WO2011017891A1 - 一种有源触控系统 - Google Patents

一种有源触控系统 Download PDF

Info

Publication number
WO2011017891A1
WO2011017891A1 PCT/CN2009/075970 CN2009075970W WO2011017891A1 WO 2011017891 A1 WO2011017891 A1 WO 2011017891A1 CN 2009075970 W CN2009075970 W CN 2009075970W WO 2011017891 A1 WO2011017891 A1 WO 2011017891A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
signal
active
circuit
Prior art date
Application number
PCT/CN2009/075970
Other languages
English (en)
French (fr)
Inventor
陈其良
Original Assignee
智点科技有限公司
智点科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 智点科技有限公司, 智点科技(深圳)有限公司 filed Critical 智点科技有限公司
Priority to EP09848221.9A priority Critical patent/EP2392994A4/en
Priority to JP2012524079A priority patent/JP5633565B2/ja
Publication of WO2011017891A1 publication Critical patent/WO2011017891A1/zh
Priority to US13/348,250 priority patent/US8698770B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to a touch screen, and more particularly to an active touch screen and a driving circuit thereof. Background technique
  • Touch is the most important way of human perception, the most natural way for people to interact with machines. Touch screen development has been widely used in many fields such as personal computers, smart phones, public information, smart home appliances, industrial control and so on. In the current touch field, there are mainly resistive touch screens, photoelectric touch screens, ultrasonic touch screens, and flat capacitive touch screens. In recent years, projected capacitive touch screens have developed rapidly.
  • Resistive touch screen is still the leading product on the market, but the structure of the two-layer substrate of the resistive touch screen makes the reflection of the touch screen greatly affect the brightness of the display when the touch screen and the display panel are stacked together. Display quality such as contrast, color saturation, etc., greatly degrades the overall display quality, and increases the brightness of the backlight of the display panel, which also causes the power consumption to rise; the analog resistive touch screen also has the problem of positioning drift, from time to time. Position calibration; In addition, the working mode of the resistive touch screen electrode makes the life of the touch screen shorter.
  • Infrared touch screens and ultrasonic touch screens do not affect display quality.
  • the infrared touch screen and the ultrasonic touch screen are costly, and water droplets and dust can affect the reliability of the touch screen operation, especially the infrared touch screen and the ultrasonic touch screen mechanism are complicated, and the power consumption is large, so that the infrared Touch screens and ultrasonic touch screens are basically not available on portable products.
  • the structure of the single-layer substrate of the flat capacitive touch screen makes the touch screen have little effect on the display quality when the touch screen and the display panel are stacked together.
  • the planar capacitive touch screen also has the problem of positioning drift. Position calibration is performed from time to time. Water droplets also affect the reliability of the touch screen operation; especially the planar capacitive touch screen consumes a lot of power and costs, and also makes the plane Capacitive touch screens are basically not available on portable products.
  • the projected capacitive touch screen can still be a single-layer substrate structure, and when the touch screen and the display panel are stacked together, the touch screen has little effect on the display quality.
  • the projected capacitive touch screen measures the influence of the finger or other touch object on the coupling capacitance between the electrodes of the touch screen.
  • the finger is detected by measuring the influence of the finger or other touch object on the charging and discharging of the touch screen electrode. Or the location of other touch objects on the touch screen.
  • the anchor point needs to be simulated, not a real digital touch screen.
  • the distributed capacitance in the manufacturing and use environment will affect the reliability of the touch screen operation.
  • the interference of the display drive signal and other electrical signals will affect the operation of the touch screen. Water droplets will also affect the reliability of the touch screen operation.
  • the capacitive touch screen has high requirements on the resistance value of the detecting electrode line, so that the detecting electrode line of the projected capacitive touch screen used in combination with the display panel is not only a low-conductivity transparent electrode layer such as IT0.
  • a high-conductivity electrode layer such as a metal, which is complicated in manufacturing process and high in cost, especially in the case of large-size, ultra-large-size touch screens.
  • the scanning mode of the detection becomes very complicated compared to the single touch, and the detection takes a lot of time; or the detection process after the detection becomes very complicated, requires powerful computing power and Storage space also takes a lot of time.
  • the present invention is to provide a touch screen having an active device, and the basic working principle of the active touch system in which the respective sensing units on the screen are completely unique is:
  • the sensing electrode unit is arranged in an array on the touch substrate, and two sets of intersecting control electrodes and detecting electrodes are connected, and the detecting electrodes are connected to the sensing electrodes through active devices.
  • the control electrode is used to control the on and off of the active device
  • the detection electrode is used to apply the touch excitation signal to the sensing electrode
  • the leakage current of the sensing electrode to the touch object is detected.
  • the touch circuit detects the change of the touch signal on the detection electrode line of each of the sensing electrodes by detecting the touch excitation signal, and finds the detection electrode line whose leakage current is the largest or the leakage current exceeds a certain threshold, and then is combined with the current.
  • the control electrode line of the active device determines the sensing electrode unit that generates the leakage current, thereby finding the position of the finger or other touch object on the touch substrate.
  • a thin film field effect transistor is a typical representative of an active matrix device.
  • a gate of a thin film transistor TFT is connected to a horizontal scanning line, a source is connected to a vertical data line, and a drain is connected.
  • Drain is connected to the load electrode (the definition of the drain and source here is only a customary definition, the source level does not specifically refer to the level of the source electrode, but the source and drain electrodes here. The level of the lower level).
  • the array of active devices arranged in the array allows each load electrode to be equipped with a semiconductor switching device that can be gated by pulses so that each load electrode is relatively independent.
  • TFTs Thin film field effect transistors
  • OS OS and PM0S versions.
  • TFTs are available in both OS and PM0S versions.
  • a_Si amorphous silicon
  • SiNx silicon nitride
  • a positive charge in silicon nitride is used to help attract electrons to form a channel, and thus TFTs using an amorphous silicon process are mostly of the NM0S type.
  • the contents of this manual are mainly described by the NM0S type thin film transistor.
  • the PM0S type thin film transistor can follow the same principle and will not be listed separately.
  • An active touch system is composed of a touch substrate and a touch electrode.
  • the touch electrode has a sensing electrode, a control electrode and a detecting electrode, and the touch electrode is used to detect an operator's finger or other touch object in the touch.
  • the active substrate unit arranged in the array on the touch substrate, the sensing electrode unit arranged in the array, and not less than two sets of control electrodes and detecting electrodes intersecting each other, and the intersection of each control electrode line and each detecting electrode line is insulated
  • the layers are isolated; the sensing electrodes are connected to the active devices, and the active devices are connected to the control electrodes and the detecting electrodes.
  • the active device unit in the active device array has one or more active components therein.
  • the active device unit in the active device array may be a two-terminal active device or a three-terminal active device.
  • the control electrode line is connected to the sensing electrode unit through a capacitor, and the sensing electrode unit is connected at both ends.
  • One terminal of the source device unit; the detection electrode line connects the other terminal of the active device unit at both ends.
  • the active device unit in the active device array is a three-terminal active device
  • the control electrode line and the detecting electrode line are respectively connected to two terminals of the three-terminal active device unit, three The other terminal of the end active device unit is connected to the sensing electrode unit.
  • the three-terminal active device array is a thin film transistor (TFT) array, and the control electrode line and the detecting electrode line are respectively connected to the gate and the source of the TFT, and the drain of the TFT is connected to the sensing electrode. unit.
  • TFT thin film transistor
  • a single or multiple layers of shielding electrodes, shielding electrodes and detecting electrodes and active device arrays are disposed on different layers of the touch substrate having positions for detecting all or part of the electrode lines. They are all isolated by insulators.
  • a single or multiple layer of shielding electrodes are disposed, and the shielding electrode and the sensing electrode array are separated by an insulating layer.
  • the touch substrate is a flexible or rigid transparent substrate
  • the sensing electrode unit is a transparent electrode
  • the sensing electrode array is disposed on a touch surface or a non-touch surface of the touch substrate.
  • control electrode line or the detection electrode line has a fold line segment, and the angle between two adjacent straight lines on the fold line segment is greater than 20 ° and less than 160 °.
  • an active touch system is composed of a touch substrate, a touch electrode, and a touch circuit.
  • the touch electrode has a sensing electrode, a control electrode, and a detecting electrode
  • the touch circuit has The touch excitation source, the signal detection circuit, and the control circuit, the touch electrode and the touch circuit are used to detect the position of the operator's finger or other touch object on the touch substrate; and the active device having the array arrangement on the touch substrate a unit, an array of sensing electrode units, and no less than two sets of intersecting control electrodes and detecting electrodes, wherein each control electrode line and each detecting electrode line are separated by an insulating layer;
  • the sensing electrode is connected to the active device,
  • the active device is connected to the control electrode and the detecting electrode, the detecting electrode is connected to the touch excitation source and the signal detecting circuit in the touch circuit, and the control electrode is connected to the touch battery a control circuit in
  • the touch signal outputted by the touch circuit to the detecting electrode line of the sensing electrode unit is an alternating current signal having a frequency not less than ⁇ .
  • the touch circuit detects a change in the touch signal, and detects at least one of an amplitude, a time, a phase, a frequency signal, and a pulse number.
  • the touch circuit detects a change in the touch signal, and detects a change amount of the touch control signal or a change rate of the touch signal.
  • the active device unit in the active device array is a two-terminal active device, and the row electrode serves as a control electrode and a column electrode as a detecting electrode respectively connected to the two-terminal active device array.
  • the sensing electrode unit is connected to the terminal of the two-terminal active device unit connected to the row electrode line;
  • the control circuit in the touch circuit applies an electrical signal to a part of the electrode lines of the row electrode to be connected thereto
  • the active device is in a conducting state;
  • the detecting circuit in the touch circuit applies a touch signal to some or all of the electrode lines in the column electrodes, and detects changes in the touch signals on the electrode lines.
  • the active device unit in the active device array is a thin film transistor (TFT), and the row electrode serves as a control electrode and a column electrode as detection electrodes respectively connected to the gate and the source of each TFT.
  • the sensing electrode unit is connected to the drain of the TFT; the control circuit in the touch circuit applies an electrical signal to a part of the electrode lines in the row electrode, so that the TFT connected thereto is in a conducting state; the detecting circuit in the touch circuit is correct Touch signals are applied to some or all of the electrode lines in the column electrodes, and changes in the touch signals on the electrode lines are detected.
  • the touch circuit is positioned on the touched electrode line, and the column electrode line that detects that the touch signal changes to reach the touch positioning condition is the touched electrode line;
  • the positioning of the touched electrode line is a column electrode line corresponding to the detection of the touch signal change to reach the touch positioning condition, and the control circuit causes the active device to be in a conducting state as the touched electrode line.
  • the contact on the touch substrate is the intersection of the touched electrode line and the touched electrode line.
  • the touch positioning condition is that the touch signal change amount or the touch signal change rate is the largest, or the touch signal change amount or the touch signal change rate exceeds a certain set threshold. Or the touch signal change amount or the touch signal change rate is the largest and exceeds a certain threshold.
  • the touch circuit determines the touched position between the column electrode lines by detecting the difference of the touch signal changes on the respective column electrode lines; the touch circuit detects the same column The difference in the change of the touch signal at different times on the electrode line is determined by calculation to determine the touched position between the row electrode lines.
  • the touch circuit applies an electrical signal to a portion of the electrode lines in the row electrode to enable the active device connected thereto to be in a conductive state, and is performed in a scanning manner; Electricity Touch signals are applied to some or all of the electrode lines of the pole, and changes in the touch signals on the electrode lines are detected, either in a scanning manner or in a simultaneous manner.
  • the touch signal flows on the closed loop, and the touch circuit selects a part of the electrodes as the touch excitation electrodes, and selects part of the electrode lines of the touch substrate as the touch return electrodes;
  • the touch reflow electrode is disposed on the outer casing of the active touch system; the touch reflow electrode is connected to the touch when a touch excitation signal is applied to the touch detection electrode and the change of the touch signal is detected.
  • the touch reflow electrode is part or all of an electrode line that does not intersect the touch detection electrode, or part or all of the electrode line that intersects the touch detection electrode, or It is part or all of the electrode lines that intersect and do not intersect with the touch detection electrodes.
  • the touch reflow electrode that does not intersect the touch detection electrode is an electrode line on one side or both sides adjacent to the touch detection electrode.
  • the invention introduces an active device on the touch screen, so that each sensing electrode unit on the screen can sense the touch of the touch object completely independently.
  • the hardware sensing link at the front end of the touch system is improved, and the detection of the touched position is introduced into the digitization of the space, so that the source of the touch signal is accurate to each sensing electrode unit.
  • the accuracy of the positional positioning of the touched position can be even increased to a small position between adjacent sensing electrode units.
  • the active device is introduced on the touch screen, and the method for obtaining the touch signal is improved in the hardware sensing part of the touch system, so that the judgment program after the detection is greatly simplified, and the resources of the post-processing chip can be greatly saved, so that the detection speed becomes Faster, more reliable, and overall costs are likely to get lower.
