WO2011015679A2 - Sistema y método para asistir la toma de tierra sin pista de aeronaves convencionales de ala fija - Google Patents

Sistema y método para asistir la toma de tierra sin pista de aeronaves convencionales de ala fija Download PDF

Info

Publication number
WO2011015679A2
WO2011015679A2 PCT/ES2010/000311 ES2010000311W WO2011015679A2 WO 2011015679 A2 WO2011015679 A2 WO 2011015679A2 ES 2010000311 W ES2010000311 W ES 2010000311W WO 2011015679 A2 WO2011015679 A2 WO 2011015679A2
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
control
air flow
conditions
installation
Prior art date
Application number
PCT/ES2010/000311
Other languages
English (en)
French (fr)
Other versions
WO2011015679A3 (es
Inventor
José Patricio GÓMEZ PÉREZ
Ignacio GÓMEZ PÉREZ
Antonio MONTEAGUDO LÓPEZ DE SABANDO
Original Assignee
Universidad Politécnica de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politécnica de Madrid filed Critical Universidad Politécnica de Madrid
Priority to US13/388,638 priority Critical patent/US8498761B2/en
Priority to EP10806067A priority patent/EP2463198A2/en
Publication of WO2011015679A2 publication Critical patent/WO2011015679A2/es
Publication of WO2011015679A3 publication Critical patent/WO2011015679A3/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/02Ground or aircraft-carrier-deck installations for arresting aircraft, e.g. nets or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV

Definitions

  • the present invention is encompassed in the following fields of the technique: aeronautical sector, aerospace sector, hypersustentation devices, automatic flight control systems. State of the Technique
  • EP0579508-A1 A device produces an uncontrolled horizontal air flow which, adding to that which affects an aircraft in. approach to a conventional runway, slows the aircraft, facilitating its landing in a shorter space.
  • the objective sought in the present invention is not to generate an air current that brakes the aircraft by opposition, but to replace the volume of air in which the aircraft moves with another whose characteristics remain under the control of a system that automatically adapts them to the flight conditions of the aircraft through coordination with the flight control system thereof.
  • the horizontal air flow is not uncontrolled, but by means of the corresponding flow control systems, it remains coherent and airworthy, so that an aircraft can maneuver within it while maintaining complete aerodynamic control.
  • the coherent term is a physical term applied in aerodynamics and laser optics that means that the movement of all particles is parallel to the general direction of the flow.
  • Patent documents US4,700,912 and US2007 / 0029442-A1 A device captures the aircraft in an air cushion that holds it from below as in a tray and deposits it on a certain surface.
  • the objective sought in the present invention is not to support the aircraft from below by injecting an air jet that is capable of keeping it suspended due to its aerodynamic resistance, but to provide a volume of air in which the aircraft can fly at a fixed point according to the aerodynamic principles for which it has been designed.
  • the present invention presents a simpler approach and based on devices of lower cost and greater portability, so that they can be easily moved to unconditioned areas where it is desirable to have aircraft landing points.
  • the present invention is of greater ease of realization and proposes the construction of systems and installations in which the aircraft evolve according to their design principles without being forced to fly against an uncontrolled gale or hold themselves riding on a jet of vertical air, both situations presenting a high intrinsic danger.
  • the invention relates to a system for assisting the grounding without runway of conventional fixed-wing aircraft according to claim 1 and to a method according to claim 12.
  • Preferred embodiments of the system are defined in the dependent claims.
  • the system includes:
  • air flow control means responsible for controlling the air potential generation means and the laminar air flow generation means to obtain a controlled laminar air flow
  • the flight control system of the aircraft uses this information to automatically calculate its command;
  • trajectory generation means responsible for calculating and providing the aircraft, through the media, a path to be followed by the aircraft to guide it to a collection area.
  • the trajectory generation means calculate a planning path that guides the aircraft to the collection area. This is calculated dynamically from the flow of generated air (section and speed) and its direction in space;
  • the air flow control means are configured to obtain the controlled laminar air flow with the appropriate conditions to maintain the airworthiness of the aircraft according to its approach conditions.
  • the approach conditions are obtained by means of the communication with the aircraft and by the position and attitude sensors of the aircraft of the unmanned installation. Some parameters are obtained from the sensors of the non-embarked installation and others are communicated by the control system of the aircraft.
  • the means for generating laminar air flow preferably comprise:
  • the air flow control means preferably comprise:
  • - sensor means responsible for obtaining the conditions of the laminar air flow and the state of the air potential generation means and the laminar air flow generation means.
  • the control of the air stream is done by means of a system that takes into account the state of the machine itself, in addition to the value of the parameters of the current produced;
  • control means configured to govern the air potential generation means and the laminar air flow generation means based on control signals
  • - data processing means responsible for generating said control signals based on the information provided by the sensor means and the approach conditions of the aircraft.
  • the means for collecting and immobilizing aircraft preferably include:
  • - fixing and anchoring device responsible for immobilizing the aircraft in the collection area, said device being able to comprise a battery of electromagnets arranged in the landing platform; - sensor means responsible for establishing the position of the fixing and anchoring device and the position of the aircraft;
  • control unit configured to control the lifting means of the landing platform and the actuation of the fixing and anchoring device depending on the position of the aircraft.
  • the path generation means may comprise a first GPS unit - not exclusively, since said means could be based, for example, on a radar - on the unbalanced installation and data processing means configured to:
  • Air sensors are a standard set of aerodynamic measuring devices. They can be specified in various devices, but all provide knowledge of the dynamic and static pressure and its direction with respect to a global reference system of the air flow surrounding the aircraft or that is produced by the air generating system.
  • the system preferably comprises a platform in charge of supporting the non-embarked installation.
  • the approach conditions include at least:
  • the system also includes an installation embarked on the aircraft which in turn comprises:
  • flight control system responsible for: • receive, from the non-embarked installation, information on the conditions of the generated laminar air flow and the path to be followed by the aircraft to reach the collection area;
  • the installation embarked on the aircraft may additionally comprise means of immobilization and anchorage compatible with the means of collection and immobilization of aircraft of the non-embarked installation, to jointly immobilize the aircraft in the collection area.
  • the immobilization and anchoring means of the installation embarked on the aircraft may comprise:
  • a control unit is responsible for controlling the intensity of the electric current that feeds the electromagnet battery of the aircraft depending on the position of the aircraft during the guiding maneuver.
  • Another aspect of the invention is to provide a method to assist the grounding without runway of conventional fixed-wing aircraft.
  • the method comprises:
  • the approach conditions are the position and angles with respect to a global reference system, the speed also referred to the reference system, the deflections of the control surfaces and the engine speed;
  • Figure 1 shows, schematically, straight projections of the non-embarked installation.
  • Figure 2 represents, in a schematic way, conical projections of the non-embarked installation.
  • FIGS. 3 to 10 illustratively show the process with which the system is operated:
  • FIG. 3 shows Step 1: execution of boot protocols and stationary operation.
  • FIG. 4 shows Steps 2 and 3: Communication with the aircraft and ignition of the ILS to establish the most appropriate descent path.
  • Figure 5 represents, within Step 4: The aircraft approaches the capture device following the landing path established by the ILS and reduces its speed with respect to the ground.
  • Figure 6 shows, within Step 4:
  • the sensors of the capture device feed the exact position and attitude of the aircraft to the flow control system, which performs a precise positioning of the aircraft on the collection area.
  • Figure 7 represents, within Step 4: The aircraft is stopped with respect to the ground, flying against the current, while maintaining its aerodynamic and propulsive control.
  • Figure 8 shows, within Step 5: The collection device is approximate to the aircraft.
  • Figure 9 shows, within Step 5: The aircraft is positioned, anchored and oriented by a mechanical or electromagnetic system.
  • FIG. 10 shows Step 6: Coordinate the flow of air
  • the propulsive force and the aircraft can be accessed or disembarked from it.
  • a landing aid system without runway for fixed-wing aircraft and for its associated operation process is presented.
  • This system allows an aircraft Conventional land in a small and unprepared area, by generating a stream of low turbulence and high coherence that allows flying and maneuvering in a controlled manner and according to the aerodynamic principles for which it has been designed.
  • the conditions of that current are controlled by a system that communicates with the flight control system of the aircraft, so that both coordinate to make it follow a path that gently introduces it into the air stream and accompanies its speed and the deflection of its control surfaces to the conditions of the air flow, which in turn, are varied until the aircraft stops.
  • This system can be used in fixed installations for small aircraft ( Figures 1 to 10), in mobile installations for the recovery of small unmanned aircraft, in fixed installations for commercial aircraft, or in installations embarked on ships for military naval aircraft, to mode of examples, applying criteria of scaling and adaptation of power, but respecting the philosophy of the invention.
  • the system object of the invention is composed of the following elements: a) Installation not shipped (that is, not present in the aircraft).
  • the non-embarked installation 13 is defined as the set of components that do not reside in the aircraft and their orderly arrangement in an area of land (not necessarily conditioned for aircraft grounding).
  • Figures 1 and 2 represent, in a schematic way, the non-embarked installation 13, supported on a platform 1 fixed to ground or to a vehicle, which has the following elements or subsystems:
  • Laminar air flow generating system consistent and controlled, which in turn is composed of the following subsystems:
  • Air potential generator subsystem This subsystem has the function of providing air to a backwater chamber 6 in the pressure and flow conditions necessary to be converted into a laminar stream of the section suitable for the specific application of the installation.
  • it can consist of a battery of fans 4 and 5, or - for a larger application - in a turbojet installation with water injection in the outlet nozzle to cool the air.
  • Laminar air flow generating subsystem whose function is to transform the air produced by the air potential generating subsystem into a laminar and non-turbulent stream of the section suitable for the specific application of the installation. To do this, it consists of the following components:
  • Backwater chamber 6 whose function is to contain a certain volume of air in the thermodynamic conditions provided by the air potential generating subsystem.
  • Purge valves 7 for the rapid control of the air flow, whose function is to relieve the pressure of the backwater chamber 6 when necessary to obtain adequate thermodynamic conditions.
  • Nozzle of the backwater chamber 6 whose function is to exchange the thermodynamic conditions of the air contained in the backwater chamber by those necessary to constitute a coherent laminar flow of the section suitable for the specific application of the installation.
  • Air flow control subsystem or means 2 whose function is to govern the control mechanisms of the air stream to ensure that it has the appropriate speed, section, length and turbulence conditions to maintain the airworthiness of the aircraft for which The installation has been designed.
  • the air flow control means are thus configured to obtain the controlled laminar air flow with the appropriate conditions to maintain the airworthiness of the aircraft according to its approach conditions.
  • the approach conditions are obtained through communication with the aircraft and through the position and attitude sensors 12 of the aircraft of the aircraft. installation not shipped.
  • These position and attitude sensors 12 of the aircraft can be based on several technologies, for example a radar or a camera with an image processing system.
  • This subsystem consists of:
  • the information on the status of the different parts of the laminar air flow generating system so that it can calculate the control signals of each of the control mechanisms.
  • Control mechanisms whose function is to govern each of the subsystems and components to obtain the desired air flow conditions.
  • Control laws whose function is to calculate, from the information supplied by the sensors and by the interaction logic, the control signals of each of the control mechanisms of the laminar air flow generating system. These control laws are implemented in the form of a control software.
  • Control software whose function is to implement the control laws in the form of an executable code in the appropriate hardware.
  • Control hardware whose function is to house the control software of the air flow control subsystem and all the peripherals necessary to make its operation possible.
  • Unloaded part of the communication subsystem with the flight control subsystem whose function is to communicate to the flight control system the information on the conditions of the air flow generated by the laminar air flow generating system and communicate to the air flow control subsystem 2 the information on the attitude and position of the aircraft.
  • Attitude is a term used in aerodynamics to refer to the spatial orientation of the aircraft with respect to a certain reference system.
  • the part not shipped consists of:
  • Planing path generation system 3 whose function is to calculate and provide the aircraft with a path that leads safely from the starting point of maneuver to the collection point. This system can be materialized in different ways and on different technologies, depending on the strategy of elaboration and monitoring of the planning path that you want to adopt.
  • a conventional ILS Instrumental Landing System is one of the possible planing path generation systems that can be integrated in the unbounded installation 13, by way of example.
  • Aircraft collection and immobilization system whose function is to capture and immobilize the aircraft at the moment when it has stopped on the ground, but flying in a controlled manner with respect to the air flow supplied by the flow generating system of laminar air.
  • This system consists, in a preferred embodiment, of the following components:
  • the aircraft This device can be built according to several possible technologies.
  • Control system for the collection and immobilization of aircraft whose function is to govern the engines that allow the precise movement and positioning of the articulated mechanism and the action of the fixing and anchoring device.
  • This control system is implemented in the form of a control software.
  • Control hardware whose function is to house the control software of the aircraft collection and immobilization system and all the peripherals necessary to make its operation possible.
  • the on-board installation is defined as the set of components that reside in the aircraft so that it can safely use the installation object of this detailed description. These are:
  • Flight control system whose function is to automatically govern the aircraft, calculating the correct deflections of its control surfaces - deflections are the angles rotated by the control surfaces which, in turn, are the ailerons, flaps, slats, horizontal stabilizer and rudder- and the thrust (or traction) of your power plant at all times and at all points of the glide path (path followed by the aircraft).
  • This flight control system presents, as a difference with the existing ones, that it acts in collaboration with the air flow control subsystem of the non-embarked installation 13 to govern the aircraft safely within the air flow generated by The said installation.
  • This system consists of:
  • the non-embarked installation 13 This subsystem, in the same way as that of the non-embarked installation 13 can be implemented in different ways depending on the technology or strategy selected.
  • the interaction logic is that which relates the coordinated operation of the three control systems described in the previous sections (flight control system of the aircraft, control system of the collection and fixed assets of aircraft and air flow control system). It acts by providing the instructions that each of the control systems must comply with so that the controlled and safe operation of the aircraft is achieved within the air produced by the laminar air flow generating system. Physically, this logic is implemented in the form of the control laws of a control software in which the inputs are the measured conditions of the air source, the state variables of the control system of the aircraft and the relative linear positions and angles of the aircraft collection and immobilization system; and the outputs are the desired status paths of the three control systems.
  • control software and the necessary hardware (not shipped) can be implemented within a single control system.
  • the aircraft 20 follows the planning path and gradually submerges itself in the frontal air flow opposite to its direction of flight.
  • the aircraft 20 slows down until it is flying at a fixed point with respect to the ground, but with a minimum operational speed with respect to the air flow generated by the capture device.
  • the flow control system governs the flow rate produced by the air generator by means of its rotation speed, the purge valves 7 of the backwater chamber 6 and the horizontal and 8 vertical and vertical director vanes 9 that guide the air flow, correcting the deviations of the position and attitude of the aircraft 20 with respect to the hover (see Figures 5, 6 and 7).
  • the articulated mechanism 11 of the collection and immobilized subsystem approaches the aircraft 20 always keeping its contact surface parallel to the air flow, and meets the landing gear of the aircraft 20.
  • the combined effect of the flow control system and of the flight control system of the aircraft compensates for the ground effect and reduces the lift of the aircraft 20, so that its weight of the air is transferred to the capture device gradually.
  • the aircraft 20 could descend to a fixed platform, by similar means (see Figures 8 and 9)
  • the aircraft 20 may be provided with a magnetic anchoring system in its landing gear. If so, as the landing platform 10 approaches, a magnetic field is generated by means of electromagnets arranged on the landing platform 10 that guide the landing gear of the aircraft to its optimum position, and once there, they capture it. In any case, the aircraft 20 may be immobilized by means of the technology that is considered most appropriate to the specific application for which the installation has been sized.
  • the aircraft 20 decreases the power of its propellant system and in a manner compatible with the aircraft remaining still, the flow rate is decreased until the air flow stops.
  • the aircraft has been perched on the landing platform 10 and the air flow stopped (Figure 10).
  • Laminar air flow generating system consistent and controlled, which in turn is composed of the following subsystems:
  • Air potential generator subsystem Battery of ten fans of one meter in diameter, arranged side by side in two rows of five. They move by an electric motor each. They have a rotation speed control circuit.
  • Laminar air flow generator subsystem which in turn consists of the following components:
  • Air flow control subsystem consisting of:
  • Sensors submerged in the laminar air stream pitot tubes and wind vanes. Said sensors are at the outlet of the laminar flow generator.
  • the pitot tubes measure the static and dynamic pressures of the air stream, which allows the calculation of the three components of their velocity, while the vanes measure the direction of the air flow in which they are submerged.
  • Air flow control logic which calculates the rotation speed of the electric motors, the opening angles of the discharge valves and the deflections of the master vanes according to the desired conditions of the air flow supplied by Ia interaction logic
  • Control software which implements the logic of air flow control in the form of computable control laws by an electronic system that supports sensor readings and produces control signals for actuators.
  • Control hardware shared by all the non-embarked installation 13, in the form of a computer with data acquisition cards.
  • Planning path generation subsystem consisting of:
  • Control software which implements the logic of generation of the planning path in the form of computable control laws by an electronic system that supports sensor readings and produces control signals for actuators.
  • Fixing device and electromagnetic anchor consisting of:
  • V Control system for the collection and immobilization of aircraft. It consists of:
  • Control software which implements the logic of movement of the articulated mechanism and the modulation of the magnetic field in the form of computable control laws by an electronic system that supports sensor readings and produces control signals for actuators.
  • Gasoil alternative motor type generator set electric current generator to power the entire unloaded system 13.
  • Control software which implements the logic of the flight control system in the form of computable control laws by an electronic system that supports sensor readings and produces control signals for actuators.
  • Control software which implements the logic modulation logic of the magnetic field in the form of computable control laws by an electronic system that supports sensor readings and produces control signals for actuators.
  • Approach flight control logic which provides a desired status vector to the flight control subsystem and the air flow control subsystem, so that both work in cooperation to control the aircraft, calculating: the rate of rotation of the electric motors of the fans, the opening angles of the discharge valves and the deflections of the master vanes of the air flow control subsystem; and the deflections of the control surfaces and the power demanded from the power plant of the aircraft to obtain the desired landing path.
  • Control software which implements the approach flight control logic in the form of computable control laws by an electronic system that supports sensor readings and produces control signals for actuators.
  • Control hardware shared by the entire installation not shipped 13. 4. Connections to the flight control (wireless) and air flow control (physical) subsystems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

Sistema para permitir que aeronaves convencionales de ala fija no preparadas puedan tomar tierra de forma segura en zonas no preparadas y de dimensiones muy reducidas, construyendo un volumen aerodinámico en el que pueden volar de forma controlada contra una corriente de aire coherente, siendo asistidas por un sistema que gobierna en colaboración, tanto los mecanismos de control de la corriente de aire como el sistema de control de vuelo automático de la aeronave.

