WO2011015399A1 - Dispositif de securite d'amorçage pour munition tournante - Google Patents

Dispositif de securite d'amorçage pour munition tournante Download PDF

Info

Publication number
WO2011015399A1
WO2011015399A1 PCT/EP2010/058180 EP2010058180W WO2011015399A1 WO 2011015399 A1 WO2011015399 A1 WO 2011015399A1 EP 2010058180 W EP2010058180 W EP 2010058180W WO 2011015399 A1 WO2011015399 A1 WO 2011015399A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
slider
axis
safety device
inertial lock
Prior art date
Application number
PCT/EP2010/058180
Other languages
English (en)
Inventor
Jean-Luc Renaud-Bezot
Original Assignee
Junghans T2M Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junghans T2M Sas filed Critical Junghans T2M Sas
Priority to ES10725123.3T priority Critical patent/ES2466740T3/es
Priority to EP10725123.3A priority patent/EP2462403B1/fr
Priority to US13/388,994 priority patent/US8820240B2/en
Publication of WO2011015399A1 publication Critical patent/WO2011015399A1/fr
Priority to IL217906A priority patent/IL217906A/en
Priority to ZA2012/01354A priority patent/ZA201201354B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/34Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by a blocking-member in the pyrotechnic or explosive train between primer and main charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/24Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by inertia means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C15/00Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges
    • F42C15/24Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by inertia means
    • F42C15/26Arming-means in fuzes; Safety means for preventing premature detonation of fuzes or charges wherein the safety or arming action is effected by inertia means using centrifugal force