  • FIG. 1 is a schematic diagram of electrical connections according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of electrical connections according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of electrical connections according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of electrical connections according to a fourth embodiment of the present invention.
  • Figure 5 is a schematic diagram of electrical connections according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a sixth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of electrical connections according to a seventh embodiment of the present invention.
  • Fig. 8 is a schematic view showing the electrical connection of the eighth embodiment of the present invention. . detailed description
  • the active touch system 100 shown in FIG. 1 includes a touch substrate 110, an active device array 120, a touch electrode, a touch circuit 140, and the like.
  • the three-terminal active device array 120 and the touch electrodes are disposed on the touch substrate 110.
  • the touch control electrode is composed of the sensing electrode array 131 and the two sets of intersecting row control electrodes 132 and column detecting electrodes 133, and the control electrode lines and the respective detecting electrode lines are separated by an insulating layer.
  • the touch substrate 110 is a transparent substrate, and each of the sensing electrode units of the sensing electrode array 131 is a transparent IT0 electrode, and the sensing electrode array 131, the row control electrode 132, and the column detecting electrode 133 are disposed on the touch substrate 110 not facing the user.
  • an insulating protective outer layer is further disposed on the sensing electrode array 131, the row control electrode 132, and the column detecting electrode 133.
  • the touch circuit 140 has a touch excitation source 141, a signal detection circuit 142, and a control circuit 143.
  • Each of the control electrode lines and the detection electrode lines of the control electrode 132 and the detection electrode 133 are respectively connected to two terminals of each active device unit of the three-terminal active device array 120; the sensing electrode units of the sensing electrode array 131 are respectively The other terminal of each active device unit is connected; the detecting electrode 133 is connected to the touch excitation source 141 and the signal detecting circuit 142 in the touch circuit 140; and the control electrode 132 is connected to the control circuit 143 in the touch circuit 140.
  • the touch excitation source 141 of the touch circuit 140 simultaneously applies a touch signal to each of the detection electrode lines of the detection electrode 133.
  • the control circuit 143 of the touch control circuit 140 outputs an ON signal to each control electrode line of the control electrode 132 in a scanning manner, and the active device unit connected to the control electrode line having the ON signal is in an on state, and is not turned on.
  • the active device unit connected to the control electrode line is in an off state.
  • the control circuit 143 causes the active device unit on the control electrode line to be in an on state, the touch signal on each detection electrode line flows into the sensing electrode connected to the row control electrode line through the active device unit.
  • the signal detecting circuit 142 of the touch circuit 140 detects the change of the touch signal on each detecting electrode line at the same time, or detects the change of the touch signal on each detecting electrode line by column.
  • the control circuit 143 outputs an enable signal to each control electrode line row by row
  • the signal detection circuit 142 detects the change of the touch signal on the sensing electrode unit connected to the control electrode line by the active device unit line by line. size.
  • the signal detecting circuit 142 can detect the maximum leakage current or the leakage current exceeds a certain threshold by detecting the magnitude of the change of the touch signal on the detection electrode line of each of the strips applying the touch signal to the sensing electrode unit.
  • the electrode line can be determined according to the control electrode line of the active device at this time, thereby determining the position of the finger or other touch object on the touch substrate 110.
  • the active touch system 100 becomes a touch system that can detect the position of the touch point.
  • the signal detecting circuit 142 detects that the touch signal changes more than the plurality of detecting electrode lines at the plurality of times.
  • a threshold value that is, a leakage current of the plurality of sensing electrode units is detected to exceed a certain threshold, thereby finding a position of the plurality of fingers on the touch substrate 110.
  • the active touch system 100 also becomes a touch system that can distinguish multiple touch points. Specific embodiment 2
  • the active touch system 200 shown in FIG. 2 includes a touch substrate 210, a thin film transistor (TFT) array 220, a touch electrode, a touch circuit 240, and the like.
  • a thin film transistor (TFT) array 220 and a touch electrode are disposed on the touch substrate 210.
  • the touch electrodes are composed of a sensing electrode array 231 and two sets of intersecting row control electrodes 232 and column detecting electrodes 233, and the control electrode lines and the detecting electrode lines are separated by an insulating layer.
  • the touch substrate 210 is a transparent substrate, and each of the sensing electrode units of the sensing electrode array 231 is a transparent IT0 electrode.
  • the sensing electrode array 231, the row control electrode 232, and the column detecting electrode 233 are all disposed on the touch substrate 210 facing the user.
  • an insulating protective outer layer is further disposed on the sensing electrode array 231, the row control electrode 232, and the column detecting electrode 233.
  • the touch circuit 240 has a touch excitation source 241, a signal detection circuit 242, and a control circuit 243.
  • Each control electrode line and each detection electrode line of the control electrode 232 and the detection electrode 233 are respectively connected to the gate and the source of each TFT of the TFT array 220; the sensing electrode units of the sensing electrode array 231 are respectively connected to the drain of each TFT
  • the detecting electrode 233 is connected to the touch excitation source 241 and the signal detecting circuit 242 in the touch circuit 240; the control electrode 232 is connected to the control circuit 243 in the touch circuit 240.
  • the touch excitation source 241 of the touch circuit 240 simultaneously applies a touch signal to each of the detection electrode lines of the detection electrode 233.
  • the control circuit 243 of the touch control circuit 240 outputs the turn-on signal to the control electrode lines of the control electrode 232 in a scanning manner, and the TFT connected to the control electrode line having the turn-on signal is in an on state, and the control electrode line having no turn-on signal.
  • the connected TFTs are in an off state.
  • the control circuit 243 causes the TFTs on the control electrode lines to be in an on state, the touch signals on the detection electrode lines flow into the sensing electrode units connected to the row control electrode lines through the TFTs;
  • the signal detecting circuit 242 of 240 detects the change of the touch signal on each detecting electrode line at the same time, or detects the change of the touch signal on each detecting electrode line column by column.
  • the control circuit 243 outputs an ON signal to each control electrode line row by row
  • the signal detection circuit 242 detects the magnitude of the change of the touch signal on the sensing electrode unit connected to the control electrode line through the TFT line by line.
  • the signal detecting circuit 242 can detect the change of the touch signal on the detecting electrode line by applying the touch signal to the sensing electrode, and can find the detecting electrode with the largest leakage current or the leakage current exceeding a certain threshold. Then, according to the control electrode line of the TFT at this time, the sensing electrode unit that generates the leakage current can be determined; thereby finding the position of the finger or other touch object on the touch substrate 210.
  • the active touch system 200 becomes a touch system that can detect the position of the touch point.
  • the signal detecting circuit 242 detects that the touch signal changes more than a plurality of detecting electrode lines at a plurality of times.
  • a threshold value that is, a leakage current of the plurality of sensing electrode units is detected to exceed a certain threshold value, thereby finding a position of the plurality of fingers on the touch substrate 210.
  • the active touch system 200 also becomes a touch system that can distinguish multiple touch points.
  • the active touch system 300 shown in FIG. 3 includes a touch substrate 310, an active device array 320, a touch electrode, a touch circuit 340, and the like.
  • the active device array 320 and the touch electrodes are disposed on the touch substrate 310.
  • the touch control electrode is composed of the sensing electrode array 331 and two sets of intersecting row control electrodes 332 and column detecting electrodes 333, and each control electrode line and each detecting electrode line are separated by an insulating layer.
  • the touch substrate 310 is a flexible transparent substrate.
  • the sensing electrode units of the sensing electrode array 331 are transparent IT0 electrodes.
  • the sensing electrode array 331, the row control electrode 332 and the column detecting electrode 333 are all disposed on the touch substrate 310.
  • the touch circuit 340 has a touch excitation source 341, a signal detection circuit 342, and a control circuit 343.
  • Each control electrode line of the control electrode 332 is connected to each sensing electrode unit of the sensing electrode array 331 through a capacitor, and each sensing electrode unit is further connected to one terminal of each active device unit of the active device array 320 at both ends.
  • Each detecting electrode line of the detecting electrode 333 is connected to the other terminal of each active device unit of the active device array 320 at both ends; the detecting electrode 333 is connected to the touch excitation source 341 and the signal detecting circuit 342 in the touch circuit 340;
  • the control electrode 332 is connected to the control circuit 343 in the touch circuit 340.
  • the touch excitation source 341 of the touch circuit 340 simultaneously applies a touch signal to each detection electrode line of the detection electrode 333.
  • the control circuit 343 of the touch control circuit 340 outputs a turn-on signal to each control electrode line of the control electrode 332 in a scanning manner, and the turn-on signal allows the active device unit connected to the control electrode line having the turn-on signal through the capacitor and the sensing electrode unit. In the on state, the active device unit connected to the control electrode line without the turn-on signal is in an off state.
  • the control circuit 343 causes the active device unit on the control electrode line to be in an on state, the touch signal on each detection electrode line flows into the sensing electrode unit connected to the row control electrode line;
  • the signal detecting circuit 342 of the circuit 340 or the size of the touch signal change on each detecting electrode line detected at the same time, or the size of the touch signal change on each detecting electrode line detected column by column.
  • the control circuit 343 outputs an enable signal to each control electrode line row by row
  • the signal detection circuit 342 detects the magnitude of the change of the touch signal on the sensing electrode unit on the row of control electrode lines line by line.
  • the signal detecting circuit 342 can detect the maximum leakage current or the leakage current exceeding a certain threshold by detecting the magnitude of the change of the touch signal on the detecting electrode line of each of the strips applying the touch signal to the sensing electrode unit.
  • the electrode line can be determined according to the control electrode line of the active device at this time, so as to find the position of the finger or other touch object on the touch substrate 310.
  • the active touch system 300 becomes a touch system that can detect the position of the touch point.
  • the signal detecting circuit 342 detects that the touch signal changes more than a plurality of detecting electrode lines at a plurality of times.
  • a threshold value that is, a leakage current of the plurality of sensing electrode units is detected to exceed a certain threshold, thereby finding a position of the plurality of fingers on the touch substrate 310.
  • the active touch system 300 also becomes a touch system that can distinguish multiple touch points.
  • the active touch system 400 shown in FIG. 4 includes a touch substrate 410, an active device array 420, a touch electrode, a touch circuit 440, and the like.
  • the active device unit array 420 and the touch electrodes are disposed on the touch substrate 410, and each active device unit is composed of a diode and a capacitor connected in series.
  • the touch electrode is composed of a sensing electrode array 431 and two sets of intersecting row control electrodes 432 and column detecting electrodes 433, and each control electrode line and each detecting electrode line are separated by an insulating layer.
  • the touch substrate 410 is a flexible transparent substrate.
  • the sensing electrode units of the sensing electrode array 431 are transparent IT0 electrodes, and the sensing electrode array 431, the row control electrode 432, and the column detecting electrode 433 are all disposed on the touch substrate 410.
  • the touch circuit 440 has a touch excitation source 441, a signal detection circuit 442, and a control circuit 443.
  • Each control electrode line and each detection electrode line of the control electrode 432 and the detection electrode 433 are respectively connected to each diode of the active device unit array 420 and two terminals of the capacitor series unit; the sensing electrode units of the sensing electrode array 431 are respectively
  • the detection electrode 433 is connected to the touch excitation source 441 and the signal detection circuit 442 in the touch circuit 440.
  • the control electrode 432 is connected to the control circuit 443 in the touch circuit 440.
  • the touch excitation source 441 of the touch circuit 440 simultaneously applies a touch signal to each of the detection electrode lines of the detection electrode 433.
  • the control circuit 443 of the touch control circuit 440 outputs an ON signal to each control electrode line of the control electrode 432 in a scanning manner, and the diode and the capacitor series unit connected to the control electrode line having the ON signal are in an on state, and a non-on signal.
  • the diode and capacitor series connected to the control electrode line are in an off state.
  • the control circuit 443 causes the active device unit on the control electrode line to be in an on state
  • the touch signal on each detection electrode line flows into the sensing electrode unit connected to the row control electrode line
  • the signal detecting circuit 442 of the circuit 440 detects the change of the touch signal on each detecting electrode line at the same time, or detects the change of the touch signal on each detecting electrode line by column.
  • the control circuit 443 outputs an enable signal to each control electrode line row by row
  • the signal detection circuit 442 detects the magnitude of the change of the touch signal on the sensing electrode unit on the row of control electrode lines line by line.
  • the signal detecting circuit 442 can detect the maximum leakage current or the leakage current exceeding a certain threshold by detecting the magnitude of the change of the touch signal on the detecting electrode line of each of the strips applying the touch signal to the sensing electrode unit.
  • the electrode line can be determined according to the control electrode line of the active device unit at this time, so as to find the position of the finger or other touch object on the touch substrate 410.
  • the active touch system 400 becomes a touch system that can detect the position of the touch point.
  • the signal detecting circuit 442 detects that the touch signal changes more than a plurality of detecting electrode lines at a plurality of times.
  • a threshold value that is, a leakage current of the plurality of sensing electrode units is detected to exceed a certain threshold value, thereby finding a position of the plurality of fingers on the touch substrate 410.
  • the active touch system 400 also becomes a touch system that can distinguish multiple touch points.
  • the active touch system 500 shown in FIG. 5 includes a touch substrate 510, a thin film transistor (TFT) array 520, a touch electrode, a touch circuit 540, a display screen, and the like.
  • a thin film transistor (TFT) array 520 and a touch electrode are disposed on the touch control substrate 510.