Description

Sistema y método para asistir Ia toma de tierra sin pista de aeronaves convencionales de ala fija Sector técnico
La presente invención se engloba en los siguientes campos de Ia técnica: sector aeronáutico, sector aeroespacial, dispositivos de hipersustentación, sistemas de control automático de vuelo. Estado de Ia Técnica
Debido a que Ia toma de tierra de aeronaves entraña una situación de peligro, además de necesitar de Ia existencia de instalaciones adecuadas, a Io largo de los cien años de historia de Ia aviación práctica se han llevado a cabo invenciones y procedimientos destinados a asistir y facilitar Ia toma de tierra de las mismas de Ia forma más segura y menos costosa posible.
Aparte de Ia más usual solución de construir instalaciones aeroportuarias adecuadas y diseñar sistemas humanos o automáticos de asistencia al aterrizaje y despegue convencional y mejorar el control del tráfico aéreo, se lleva a cabo esfuerzo inventivo con el fin de obtener sistemas, procedimientos y dispositivos que permitan que una aeronave tome tierra en instalaciones más pequeñas o con menor acondicionamiento o, en el mejor de los casos, sin ningún tipo de acondicionamiento.
En ese sentido, se conocen algunos documentos de patente de dispositivos y procedimientos destinados a resolver el problema aeronáutico de Ia ayuda a Ia toma de tierra de aeronaves en pistas no preparadas o de longitud insuficiente.
Las que se citan y comentan a continuación, son las que parecen encontrarse más próximas a Ia solución presentada en Ia presente invención.
- Documento de patente EP0579508-A1 : Un dispositivo produce una corriente de aire horizontal incontrolada que, sumándose a Ia que incide sobre una aeronave en . aproximación a una pista convencional, frena a Ia aeronave, facilitando su aterrizaje en un espacio más corto.
Sin embargo el objetivo buscado en Ia presente invención no es generar una corriente de aire que frene Ia aeronave por oposición, sino ir sustituyendo de forma suave y controlada, el volumen de aire en el que se mueve Ia aeronave por otro cuyas características permanecen bajo el control de un sistema que las adecúa automáticamente a las condiciones de vuelo de Ia aeronave mediante Ia coordinación con el sistema de control de vuelo de Ia misma. De esta forma, Ia corriente de aire horizontal no es incontrolada, sino que mediante los correspondientes sistemas de control de flujo, se mantiene coherente y aeronavegable, de manera que una aeronave puede maniobrar en su seno manteniendo el control aerodinámico completo. El término coherente es un término físico aplicado en aerodinámica y en óptica láser que significa que el movimiento de todas las partículas es paralelo a Ia dirección general del flujo.
- Documentos de patente US4,700,912 y US2007/0029442-A1 : Un dispositivo captura Ia aeronave en un colchón de aire que Ia sostiene desde abajo como en una bandeja y Ia deposita sobre una cierta superficie.
Sin embargo el objetivo buscado en Ia presente invención no es sostener Ia aeronave desde abajo mediante Ia inyección de un chorro de aire que sea capaz de mantenerla suspendida a causa de su resistencia aerodinámica, sino proporcionar un volumen de aire en el que Ia aeronave pueda volar a punto fijo de acuerdo a los principios aerodinámicos para los que ha sido diseñada.
Adicionalmente, Ia presente invención presenta un enfoque más sencillo y basado en dispositivos de menor coste y mayor portabilidad, de manera que pueden ser desplazados con facilidad a zonas no acondicionadas en las que resulte deseable disponer de puntos de aterrizaje de aeronaves. Por otro lado, Ia presente invención es de mayor facilidad de realización y propone Ia construcción de sistemas e instalaciones en los que las aeronaves evolucionan de acuerdo a sus principios de diseño sin verse obligadas a volar contra un vendaval incontrolado o a sostenerse cabalgando sobre un chorro de aire vertical, presentando ambas situaciones un peligro intrínseco elevado.
Descripción de Ia invención
La invención se refiere a un sistema para asistir Ia toma de tierra sin pista de aeronaves convencionales de ala fija de acuerdo con Ia reivindicación 1 y a un método de acuerdo con Ia reivindicación 12. Realizaciones preferidas del sistema se definen en las reivindicaciones dependientes.
El sistema comprende:
- una instalación no embarcada que a su vez comprende:
• medios de generación de potencial de aire, encargados de proporcionar aire a unos medios de generación de flujo de aire laminar en unas condiciones de presión y caudal regulables; • medios de generación de flujo de aire laminar, encargados de generar una corriente de aire laminar a partir del aire suministrado por los medios de generación de potencial de aire;
• medios de control de flujo de aire encargados de controlar los medios de generación de potencial de aire y de los medios de generación de flujo de aire laminar para obtener una corriente de aire laminar controlada;
• medios de comunicación con Ia aeronave encargados de:
- comunicar al sistema de control de vuelo de Ia aeronave información sobre las condiciones de Ia corriente de aire laminar generada. Se transmite el módulo de Ia velocidad del aire generado y sus ángulos de orientación sobre un sistema de referencia global, todo ello en diversos puntos de Ia corriente generada, así como Ia presión estática y Ia temperatura en el entorno de Ia instalación no embarcada. El sistema de control de vuelo de Ia aeronave utiliza esta información para calcular automáticamente el comando de Ia misma;
- recibir del sistema de control de vuelo de Ia aeronave información sobre las condiciones del vuelo en Ia aproximación de Ia aeronave y comunicarlas a los medios de control de flujo de aire;
• medios de generación de trayectoria, encargados de calcular y proporcionar a Ia aeronave, a través de los medios de comunicación, una trayectoria a seguir por Ia aeronave para guiarla a una zona de recogida. Los medios de generación de trayectoria calculan una senda de planeo que guía a Ia aeronave hasta Ia zona de recogida. Ésta se calcula de forma dinámica a partir del caudal de aire generado (sección y velocidad) y de su dirección en el espacio;
• medios de recogida e inmovilizado de aeronaves, encargados de inmovilizar Ia aeronave en Ia zona de recogida, una vez Ia aeronave ha alcanzado dicha zona de recogida;
Los medios de control de flujo de aire están configurados para obtener Ia corriente de aire laminar controlada con las condiciones adecuadas para mantener Ia aeronavegabilidad de Ia aeronave en función de sus condiciones de aproximación. Las condiciones de aproximación se obtienen mediante Ia comunicación con Ia aeronave y mediante los sensores de posición y actitud de Ia aeronave de Ia instalación no embarcada. Unos parámetros se obtienen de los sensores de Ia instalación no embarcada y otros son comunicados por el sistema de control de Ia aeronave. Los medios de generación de flujo de aire laminar comprenden preferentemente:
- una cámara de remanso encargada de contener un determinado volumen de aire en las condiciones termodinámicas proporcionadas por los medios de generación de potencial de aire;
- al menos una válvula de purga encargada de, cuando es activada, aliviar Ia presión de Ia cámara de remanso para obtener las condiciones termodinámicas adecuadas;
- al menos una tobera encargada de intercambiar las condiciones termodinámicas del aire contenido en Ia cámara de remanso por las necesarias para constituir una corriente de aire laminar de sección adecuada a Ia aeronave;
- una pluralidad de alabes directores horizontales y verticales encargados de variar Ia dirección de Ia corriente de aire laminar generada para efectuar un control lateral y vertical, respectivamente, de dicha corriente de aire.
Los medios de control de flujo de aire comprenden preferentemente:
- medios sensores encargados de obtener las condiciones de Ia corriente de aire laminar y el estado de los medios de generación de potencial de aire y de los medios de generación de flujo de aire laminar. El control de Ia corriente de aire se hace mediante un sistema que tiene en cuenta el estado de Ia propia máquina, además del valor de los parámetros de Ia corriente producida;
- medios de control configurados para gobernar los medios de generación de potencial de aire y de los medios de generación de flujo de aire laminar en función de unas señales de control;
- medios de procesamiento de datos encargados de generar dichas señales de control en función de Ia información suministrada por los medios sensores y de las condiciones de aproximación de Ia aeronave.
Los medios de recogida e inmovilizado de aeronaves comprenden preferentemente:
- una plataforma de aterrizaje elevable mediante un mecanismo articulado; - medios de elevación de Ia plataforma de aterrizaje encargados de elevar Ia plataforma de aterrizaje y aproximarla a Ia aeronave cuando ésta se encuentra en Ia zona de recogida;
- dispositivo de fijación y anclaje encargado de inmovilizar Ia aeronave en Ia zona de recogida, pudiendo comprender dicho dispositivo una batería de electroimanes dispuestos en Ia plataforma de aterrizaje; - medios sensores encargados de establecer Ia posición del dispositivo de fijación y anclaje y Ia posición de Ia aeronave;
- unidad de control configurada para controlar los medios de elevación de Ia plataforma de aterrizaje y Ia actuación del dispositivo de fijación y anclaje en función de Ia posición de Ia aeronave.