Definitions

  • the invention relates to a priming safety device for ammunition using the technology of micro-mechatronic silicon systems.
  • the environment of rotating ammunition such as projectiles mortars, shells or other types of ammunition, is characterized, in use, by the presence of axial acceleration forces and centrifugal forces.
  • a munition in a launcher tube or in a thruster is subjected to axial acceleration forces at the moment of its departure into the tube and to centrifugal forces resulting from the rotational movement produced for example during the displacement of the ammunition in the tube, by helical grooves in the inner wall of the tube.
  • the ammunition usually includes a firing rocket of an explosive charge carried by the ammunition.
  • the firing rocket includes one or more safety devices to prevent the explosive charge from being accidentally activated during handling by storage or transport by persons.
  • DSA triggering safety devices
  • MEMS use Silicon micromachining techniques to integrate sensor and actuator functions sometimes with associated electronics.
  • the most common MEMS sensors are accelerometers in airbag, geophone, and gyrometer applications.
  • MEMS can combine mechanical, optical, electromagnetic technology elements with electronics or mechanics on semiconductor substrates. Prescribers, in the field of ammunition using MEMS, require greater reliability of booting safeguards that can sometimes have common causes of failure.
  • the invention proposes an ammunition priming security device in the technology of micro-mechatronic silicon systems having at least two initiating safeties intended to be deactivated.
  • the slide characterized in that it comprises a central element sandwiched in a plane S perpendicular to the translation axis EE 'between an upper closure element and a lower closure element, the central element comprising an opening forming with the upper closure member and the lower closure member a recess containing a slide slidable in the recess in the plane S of the sandwich, the slide forming a second security of the device, this second security being deactivated by the presence of a lateral acceleration force perpendicular to the translation axis EE "of the mobile element caused by a rotational movement of said munition, the slide having a hole, of axis VV perpendicular to the plane S of the sandwich, the slide being maintained in position in the recess by the inertial lock inserted in the hole of the slider, the inertial lock being itself integral with the ment of bottom closure.
  • said movable element is made of a material other than silicon, the material of the mobile element being chosen from metals, plastics and ceramics.
  • the central element is in the form of a frame along a main axis XX 'having the rectangular opening having four walls, two first walls parallel to the main axis XX' and two second walls perpendicular to said main axis XX ', said walls forming, with a lower surface of the upper closure element and an upper surface of the lower closure element, the recess containing the slider rectangular parallelepiped shape, the slide slidable in the recess between the first two walls of the opening parallel to the main axis XX '.
  • the slider is secured to one of the two second walls of the opening perpendicular to the main axis XX 'by means of a spring, of axis of elasticity parallel to the main axis XX .
  • the inertial lock of circular cylindrical shape, of axis of revolution CC, 'comprises, from one of its two ends to the other, a rod of circular cylindrical section, of the same diameter D1 as the diameter the hole of the slider, followed by a head of the same circular cylindrical shape but of diameter D2 greater than the diameter D1 to form a circular abutment edge on the circular edge of the slider hole on the side of the lower closure element.
  • the lower closure element comprises, on the side of its upper surface, a high recess separated from a low recess by a partition wall in a plane parallel to the plane S of the sandwich, the top recess and the recess bottom being of the same circular cylindrical shape of axes of revolution collinear with the translation axis EE '.
  • the top recess and the bottom recess of the lower closure element have the same diameter D2 as the head of the inertial lock, the head of the inertial lock being able to slide without resistance in one or other of the recesses, low and high, of the lower closure element.
  • the boot safety device is configured so that, when the first and second safeties are activated, the rod of the inertial lock is inserted into the hole of the slider to hold it in position in the recess, the head of said inertial lock being inserted into the top recess of the lower closure element.
  • the central element, the slider, the spring and the closure elements being made of silicon
  • the movable element is made of steel.
  • a main objective of the invention lies in the realization of a boot safety device at low cost and high reliability.
  • Another object of the invention lies in the use of at least one technology different from that of silicon for at least one of the security devices of the priming device. It is therefore sought to add to a MEMS technology using a semiconductor substrate (for example silicon) for one of the securities, a different technology for another security.
  • a semiconductor substrate for example silicon
  • FIG. 1a shows a side view of a boot safety device according to the invention
  • FIG. 1b represents an exploded view showing the various elements of the safety slide of FIG. 1a;
  • Figure 2a shows a partial view of the device of Figure 1a in longitudinal section
  • FIG. 2b and 2c respectively show a top view and a front view of an inertial lock of the device of Figure 1a;
  • FIGS 3a, 3b and 3c show other partial views in longitudinal section of the device of Figure 1a and;
  • Figure 4 shows the device of Figure 1 b in positron security disabled.
  • Figure 1a shows a side view of a boot safety device according to the invention.
  • Figure 1b shows an exploded view showing the different elements of the safety slide of Figure 1a.
  • the safety device of FIG. 1a comprises a central element
  • the elements 10, 12, 14 have rectangular parallelepiped shapes.
  • the central element 10 in the form of a frame along a main axis
  • XX ' has a rectangular opening 20 having four walls, two first walls parallel to the main axis XX' and two second walls perpendicular to said main axis XX '.
  • the walls of the opening 20 form with a lower surface 24 of the upper closure element 12 and an upper surface 26 of the lower closure element 14, a recess 28 containing a slider 30 of rectangular parallelepiped shape (see FIG. 1 a) in two planes of symmetry of the slider respectively passing through the main axis XX 'and an axis YY' perpendicular to the main axis XX '.
  • the slider 30 is integral with a 36 of the two second walls of the opening (20) perpendicular to the main axis XX 'via a spring 46, of axis of elasticity parallel to the main axis XX '.
  • the slider 30 has a hole 44, of axis VV perpendicular to the plane S of the sandwich.
  • the axis VV of the hole 44 is offset, from the spring side 46, by a certain distance from the axis YY 'of the slide.
  • FIG. 2a shows a partial view of the device of FIG. 1a in longitudinal section along a plane P parallel to the main axis XX 'of the central element 10 and passing through the axis VV of the hole 44 of the slider 30.
  • Figures 2b and 2c show respectively a top view and a front view of an inertial lock of the device of Figure 1a.
  • the inertial lock 40 of circular cylindrical shape, of axis of revolution CC, 'comprises, from one of its two ends to the other, a rod 50 of circular cylindrical section, of the same diameter D1 as the diameter of the hole 44. of the slider 30, followed by a head 52 of the same circular cylindrical shape but of diameter D2 greater than the diameter D1 to form a circular edge 54 of abutment on the circular edge 58 of the hole 44 of the slider on the side of the lower closure element 14.