  • the touch electrode is composed of a sensing electrode array 531 and two sets of intersecting row control electrodes 532 and column detecting electrodes 533.
  • Each control electrode line and each detecting electrode line are separated by an insulating layer; all columns on the touch substrate 510
  • the detecting electrodes 533 are disposed on different layers on the user side, and line-shaped shielding electrodes 534 are disposed to prevent interaction between the touch object and the detecting electrodes 533; on the different layers of the touch substrate 510 not facing the user side
  • the planar shielding electrode 535 is disposed to prevent the influence of the electrical signals in the display screen on the touch signals on the sensing electrode array 531 and the detecting electrode 533; the shielding electrodes 534 and 535 and the detecting electrode 533, the control electrode 532 and the TFT array 520 They are all isolated by an insulating layer.
  • the touch substrate 510 is a substrate on the common display screen.
  • the sensing electrode units of the sensing electrode array 531 are transparent IT0 electrodes, and the sensing electrode array 531, the row control electrode 532 and the column detecting electrode 533 are all disposed on the touch substrate.
  • the 510 faces the touch surface of the user, and an insulating protective outer layer is further disposed on the sensing electrode array 531, the row control electrode 532, and the column detecting electrode 533.
  • the touch circuit 540 has a touch excitation source 541, a signal detection circuit 542, and a control circuit 543.
  • Each control electrode line and each detection electrode line of the control electrode 532 and the detection electrode 533 are respectively connected to the gate and the source of each TFT of the TFT array 520; the sensing electrode units of the sensing electrode array 531 are respectively connected to the drain of each TFT
  • the detecting electrode 533 is connected to the touch excitation source 541 and the signal detecting circuit 542 in the touch circuit 540; the control electrode 532 is connected to the control circuit 543 in the touch circuit 540; the shielding electrodes 534 and 535 are connected to each other, and the touch circuit is connected The ground of 540.
  • the touch excitation source 541 of the touch circuit 540 simultaneously applies a touch signal to each of the detection electrode lines of the detection electrode 533.
  • the control circuit 543 of the touch control circuit 540 outputs an ON signal to each control electrode line of the control electrode 532 in a scanning manner, and the TFT connected to the control electrode line having the ON signal is in an ON state, and a control electrode line having no ON signal.
  • the connected TFTs are in an off state.
  • the control circuit 543 allows the TFTs on the control electrode lines to be in an on state, the touch signals on the detection electrode lines flow into the sensing electrode units connected to the row control electrode lines through the TFTs;
  • the signal detecting circuit 542 of 540 detects the change of the touch signal on each detecting electrode line at the same time, or detects the change of the touch signal on each detecting electrode line column by column.
  • the control circuit 543 outputs an enable signal to each control electrode line row by row
  • the signal detection circuit 542 detects the magnitude of the change of the touch signal on the sensing electrode unit connected to the control electrode line through the TFT line by line.
  • a coupling capacitance is formed between the finger or other touch object and the sensing electrode unit, and the touch signal on the sensing electrode unit passes through the coupling.
  • the capacitor portion leaks out; since the shield electrodes 534 and 535 are disposed, the coupling capacitance between the finger or other touch object and the detecting electrode 533 does not cause leakage current, and the electrical signal in the display does not affect the sensing electrode array 531. And the touch signal on the detecting electrode 533 has an influence.
  • the signal detecting circuit 542 can find the maximum leakage current or the leakage current by detecting the magnitude of the change of the touch signal on the detecting electrode line of each of the strips applying the touch signal to the sensing electrode unit.
  • the detection electrode line of a certain threshold is used; and according to the control electrode line of the TFT at this time, the sensing electrode unit that generates the leakage current can be determined; thereby finding the position of the finger or other touch object on the touch substrate 510.
  • the active touch system 500 becomes a touch system that can detect the position of the touch point.
  • the signal detecting circuit 542 detects that the touch signal changes more than a plurality of detecting electrode lines at a plurality of times.
  • a threshold value that is, a leakage current of the plurality of sensing electrode units is detected to exceed a certain threshold, thereby finding a position of the plurality of fingers on the touch substrate 510.
  • the active touch system 500 also becomes a touch system that can distinguish multiple touch points.
  • the active touch screen 600 shown in FIG. 6 includes a touch substrate 610, a thin film transistor (TFT) array 620, and a touch electrode.
  • the TFT array 620 and the touch electrodes are disposed on the touch substrate 610.
  • the touch electrode is composed of a sensing electrode array 631 and two sets of intersecting row control electrodes 632 and column detecting electrodes 633, and each control electrode line and each detecting electrode line are separated by an insulating layer.
  • the touch substrate 610 is a transparent substrate, and each of the sensing electrode units of the sensing electrode array 631 is a transparent IT0 electrode, and the row control electrode 632 and the column detecting electrode 633 are opaque metal electrode lines.
  • the control area is a fold line, and the angle between two adjacent straight lines on the fold line is greater than 20 ° and less than 160 °, and the intersection of the row electrode line and the column electrode line does not overlap; the edge shape of the transparent sensing electrode unit is followed by the adjacent A polygon surrounded by two row electrode lines and two adjacent column electrode lines.
  • Row control electrodes 632 and column detection electrodes 633 are connected at their intersections through TFT array 620 and sense electrode array 631.
  • the active touch screen 600 is used in combination with the display screen, and the oblique line segments in the opaque row electrode 632 and the column electrode 633 do not form diffraction fringes with the opaque display row electrode in the display screen; the broken edge of the transparent sensing electrode 631 It does not form interference fringes with the transparent display pixel electrodes in the display; the effect on display quality is avoided as much as possible.
  • the active touch system 700 shown in FIG. 7 includes a touch substrate 710, an active device array 720, a touch electrode, a touch circuit 740, and the like.
  • the three-terminal active device array 720 and the touch electrodes are disposed on the touch substrate 710.
  • the touch electrode is composed of a sensing electrode array 731 and two sets of intersecting row control electrodes 732 and column detecting electrodes 733, and each control electrode line and each detecting electrode line are separated by an insulating layer.
  • the touch substrate 710 is a transparent substrate, and each of the sensing electrode units of the sensing electrode array 731 is a transparent IT0 electrode, and the sensing electrode array 731, the row control electrode 732, and the column detecting electrode 733 are all disposed on the touch substrate 710 not facing the user.
  • an insulating protective outer layer is further disposed on the sensing electrode array 731, the row control electrode 732 and the column detecting electrode 733.
  • the touch control circuit 740 has a touch excitation source 741, a signal detection circuit 742, and a control circuit 743.
  • the touch excitation source 741 has an output end 7411 and an output end 7412.
  • the signal detection circuit 742 includes a touch signal sampling component 7421 and The remaining portion of the circuit 7422 consists of a buffer, a differential amplifying circuit, a data sampling channel, a data processing, and a timing controller.
  • Each of the control electrode lines and the detection electrode lines of the control electrode 732 and the detection electrode 733 are respectively connected to two terminals of each active device unit of the three-terminal active device array 720; the sensing electrode units of the sensing electrode array 731 are respectively The other terminal of each active device unit is connected; the 733 i electrode line in the detecting electrode 733 is connected to the output end of the touch excitation source 741 1 through the touch signal sampling component 7421 to make 733i_l, 733 ⁇ in the detecting electrode 733 1
  • the electrode line is connected to the output end of the touch excitation source 2741, and the remaining electrode line of the detecting electrode 733 is also connected to the output end of the touch excitation source 7411, and the output of the touch excitation source is 7411 and the output end is 7412.
  • the output input port of the signal reflow in the touch excitation source.
  • the touch excitation source 741 of the touch circuit 740 simultaneously applies a touch signal to each detection electrode line of the detection electrode 733.
  • the control circuit 743 of the touch control circuit 740 outputs an ON signal to each control electrode line of the control electrode 732 in a scanning manner, and the active device unit connected to the control electrode line having the ON signal is in an on state, and is not turned on.
  • the active device unit connected to the control electrode line is in an off state.
  • the control circuit 743 causes the active device unit on the control electrode line to be in an on state, the touch signal on each detection electrode line flows into the sensing electrode connected to the row control electrode line through the active device unit.
  • a coupling capacitor ( ⁇ is formed between the sensing electrode unit 731 ji and the sensing electrode unit 731 j il , and a coupling capacitance C i+1 is formed between the sensing electrode unit 731 ji and the sensing electrode unit 731 j i+1 ;
  • the touch excitation source 741, the detection electrode line 733 i, the sensing electrode unit 731 ji , the coupling capacitor ( ⁇ , the sensing electrode unit 731 j il , the detecting electrode line 733i-1 form a closed loop, and the touch excitation source 741 a closed loop is also formed between the detecting electrode line 733i, the sensing electrode unit 731 ji, the coupling capacitor C i+1 , the sensing electrode unit 731 j i+1 , and the detecting electrode line 733i+1;
  • the touch signal flowing out from the output end 7411 flows into the detecting electrode line 733i via the touch signal sampling component 7421, and then flows into the sensing electrode unit 7
  • the sensing electrode unit 731 ji, the sensing electrode unit 731 j il , and the sensing electrode unit 731 are also touched.
  • Ji the dielectric constant of the human body is much larger than the dielectric constant of the air, making the coupling capacitor
  • the capacitance of C i+1 increases the capacitive reactance, and the current of the touch signal on the touch loop becomes correspondingly larger.
  • the sensing electrode lines, the sensing electrode unit, the sensing electrode unit, and the detecting electrode line are also caused.
  • the coupling capacitance between the two changes, but since the output end of the touch excitation source 741 connected to each electrode is the same output end 7411 at the touched position, the change of the touch signal current flowing through the touch signal sampling element 7421 It is very small.
  • the signal detecting circuit 742 can detect the change of the touch signal on the detecting electrode line by applying the touch signal to the sensing electrode unit one by one by scanning, and can find the detection that the current change is the greatest or the current changes exceed a certain threshold.
  • Active touch system 700 It is a touch system that can detect the position of the touch point.
  • the detection electrode can also be divided into a plurality of regions, and the touch excitation signals are added and detected in different regions according to the same principle as above to improve the speed of the touch detection.
  • the signal detecting circuit 742 detects that the touch signal changes more than a plurality of detecting electrode lines at a plurality of times.
  • a threshold value that is, a change in current of the plurality of sensing electrode units is detected to exceed a certain threshold value, thereby finding a position of the plurality of fingers on the touch substrate 710.
  • the active touch system 700 also becomes a touch system that can distinguish multiple touch points.
  • the active touch system 800 shown in FIG. 8 includes a touch substrate 810, a thin film transistor (TFT) array 820, a touch electrode, a touch circuit 840, and the like.
  • a thin film transistor (TFT) array 820 and a touch electrode are disposed on the touch substrate 810.
  • the touch electrode is composed of a sensing electrode array 831 and two sets of intersecting row control electrodes 832 and column detecting electrodes 833, and each control electrode line and each detecting electrode line are separated by an insulating layer.
  • the touch substrate 810 is a transparent substrate, and each of the sensing electrode units of the sensing electrode array 831 is a transparent IT0 electrode, and the sensing electrode array 831, the row control electrode 832, and the column detecting electrode 833 are all disposed on the touch substrate 810 facing the user.
  • an insulating protective outer layer is further disposed on the sensing electrode array 831, the row control electrode 832, and the column detecting electrode 833.
  • the touch control circuit 840 has a touch excitation source 841, a signal detection circuit 842, and a control circuit 843.
  • the touch excitation source 841 has an output terminal 8411 and an output terminal 8412; and the signal detection circuit 842 has a touch signal sampling component.
  • the active touch system has an outer casing 850.
  • Each control electrode line and each detection electrode line of the control electrode 832 and the detection electrode 833 are respectively connected to the gate and the source of each TFT of the TFT array 820; the sensing electrode units of the sensing electrode array 831 are respectively connected to the drain of each TFT
  • the detecting electrode 833 is connected to the touch excitation source 841 and the signal detecting circuit 842 in the touch circuit 840; the control electrode 832 is connected to the control circuit 843 in the touch circuit 840; and the outer casing is provided with an electrode 851.
  • the output terminal 8411 of the touch excitation source 841 of the touch control circuit 840 outputs a touch signal to the detection electrode lines of the detection electrode 833 at the same time, and the outer casing electrode 851 is connected to the output terminal 8412 of the touch excitation source 841 as a touch signal.
  • the control circuit 843 of the touch control circuit 840 outputs an ON signal to each control electrode line of the control electrode 832 in a scanning manner, and the TFT connected to the control electrode line having the ON signal is in an ON state, and a control electrode line having no ON signal. The connected TFTs are in an off state.
  • the control circuit 843 allows the TFTs on the control electrode lines to be in an on state, the touch signals on the detection electrode lines flow into the sensing electrode units connected to the row control electrode lines through the TFTs;
  • the signal detecting circuit 842 of the 840 detects the change of the touch signal on each detecting electrode line at the same time, or detects the change of the touch signal on each detecting electrode line column by column.
  • the control circuit 843 outputs an enable signal to each control electrode line row by row
  • the signal detection circuit 842 detects the magnitude of the change of the touch signal on the sensing electrode unit connected to the control electrode line through the TFT line by line.
  • the return electrode on the top constitutes a touch loop.
  • the control electrode line with no turn-on signal can also be connected to the output end of the touch signal to prevent the touch signal from flowing between the touch systems.
  • the detection electrode line with the largest current change or the current variation exceeding a certain threshold value can be found; and then the control of the active device is turned on according to the current time.
  • the electrode line can determine the touched sensing electrode unit; thereby finding the position of the finger or other touch object on the touch substrate 810.
  • the active touch system 800 becomes a touch system that can detect the position of the touch point.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Description