Los medios de generación de trayectoria pueden comprender una primera unidad GPS -no de forma exclusiva, ya que dichos medios podrían basarse por ejemplo en un radar- en Ia instalación no embarcada y medios de procesamiento de datos configurados para:
- recibir Ia posición GPS de Ia primera unidad GPS;
- recibir Ia posición GPS de Ia aeronave proveniente de una segunda unidad GPS embarcada;
- recibir Ia altura de Ia aeronave proveniente de un altímetro embarcado en Ia misma;
- generar Ia trayectoria en función de, al menos:
• las lecturas de Ia primera y segunda unidad GPS;
• Ia lectura del altímetro embarcado;
• Ia lectura de sensores de aire embarcados y no embarcados. Los sensores de aire son un conjunto estándar de aparatos de medida en aerodinámica. Pueden concretarse en diversos dispositivos, pero todos aportan conocimiento de Ia presión dinámica y estática y su dirección respecto a un sistema de referencia global de Ia corriente de aire que rodea Ia aeronave o que es producida por el sistema generador de aire.
El sistema comprende preferiblemente una plataforma encargada de dar soporte a Ia instalación no embarcada.
Las condiciones de aproximación comprenden al menos:
- velocidad de Ia aeronave;
- posición de Ia aeronave;
- deflexión de sus superficies de control (alerones, timón de profundidad, de dirección, flaps, slats, spoilers).
En una realización preferida el sistema comprende también una instalación embarcada en Ia aeronave que a su vez comprende:
- un sistema de control de vuelo encargado de: recibir, de Ia instalación no embarcada, información sobre las condiciones de Ia corriente de aire laminar generada y Ia trayectoria a seguir por Ia aeronave para llegar a Ia zona de recogida;
gobernar Ia aeronave en función de, al menos, dicha información recibida,
• enviar a Ia instalación no embarcada información sobre las condiciones del vuelo en Ia aproximación de Ia aeronave.
La instalación embarcada en Ia aeronave puede comprender adicionalmente medios de inmovilización y anclaje compatibles con los medios de recogida e inmovilizado de aeronaves de Ia instalación no embarcada, para inmovilizar conjuntamente Ia aeronave en Ia zona de recogida.
Los medios de inmovilización y anclaje de Ia instalación embarcada en Ia aeronave pueden comprender:
- un tren de aterrizaje compatible con los medios de recogida e inmovilizado de aeronaves de Ia instalación no embarcada;
- una batería de electroimanes compatibles geométricamente con los electroimanes de los medios de recogida e inmovilizado de aeronaves de Ia instalación no embarcada;
- una unidad de control encarga de controlar Ia intensidad de Ia corriente eléctrica que alimenta Ia batería de electroimanes de Ia aeronave en función de Ia posición de Ia aeronave durante Ia maniobra de guiado.
Por otro lado, otro aspecto de Ia invención es proporcionar un método para asistir Ia toma de tierra sin pista de aeronaves convencionales de ala fija. El método comprende:
- generar, una instalación no embarcada, una corriente de aire laminar regulable dirigida en contra del avance de Ia aeronave;
- proporcionar, de manera periódica, Ia instalación no embarcada a Ia aeronave una trayectoria a seguir para guiarla a una zona de recogida;
- obtener Ia instalación no embarcada las condiciones de aproximación de Ia aeronave. Las condiciones de aproximación son Ia posición y ángulos respecto a un sistema de referencia global, Ia velocidad también referida al sistema de referencia, las deflexiones de las superficies de control y el régimen del motor;
- controlar, en función de las condiciones de aproximación de Ia aeronave, Ia corriente de aire laminar con las condiciones adecuadas para mantener Ia aeronavegabilidad de Ia aeronave; - inmovilizar, mediante unos medios de recogida e inmovilizado de aeronaves, Ia aeronave en Ia zona de recogida, una vez Ia aeronave ha alcanzado dicha zona de recogida. Breve descripción de los dibujos
La Figura 1 muestra, de manera esquemática, proyecciones rectas de Ia instalación no embarcada.
La Figura 2 representa, de manera esquemática, proyecciones cónicas de Ia instalación no embarcada.
Las Figuras 3 a 10 muestran de manera ilustrativa el proceso con el que se opera el sistema:
La Figura 3 muestra el Paso 1 : ejecución de los protocolos de arranque y funcionamiento estacionario.
La Figura 4 muestra los Pasos 2 y 3: Comunicación con Ia aeronave y encendido del ILS para establecer Ia senda de descenso más apropiada.
La Figura 5 representa, dentro del Paso 4: La aeronave se aproxima al dispositivo de captura siguiendo Ia senda de aterrizaje establecida por el ILS y va reduciendo su velocidad respecto al suelo.
La Figura 6 muestra, dentro del Paso 4: Los sensores del dispositivo de captura realimentan Ia posición y Ia actitud exacta de Ia aeronave al sistema de control de caudal, que lleva a cabo un posicionamiento preciso de Ia aeronave sobre el área de recogida.
La Figura 7 representa, dentro del Paso 4: La aeronave es detenida respecto al suelo, volando contra Ia corriente, mientras mantiene íntegro su control aerodinámico y propulsivo.
La Figura 8 muestra, dentro del Paso 5: El dispositivo de recogida es aproximado a Ia aeronave.
La Figura 9 muestra, dentro del Paso 5: La aeronave queda posicionada, anclada y orientada mediante un sistema mecánico o electromagnético.
La Figura 10 muestra el Paso 6: Se detienen coordinadamente el flujo de aire y
Ia fuerza propulsiva y se puede acceder a Ia aeronave o desembarcar de ella.
Descripción de una realización preferida de Ia invención
Se presenta un sistema de ayuda al aterrizaje sin pista de aeronaves de ala fija y para su proceso de operación asociado. Este sistema permite que una aeronave convencional tome tierra en un área pequeña y sin preparar, mediante Ia generación de una corriente de aire de baja turbulencia y alta coherencia que Ia permite volar y maniobrar de forma controlada y de acuerdo a los principios aerodinámicos para los que ha sido diseñada. Las condiciones de esa corriente se controlan mediante un sistema que se comunica con el sistema de control de vuelo de Ia aeronave, de modo que ambos se coordinan para hacer que ésta siga una trayectoria que Ia introduzca suavemente en Ia corriente de aire y acompase su velocidad y Ia deflexión de sus superficies de control a las condiciones de Ia corriente de aire, que a su vez, se van haciendo variar hasta que Ia aeronave se detiene.
Este sistema puede utilizarse en instalaciones fijas para aeronaves de pequeña envergadura (Figuras de 1 a 10), en instalaciones móviles para recuperación de pequeñas aeronaves no tripuladas, en instalaciones fijas para aeronaves comerciales, o en instalaciones embarcadas en navios para aeronaves navales militares, a modo de ejemplos, aplicando criterios de escalado y adecuación de potencia, pero respetándose Ia filosofía de Ia invención.
El sistema objeto de Ia invención está compuesto por los siguientes elementos: a) Instalación no embarcada (esto es, no presente en Ia aeronave).
b) Instalación embarcada (en Ia aeronave).
c) Lógica de interacción.
Se describen a continuación cada uno de los elementos, sus funciones y Ia relación existente entre ellos.
a) Instalación no embarcada
Se define Ia instalación no embarcada 13 como el conjunto de componentes que no residen en Ia aeronave y su disposición ordenada en un área de terreno (no necesariamente acondicionado para Ia toma de tierra de aeronaves). Las Figuras 1 y 2 representan, de manera esquemática, Ia instalación no embarcada 13, soportada en una plataforma 1 fijada a tierra o a un vehículo, que dispone de los siguientes elementos o subsistemas:
1. Sistema generador de caudal de aire laminar, coherente y controlado, que a su vez se compone de los siguientes subsistemas:
I. Subsistema generador de potencial de aire. Este subsistema tiene Ia función de proporcionar aire a una cámara de remanso 6 en las condiciones de presión y caudal necesarias para ser convertido en una corriente laminar de Ia sección adecuada para Ia aplicación concreta de Ia instalación. A modo de ejemplos, puede consistir en una batería de ventiladores 4 y 5, o -para una aplicación de mayor tamaño- en una instalación de turborreactores con inyección de agua en Ia tobera de salida para enfriar el aire.
II. Subsistema generador del flujo de aire laminar, cuya función es transformar el aire producido por el subsistema generador de potencial de aire en una corriente laminar y no turbulenta de Ia sección adecuada a Ia aplicación concreta de Ia instalación. Para ello, consta de los siguientes componentes:
• Cámara de remanso 6, cuya función es contener un cierto volumen de aire en las condiciones termodinámicas proporcionadas por el subsistema generador de potencial de aire.
• Válvulas de purga 7 para el control rápido del caudal de aire, cuya función es aliviar Ia presión de Ia cámara de remanso 6 cuando sea necesario para obtener las condiciones termodinámicas adecuadas.
• Tobera de Ia cámara de remanso 6, cuya función es intercambiar las condiciones termodinámicas del aire contenido en Ia cámara de remanso por las necesarias para constituir una corriente laminar y coherente de Ia sección adecuada para Ia aplicación concreta de Ia instalación.
• Alabes directores horizontales 8 y verticales 9, cuya función es variar Ia dirección de Ia corriente de aire generada, para el control lateral y vertical de Ia corriente de aire, respectivamente. III. Subsistema o medios de control de flujo de aire 2, cuya función es gobernar los mecanismos de control de Ia corriente de aire para garantizar que ésta tiene las condiciones de velocidad, sección, longitud y turbulencia adecuadas para mantener Ia aeronavegabilidad de las aeronaves para las que ha sido diseñada Ia instalación. Los medios de control de flujo de aire están configurados pues para obtener Ia corriente de aire laminar controlada con las condiciones adecuadas para mantener Ia aeronavegabilidad de Ia aeronave en función de sus condiciones de aproximación. Las condiciones de aproximación se obtienen mediante Ia comunicación con Ia aeronave y mediante los sensores 12 de posición y actitud de Ia aeronave de Ia instalación no embarcada. Estos sensores 12 de posición y actitud de Ia aeronave pueden estar basados en varias tecnologías, por ejemplo un radar o una cámara con un sistema de procesamiento de imágenes. Este subsistema se compone de:
• Sensores, cuya función es proporcionar al subsistema de control
Ia información sobre el estado de las diferentes partes del sistema generador de caudal de aire laminar para que pueda calcular las señales de control de cada uno de los mecanismos de control.
• Mecanismos de control, cuya función es gobernar cada uno de los subsistemas y componentes para obtener las condiciones deseadas del flujo de aire.
• Leyes de control, cuya función es calcular, a partir de Ia información suministrada por los sensores y por Ia lógica de interacción, las señales de control de cada uno de los mecanismos de control del sistema generador de caudal de aire laminar. Estas leyes de control se implementan en forma de un software de control.
• Software de control, cuya función es implementar las leyes de control en forma de un código ejecutable en el hardware apropiado.
• Hardware de control, cuya función es albergar el software de control del subsistema de control de flujo de aire y todos los periféricos necesarios para hacer posible su funcionamiento Parte no embarcada del subsistema de comunicación con el subsistema de control vuelo, cuya función es comunicar al sistema de control de vuelo Ia información sobre las condiciones de Ia corriente de aire generada por el sistema generador de caudal de aire laminar y comunicar al subsistema de control de flujo de aire 2 Ia información sobre Ia actitud y posición de Ia aeronave. La actitud es un término empleado en aerodinámica para referirse a Ia orientación espacial de Ia aeronave respecto a un cierto sistema de referencia. La parte no embarcada se compone de:
I. Antena no embarcada.
II. Hardware necesario.
III. Software de comunicaciones. 3. Sistema de generación de senda de planeo 3, cuya función es calcular y proporcionar a Ia aeronave una trayectoria que Ia conduzca de forma segura desde el punto de inicio de maniobra hasta el punto de recogida. Este sistema puede materializarse de diversas formas y sobre diversas tecnologías, según sea Ia estrategia de elaboración y seguimiento de senda de planeo que se quiera adoptar. Un ILS (Instrumental Landing System) convencional es uno de los posibles sistemas de generación de senda de planeo que se pueden integrar en Ia instalación no embarcada 13, a modo de ejemplo.
4. Sistema de recogida e inmovilizado de las aeronaves, cuya función es capturar e inmovilizar Ia aeronave en el momento en que ésta se haya detenida respecto al suelo, pero volando de forma controlada respecto a Ia corriente de aire suministrada por el sistema generador de caudal de aire laminar. Este sistema consta, en una realización preferida, de los siguientes componentes:
I. Estructura solidaria con el suelo.
II. Mecanismo articulado cuya función es aproximar el dispositivo de fijación a Ia aeronave siguiendo una trayectoria que no Ia ponga en peligro.
III. Motores que permitan el movimiento y posicionamiento preciso del mecanismo articulado.
IV. Dispositivo de fijación y anclaje cuya función es capturar e inmovilizar
Ia aeronave. Este dispositivo puede construirse de acuerdo a varias posibles tecnologías.
V. Sensores cuya función es establecer con precisión Ia posición del dispositivo de fijación y anclaje y de Ia aeronave.
VI. Sistema de control del sistema de recogida e inmovilizado de las aeronaves, cuya función es gobernar los motores que permiten el movimiento y posicionamiento preciso del mecanismo articulado y Ia actuación del dispositivo de fijación y anclaje. Este sistema de control se implementa en forma de un software de control.
VII. Hardware de control, cuya función es albergar el software de control del sistema de recogida e inmovilizado de las aeronaves y todos los periféricos necesarios para hacer posible su funcionamiento. b) Instalación embarcada
Se define Ia instalación embarcada como el conjunto de componentes que residen en Ia aeronave para que ésta pueda utilizar de forma segura Ia instalación objeto de esta descripción detallada. Estos son:
1. Sistema de control de vuelo, cuya función es gobernar automáticamente Ia aeronave, calculando las deflexiones correctas de sus superficies de mando -deflexiones son los ángulos girados por las superficies de mando que, a su vez, son los alerones, flaps, slats, estabilizador horizontal y timón- y el empuje (o Ia tracción) de su planta motriz en todo momento y en todos los puntos de Ia senda de planeo (trayectoria seguida por Ia aeronave).
Este sistema de control de vuelo presenta, como diferencia con los existentes, que actúa en colaboración con el subsistema de control de flujo de aire de Ia instalación no embarcada 13 para gobernar Ia aeronave de forma segura en el seno de Ia corriente de aire generada por Ia citada instalación. Este sistema se compone de:
I. Sistema de control de vuelo convencional, cuya materialización depende de Ia tecnología y estrategia de control seguida.
II. Parte embarcada del subsistema de comunicación con el subsistema de control de flujo de aire, cuya función es comunicar al subsistema de control de flujo de aire Ia información sobre Ia actitud y posición de
Ia aeronave y comunicar al sistema de control de vuelo Ia información sobre las condiciones de Ia corriente de aire generada por el sistema generador de caudal de aire laminar. Se compone de:
• Antena embarcada.
• Hardware necesario.
• Software de comunicaciones.
2. Subsistema embarcado de posicionamiento, inmovilización y anclaje compatible con el sistema de recogida e inmovilizado de las aeronaves de
Ia instalación no embarcada 13. Este subsistema, del mismo modo que el de Ia instalación no embarcada 13 puede materializarse de distintas formas en función de Ia tecnología o estrategia seleccionada.
c) Lógica de interacción
La lógica de interacción es Ia que relaciona el funcionamiento coordinado de los tres sistemas de control descritos en los apartados anteriores (sistema de control de vuelo de Ia aeronave, sistema de control de los medios de recogida e inmovilizado de aeronaves y sistema de control del flujo de aire). Actúa proporcionando las instrucciones que deben cumplir cada uno de los sistemas de control de modo que se consiga Ia operación controlada y segura de Ia aeronave en el seno del aire producido por el sistema generador de caudal de aire laminar. Físicamente, esta lógica está implementada en forma de las leyes de control de un software de control en las que las entradas son las condiciones medidas de Ia comente de aire, las variables de estado del sistema de control de Ia aeronave y las posiciones relativas lineales y angulares del sistema de recogida e inmovilizado de las aeronaves; y las salidas son las trayectorias de estado deseadas de los tres sistemas de control.
Aunque se han descrito por separado, tanto el software de control como el hardware necesario (no embarcado) pueden implementarse en el seno de un único sistema de control.
d) Proceso de operación:
Para proporcionar una idea más clara de Ia invención, se describe a continuación el protocolo de operación del sistema.
- Paso 1 :
Ejecución de los protocolos de puesta en marcha del generador de caudal y calibrado de los sensores (según se muestra en Ia Figura 3).
- Paso 2:
Establecimiento de comunicación entre el sistema de control del generador de flujo de aire y el sistema de control de vuelo de Ia aeronave.
- Paso 3:
Activación del sistema de aterrizaje instrumental para proporcionar una senda de aterrizaje que intercepte el flujo de aire producido por el generador de caudal (ver Figura 4). El sistema de control embarcado de Ia aeronave por su parte, reduce su velocidad hasta Ia velocidad operacional mínima, que es siempre superior a Ia de entrada en pérdida.
- Paso 4:
La aeronave 20 sigue Ia senda de planeo y se sumerge poco a poco en el flujo de aire frontal opuesto a su sentido de vuelo. La aeronave 20 se va frenando hasta que queda volando a punto fijo respecto al suelo, pero con velocidad mínima operacional respecto a Ia corriente de aire generada por el dispositivo de captura. Al mismo tiempo, de forma coordinada, el sistema de control del flujo, gobierna el caudal producido por el generador de aire mediante su velocidad de giro, las válvulas de purga 7 de Ia cámara de remanso 6 y los alabes directores horizontales 8 y verticales 9 que orientan Ia corriente de aire, corrigiendo las desviaciones de Ia posición y actitud de Ia aeronave 20 respecto al vuelo estacionario (ver Figuras 5, 6 y 7).
- Paso 5:
El mecanismo articulado 11 del subsistema de recogida e inmovilizado se aproxima a Ia aeronave 20 manteniéndose siempre su superficie de contacto paralela al flujo de aire, y se encuentra con el tren de aterrizaje de Ia aeronave 20. El efecto combinado del sistema de control del flujo y del sistema de control de vuelo de Ia aeronave, compensa el efecto suelo y reduce Ia sustentación de Ia aeronave 20, de manera que va transfiriéndose su peso del aire al dispositivo de captura de forma gradual. Alternativamente, Ia aeronave 20 podría descender hacia una plataforma fija, por medios semejantes (ver Figuras 8 y 9)