  • the rod 50 can slide freely in the hole 44 of the slide according to a translation axis EE '.
  • FIG. 2d shows a partial view in cross section, along the same plane P parallel to the main axis XX ', of the lower closure element 14.
  • the lower closure element 14 has, on the side of its upper surface 26, a high recess 60 separated from a lower recess 64 by a partition wall 62 in a plane parallel to the plane S of the sandwich.
  • the high recess 60 and the low recess 64 are of the same circular cylindrical shape with axes of revolution collinear with the translation axis EE.
  • the upper recess 60 and the lower recess 64 of the lower closure element 14 have the same diameter D2 as the head 52 of the inertial lock 40.
  • the head 52 of the inertial lock 40 can slide without resistance into one or other of the recesses, bottom 64 and top 60, of the lower closure element 14.
  • the length L of the rod 50 is slightly less than the thickness E of the movable member 30 to prevent the breaking of the wall 62 during the production of the sandwich.
  • Figures 3a, 3b and 3c show other partial views in longitudinal section of the device of Figure 1a.
  • the views of Figures 3a, 3b and 3c are views in longitudinal section along the plane P parallel to the main axis XX 'passing through the axis VV of the hole 44 of the slider 30.
  • the boot safety device is for example used in a rotating ammunition rocket.
  • the ignition safety device is inserted between a detonator DT and a pyrotechnic receiver RP aligned along a detonation axis ZZ 'perpendicular to the plane S of the sandwich as shown in FIG. pyrotechnic charge of the ammunition.
  • the detonator DT is disposed on the side of the upper closure element 12 and the pyrotechnic receiver RP on the side of the lower closure element 14.
  • the device according to the invention is configured so that, when the first and second safeties are activated, the rod 50 of the inertial lock is inserted into the hole 34 of the slider 30 to hold it in position in the recess 28, the head 52 said inertial lock being inserted into the top recess 60 of the lower closure element 14.
  • a first phase corresponding for example to a storage period of the device (or the ammunition comprising the safety device), shown in Figure 3a, the safety device is at rest, it undergoes no acceleration.
  • the slider 30 is held in position in the recess 28 of the central element 10 by the rod 50 of the inertial lock 40 inserted into the hole 34 of the slider.
  • the head 52 of the inertial lock 40 is inserted into the top recess 60 of the lower closure element 14 preventing the lateral displacement of the inertial lock parallel to the main axis XX '.
  • the inertial lock 40 is locked in translation by its head 52 inserted into the top recess 60 of the lower closure element 14, along the axis VV, in the two opposite directions, in one direction, by the wall 62 of the lower closure member 14 and, in the other opposite direction, by the circular edge 58 of the hole 34 of the slider 30, the circular abutment edge 54 of the inertial lock 40 abuts on said circular edge 58 of the hole 34.
  • the detonation waves OD produced by an accidental activation of the detonator DT directed towards the pyrotechnic receiver RP are blocked or very damped by the presence of the slider 30 between the detonator DT and the pyrotechnic receiver RP which can not be activated. .
  • the boot safety device equipping for example the fuze of a munition, receives a transverse acceleration Acct along the detonation axis ZZ 'and in a direction from the element lower closure 14 to the upper closure element 12.
  • the inertia of the inertial lock 40 produces a force Ft exerted via its head 54 on the partition wall 62 of the lower closure element 14.
  • the force Ft breaks said separation wall 62 releasing the inertial lock 40 in translation along the detonation axis ZZ ', which moves in the lower recess 64 of the lower closure element 14
  • the rod 50 then fires from the hole 34 releasing the slide 30 from its locked position in the recess 28 of the central element 10.
  • the first security of the device is then deactivated.
  • the safety device undergoes a lateral acceleration Accl perpendicular to the translation axis EE ', for example due to a lateral displacement movement of the device security from an initial position to another position.
  • the slider 30, by its inertia tends to remain in its initial position. It occurs in this second phase, a relative displacement of the slider 30 in the recess 28.
  • the detection device is preferably disposed in the munition so as to undergo acceleration in a direction such that the slide tends to compress the spring 46.
  • FIG. 4 shows the device of FIG. 1b in the deactivated security position.
  • FIG. 4 shows the central element 10 and the slide 30 compressing the spring 46 during the lateral acceleration Accl.
  • the closing elements 12, 14 are configured to transmit the detonation waves of the detonator to the pyrotechnic receiver.
  • the pyrotechnic charge of the munition can be activated by the activation of the detonator DT.
  • the manufacture of the boot safety device comprises at least steps for producing the different elements of the silicon substrate device and producing the metal inertial lock.
  • the device is made by assembling the sandwich comprising the metal inertial lock 40 inside the silicon substrate device.
  • the glue Cl is applied to the lower edges 100 and upper 102 of the central element 10 shaped frame (see Figures 1a and 1b) and the sandwich is compressed and heated to achieve assembly.
  • Other methods of assembly can also be used such as the use of ultrasound, or by pressing.
  • a plurality of elements of the same type namely, the central element 10 comprising the spring 46 and the movable element 30, the upper closure element 12, the lower closure element 14, can be made collectively each respectively on a silicon wafer. Then, after introduction of the metal inertial locks for all devices, assembling the wafer to obtain a plurality of boot safety devices. In a final step, the assembled wafers are cut to separate the various safety devices.
  • the material of the movable member 40 is not limited to the metal and may be selected from metals, plastics, ceramics. The material will be chosen according to the application and the physical phenomenon to be detected.
  • the boot safety device according to the invention is associated with an ammunition rocket such as a shell or a rocket.
  • a shell When a shell is propelled by its explosive charge, it produces a first transverse acceleration Acct unlocking the first inertial safety and a lateral acceleration Accl produced by the rotation of the shell printed by the internal grooves of the barrel unlocking the second security by the moving the slider in the movable member.
  • the axis of rotation of the munition and the axis of the slide 30 must be shifted to cause a lateral acceleration Accl sufficient to move the slide in the recess 28.
  • the boot safety device according to the invention makes it possible to reduce the manufacturing costs of rotating ammunition while obtaining a high level of reliability.
  • the application to rotating ammunition is not limiting and the device according to the invention having a greater reliability than state-of-the-art devices using a single silicon technology can also have applications in the fields. previously mentioned such as airbag, geophone, gyrometer, rocket stage separation trigger.
  • an application of the invention to other field of use may include more than two security each security can be disabled by a different physical phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Air Bags (AREA)