一种有源触控系统 技术领域
本发明涉及触控屏, 尤其涉及有源触控屏及其驱动电路。 背景技术
触摸是人类最重要的感知方式,是人与机器进行互动的最自然的方式。触控屏发展 至今已广泛用于个人计算机、 智能电话、 公共信息、 智能家电、 工业控制等众多领域。 在目前的触控领域, 主要有电阻式触控屏、 光电式触控屏、 超声波式触控屏、 平面电 容式触控屏, 近年来投射电容式触控屏发展迅速。
电阻式触控屏仍是目前市场上的主导产品, 但电阻式触控屏的双层基板的结构, 使得触控屏和显示面板层叠在一起使用时, 触控屏的反光非常影响显示的亮度、 对比 度、 色饱和度等显示品质, 使整个显示质量大大下降, 而加大显示面板背光的亮度, 还会使功耗大涨; 模拟式电阻触控屏还存在定位漂移的问题, 不时要进行位置校准; 另外, 电阻式触控屏电极接触的工作方式, 又使得触控屏的寿命较短。
红外线式触控屏和超声波式触控屏不会影响显示质量。 但红外线式触控屏和超声 波式触控屏成本高, 水滴和尘埃都会影响触控屏工作的可靠性, 特别是红外线式触控 屏和超声波式触控屏机构复杂、 功耗大, 使得红外线式触控屏和超声波式触控屏基本 无法应用在便携式产品上。
平面电容式触控屏的单层基板的结构, 使得触控屏和显示面板层叠在一起使用时, 触控屏对显示质量的影响不大。 但平面电容式触控屏也存在定位漂移的问题, 不时要 进行位置校准; 水滴也会影响触控屏工作的可靠性; 特别是平面电容式触控屏功耗大、 成本高, 也让平面电容式触控屏基本无法应用在便携式产品上。
投射电容式触控屏仍然可以是单层基板结构, 也使得触控屏和显示面板层叠在一 起使用时, 触控屏对显示质量的影响不大。 但投射电容式触控屏是通过测量手指或其 他触控物对触控屏电极间耦合电容的影响, 实际是通过测量手指或其他触控物对触控 屏电极充放电的影响, 来探测手指或其他触控物在触控屏上的位置。 定位点需要经过 模拟计算, 而非真正的数字式触控屏。 制造和使用环境中的分布电容都会影响触控屏 工作的可靠性, 显示驱动信号及其他电信号的干扰都会影响触控屏的工作, 水滴也会 影响触控屏工作的可靠性; 另外, 投射电容式触控屏对探测电极线的电阻值方面有较 高要求, 使得和显示面板层叠在一起使用的投射电容式触控屏的探测电极线, 不仅有 如 IT0样的低电导率透明电极层, 还要有如金属类的高电导率电极层, 制做工艺复杂、 成本高, 特别是在大尺寸、 超大尺寸触控屏方面成本过高。 随着近年来 iPhone手机和 Windows 7操作系统的推出, 人们对多点触控的兴趣骤 然提升。 无论是电阻式还是电容式触控屏, 由于屏幕上每一感测线直接连接多个感测 单元, 各感测单元之间并不完全独立。 为了能够分辨多个触控点, 相对单点触控来说, 要么检测的扫描方式变得十分复杂, 检测要花费大量时间; 要么检测后的判断程序变 得十分复杂, 需要强大的计算能力和存储空间, 也要花费大量时间。 直接改善触控屏, 并相应改变检测方式, 使屏幕上各个感测单元完全独立, 让多点触控变得轻松自然。 发明内容
本发明就是为了提供一种具有有源器件的触控屏, 使屏幕上各个感测单元完全独 本发明的有源触控系统的基本工作原理是:
在触控基板上阵列状地设置感测电极单元, 以及两组相交的控制电极和检测电极, 检测电极通过有源器件连接感测电极。 用控制电极来控制有源器件的通断, 用检测电 极来向感测电极施加触控激励信号, 并探测感测电极对触控物的漏电流。 当人的手指 或其他触控物靠近或接触某感测电极单元时, 手指或其他触控物与感测电极单元间形 成耦合电容, 感测电极单元上的触控激励信号就会通过此耦合电容部分泄漏出去。 触 控电路通过检测各条向感测电极提供触控激励信号的检测电极线上触控信号变化的大 小, 找出漏电流最大的或漏电流超过某阈值的检测电极线, 再结合此时开启有源器件 的控制电极线, 来确定产生漏电流的感测电极单元, 从而找出手指或其他触控物在触 控基板上的位置。
薄膜场效应晶体管即 TFT (Thin Film Transistor)是有源矩阵器件的典型代表, 薄 膜晶体管 TFT栅极 (Gate)连接至水平方向扫描线, 源极(Source)连接至垂直方向的数 据线, 漏极 (Drain)则连接至负载电极 (这里的漏极、 源极的定义只是习惯性定义, 源 极电平并不专指源极电极的电平, 而是这里说的源极和漏极两电极中电平较小的那个 电平)。 阵列排布的有源器件阵列让每个负载电极均配置一个半导体开关器件, 可以通 过脉冲进行选通, 因而每个负载电极相对独立。
薄膜场效应晶体管 (TFT)有匪 OS型和 PM0S型两种。 目前绝大部分的 TFT是采用非 晶硅(amorphous silicon, a_Si)制程, 其栅极绝缘层是氮化硅(SiNx), 容易攫取正电 荷, 要在非晶硅半导体层中形成沟道, 恰好利用氮化硅中的正电荷来帮助吸引电子以 形成沟道, 因此使用非晶硅制程的 TFT多为 NM0S型。 本说明书的内容主要是以 NM0S 型薄膜晶体管为代表进行阐述, PM0S型薄膜晶体管可遵循相同的原理, 不再单独列举 表述。
本发明的技术问题通过以下的技术方案予以解决:
一种有源触控系统, 由触控基板和触控电极等组成, 触控电极具有感测电极、 控 制电极和检测电极, 触控电极用于探测操作者手指或其他触控物在触控基板上的位置; 触控基板上具有阵列排布的有源器件单元、 阵列排布的感测电极单元、 以及不少于两 组相交的控制电极和检测电极, 各控制电极线和各检测电极线相交处有绝缘层相隔离; 感测电极连接有源器件, 有源器件连接控制电极和检测电极。
本发明的技术问题通过以下的技术方案进一步予以解决:
根据本发明的另一个具体方面, 所述有源器件阵列中的有源器件单元内具有一个 或多个有源元件。
根据本发明的另一个具体方面, 所述有源器件阵列中的有源器件单元, 可以是二 端有源器件, 也可以是三端有源器件。
根据本发明的另一个具体方面, 所述有源器件阵列中的有源器件单元是二端有源 器件时, 控制电极线通过一个电容连接感测电极单元, 感测电极单元再连接两端有源 器件单元的一个端子; 检测电极线连接两端有源器件单元的另一个端子。
根据本发明的另一个具体方面, 所述有源器件阵列中的有源器件单元是三端有源 器件时, 控制电极线和检测电极线分别连接三端有源器件单元的两个端子, 三端有源 器件单元的另一个端子连接感测电极单元。
根据本发明的另一个具体方面, 所述三端有源器件阵列是薄膜晶体管 (TFT)阵列, 控制电极线和检测电极线分别连接 TFT的栅极和源极, TFT的漏极连接感测电极单元。
根据本发明的另一个具体方面, 在触控基板具有检测电极线的所有的或部分的位 置的不同层上, 设置有单层或多层的屏蔽电极, 屏蔽电极与检测电极和有源器件阵列 都以绝缘体相隔离。
根据本发明的另一个具体方面, 在触控基板具有感测电极单元位置的不同层上, 设置有单层或多层的屏蔽电极, 屏蔽电极与感测电极阵列以绝缘层相隔离。
根据本发明的另一个具体方面, 所述触控基板是挠性的或硬性的透明基板, 所述 感测电极单元是透明电极。
根据本发明的另一个具体方面, 所述感测电极阵列是设置在触控基板的触摸面或 非触摸面。
根据本发明的另一个具体方面, 所述控制电极线或检测电极线具有折线段, 折线 段上两相邻直线的夹角大于 20 ° 小于 160 ° 。
根据本发明的另一个具体方面, 所述有源触控系统是与平板显示屏共用同一基板。 根据本发明的另一个具体方面, 一种有源触控系统, 由触控基板、 触控电极和触 控电路等组成, 触控电极具有感测电极、 控制电极和检测电极, 触控电路具有触控激 励源、 信号检测电路和控制电路, 触控电极和触控电路用于探测操作者手指或其他触 控物在触控基板上的位置; 触控基板上具有阵列排布的有源器件单元、 阵列排布的感 测电极单元、 以及不少于两组相交的控制电极和检测电极, 各控制电极线和各检测电 极线相交处有绝缘层相隔离; 感测电极连接有源器件, 有源器件连接控制电极和检测 电极, 检测电极连接触控电路中的触控激励源和信号检测电路, 控制电极连接触控电 路中的控制电路; 触控电路通过控制电极控制有源器件阵列上的有源器件单元的导通 或截止; 在部分有源器件单元处于导通态时, 用全部或部分检测电极线向感测电极单 元提供触控信号, 检测连通感测电极单元的检测电极线上触控信号的变化, 来确定触 控点的位置。
根据本发明的另一个具体方面, 所述触控电路对连通感测电极单元的检测电极线 输出的触控信号是频率不小于 ΙΟΚΗζ的交流信号。
根据本发明的另一个具体方面, 所述触控电路检测触控信号的变化, 检测的是幅 值、 时间、 相位、 频率信号和脉冲数中的至少一种。
根据本发明的另一个具体方面, 所述触控电路检测触控信号的变化, 检测的是触 控信号的变化量或触控信号的变化率。
根据本发明的另一个具体方面, 所述有源器件阵列中的有源器件单元是二端有源 器件, 行电极作为控制电极和列电极作为检测电极分别连接二端有源器件阵列各有源 器件单元的两个端子, 感测电极单元与二端有源器件单元连接行电极线的端子相连接; 触控电路中的控制电路对行电极中的部分电极线施加电信号, 让与其相连的有源器件 处于导通状态; 触控电路中的检测电路再对列电极中的部分或全部电极线施加触控信 号, 并检测这些电极线上触控信号的变化。
根据本发明的另一个具体方面, 所述有源器件阵列中的有源器件单元是薄膜晶体 管(TFT), 行电极作为控制电极和列电极作为检测电极分别连接各 TFT的栅极和源极, 感测电极单元与 TFT 的漏极相连接; 触控电路中的控制电路对行电极中的部分电极线 施加电信号, 让与其相连的 TFT处于导通状态; 触控电路中的检测电路再对列电极中 的部分或全部电极线施加触控信号, 并检测这些电极线上触控信号的变化。
根据本发明的另一个具体方面, 触控电路对被触列电极线的定位, 是以检测电路 检测到触控信号变化达到触控定位条件的列电极线为被触列电极线; 触控电路对被触 行电极线的定位, 是以对应于检测到触控信号变化达到触控定位条件的列电极线时, 控制电路让有源器件处于导通状态的行电极线为被触行电极线; 触控基板上的被触点 就是被触行电极线和被触列电极线的交叉位置。
