WO2011017995A1 - Procédé de réutilisation de gaz de houille effluent comme gaz réducteur dans un procédé de réduction directe - Google Patents

Procédé de réutilisation de gaz de houille effluent comme gaz réducteur dans un procédé de réduction directe Download PDF

Info

Publication number
WO2011017995A1
WO2011017995A1 PCT/CN2010/075407 CN2010075407W WO2011017995A1 WO 2011017995 A1 WO2011017995 A1 WO 2011017995A1 CN 2010075407 W CN2010075407 W CN 2010075407W WO 2011017995 A1 WO2011017995 A1 WO 2011017995A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
direct reduction
direct
rich
reducing
Prior art date
Application number
PCT/CN2010/075407
Other languages
English (en)
Chinese (zh)
Inventor
陈凌
郭敏
李佳楣
彭华国
张涛
Original Assignee
中冶赛迪工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶赛迪工程技术股份有限公司 filed Critical 中冶赛迪工程技术股份有限公司
Publication of WO2011017995A1 publication Critical patent/WO2011017995A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/026Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • C21B2100/282Increasing the gas reduction potential of recycled exhaust gases by separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/02Treatment of the exhaust gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/04Recirculation of the exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the invention relates to a method for recycling the outlet gas of a direct reduction process of gas as a reducing gas, in particular to a method for recycling C0 2 in an outlet gas by using a gas as a reducing gas direct reduction process.
  • Direct reduction process systems typically include a gas production system, a gas treatment system, and a direct reduction unit.
  • the reduced gas produced in the gas preparation system by the high carbon carrier is used to process the gas into the gas treatment system, and the treated gas enters the direct reduction device to produce direct reduced iron.
  • a method for recycling the outlet gas by direct reduction of gas as a reducing gas characterized in that: the outlet gas of the direct reduction device is treated by the direct gas reduction system of the direct reduction device; Entering the carbon dioxide separation system for decarbonization Enriched desorbed C0 2 and CO + H 2 gas decarburization, wherein the C0 2 rich-enriched desorbed C0 2 stripping gas processing system for processing, sent back to the gas preparation system, or as a direct reduced iron, carbon
  • the carrier or dust delivery carrier is returned to the gas preparation system.
  • the C0 2 rich stripping gas, the corresponding pressure and / or temperature shift C0 2 rich stripping gas in a processing system to meet the pressure and temperature requirements of the gas inlet system is prepared, and then sent back directly to the gas preparation system , or as a transport carrier for direct reduced iron, high carbon carrier or dust, returned to the gas preparation system.
  • the gas treated by the direct reduction unit outlet gas treatment system is partially introduced into the carbon dioxide separation system for decarburization treatment, or all of it enters the carbon dioxide separation system for decarburization treatment.
  • the C0 2 rich stripping gas, C0 2 rich stripping gas processing system through the entire post-processing gas into the preparation system, or part of co 2-enriched desorbed gas aftertreatment system for processing into the gas preparation system.
  • the gas treatment in the direct reduction unit outlet gas treatment system includes: dust removal and/or cooling and/or pressure conversion.
  • the C0 2 desorbed gas can be subjected to pressure and/or temperature conversion after purification, removal of impurities or blending of other gas in the C0 2 desorption gas treatment system.
  • the gas treatment system comprises a gas heat exchange device, a gas dust removal device, a gas desulfurization device, a gas residual pressure recovery device and a gas heating device; and the CO+H 2 decarburized gas is returned to the heating device in the gas treatment system before and after being treated After the gas mixture is heated, it enters the direct reduction unit.
  • part of the gas can be reused as C0 2 produced in the direct reduction process of the reducing gas, and the purpose of saving coal consumption is achieved while reducing C0 2 .
  • the process of the present invention is to reuse C0 2 in the direct reduction process of gas as a reducing gas to achieve the purpose of reducing emissions and saving coal. From the above technical solutions, the present invention has the following beneficial effects:
  • the N 2 dosage for the pneumatic conveying medium can be omitted; in addition, the desorption gas can be significantly reduced as the pneumatic conveying medium.
  • the content of inert gas (mainly N 2 ) in the gas output from the gas preparation system is of great significance for improving the quality of the reducing gas throughout the process.
  • FIG. 1 is a flow chart of a method of the present invention.
  • the entire process includes six process systems, namely: 1) gas preparation system; 2) gas treatment system; 3) direct reduction device; 4) direct Reduction unit gas treatment system; 5) Carbon dioxide separation system; 6) C0 2 desorption gas treatment system.
  • the above six process systems are connected together by a conveying pipe and a conveying device to achieve the purpose of direct reduction of the gas as a reducing gas and reduction of the C0 2 reduction process.
  • the percentage of the gas component to which the present invention relates is the volume percentage of the dry gas component unless otherwise specified.
  • Gas preparation system Coal, pure oxygen, water or water vapor and C0 2 desorbed gas desorbed from the direct reduction unit outlet gas react in the gas preparation system to produce CO+H 2 80% reduction gas
  • the reduction gas temperature is in the range of 1000 ⁇ 1700 °C
  • the pressure is 0.4 ⁇ 8.5Mpa
  • the gas state point of the gas preparation system is 1 point as shown in the drawing.
  • the gas preparation system may be a high temperature and high pressure gas flow bed, a molten direct gas reduction smelting gasification furnace, etc.
  • the direct reduction device may be a shaft furnace, a fluidized bed, a rotary kiln, a rotary hearth furnace, and the like.
  • the reducing gas produced by the gas preparation system is composed of a high carbon carrier and 0 2 , or 0 2 + 3 ⁇ 40, or 0 2 + H 2 0+C0 2 , or 0 2 + C0 2 in a high temperature and high pressure gas flow bed or a fluidized bed.
  • reaction CO + H 2 rich reducing gas, or by a carbon support and direct reduced iron + 02 or 02 + + produce direct reduced iron while generating iron ore in the melter-gasifier enriched CO + H 2 reducing gas. It is of course also possible to produce a reducing gas according to other preparation methods.
  • Gas treatment system The outlet gas of the gas preparation system is cooled by the coarse dust collector in the gas treatment system and then enters the gas heat exchange device (such as waste heat boiler) to cool down to the temperature required by the gas dust removal device (such as dry dust removal device).
  • the dust removal method adopts a dry bag filter, and the dust content of the gas after dust removal by dry bag is ⁇ 5mg/m3; the gas after dust removal passes through the gas desulfurization device, and the sulfur removal method removes H 2 S and COS from the gas.
  • the gas heat exchange device After that, it is reheated to a certain temperature (245 ° C) by the gas heat exchange device, and then enters the gas residual pressure recovery device (TRT) for pressure recovery, and the pressure is lowered to be slightly higher than the inlet gas pressure of the direct reduction device.
  • TRT gas residual pressure recovery device
  • Direct reduction device The gas from the gas preparation system treated in the above 2) is mixed with the CO + H 2 decarbonized gas after the carbon dioxide separation system, and the mixed gas CO + H 2 85% (wet gas)
  • the mixed gas needs to be heated before entering the direct reduction device, and the heating method may be heating the hot air furnace, or
  • the direct reduction device may be a shaft furnace, a fluidized bed, a rotary kiln, a rotary hearth furnace, or the like, which can directly reduce iron ore into direct reduced iron by using reducing gas, and the state is as shown in Fig. 2 .
  • Direct reduction unit outlet gas (3 points) in the direct reduction unit outlet gas treatment system is as follows: first through the coarse dust collector and then into the gas heat exchanger (such as heat pipe heat exchanger) The temperature is lowered to the temperature required for the gas dry dust removal device.
  • the dry dust removal method uses a dry bag filter. The dust content of the gas after the dust removal by the dry bag is 5 mg/m3. The gas after the dust removal is transformed by the gas pressure conversion device.
  • the gas pressure after the gas pressure is required to be within the inlet pressure requirement of the carbon dioxide separation system, and the decarburization gas pressure after decarbonization by the carbon dioxide separation system is slightly higher than the inlet gas pressure of the direct reduction device; the gas after the gas pressure conversion device is based on the gas
  • the temperature is, if necessary, cooled down to the inlet temperature requirement of the CO2 separation system. Its status point is shown in Figure 4 of the figure.
  • Carbon dioxide separation system A part of the gas after the direct reduction device is exported to the gas treatment system for output, and another part enters the carbon dioxide separation system for decarburization, and the decarburized CO+H 2 decarbonized gas (5 points) is refluxed directly to Before the device is restored, the specific process is as described in 3) above;
  • C0 2 desorption gas treatment system decarburized C0 2 desorbed gas (6 points) is subjected to pressure and/or temperature conversion of the C0 2 desorption gas treatment system to meet the inlet pressure and temperature of the gas preparation system.
  • C element in C0 2 .
  • the decarburization-rich C0 2 desorbed gas can be treated in a rich C0 2 desorption gas treatment system by first purifying, removing impurities or blending other gas, and the like. Perform pressure and temperature changes. This falls within the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

