustrating a printing example (special pattern) that can be performed by the printing method according to the present embodiment. The upper part of FIG. 9 shows a method for realizing printing of bold characters, and the lower part of FIG. 9 shows a method for realizing printing of characters for special purposes.
 図9上段に示されるように、太文字を印字する場合、各々の帯電電極に印加する帯電電圧の開始タイミングを意識的に調整し、ワークへの印字幅及び印字列間隔が1ノズルとほぼ同等の間隔とし、1列を2つのノズルで印字させる。これにより、1列の印字を太く表現可能となることから、印字結果として濃い印字を実現させることが可能となる。 As shown in the upper part of FIG. 9, when printing bold characters, the start timing of the charging voltage applied to each charging electrode is consciously adjusted, and the print width and print row interval on the workpiece are almost the same as one nozzle. 1 row is printed by two nozzles. As a result, it is possible to express one line of printing thickly, and it is possible to realize dark printing as a printing result.
 また、図9下段に示されるように、特殊用途の文字を印字する場合、各々の帯電電極に印加する帯電電圧の開始タイミング及び帯電電圧値を変化させることに加えて、粒子使用率を変える。例えば、ノズルAからの粒子の使用率を1/1に、ノズルBからの粒子の使用率を1/2に設定する。これにより、各々のノズルにて印字される印字列の傾きを可変させた印字例を実現することができる。このように、当該方法は、記号やロゴなど特殊な印字用途に用いることが可能となる。 In addition, as shown in the lower part of FIG. 9, when printing special-purpose characters, in addition to changing the charging voltage start timing and the charging voltage value applied to each charging electrode, the particle usage rate is changed. For example, the usage rate of particles from nozzle A is set to 1/1, and the usage rate of particles from nozzle B is set to 1/2. As a result, it is possible to realize a print example in which the inclination of the print row printed by each nozzle is variable. Thus, the method can be used for special printing applications such as symbols and logos.
 <入力パネル(GUI)の構成及びその作用>
 続いて、図10乃至12を用いて、設定画面(入力パネル4)における入力情報から帯電電圧の出力に至る処理について説明する。図10は設定画面例を示し、図11はワークセンサに検出からノズルAおよびノズルBより噴出されるインク粒子に対する帯電電圧出力タイミングを示すタイミングチャートを示し、図12は、本設定時の印字結果と帯電電圧波形例を示している。
<Configuration and operation of input panel (GUI)>
Next, processing from input information on the setting screen (input panel 4) to output of the charging voltage will be described with reference to FIGS. FIG. 10 shows an example of the setting screen, FIG. 11 shows a timing chart showing the charging voltage output timing for the ink particles ejected from the nozzle A and the nozzle B from the detection to the work sensor, and FIG. 12 shows the printing result at the time of this setting And an example of a charging voltage waveform.
 本実施形態による設定画面例54は、操作者が入力した各ノズルの印字開始位置設定情報に応じて、ワークセンサ検出から各ノズルに印加する帯電電圧出力タイミングを各々のノズルに応じて任意に変更可能な構成となっている。図4及び5にインクジェット記録装置の回路構成及び外観概略が示されるように、被印字物であるワークの進行方向に複数のノズルが配置されている。この場合、ワークの移動速度が変化する場合の対応や、各ノズルより噴出されるインク粒子速度が全く同一速度ではないことを考慮すると、複数ノズルより噴出されるインク粒子の印字列間隔を微調整できるようにしなければならない。そこで、本課題に関しては、設定画面54を用意し、印字開始位置、文字高さ、粒子使用率、及び印字列間隔調整に具体的な数値を入力できるようにすることにより、帯電電圧出力タイミングを各々微調整できるようになっている。 In the setting screen example 54 according to the present embodiment, the charging voltage output timing applied to each nozzle from the work sensor detection is arbitrarily changed according to each nozzle in accordance with the print start position setting information of each nozzle input by the operator. It has a possible configuration. As shown in FIGS. 4 and 5, the circuit configuration and outline of the appearance of the ink jet recording apparatus are provided with a plurality of nozzles arranged in the traveling direction of the work that is the printing object. In this case, considering the response when the moving speed of the workpiece changes and the speed of the ink particles ejected from each nozzle are not exactly the same speed, fine adjustment of the print row interval of the ink particles ejected from a plurality of nozzles You must be able to do it. Therefore, with respect to this problem, a setting screen 54 is prepared, and the charging voltage output timing is set by allowing specific numerical values to be input for the print start position, the character height, the particle usage rate, and the print row interval adjustment. Each can be fine tuned.