根据本发明的另一个具体方面, 所述触控定位条件是触控信号变化量或触控信号 变化率最大的, 或是触控信号变化量或触控信号变化率超过某设定阈值的, 或是触控 信号变化量或触控信号变化率最大并超过某设定阈值的。
根据本发明的另一个具体方面, 触控电路通过检测各条列电极线上触控信号变化 的差别, 通过计算来确定位于列电极线之间的被触位置; 触控电路通过检测同一条列 电极线上不同时刻触控信号变化的差别, 通过计算来确定位于行电极线之间的被触位 置。
根据本发明的另一个具体方面, 所述触控电路对行电极中的部分电极线施加电信 号让与其相连的有源器件处于导通状态, 是以扫描方式进行的; 所述触控电路对列电 极中的部分或全部电极线施加触控信号, 并检测这些电极线上触控信号的变化, 是以 扫描方式或同时方式进行的。
根据本发明的另一个具体方面, 触控信号在闭合回路上流动,触控电路在选择部分 电极为触控激励电极的同时, 还选择触控基板的部分电极线为触控回流电极; 或在有 源触控系统的外壳上设置触控回流电极; 所述触控回流电极是指, 在对触控检测电极 施加触控激励信号并检测流经其触控信号变化的时刻, 连通于触控激励源的第二输出 端或连通于另一触控激励源, 为检测电极上的触控信号提供回流通路的触控电极; 检 测连通感测电极单元的检测电极线上触控信号的变化, 来确定触控点的位置。
根据本发明的另一个具体方面, 所述触控回流电极是部分的或所有的与触控检测 电极不相交的电极线, 或是部分的或所有的与触控检测电极相交的电极线, 或是部分 的或所有的与触控检测电极相交的和不相交的电极线。
根据本发明的另一个具体方面, 所述与触控检测电极不相交的触控回流电极是与 触控检测电极相邻的一侧或两侧的电极线。
本发明与现有技术对比的有益效果是:
本发明在触控屏上引入了有源器件, 使得屏幕上各个感测电极单元能够完全独立 地各自感测触控物的触控。 在触控系统前端的硬件传感环节上加以改善, 将被触位置 的探测引入到空间的数字化, 让触控信号的来源准确到每一感测电极单元。 根据相邻 感测电极单元信号的大小, 或根据有触控信号的感测电极单元区域信号的分布, 被触 位置定位的准确性甚至可提高到相邻感测电极单元间的细小位置。
在触控屏上引入有源器件, 在触控系统的硬件传感环节改善触控信号的获取方法, 让检测后的判断程序大大简化, 可以大量节省后处理芯片的资源, 让探测速度变得更 快, 可靠性提高, 整体成本有可能变得更低。
在触控屏上引入有源器件, 使得屏幕上各个感测电极单元完全独立工作, 让对多 点触控的判断变得不成问题, 让多点触控变得轻松自然。 附图说明
图 1是本发明具体实施方式一的电气连接示意图;
图 2是本发明具体实施方式二的电气连接示意图;
图 3是本发明具体实施方式三的电气连接示意图;
图 4是本发明具体实施方式四的电气连接示意图;
图 5是本发明具体实施方式五的电气连接示意图;
图 6是本发明具体实施方式六的结构示意图;
图 7是本发明具体实施方式七的电气连接示意图;
图 8是本发明具体实施方式八的电气连接示意图。。 具体实施方式
具体实施方式一
如图 1所示的有源触控系统 100, 包括触控基板 110、 有源器件阵列 120、 触控电 极、 触控电路 140等。 三端有源器件阵列 120和触控电极设置在触控基板 110上。 触 控电极由感测电极阵列 131以及两组相交的行控制电极 132和列检测电极 133组成, 各控制电极线和各检测电极线相交处有绝缘层相隔离。 触控基板 110是透明基板, 感 测电极阵列 131 的各感测电极单元是透明 IT0电极, 感测电极阵列 131、 行控制电极 132和列检测电极 133都设置在触控基板 110不朝向使用者的非触摸面上,在感测电极 阵列 131、行控制电极 132和列检测电极 133上再设置一层绝缘的保护外层。触控电路 140具有触控激励源 141、 信号检测电路 142和控制电路 143。
控制电极 132和检测电极 133的各控制电极线和各检测电极线, 分别连接三端有 源器件阵列 120的各有源器件单元的两个端子; 感测电极阵列 131的各感测电极单元 分别连接各有源器件单元的另一端子; 检测电极 133连接触控电路 140中的触控激励 源 141和信号检测电路 142; 控制电极 132连接触控电路 140中的控制电路 143。
触控电路 140的触控激励源 141同时向检测电极 133各检测电极线施加触控信号。 触控电路 140的控制电路 143以扫描方式, 逐行向控制电极 132各控制电极线输出开 启信号, 与有开启信号的控制电极线相连的有源器件单元处于导通状态, 与无开启信 号的控制电极线相连的有源器件单元处于截止状态。 随着控制电路 143每让一行控制 电极线上的有源器件单元处于导通状态, 各检测电极线上的触控信号就通过有源器件 单元流入与该行控制电极线相连接的感测电极单元内; 触控电路 140 的信号检测电路 142, 或同时检测各条检测电极线上触控信号变化的大小, 或逐列检测各条检测电极线 上触控信号变化的大小。 这样随着控制电路 143逐行向各控制电极线输出开启信号, 信号检测电路 142就逐行的检测通过有源器件单元与此行控制电极线相连接的感测电 极单元上触控信号变化的大小。
当操作者的手指或其他触控物靠近或接触某感测电极单元时, 手指或其他触控物 与感测电极单元间形成耦合电容, 感测电极单元上的触控信号就会通过此耦合电容部 分泄漏出去; 信号检测电路 142通过检测各条向感测电极单元施加触控信号的检测电 极线上触控信号变化的大小, 就可找出漏电流最大的或漏电流超过某阈值的检测电极 线; 再根据此时开启有源器件的控制电极线, 就可确定产生漏电流的感测电极单元; 从而找出手指或其他触控物在触控基板 110上的位置。 有源触控系统 100成为可探测 触控点位置的触控系统。
当操作者多支手指或多个操作者的手指分别触摸触控基板 110 的多个位置时, 信 号检测电路 142就会在多个时刻的多条检测电极线上, 检测到触控信号变化超过某阈 值, 也就是检测到多个感测电极单元的漏电流超过某阈值, 从而找出多个手指分别在 触控基板 110上的位置。 有源触控系统 100也就成为可辨别多个触控点的触控系统。 具体实施方式二
如图 2所示的有源触控系统 200, 包括触控基板 210、 薄膜晶体管 (TFT)阵列 220、 触控电极、触控电路 240等。薄膜晶体管 (TFT)阵列 220和触控电极设置在触控基板 210 上。 触控电极由感测电极阵列 231 以及两组相交的行控制电极 232和列检测电极 233 组成, 各控制电极线和各检测电极线相交处有绝缘层相隔离。 触控基板 210是透明基 板, 感测电极阵列 231的各感测电极单元是透明 IT0电极, 感测电极阵列 231、行控制 电极 232和列检测电极 233都设置在触控基板 210朝向使用者的触摸面上, 在感测电 极阵列 231、行控制电极 232和列检测电极 233上再设置一层绝缘的保护外层。触控电 路 240具有触控激励源 241、 信号检测电路 242和控制电路 243。
控制电极 232和检测电极 233的各控制电极线和各检测电极线, 分别连接 TFT阵 列 220的各 TFT的栅极和源极; 感测电极阵列 231的各感测电极单元分别连接各 TFT 的漏极; 检测电极 233连接触控电路 240中的触控激励源 241和信号检测电路 242 ; 控 制电极 232连接触控电路 240中的控制电路 243。
触控电路 240的触控激励源 241同时向检测电极 233各检测电极线施加触控信号。 触控电路 240的控制电路 243以扫描方式, 逐行向控制电极 232各控制电极线输出开 启信号, 与有开启信号的控制电极线相连的 TFT处于导通状态, 与无开启信号的控制 电极线相连的 TFT处于截止状态。 随着控制电路 243每让一行控制电极线上的 TFT处 于导通状态, 各检测电极线上的触控信号就流入通过 TFT与该行控制电极线相连接的 感测电极单元内; 触控电路 240的信号检测电路 242, 或同时检测各条检测电极线上触 控信号变化的大小, 或逐列检测各条检测电极线上触控信号变化的大小。 这样随着控 制电路 243逐行向各控制电极线输出开启信号, 信号检测电路 242就逐行的检测通过 TFT与此行控制电极线相连接的感测电极单元上触控信号变化的大小。
当操作者的手指或其他触控物靠近或接触某感测电极单元时, 手指或其他触控物 与感测电极单元间形成耦合电容, 感测电极单元上的触控信号就会通过此耦合电容部 分泄漏出去; 信号检测电路 242通过检测各条向感测电极施加触控信号的检测电极线 上触控信号变化的大小, 就可找出漏电流最大的或漏电流超过某阈值的检测电极线; 再根据此时开启 TFT 的控制电极线, 就可确定产生漏电流的感测电极单元; 从而找出 手指或其他触控物在触控基板 210上的位置。 有源触控系统 200成为可探测触控点位 置的触控系统。
当操作者多支手指或多个操作者的手指分别触摸触控基板 210 的多个位置时, 信 号检测电路 242就会在多个时刻的多条检测电极线上, 检测到触控信号变化超过某阈 值, 也就是检测到多个感测电极单元的漏电流超过某阈值, 从而找出多个手指分别在 触控基板 210上的位置。 有源触控系统 200也就成为可辨别多个触控点的触控系统。 具体实施方式三
如图 3所示的有源触控系统 300, 包括触控基板 310、 有源器件阵列 320、 触控电 极、 触控电路 340等。 两端有源器件阵列 320和触控电极设置在触控基板 310上。 触 控电极由感测电极阵列 331以及两组相交的行控制电极 332和列检测电极 333组成, 各控制电极线和各检测电极线相交处有绝缘层相隔离。触控基板 310是挠性透明基板, 感测电极阵列 331的各感测电极单元是透明 IT0电极, 感测电极阵列 331、行控制电极 332和列检测电极 333都设置在触控基板 310不朝向使用者的非触摸面上。 触控电路 340具有触控激励源 341、 信号检测电路 342和控制电路 343。