La aeronave 20 puede estar dotada de un sistema de anclado magnético en su tren de aterrizaje. Si es así, al irse aproximando Ia plataforma de aterrizaje 10, se genera un campo magnético mediante unos electroimanes dispuestos en Ia plataforma de aterrizaje 10 que guían el tren de aterrizaje de Ia aeronave hasta su posición óptima, y una vez allí, Io capturan. En todo caso, Ia aeronave 20 se podrá inmovilizar mediante Ia tecnología que se considere más adecuada a Ia aplicación concreta para Ia que haya sido dimensionada Ia instalación.
- Paso 6:
La aeronave 20 va disminuyendo Ia potencia de su sistema propulsor y de forma compatible con que el avión permanezca quieto, se disminuye el caudal hasta que se para Ia corriente de aire. La aeronave ha quedado posada en Ia plataforma de aterrizaje 10 y el flujo de aire, detenido (Figura 10).
Se describe a continuación un modo de realización de Ia invención, aplicado a una instalación para asistir Ia toma de tierra de aeronaves no tripuladas de menos de cinco metros de envergadura. Se caracterizan los elementos constitutivos del sistema más característicos.
a) Instalación no embarcada 13
Se compone de los siguientes subsistemas y dispositivos, de acuerdo a Ia arquitectura general propuesta:
1. Sistema generador de caudal de aire laminar, coherente y controlado, que a su vez se compone de los siguientes subsistemas:
I. Subsistema generador de potencial de aire Batería de diez ventiladores de un metro de diámetro, dispuestos lado a lado en dos filas de cinco. Se mueven por un motor eléctrico cada uno. Cuentan con un circuito de control de régimen de giro.
II. Subsistema generador del flujo de aire laminar, que a su vez se compone de los siguientes componentes:
• Cámara de remanso única, de sección rectangular. Con sensores de presión y temperatura.
• Cuatro válvulas de purga, situadas cada una en una de las paredes de Ia cámara de remanso. Accionadas por actuadores eléctricos. Con sensores de ángulo de apertura.
• Tobera, horizontal, de sección rectangular.
• Batería de alabes directores horizontales y verticales, planos, accionados por actuadores eléctricos, con sensores de ángulo deflectado horizontal y vertical.
III. Subsistema de control de flujo de aire, compuesto por:
• Sensores sumergidos en Ia corriente de aire laminar: tubos de pitot y veletas. Dichos sensores están a Ia salida del generador de flujo laminar. Los tubos de pitot miden las presiones estática y dinámica de Ia corriente de aire, Io que permite el cálculo de las tres componentes de su velocidad, mientras que las veletas miden Ia dirección del flujo de aire en el que están sumergidas.
• Lógica de control del flujo de aire, que calcula el régimen de giro de los motores eléctricos, los ángulos de apertura de las válvulas de descarga y las deflexiones de los alabes directores en función de las condiciones deseadas de Ia corriente de aire suministradas por Ia lógica de interacción.
• Software de control, que implementa Ia lógica de control del flujo de aire en forma de leyes de control computables por un sistema electrónico que admite las lecturas de los sensores y produce señales de control para los actuadores.
• Hardware de control, compartido por toda Ia instalación no embarcada 13, en forma de computador con tarjetas de adquisición de datos.
2. Parte no embarcada del subsistema de comunicación con el subsistema de control vuelo. Se compone de: I. Antena no embarcada, de dimensiones y geometría adecuadas.
II. Software de comunicaciones.
III. Hardware necesario, compartido con toda Ia instalación no embarcada 13.
3. Subsistema de generación de senda de planeo, compuesto por:
I. GPS Diferencial. Una unidad GPS situada en Ia salida de Ia tobera del subsistema generador del flujo de aire laminar y otra unidad gemela embarcada en Ia aeronave.
II. Lógica de generación de Ia senda de planeo, que calcula cada punto de Ia misma en función de las lecturas de los GPS's, de los sensores de aire embarcados y no embarcados y del altímetro de ultrasonidos embarcado.
III. Software de control, que implementa Ia lógica de generación de Ia senda de planeo en forma de leyes de control computables por un sistema electrónico que admite las lecturas de los sensores y produce señales de control para los actuadores.
IV. Hardware de control, compartido por toda Ia instalación no embarcada 13.
4. Subsistema de recogida e inmovilizado de las aeronaves, que consta de los siguientes componentes diferenciadores:
I. Estructura solidaria con el suelo.
II. Mecanismo articulado, en forma de plataforma (plataforma de aterrizaje 10), con sensores de posición.
III. Motores que permiten el movimiento y posicionamiento preciso del mecanismo articulado, eléctricos con sensores de desplazamiento.
IV. Dispositivo de fijación y anclaje electromagnético, formado por:
• Batería de electroimanes dispuestos en los puntos de contacto del tren de aterrizaje de Ia aeronave con Ia plataforma de aterrizaje 10 del mecanismo articulado.
V. Sistema de control del sistema de recogida e inmovilizado de las aeronaves. Se compone de:
• Lógica de movimiento del mecanismo articulado que gobierna Ia posición vertical de Ia plataforma de aterrizaje 10 de recogida de Ia aeronave en función de Ia posición de Ia aeronave en cada momento de Ia maniobra de guiado, fijación y anclaje. • Lógica de modulación del campo magnético que gobierna Ia intensidad de corriente eléctrica que alimenta los electroimanes en función de Ia posición de Ia aeronave en cada momento de Ia maniobra de guiado, fijación y anclaje.
• Software de control, que implementa las lógicas de movimiento del mecanismo articulado y Ia de modulación del campo magnético en forma de leyes de control computables por un sistema electrónico que admite las lecturas de los sensores y produce señales de control para los actuadores.
• Hardware de control, compartido por toda Ia instalación no embarcada 13.
5. Grupo electrógeno de tipo motor alternativo de gasoil, generador de corriente eléctrica para alimentar toda Ia instalación no embarcada 13.
6. Equipamiento de seguridad y señalización necesario.
7. Todos los componentes mecánicos, químicos y electrónicos necesarios para Ia correcta materialización y operación conjunta de todos los elementos diferenciadores descritos,
b) Instalación embarcada
Se compone de los siguientes subsistemas y dispositivos, de acuerdo a Ia arquitectura general propuesta:
1. Subsistema de control de vuelo
I. Lógica que gobierna Ia dinámica de Ia aeronave, calculando en cada momento el vector de control en función de las lecturas de los sensores y del vector de estado demandado por el piloto de Ia aeronave, por el sistema de navegación o por Ia lógica de interacción.
II. Software de control, que implementa Ia lógica del sistema de control de vuelo en forma de leyes de control computables por un sistema electrónico que admite las lecturas de los sensores y produce señales de control para los actuadores.
III. Hardware de control, compartido por toda Ia instalación no embarcada
13.
2. Parte embarcada del subsistema de comunicación con el subsistema de control de flujo de aire, que se compone de:
I. Antena embarcada, de dimensiones y geometría adecuadas. II. Software de comunicaciones. III. Hardware necesario, compartido con toda Ia instalación embarcada.
3. Subsistema embarcado de posicionamiento, inmovilización y anclaje compatible con el sistema de recogida e inmovilizado de las aeronaves de Ia instalación no embarcada 13. Se compone de:
I. Tren de aterrizaje compatible con el sistema de recogida e inmovilizado de las aeronaves de Ia instalación no embarcada 13.
II. Batería de electroimanes compatible geométricamente con los del sistema de recogida e inmovilizado de las aeronaves de Ia instalación no embarcada.
III. Lógica de modulación del campo magnético que gobierna Ia intensidad de corriente eléctrica que alimenta los electroimanes en función de Ia posición de Ia aeronave en cada momento de Ia maniobra de guiado, fijación y anclaje.
IV. Software de control, que implementa Ia lógica de modulación del campo magnético en forma de leyes de control computables por un sistema electrónico que admite las lecturas de los sensores y produce señales de control para los actuadores.
V. Hardware de control, compartido por toda Ia instalación embarcada, c) Lógica de interacción
Se implementa de Ia siguiente manera, de acuerdo a Ia arquitectura general propuesta:
1. Lógica de control del vuelo de aproximación, que proporciona un vector de estado deseado al subsistema de control de vuelo y al subsistema de control de flujo de aire, de modo que ambos trabajen en cooperación para controlar Ia aeronave, calculando: el régimen de giro de los motores eléctricos de los ventiladores, los ángulos de apertura de las válvulas de descarga y las deflexiones de los alabes directores del subsistema de control de flujo de aire; y las deflexiones de las superficies de control y Ia potencia demandada a Ia planta motriz de Ia aeronave para obtenerse Ia trayectoria de aterrizaje deseada.
2. Software de control, que implementa Ia lógica de control del vuelo de aproximación en forma de leyes de control computables por un sistema electrónico que admite las lecturas de los sensores y produce señales de control para los actuadores.
3. Hardware de control, compartido por toda Ia instalación no embarcada 13. 4. Conexiones a los subsistemas de control de vuelo (inalámbrico) y de control de flujo de aire (físico).