Abstract

L'invention concerne un dispositif de sécurité d'amorçage de munition en technologie des systèmes micro-mécatroniques du silicium ayant au moins deux sécurités d'amorçage destinées à être désactivés par autant d'évènements physiques indépendants externes, comportant au moins un élément mobile (40), selon un axe de translation EE', pour désactiver au moins une des sécurités d'amorçage par l'action sur ledit élément mobile d'un des événement physiques. Ledit élément mobile (40) est réalisé dans un matériau autre que du silicium. Applications : Dispositif de sécurité pour munitions, dispositifs de séparations d'étages de fusées, airbag.

Description

DISPOSITIF DE SECURITE D'AMORÇAGE
POUR MUNITION TOURNANTE
L'invention concerne un dispositif de sécurité d'amorçage pour munition utilisant la technologie des systèmes micro-mécatroniques du silicium.
L'environnement des munitions tournantes tels que les projectiles des mortiers, obus ou autres types de munitions, est caractérisé, lors de leur utilisation, par la présence de forces d'accélération axiale et de forces centrifuges. Par exemple, une munition dans un tube lanceur ou dans un propulseur est soumise à des forces d'accélération axiale au moment de son départ dans le tube et à des forces centrifuges issues du mouvement de rotation produits par exemple, lors du déplacement de la munition dans le tube, par des rainures hélicoïdales dans la paroi internes du tube.
Les munitions comportent habituellement une fusée d'amorçage d'une charge explosive portée par la munition. La fusée d'amorçage comporte un ou plusieurs dispositifs de sécurité pour éviter que la charge explosive ne soit activée par accident lors des manipulations de stockage ou de transport par des personnes.
La miniaturisation, la fiabilité, la reproductibilité des systèmes de sécurité conduisent les concepteurs des fusées de munitions à utiliser des dispositif de sécurité d'amorçage (DSA) en technologie des systèmes micro- électro-mécaniques ou d'acronyme MEMS pour MicroElectroMechanical
System en langue anglaise.
Les MEMS utilisent des techniques de micro-usinage sur Silicium pour intégrer des fonctions capteurs et actionneurs parfois avec une électronique associée. Les capteurs MEMS les plus courants sont les accéléromètres dans des applications d'airbag, géophone, gyromètre.
Les MEMS peuvent associer des éléments de technologie mécaniques, optiques, électromagnétiques à de l'électronique ou de la mécanique sur des substrats semi-conducteurs. Les prescripteurs, dans le domaine des munitions utilisant des MEMS, demandent une plus grande fiabilité des sécurités d'amorçage pouvant présenter parfois des causes de défaillance communes. Pour pallier les inconvénients des dispositifs de sécurité de l'état de l'art l'invention propose un dispositif de sécurité d'amorçage de munition en technologie des systèmes micro-mécatroniques du silicium ayant au moins deux sécurités d'amorçage destinées à être désactivées par autant d'événements physiques indépendants externes, comportant au moins un élément mobile, selon un axe de translation EE', pour désactiver au moins une des sécurités d'amorçage par l'action sur ledit élément mobile d'un des événement physiques, l'élément mobile étant un verrou inertiel formant une première sécurité, l'événement physique agissant sur l'élément mobile étant une force d'accélération axiale, selon ledit axe de translation EE' de l'élément mobile pour désactiver la première sécurité, la force d'accélération axiale étant provoquée par un mouvement de translation de la munition selon le même axe EE',
caractérisé en ce qu'il comporte un élément central pris en sandwich, selon un plan S perpendiculaire à l'axe de translation EE' entre un élément de fermeture supérieur et un élément de fermeture inférieur, l'élément central comportant une ouverture formant avec l'élément de fermeture supérieur et l'élément de fermeture inférieur un évidement contenant un coulisseau pouvant glisser dans l'évidement dans le plan S du sandwich, le coulisseau formant une deuxième sécurité du dispositif, cette deuxième sécurité étant désactivée par la présence d'une force d'accélération latérale perpendiculaire à l'axe de translation EE" de l'élément mobile provoquée par un mouvement de rotation de ladite munition, le coulisseau comportant un trou, d'axe VV perpendiculaire au plan S du sandwich, le coulisseau étant maintenu en position dans l'évidement par le verrou inertiel inséré dans le trou du coulisseau, le verrou inertiel étant lui- même solidaire de l'élément de fermeture inférieur.
Avantageusement ledit élément mobile est réalisé dans un matériau autre que du silicium, le matériau de l'élément mobile étant choisi parmi les métaux, les matières plastiques, les céramiques. Dans une réalisation du dispositif de sécurité d'amorçage, l'élément central est sous forme de cadre selon un axe principal XX' ayant l'ouverture de forme rectangulaire comportant quatre parois, deux premières parois parallèles à l'axe principal XX' et deux secondes parois perpendiculaires audit axe principal XX', les dites parois formant, avec une surface inférieure de l'élément de fermeture supérieur et une surface supérieure de l'élément de fermeture inférieur, l'évidement contenant le coulisseau de forme de parallélépipédique rectangulaire, le coulisseau pouvant glisser dans l'évidement entre les deux premières parois de l'ouverture parallèlement à l'axe principal XX'.
Dans une autre réalisation, le coulisseau est solidaire d'une des deux secondes parois de l'ouverture perpendiculaires à l'axe principal XX' par l'intermédiaire d'un ressort, d'axe d'élasticité parallèle à l'axe principal XX'.
Dans une autre réalisation, le verrou inertiel, de forme cylindrique circulaire, d'axe de révolution CC,' comporte, d'une de ses deux extrémités à l'autre, une tige de section cylindrique circulaire, de même diamètre D1 que le diamètre du trou du coulisseau, suivie d'une tête de même forme cylindrique circulaire mais de diamètre D2 supérieur au diamètre D1 pour former un bord circulaire de butée sur le bord circulaire du trou du coulisseau du côté de l'élément inférieur de fermeture. Dans une autre réalisation, l'élément de fermeture inférieur comporte, du côté de sa surface supérieure, un évidement haut séparé d'un évidement bas par une paroi de séparation dans un plan parallèle au plan S du sandwich, l'évidement haut et l'évidement bas étant de même forme cylindrique circulaire d'axes de révolution colinéaires à l'axe de translation EE'.
Dans une autre réalisation, l'évidement haut et l'évidement bas de l'élément de fermeture inférieur ont le même diamètre D2 que la tête du verrou inertiel, la tête du verrou inertiel pouvant glisser sans résistance dans l'un ou l'autre des évidements, bas et haut, de l'élément de fermeture inférieur.