L'invention porte sur un procédé de réutilisation de gaz de houille effluent, comme gaz réducteur dans un procédé de réduction directe, qui comporte le procédé de traitement suivant : après avoir été traité par un système (115) de traitement de gaz de houille effluent d'un dispositif de réduction directe, le gaz de houille effluent du dispositif de réduction directe (105) entre dans un système de séparation (113) du dioxyde de carbone pour obtenir du gaz désorbé riche en dioxyde de carbone et du gaz décarburé (112) riche en monoxyde de carbone et en hydrogène, le gaz désorbé riche en dioxyde de carbone, après avoir été traité par un système de traitement (111) de gaz désorbé riche en dioxyde de carbone, retournant vers le système de préparation (101) de gaz de houille, ou plutôt retournant vers le système de préparation (101) de gaz de houille sous forme d'un vecteur de transport de fer ayant subi une réduction directe, de vecteur à teneur élevée en carbone ou de poussière. Le procédé permet de réduire l'émission de dioxyde de carbone et la consommation de charbon.
PCT/CN2010/075407 2009-08-14 2010-07-22 Procédé de réutilisation de gaz de houille effluent comme gaz réducteur dans un procédé de réduction directe WO2011017995A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101046336A CN101638702B (zh) 2009-08-14 2009-08-14 一种煤气作还原气的直接还原工艺出口煤气的回用方法
CN200910104633.6 2009-08-14

Publications (1)

Publication Number Publication Date
WO2011017995A1 true WO2011017995A1 (fr) 2011-02-17

Family

ID=41613882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075407 WO2011017995A1 (fr) 2009-08-14 2010-07-22 Procédé de réutilisation de gaz de houille effluent comme gaz réducteur dans un procédé de réduction directe

Country Status (2)

Country Link
CN (1) CN101638702B (fr)
WO (1) WO2011017995A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673954A (zh) * 2015-02-13 2015-06-03 湖南长拓高科冶金有限公司 含铁矿粉的直接还原炼铁方法及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638702B (zh) * 2009-08-14 2011-07-20 中冶赛迪工程技术股份有限公司 一种煤气作还原气的直接还原工艺出口煤气的回用方法
AT510177B1 (de) 2010-07-20 2012-05-15 Siemens Vai Metals Tech Gmbh Verfahren zur reinigung eines mit stäuben beladenen gasstroms
CN101928799A (zh) * 2010-08-10 2010-12-29 中冶赛迪工程技术股份有限公司 一种利用Finex工艺输出煤气生产海绵铁的工艺
CN102382915A (zh) * 2010-08-30 2012-03-21 上海国冶工程技术有限公司 使用二氧化碳作传输介质进行高炉喷煤的方法
CN102758038A (zh) * 2012-07-30 2012-10-31 中冶南方工程技术有限公司 全热氧高炉与竖炉联合生产系统
ES2689779T3 (es) * 2012-09-14 2018-11-15 Voestalpine Stahl Gmbh Procedimiento para producir acero con energía renovable
CN103898265B (zh) * 2014-03-12 2015-08-12 江苏科技大学 一种焦炉煤气改质直接还原铁矿石系统装置及方法
CN106433798B (zh) * 2016-09-19 2019-06-04 石家庄新华能源环保科技股份有限公司 一种氢电能源系统
CN109813129B (zh) * 2019-01-04 2019-11-12 北京科技大学 一种基于尾气循环o2-co2助燃的球团生产工艺及制备系统
CN114574650A (zh) * 2022-03-14 2022-06-03 中冶赛迪工程技术股份有限公司 一种氢基竖炉生产直接还原铁的方法及装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109911A (zh) * 1995-03-11 1995-10-11 宝山钢铁(集团)公司 一种煤基造气竖炉法生产海绵铁的方法
US5529599A (en) * 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
CN1212730A (zh) * 1996-03-05 1999-03-31 奥地利钢铁联合企业阿尔帕工业设备制造公司 生产生铁水或钢水预产品的方法和实施该方法的设备
CN1330162A (zh) * 2001-07-31 2002-01-09 雷少军 两步还原法生产海绵铁的工艺方法及设备
CN1504582A (zh) * 2002-12-03 2004-06-16 中国科学院过程工程研究所 气基还原炼铁方法及其装置
CN1772929A (zh) * 2005-09-15 2006-05-17 中冶东方工程技术有限公司 利用焦炉煤气生产直接还原铁的方法及其设备
CN1876849A (zh) * 2005-06-07 2006-12-13 技术资源有限公司 炼铁方法
CN101392192A (zh) * 2008-11-05 2009-03-25 吴道洪 焦炉煤气二氧化碳转化及气基竖炉直接还原铁生产方法
CN101597663A (zh) * 2009-06-30 2009-12-09 上海锅炉厂有限公司 一种高压粉煤气化制取海绵铁能量回收系统及方法
CN101638702A (zh) * 2009-08-14 2010-02-03 中冶赛迪工程技术股份有限公司 一种煤气作还原气的直接还原工艺出口煤气的回用方法
CN101643809A (zh) * 2009-05-14 2010-02-10 中冶赛迪工程技术股份有限公司 一种煤气化生产海绵铁工艺
CN101643810A (zh) * 2009-05-14 2010-02-10 中冶赛迪工程技术股份有限公司 一种生产海绵铁和高纯度co气体的工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152984A (en) * 1998-09-10 2000-11-28 Praxair Technology, Inc. Integrated direct reduction iron system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529599A (en) * 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
CN1109911A (zh) * 1995-03-11 1995-10-11 宝山钢铁(集团)公司 一种煤基造气竖炉法生产海绵铁的方法
CN1212730A (zh) * 1996-03-05 1999-03-31 奥地利钢铁联合企业阿尔帕工业设备制造公司 生产生铁水或钢水预产品的方法和实施该方法的设备
CN1330162A (zh) * 2001-07-31 2002-01-09 雷少军 两步还原法生产海绵铁的工艺方法及设备
CN1504582A (zh) * 2002-12-03 2004-06-16 中国科学院过程工程研究所 气基还原炼铁方法及其装置
CN1876849A (zh) * 2005-06-07 2006-12-13 技术资源有限公司 炼铁方法
CN1772929A (zh) * 2005-09-15 2006-05-17 中冶东方工程技术有限公司 利用焦炉煤气生产直接还原铁的方法及其设备
CN101392192A (zh) * 2008-11-05 2009-03-25 吴道洪 焦炉煤气二氧化碳转化及气基竖炉直接还原铁生产方法
CN101643809A (zh) * 2009-05-14 2010-02-10 中冶赛迪工程技术股份有限公司 一种煤气化生产海绵铁工艺
CN101643810A (zh) * 2009-05-14 2010-02-10 中冶赛迪工程技术股份有限公司 一种生产海绵铁和高纯度co气体的工艺
CN101597663A (zh) * 2009-06-30 2009-12-09 上海锅炉厂有限公司 一种高压粉煤气化制取海绵铁能量回收系统及方法
CN101638702A (zh) * 2009-08-14 2010-02-03 中冶赛迪工程技术股份有限公司 一种煤气作还原气的直接还原工艺出口煤气的回用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673954A (zh) * 2015-02-13 2015-06-03 湖南长拓高科冶金有限公司 含铁矿粉的直接还原炼铁方法及系统