 まず、印字開始位置について説明する。微調整の単位としての印字ドット及び印字列(スキャン)のクロックは分周カウンタ16で作成されるので、微調整実現のためにタイミング信号に基づいて帯電電圧出力タイミングを遅延させる構成としている。図11に示されるように、設定画面54から入力された各ノズルの印字開始位置に基づいて、帯電電圧を出力するタイミングが決定される。例えば、各ノズルからの印字開始位置を少しだけずらして重なるようにすることにより、図9上段で説明したように太文字を印字することができるようになる。また、通常の印字の場合(2ノズルで1段の文字列を印字する場合)には、ノズルAからの印字列間の中間にノズルBからの印字列が配置されるようにタイミングが設定される(図6参照)。 First, the print start position will be described. Since the print dot and print row (scan) clocks as fine adjustment units are generated by the frequency dividing counter 16, the charging voltage output timing is delayed based on the timing signal in order to realize fine adjustment. As shown in FIG. 11, the timing for outputting the charging voltage is determined based on the print start position of each nozzle input from the setting screen 54. For example, when the print start positions from the nozzles are slightly shifted and overlapped, bold characters can be printed as described in the upper part of FIG. In the case of normal printing (when printing one stage of character string with two nozzles), the timing is set so that the print row from nozzle B is arranged in the middle between the print rows from nozzle A. (See FIG. 6).
 次に、文字高さ設定について説明する。各ノズルから噴出されるインク粒子速度が全く同一でないこと、発生する文字高さの不均一さの問題に対処するため本実施形態においては各ノズルで偏向電極を共用していることから、帯電電圧を調整できるようにしている。図10上段に示されるように、各ノズル毎に文字高さ設定機能を有し、各々独立して設定情報を入力し、帯電電圧幅を調整できる構成とする。ここでいう帯電電圧幅とは、最下位に印字する帯電電圧から最上位に印字する帯電電圧の差を意味する。そして、帯電電圧幅に応じて印字される文字高さは変化する。 Next, character height setting will be described. In order to cope with the problem that the ink particle speed ejected from each nozzle is not exactly the same, and the problem of non-uniformity in the character height that occurs, in this embodiment, each nozzle shares a deflection electrode. Can be adjusted. As shown in the upper part of FIG. 10, each nozzle has a character height setting function, and the setting voltage can be input independently to adjust the charging voltage width. The charging voltage width here means the difference between the charging voltage printed at the lowest level and the charging voltage printed at the highest level. The height of the printed character changes according to the charging voltage width.
 また、粒子使用率に関しては、図10上段に示すように、粒子使用率の設定が各ノズル毎に調整できるようにすることにより、各ノズルからの印字列(ドット列)の傾きを各々調整することを可能としている(図9下段参照)。さらに、印字列間隔調整値に関しては、図12に示すように、各ノズル毎に印字列間隔調整値に応じて印字列間隔に印字を行わない無印字ドットをインク粒子作成ドット単位で挿入するような帯電電圧波形にすることで、各ノズルから印字される印字列(ドット列)の傾きを変化させずに印字列間隔を調整可能とする。 As for the particle usage rate, as shown in the upper part of FIG. 10, the inclination of the print row (dot row) from each nozzle is adjusted by enabling the setting of the particle usage rate to be adjusted for each nozzle. (See the lower part of FIG. 9). Further, with respect to the print row interval adjustment value, as shown in FIG. 12, non-print dots that do not print in the print row interval are inserted for each nozzle in accordance with the print row interval adjustment value for each nozzle. By using a simple charging voltage waveform, it is possible to adjust the print row interval without changing the inclination of the print row (dot row) printed from each nozzle.
 <印字ドットデータ制御>
 図13は、印字ドットデータ制御の概念を説明するための図である。具体的な印字ドット制御は、ハード的な構成要素として図4に示す入力パネル4の設定情報に基づいて、MPU1がRAM3内にドットデータを展開し、帯電電圧発生回路A_9及び帯電電圧発生回路B_23に対して印加する帯電電圧値及びタイミングを指示することによって実行される。
<Print dot data control>
FIG. 13 is a diagram for explaining the concept of print dot data control. Specifically, the printing dot control is based on the setting information of the input panel 4 shown in FIG. 4 as hardware components, and the MPU 1 expands the dot data in the RAM 3, and the charging voltage generation circuit A_9 and the charging voltage generation circuit B_23. Is executed by instructing the charging voltage value to be applied and the timing.