Dans une autre réalisation, le dispositif de sécurité d'amorçage est configuré pour que, lorsque la première et la deuxième sécurités sont activées, la tige du verrou inertiel soit insérée dans le trou du coulisseau pour le maintenir en position dans l'évidement, la tête dudit verrou inertiel étant insérée dans l'évidement haut de l'élément inférieur de fermeture. Dans une autre réalisation du dispositif de sécurité d'amorçage, l'élément central, le coulisseau, le ressort et les éléments de fermeture étant en silicium, l'élément mobile est en acier.
Un principal objectif de l'invention réside dans la réalisation d'un dispositif de sécurité d'amorçage à faible coût et grande fiabilité.
Un autre objectif de l'invention réside dans l'utilisation d'au moins une technologie différente de celle du silicium pour au moins une des sécurités du dispositif d'amorçage. Il est donc recherche d'adjoindre à une technologie MEMS utilisant un substrat semi-conducteur (par exemple en silicium) pour une des sécurités, une technologie différente pour une autre sécurité.
L'invention sera mieux comprise à l'aide d'un exemple de réalisation d'un dispositif de sécurité d'amorçage en référence aux dessins indexés dans lesquels :
- la figure 1 a représente une vue latérale d'un dispositif de sécurité d'amorçage selon l'invention ;
- la figure 1 b représente une vue éclatée montrant les différents éléments du diapositif de sécurité de la figure 1 a ;
- la figure 2a représente un vue partielle du dispositif de la figure 1 a en coupe longitudinale ;
- les figures 2b et 2c montrent respectivement une vue de dessus et une vue de face d'un verrou inertiel du dispositif de la figure 1 a ; - les figures 3a, 3b et 3c montrent d'autres des vue partielles en coupe longitudinal du dispositif de la figure 1 a et ;
- la figure 4 montre le dispositif de la figure 1 b en positon sécurités désactivées.
La figure 1 a représente une vue latérale d'un dispositif de sécurité d'amorçage selon l'invention.
La figure 1 b représente une vue éclatée montrant les différents éléments du diapositif de sécurité de la figure 1 a.
Le dispositif de sécurité de la figure 1 a comporte un élément central
10 pris en sandwich selon un plan S entre un élément de fermeture supérieur 12 et un élément de fermeture inférieur 14.
Dans cet exemple de réalisation les éléments 10, 12,14 ont des formes parallélépipédiques rectangulaires.
L'élément central 10, sous forme de cadre selon un axe principal
XX', comporte une ouverture rectangulaire 20 ayant quatre parois, deux premières parois parallèles à l'axe principal XX' et deux secondes parois perpendiculaires audit axe principal XX'.
Les parois de l'ouverture 20 forment avec une surface inférieure 24 de l'élément de fermeture supérieur 12 et une surface supérieure 26 de l'élément de fermeture inférieur 14, un évidement 28 contenant un coulisseau 30 de forme de parallélépipédique rectangulaire (voir figure 1 a) selon deux plans de symétrie du coulisseau passant respectivement par l'axe principal XX' et un axe YY' perpendiculaire à l'axe principal XX'.
Le coulisseau 30 est solidaire d'une 36 des deux secondes parois de l'ouverture (20) perpendiculaires à l'axe principal XX' par l'intermédiaire d'un ressort 46, d'axe d'élasticité parallèle à l'axe principal XX'.
Le coulisseau 30 comporte un trou 44, d'axe VV perpendiculaire au plan S du sandwich. L'axe VV du trou 44 est décalé, du côte ressort 46, d'une certaine distance de l'axe YY' du coulisseau.
Le coulisseau 30 est maintenu en position dans l'évidement 28 par un verrou inertiel 40 inséré dans le trou 44 du coulisseau. Le verrou inertiel est lui-même solidaire de l'élément de fermeture inférieur 14. La figure 2a représente un vue partielle du dispositif de la figure 1 a en coupe longitudinale selon un plan P parallèle à l'axe principal XX' de l'élément central 10 et passant par l'axe VV du trou 44 du coulisseau 30.
Les figures 2b et 2c montrent respectivement une vue de dessus et une vue de face d'un verrou inertiel du dispositif de la figure 1 a.
Le verrou inertiel 40, de forme cylindrique circulaire, d'axe de révolution CC,' comporte, d'une de ses deux extrémités à l'autre, une tige 50 de section cylindrique circulaire, de même diamètre D1 que le diamètre du trou 44 du coulisseau 30, suivie d'une tête 52 de même forme cylindrique circulaire mais de diamètre D2 supérieur au diamètre D1 pour former un bord circulaire 54 de butée sur le bord 58 circulaire du trou 44 du coulisseau du côté de l'élément de fermeture inférieur 14.
La tige 50 peut coulisser librement dans le trou 44 du coulisseau selon un axe de translation EE'.
La figure 2d montre une vue partielle en coupe transversale, selon le même plan P parallèle à l'axe principal XX', de l'élément de fermeture inférieur 14.
L'élément de fermeture inférieur 14 (voir figure 2d) comporte, du côté de sa surface supérieure 26, un évidement haut 60 séparé d'un évidement bas 64 par une paroi de séparation 62 dans un plan parallèle au plan S du sandwich. L'évidement haut 60 et l'évidement bas 64 sont de même forme cylindrique circulaire d'axes de révolution colinéaires à l'axe de translation EE.
L'évidement haut 60 et l'évidement bas 64 de l'élément de fermeture inférieur 14 ont le même diamètre D2 que la tête 52 du verrou inertiel 40.
La tête 52 du verrou inertiel 40 peut glisser sans résistance dans l'un ou l'autre des évidements, bas 64 et haut 60, de l'élément de fermeture inférieur 14.
La longueur L de la tige 50 est légèrement inférieure à l'épaisseur E de l'élément mobile 30 pour éviter la cassure de la paroi 62 lors de la réalisation du sandwich.
Les figures 3a, 3b et 3c montrent d'autres des vues partielles en coupe longitudinale du dispositif de la figure 1 a. Les vues des figures 3a, 3b et 3c sont des vues en coupe longitudinale selon le plan P parallèle à l'axe principal XX' passant par l'axe VV du trou 44 du coulisseau 30. Nous allons par la suite expliquer le fonctionnement du dispositif de sécurité d'amorçage selon l'invention en se référant aux figures 3a, 3b et 3c. Le dispositif de sécurité d'amorçage est par exemple utilisé dans une fusée de munition tournante. Dans ce type d'application, le dispositif de sécurité d'amorçage est inséré entre un détonateur DT et un récepteur pyrotechnique RP alignés selon un axe de détonation ZZ' perpendiculaire au plan S du sandwich tel que représentés à la figure 1 a pour activer une charge pyrotechnique de la munition.
Le détonateur DT est disposé du côté de l'élément supérieur de fermeture 12 et le récepteur pyrotechnique RP du côté de l'élément inférieur de fermeture 14.
Le dispositif selon l'invention est configuré pour que, lorsque la première et la deuxième sécurités sont activées, la tige 50 du verrou inertiel soit insérée dans le trou 34 du coulisseau 30 pour le maintenir en position dans l'évidement 28, la tête 52 dudit verrou inertiel étant insérée dans l'évidement haut 60 de l'élément inférieur de fermeture 14.
Dans une première phase, correspondant par exemple à une période de stockage du dispositif (ou de la munition comportant le dispositif de sécurité), représentée à la figure 3a, le dispositif de sécurité est au repos, il ne subit aucune accélération.
Dans cette première phase, l'axe de détonation ZZ' traverse une partie centrale du coulisseau 30 qui sépare le détonateur DT du récepteur pyrotechnique RP. Le coulisseau 30 est maintenu en position dans l'évidement 28 de l'élément central 10 par la tige 50 du verrou inertiel 40 insérée dans le trou 34 du coulisseau.
La tête 52 du verrou inertiel 40 est insérée dans l'évidement haut 60 de l'élément de fermeture inférieur 14 empêchant le déplacement latéral du verrou inertiel parallèlement à l'axe principal XX'.
Le verrou inertiel 40 est bloqué en translation par sa tête 52 insérée dans l'évidement haut 60 de l'élément inférieur de fermeture 14, selon l'axe VV, dans les deux directions opposées, dans une direction, par la paroi 62 de l'élément inférieur de fermeture 14 et, dans l'autre direction opposée, par le bord circulaire 58 du trou 34 du coulisseau 30, le bord circulaire de butée 54 du verrou inertiel 40 butant sur ledit bord circulaire 58 du trou 34.
Dans cette première phase, la première sécurité formée par la tige
50 du verrou inertiel inséré dans le trou 34 du coulisseau pour le maintenir en position dans l'évidement 28 et la deuxième sécurité formée par le coulisseau 30 séparant le détonateur du récepteur pyrotechnique sont activées.
Dans ce premier état, les ondes de détonation OD produites par une activation accidentelle du détonateur DT dirigées vers le récepteur pyrotechnique RP sont bloquées ou très amortie par la présence du coulisseau 30 entre le détonateur DT et le récepteur pyrotechnique RP qui ne pourras pas être activé.
Dans une deuxième phase représentée à la figure 3b, le dispositif de sécurité d'amorçage, équipant par exemple la fusée d'une munition, reçoit une accélération transversale Acct selon l'axe de détonation ZZ' et dans une direction allant de l'élément de fermeture inférieur 14 vers l'élément de fermeture supérieur 12. L'inertie du verrou inertiel 40 produit une force Ft exercée par l'intermédiaire de sa tête 54 sur la paroi de séparation 62 de l'élément de fermeture inférieur 14.
Lorsque l'accélération Acct est suffisante, la force Ft brise ladite paroi de séparation 62 libérant le verrou inertiel 40 en translation selon l'axe de détonation ZZ', qui se déplace dans l'évidement bas 64 de l'élément de fermeture inférieur 14. La tige 50 sorts alors du trou 34 libérant le coulisseau 30 de sa positon verrouillée dans l'évidement 28 de l'élément central 10. La première sécurité du dispositif est alors désactivée. Dans une troisième phase représentée à la figure 3b, en plus de l'accélération transversale Acct, le dispositif de sécurité subit une accélération latérale Accl perpendiculaire à l'axe de translation EE', par exemple due à un mouvement de déplacement latéral du dispositif de sécurité d'une position initiale vers une autre position. Le coulisseau 30, par son inertie tend à se maintenir dans sa position initiale. Il se produit, dans cette deuxième phase, un déplacement relatif du coulisseau 30 dans l'évidement 28.
Le dispositif de détection est de préférence disposé dans la munition de façon à subir une accélération dans un sens tel que le coulisseau tende à comprimer le ressort 46.
Le coulisseau 30, libéré dans la deuxième phase du verrou inertiel 40, se déplace, dans la troisième phase, dans le sens de compression du ressort 46 libérant l'espace dans l'évidement 28 entre le détonateur DT et le récepteur pyrotechnique RP qui n'ont comme obstacle que les éléments de fermeture 12, 14 de l'élément central 10 désactivant ainsi la deuxième sécurité du dispositif.
La figure 4 montre le dispositif de la figure 1 b en position sécurités désactivées. La figure 4 représente l'élément central 10 et le coulisseau 30 comprimant le ressort 46 lors de l'accélération latérale Accl.
Les éléments dé fermeture 12, 14 sont configurés de façon à transmettre les ondes de détonation du détonateur vers le récepteur pyrotechnique.
Dans une dernière phase, les deux sécurités du dispositif de sécurité étant désactivées, la charge pyrotechnique de la munition peut être activée par l'activation du détonateur DT.
La fabrication du dispositif de sécurité d'amorçage comporte au moins des étapes de réalisation des différents éléments du dispositif en substrat de silicium et la réalisation du verrou inertiel en métal.
Le dispositif est réalisé par assemblage du sandwich comportant le verrou inertiel 40 métallique à l'intérieur du dispositif en substrat de silicium.
Par exemple dans un procédé d'assemblage de la colle Cl est appliquée sur les bords inférieurs 100 et supérieurs 102 de l'élément central 10 en forme de cadre (voir figures 1 a et 1 b) puis le sandwich est comprimé et chauffe pour réaliser l'assemblage. D'autres procédés d'assemblage peuvent être aussi utilisé tels que l'utilisation d'ultrasons, ou par pressage.
Dans une réalisation dite en collectif, une pluralité d'éléments du même type, à savoir, l'élément central 10 comportant le ressort 46 et l'élément mobile 30, l'élément de fermeture supérieur 12, l'élément de fermeture inférieur 14, peuvent être réalisés en collectif chacun respectivement sur un wafer de silicium. Puis, après introductions des verrous inertiels en métal pour l'ensemble des dispositifs, assemblage des wafer pour obtenir une pluralité de dispositifs de sécurité d'amorçage. Dans une dernière étape les wafer assemblés sont découpés pour séparer les différents dispositifs de sécurité.
Le matériau de l'élément mobile 40 n'est pas limitatif au métal et peut être est choisi parmi les métaux, les matières plastiques, les céramiques. Le matériau sera choisi en fonction de l'application et du phénomène physique à détecter.
En pratique, le dispositif de sécurité d'amorçage selon l'invention est associé à une fusée de munition telle qu'un obus ou une roquette.
Lorsqu'un obus est propulsé par sa charge explosive, il se produit une première accélération transversale Acct déverrouillant la première sécurité inertielle puis une accélération latérale Accl produite par la rotation de l'obus imprimée par les rainures internes du canon déverrouillant la deuxième sécurité par le déplacement du coulisseau dans l'élément mobile. A cet effet, l'axe de rotation de la munition et l'axe du coulisseau 30 doivent être décalés pour provoquer une accélération latérale Accl suffisante pour déplacer le coulisseau dans l'évidement 28.
Le dispositif de sécurité d'amorçage selon l'invention permet de diminuer les coûts de fabrication des munitions tournantes tout en obtenant un niveau de fiabilité élevée.
L'application aux munitions tournantes n'est pas limitative et le dispositif selon l'invention bénéficiant d'une plus grande fiabilité que les dispositifs de l'état de l'art utilisant une seule technologie du silicium peut aussi avoir des applications dans les domaines cités précédemment tels que d'airbag, géophone, gyromètre, déclencheur de séparation d'étages de fusées. A cet effet, une application de l'invention à d'autres domaine d'utilisation peut comporter plus de deux sécurités chacune des sécurités pouvant être désactivée par un phénomène physique différent.

Claims

REVENDICATIONS
1. Dispositif de sécurité d'amorçage de munition en technologie des systèmes micro-mécatroniques du silicium ayant au moins deux sécurités d'amorçage destinées à être désactivées par autant d'événements physiques indépendants externes, comportant au moins un élément mobile (40), selon un axe de translation EE', pour désactiver au moins une des sécurités d'amorçage par l'action sur ledit élément mobile d'un des événement physiques, l'élément mobile étant un verrou inertiel (40) formant une première sécurité, l'événement physique agissant sur l'élément mobile étant une force d'accélération axiale (Ft), selon ledit axe de translation EE' de l'élément mobile pour désactiver la première sécurité, la force d'accélération axiale (Ft) étant provoquée par un mouvement de translation de la munition selon le même axe EE',
caractérisé en ce qu'il comporte un élément central (10) pris en sandwich, selon un plan S perpendiculaire à l'axe de translation EE' entre un élément de fermeture supérieur (12) et un élément de fermeture inférieur (14), l'élément central (10) comportant une ouverture (20) formant avec l'élément de fermeture supérieur (12) et l'élément de fermeture inférieur (14) un évidement (28) contenant un coulisseau (30) pouvant glisser dans l'évidement (28) dans le plan S du sandwich, le coulisseau (30) formant une deuxième sécurité du dispositif, cette deuxième sécurité étant désactivée par la présence d'une force d'accélération latérale (Accl) perpendiculaire à l'axe de translation EE" de l'élément mobile (40) provoquée par un mouvement de rotation de ladite munition, le coulisseau (30) comportant un trou (44), d'axe VV perpendiculaire au plan S du sandwich, le coulisseau (30) étant maintenu en position dans l'évidement (28) par le verrou inertiel (40) inséré dans le trou (44) du coulisseau, le verrou inertiel étant lui-même solidaire de l'élément de fermeture inférieur (14).
2. Dispositif de sécurité d'amorçage selon la revendication 1 , caractérisé en ce que ledit élément mobile (40) est réalisé dans un matériau autre que du silicium, le matériau de l'élément mobile (40) étant choisi parmi les métaux, les matières plastiques, les céramiques.
3. Dispositif de sécurité d'amorçage selon l'une des revendications 1 ou 2, caractérisé en ce que l'élément central (10) est sous forme de cadre selon un axe principal XX' ayant l'ouverture (20) de forme rectangulaire comportant quatre parois, deux premières parois parallèles à l'axe principal XX' et deux secondes parois perpendiculaires audit axe principal XX', les dites parois formant, avec une surface inférieure (24) de l'élément de fermeture supérieur (12) et une surface supérieure (26) de l'élément de fermeture inférieur (14), l'évidement (28) contenant le coulisseau (30) de forme de parallélépipédique rectangulaire, le coulisseau (30) pouvant glisser dans l'évidement (28) entre les deux premières parois (32, 34) de l'ouverture (20) parallèlement à l'axe principal XX'.
4. Dispositif de sécurité d'amorçage selon la revendication 3, caractérisé en ce que le coulisseau (30) est solidaire d'une (36) des deux secondes parois de l'ouverture (20) perpendiculaires à l'axe principal XX' par l'intermédiaire d'un ressort (46), d'axe d'élasticité parallèle à l'axe principal XX'.
5. Dispositif de sécurité d'amorçage selon l'une des revendications 1 à 4, caractérisé en ce que le verrou inertiel (40), de forme cylindrique circulaire, d'axe de révolution CC,' comporte, d'une de ses deux extrémités à l'autre, une tige (50) de section cylindrique circulaire, de même diamètre D1 que le diamètre du trou (44) du coulisseau (30), suivie d'une tête (52) de même forme cylindrique circulaire mais de diamètre D2 supérieur au diamètre D1 pour former un bord circulaire (54) de butée sur le bord (58) circulaire du trou (44) du coulisseau du côté de l'élément inférieur de fermeture (14).
6. Dispositif de sécurité d'amorçage selon l'une des revendications 1 à 5, caractérisé en ce que l'élément de fermeture inférieur (14) comporte, du côté de sa surface supérieure (26), un évidement haut (60) séparé d'un évidement bas (64) par une paroi de séparation (62) dans un plan parallèle au plan S du sandwich, l'évidement haut (60) et l'évidement bas (64) étant de même forme cylindrique circulaire d'axes de révolution colinéaires à l'axe de translation EE'.
7. Dispositif de sécurité d'amorçage selon la revendication 6, caractérisé en ce que l'évidement haut (60) et l'évidement bas (64) de l'élément de fermeture inférieur (14) ont le même diamètre D2 que la tête (52) du verrou inertiel (40), la tête (52) du verrou inertiel (40) pouvant glisser sans résistance dans l'un ou l'autre des évidements, bas (64) et haut (60), de l'élément de fermeture inférieur (14).
8. Dispositif de sécurité d'amorçage selon l'une des revendications 6 ou 7, caractérisé en ce qu'il est configuré pour que, lorsque la première et la deuxième sécurités sont activées, la tige (50) du verrou inertiel (40) soit insérée dans le trou (44) du coulisseau pour le maintenir en position dans l'évidement (28), la tête (52) dudit verrou inertiel étant insérée dans l'évidement haut (60) de l'élément inférieur (14) de fermeture.
9. Dispositif de sécurité d'amorçage selon l'une des revendications 2 à 8, caractérisé en ce que l'élément central (10), le coulisseau (30), le ressort (46) et les éléments de fermeture (12, 14) étant en silicium, l'élément mobile (40) est en acier.
PCT/EP2010/058180 2009-08-04 2010-06-10 Dispositif de securite d'amorçage pour munition tournante WO2011015399A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES10725123.3T ES2466740T3 (es) 2009-08-04 2010-06-10 Dispositivo de seguridad del cebador para munición
EP10725123.3A EP2462403B1 (fr) 2009-08-04 2010-06-10 Dispositif de securite d'amorçage pour munition
US13/388,994 US8820240B2 (en) 2009-08-04 2010-06-10 Safety priming device for rotating ammunition
IL217906A IL217906A (en) 2009-08-04 2012-02-02 Safety applicator for rotating ammunition
ZA2012/01354A ZA201201354B (en) 2009-08-04 2012-02-23 Safety primimg device for rotating ammunition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903848A FR2948993A1 (fr) 2009-08-04 2009-08-04 Dispositif de securite d'amorcage pour munition tournante
FR0903848 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011015399A1 true WO2011015399A1 (fr) 2011-02-10

Family

ID=41834734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/058180 WO2011015399A1 (fr) 2009-08-04 2010-06-10 Dispositif de securite d'amorçage pour munition tournante

Country Status (7)

Country Link
US (1) US8820240B2 (fr)
EP (1) EP2462403B1 (fr)
ES (1) ES2466740T3 (fr)
FR (1) FR2948993A1 (fr)
IL (1) IL217906A (fr)
WO (1) WO2011015399A1 (fr)
ZA (1) ZA201201354B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL249976B (en) * 2017-01-08 2022-02-01 Israel Aerospace Ind Ltd Safety device
CN109029137B (zh) * 2018-09-11 2020-03-31 西安交通大学 一种双向驱动mems安保装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064013A (en) * 1997-01-30 2000-05-16 The United States Of America As Represented By The Secretary Of The Army Miniature, planar, inertially-damped, inertially-actuated delay slider actuator
US6167809B1 (en) * 1998-11-05 2001-01-02 The United States Of America As Represented By The Secretary Of The Army Ultra-miniature, monolithic, mechanical safety-and-arming (S&A) device for projected munitions
US20030070571A1 (en) * 2001-10-17 2003-04-17 Hodge Kathleen F. Submunition fuzing and self-destruct using MEMS arm fire and safe and arm devices
FR2932561A1 (fr) * 2008-06-11 2009-12-18 Nexter Munitions Micro initiateur securise

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064013A (en) * 1997-01-30 2000-05-16 The United States Of America As Represented By The Secretary Of The Army Miniature, planar, inertially-damped, inertially-actuated delay slider actuator
US6167809B1 (en) * 1998-11-05 2001-01-02 The United States Of America As Represented By The Secretary Of The Army Ultra-miniature, monolithic, mechanical safety-and-arming (S&A) device for projected munitions
US20030070571A1 (en) * 2001-10-17 2003-04-17 Hodge Kathleen F. Submunition fuzing and self-destruct using MEMS arm fire and safe and arm devices
FR2932561A1 (fr) * 2008-06-11 2009-12-18 Nexter Munitions Micro initiateur securise
WO2010000972A1 (fr) * 2008-06-11 2010-01-07 Nexter Munitions Micro-initiateur securise

Also Published As

Publication number Publication date
US20120266771A1 (en) 2012-10-25
EP2462403A1 (fr) 2012-06-13
ES2466740T3 (es) 2014-06-11
US8820240B2 (en) 2014-09-02
IL217906A (en) 2015-06-30
ZA201201354B (en) 2012-11-28
FR2948993A1 (fr) 2011-02-11
EP2462403B1 (fr) 2014-03-12
IL217906A0 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
EP1780495B1 (fr) Dispositif de sécurite pyrotechnique à dimensions réduites
EP3150957B1 (fr) Projectile d'artillerie ayant une phase pilotée
EP2077431B1 (fr) Dispositif de sécurité et d'armement micro-usiné ou micro-gravé
EP2239535B1 (fr) Dispositif de mise à feu de munition par percussion
EP2462403B1 (fr) Dispositif de securite d'amorçage pour munition
EP2402706A1 (fr) Dispositif de sécurité et d'armement à verrou inertiel de technologies MEMS
EP0105001B1 (fr) Dispositif de sécurité à cage tournante pour projectile giratoire
EP2482027B1 (fr) Dispositif de sécurité et d'armement pour une chaine pyrotechnique d'un projectile
FR2549949A1 (fr) Procede et dispositif pour la conformation d'une onde de detonation
WO2017037246A1 (fr) Procede de liaison et de separation lineaire de deux elements
EP2434252B1 (fr) Dispositif de sécurité et d'armement pour projectile explosif gyrostabilisé et dispositif d'amorcage mettant en oeuvre un tel dispositif de sécurité et d'armement
EP2633262A1 (fr) Coiffe aerodynamique ejectable pour munition guidee et munition guidee comportant une telle coiffe
EP2482029B1 (fr) Dispositif de temporisation d'un mouvement d'une masselotte micro-usinée et dispositif de sécurité et d'armement comprenant un tel dispositif de temporisation
FR2887021A1 (fr) Kit d'aide a la penetration equipant une bombe, notamment anti-infrastructure, projectile penetrant equipe d'un tel kit, et procede de penetration dans une cible
EP4176225B1 (fr) Fusee comportant un dispositif d'autodestruction pour projectile giratoire
FR2934042A1 (fr) Dispositif de mise a feu pour engins pyrotechniques.
EP3094981B1 (fr) Dispositif mécanique de détection d'accélération angulaire
WO2007071570A1 (fr) Dispositif de neutralisation et de destruction de batiments de stockage de substances nocives
EP0724132A1 (fr) Dispositif de sécurité et d'armement pour fusée de projectile
EP2005198B1 (fr) Dispositif micro-electronique inertiel a integrateur liquide
WO2009103707A1 (fr) Fusee de munition avec securite d'armement
FR2526155A1 (fr) Securite pour dispositif electrique d'armement
FR2691798A1 (fr) Système d'auto-destruction d'une munition, en particulier d'une sous-munition d'obus cargo par attaque chimique.
FR2699662A1 (fr) Système d'amorçage à détecteur d'impact tout azimut pour munition, en particulier pour sous-munition éjectée d'un obus cargo.
FR2691796A1 (fr) Système d'auto-destruction d'une munition en particulier d'une sous-munition d'obus cargo comprenant un générateur de gaz.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10725123

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 217906

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010725123

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13388994

Country of ref document: US