Also Published As

Publication number Publication date
CN101638702B (zh) 2011-07-20
CN101638702A (zh) 2010-02-03

Similar Documents

Publication Publication Date Title
WO2011017995A1 (fr) Procédé de réutilisation de gaz de houille effluent comme gaz réducteur dans un procédé de réduction directe
CN102994678B (zh) 一种粉煤气化制气及气基竖炉直接还原冶金的方法及系统
CN102268504B (zh) 一种焦炉煤气生产海绵铁的直接还原工艺
JP2022535446A (ja) 放出を減らした鋼または溶鉄含有材料を生産する方法及びシステム
CN101643810B (zh) 一种生产海绵铁和高纯度co气体的工艺
CN102010924A (zh) 一种用煤生产直接还原铁的方法
WO2023240753A1 (fr) Système et procédé de fusion à faible teneur en carbone basés sur un cycle de carbone couplé à un processus de four de production d'acier en haut-fourneau
CN102605133A (zh) 一种利用焦炉煤气生产海绵铁的直接还原方法
CN104313228B (zh) 一种利用ch4非催化富氧转化生产海绵铁的直接还原工艺
CN101597663B (zh) 一种高压粉煤气化制取海绵铁能量回收系统及方法
CN112662830A (zh) 利用直接还原铁炉顶煤气预热变换氢气的方法
CN111270036A (zh) 一种氢能直接还原生产海绵铁的系统和工艺方法
TW201033371A (en) Process and device for producing pig iron or liquid primary steel products
CN212375235U (zh) 一种利用转炉煤气和焦炉煤气制高炉喷吹煤气的装置
CN107164594B (zh) 一种bgl气化气体经双重整转化生产直接还原铁的系统及方法
CN206607251U (zh) 天然气水蒸汽重整后还原红土镍矿球团的系统
CN213772106U (zh) 气基竖炉还原气制备系统
CN213772103U (zh) 焦炉煤气耦合二氧化碳制备竖炉还原气的系统
CN212102909U (zh) 一种氢能直接还原生产海绵铁的系统
CN112662824A (zh) 一种高效利用冶金废气的高炉富氢冶炼工艺
CN101792844B (zh) 一种电弧炉部分铁水炼钢煤气的干式回收方法
CN114134268B (zh) 一种利用炉顶煤气循环的高炉炼铁方法
CN116536468B (zh) 一种直接还原铁矿石的生产工艺
CN213772104U (zh) 竖炉还原气制备及自解吸系统
CN109868335B (zh) 一种闭环利用铁矿石还原过程中尾气的系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10807940

Country of ref document: EP

Kind code of ref document: A1