 図13には、入力パネルの印字ドットデータ例と、入力された印字ドットデータについてノズルA及びBに振り分けられるデータが示されている。つまり、当該ドットデータは、MPU1は、RAM3の一時記憶領域を用いて、ノズルAの印字ドットデータ(b)及びノズルBの印字ドットデータ(c)のように、2つのノズルで印字を行う場合の例としては、奇数列のドットデータをノズルAに、偶数列のドットデータをノズルBへと列毎に交互に展開する。ここで奇数列と偶数列は逆でも良いが列毎に交互に展開することとする。例えば、ノズルが3本の場合においては、1、4、7列目をノズルAに、2、5、8列目をノズルBに、3、6、9列目をノズルCに展開することで、本発明における制御を実現することができる。 FIG. 13 shows an example of print dot data on the input panel and data assigned to the nozzles A and B with respect to the input print dot data. In other words, the dot data is printed by the MPU 1 using two nozzles such as the print dot data (b) of the nozzle A and the print dot data (c) of the nozzle B using the temporary storage area of the RAM 3. As an example, the dot data of the odd-numbered rows are alternately developed for the nozzle A, and the dot data of the even-numbered rows are alternately developed for the nozzle B for each row. Here, the odd and even columns may be reversed, but they are alternately developed for each column. For example, when there are three nozzles, the first, fourth and seventh rows are developed on nozzle A, the second, fifth and eighth rows on nozzle B, and the third, sixth and ninth rows on nozzle C. The control in the present invention can be realized.
 <まとめ>
 本実施形態のインクジェット記録装置の印字ヘッドでは、複数のノズルと、複数のノズルに対応して帯電電極と、偏向電極が配置されている。ここで、複数のノズルの配列方向は、帯電したインク粒子の偏向方向と直交している。そして、インクジェット記録装置の制御部(MPU)は、入力部より入力された印字文字をドットマトリックス状に展開し、各ドットデータを複数のノズルに割り当て、複数のノズルからのインク噴出動作、複数の帯電電極に印加する帯電電圧の値、及び印加タイミングを制御し、複数のノズルによって1段の文字列を被印字物に印字する。複数のノズルからのドット列の印字を順番に実行する(2ノズルの場合には、交互に印字を実行する)ことにより、1段の文字列を被印字物に印字する。このようにすることにより、被印字物の搬送速度が高速時にも印字結果の文字幅を広がらない良好な印字品質の印字を行うことが可能となる。
<Summary>
In the print head of the ink jet recording apparatus according to the present embodiment, a plurality of nozzles, and charging electrodes and deflection electrodes are arranged corresponding to the plurality of nozzles. Here, the arrangement direction of the plurality of nozzles is orthogonal to the deflection direction of the charged ink particles. The control unit (MPU) of the ink jet recording apparatus expands the print characters input from the input unit into a dot matrix, assigns each dot data to a plurality of nozzles, performs an ink ejection operation from a plurality of nozzles, a plurality of The value of the charging voltage applied to the charging electrode and the application timing are controlled, and a single character string is printed on the printing object by a plurality of nozzles. By sequentially printing dot rows from a plurality of nozzles (in the case of 2 nozzles, printing is performed alternately), a single-stage character string is printed on the printing object. By doing so, it is possible to perform printing with good printing quality without widening the character width of the printing result even when the conveyance speed of the substrate is high.
 また、偏向電極は、ノズル及び帯電電極の設置個数に関係なく、1対の平板電極で構成されている。また、偏向電界を形成するための偏向電極と直流電圧も1系統で実施可能であるため、安価な装置を提供可能になる。つまり、偏向電極に電圧を印加するための電源が1つで済み、装置のコストを低減できる。また、偏向電極が複数対あると、電極対間のスリット(隙間)において放電が生じる可能性があるが、本実施形態によればこのような事態を防止でき、インク粒子を安定的に偏向させることができるようになる。 The deflection electrode is composed of a pair of flat plate electrodes regardless of the number of nozzles and charging electrodes. In addition, since the deflection electrode and the DC voltage for forming the deflection electric field can be implemented in one system, an inexpensive apparatus can be provided. That is, only one power source for applying a voltage to the deflection electrode is required, and the cost of the apparatus can be reduced. Further, when there are a plurality of pairs of deflecting electrodes, there is a possibility that discharge occurs in the slit (gap) between the electrode pairs. According to this embodiment, such a situation can be prevented and ink particles can be deflected stably. Will be able to.
 また、本実施形態では、複数のノズルのそれぞれについて独立に印字条件の設定可能な印字条件設定部を有している。この場合、制御部は、印字条件入力部によって設定された印字条件に従って、インク噴出動作、帯電電圧の値、及び印加タイミングを制御する。このようにノズル単位で印字条件を変えて印字を実行することができるので、ノズル単位で印字動作の微調整が可能となる。 Further, in the present embodiment, there is a printing condition setting unit capable of setting printing conditions independently for each of the plurality of nozzles. In this case, the control unit controls the ink ejection operation, the charging voltage value, and the application timing in accordance with the printing conditions set by the printing condition input unit. Since printing can be executed while changing the printing conditions in units of nozzles in this way, fine adjustment of the printing operation can be performed in units of nozzles.
 より具体的には、印字条件設定部で印字文字高さの調整が指示された場合、制御部は、印字文字高さを調整すべきノズルに対応する帯電電極に印加する帯電電圧の値を調整する。これにより、各ノズルに対して同じ電圧値を設定した場合に、ノズル間で印字の高さにばらつきが生じても微調整により、複数のノズルで実現する1段文字列の高さを一定にすることができるようになる。 More specifically, when adjustment of the print character height is instructed by the print condition setting unit, the control unit adjusts the value of the charging voltage applied to the charging electrode corresponding to the nozzle whose print character height should be adjusted. To do. As a result, when the same voltage value is set for each nozzle, even if the printing height varies among nozzles, the height of the one-stage character string realized by a plurality of nozzles is made constant by fine adjustment. Will be able to.
 また、印字条件設定部で印字開始タイミングの調整が指示された場合、制御部は、印字開始タイミングを調整すべきノズルに対応する帯電電極に印加する帯電電圧の印加タイミングを調整する。このように、印字開始タイミングをノズル間で調整することにより、微妙なノズル間の印字タイミングずれを調整することができる。また、ノズル間の印字ドットが重なるように印字開始タイミングを調整すれば、太文字等の特殊文字の印字(装飾文字の印字)にも対応できるようになる。 Further, when the print condition setting unit is instructed to adjust the print start timing, the control unit adjusts the application timing of the charging voltage applied to the charging electrode corresponding to the nozzle whose print start timing is to be adjusted. In this way, by adjusting the print start timing between the nozzles, it is possible to adjust a subtle print timing shift between the nozzles. Further, if the print start timing is adjusted so that the print dots between the nozzles overlap, it is possible to cope with printing of special characters such as bold characters (printing of decorative characters).
 さらに、印字条件設定部で印字列間隔の調整が指示された場合、制御部は、ノズル毎の印字列間隔の調整値に応じて、印字列間隔に印字を行わない無印字ドットをインク粒子作成ドット単位で挿入するような帯電電圧を帯電電極に印加することにより、印字列間隔を調整する。このようにすることにより、入力文字列の標記に従って印字列間隔を調整しながら、複数ノズルで1段文字列の印字を実現することができる。 In addition, when the print condition setting unit is instructed to adjust the print row interval, the control unit creates ink particles that do not print in the print row interval according to the adjustment value of the print row interval for each nozzle. By applying a charging voltage that is inserted in units of dots to the charging electrode, the print row interval is adjusted. By doing so, it is possible to realize printing of a one-stage character string with a plurality of nozzles while adjusting the print string interval in accordance with the input character string mark.
 また、印字条件設定部で各ノズルから噴出されるインク粒子の粒子使用率が異なるように設定された場合、制御部は、使用率に基づいて、各ノズルによって生成されるドット列の傾きを制御することにより、特殊印字パターンを実現する。このようにすることにより、特殊な形状を有する文字列の印刷にも対応することができる。 In addition, when the printing condition setting unit is set so that the particle usage rate of the ink particles ejected from each nozzle is different, the control unit controls the inclination of the dot row generated by each nozzle based on the usage rate. By doing so, a special print pattern is realized. By doing so, it is possible to cope with printing of a character string having a special shape.
 以上のように、文字高さ、印字開始タイミング、印字列間隔、及び粒子使用率を組み合わせて調整することにより、様々な1段文字列の印字を実現することができる。 As described above, various one-stage character strings can be printed by adjusting the combination of the character height, the print start timing, the print string interval, and the particle usage rate.
1…MPU、2…ROM、3…RAM、4…入力パネル、5…循環制御回路、6…循環系部品、7…バスライン、8…印字開始信号指令回路A、9…帯電電圧発生回路A、10…粒子使用率スイッチA、11…励振設定スイッチA、12…発信器A、13…位相検知回路A、14…帯電D/Aコンバータ、15…AMP、16…分周カウンタA、17…励振電圧発生回路A、18…AMP、19…AMP、20…偏向D/Aコンバータ、21…AMP、22…印字開始信号指令回路B、23…帯電電圧発生回路B、24…粒子使用率スイッチB、25…励振設定スイッチB、26…発信器B、27…位相検知回路B、28…帯電D/AコンバータB、29…AMP、30…分周カウンタB、31…励振電圧発生回路B、32…AMP、33…AMP、34…被印字物検知回路、35…ノズルA、36…電歪素子A、37…帯電電極A、38…位相検索センサA、39…ガターA、40…ノズルB、41…電歪素子B、42…帯電電極B、43…位相検索センサB、44…ガターB、45…偏向電極-、46…偏向電極+、47…印字ヘッド、48…ワークセンサ、49…ワーク、50…コンベア、51…帯電系回路A、52…帯電系回路B、53…印字ヘッドカバー、54…設定画面(GUI)例 DESCRIPTION OF SYMBOLS 1 ... MPU, 2 ... ROM, 3 ... RAM, 4 ... Input panel, 5 ... Circulation control circuit, 6 ... Circulation system component, 7 ... Bus line, 8 ... Print start signal command circuit A, 9 ... Charging voltage generation circuit A DESCRIPTION OF SYMBOLS 10 ... Particle usage rate switch A, 11 ... Excitation setting switch A, 12 ... Transmitter A, 13 ... Phase detection circuit A, 14 ... Charge D / A converter, 15 ... AMP, 16 ... Frequency division counter A, 17 ... Excitation voltage generation circuit A, 18 ... AMP, 19 ... AMP, 20 ... deflection D / A converter, 21 ... AMP, 22 ... print start signal command circuit B, 23 ... charge voltage generation circuit B, 24 ... particle usage rate switch B , 25 ... Excitation setting switch B, 26 ... Transmitter B, 27 ... Phase detection circuit B, 28 ... Charging D / A converter B, 29 ... AMP, 30 ... Frequency division counter B, 31 ... Excitation voltage generation circuit B, 32 ... AMP, 33 ... AM 34 ... Printed object detection circuit, 35 ... Nozzle A, 36 ... Electrostrictive element A, 37 ... Charging electrode A, 38 ... Phase search sensor A, 39 ... Gutter A, 40 ... Nozzle B, 41 ... Electrostrictive element B 42 ... Charging electrode B, 43 ... Phase search sensor B, 44 ... Gutter B, 45 ... Deflection electrode-, 46 ... Deflection electrode +, 47 ... Print head, 48 ... Work sensor, 49 ... Work, 50 ... Conveyor, 51 ... Charging system circuit A, 52 ... Charging system circuit B, 53 ... Print head cover, 54 ... Setting screen (GUI) example

Claims (11)

  1.  搬送される被印字物に対して印字するインクジェット記録装置であって、
     複数のノズルと、
     前記複数のノズルに対応して配置され、前記複数のノズルのそれぞれから噴出されたインク粒子を帯電させるための複数の帯電電極と、
     前記帯電したインク粒子を偏向する偏向電極と、
     印字文字を入力するための入力部と、
     前記入力部より入力された印字文字をドットマトリックス状に展開し、各ドットデータを前記複数のノズルに割り当て、前記複数のノズルからのインク噴出動作、前記複数の帯電電極に印加する前記帯電電圧の値、及び印加タイミングを制御する制御部と、を備え、
     前記複数のノズルの配列方向は、前記帯電したインク粒子の偏向方向と直交しており、前記複数のノズルによって1段の文字列を前記被印字物に印字することを特徴とするインクジェット記録装置。
    An inkjet recording apparatus for printing on a substrate to be conveyed,
    Multiple nozzles,
    A plurality of charging electrodes arranged to correspond to the plurality of nozzles and for charging ink particles ejected from each of the plurality of nozzles;
    A deflection electrode for deflecting the charged ink particles;
    An input section for inputting print characters;
    The print characters input from the input unit are expanded in a dot matrix, each dot data is assigned to the plurality of nozzles, ink ejection operation from the plurality of nozzles, and the charging voltage applied to the plurality of charging electrodes. A control unit for controlling the value and the application timing,
    An ink jet recording apparatus, wherein an arrangement direction of the plurality of nozzles is orthogonal to a deflection direction of the charged ink particles, and a character string of one stage is printed on the printing object by the plurality of nozzles.
  2.  請求項1において、
     前記偏向電極は、前記ノズル及び前記帯電電極の設置個数に関係なく、1対の平板電極で構成されていることを特徴とするインクジェット記録装置。
    In claim 1,
    2. The ink jet recording apparatus according to claim 1, wherein the deflecting electrode includes a pair of flat plate electrodes regardless of the number of the nozzles and the charging electrodes.
  3.  請求項1において、
     前記入力部は、前記複数のノズルのそれぞれについて独立に印字条件の設定可能な印字条件設定部を有し、
     前記制御部が、前記印字条件入力部によって設定された前記印字条件に従って、前記インク噴出動作、前記帯電電圧の値、及び前記印加タイミングを制御することを特徴とするインクジェット記録装置。
    In claim 1,
    The input unit has a printing condition setting unit capable of setting printing conditions independently for each of the plurality of nozzles,
    The ink jet recording apparatus, wherein the control unit controls the ink ejection operation, the value of the charging voltage, and the application timing in accordance with the printing condition set by the printing condition input unit.
  4.  請求項3において、
     前記印字条件設定部で印字文字高さの調整が指示された場合、前記制御部は、前記印字文字高さを調整すべきノズルに対応する前記帯電電極に印加する帯電電圧の値を調整することを特徴とするインクジェット記録装置。
    In claim 3,
    When the printing condition height is instructed by the printing condition setting unit, the control unit adjusts the value of the charging voltage applied to the charging electrode corresponding to the nozzle whose printing character height should be adjusted. An ink jet recording apparatus.
  5.  請求項3において、
     前記印字条件設定部で印字開始タイミングの調整が指示された場合、前記制御部は、前記印字開始タイミングを調整すべきノズルに対応する前記帯電電極に印加する帯電電圧の印加タイミングを調整することを特徴とするインクジェット記録装置。
    In claim 3,
    When the adjustment of the print start timing is instructed by the print condition setting unit, the control unit adjusts the application timing of the charging voltage applied to the charging electrode corresponding to the nozzle to adjust the print start timing. An ink jet recording apparatus.
  6.  請求項3において、
     前記印字条件設定部で印字列間隔の調整が指示された場合、前記制御部は、ノズル毎の前記印字列間隔の調整値に応じて、印字列間隔に印字を行わない無印字ドットをインク粒子作成ドット単位で挿入するような帯電電圧を前記帯電電極に印加することにより、前記印字列間隔を調整することを特徴とするインクジェット記録装置。
    In claim 3,
    When the adjustment of the print row interval is instructed by the print condition setting unit, the control unit sets the non-printed dots that are not printed in the print row interval to the ink particles according to the adjustment value of the print row interval for each nozzle. An inkjet recording apparatus, wherein the print row interval is adjusted by applying a charging voltage to be inserted in units of created dots to the charging electrode.
  7.  請求項3において、
     前記印字条件設定部で各ノズルから噴出されるインク粒子の粒子使用率が異なるように設定された場合、前記制御部は、前記使用率に基づいて、各ノズルによって生成されるドット列の傾きを制御することにより、特殊印字パターンを実現することを特徴とするインクジェット記録装置。
    In claim 3,
    When the printing condition setting unit is set so that the particle usage rate of the ink particles ejected from each nozzle is different, the control unit calculates the inclination of the dot row generated by each nozzle based on the usage rate. An ink jet recording apparatus that realizes a special print pattern by controlling.
  8.  請求項3において、
     前記制御部は、前記複数のノズルからのドット列の印字を順番に実行することにより、前記1段の文字列を前記被印字物に印字することを特徴とするインクジェット記録装置。
    In claim 3,
    The said control part prints the said 1 step | paragraph character string on the said to-be-printed material by performing the printing of the dot row from these nozzles in order, The inkjet recording device characterized by the above-mentioned.
  9.  インクジェット記録装置で用いられる印字ヘッドであって、
     複数のノズルと、
     前記複数のノズルに対応して配置され、前記複数のノズルのそれぞれから噴出されたインク粒子を帯電させるための複数の帯電電極と、
     前記帯電したインク粒子を偏向する偏向電極と、
     前記複数のノズルの配列方向が、前記帯電したインク粒子の偏向方向と直交することを特徴とする印字ヘッド。
    A print head used in an ink jet recording apparatus,
    Multiple nozzles,
    A plurality of charging electrodes arranged to correspond to the plurality of nozzles and for charging ink particles ejected from each of the plurality of nozzles;
    A deflection electrode for deflecting the charged ink particles;
    A print head, wherein an arrangement direction of the plurality of nozzles is orthogonal to a deflection direction of the charged ink particles.
  10.  請求項9において、
     前記帯電電極における電界の方向が、前記偏向電極における電界の方向と直交することを特徴とする印字ヘッド。
    In claim 9,
    A print head, wherein an electric field direction at the charging electrode is orthogonal to an electric field direction at the deflection electrode.
  11.  請求項9において、
     前記偏向電極は、前記ノズル及び前記帯電電極の設置個数に関係なく、1対の平板電極で構成されていることを特徴とする印字ヘッド。
    In claim 9,
    The print head according to claim 1, wherein the deflection electrode is composed of a pair of flat plate electrodes regardless of the number of the nozzles and the charging electrodes.
PCT/JP2009/064170 2009-08-11 2009-08-11 Inkjet recording device and printing head WO2011018841A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/389,609 US8764169B2 (en) 2009-08-11 2009-08-11 Inkjet recording device and printing head
PCT/JP2009/064170 WO2011018841A1 (en) 2009-08-11 2009-08-11 Inkjet recording device and printing head
CN200980160867.0A CN102470669B (en) 2009-08-11 2009-08-11 Inkjet recording device and printing head
JP2011526657A JP5190146B2 (en) 2009-08-11 2009-08-11 Ink jet recording apparatus and print head
IN864DEN2012 IN2012DN00864A (en) 2009-08-11 2009-08-11
EP09848260.7A EP2465681B1 (en) 2009-08-11 2009-08-11 Inkjet recording device and printing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064170 WO2011018841A1 (en) 2009-08-11 2009-08-11 Inkjet recording device and printing head

Publications (1)

Publication Number Publication Date
WO2011018841A1 true WO2011018841A1 (en) 2011-02-17

Family

ID=43586027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064170 WO2011018841A1 (en) 2009-08-11 2009-08-11 Inkjet recording device and printing head

Country Status (6)

Country Link
US (1) US8764169B2 (en)
EP (1) EP2465681B1 (en)
JP (1) JP5190146B2 (en)
CN (1) CN102470669B (en)
IN (1) IN2012DN00864A (en)
WO (1) WO2011018841A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073644A (en) * 2012-10-05 2014-04-24 Hitachi Industrial Equipment Systems Co Ltd Inkjet recording device
JP2020518490A (en) * 2017-05-03 2020-06-25 ドミノ・ユーケイ・リミテッドDomino UK Limited Improvements in or about printers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058938B2 (en) * 2012-07-30 2017-01-11 株式会社日立産機システム Inkjet recording apparatus and printing control method
JP2016083805A (en) * 2014-10-24 2016-05-19 セイコーエプソン株式会社 Image forming apparatus and image forming method
CN104924761B (en) * 2015-06-09 2016-06-29 厦门英杰华机电科技有限公司 CIJ ink jet numbering machine print speed control method
CN105398218A (en) * 2015-12-14 2016-03-16 上海美创力罗特维尔电子机械科技有限公司 Jet printing system of ink-jet printer
US20200189270A1 (en) * 2016-08-22 2020-06-18 Hitachi Industrial Equipment Systems Co., Ltd. Inkjet Recording Device and Inkjet Recording Device Control Method
JP6626801B2 (en) * 2016-08-22 2019-12-25 株式会社日立産機システム Inkjet recording device
GB2575077A (en) 2018-06-28 2020-01-01 Domino Uk Ltd Stroke direction offset adjustment