控制电极 332的各控制电极线分别通过一个电容连接感测电极阵列 331的各感测 电极单元, 各感测电极单元在再分别连接两端有源器件阵列 320 的各有源器件单元的 一个端子; 检测电极 333的各检测电极线分别连接两端有源器件阵列 320的各有源器 件单元的另一个端子; 检测电极 333连接触控电路 340中的触控激励源 341和信号检 测电路 342 ; 控制电极 332连接触控电路 340中的控制电路 343。
触控电路 340的触控激励源 341同时向检测电极 333各检测电极线施加触控信号。 触控电路 340的控制电路 343以扫描方式, 逐行向控制电极 332各控制电极线输出开 启信号, 开启信号让通过电容、 感测电极单元与有开启信号的控制电极线相连的有源 器件单元处于导通状态, 与无开启信号的控制电极线相连的有源器件单元处于截止状 态。 随着控制电路 343每让一行控制电极线上的有源器件单元处于导通状态, 各检测 电极线上的触控信号就流入与该行控制电极线相连接的感测电极单元内;触控电路 340 的信号检测电路 342, 或同时检测的各条检测电极线上触控信号变化的大小, 或逐列检 测的各条检测电极线上触控信号变化的大小。 这样随着控制电路 343逐行向各控制电 极线输出开启信号, 信号检测电路 342就逐行的检测此行控制电极线上感测电极单元 上触控信号变化的大小。
当操作者的手指或其他触控物靠近或接触某感测电极单元时, 手指或其他触控物 与感测电极单元间形成耦合电容, 感测电极单元上的触控信号就会通过此耦合电容部 分泄漏出去; 信号检测电路 342通过检测各条向感测电极单元施加触控信号的检测电 极线上触控信号变化的大小, 就可找出漏电流最大的或漏电流超过某阈值的检测电极 线; 再根据此时开启有源器件的控制电极线, 就可确定产生漏电流的感测电极单元, 从而找出手指或其他触控物在触控基板 310上的位置。 有源触控系统 300成为可探测 触控点位置的触控系统。
当操作者多支手指或多个操作者的手指分别触摸触控基板 310 的多个位置时, 信 号检测电路 342就会在多个时刻的多条检测电极线上, 检测到触控信号变化超过某阈 值, 也就是检测到多个感测电极单元的漏电流超过某阈值, 从而找出多个手指分别在 触控基板 310上的位置。 有源触控系统 300也就成为可辨别多个触控点的触控系统。 具体实施方式四
如图 4所示的有源触控系统 400, 包括触控基板 410、 有源器件阵列 420、 触控电 极、 触控电路 440等。 有源器件单元阵列 420和触控电极设置在触控基板 410上, 每 一个有源器件单元是由一个二极管和一个电容串联组成。触控电极由感测电极阵列 431 以及两组相交的行控制电极 432和列检测电极 433组成, 各控制电极线和各检测电极 线相交处有绝缘层相隔离。 触控基板 410是挠性透明基板, 感测电极阵列 431的各感 测电极单元是透明 IT0电极, 感测电极阵列 431、 行控制电极 432和列检测电极 433 都设置在触控基板 410不朝向使用者的非触摸面上。触控电路 440具有触控激励源 441、 信号检测电路 442和控制电路 443。
控制电极 432和检测电极 433的各控制电极线和各检测电极线, 分别连接有源器 件单元阵列 420的各二极管和电容串联单元的两个端子; 感测电极阵列 431的各感测 电极单元分别连接在各二极管与电容间的连接点上; 检测电极 433连接触控电路 440 中的触控激励源 441和信号检测电路 442 ;控制电极 432连接触控电路 440中的控制电 路 443。
触控电路 440的触控激励源 441同时向检测电极 433各检测电极线施加触控信号。 触控电路 440的控制电路 443以扫描方式, 逐行向控制电极 432各控制电极线输出开 启信号, 与有开启信号的控制电极线相连的二极管和电容串联单元处于导通状态, 与 无开启信号的控制电极线相连的二极管和电容串联单元处于截止状态。 随着控制电路 443每让一行控制电极线上的有源器件单元处于导通状态,各检测电极线上的触控信号 就流入与该行控制电极线相连接的感测电极单元内; 触控电路 440 的信号检测电路 442, 或同时检测各条检测电极线上触控信号变化的大小, 或逐列检测各条检测电极线 上触控信号变化的大小。 这样随着控制电路 443逐行向各控制电极线输出开启信号, 信号检测电路 442就逐行的检测此行控制电极线上感测电极单元上触控信号变化的大 小。
当操作者的手指或其他触控物靠近或接触某感测电极单元时, 手指或其他触控物 与感测电极单元间形成耦合电容, 感测电极单元上的触控信号就会通过此耦合电容部 分泄漏出去; 信号检测电路 442通过检测各条向感测电极单元施加触控信号的检测电 极线上触控信号变化的大小, 就可找出漏电流最大的或漏电流超过某阈值的检测电极 线; 再根据此时开启有源器件单元的控制电极线, 就可确定产生漏电流的感测电极单 元, 从而找出手指或其他触控物在触控基板 410上的位置。 有源触控系统 400成为可 探测触控点位置的触控系统。
当操作者多支手指或多个操作者的手指分别触摸触控基板 410 的多个位置时, 信 号检测电路 442就会在多个时刻的多条检测电极线上, 检测到触控信号变化超过某阈 值, 也就是检测到多个感测电极单元的漏电流超过某阈值, 从而找出多个手指分别在 触控基板 410上的位置。 有源触控系统 400也就成为可辨别多个触控点的触控系统。 具体实施方式五
如图 5所示的有源触控系统 500, 包括触控基板 510、 薄膜晶体管 (TFT)阵列 520、 触控电极、 触控电路 540和显示屏等。 薄膜晶体管(TFT)阵列 520和触控电极设置在触 控基板 510上。 触控电极由感测电极阵列 531 以及两组相交的行控制电极 532和列检 测电极 533组成, 各控制电极线和各检测电极线相交处有绝缘层相隔离; 在触控基板 510上所有列检测电极 533位置朝向使用者一侧的不同层上,都设置线条状的屏蔽电极 534, 防止触控物与检测电极 533的相互作用; 在触控基板 510不朝向使用者一侧的不 同层上, 设置面状的屏蔽电极 535, 防止显示屏内的电信号对感测电极阵列 531和检测 电极 533上触控信号的影响; 屏蔽电极 534和 535与检测电极 533、 控制电极 532和 TFT阵列 520都以绝缘层相隔离。触控基板 510是共用显示屏上的一块基板, 感测电极 阵列 531的各感测电极单元是透明 IT0电极, 感测电极阵列 531、行控制电极 532和列 检测电极 533都设置在触控基板 510朝向使用者的触摸面上,在感测电极阵列 531、行 控制电极 532和列检测电极 533上再设置一层绝缘的保护外层。 触控电路 540具有触 控激励源 541、 信号检测电路 542和控制电路 543。
控制电极 532和检测电极 533的各控制电极线和各检测电极线, 分别连接 TFT阵 列 520的各 TFT的栅极和源极; 感测电极阵列 531的各感测电极单元分别连接各 TFT 的漏极; 检测电极 533连接触控电路 540中的触控激励源 541和信号检测电路 542 ; 控 制电极 532连接触控电路 540中的控制电路 543 ; 屏蔽电极 534和 535相互连通, 并连 接触控电路 540的地端。
触控电路 540的触控激励源 541同时向检测电极 533各检测电极线施加触控信号。 触控电路 540的控制电路 543以扫描方式, 逐行向控制电极 532各控制电极线输出开 启信号, 与有开启信号的控制电极线相连的 TFT处于导通状态, 与无开启信号的控制 电极线相连的 TFT处于截止状态。 随着控制电路 543每让一行控制电极线上的 TFT处 于导通状态, 各检测电极线上的触控信号就流入通过 TFT与该行控制电极线相连接的 感测电极单元内; 触控电路 540的信号检测电路 542, 或同时检测各条检测电极线上触 控信号变化的大小, 或逐列检测各条检测电极线上触控信号变化的大小。 这样随着控 制电路 543逐行向各控制电极线输出开启信号, 信号检测电路 542就逐行的检测通过 TFT与此行控制电极线相连接的感测电极单元上触控信号变化的大小。
当操作者的手指或其他触控物靠近或接触某感测电极单元时, 手指或其他触控物 与感测电极单元间形成耦合电容, 感测电极单元上的触控信号就会通过此耦合电容部 分泄漏出去; 由于设置了屏蔽电极 534和 535, 手指或其他触控物与检测电极 533之间 就不会导致漏电流的耦合电容, 显示器内的电信号也不会对感测电极阵列 531和检测 电极 533上的触控信号产生影响。 信号检测电路 542通过检测各条向感测电极单元施 加触控信号的检测电极线上触控信号变化的大小, 就可找出漏电流最大的或漏电流超 过某阈值的检测电极线; 再根据此时开启 TFT 的控制电极线, 就可确定产生漏电流的 感测电极单元; 从而找出手指或其他触控物在触控基板 510上的位置。 有源触控系统 500成为可探测触控点位置的触控系统。
当操作者多支手指或多个操作者的手指分别触摸触控基板 510 的多个位置时, 信 号检测电路 542就会在多个时刻的多条检测电极线上, 检测到触控信号变化超过某阈 值, 也就是检测到多个感测电极单元的漏电流超过某阈值, 从而找出多个手指分别在 触控基板 510上的位置。 有源触控系统 500也就成为可辨别多个触控点的触控系统。 具体实施方式六
如图 6所示的有源触控屏 600, 包括触控基板 610、 薄膜晶体管 (TFT)阵列 620和 触控电极等。 TFT阵列 620和触控电极设置在触控基板 610上。触控电极由感测电极阵 列 631以及两组相交的行控制电极 632和列检测电极 633组成, 各控制电极线和各检 测电极线相交处有绝缘层相隔离。 触控基板 610是透明基板, 感测电极阵列 631的各 感测电极单元是透明 IT0电极, 行控制电极 632和列检测电极 633是不透明的金属电 极线。