Claims

Reivindicaciones
1. Sistema para asistir Ia toma de tierra sin pista de aeronaves (20) convencionales de ala fija, comprendiendo dicho sistema:
a) una instalación no embarcada (13) que a su vez comprende:
• medios de generación de potencial de aire (4,5), encargados de proporcionar aire a unos medios de generación de flujo de aire laminar en unas condiciones de presión y caudal regulables;
• medios de generación de flujo de aire laminar, encargados de generar una corriente de aire laminar a partir del aire suministrado por los medios de generación de potencial de aire;
caracterizado por que Ia instalación no embarcada (13) comprende adicionalmente:
• medios de control de flujo de aire (2) encargados de controlar los medios de generación de potencial de aire y de los medios de generación de flujo de aire laminar para obtener una corriente de aire laminar controlada;
• medios de comunicación con Ia aeronave (20) encargados de:
- comunicar al sistema de control de vuelo de Ia aeronave (20) información sobre las condiciones de Ia corriente de aire laminar generada;
- recibir del sistema de control de vuelo de Ia aeronave (20) información sobre las condiciones del vuelo en Ia aproximación de Ia aeronave (20) y comunicarlas a los medios de control de flujo de aire (2);
• medios de generación de trayectoria (3), encargados de calcular y proporcionar a Ia aeronave (20), a través de los medios de comunicación, una trayectoria a seguir por Ia aeronave (20) para guiarla a una zona de recogida;
• medios de recogida e inmovilizado de aeronaves (10,11), encargados de inmovilizar Ia aeronave (20) en Ia zona de recogida, una vez Ia aeronave ha alcanzado dicha zona de recogida;
por que los medios de control de flujo de aire (2) están configurados para obtener Ia corriente de aire laminar controlada con las condiciones adecuadas para mantener Ia aeronavegabilidad de Ia aeronave (20) en tiempo real, de forma colaborativa con el sistema de control de vuelo de Ia aeronave y con una lógica de interacción, en función de sus condiciones de aproximación, de las de Ia propia corriente generada y del cálculo de Ia trayectoria por el hardware de control que alojan Ia lógica de interacción; y por que el sistema comprende adicionalmente: b) una instalación embarcada en Ia aeronave (20) que a su vez comprende:
- un sistema de control de vuelo encargado de:
• recibir, de Ia instalación no embarcada (13), información sobre las condiciones de Ia corriente de aire laminar generada y Ia trayectoria a seguir por Ia aeronave (20) para llegar a Ia zona de recogida;
• recibir, del hardware de control que aloja Ia lógica de interacción, Ia estrategia de control que defina el gobierno de Ia aeronave;
• gobernar Ia aeronave (20) en función de, al menos, dicha información recibida;
• enviar a Ia instalación no embarcada (13) información sobre las condiciones del vuelo en Ia aproximación de Ia aeronave (20);
• enviar, a los medios de computación que alojan Ia lógica de interacción información sobre las condiciones del vuelo en Ia aproximación de Ia aeronave (20);
c) Una lógica de interacción alojada en un hardware de control, implementada en forma de las leyes de control de un software de control, encargada de:
- coordinar los subsistemas de control de vuelo y de control de flujo de aire para que trabajen en cooperación para controlar Ia aeronave;
- relacionar el funcionamiento coordinado del sistema de control de vuelo de Ia aeronave, del sistema de control de los medios de recogida e inmovilizado de aeronaves y de los medios de control del flujo de aire;
- actuar proporcionando las instrucciones que deben cumplir cada uno de los sistemas de control de modo que se consiga Ia operación controlada y segura de Ia aeronave en el seno del aire producido por el sistema generador de caudal de aire laminar.
2. Sistema según Ia reivindicación 1 , caracterizado porque los medios de generación de flujo de aire laminar comprenden:
- una cámara de remanso (6) encargada de contener un determinado volumen de aire en las condiciones termodinámicas proporcionadas por los medios de generación de potencial de aire; - al menos una válvula de purga (7) encargada de, cuando es activada, aliviar Ia presión de Ia cámara de remanso (6) para obtener las condiciones termodinámicas adecuadas;
- al menos una tobera encargada de intercambiar las condiciones termodinámicas del aire contenido en Ia cámara de remanso (6) por las necesarias para constituir una corriente de aire laminar de sección adecuada a Ia aeronave (20);
- una pluralidad de alabes directores horizontales (8) y verticales (9) encargados de variar Ia dirección de Ia corriente de aire laminar generada para efectuar un control lateral y vertical, respectivamente, de dicha corriente de aire.
3. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque los medios de control de flujo de aire comprenden:
- medios sensores encargados de obtener las condiciones de Ia corriente de aire laminar y el estado de los medios de generación de potencial de aire y de los medios de generación de flujo de aire laminar;
- medios de control configurados para gobernar los medios de generación de potencial de aire y de los medios de generación de flujo de aire laminar en función de unas señales de control;
- medios de procesamiento de datos encargados de generar dichas señales de control en tiempo real, en función de Ia información suministrada por los medios sensores, de forma colaborativa con el sistema de control de vuelo de Ia aeronave y con Ia lógica de interacción, en función de sus condiciones de aproximación, y del cálculo de Ia trayectoria por el hardware de control que aloja Ia lógica de interacción.
4. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque los medios de recogida e inmovilizado de aeronaves comprenden:
- una plataforma de aterrizaje (10) elevable mediante un mecanismo articulado
(11);
- medios de elevación de Ia plataforma de aterrizaje (10) encargados de elevar Ia plataforma de aterrizaje (10) y aproximarla a Ia aeronave (20) cuando ésta se encuentra en Ia zona de recogida;
- dispositivo de fijación y anclaje encargado de inmovilizar Ia aeronave en Ia zona de recogida;
- medios sensores encargados de establece Ia posición del dispositivo de fijación y anclaje y Ia posición de Ia aeronave (20);
- unidad de control configurada para controlar los medios de elevación de Ia plataforma de aterrizaje (10) y Ia actuación del dispositivo de fijación y anclaje, siguiendo, en tiempo real y de forma colaborativa con los sistemas de control de flujo de aire de Ia aeronave, el comando generado por Ia lógica de interacción, en función de Ia posición de Ia aeronave (20) y de las condiciones de Ia corriente generada.
5. Sistema según Ia reivindicación 4, caracterizado porque el dispositivo de fijación y anclaje comprende una batería de electroimanes dispuestos en Ia plataforma de aterrizaje (10).
6. Sistema según Ia reivindicación 5, caracterizado porque el dispositivo de fijación y anclaje comprende una fijación mecánica del tren de aterrizaje de Ia aeronave (20).
7. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque los medios de generación de trayectoria-comprenden una primera unidad GPS en Ia instalación no embarcada (13) y medios de procesamiento de datos configurados para:
- recibir Ia posición GPS de Ia primera unidad GPS;
- recibir Ia posición GPS de Ia aeronave (20) proveniente de una segunda unidad GPS embarcada;
- recibir Ia altura de Ia aeronave (20) proveniente de un altímetro embarcado en Ia misma;
- generar Ia trayectoria en función de, al menos:
• las lecturas de Ia primera y segunda unidad GPS;
• Ia lectura del altímetro embarcado;
• Ia lectura de sensores de aire embarcados y no embarcados.
8. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende una plataforma (1) encargada de dar soporte a Ia instalación no embarcada (13).
9. Sistema según cualquiera de las reivindicaciones anteriores, caracterizado porque Ia instalación embarcada en Ia aeronave (20) comprende adicionalmente medios de inmovilización y anclaje compatibles con los medios de recogida e inmovilizado de aeronaves de Ia instalación no embarcada (13), para inmovilizar conjuntamente Ia aeronave (20) en Ia zona de recogida.
10. Sistema según Ia reivindicación anterior cuando depende de Ia 5, caracterizado porque los medios de inmovilización y anclaje de Ia instalación embarcada en Ia aeronave (20) comprenden:
- un tren de aterrizaje compatible con los medios de recogida e inmovilizado de aeronaves de Ia instalación no embarcada (13); - una batería de electroimanes compatibles geométricamente con los electroimanes de los medios de recogida e inmovilizado de aeronaves de Ia instalación no embarcada (13);
- una unidad de control encargada de controlar Ia intensidad de Ia corriente eléctrica que alimenta Ia batería de electroimanes de Ia aeronave (20) en función de Ia posición de Ia aeronave durante Ia maniobra de guiado, y de los comandos de control generados por Ia lógica de interacción.
11. Método para asistir Ia toma de tierra sin pista de aeronaves (20) convencionales de ala fija, caracterizado porque comprende:
- generar, mediante una instalación no embarcada (13), una corriente de aire laminar regulable dirigida en contra del avance de Ia aeronave (20);
- calcular, mediante una lógica de interacción, de forma colaborativa con los sistemas de control de flujo de aire y de control de Ia aeronave, en tiempo real, una estrategia de aproximación y recogida de Ia aeronave;
- proporcionar, mediante Ia lógica de interacción, a los medios de generación de senda de planeo, en tiempo real y adecuándola a las condiciones de Ia maniobra, Ia definición de Ia trayectoria que debe seguir Ia aeronave (20) para ser guiada a Ia zona de recogida;
- proporcionar, mediante Ia lógica de interacción, a Ia instalación embarcada, en tiempo real y adecuándola a las condiciones de Ia maniobra, Ia estrategia que debe seguir el sistema de control de vuelo de Ia aeronave (20) para ser guiada a Ia zona de recogida;
- obtener, en Ia instalación no embarcada (13), en Ia instalación embarcada y en Ia lógica de interacción, las condiciones de aproximación de Ia aeronave (20);
- controlar, en función de las condiciones de aproximación de Ia aeronave (20) y del resultado de Ia ejecución de Ia lógica de interacción, Ia corriente de aire laminar con las condiciones adecuadas para mantener Ia aeronavegabilidad de Ia aeronave (20);
- controlar, en función de las condiciones de Ia corriente de aire laminar y del resultado de Ia ejecución de Ia lógica de interacción, Ia aeronave (20) para seguir Ia senda de planeo generada;
- inmovilizar, mediante unos medios de recogida e inmovilizado de aeronaves, Ia aeronave (20) en Ia zona de recogida, una vez Ia aeronave ha alcanzado dicha zona de recogida.
PCT/ES2010/000311 2009-08-05 2010-07-16 Sistema y método para asistir la toma de tierra sin pista de aeronaves convencionales de ala fija WO2011015679A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/388,638 US8498761B2 (en) 2009-08-05 2010-07-16 Method and system to assist conventional fixed-wing aircraft landing, without a runway
EP10806067A EP2463198A2 (en) 2009-08-05 2010-07-16 Method and system to assist conventional fixed-wing aircraft landing, without a runway

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200930562 2009-08-05
ES200930562A ES2332400B2 (es) 2009-08-05 2009-08-05 Sistema y metodo para asistir la toma de tierra sin pista de aeronaves convencionales de ala fija.

Publications (2)

Publication Number Publication Date
WO2011015679A2 true WO2011015679A2 (es) 2011-02-10
WO2011015679A3 WO2011015679A3 (es) 2011-03-31

Family

ID=41559312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000311 WO2011015679A2 (es) 2009-08-05 2010-07-16 Sistema y método para asistir la toma de tierra sin pista de aeronaves convencionales de ala fija

Country Status (4)

Country Link
US (1) US8498761B2 (es)
EP (1) EP2463198A2 (es)
ES (1) ES2332400B2 (es)
WO (1) WO2011015679A2 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068840B2 (en) * 2012-11-14 2015-06-30 Phillip M. Adams Pitot tube velocimeter system
CN104583078B (zh) * 2013-08-23 2016-12-28 韩国航空宇宙研究所 用于充电及容载垂直起降无人飞行机的设备及其方法
WO2016172962A1 (en) * 2015-04-30 2016-11-03 SZ DJI Technology Co., Ltd. System and method for landing a mobile platform via a magnetic field
CN111942607B (zh) * 2020-08-18 2022-07-08 中国民航大学 一种采用气囊垫的机场跑道应急拦阻系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700912A (en) 1986-04-24 1987-10-20 Grumman Aerospace Corporation Laser illumination system for aircraft launch and landing system
EP0579508A1 (en) 1992-07-16 1994-01-19 British Aerospace Public Limited Company Landing of aircraft
US20070029442A1 (en) 2003-06-06 2007-02-08 Klaus Wolter Method for supporting a propelled flying object during take-off and/or landing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1392140A (en) * 1918-05-20 1921-09-27 Gernsback Hugo Apparatus for landing flying-machines
US1421846A (en) * 1921-04-21 1922-07-04 Scholfield Frederick Ernest Apparatus for aircraft
US1709058A (en) * 1926-07-17 1929-04-16 Brunner Frederick Landing method for aircraft
RU2005669C1 (ru) * 1991-05-24 1994-01-15 Гусаковский Александр Михайлович Способ посадки летательного аппарата и устройство для его осуществления
RU2005672C1 (ru) * 1992-06-30 1994-01-15 Институт высоких температур научного объединения "Ивтан" Способ посадки летательного аппарата
US7183946B2 (en) * 2002-10-11 2007-02-27 Gary Jon Boudrieau Safety aircraft flight system
US8720814B2 (en) * 2005-10-18 2014-05-13 Frick A. Smith Aircraft with freewheeling engine
US8207867B2 (en) * 2008-07-01 2012-06-26 George Mason Intellectual Properties, Inc. Method and device for landing aircraft dependent on runway occupancy time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700912A (en) 1986-04-24 1987-10-20 Grumman Aerospace Corporation Laser illumination system for aircraft launch and landing system
EP0579508A1 (en) 1992-07-16 1994-01-19 British Aerospace Public Limited Company Landing of aircraft
US20070029442A1 (en) 2003-06-06 2007-02-08 Klaus Wolter Method for supporting a propelled flying object during take-off and/or landing

Also Published As

Publication number Publication date
US8498761B2 (en) 2013-07-30
US20120191274A1 (en) 2012-07-26
ES2332400B2 (es) 2011-06-07
ES2332400A1 (es) 2010-02-03
EP2463198A2 (en) 2012-06-13
WO2011015679A3 (es) 2011-03-31

Similar Documents

Publication Publication Date Title
ES2913173T3 (es) Ordenador de control para un vehículo no tripulado
US20220219818A1 (en) System of play platform for multi-mission application spanning any one or combination of domains or environments
ES2859644T3 (es) Un sistema, un procedimiento y un producto de programa informático para maniobrar un vehículo aéreo
CN104246641B (zh) Uav的安全紧急降落
Niculescu Lateral track control law for Aerosonde UAV
Dwyer Cianciolo et al. Entry, descent, and landing guidance and control approaches to satisfy Mars human mission landing criteria
CA2970190C (en) Aerodynamically shaped, active towed body
WO2011015679A2 (es) Sistema y método para asistir la toma de tierra sin pista de aeronaves convencionales de ala fija
WO2015179905A1 (en) Methods and systems for attenuating the effects of turbulence on aircraft
Mao et al. A survey of the dynamics and control of aircraft during aerial refueling
JP6772211B2 (ja) 飛行装置および飛行装置誘導システム
Sedlmair et al. Design and experimental validation of UAV control laws-3D spline-path-following and easy-handling remote control
Cheatham et al. Apollo lunar module landing strategy
Zheng et al. Modeling and path-following control of a vector-driven stratospheric satellite
US20200363821A1 (en) System and method for stabilizing and restraining air disturbances on electrically propelled aircraft
Jantawong et al. Automatic landing control based on GPS for fixed-wing aircraft
Wolf et al. Improving the landing precision of an MSL-class vehicle
Inamoto et al. Flight control testing for the development of stratospheric platform airships
CN110844098B (zh) 飞行器
KR100472968B1 (ko) 대형 무인비행선의 자동 이·착륙 비행장치
Khaligh et al. A HIL testbed for initial controller gain tuning of a small unmanned helicopter
Solaque et al. Airship control
Singh et al. Automatic landing of unmanned aerial vehicles using dynamic inversion
CN115556944A (zh) 一种evtol安全座椅系统及投射方法
Balaram Sherpa moving mass entry descent landing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806067

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2010806067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010806067

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388638

Country of ref document: US