US11541654B2 (en) * 2019-01-29 2023-01-03 Hitachi Industrial Equipment Systems Co., Ltd. Inkjet recording device and method for controlling inkjet recording device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167271A (en) * 1981-04-07 1982-10-15 Fuji Xerox Co Ltd Multinozzle ink jet printer
US5457484A (en) 1989-10-16 1995-10-10 Imaje Ink jet printing head
JPH08142332A (en) * 1994-11-22 1996-06-04 Dainippon Screen Mfg Co Ltd Ink jet recording apparatus
JP2006111024A (en) * 2006-01-05 2006-04-27 Kishu Giken Kogyo Kk Electric-charge control type inkjet printer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739395A (en) 1971-10-12 1973-06-12 Mead Corp Liquid drop printing or coating system
US4219822A (en) * 1978-08-17 1980-08-26 The Mead Corporation Skewed ink jet printer with overlapping print lines
US4533925A (en) * 1984-06-22 1985-08-06 The Mead Corporation Ink jet printer with non-uniform rectangular pattern of print positions
CN101497265B (en) * 2008-01-28 2011-08-31 株式会社日立产机系统 Inkjet recording apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167271A (en) * 1981-04-07 1982-10-15 Fuji Xerox Co Ltd Multinozzle ink jet printer
US5457484A (en) 1989-10-16 1995-10-10 Imaje Ink jet printing head
JPH08142332A (en) * 1994-11-22 1996-06-04 Dainippon Screen Mfg Co Ltd Ink jet recording apparatus
JP2006111024A (en) * 2006-01-05 2006-04-27 Kishu Giken Kogyo Kk Electric-charge control type inkjet printer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2465681A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073644A (en) * 2012-10-05 2014-04-24 Hitachi Industrial Equipment Systems Co Ltd Inkjet recording device
JP2020518490A (en) * 2017-05-03 2020-06-25 ドミノ・ユーケイ・リミテッドDomino UK Limited Improvements in or about printers

Also Published As

Publication number Publication date
US20120194586A1 (en) 2012-08-02
CN102470669B (en) 2015-02-18
US8764169B2 (en) 2014-07-01
IN2012DN00864A (en) 2015-07-10
EP2465681A4 (en) 2013-05-22
JPWO2011018841A1 (en) 2013-01-17
EP2465681B1 (en) 2014-11-05
EP2465681A1 (en) 2012-06-20
CN102470669A (en) 2012-05-23
JP5190146B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5190146B2 (en) Ink jet recording apparatus and print head
JP6985017B2 (en) Matching ink droplet size for density compensation
JP2008074105A (en) Method and apparatus which form ink droplet by adjustable droplet capacity
JPWO2008102458A1 (en) Inkjet recording device
JP2010274637A (en) Method for controlling ink drop ejection, and inkjet recorder
JP5759830B2 (en) Inkjet recording device
JP5364360B2 (en) Inkjet recording device
US20160325545A1 (en) Inkjet Recording Device
JP6286671B2 (en) Inkjet printing device
JP2011189735A (en) Printing apparatus and driving method of liquid ejecting head
JP2016124245A (en) Liquid discharge device and discharge speed control method thereof
US6508537B2 (en) Ink jet recording device capable of controlling impact positions of ink droplets in electrical manner
JP2010228402A (en) Inkjet recorder
US9636912B2 (en) Ink jet recording device
JPWO2006016508A1 (en) Inkjet recording apparatus and inkjet recording method
JP6528565B2 (en) Droplet drive controller, image forming apparatus
JP7058157B6 (en) Inkjet recording device
US11376848B2 (en) Inkjet recording device and control method for inkjet recording device
JP7274770B2 (en) inkjet printer
US8967770B2 (en) Inkjet printer and printing method
US20050248631A1 (en) Stitched printing system
JP5919159B2 (en) Inkjet recording device
JP2006289702A (en) Inkjet recording apparatus
JPWO2018186112A1 (en) Inkjet recording device
JP2000233503A (en) Ink-jet recording apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160867.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011526657

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 864/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009848260

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13389609

Country of ref document: US