为了在有源触控屏 600与显示屏层叠使用时, 防止不透明的行电极线和列电极线、 以及透明的感测电极边沿对显示效果的影响; 让行电极线和列电极线在有效触控区域 都呈折线, 折线上两相邻直线的夹角大于 20 ° 小于 160 ° , 行电极线和列电极线相交 并无重叠部分; 让透明的感测电极单元的边沿形状是跟随相邻的两条行电极线和相邻 的两条列电极线所围成的多边形。行控制电极 632和列检测电极 633在他们的交叉处, 通过 TFT阵列 620和感测电极阵列 631相连接。有源触控屏 600在与显示屏组合使用, 不透明的行电极 632和列电极 633中的倾斜线段不会与显示屏中不透明的显示行列电 极形成衍射条纹; 透明的感测电极 631 的折线边沿不会与显示屏中透明的显示像素电 极形成干涉条纹; 尽可能地避免了对显示质量的影响。 具体实施方式七
如图 7所示的有源触控系统 700, 包括触控基板 710、 有源器件阵列 720、 触控电 极、 触控电路 740等。 三端有源器件阵列 720和触控电极设置在触控基板 710上。 触 控电极由感测电极阵列 731以及两组相交的行控制电极 732和列检测电极 733组成, 各控制电极线和各检测电极线相交处有绝缘层相隔离。 触控基板 710是透明基板, 感 测电极阵列 731 的各感测电极单元是透明 IT0电极, 感测电极阵列 731、 行控制电极 732和列检测电极 733都设置在触控基板 710不朝向使用者的非触摸面上,在感测电极 阵列 731、行控制电极 732和列检测电极 733上再设置一层绝缘的保护外层。触控电路 740具有触控激励源 741、 信号检测电路 742和控制电路 743, 触控激励源 741具有输 出端一 7411和输出端二 7412, 信号检测电路 742内包含触控信号采样元件 7421和由 缓冲器、 差分放大电路、 数据采样通道、 数据处理和时序控制器等电路组成的检测电 路的其余部分电路 7422。
控制电极 732和检测电极 733的各控制电极线和各检测电极线, 分别连接三端有 源器件阵列 720的各有源器件单元的两个端子; 感测电极阵列 731的各感测电极单元 分别连接各有源器件单元的另一端子; 让检测电极 733中的 733 i电极线通过触控信号 采样元件 7421连接触控激励源的输出端一 741 1,让检测电极 733中的 733i_l、 733Ϊ+1 电极线连接触控激励源的输出端二 7412, 让检测电极 733中的其余电极线也连接触控 激励源的输出端一 7411, 触控激励源输出端一 7411与输出端二 7412是同一触控激励 源内信号回流的输出输入端口。
触控电路 740的触控激励源 741同时向检测电极 733各检测电极线施加触控信号。 触控电路 740的控制电路 743以扫描方式, 逐行向控制电极 732各控制电极线输出开 启信号, 与有开启信号的控制电极线相连的有源器件单元处于导通状态, 与无开启信 号的控制电极线相连的有源器件单元处于截止状态。 随着控制电路 743每让一行控制 电极线上的有源器件单元处于导通状态, 各检测电极线上的触控信号就通过有源器件 单元流入与该行控制电极线相连接的感测电极单元内。 感测电极单元 731 j i 与感测电 极单元 731 j i-l间形成耦合电容 (^,感测电极单元 731 j i与感测电极单元 731 j i+1间 形成耦合电容 Ci+1 ;触控信号在触控激励源 741、检测电极线 733 i、感测电极单元 731 j i、 耦合电容 (^、感测电极单元 731 j i-l、检测电极线 733i-l之间形成闭合回路, 在触控 激励源 741、 检测电极线 733i、 感测电极单元 731 j i、 耦合电容 Ci+1、 感测电极单元 731 j i+l、检测电极线 733i+l之间也形成闭合回路;从触控激励源 741的输出端一 7411 流出的触控信号, 经触控信号采样元件 7421流入检测电极线 733i, 再分别经耦合电容 Ci Cw流入感测电极单元 731 j i-l、感测电极单元 731 j i+l,然后经检测电极线 733i_l、 733Ϊ+1流回触控激励源 741输出端二 7412, 触控信号在闭合的触控回路上流动。
当作为触控物的人的手指靠近或接触检测电极线 733i时, 由于手指具有一定的宽 度, 同时也就触及到感测电极单元 731 j i、 感测电极单元 731 j i-l 和感测电极单元 731 j i, 人体的介电系数远大于空气的介电系数, 使得耦合电容
Figure imgf000014_0001
Ci+1的容值增大容 抗减小, 触控回路上触控信号的电流相应变大。 当手指靠近或接触非 733i、 733i-l和 733Ϊ+1的其他检测电极线的位置时, 虽然也会使得检测电极线之间、 感测电极单元之 间、 感测电极单元与检测电极线之间的耦合电容都发生改变, 但由于在所触位置上, 各电极所连通触控激励源 741的输出端都是同一输出端 7411, 流经触控信号采样元件 7421上触控信号电流的变化就非常小。
信号检测电路 742 以扫描方式, 通过逐一检测各条向感测电极单元施加触控信号 的检测电极线上触控信号变化的大小, 就可找出电流变化最大的或电流变化超过某阈 值的检测电极线; 再根据此时开启有源器件的控制电极线, 就可确定被触控的感测电 极单元; 从而找出手指或其他触控物在触控基板 710上的位置。 有源触控系统 700成 为可探测触控点位置的触控系统。
也可以对检测电极分成多个区域, 在不同的区域按照上述同样的原理加入触控激 励信号并进行检测, 提高触控检测的速度。 当操作者多支手指或多个操作者的手指分 别触摸触控基板 710的多个位置时, 信号检测电路 742就会在多个时刻的多条检测电 极线上, 检测到触控信号变化超过某阈值, 也就是检测到多个感测电极单元的电流变 化超过某阈值, 从而找出多个手指分别在触控基板 710上的位置。 有源触控系统 700 也就成为可辨别多个触控点的触控系统。 具体实施方式八
如图 8所示的有源触控系统 800, 包括触控基板 810、 薄膜晶体管 (TFT)阵列 820、 触控电极、触控电路 840等。薄膜晶体管(TFT)阵列 820和触控电极设置在触控基板 810 上。 触控电极由感测电极阵列 831 以及两组相交的行控制电极 832和列检测电极 833 组成, 各控制电极线和各检测电极线相交处有绝缘层相隔离。 触控基板 810是透明基 板, 感测电极阵列 831的各感测电极单元是透明 IT0电极, 感测电极阵列 831、行控制 电极 832和列检测电极 833都设置在触控基板 810朝向使用者的触摸面上, 在感测电 极阵列 831、行控制电极 832和列检测电极 833上再设置一层绝缘的保护外层。触控电 路 840具有触控激励源 841、 信号检测电路 842和控制电路 843 ; 触控激励源 841具有 触控信号的输出端一 8411和输出端二 8412 ;信号检测电路 842具有触控信号采样元件 8421、 缓冲器、 差分放大电路、 数据采样通道、 数据处理和时序控制器等电路等; 有 源触控系统具有外壳体 850。
控制电极 832和检测电极 833的各控制电极线和各检测电极线, 分别连接 TFT阵 列 820的各 TFT的栅极和源极; 感测电极阵列 831的各感测电极单元分别连接各 TFT 的漏极; 检测电极 833连接触控电路 840中的触控激励源 841和信号检测电路 842 ; 控 制电极 832连接触控电路 840中的控制电路 843 ; 外壳体设置有电极 851。
触控电路 840的触控激励源 841的输出端一 8411同时向检测电极 833各检测电极 线输出触控信号, 外壳体电极 851连接触控激励源 841的输出端二 8412, 作为触控信 号的回流电极。 触控电路 840的控制电路 843以扫描方式, 逐行向控制电极 832各控 制电极线输出开启信号, 与有开启信号的控制电极线相连的 TFT处于导通状态, 与无 开启信号的控制电极线相连的 TFT处于截止状态。 随着控制电路 843每让一行控制电 极线上的 TFT处于导通状态, 各检测电极线上的触控信号就流入通过 TFT与该行控制 电极线相连接的感测电极单元内; 触控电路 840的信号检测电路 842, 或同时检测各条 检测电极线上触控信号变化的大小, 或逐列检测各条检测电极线上触控信号变化的大 小。 这样随着控制电路 843逐行向各控制电极线输出开启信号, 信号检测电路 842就 逐行的检测通过 TFT与此行控制电极线相连接的感测电极单元上触控信号变化的大小。
当人的手指靠近或接触与检测电极 833中的某一个电极线 833i和控制电极 832的 某一个电极线 832j相连的感测电极单元 831j i时,, 手指与感测电极单元 831j i间产 生一个耦合电容 Ci, 触控激励源 841输出端一 8411经触控信号采样元件 8421输出到 检测电极线 833i 上的触控激励信号, 就会通过开启信号的 TFT 流入感测电极单元 831 j i, 再通过此耦合电容 Ci流入手指, 并通过持握产品的手掌流入产品外壳体上的回 流电极 851, 再从回流电极 851流回到触控激励源 841的输出端二 8412; 由触控激励 源、 触控检测电极线、 感测电极单元、 手指与感测电极单元间的耦合电容、 外壳体上 的回流电极组成触控回路。 也可以让与无开启信号的控制电极线也连接触控信号的输 出端一, 防止触控信号在触控系统间串流。
通过同时或逐一检测流经触控信号采样元件 8421上触控信号电流的变化, 就可找 出电流变化最大的或电流变化超过某阈值的检测电极线; 再根据此时开启有源器件的 控制电极线, 就可确定被触控的感测电极单元; 从而找出手指或其他触控物在触控基 板 810上的位置。 有源触控系统 800成为可探测触控点位置的触控系统。 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定 本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替换, 都应当视为属于本 发明的保护范围。

Claims

权 利 要 求 书
1、 一种有源触控系统, 由触控基板和触控电极等组成, 触控电极具有感测电极、 控制电极和检测电极, 触控电极用于探测操作者手指或其他触控物在触控基板上的位 置; 其特征在于:
触控基板上具有阵列排布的有源器件单元、 阵列排布的感测电极单元、 以及不少 于两组相交的控制电极和检测电极, 各控制电极线和各检测电极线相交处有绝缘层相 隔离; 感测电极连接有源器件, 有源器件连接控制电极和检测电极。
2、 根据权利要求 1所述的有源触控系统, 其特征在于:
所述有源器件阵列中的有源器件单元内具有一个或多个有源元件。
3、 根据权利要求 1所述的有源触控系统, 其特征在于:
所述有源器件阵列中的有源器件单元, 可以是二端有源器件, 也可以是三端有源 器件。
4、 根据权利要求 3所述的有源触感触控系统, 其特征在于:
所述三端有源器件阵列是薄膜晶体管 (TFT)阵列, 控制电极线和检测电极线分别连 接 TFT的栅极和源极, TFT的漏极连接感测电极单元。
5、 根据权利要求 1所述的有源触控系统, 其特征在于:
所述在触控基板具有检测电极线的所有的或部分的位置的不同层上, 设置有单层 或多层的屏蔽电极, 屏蔽电极与检测电极和有源器件阵列都以绝缘体相隔离。
6、 根据权利要求 1所述的有源触控系统, 其特征在于:
所述触控基板是挠性的或硬性的透明基板, 所述感测电极单元是透明电极。
7、 根据权利要求 1所述的有源触控系统, 其特征在于:
所述控制电极线或检测电极线具有折线段, 折线段上两相邻直线的夹角大于 20 ° 小于 160 ° 。
8、 一种有源触控系统, 由触控基板、 触控电极和触控电路等组成, 触控电极具有 感测电极、 控制电极和检测电极, 触控电路具有触控激励源、 信号检测电路和控制电 路, 触控电极和触控电路用于探测操作者手指或其他触控物在触控基板上的位置; 其 特征在于:
触控基板上具有阵列排布的有源器件单元、 阵列排布的感测电极单元、 以及不少 于两组相交的控制电极和检测电极, 各控制电极线和各检测电极线相交处有绝缘层相 隔离; 感测电极连接有源器件, 有源器件连接控制电极和检测电极, 检测电极连接触 控电路中的触控激励源和信号检测电路, 控制电极连接触控电路中的控制电路; 触控 电路通过控制电极控制有源器件阵列上的有源器件单元的导通或截止; 在部分有源器 件单元处于导通态时, 用全部或部分检测电极线向感测电极单元提供触控信号, 检测 连通感测电极单元的检测电极线上触控信号的变化, 来确定触控点的位置。
9、 根据权利要求 8所述的有源触控系统, 其特征在于:
所述触控电路对连通感测电极单元的检测电极线输出的触控信号是频率不小于 ΙΟΚΗζ的交流信号。
10、 根据权利要求 8所述的有源触控系统, 其特征在于:
所述触控电路检测触控信号的变化, 检测的是幅值、 时间、 相位、 频率信号和脉 冲数中的至少一种。
11、 根据权利要求 8所述的有源触控系统, 其特征在于:
所述触控电路检测触控信号的变化, 检测的是触控信号的变化量或触控信号的变 化率。
12、 根据权利要求 8所述的有源触控系统, 其特征在于:
所述有源器件阵列中的有源器件是薄膜晶体管 (TFT), 行电极作为控制电极和列 电极作为检测电极分别连接各 TFT的栅极和源极, 感测电极单元与 TFT的漏极相连接; 触控电路中的控制电路对行电极中的部分电极线施加电信号, 让与其相连的 TFT处于 导通状态; 触控电路中的检测电路再对列电极中的部分或全部电极线施加触控信号, 并检测这些电极线上触控信号的变化。
13、 根据权利要求 12所述的有源触控系统, 其特征在于:
所述触控电路对被触列电极线的定位, 是以检测电路检测到触控信号变化达到触 控定位条件的列电极线为被触列电极线; 触控电路对被触行电极线的定位, 是以对应 于检测到触控信号变化达到触控定位条件的列电极线时, 控制电路让有源器件处于导 通状态的行电极线为被触行电极线; 触控基板上的被触点就是被触行电极线和被触列 电极线的交叉位置。
14、 根据权利要求 13所述的有源触控系统, 其特征在于:
所述触控定位条件是触控信号变化量或触控信号变化率最大的, 或是触控信号变 化量或触控信号变化率超过某设定阈值的, 或是触控信号变化量或触控信号变化率最 大并超过某设定阈值的。
15、 根据权利要求 12所述的有源触控系统, 其特征在于:
所述触控电路通过检测各条列电极线上触控信号变化的差别, 来计算确定列电极 线之间的被触位置; 触控电路通过检测同一条列电极线上不同时刻触控信号变化的差 别, 来计算确定行电极线之间的被触位置。
16、 根据权利要求 8所述的有源触控系统, 其特征在于:
所述触控信号在闭合回路上流动,触控电路在选择部分电极为触控激励电极的同 时, 还选择触控基板的部分电极线为触控回流电极; 或在有源触控系统的外壳上设置 触控回流电极; 所述触控回流电极是指, 在对触控检测电极施加触控信号并检测流经 其触控信号变化的时刻, 连通于触控激励源的第二输出端或连通于另一触控激励源, 为检测电极上的触控信号提供回流通路的触控电极。
PCT/CN2009/075970 2009-08-12 2009-12-24 一种有源触控系统 WO2011017891A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09848221.9A EP2392994A4 (en) 2009-08-12 2009-12-24 ACTIVE TOUCH CONTROL SYSTEM
JP2012524079A JP5633565B2 (ja) 2009-08-12 2009-12-24 能動タッチシステム
US13/348,250 US8698770B2 (en) 2009-08-12 2012-01-11 Active touch system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910166203.7 2009-08-12
CN200910166203 2009-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/348,250 Continuation US8698770B2 (en) 2009-08-12 2012-01-11 Active touch system

Publications (1)

Publication Number Publication Date
WO2011017891A1 true WO2011017891A1 (zh) 2011-02-17

Family

ID=43585878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075970 WO2011017891A1 (zh) 2009-08-12 2009-12-24 一种有源触控系统

Country Status (5)

Country Link
US (1) US8698770B2 (zh)
EP (1) EP2392994A4 (zh)
JP (1) JP5633565B2 (zh)
CN (1) CN202013558U (zh)
WO (1) WO2011017891A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920129B2 (en) 2007-01-03 2011-04-05 Apple Inc. Double-sided touch-sensitive panel with shield and drive combined layer
JP5832772B2 (ja) * 2011-04-13 2015-12-16 シャープ株式会社 タッチパネル、タッチパネルシステム、および電子機器
US9259904B2 (en) 2011-10-20 2016-02-16 Apple Inc. Opaque thin film passivation
WO2013063722A1 (zh) * 2011-11-04 2013-05-10 智点科技(深圳)有限公司 一种互容式有源触控系统
WO2013075279A1 (zh) * 2011-11-21 2013-05-30 智点科技(深圳)有限公司 一种有源触控平板显示器
WO2013127051A1 (zh) * 2012-02-27 2013-09-06 Tsai Hsiung-Kuang 显示装置及其触摸感测方法
CN102609597A (zh) * 2012-03-29 2012-07-25 中国电子科技集团公司第十三研究所 一种化合物半导体微波功率芯片版图布局的方法
FR2990020B1 (fr) * 2012-04-25 2014-05-16 Fogale Nanotech Dispositif de detection capacitive avec arrangement de pistes de liaison, et procede mettant en oeuvre un tel dispositif.
US9201547B2 (en) 2012-04-30 2015-12-01 Apple Inc. Wide dynamic range capacitive sensing
TW201351245A (zh) * 2012-06-04 2013-12-16 Wintek Corp 觸控感測電極結構及觸控裝置
CN103631463B (zh) * 2012-08-24 2018-10-23 敦泰电子(深圳)有限公司 一种数字式电容触控面板
CN103677458B (zh) * 2012-09-17 2016-08-17 凌巨科技股份有限公司 触控系统及其感应方法
US9417740B2 (en) * 2013-01-03 2016-08-16 Nokia Technologies Oy Capacitive sensing apparatus with a shield electrode
KR20150108356A (ko) * 2013-01-24 2015-09-25 도판 인사츠 가부시키가이샤 터치 패널 및 표시 장치
US9507968B2 (en) * 2013-03-15 2016-11-29 Cirque Corporation Flying sense electrodes for creating a secure cage for integrated circuits and pathways
TW201447704A (zh) * 2013-06-10 2014-12-16 Ili Technology Corp 透明觸控面板
CN103425347B (zh) * 2013-08-02 2018-01-02 敦泰电子有限公司 触控显示装置
CN104808869A (zh) * 2014-01-23 2015-07-29 天津富纳源创科技有限公司 触摸屏触摸点的侦测方法
CN103970392B (zh) * 2014-04-18 2019-10-01 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN105022520A (zh) * 2014-04-30 2015-11-04 群创光电股份有限公司 触控面板与触控显示装置
KR102236314B1 (ko) * 2014-10-29 2021-04-05 삼성디스플레이 주식회사 에너지 수확 기능을 갖는 터치 표시 장치
WO2016074223A1 (en) * 2014-11-14 2016-05-19 Texas Instruments Incorporated Capacitive touch sensing
CN104699322B (zh) * 2015-04-01 2017-12-29 上海天马微电子有限公司 阵列基板、触控显示面板、触控显示装置及检测方法
DE102015107739A1 (de) * 2015-05-18 2016-11-24 Osram Opto Semiconductors Gmbh Lichtquelle mit mehreren Halbleiterkomponenten
JP6503275B2 (ja) * 2015-10-09 2019-04-17 株式会社ジャパンディスプレイ センサ及びセンサ付き表示装置
WO2018057969A1 (en) 2016-09-23 2018-03-29 Apple Inc. Touch sensor panel with top and/or bottom shielding
US10372282B2 (en) 2016-12-01 2019-08-06 Apple Inc. Capacitive coupling reduction in touch sensor panels
US20200174640A1 (en) * 2018-12-03 2020-06-04 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch screen and display device
US10825384B2 (en) * 2019-03-27 2020-11-03 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel and display device
CN111290662A (zh) * 2020-01-22 2020-06-16 京东方科技集团股份有限公司 触控基板、显示基板及显示装置
CN115145424A (zh) * 2022-06-28 2022-10-04 上海天马微电子有限公司 感测单元与感测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118470A (zh) * 2006-08-02 2008-02-06 陈其良 触控式平板显示器电极结构
CN101131618A (zh) * 2006-08-20 2008-02-27 陈其良 象素复用触控式平板显示器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3358744B2 (ja) * 1993-05-06 2002-12-24 シャープ株式会社 液晶表示装置
KR100196201B1 (ko) * 1994-02-21 1999-06-15 모리시따 요오이 찌 디스플레이일체형좌표입력장치
JP3186946B2 (ja) * 1994-05-31 2001-07-11 シャープ株式会社 座標検出装置
JP3394187B2 (ja) * 1997-08-08 2003-04-07 シャープ株式会社 座標入力装置および表示一体型座標入力装置
EP2256605B1 (en) * 1998-01-26 2017-12-06 Apple Inc. Method and apparatus for integrating manual input
JP4059047B2 (ja) * 2002-09-24 2008-03-12 セイコーエプソン株式会社 入力装置、情報装置及び制御情報生成方法
GB0319909D0 (en) * 2003-08-23 2003-09-24 Koninkl Philips Electronics Nv Touch-input active matrix display device
KR101246830B1 (ko) * 2006-06-09 2013-03-28 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
JP2008032920A (ja) * 2006-07-27 2008-02-14 Nec Lcd Technologies Ltd 液晶表示装置
KR101274034B1 (ko) * 2006-08-25 2013-06-12 삼성디스플레이 주식회사 터치스크린 표시장치 및 이의 제조방법
TWI354962B (en) * 2006-09-01 2011-12-21 Au Optronics Corp Liquid crystal display with a liquid crystal touch
WO2008121411A1 (en) * 2007-03-29 2008-10-09 Cirque Corporation Driven shield for capacitive touchpads
CN102265245B (zh) * 2009-09-27 2014-04-09 新励科技(深圳)有限公司 一种可排除触控影响显示的触控显示器
TWI417624B (zh) * 2009-11-19 2013-12-01 Innolux Display Corp 觸控顯示裝置
KR101819677B1 (ko) * 2011-04-01 2018-01-17 엘지디스플레이 주식회사 터치 센서 일체형 표시장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118470A (zh) * 2006-08-02 2008-02-06 陈其良 触控式平板显示器电极结构
CN101131618A (zh) * 2006-08-20 2008-02-27 陈其良 象素复用触控式平板显示器

Also Published As

Publication number Publication date
EP2392994A4 (en) 2014-06-25
US8698770B2 (en) 2014-04-15
CN202013558U (zh) 2011-10-19
EP2392994A1 (en) 2011-12-07
JP5633565B2 (ja) 2014-12-03
US20120113038A1 (en) 2012-05-10
JP2013501983A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2011017891A1 (zh) 一种有源触控系统
US11567607B2 (en) Display device including touch sensor
CN106200064B (zh) In-cell触摸液晶显示装置及其制造方法
US10031615B2 (en) Touch substrate, touch display panel and method for calculating touch pressure
CN110456947B (zh) 用于触摸敏感和非接触的界面的切换电极电容式测量装置
TWI674686B (zh) 具壓力觸控的有機發光顯示裝置
TWI478029B (zh) 電容感應觸控方法
TWI344127B (en) Liquid crystal display panel having a touch panel function
EP2472362B1 (en) Touch-sensing display panel, touch panel, touch-sensing device and touch-sensing circuit
WO2013056472A1 (zh) 一种有源触控系统的驱动方法
WO2014153862A1 (zh) 电容内嵌式触摸屏和显示装置
EP2750005B1 (en) Hybrid sensing touchscreen apparatus and method of driving the same
US20090256815A1 (en) Active matrix touch sensing
US9886122B2 (en) Array substrate, and capacitive in-cell touch panel with the array substrate
WO2010130111A1 (zh) 一种数字式电容触控屏
EP2466430A1 (en) Capacitive touch-control screen
CN108513653A (zh) 触摸屏及具有触摸屏的终端设备
US20130016051A1 (en) Touch Panel Device Having a Divided ITO layer for Reducing Loading
TW201319909A (zh) 互容式主動觸控系統
TW201122951A (en) Active touch system.
WO2018028328A1 (zh) 显示基板及显示装置
WO2015100826A1 (zh) 内置触控的液晶显示装置
TW201106228A (en) Touch panel display device
TW201126402A (en) Capacitive touch-control panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524079

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009848221

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE