WO2011015155A1 - 带宽管理方法、演进基站、服务网关和通信系统 - Google Patents

带宽管理方法、演进基站、服务网关和通信系统 Download PDF

Info

Publication number
WO2011015155A1
WO2011015155A1 PCT/CN2010/075787 CN2010075787W WO2011015155A1 WO 2011015155 A1 WO2011015155 A1 WO 2011015155A1 CN 2010075787 W CN2010075787 W CN 2010075787W WO 2011015155 A1 WO2011015155 A1 WO 2011015155A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
bandwidth
transmission bandwidth
transmission
traffic information
Prior art date
Application number
PCT/CN2010/075787
Other languages
English (en)
French (fr)
Inventor
蒋铭
吕文安
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10806059.1A priority Critical patent/EP2437542B1/en
Publication of WO2011015155A1 publication Critical patent/WO2011015155A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints

Definitions

  • Bandwidth management method, evolved base station, service gateway and communication system The application is submitted to the Chinese Patent Office on August 07, 2009, and the application number is 200910161059. 8.
  • the invention name is "bandwidth management method, evolved base station, service gateway and communication system". The priority of the Chinese Patent Application, the entire contents of which is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of communications technologies, and in particular, to a bandwidth management method, an evolved base station, a service gateway, and a communication system.
  • the backhaul is also one of the bandwidth bottlenecks.
  • LTE Long Term Evolution
  • SAE System Architecture Evolution
  • eNodeB evolved base station
  • MME Mobility Management Entity
  • S service gateway
  • the transmission between -GW: Serving Gateway is called backhaul, which involves multiple parts of the transmission network (access, aggregation, and even backbone).
  • the bandwidth that each part can provide is different; and the transmission equipment does not care about its transmission.
  • the content of the S-GW service QoS needs to pay attention to the end-to-end available bandwidth between the S-GW and the eNodeB.
  • the QoS of the S-GW is not required to be forwarded by the priority.
  • the core is bandwidth.
  • the backhaul QoS needs to ensure the high utilization of the backhaul bandwidth in addition to the QoS of various services.
  • the control plane signaling packet traffic is relatively small. Therefore, QoS mainly focuses on user plane packets, and the S-GW is responsible for user plane packet forwarding.
  • the eNodeB is responsible for QoS traffic shaping of the uplink packet
  • the S-GW is responsible for QoS traffic shaping of the downlink packet.
  • S-GW POOL service gateway pool
  • S-GW POOL service gateway pool
  • An eNodeB faces multiple MMEs at the same time.
  • the eNodeB distributes the service to the eNodeB based on a certain policy.
  • the MME selects an S-GW service according to a certain policy.
  • All users will be served by multiple S-GWs to form the S-GW P00L networking.
  • the backhaul QoS needs to perform QoS traffic shaping on the packet based on the total downlink available bandwidth between the eNodeB and the S-GW.
  • the current technology cannot adapt to the actual downlink service packet traffic of the S-GW, causing the downlink load of some S-GWs to the eNodeB to be lightly loaded, and the downlink load of some S-GWs to the eNodeB to be overloaded, so that the downlink backhaul bandwidth utilization is not high.
  • Embodiments of the present invention provide a bandwidth management method, an evolved base station, a service gateway, and a communication system, to solve a transmission channel when multiple first network devices share one transmission channel and a second network device for data transmission in the prior art.
  • the problem of low bandwidth utilization caused by real-time adjustment cannot be adjusted.
  • the embodiment of the present invention provides a bandwidth management method, which is applied to at least two first network devices and one second network device, where the at least two first network devices share one transmission channel and the second network device to perform data. Transmission, the method includes:
  • the second network device receives the real-time traffic information sent by the first network device, and the second network device transmits the at least two of the first network devices according to the traffic information and a preset adjustment rule.
  • Bandwidth adjustment
  • the second network device sends the adjusted transmission bandwidth information to the first network device, so that the first network device performs data transmission based on the adjusted transmission bandwidth.
  • the embodiment of the present invention further provides a bandwidth management method, which is applied to at least two first network devices and one second network device, where the at least two first network devices share one transmission channel and the second network device.
  • Data transmission the method includes: Transmitting, by the first network device, real-time traffic information to the second network device; the first network device receiving the adjusted transmission bandwidth information sent by the second network device, and performing data transmission based on the adjusted transmission bandwidth And the adjusted transmission bandwidth is obtained by the second network device adjusting the transmission bandwidth of the at least two first network devices according to the traffic information and the preset adjustment rule.
  • the embodiment of the present invention further provides an evolved base station, where the evolved base station is connected to at least two first network devices, and the at least two first network devices share one transmission channel and the evolved base station performs data transmission, where
  • the evolved base station includes:
  • a receiving unit configured to receive real-time traffic information sent by the first network device
  • an adjusting unit configured to adjust, according to the traffic information received by the receiving unit and the preset adjustment rule, the transmission bandwidth of the at least two first network devices
  • a sending unit configured to send the adjusted transmission bandwidth information of the adjusting unit to the first network device, so that the first network device performs data transmission based on the adjusted transmission bandwidth.
  • a sending unit configured to send real-time traffic information to the second network device
  • a receiving unit configured to receive the adjusted transmission bandwidth information sent by the second network device, and perform data transmission based on the adjusted transmission bandwidth; the adjusted transmission bandwidth is determined by the second network device according to the traffic
  • the information and the preset adjustment rule are obtained by adjusting the transmission bandwidth of the at least two first network devices.
  • the embodiment of the present invention further provides a communication system, including an evolved base station and at least two service gateways, where the at least two service gateways share a transmission channel and perform data transmission with the evolved base station, where:
  • the evolved base station is configured to receive real-time traffic information sent by the serving gateway; Transmitting the received traffic information and the preset adjustment rule, and adjusting the transmission bandwidth of the at least two service gateways; and transmitting the adjusted transmission bandwidth information to the serving gateway;
  • the serving gateway is configured to receive the adjusted transmission bandwidth information, and perform data transmission based on the adjusted transmission bandwidth.
  • Embodiment 1 is a flowchart of Embodiment 1 of a bandwidth management method according to an embodiment of the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a bandwidth management method according to an embodiment of the present invention
  • Embodiment 3 is a flowchart of Embodiment 3 of a bandwidth management method according to an embodiment of the present invention.
  • Embodiment 4 is a flowchart of Embodiment 4 of a bandwidth management method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of Embodiment 5 of a bandwidth management method according to an embodiment of the present invention.
  • Embodiment 6 is a signaling flowchart of Embodiment 6 of a bandwidth management method according to an embodiment of the present invention
  • FIG. 7 is a signaling flowchart of Embodiment 7 of a bandwidth management method according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of Embodiment 1 of an evolved base station according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of Embodiment 2 of an evolved base station according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of Embodiment 3 of an evolved base station according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of an embodiment of a service gateway according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of an embodiment of a communication system according to an embodiment of the present invention.
  • FIG. 1 illustrates a flow of the first embodiment of the downlink bandwidth management method.
  • the embodiment is applied to at least two first network devices and one second network device.
  • the first network device shares a transmission channel and the second network device performs data transmission, the transmission bandwidth of the one transmission channel is certain, and the transmission bandwidth remains stable before the network policy changes, and the at least two first network devices respectively Having a transmission bandwidth, the transmission bandwidths of the at least two first network devices may be the same or different, and the sum of the transmission bandwidths of the at least two first network devices is less than or equal to the transmission bandwidth of the one transmission channel, the implementation Examples include:
  • the second network device may receive the real-time traffic information sent by the first network device.
  • the second network device may be an evolved base station, where the first network device may be a serving gateway, the at least two services.
  • the gateway forms a pool of service gateways.
  • the traffic information describes the usage rate of the transmission bandwidth, and may be the information indicating the transmission bandwidth usage rate, for example, when the transmission bandwidth is the downlink bandwidth, the traffic information may be the downlink load state information; when the transmission bandwidth is the uplink bandwidth , the traffic information may be uplink load status information.
  • the second network device adjusts a transmission bandwidth of the at least two first network devices according to the traffic information and a preset adjustment rule.
  • the second network device may determine the state of the transmission bandwidth of the first network device according to the traffic information, for example, may be congestion, normal, light load, or the like.
  • the preset adjustment rule may be preset.
  • the step of adjusting, by the second network device, the transmission bandwidth of the at least two first network devices according to the traffic information and the preset adjustment rule may include: The second network device reduces the transmission bandwidth from the lightly loaded first network device according to the traffic information; the second network device allocates the reduced transmission bandwidth to the congested first network device according to the traffic information.
  • the second network device sends the adjusted transmission bandwidth information to the first network device, so that the first network device performs data transmission based on the adjusted transmission bandwidth.
  • the adjusted transmission bandwidth information may be sent to the first network device by using the bandwidth notification, so that the first network device may perform data transmission based on the adjusted transmission bandwidth; for example, the adjusted transmission to the lightly loaded first network device.
  • the transmission bandwidth information is the reduced transmission bandwidth information, and the adjusted transmission bandwidth information transmitted to the congested first network device is the allocated transmission bandwidth information.
  • QoS traffic shaping operations can also be performed according to the QoS requirements.
  • the second network device after receiving the traffic information sent by the first network device, can adjust the transmission bandwidth of the at least two first network devices according to the traffic information and the preset adjustment rule.
  • the transmission bandwidth of the lightly loaded first network device may be transferred to the congested first network device, so that the lightly loaded first network device and the congested first network device have appropriate transmission bandwidth for data transmission, thereby dynamically Adjusting a transmission bandwidth of the first network device connected to the second network device, so that the first network device whose bandwidth is adjusted can perform data transmission according to the adjusted transmission bandwidth, thereby improving the first network device and the second network device.
  • the use efficiency of the transmission bandwidth between the two also realizes the fairness of the transmission bandwidth usage between the respective first network devices.
  • FIG. 2 is a flowchart of a second embodiment of a bandwidth management method.
  • the embodiment is applied to at least two first network devices and one second network device.
  • the at least two first network devices share one transmission channel and the second network device.
  • Data transmission this embodiment includes:
  • the first network device sends real-time traffic information to the second network device.
  • the first network device can monitor the traffic information reaching the second network device in real time.
  • the first network device may actively send the traffic information to the second network device when the congestion occurs, or may passively send the traffic to the second network device after receiving the information sent by the second network device, such as the traffic information collection request. information.
  • the first network device receives the adjusted transmission bandwidth information sent by the second network device, and performs data transmission according to the adjusted transmission bandwidth.
  • the adjusted transmission bandwidth is the traffic sent by the second network device according to the first network device.
  • Information and preset adjustment rules for at least two first networks The transmission bandwidth of the network device is adjusted.
  • the received adjusted transmission bandwidth information is the reduced transmission bandwidth information; if the first network device sends the The traffic information indicates that the first network device is the first network device that is congested, and the received adjusted transmission bandwidth information is the allocated transmission bandwidth information.
  • the second network device can receive the traffic information sent by the first network device, according to the traffic information and the preset
  • the adjustment rule adjusts the transmission bandwidth of the at least two first network devices, and specifically transfers the transmission bandwidth of the lightly loaded first network device to the congested first network device, so that the lightly loaded first network device and the congested first
  • a network device has an appropriate transmission bandwidth for data transmission, thereby dynamically adjusting a transmission bandwidth of the first network device connected to the second network device, so that the first network device whose bandwidth is adjusted can be adjusted according to the adjusted transmission bandwidth.
  • the data transmission improves the use efficiency of the transmission bandwidth between the first network device and the second network device, and also achieves the fairness of the transmission bandwidth usage between the first network devices.
  • FIG. 3 illustrates a flow of the third embodiment of the bandwidth management method.
  • the first network device is the S-GW in the serving gateway pool
  • the second network device is the eNodeB
  • the traffic information is the downlink load status information.
  • the processing flow of the eNodeB includes:
  • the downlink load status information received by the eNodeB may be carried by an Echo Request/Echo Response message in the extended 3GPP GTP protocol (including GTP version 1 and GTP version 2), or may be through a user plane.
  • the GTP-U (GPRS Tunneling Protocol for User plane) packet is carried, or can be carried by other extended messages.
  • the packet buffer rate identifies the extent to which the S-GW buffers the downlink packets of the eNodeB during QoS traffic shaping.
  • the S-GW downlink load status can be reflected by the downlink bandwidth occupancy rate.
  • the packet buffer rate needs to be used together. Reflects the S-GW downlink load status. Based on the load status mapped by the downlink bandwidth usage and the packet buffer rate, the downlink load status of the S-GW can be classified into light load, normal, and congestion status.
  • the downlink load in the embodiment of the present invention may be the average downlink load of the S-GW in the latest period of time, so that the load state can more accurately reflect the S- The downstream bandwidth usage of the GW.
  • the eNodeB before receiving the downlink load status information sent by the S-GW in the S-GW POOL, the eNodeB may further include: receiving a congestion status report sent by the congested S-GW; triggering the congestion status report
  • the other S-GWs in the S-GW POOL send a traffic information collection request, and then the S-GW that receives the traffic information collection request sends the current downlink load state information of the S-GW to the eNodeB.
  • the downlink load status of the S-GW can be classified into three categories: light load, normal, and congestion.
  • the specific range can be configured.
  • the downlink load state of the S-GW can be differentiated as follows: when the downlink load state is 0% to 39%, it is a light load state, and when the downlink load state is 40% to 69%, it is a normal state. When the downlink load status is 70% ⁇ 100%, it is congested.
  • the eNodeB based on the principle of the S-GW POOL, the eNodeB usually uses the load sharing when selecting the S-GW, and can allocate the S-GW according to the network planning, the bandwidth occupancy weight of the S-GW, and the probability statistics.
  • the initial transmission bandwidth so that the load is evenly distributed, it can be considered that the load of each S-GW in the S-GW POOL is approximately equalized over a longer period of time, but In a short period of time, the traffic of the S-GW may be unbalanced due to the sudden burst of service traffic. Therefore, the adjustment of the downlink bandwidth of the S-GW follows the principle of small adjustment, and the amplitude of each adjustment is not suitable. If it is too large, the adjustment frequency should not be too high.
  • the S-GW-based load congestion state triggers the eNodeB adjustment.
  • the downlink bandwidth can be reduced from the light-loaded S-GW according to the preset adjustment granularity, wherein the adjustment granularity is the downlink bandwidth of the S-GW.
  • the adjustment granularity may be set to correspond to 1/10 of the initial downlink bandwidth of the S-GW, and the initial downlink bandwidth is the downlink bandwidth allocated by the S-GW at the initial time of the system.
  • the 302 step may be performed when the S-GW POOL has a downlink load state of the S-GW being congested.
  • the downlink bandwidth may be preferentially allocated to the most congested S-GW.
  • the eNodeB based on the principle of the S-GW POOL, the eNodeB usually uses the load sharing when selecting the S-GW, and can allocate the S-GW according to the network planning, the bandwidth occupancy weight of the S-GW, and the probability statistics.
  • the initial transmission bandwidth so that the load is evenly distributed, it can be considered that the load of each S-GW in the S-GW POOL is approximately equalized over a long period of time, but the traffic is limited in a short period of time.
  • the suddenness of the S-GW may be unbalanced. Therefore, the downlink bandwidth of the S-GW is adjusted slightly.
  • the amplitude of each adjustment should not be too large.
  • the adjustment frequency should not be too high.
  • the S-GW is triggered by the load congestion status.
  • the eNodeB adjustment when the downlink bandwidth is allocated to the congested S-GW, the downlink bandwidth is allocated to the congested S-GW according to the preset adjustment granularity.
  • the adjustment granularity may be set to corresponding. 1/10 of the initial downlink bandwidth of the S-GW.
  • the light-loaded S-GW After transmitting the bandwidth notification to the light-loaded S-GW, the light-loaded S-GW performs data transmission according to the reduced downlink bandwidth.
  • the QoS traffic shaping operation may be performed according to the QoS requirements.
  • the congested S-GW After the bandwidth notification is sent to the congested S-GW, the congested S-GW performs data transmission according to the allocated downlink bandwidth. Because different services have different QoS requirements, when data transmission is performed according to the allocated downlink bandwidth, in order to make the data transmission meet the QoS requirements of the service, QoS traffic shaping and the like can also be performed according to the QoS requirements.
  • the eNodeB after receiving the downlink load state information sent by the S-GW, the eNodeB can adjust the transmission bandwidth of the at least two S-GWs according to the downlink load state information and the preset adjustment rule, specifically The transmission bandwidth of the light-loaded S-GW can be transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths for data transmission, thereby dynamically connecting to the eNodeB.
  • the S-GW transmission bandwidth is adjusted, so that the bandwidth-adjusted S-GW can perform data transmission according to the adjusted transmission bandwidth, which improves the use efficiency of the transmission bandwidth between the S-GW and the eNodeB, and also implements each S- Fairness of transmission bandwidth usage between GWs.
  • FIG. 4 is a flowchart of a fourth embodiment of the downlink bandwidth management method in the embodiment of the present invention.
  • the first network device is an S-GW in the serving gateway pool
  • the second network device is an eNodeB
  • the S-GW is used in the downlink.
  • the load status information is used as the traffic information.
  • This embodiment describes the processing flow of the S-GW in the S-GW POOL, including:
  • the S-GW communicates with the at least one eNodeB, and the S-GW separately monitors the downlink load status of the downlink bandwidth of the at least one eNodeB.
  • 401 is optional.
  • the S-GW communicates with the at least one eNodeB, and the S-GW separately monitors the downlink load status of the downlink bandwidth of the at least one eNodeB, and thus may separately send the downlink load status to the at least one eNodeB. Corresponding downlink load status information.
  • the corresponding S-GW receives the bandwidth notification sent by the eNodeB.
  • the received bandwidth notification may be carried by the response request message; in another embodiment of the present invention, the received bandwidth notification may be carried by the GTP-U message; in another implementation of the present invention In the example, the received bandwidth notification can be carried by other extended messages.
  • the S-GW After receiving the bandwidth notification, the S-GW can perform data transmission based on the adjusted downlink bandwidth.
  • the adjusted downlink bandwidth of the 403 is different according to the downlink load state of the S-GW sent in 402. If the downlink load state information of the S-GW sent in 402 identifies the S-GW as a light load, then 403
  • the adjusted downlink bandwidth information is the reduced downlink bandwidth information, that is, the adjusted downlink bandwidth is less than the downlink bandwidth before the adjustment; if the downlink load state information of the S-GW transmitted in 402 identifies that the S-GW is congested,
  • the adjusted downlink bandwidth information is the allocated downlink bandwidth information, that is, the adjusted downlink bandwidth is larger than the downlink bandwidth before the adjustment.
  • the S-GW may send the downlink load status information to the eNodeB, so that after receiving the downlink load status information sent by the S-GW, the eNodeB performs at least the downlink load status information and the preset adjustment rule.
  • the transmission bandwidth of the two S-GWs is adjusted, and the transmission bandwidth of the light-loaded S-GW can be transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths.
  • Performing data transmission thereby dynamically adjusting the S-GW transmission bandwidth connected to the eNodeB, so that the bandwidth-adjusted S-GW can perform data transmission according to the adjusted transmission bandwidth, which improves the S-GW and the eNodeB.
  • the use efficiency of the transmission bandwidth also achieves the fairness of the transmission bandwidth usage between the various S-GWs.
  • FIG. 5 is a flowchart of the fifth embodiment of the downlink bandwidth management method in the embodiment of the present invention.
  • the first network device is an S-GW in the serving gateway pool
  • the second network device is an eNodeB
  • the S-GW is used in the downlink.
  • the load status information is used as the downlink load status.
  • the embodiment describes the interaction process between the eNodeB and the S-GW, including:
  • the eNodeB acquires the total downlink available bandwidth of the S-GW POOL when the system starts; and assumes that the total downlink available bandwidth is MaxBW;
  • the eNodeB can detect the MaxBW by using a dynamic bandwidth detection method; or configure the MaxBW on the eNodeB in advance when the downlink bandwidth of the backhaul is relatively stable.
  • the eNodeB allocates an initial downlink bandwidth to each S-GW in the S-GW POOL according to a preset rule.
  • the downlink bandwidth can be allocated to each S-GW according to the bandwidth occupation weight of the S-GW. It is assumed that there are n S-GWs in the S-GW POOL, and the bandwidth occupation weights of the respective S-GWs are respectively W1, W2, ... Wn, the initial downlink bandwidth of the i-th S-GW is MaxBW*Wi/(Wl+W2+...+Wn), 0 ⁇ i ⁇ n+lo, of course, when the initial downlink bandwidth is allocated for the S-GW, except for considering each S In addition to the bandwidth usage weight of the GW, the number of users and/or other factors can also be considered.
  • Thdi In order to maintain a certain service providing capability of each S-GW, it is necessary to ensure that the initial downlink bandwidth of the S-GW is not lower than a threshold Thdi, and Thdi can be configured and adjusted according to requirements; , for example, based on the bandwidth usage weight allocation of each S-GW
  • the initial downlink bandwidth allocated by the S-GW is not lower than the threshold to ensure that each S-GW has a certain Minimum business delivery capabilities.
  • the initial transmission bandwidth is an initial downlink bandwidth.
  • the initial transmission bandwidth may also be an initial uplink bandwidth or the like.
  • the bandwidth occupation weight of the S-GW may be configured in advance on the eNodeB.
  • the eNodeB sends the allocated initial downlink bandwidth to the S-GW in the S-GW POOL.
  • the S-GW performs data transmission based on an initial downlink bandwidth.
  • the S-GW sends downlink load state information to the eNodeB, where the downlink load state information identifies a downlink load state of the downlink bandwidth.
  • the downlink load status of the S-GW to the eNodeB may be determined by the downlink bandwidth occupancy rate and/or the packet buffering rate.
  • the eNodeB adjusts a downlink bandwidth of the S-GW.
  • the following small adjustment principle when adjusting the downlink bandwidth of the S-GW, the following small adjustment principle may be followed: bandwidth adjustment according to the adjustment granularity, wherein the adjustment granularity is configurable, for example, in one embodiment of the present invention
  • the downlink bandwidth is also reduced, and the downlink bandwidth adjustment of each single S-GW does not exceed the corresponding adjustment granularity, thereby avoiding the ping-pong effect.
  • the downlink bandwidth of the S-GW with the load in the normal state does not increase or decrease.
  • the downlink bandwidth can be reduced from the light-loaded S-GW, and the reduced downlink bandwidth is allocated to the congested S-GW, but the basic requirements are met: After the downlink bandwidth of the light-load S-GW is reduced, the S-GW load state immediately migrates to the congestion state.
  • the eNodeB sends a bandwidth notification to the S-GW whose downlink bandwidth is adjusted, where the bandwidth notification includes the adjusted downlink bandwidth information.
  • the S-GW After receiving the adjusted downlink bandwidth information, the S-GW is based on the adjusted downlink bandwidth. Line data transfer.
  • 505-508 can be cycled.
  • the eNodeB can adjust the transmission bandwidth of the at least two S-GWs according to the downlink load state information and the preset adjustment rule. Transferring the transmission bandwidth of the light-loaded S-GW to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths for data transmission, thereby dynamically connecting to the eNodeB.
  • the transmission bandwidth of the S-GW is adjusted, so that the S-GW whose bandwidth is adjusted can perform data transmission according to the adjusted transmission bandwidth, which improves the use efficiency of the transmission bandwidth between the S-GW and the eNodeB, and also implements each S-GW.
  • the fairness of the transmission bandwidth is used; and the eNodeB can allocate the initial downlink bandwidth to the S-GW according to the preset rule, which can ensure the relative fairness of the bandwidth allocation between the S-GWs.
  • the first network device is the S-GW in the serving gateway pool
  • the second network device is the eNodeB
  • the downlink load state information of the S-GW is used as the traffic. information.
  • the service load assumed by the S-GW that exits the service is subsequently distributed to other S-GWs in the S-GW POOL, that is, S-GW POOL.
  • the number of GWs is reduced from n to n -l.
  • the downlink bandwidth occupied by the S-GW that exits the service may be allocated to the S-GW that is congested in the S-GW POOL according to the adjustment granularity.
  • the specific allocation process can be referred to 306.
  • the S-GW When the S-GW is added to the S-GW POOL, and the newly added S-GW is in an active state and has the capability of providing services, the number of S-GWs in the S-GW POOL is increased from n to n+l.
  • the downlink bandwidth needs to be allocated for the new S-GW.
  • the load of the newly added S-GW increases, there is a process. Therefore, refer to 306 to treat the newly added S-GW as the node with the most congestion.
  • Service provisioning capability the downlink bandwidth allocated to the newly added S-GW for the first time is not lower than the threshold Thd ⁇
  • the eNodeB When the eNodeB is initially started, the capability of each S-GW in the S-GW POOL to provide the service is unknown, so the downlink bandwidth is performed immediately after the eNodeB establishes a connection with one of the S-GWs. Allocation, specifically eNodeB can follow the planning of S-GW POOL The information is allocated with an initial downlink bandwidth. For the allocation of the initial downlink bandwidth, reference may be made to 302. After a period of time, the length of the period of time is configurable for the S-GW that has not detected the online, according to the S-GW processing of the exit service. The planning information of the S-GW POOL may be configured in advance on the eNodeB.
  • the S-GW load in the S-GW POOL is in a congested state for a long time, and there is no other S-GW in the light load state at this time, there is no downlink bandwidth that can be allocated to the congested S- GW, the system is in an abnormal state.
  • the initial downlink bandwidth allocation state can be returned to the S-GW according to the bandwidth occupancy weight of the S-GW or the S-GW POOL planning information, thereby ensuring that each S-GW has the initial planned traffic load. Capability, each S-GW's QoS scheduling priority guarantees real-time services.
  • the condition for returning to the initial downlink bandwidth allocation state is configurable, for example, the SGW load status in the S-GW POOL and the duration of the load status, wherein the SGW load status in the S-GW POOL includes the S-GW. How many S-GWs in the POOL are in a congested state and how many S-GWs in the S-GW POOL are in a normal state.
  • the initial downlink bandwidth corresponding to the S-GW is targeted, and the bandwidth is adjusted according to the adjustment granularity corresponding to the S-GW, thereby ensuring that each adjustment range is not greater than the
  • the S-GW corresponds to the adjusted downlink granularity. If the current available downlink bandwidth of the S-GW is smaller than the initial downlink bandwidth, the downlink bandwidth needs to be increased for the S-GW, so that the downlink bandwidth of the S-GW reaches the initial downlink bandwidth. If the current downlink bandwidth of the GW is greater than the initial downlink bandwidth, the downlink bandwidth of the S-GW needs to be reduced, so that the downlink bandwidth of the S-GW is gradually reduced to the initial downlink bandwidth.
  • the downlink bandwidth adjustment result is: After the downlink bandwidth is reduced, the downlink bandwidth of the S-GW is close to or equal to the initial downlink bandwidth corresponding to the S-GW.
  • the eNodeB needs to return to the initial downlink bandwidth allocation state in time, otherwise the S-GW downlink. Packets may be dropped or insufficient downlink bandwidth utilization.
  • the condition for returning to the initial downlink bandwidth allocation state is configurable, for example, it can be set to S-GW POOL.
  • the total downlink available bandwidth varies beyond a certain range.
  • the certain eNodeB may be referred to as a leaf eNodeB, and the other eNodeBs may be referred to as an aggregation eNodeB, and the leaf eNodeB to the S-GW in the S-GW POOL.
  • the packet needs to be forwarded through the intermediate aggregation eNodeB.
  • the certain and other eNodeBs can be logically regarded as an eNodeB group, and the S-GW can treat the eNodeB grou as a logical independent eNodeB.
  • the interaction between the eNodeB and the S-GW needs to extend the GTP (Echo request/Echo respsone cell or GTP-U packet header), so when the S-GW
  • GTP Echo request/Echo respsone cell or GTP-U packet header
  • FIG. 6 is a schematic diagram of a signaling flow of a fourth embodiment of the downlink bandwidth management method in the embodiment of the present invention.
  • the first network device is an S-GW in the serving gateway pool
  • the second network device is an eNodeB
  • the traffic information is downlink.
  • Load status information in this embodiment, the information exchange between the eNodeB and the S-GW is performed by an echo request and an Echo response.
  • This embodiment describes that the S-GW in the S-GW POOL obtains the initial downlink bandwidth.
  • the processing flow of the post S-GW and eNodeB includes:
  • the S-GW in the S-GW POOL monitors the downlink load status in real time. When an S-GW finds that its downlink load status is congested, it sends a congestion status report to the eNodeB by responding to the request, reporting that its downlink load status is congestion. ;
  • the eNodeB After receiving the congestion status report sent by the S-GW by the response request, the eNodeB sends a response response to the S-GW.
  • the S-GW that receives the traffic information collection request sends the downlink load state information of the eNodeB to the eNodeB by responding to the response.
  • the S-GW monitors the downlink load status in real time, the S-GW can immediately send its own downlink load status information to the eNodeB after receiving the traffic information collection request.
  • the downlink load state information of the S-GWs that arrives in the S-GW can be regarded as the current downlink load state of the S-GW.
  • the eNodeB performs downlink bandwidth adjustment according to the downlink load state information of the received S-GW and a preset adjustment rule.
  • the eNodeB sends a bandwidth notification to the S-GW whose downlink bandwidth is adjusted by using the response request, where the bandwidth notification includes the adjusted downlink bandwidth information of the S-GW.
  • the received adjusted transmission bandwidth is the reduced transmission bandwidth; if the downlink load status information sent by the S-GW The S-GW that identifies the S-GW is congested, and the received adjusted transmission bandwidth is the allocated transmission bandwidth.
  • the S-GW receives the bandwidth notification, but the bandwidth notification does not include the adjusted downlink bandwidth information, that is, the downlink bandwidth of the S-GW is not adjusted, the S-GW does not process. The bandwidth notification or discard the bandwidth notification directly.
  • the S-GW After receiving the adjusted downlink bandwidth information, the S-GW sends a response response to the eNodeB. Since the existing 3GPP GTP Echo Request/Echo Response does not have standard cells that can carry congestion status reports, traffic information collection requests, downlink load status information, and bandwidth notifications, private extension cells can be based on existing Echo Request and Echo Response. (Private Extension Information Element) extension, Echo Request and Echo Response through An extended cell can carry a congestion status report, a traffic information collection request, downlink load status information, and a bandwidth notification.
  • a private extension cell of the Echo Request and Echo Response extensions of one embodiment of the present invention is shown in Table 1. Both the GTP version 1 and the GTP version 2 can apply the private extension cell provided by the embodiment of the present invention.
  • the eNodeB after receiving the downlink load state information sent by the S-GW, the eNodeB can adjust the transmission bandwidth of the at least two S-GWs according to the downlink load state information and the preset adjustment rule, specifically The transmission bandwidth of the light-loaded S-GW can be transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths for data transmission, thereby dynamically connecting to the eNodeB.
  • FIG. 7 is a schematic diagram of a signaling flow of a seventh embodiment of the downlink bandwidth management method in the embodiment of the present invention.
  • the first network device is an S-GW in the serving gateway pool
  • the second network device is an eNodeB
  • the traffic information is downlink.
  • Load status information in this embodiment, the information exchange between the eNodeB and the S-GW is performed by using a GTP-U message.
  • This embodiment describes that the S-GW in the S-GW POOL obtains the initial downlink bandwidth and then the S-GW.
  • the processing flow of the eNodeB including:
  • Each S-GW in the S-GW POOL monitors the downlink load status in real time, and sends the downlink load status information to the eNodeB through the GTP-U packet.
  • the downlink load status information is specifically carried in the GTP-U packet header.
  • the S-GW sends the downlink load status information to the eNodeB through the GTP-U packet.
  • the S-GW periodically sends the downlink load status information to the eNodeB through the GTP-U packet. The period is configurable.
  • the eNodeB performs downlink bandwidth adjustment according to the received S-GW downlink load state information and a preset adjustment rule.
  • the step is performed only when the downlink load state of the S-GW is congested, and may be performed by referring to 506.
  • the eNodeB sends a bandwidth notification to the S-GW whose downlink bandwidth is adjusted by using the GTP-U packet, where the bandwidth notification includes the adjusted downlink bandwidth information, and the bandwidth notification may be carried by the GTP-U packet header.
  • the existing GTP-U packet header cannot carry downlink load status information and bandwidth notification. Therefore, it needs to be extended based on the existing header (EH: Externsion Header) of the GTP-U packet header. Both the GTP version 1 and the GTP version 2 can be applied to the extended header of the GTP-U packet header extended by the embodiment of the present invention.
  • the extended header of the extended GTP-U packet header is as shown in Table 2.
  • Table 2
  • extension headers of the three GTP-U headers in Table 2 cannot be used in conflict with other extension header types.
  • the eNodeB after receiving the downlink load state information sent by the S-GW, the eNodeB can adjust the transmission bandwidth of the at least two S-GWs according to the downlink load state information and the preset adjustment rule, specifically The transmission bandwidth of the light-loaded S-GW can be transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths for data transmission, thereby dynamically connecting to the eNodeB.
  • the S-GW transmission bandwidth is adjusted, so that the bandwidth-adjusted S-GW can perform data transmission according to the adjusted transmission bandwidth, which improves the use efficiency of the transmission bandwidth between the S-GW and the eNodeB, and also implements each S- Fairness of transmission bandwidth usage between GWs.
  • the evolved base station provided by the embodiment of the present invention is further introduced, and FIG. 8 describes the first embodiment of the evolved base station.
  • the evolved base station is connected to the at least two first network devices, where the at least two first network devices share one transmission channel and the evolved base station performs data transmission, and the evolved base station includes:
  • the receiving unit 801 is configured to receive real-time traffic information sent by the first network device, where the adjusting unit 802 is configured to transmit, according to the traffic information received by the receiving unit 801 and the preset adjustment rule, the transmission bandwidth of the at least two first network devices. Make adjustments;
  • the sending unit 803 is configured to send the adjusted transmission bandwidth information of the adjusting unit 802 to the first network device, so that the first network device performs data transmission based on the adjusted transmission bandwidth.
  • the eNodeB can adjust the transmission bandwidth of the at least two first network devices according to the traffic information and the preset adjustment rule after receiving the traffic information sent by the first network device, specifically, The transmission bandwidth of the light-loaded S-GW is transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths for data transmission, thereby dynamically connecting to the eNodeB.
  • the transmission bandwidth of a network device is adjusted, so that the first network device whose bandwidth is adjusted can perform data transmission according to the adjusted transmission bandwidth, which improves the use efficiency of the transmission bandwidth between the first network device and the eNodeB, and also implements the first The fairness of the transmission bandwidth usage between a network device.
  • FIG. 9 illustrates a structure of Embodiment 2 of an evolved base station, where the evolved base station is connected to at least two first network devices, and the at least two first network devices share a transmission channel and perform data transmission with the evolved base station, where the evolved base station includes :
  • the receiving unit 901 is configured to receive a congestion status report sent by the first network device that is congested, and send, by the sending unit 903, to remove congestion from the at least two first network devices, triggered by the congestion status report received by the receiving unit 901.
  • the first network device outside the first network device sends a traffic information collection request;
  • the receiving unit 901 is further configured to: after the sending unit 903 sends the traffic information collection request, receive the real-time traffic information sent by the first network device;
  • the adjusting unit 902 is configured to adjust, according to the traffic information received by the receiving unit 901 and the preset adjustment rule, the transmission bandwidth of the at least two first network devices;
  • the sending unit 903 is further configured to send the adjusted transmission bandwidth information of the adjustment unit to the first network device, so that the first network device performs data transmission based on the adjusted transmission bandwidth.
  • the eNodeB can adjust the transmission bandwidth of the at least two first network devices according to the traffic information and the preset adjustment rule after receiving the traffic information sent by the first network device, specifically, The transmission bandwidth of the light-loaded S-GW is transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths for data transmission, thereby dynamically connecting to the eNodeB.
  • the transmission bandwidth of a network device is adjusted, so that the first network device whose bandwidth is adjusted can perform data transmission according to the adjusted transmission bandwidth, which improves the use efficiency of the transmission bandwidth between the first network device and the eNodeB, and also implements the first The fairness of the transmission bandwidth usage between a network device.
  • FIG. 10 illustrates a structure of Embodiment 3 of an evolved base station, where the evolved base station is connected to at least two first network devices, and the at least two first network devices share a transmission channel and perform data transmission with the evolved base station, where the evolved base station includes :
  • the obtaining unit 1001 is configured to acquire a transmission bandwidth of the transmission channel.
  • the allocating unit 1002 is configured to allocate an initial transmission bandwidth to the at least two first network devices according to the preset rule and the transmission bandwidth acquired by the obtaining unit 1001.
  • the sending unit 1003 is configured to send, to the at least two first network devices, initial transmission bandwidth information allocated by the allocating unit 1002.
  • the receiving unit 1004 is configured to receive real-time traffic information sent by the first network device, where the adjusting unit 1005 is configured to transmit, according to the traffic information received by the receiving unit 1004 and the preset adjustment rule, the transmission bandwidth of the at least two first network devices. Make adjustments;
  • the sending unit 1003 is further configured to send the adjusted transmission bandwidth information of the adjusting unit 1005 to the first network device, so that the first network device performs data transmission based on the adjusted transmission bandwidth.
  • the eNodeB can adjust the transmission bandwidth of the at least two first network devices according to the traffic information and the preset adjustment rule after receiving the traffic information sent by the first network device, specifically,
  • the transmission bandwidth of the light-loaded S-GW is transferred to the congested S-GW, so that Both the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidth for data transmission, thereby dynamically adjusting the transmission bandwidth of the first network device connected to the eNodeB, so that the first network device whose bandwidth is adjusted can be
  • the data transmission according to the adjusted transmission bandwidth improves the use efficiency of the transmission bandwidth between the first network device and the eNodeB, and also realizes the fairness of the transmission bandwidth usage between the first network devices; and the network device can follow the pre-
  • the rule is to allocate the initial transmission bandwidth to the first network device, and the relative fairness of the bandwidth allocation between the first network devices can be ensured.
  • FIG. 11 depicts a structure of an embodiment of a service gateway that is connected to a second network device that is also coupled to at least one other service gateway that shares a transmission with the at least one other service gateway
  • the channel performs data transmission with the second network device
  • the service gateway includes:
  • the sending unit 1101 is configured to send real-time traffic information to the second network device.
  • the serving gateway can send the traffic information to the second network device, so that the second network device can receive at least two traffic information according to the traffic information and the preset adjustment rule after receiving the traffic information sent by the serving gateway.
  • the transmission bandwidth of the serving gateways is adjusted, and the transmission bandwidth of the light-loaded S-GW can be transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidth for data. Transmitting, thereby dynamically adjusting the transmission bandwidth of the serving gateway connected to the second network device, so that the service gateway whose bandwidth is adjusted can perform data transmission according to the adjusted transmission bandwidth, thereby improving the service gateway and the second network device.
  • the efficiency of the use of inter-transmission bandwidth also achieves fairness in the use of transmission bandwidth between service gateways.
  • the receiving unit 1103 included in the service gateway embodiment provided by the present invention may further be configured to receive a traffic information collection request from the second network device; the sending unit 1102 included in the serving gateway receives the load only in the receiving unit 1103. Sending the monitoring unit to the second network device after collecting the request 1101 Monitored traffic information.
  • the sending unit 1102 included in the serving gateway may further be configured to send a congestion status report to the second network device, so that the second network device sends a traffic information collection request.
  • the receiving unit 1103 included in the service gateway embodiment provided by the present invention may further be configured to receive an initial transmission bandwidth allocated by the second network device, so that the serving gateway can perform data transmission based on the initial transmission bandwidth.
  • the evolved base station 1201 is configured to receive real-time traffic information sent by the serving gateway 1202, where the serving gateway that sends the traffic information may be part or all of at least two service gateways; according to the received traffic information and preset adjustment rules, The transmission bandwidth of at least two service gateways 1202 is adjusted; the adjusted transmission bandwidth information is sent to the service gateway 1202;
  • the serving gateway 1202 is configured to receive the adjusted transmission bandwidth information sent by the evolved base station 1201, and perform data transmission based on the adjusted transmission bandwidth.
  • the eNodeB may adjust the transmission bandwidth of the at least two S-GWs according to the downlink load state information and the preset adjustment rule, which may be lightly loaded.
  • the transmission bandwidth of the S-GW is transferred to the congested S-GW, so that the light-loaded S-GW and the congested S-GW have appropriate transmission bandwidths for data transmission, thereby dynamically connecting the S-GW connected to the eNodeB.
  • the transmission bandwidth is adjusted, so that the bandwidth-adjusted S-GW can perform data transmission according to the adjusted transmission bandwidth, which improves the use efficiency of the transmission bandwidth between the S-GW and the eNodeB, and also realizes transmission between the S-GWs.
  • the fairness of bandwidth usage is adjusted, so that the bandwidth-adjusted S-GW can perform data transmission according to the adjusted transmission bandwidth, which improves the use efficiency of the transmission bandwidth between the S-GW and the eNodeB, and also realizes transmission between the S-GWs.
  • the evolved base station 1201 is further configured to acquire a transmission bandwidth of the transmission channel at the time of initialization; and further allocate an initial transmission bandwidth to the at least two serving gateways 1202 according to a preset rule and a transmission bandwidth; Sending the allocated initial transmission bandwidth information to at least two serving gateways;
  • the serving gateway 1202 is further configured to receive the initial transmission sent by the evolved base station 1201 upon initialization. Transmit bandwidth information, based on the initial transmission bandwidth for data transmission. Since the eNodeB can allocate the initial downlink bandwidth to the S-GW according to the preset rule during initialization, the relative fairness of the bandwidth allocation between the S-GWs at the initialization can be ensured.
  • the second network device may perform at least according to the traffic information and the preset adjustment rule.
  • the transmission bandwidths of the two first network devices are adjusted to dynamically adjust the transmission bandwidth of the first network device connected to the second network device, so that the first network device whose bandwidth is adjusted can be performed according to the adjusted transmission bandwidth.
  • the data transmission improves the use efficiency of the transmission bandwidth between the first network device and the second network device, and also achieves the fairness of the transmission bandwidth usage between the first network devices.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Description

带宽管理方法、 演进基站、 服务网关和通信系统 本申请要求于 2009年 08月 07日提交中国专利局、 申请号为 200910161059. 8、 发明 名称为 "带宽管理方法、 演进基站、 服务网关和通信系统" 的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。 技术领域 本发明涉及通信技术领域, 具体涉及带宽管理方法、 演进基站、 服务网 关和通信系统。
背景技术 随着无线数据业务的广泛应用, 用户对带宽的需求越来越大, 从无线网 络结构来看, 除空口外, 回程也是带宽瓶颈点之一。 在长期演进(LTE: Long Term Evolution) /系统架构演进(SAE: System Architecture Evolution)网络里, 可以直观地将演进基站 (eNodeB ) 与移动性管理实体 (MME : Mobility Management Entity) 及服务网关 (S-GW: Serving Gateway) 之间的传输称为 回程, 涉及传输网的多个部分 (接入、 汇聚甚至骨干等), 每个部分可提供的 带宽是不一样的; 而且传输设备不关心其传输的内容, 最多提供按优先级转 发报文, 不能提供基于业务的 QoS (Quality of Service)流量整形; 因此 S-GW 的业务 QoS需要关注 S-GW与 eNodeB之间端到端的可用带宽, QoS的核心 就是带宽。
对于运营商来说, 回程 QoS除了需保证各类业务的 QoS, 还需保证回程 带宽的高利用率。 控制面信令报文流量相对比较小, 所以 QoS主要关注用户 面报文, S-GW负责用户面报文转发。 在回程 QoS解决方案里, eNodeB负责 上行报文的 QoS流量整形, 而 S-GW负责下行报文的 QoS流量整形。
池(POOL)是无线网络常见的一种网络容灾解决方案, 为了使 LTE/SAE 网络具有容灾能力, 可以在 LTE/SAE网络中应用服务网关池 (S-GW POOL) 解决方案。对于 eNodeB来说, 一个 eNodeB同时面对多个 MME, eNodeB基 于一定的策略将业务分发到 ΜΜΕ, MME再根据一定的策略选择某一 S-GW 服务本业务, 最终的结果是: 一个 eNodeB上的所有用户, 将有多个 S-GW分 别服务, 构成 S-GW P00L组网形态。
在现有的 S-GW P00L中, 一个 eNodeB同时面对多个 S-GW, 同时在回 程带宽受限的场景, eNodeB与 S-GW P00L里多个 S-GW总的下行可用带宽 是一定的。 回程 QoS需要基于 eNodeB与 S-GW之间总的下行可用带宽对报 文进行 QoS流量整形。
现有技术不能适应 S-GW实际的下行业务报文流量, 导致部分 S-GW到 eNodeB的下行负载轻载、 部分 S-GW到 eNodeB下行负载重载, 使下行回程 带宽利用率不高。
发明内容 本发明实施例提供了带宽管理方法、 演进基站、 服务网关和通信系统, 以解决现有技术中, 多个第一网络设备共用一个传输通道与第二网络设备进 行数据传输时, 传输通道不能实时调整导致的带宽利用率不高的问题。
本发明实施例提供了一种带宽管理方法, 应用于至少两个第一网络设备 和一个第二网络设备, 所述至少两个第一网络设备共享一个传输通道与所述 第二网络设备进行数据传输, 该方法包括:
所述第二网络设备接收所述第一网络设备发送的实时的流量信息; 所述第二网络设备根据所述流量信息以及预置的调整规则, 对至少两个 所述第一网络设备的传输带宽进行调整;
所述第二网络设备将调整后的传输带宽信息发送给第一网络设备, 以使 第一网络设备基于调整后的传输带宽进行数据传输。
本发明实施例还提供了一种带宽管理方法, 应用于至少两个第一网络设 备和一个第二网络设备, 所述至少两个第一网络设备共享一个传输通道与所 述第二网络设备进行数据传输, 该方法包括: 所述第一网络设备向所述第二网络设备发送实时的流量信息; 所述第一网络设备接收所述第二网络设备发送的调整后的传输带宽信 息, 基于调整后的传输带宽进行数据传输; 所述调整后的传输带宽是由所述 第二网络设备根据所述流量信息以及预置的调整规则, 对至少两个第一网络 设备的传输带宽进行调整后得到的。
本发明实施例还提供了一种演进基站, 所述演进基站与至少两个第一网 络设备连接, 所述至少两个第一网络设备共享一个传输通道与所述演进基站 进行数据传输, 所述演进基站包括:
接收单元, 用于接收第一网络设备发送的实时的流量信息;
调整单元, 用于根据所述接收单元接收的流量信息以及预置的调整规则, 对至少两个第一网络设备的传输带宽进行调整;
发送单元, 用于将所述调整单元调整后的传输带宽信息发送给第一网络 设备, 以使所述第一网络设备基于调整后的传输带宽进行数据传输。
本发明实施例还提供了一种服务网关, 所述服务网关与第二网络设备连 接, 所述第二网络设备还与至少另一个服务网关连接, 所述服务网关与所述 至少另一个服务网关共享一个传输通道与所述第二网络设备进行数据传输, 所述服务网关包括:
发送单元, 用于向所述第二网络设备发送实时的流量信息;
接收单元, 用于接收所述第二网络设备发送的调整后的传输带宽信息, 基于调整后的传输带宽进行数据传输; 所述调整后的传输带宽是由所述第二 网络设备根据所述流量信息以及预置的调整规则, 对至少两个第一网络设备 的传输带宽进行调整后得到的。
本发明实施例还提供了一种通信系统, 包括一个演进基站和至少两个服 务网关, 所述至少两个服务网关共享一个传输通道与所述演进基站进行数据 传输, 其中:
所述演进基站, 用于接收所述服务网关发送的实时的流量信息; 根据所 述接收的流量信息以及预置的调整规则, 对至少两个服务网关的传输带宽进 行调整; 将所述调整后的传输带宽信息发送给所述服务网关;
所述服务网关, 用于接收所述调整后的传输带宽信息, 基于所述调整后 的传输带宽进行数据传输。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例中带宽管理方法实施例一的流程图;
图 2为本发明实施例中带宽管理方法实施例二的流程图;
图 3为本发明实施例中带宽管理方法实施例三的流程图;
图 4为本发明实施例中带宽管理方法实施例四的流程图;
图 5为本发明实施例中带宽管理方法实施例五的流程图;
图 6为本发明实施例中带宽管理方法实施例六的信令流程图;
图 7为本发明实施例中带宽管理方法实施例七的信令流程图;
图 8为本发明实施例中演进基站实施例一的结构图;
图 9为本发明实施例中演进基站实施例二的结构图;
图 10为本发明实施例中演进基站实施例三的结构图;
图 11为本发明实施例中服务网关实施例的结构图;
图 12为本发明实施例中通信系统实施例的结构图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 先介绍本发明实施例提供的下行带宽管理方法, 图 1 描述了下行带宽管 理方法实施例一的流程, 该实施例应用于至少两个第一网络设备和一个第二 网络设备, 该至少两个第一网络设备共享一个传输通道与第二网络设备进行 数据传输, 该一个传输通道的传输带宽是一定的, 并且在网络策略改变之前 该传输带宽都保持稳定, 该至少两个第一网络设备各自具有传输带宽, 该至 少两个第一网络设备各自具有的传输带宽可以相同或不同, 该至少两个第一 网络设备各自具有的传输带宽的总和小于或等于该一个传输通道的传输带 宽, 该实施例包括:
101、 第二网络设备接收第一网络设备发送的实时的流量信息; 在本发明的一个实施例中, 第二网络设备可以是演进基站, 第一网络设 备可以是服务网关, 该至少两个服务网关构成服务网关池。 流量信息描述的 是传输带宽的使用率, 可以是负载状态等体现传输带宽使用率的信息, 例如 在传输带宽为下行带宽时, 则流量信息可以是下行负载状态信息; 在传输带 宽为上行带宽时, 则流量信息可以为上行负载状态信息。
102、 第二网络设备根据所述流量信息以及预置的调整规则, 对至少两个 第一网络设备的传输带宽进行调整;
第二网络设备收到流量信息后, 可以根据流量信息确定第一网络设备的 传输带宽的状态, 例如可以是拥塞、 正常、 轻载等。
预置的调整规则可以预先设定, 本发明的一个实施例中, 第二网络设备 根据流量信息以及预置的调整规则, 对至少两个第一网络设备的传输带宽进 行调整的歩骤可以包括: 第二网络设备根据流量信息从轻载的第一网络设备 中削减传输带宽; 第二网络设备根据流量信息将削减的传输带宽分配给拥塞 的第一网络设备。
103、 第二网络设备将调整后的传输带宽信息发送给第一网络设备, 以使 该第一网络设备基于调整后的传输带宽进行数据传输。 具体可以通过带宽通知将调整后的传输带宽信息发送给第一网络设备, 使第一网络设备可以基于调整后的传输带宽进行数据传输; 例如, 向轻载的 第一网络设备发送的调整后的传输带宽信息是削减后的传输带宽信息, 向拥 塞的第一网络设备发送的调整后的传输带宽信息是分配后的传输带宽信息。
其中, 由于不同的业务对 QoS的要求不同, 因此在基于调整后的传输带 宽进行数据传输时, 为了使数据传输满足业务的 QoS要求, 还可以根据 QoS 要求做 QoS流量整形等操作。
从上可知, 本实施例中第二网络设备可以在接收了第一网络设备发送的 流量信息后, 根据该流量信息以及预置的调整规则对至少两个第一网络设备 的传输带宽进行调整, 具体可以将轻载的第一网络设备的传输带宽转移给拥 塞的第一网络设备, 使轻载的第一网络设备和拥塞的第一网络设备均有适当 的传输带宽进行数据传输, 从而动态地对与该第二网络设备连接的第一网络 设备传输带宽进行调整, 使带宽被调整的第一网络设备可以根据调整后的传 输带宽进行数据传输, 既提高了第一网络设备与第二网络设备之间传输带宽 的使用效率, 也实现了各个第一网络设备之间传输带宽使用的公平性。
图 2描述了带宽管理方法实施例二的流程, 该实施例应用于至少两个第 一网络设备和一个第二网络设备, 该至少两个第一网络设备共享一个传输通 道与第二网络设备进行数据传输, 该实施例包括:
201、 第一网络设备向第二网络设备发送实时的流量信息;
具体地, 第一网络设备可以实时地监控到达第二网络设备的流量信息。 第一网络设备可以在拥塞时主动地向第二网络设备发送流量信息, 也可以在 接收了第二网络设备发送的信息, 如流量信息收集请求等的触发下被动地向 第二网络设备发送流量信息。
202、 第一网络设备接收第二网络设备发送的调整后的传输带宽信息, 基 于该调整后的传输带宽进行数据传输; 调整后的传输带宽是由第二网络设备 根据第一网络设备发送的流量信息以及预置的调整规则, 对至少两个第一网 络设备的传输带宽进行调整后获得的。
其中, 如果第一网络设备发送的流量信息表示该第一网络设备是轻载的 第一网络设备, 则接收的调整后的传输带宽信息是削减后的传输带宽信息; 如果第一网络设备发送的流量信息表示该第一网络设备是拥塞的第一网络设 备, 则接收的调整后的传输带宽信息是分配后的传输带宽信息。
从上可知, 本实施例中第一网络设备可以向第二网络设备发送流量信息 后, 使第二网络设备可以在接收了第一网络设备发送的流量信息后, 根据该 流量信息以及预置的调整规则对至少两个第一网络设备的传输带宽进行调 整, 具体可以将轻载的第一网络设备的传输带宽转移给拥塞的第一网络设备, 使轻载的第一网络设备和拥塞的第一网络设备均有适当的传输带宽进行数据 传输, 从而动态地对与该第二网络设备连接的第一网络设备传输带宽进行调 整, 使带宽被调整的第一网络设备可以根据调整后的传输带宽进行数据传输, 既提高了第一网络设备与第二网络设备之间传输带宽的使用效率, 也实现了 各个第一网络设备之间传输带宽使用的公平性。
图 3 描述了带宽管理方法实施例三的流程, 该实施例中第一网络设备为 服务网关池中的 S-GW, 第二网络设备为 eNodeB, 流量信息为下行负载状态 信息, 该实施例描述了 eNodeB的处理流程, 包括:
301、 接收 S-GW P00L中 S-GW发送的下行负载状态信息;
具体地, eNodeB接收的下行负载状态信息可以通过扩展的 3GPP GTP协 议(包括 GTP版本 1和 GTP版本 2 )中的回应请求 /回应响应( Echo Request/Echo Response ) 消息携带, 也可以通过用户面的通用无线分组业务隧道协议 (GTP-U: GPRS Tunneling Protocol for user plane) 报文携带, 或者可以通过 其他扩展消息携带。
在本发明的一个实施例中, S-GW下行负载状态由两部分决定: S-GW到 该 eNodeB的下行带宽占用率和 /或 S-GW上该 eNodeB的下行报文缓存率,其 中: 下行带宽占用率 =当前 E2E已用下行带宽 /当前分配给该 S-GW的 E2E可 用下行带宽;
报文缓存率标识 S-GW进行 QoS流量整形时对该 eNodeB的下行报文缓 存程度。
当下行带宽占用率 <100%时, S-GW下行负载状态可由下行带宽占用率反 映; 当下行带宽占用率达到 100%时, 除下行带宽占用率外, 还需要借助于报 文缓存率一起来反映 S-GW下行负载状态。 基于下行带宽占用率和报文缓存 率映射出来的负载状态, 可将 S-GW的下行负载状态区分为轻载、 正常及拥 塞状态。
其中, 由于 S-GW的下行负载有一定的突发性, 因此本发明实施例中的 下行负载可以是 S-GW最近一段时间内的平均下行负载, 从而使负载状态能 够更准确地反映 S-GW的下行带宽使用状况。
在本发明的一个实施例中, eNodeB接收 S-GW POOL中 S-GW发送的下 行负载状态信息前还可以包括: 接收拥塞的 S-GW发送的拥塞状态报告; 在 拥塞状态报告的触发下向 S-GW POOL中的其他 S-GW发送流量信息收集请 求, 随后收到流量信息收集请求的 S-GW将该 S-GW当前的下行负载状态信 息发送给 eNodeB。
302、 根据下行负载状态信息从轻载的 S-GW中削减下行带宽;
S-GW的下行负载状态可划分为轻载、 正常、拥塞三类, 具体范围可以配 置。在本发明的一个实施例中, S-GW的下行负载状态可做如下区分: 下行负 载状态为 0%~39%时为轻载状态, 下行负载状态为 40%~69%时为正常状态, 下行负载状态为 70%~100 %时为拥塞状态。
在本发明的一个实施例中, 基于 S-GW POOL的原则要求, eNodeB选择 S-GW时通常采用负荷分担, 可以结合网络规划、 S-GW的带宽占用权重及概 率统计为各个 S-GW分配初始传输带宽, 从而使负荷均匀分布, 因此可以认 为 S-GW POOL中各 S-GW的负载在较长的一个时间段内是近似均衡的, 但 在较短的时间段内因为业务流量具有一定的突发性导致各 S-GW负载可能不 均衡, 因此, 对 S-GW下行的带宽的调整遵循小幅调整的原则, 并且每次调 整的幅度不宜过大, 调整频率不宜过高, 基于 S-GW 的负载拥塞状态触发 eNodeB调整。 在每轮调整期间, 从轻载的 S-GW中削减下行带宽时, 可以按 照预置的调整粒度从轻载的 S-GW 中削减下行带宽, 其中, 调整粒度是对 S-GW进行下行带宽调整时, 调整带宽的最大值, 从而避免调整幅度过大。在 本发明的一个实施例中, 调整粒度可以设置为对应 S-GW的初始下行带宽的 1/10, 初始下行带宽是系统初始时为该 S-GW分配的下行带宽。
其中, 在轻载的 S-GW有多个时, 可以优先从最轻载的 S-GW开始削减 下行带宽。
302歩骤可以在 S-GW POOL存在 S-GW的下行负载状态为拥塞时才执 行。
303、 根据下行负载状态信息将削减的下行带宽分配给拥塞的 S-GW; 其中, 在拥塞的 S-GW有多个时, 可以优先给最拥塞的 S-GW分配下行 带宽。
在本发明的一个实施例中, 基于 S-GW POOL的原则要求, eNodeB选择 S-GW时通常采用负荷分担, 可以结合网络规划、 S-GW的带宽占用权重及概 率统计为各个 S-GW分配初始传输带宽, 从而使负荷均匀分布, 因此可以认 为 S-GW POOL中各 S-GW的负载在较长的一个时间段内是近似均衡的, 但 在较短的时间段内因为业务流量具有一定的突发性导致各 S-GW负载可能不 均衡, 因此, 对 S-GW下行带宽遵循小幅调整, 每次调整的幅度不宜过大, 调整频率不宜过高,基于 S-GW的负载拥塞状态触发 eNodeB调整。每轮调整 期间,为拥塞的 S-GW分配下行带宽时,按照预置的调整粒度为拥塞的 S-GW 分配下行带宽, 其中, 在本发明的一个实施例中, 调整粒度可以设置为对应 的 S-GW的初始下行带宽的 1/10。
304、 向轻载的 S-GW发送带宽通知, 该带宽通知包括轻载的 S-GW削减 后的下行带宽信息; 向拥塞的 S-GW发送带宽通知, 该带宽通知包括拥塞的 S-GW分配后的下行带宽信息。
向轻载的 S-GW发送了带宽通知后, 该轻载的 S-GW根据削减后的下行 带宽进行数据传输。 其中, 由于不同的业务对 QoS的要求不同, 因此在根据 削减后的下行带宽进行数据传输时, 为了使数据传输满足业务的 QoS要求, 还可以根据 QoS要求做 QoS流量整形等操作。
向拥塞的 S-GW发送了带宽通知后, 该拥塞的 S-GW根据分配后的下行 带宽进行数据传输。 其中, 由于不同的业务对 QoS的要求不同, 因此在根据 分配后的下行带宽进行数据传输时, 为了使数据传输满足业务的 QoS要求, 还可以根据 QoS要求做 QoS流量整形等操作。
从上可知,本实施例中 eNodeB可以在接收了 S-GW发送的下行负载状态 信息后, 根据该下行负载状态信息以及预置的调整规则对至少两个 S-GW的 传输带宽进行调整, 具体可以将轻载的 S-GW 的传输带宽转移给拥塞的 S-GW, 使轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动态地对与该 eNodeB连接的 S-GW传输带宽进行调整,使带宽被调整的 S-GW可以根据调整后的传输带宽进行数据传输, 既提高了 S-GW与 eNodeB 之间传输带宽的使用效率, 也实现了各个 S-GW之间传输带宽使用的公平性。
图 4描述了本发明实施例中下行带宽管理方法实施例四的流程, 该实施 例中第一网络设备为服务网关池中的 S-GW, 第二网络设备为 eNodeB, 使用 S-GW的下行负载状态信息作为流量信息,该实施例描述的是 S-GW POOL中 S-GW的处理流程, 包括:
401、 监控到达 eNodeB的下行带宽的下行负载状态;
在本发明的一个实施例中, S-GW与至少 1个 eNodeB进行通信,则 S-GW 会分别监控到达该至少 1个 eNodeB的下行带宽的下行负载状态。 其中, 401 是可选歩骤。
402、 向 eNodeB发送下行负载状态信息, 该下行负载状态信息标识下行 带宽的下行负载状态;
具体地,在本发明的一个实施例中, S-GW可以通过回应请求消息或回应 响应消息向 eNodeB 发送下行负载状态信息; 在本发明的另一个实施例中, S-GW可以通过 GTP-U报文向 eNodeB发送下行负载状态信息; 在本发明的 另一个实施例中, S-GW可以通过其他扩展消息向 eNodeB发送下行负载状态 信息; 其中, 由于下行负载状态信息标识的是 S-GW到达确定的一个 eNodeB 的下行带宽的下行负载状态, 因此在向 eNodeB发送下行负载状态信息时, 具 体是向该下行负载状态信息对应的下行带宽所到达的 eNodeB 发送该下行负 载状态信息。
在本发明的一个实施例中, S-GW与至少 1个 eNodeB进行通信,则 S-GW 分别监控到达该至少 1个 eNodeB的下行带宽的下行负载状态,因而可以分别 向该至少 1个 eNodeB发送对应的下行负载状态信息。
403、 接收 eNodeB发送的带宽通知, 带宽通知包括调整后的下行带宽信 息。
对于 eNodeB调整后下行带宽有变化时, 相应的 S-GW会接收到 eNodeB 发送的带宽通知。 在本发明的一个实施例中, 接收的带宽通知可以通过回应 请求消息携带;在本发明的另一个实施例中,接收的带宽通知可以通过 GTP-U 报文携带; 在本发明的另一个实施例中, 接收的带宽通知可以通过其他扩展 消息携带。
S-GW接收了带宽通知后, 就可以基于调整后的下行带宽进行数据传输。 其中, 403中调整后的下行带宽根据 402中发送的 S-GW的下行负载状态 的不同而不同, 如果 402中发送的 S-GW的下行负载状态信息标识该 S-GW 为轻载, 则 403 中调整后的下行带宽信息是削减后的下行带宽信息, 即调整 后的下行带宽比调整前的下行带宽少; 如果 402中发送的 S-GW的下行负载 状态信息标识该 S-GW为拥塞, 则调整后的下行带宽信息是分配后的下行带 宽信息, 即调整后的下行带宽比调整前的下行带宽多。 从上可知, 本实施例中 S-GW可以向 eNodeB发送下行负载状态信息,使 eNodeB在接收了 S-GW发送的下行负载状态信息后, 根据该下行负载状态信 息以及预置的调整规则对至少两个 S-GW的传输带宽进行调整, 具体可以将 轻载的 S-GW 的传输带宽转移给拥塞的 S-GW, 使轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动态地对与该 eNodeB连接的 S-GW传输带宽进行调整,使带宽被调整的 S-GW可以根据调整后的传输带宽 进行数据传输, 既提高了 S-GW与 eNodeB之间传输带宽的使用效率, 也实现 了各个 S-GW之间传输带宽使用的公平性。
图 5 描述了本发明实施例中下行带宽管理方法实施例五的流程, 该实施 例中第一网络设备为服务网关池中的 S-GW, 第二网络设备为 eNodeB, 使用 S-GW的下行负载状态信息作为流量信息为下行负载状态,该实施例描述的是 eNodeB与 S-GW的交互流程, 包括:
501、 eNodeB在系统启动时获取 S-GW POOL总的下行可用带宽; 假设 总的下行可用带宽是 MaxBW;
具体地, eNodeB可以通过动态带宽检测方法检测 MaxBW; 或者在回程 下行带宽比较稳定时, 预先在 eNodeB上配置 MaxBW。
502、 eNodeB按照预置规则为 S-GW POOL中的每个 S-GW分配初始下 行带宽;
具体地, 可以按照 S-GW的带宽占用权重为各个 S-GW分配下行带宽, 假设 S-GW POOL中有 n个 S-GW, 各个 S-GW的带宽占用权重分别为 Wl、 W2、 …… Wn, 则第 i个 S-GW初始下行带宽是 MaxBW*Wi/(Wl+W2+…… +Wn), 0<i<n+l o 当然在为 S-GW分配初始下行带宽时, 除了考虑各个 S-GW 的带宽占用权重外, 还可以综合考虑用户数和 /或其他因素。
在本发明的一个实施例中, 为了使每个 S-GW保持一定的业务提供能力, 需要确保其分得的初始下行带宽不低于一个阈值 Thdi, Thdi可以根据需要配 置调整; 同时 ΊΊι 也有上限, 例如在基于各个 S-GW的带宽占用权重分配下 行带宽时可设置为需满足: Thdi<= MaxBW*Wi/(Wl+W2+…… +Wn)D为 S-GW 分配的初始下行带宽不低于阈值, 以保证每个 S-GW有一定的最低业务提供 能力。
本实施例中初始传输带宽是初始下行带宽, 当然, 在本发明的其它实施 例中, 初始传输带宽还可以是初始上行带宽等。
其中, 可以预先在 eNodeB上配置 S-GW的带宽占用权重。
503、 eNodeB向 S-GW POOL中 S-GW发送分配的初始下行带宽;
504、 S-GW基于初始下行带宽进行数据传输;
505、 S-GW向 eNodeB发送下行负载状态信息, 该下行负载状态信息标 识下行带宽的下行负载状态;
其中, S-GW到 eNodeB的下行负载状态可以由下行带宽占用率和 /或报文 缓存率确定。
506、 eNodeB调整 S-GW的下行带宽;
在本发明的一个实施例中, 对 S-GW的下行带宽进行调整时, 可以遵循 如下小幅调整原则: 根据调整粒度进行带宽调整, 其中调整粒度可配置, 例 如在本发明的一个实施例中调整粒度设置为 S-GW对应的带宽占用权重下行 带宽的 1/10, 即调整粒度 =MaxBW*Wi/((Wl+W2+ ··· ··· +Wn)*10))o 不论是增 加下行带宽还是削减下行带宽, 每次单个 S-GW的下行带宽调整幅度不超过 相应的调整粒度, 从而避免乒乓效应。
其中, 负载处于正常状态的 S-GW 的下行带宽不增不减, 可从轻载的 S-GW削减下行带宽, 并将削减的下行带宽分配给拥塞的 S-GW, 但要满足基 本要求: 不能在削减了轻载 S-GW的下行带宽后, 该 S-GW负载状态立即迁 移到拥塞状态。
507、 eNodeB向下行带宽被调整的 S-GW发送带宽通知, 该带宽通知包 括调整后的下行带宽信息;
508、 S-GW接收到调整后的下行带宽信息后, 基于调整后的下行带宽进 行数据传输。
其中, 505-508在可以是循环进行的。
从上可知,本实施例 eNodeB可以在接收了 S-GW发送的下行负载状态信 息后, 根据该下行负载状态信息以及预置的调整规则对至少两个 S-GW的传 输带宽进行调整, 具体可以将轻载的 S-GW的传输带宽转移给拥塞的 S-GW, 使轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动 态地对与该 eNodeB连接的 S-GW传输带宽进行调整,使带宽被调整的 S-GW 可以根据调整后的传输带宽进行数据传输,既提高了 S-GW与 eNodeB之间传 输带宽的使用效率, 也实现了各个 S-GW之间传输带宽使用的公平性; 并且 eNodeB可以按照预置规则为 S-GW分配初始下行带宽, 可以保证各个 S-GW 之间带宽分配的相对公平性。
如下分别介绍本发明实施例可能的几种特殊场景的处理流程, 其中第一 网络设备为服务网关池中的 S-GW, 第二网络设备为 eNodeB, 使用 S-GW的 下行负载状态信息作为流量信息。
1、 在 S-GW POOL中有 S-GW退出服务时, 该退出服务的 S-GW承担的 业务负荷后续将分发到 S-GW POOL中其他的 S-GW,即 S-GW POOL中 S-GW 数由 n减少为 n-l。其中, 退出服务的 S-GW占有的下行带宽可以按照调整粒 度逐歩分配给 S-GW POOL中拥塞的 S-GW。 具体的分配过程可以参照 306。
2、 在 S-GW POOL中新增 S-GW, 且该新增的 S-GW已处于激活状态具 备提供服务的能力, 则 S-GW POOL中 S-GW数由 n增加为 n+l, 需要为新增 的 S-GW分配下行带宽, 由于新增的 S-GW的负载上升有一个过程, 因此可 以参照 306,将新增的 S-GW作为拥塞最严重的节点对待, 为保证一定的业务 提供能力, 给新增的 S-GW第一次分配的下行带宽不低于阈值 Thd^
3、 在 eNodeB初始启动时, 此时 S-GW POOL中每个 S-GW是否具备提 供服务的能力是未知的,因此当 eNodeB与其中的一个 S-GW的连接建立起来 之后马上进行下行带宽的分配,具体地 eNodeB可以按照 S-GW POOL的规划 信息分配初始下行带宽, 初始下行带宽的分配可以参照 302。在经过一段时间 后, 对于仍然没有检测到在线的 S-GW按照退出服务的 S-GW处理, 该一段 时间的长度可配置。其中, 可以预先在 eNodeB上配置 S-GW POOL的规划信 息。
4、 对于一个 eNodeB来说, 如果 S-GW POOL里有 S-GW负载长时间处 于拥塞状态, 而且此时没有处于轻载状态的其他 S-GW, 因此没有下行带宽可 调配给拥塞的 S-GW,则系统处于不正常的状态,此时可以按照 S-GW的带宽 占用权重或 S-GW POOL规划信息逐歩回归初始下行带宽分配状态,从而确保 每个 S-GW具备初始规划的业务负荷能力, 每个 S-GW的 QoS调度优先保证 实时业务。
其中, 回归初始下行带宽分配状态的条件是可配置的, 例如可以是 S-GW POOL中 SGW负载状态以及该种负载状态持续的时间等,其中, S-GW POOL 中 SGW 负载状态包括 S-GW POOL 中有多少个 S-GW处于拥塞状态以及 S-GW POOL中有多少个 S-GW处于正常状态等。
在回归初始下行带宽分配状态时,对于每个 S-GW, 以 S-GW对应的初始 下行带宽为目标, 按照该 S-GW对应的调整粒度进行带宽调整, 从而确保每 次调整幅度不大于该 S-GW对应的调整粒度; 如果 S-GW当前可用下行带宽 小于其初始下行带宽, 则需要为该 S-GW增加下行带宽, 使该 S-GW的下行 带宽逐歩达到初始下行带宽; 如果 S-GW当前下行带宽大于其初始下行带宽, 则需要削减该 S-GW的下行带宽, 使该 S-GW的下行带宽逐歩减少到初始下 行带宽; 下行带宽调整结果是: 为 S-GW增加或削减下行带宽后, S-GW的下 行带宽接近或等于该 S-GW对应的初始下行带宽。
5、在 S-GW POOL总的下行可用带宽动态变化时,如果动态检测到 S-GW POOL总的下行可用带宽变化比较大时, eNodeB需要及时回归初始下行带宽 分配状态, 否则 S-GW的下行报文可能丢弃或下行带宽利用不充分。 其中, 回归初始下行带宽分配状态的条件是可配置的,例如可以设置为 S-GW POOL 总的下行可用带宽的变化幅度超出一定范围。 在回归初始下行带宽分配状态 时,可以参照 302至 307, 随后再基于 S-GW拥塞状态触发带宽调整逐歩达到 S-GW POOL下行带宽相对合理的分配。
6、 在 S-GW与某个 eNodeB进行数据传输需要通过其它 eNodeB时, 该 某个 eNodeB可以称为叶子 eNodeB, 该其它 eNodeB可以称为汇聚 eNodeB, 叶子 eNodeB到 S-GW POOL中 S-GW的报文需要经过中间的汇聚 eNodeB转 发。对于 S-GW来说,从回程管理的角度看可以将该某个和其它 eNodeB在逻 辑上看作 eNodeB组 (eNodeB group) , S-GW可以将 eNodeB grou 当做一个 逻辑独立 eNodeB对待。
7、 由于在实现本发明实施例提供的带宽管理方法时, eNodeB 和 S-GW 之间的交互需要扩展 GTP(Echo request/Echo respsone信元或 GTP-U报文头), 因此当 S-GW POOL中仅有部分 S-GW支持这种扩展及交互处理能力时, 可 以只在这部分 S-GW之间进行下行带宽调整, 而对其他的 S-GW预留下行带 宽。
图 6描述了本发明实施例中下行带宽管理方法实施例四的信令流程, 该 实施例中第一网络设备为服务网关池中的 S-GW, 第二网络设备为 eNodeB, 流量信息为下行负载状态信息,该实施例中 eNodeB与 S-GW之间的信息交互 通过回应请求和回应响应 (Echo response) 进行, 该实施例描述的是 S-GW POOL中的 S-GW获得了初始下行带宽后 S-GW和 eNodeB的处理流程,包括:
601、 S-GW POOL中 S-GW实时监控下行负载状态, 在某个 S-GW发现 自身的下行负载状态为拥塞时, 通过回应请求向 eNodeB发送拥塞状态报告, 报告自身的下行负载状态为拥塞;
602、 eNodeB收到 S-GW通过回应请求发送的拥塞状态报告后,向该 S-GW 发送回应响应;
603、 eNodeB收到 S-GW POOL中某个 S-GW发送的拥塞状态报告后, 通过回应请求向 S-GW POOL中其他 S-GW发送流量信息收集请求, 具体可 以向最近一段时间未发送下行负载状态信息的 S-GW发送流量信息收集请求, 从而收集 S-GW POOL中最近一段时间未发送下行负载状态信息的 S-GW的 下行负载状态, 其中该一段时间的长度可以根据需要配置;
604、 接收到流量信息收集请求的 S-GW通过回应响应向 eNodeB发送自 身的下行负载状态信息;
由于 S-GW实时监控下行负载状态, 因此 S-GW收到了流量信息收集请 求后可以立即向 eNodeB发送自身的下行负载状态信息。
其中, 由于各个 S-GW的下行负载状态信息不可能同时到达 eNodeB, 因 此 eNodeB可以认为一段时间内到达的 S-GW的下行负载状态信息都表示该 S-GW当前的下行负载状态。
605、 eNodeB根据接收的 S-GW的下行负载状态信息和预置的调整规则 进行下行带宽调整;
具体可以参照 306执行。
606、 eNodeB通过回应请求向下行带宽被调整的 S-GW发送带宽通知, 带宽通知包括该 S-GW调整后的下行带宽信息;
其中,如果 S-GW发送的下行负载状态信息标识该 S-GW是轻载的 S-GW, 则接收的调整后的传输带宽是削减后的传输带宽; 如果 S-GW发送的下行负 载状态信息标识该 S-GW是拥塞的 S-GW,则接收的调整后的传输带宽是分配 后的传输带宽。 可选的, 如果 S-GW接收到了带宽通知, 但是该带宽通知中 并没有包括对自身调整后的下行带宽信息, 即该 S-GW的下行带宽并没有被 调整, 则该 S-GW不处理该带宽通知或直接丢弃该带宽通知。
607、 S-GW收到调整后的下行带宽信息后, 向 eNodeB发送回应响应。 由于现有的 3GPP GTP Echo Request/Echo Response没有标准信元可携带 拥塞状态报告、 流量信息收集请求、 下行负载状态信息和带宽通知, 因此可 以基于现有的 Echo Request 和 Echo Response 进行私有扩展信元 ( Private Extension Information Element)扩展,使 Echo Request禾口 Echo Response通过禾厶 有扩展信元能够携带拥塞状态报告、 流量信息收集请求、 下行负载状态信息 和带宽通知。本发明的一个实施例在 Echo Request和 Echo Response扩展的私 有扩展信元如表 1所示。 GTP版本 1和 GTP版本 2都可以应用本发明实施例 提供的私有扩展信元。
表 1
Figure imgf000020_0001
其中, 表 1 中的四个私有扩展信元在使用时不能与其他信元类型冲突, Echo Request和 Echo Response消息可以携带该四个私有扩展信元中的一个, 或者也可以不携带该四个私有扩展信元中的任意一个 (即未做扩展的标准消 息)。
从上可知,本实施例中 eNodeB可以在接收了 S-GW发送的下行负载状态 信息后, 根据该下行负载状态信息以及预置的调整规则对至少两个 S-GW的 传输带宽进行调整, 具体可以将轻载的 S-GW 的传输带宽转移给拥塞的 S-GW, 使轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动态地对与该 eNodeB连接的 S-GW传输带宽进行调整,使带宽被调整的 S-GW可以根据调整后的传输带宽进行数据传输, 既提高了 S-GW与 eNodeB 之间传输带宽的使用效率, 也实现了各个 S-GW之间传输带宽使用的公平性。
图 7 描述了本发明实施例中下行带宽管理方法实施例七的信令流程, 该 实施例中第一网络设备为服务网关池中的 S-GW, 第二网络设备为 eNodeB, 流量信息为下行负载状态信息,该实施例中 eNodeB与 S-GW之间的信息交互 通过 GTP-U报文进行, 该实施例描述的是 S-GW POOL中的 S-GW获得了初 始下行带宽后 S-GW和 eNodeB的处理流程, 包括:
701、 S-GW POOL中各 S-GW实时监控下行负载状态, 通过 GTP-U报文 向 eNodeB发送下行负载状态信息, 下行负载状态信息具体在 GTP-U报文头 携带。 S-GW拥塞时主动通过 GTP-U报文向 eNodeB发送下行负载状态信息, S-GW轻载或负载正常时周期性通过 GTP-U报文向 eNodeB发送下行负载状 态信息, 这个周期可配置;
702、 eNodeB根据接收的 S-GW下行负载状态信息和预置的调整规则进 行下行带宽调整;
其中, 该歩骤仅在存在 S-GW下行负载状态为拥塞时才执行, 具体可以 参照 506执行。
703、 eNodeB通过 GTP-U报文向下行带宽被调整的 S-GW发送带宽通知, 带宽通知包括调整后的下行带宽信息, 带宽通知具体可以通过 GTP-U报文头 携带。
其中,由于现有的 GTP-U报文头不能携带下行负载状态信息和带宽通知, 因此需要基于现有的 GTP-U报文头的扩展头 (EH: Externsion Header) 进行 扩展。 GTP版本 1和 GTP版本 2都可以应用本发明实施例扩展的 GTP-U报 文头的扩展头。
在本发明的一个实施例中, 扩展的 GTP-U报文头的扩展头如表 2所示。 表 2
Figure imgf000022_0001
其中, 表 2中的三个 GTP-U报文头的扩展头在使用时不能与其他扩展头 类型冲突。
从上可知,本实施例中 eNodeB可以在接收了 S-GW发送的下行负载状态 信息后, 根据该下行负载状态信息以及预置的调整规则对至少两个 S-GW的 传输带宽进行调整, 具体可以将轻载的 S-GW 的传输带宽转移给拥塞的 S-GW, 使轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动态地对与该 eNodeB连接的 S-GW传输带宽进行调整,使带宽被调整的 S-GW可以根据调整后的传输带宽进行数据传输, 既提高了 S-GW与 eNodeB 之间传输带宽的使用效率, 也实现了各个 S-GW之间传输带宽使用的公平性。
再介绍本发明实施例提供的演进基站, 图 8描述了演进基站实施例一的 结构, 该演进基站与至少两个第一网络设备连接, 该至少两个第一网络设备 共享一个传输通道与演进基站进行数据传输, 该演进基站包括:
接收单元 801, 用于接收第一网络设备发送的实时的流量信息; 调整单元 802,用于根据接收单元 801接收的流量信息以及预置的调整规 则, 对至少两个第一网络设备的传输带宽进行调整;
发送单元 803,用于将调整单元 802调整后的传输带宽信息发送给第一网 络设备, 以使该第一网络设备基于调整后的传输带宽进行数据传输。
从上可知,本实施例中 eNodeB可以在接收了第一网络设备发送的流量信 息后, 根据该流量信息以及预置的调整规则对至少两个第一网络设备的传输 带宽进行调整,具体可以将轻载的 S-GW的传输带宽转移给拥塞的 S-GW,使 轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动态 地对与该 eNodeB连接的第一网络设备传输带宽进行调整,使带宽被调整的第 一网络设备可以根据调整后的传输带宽进行数据传输, 既提高了第一网络设 备与 eNodeB之间传输带宽的使用效率,也实现了各个第一网络设备之间传输 带宽使用的公平性。
图 9描述了演进基站实施例二的结构, 该演进基站与至少两个第一网络 设备连接, 该至少两个第一网络设备共享一个传输通道与所述演进基站进行 数据传输, 该演进基站包括:
接收单元 901, 用于接收拥塞的第一网络设备发送的拥塞状态报告; 发送单元 903, 用于在接收单元 901接收的拥塞状态报告的触发下, 向上 述至少两个第一网络设备中除拥塞的第一网络设备外的第一网络设备发送流 量信息收集请求;
接收单元 901, 还用于在发送单元 903发送了流量信息收集请求后, 接收 第一网络设备发送的实时的流量信息;
调整单元 902,用于根据接收单元 901接收的流量信息以及预置的调整规 则, 对至少两个第一网络设备的传输带宽进行调整; 发送单元 903,还用于将调整单元调整后的传输带宽信息发送给第一网络 设备, 以使该第一网络设备基于调整后的传输带宽进行数据传输。
从上可知,本实施例中 eNodeB可以在接收了第一网络设备发送的流量信 息后, 根据该流量信息以及预置的调整规则对至少两个第一网络设备的传输 带宽进行调整,具体可以将轻载的 S-GW的传输带宽转移给拥塞的 S-GW,使 轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动态 地对与该 eNodeB连接的第一网络设备传输带宽进行调整,使带宽被调整的第 一网络设备可以根据调整后的传输带宽进行数据传输, 既提高了第一网络设 备与 eNodeB之间传输带宽的使用效率,也实现了各个第一网络设备之间传输 带宽使用的公平性。
图 10描述了演进基站实施例三的结构, 该演进基站与至少两个第一网络 设备连接, 该至少两个第一网络设备共享一个传输通道与所述演进基站进行 数据传输, 该演进基站包括:
获取单元 1001, 用于获取传输通道的传输带宽;
分配单元 1002, 用于按照预置规则以及获取单元 1001获取的传输带宽, 为至少两个第一网络设备分配初始传输带宽;
发送单元 1003,用于向至少两个第一网络设备发送分配单元 1002分配的 初始传输带宽信息;
接收单元 1004, 用于接收第一网络设备发送的实时的流量信息; 调整单元 1005,用于根据接收单元 1004接收的流量信息以及预置的调整 规则, 对至少两个第一网络设备的传输带宽进行调整;
发送单元 1003,还用于将调整单元 1005调整后的传输带宽信息发送给第 一网络设备, 以使该第一网络设备基于调整后的传输带宽进行数据传输。
从上可知,本实施例中 eNodeB可以在接收了第一网络设备发送的流量信 息后, 根据该流量信息以及预置的调整规则对至少两个第一网络设备的传输 带宽进行调整,具体可以将轻载的 S-GW的传输带宽转移给拥塞的 S-GW,使 轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输, 从而动态 地对与该 eNodeB连接的第一网络设备传输带宽进行调整,使带宽被调整的第 一网络设备可以根据调整后的传输带宽进行数据传输, 既提高了第一网络设 备与 eNodeB之间传输带宽的使用效率,也实现了各个第一网络设备之间传输 带宽使用的公平性; 并且网络设备可以按照预置规则为第一网络设备分配初 始传输带宽, 可以保证各个第一网络设备之间带宽分配的相对公平性。
图 11描述了服务网关实施例的结构, 该服务网关作与一个第二网络设备 连接, 该第二网络设备还与至少另一个服务网关连接, 该服务网关与该至少 另一个服务网关共享一个传输通道与第二网络设备进行数据传输, 该服务网 关包括:
发送单元 1101, 用于向第二网络设备发送实时的流量信息;
接收单元 1103, 用于接收第二网络设备发送的调整后的传输带宽信息, 基于调整后的传输带宽进行数据传输; 调整后的传输带宽是由第二网络设备 根据流量信息以及预置的调整规则, 对至少两个第一网络设备的传输带宽进 行调整后获得的。
从上可知, 本实施例中服务网关可以向第二网络设备发送流量信息, 使 第二网络设备可以在接收了服务网关发送的流量信息后, 根据该流量信息以 及预置的调整规则对至少两个服务网关的传输带宽进行调整, 具体可以将轻 载的 S-GW的传输带宽转移给拥塞的 S-GW,使轻载的 S-GW和拥塞的 S-GW 均有适当的传输带宽进行数据传输, 从而动态地对与该第二网络设备连接的 服务网关传输带宽进行调整, 使带宽被调整的服务网关可以根据调整后的传 输带宽进行数据传输, 既提高了服务网关与第二网络设备之间传输带宽的使 用效率, 也实现了各个服务网关之间传输带宽使用的公平性。
本发明提供的服务网关实施例所包括的接收单元 1103还可以用于接收来 自所述第二网络设备的流量信息收集请求;该服务网关包括的发送单元 1102, 仅在接收单元 1103接收了该负载收集请求后才向第二网络设备发送监控单元 1101监控的流量信息。该服务网关包括的发送单元 1102还可以用于向第二网 络设备发送拥塞状态报告, 以使该第二网络设备发送流量信息收集请求。
本发明提供的服务网关实施例所包括的接收单元 1103还可以用于接收第 二网络设备分配的初始传输带宽, 使该服务网关可以基于初始传输带宽进行 数据传输。
本发明实施例还提供了通信系统, 图 12描述了通信系统实施例的结构, 包括演进基站 1201和至少两个服务网关 1202, 该至少两个服务网关 1202共 享一个传输通道 1203与演进基站 1201进行数据传输, 其中:
演进基站 1201, 用于接收服务网关 1202发送的实时的流量信息, 其中发 送流量信息的服务网关可以是至少两个服务网关中的部分或全部; 根据接收 的流量信息以及预置的调整规则, 对至少两个服务网关 1202的传输带宽进行 调整; 将调整后的传输带宽信息发送给服务网关 1202;
服务网关 1202, 用于接收演进基站 1201发送的调整后的传输带宽信息, 基于调整后的传输带宽进行数据传输。
本实施例中 eNodeB可以在接收了 S-GW发送的下行负载状态信息后,根 据该下行负载状态信息以及预置的调整规则对至少两个 S-GW的传输带宽进 行调整,具体可以将轻载的 S-GW的传输带宽转移给拥塞的 S-GW,使轻载的 S-GW和拥塞的 S-GW均有适当的传输带宽进行数据传输,从而动态地对与该 eNodeB连接的 S-GW传输带宽进行调整,使带宽被调整的 S-GW可以根据调 整后的传输带宽进行数据传输,既提高了 S-GW与 eNodeB之间传输带宽的使 用效率, 也实现了各个 S-GW之间传输带宽使用的公平性。
进一歩, 在本发明的一个实施例中, 演进基站 1201还可以用于在初始化 时获取传输通道的传输带宽; 进而按照预置规则以及传输带宽, 为至少两个 服务网关 1202分配初始传输带宽; 向至少两个服务网关发送分配的初始传输 带宽信息;
服务网关 1202,还可以用于在初始化时接收演进基站 1201发送的初始传 输带宽信息, 基于初始传输带宽进行数据传输。 由于 eNodeB可以在初始化时 按照预置规则为 S-GW分配初始下行带宽, 从而可以保证各个 S-GW之间带 宽在初始化时分配的相对公平性。
从本发明实施例提供的以上技术方案可以看出, 由于本发明实施例中第 二网络设备可以在接收了第一网络设备发送的流量信息后, 根据该流量信息 以及预置的调整规则对至少两个第一网络设备的传输带宽进行调整, 从而动 态地对与该第二网络设备连接的第一网络设备传输带宽进行调整, 使带宽被 调整的第一网络设备可以根据调整后的传输带宽进行数据传输, 既提高了第 一网络设备与第二网络设备之间传输带宽的使用效率, 也实现了各个第一网 络设备之间传输带宽使用的公平性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM) 或随机存储记忆体 (Random Access Memory, RAM) 等。
以上对本发明实施例所提供的带宽管理方法、 演进基站、 服务网关和通 信系统进行了详细介绍, 以上实施例的说明只是用于帮助理解本发明的方法 及其思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体 实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应理解 为对本发明的限制。

Claims

权利要求
1、 一种带宽管理方法, 其特征在于, 应用于至少两个第一网络设备和一 个第二网络设备, 所述至少两个第一网络设备共享一个传输通道与所述第二 网络设备进行数据传输, 该方法包括:
所述第二网络设备接收所述第一网络设备发送的实时的流量信息; 所述第二网络设备根据所述流量信息以及预置的调整规则, 对至少两个 所述第一网络设备的传输带宽进行调整;
所述第二网络设备将调整后的传输带宽信息发送给第一网络设备, 以使 第一网络设备基于调整后的传输带宽进行数据传输。
2、 如权利要求 1所述的带宽管理方法, 其特征在于, 所述第二网络设备 根据所述流量信息以及预置的调整规则, 对至少两个第一网络设备的传输带 宽进行调整的歩骤包括:
所述第二网络设备根据所述流量信息从轻载的第一网络设备中削减传输 带宽;
所述第二网络设备根据所述流量信息将所述削减的传输带宽分配给拥塞 的第一网络设备。
3、 如权利要求 1所述的带宽管理方法, 其特征在于, 所述第二网络设备 接收所述第一网络设备发送的实时的流量信息前还包括:
所述第二网络设备接收拥塞的第一网络设备发送的拥塞状态报告; 所述第二网络设备在所述拥塞状态报告的触发下, 向所述至少两个第一 网络设备中除所述拥塞的第一网络设备外的第一网络设备发送流量信息收集 请求。
4、 如权利要求 1所述的带宽管理方法, 其特征在于, 所述第二网络设备 接收所述第一网络设备发送的实时的流量信息前还包括:
所述第二网络设备获取所述传输通道的传输带宽;
所述第二网络设备按照预置规则以及所述传输带宽, 为所述至少两个第 一网络设备分配初始传输带宽;
所述第二网络设备向所述至少两个第一网络设备发送分配的初始传输带 宽信息。
5、 如权利要求 4所述的带宽管理方法, 其特征在于, 所述第二网络设备 按照预置规则将所述传输带宽分配给所述至少两个第一网络设备包括:
所述第二网络设备按照所述至少两个第一网络设备的带宽占用权重, 将 所述传输带宽分配给所述至少两个第一网络设备。
6、 一种带宽管理方法, 其特征在于, 应用于至少两个第一网络设备和一 个第二网络设备, 所述至少两个第一网络设备共享一个传输通道与所述第二 网络设备进行数据传输, 该方法包括:
所述第一网络设备向所述第二网络设备发送实时的流量信息;
所述第一网络设备接收所述第二网络设备发送的调整后的传输带宽信 息, 基于调整后的传输带宽进行数据传输; 所述调整后的传输带宽是由所述 第二网络设备根据所述流量信息以及预置的调整规则, 对至少两个第一网络 设备的传输带宽进行调整后得到的。
7、 如权利要求 6所述的带宽管理方法, 其特征在于, 还包括: 所述第一 网络设备在自身的下行负载状态为拥塞时, 向所述第二网络设备发送实时的 流量信息;
或所述第一网络设备接收了来自所述第二网络设备的流量信息收集请求 后, 向所述第二网络设备发送实时的流量信息。
8、 一种演进基站, 其特征在于, 所述演进基站与至少两个第一网络设备 连接, 所述至少两个第一网络设备共享一个传输通道与所述演进基站进行数 据传输, 所述演进基站包括:
接收单元, 用于接收第一网络设备发送的实时的流量信息;
调整单元, 用于根据所述接收单元接收的流量信息以及预置的调整规则, 对至少两个第一网络设备的传输带宽进行调整; 发送单元, 用于将所述调整单元调整后的传输带宽信息发送给第一网络 设备, 以使所述第一网络设备基于调整后的传输带宽进行数据传输。
9、 如权利要求 8所述的演进基站, 其特征在于, 所述接收单元还用于接 收拥塞的第一网络设备发送的拥塞状态报告;
所述发送单元, 还用于在所述拥塞状态报告的触发下, 向所述至少两个 第一网络设备中除所述拥塞的第一网络设备外的第一网络设备发送流量信息 收集请求。
10、 如权利要求 8所述的演进基站, 其特征在于, 还包括:
获取单元, 用于获取所述传输通道的传输带宽;
分配单元, 用于按照预置规则以及所述获取单元获取的传输带宽, 为所 述至少两个第一网络设备分配初始传输带宽;
所述发送单元, 还用于向所述至少两个第一网络设备发送所述分配单元 分配的初始传输带宽信息。
11、 一种服务网关, 其特征在于, 所述服务网关与第二网络设备连接, 所述第二网络设备还与至少另一个服务网关连接, 所述服务网关与所述至少 另一个服务网关共享一个传输通道与所述第二网络设备进行数据传输, 所述 服务网关包括:
发送单元, 用于向所述第二网络设备发送实时的流量信息;
接收单元, 用于接收所述第二网络设备发送的调整后的传输带宽信息, 基于调整后的传输带宽进行数据传输; 所述调整后的传输带宽是由所述第二 网络设备根据所述流量信息以及预置的调整规则, 对至少两个第一网络设备 的传输带宽进行调整后得到的。
12、 一种通信系统, 其特征在于, 包括一个演进基站和至少两个服务网 关, 所述至少两个服务网关共享一个传输通道与所述演进基站进行数据传输, 其中:
所述演进基站, 用于接收所述服务网关发送的实时的流量信息; 根据所 述接收的流量信息以及预置的调整规则, 对至少两个服务网关的传输带宽进 行调整; 将所述调整后的传输带宽信息发送给所述服务网关;
所述服务网关, 用于接收所述调整后的传输带宽信息, 基于所述调整后 的传输带宽进行数据传输。
13、 如权利要求 12所述的通信系统, 其特征在于, 所述演进基站还用于 在初始化时获取所述传输通道的传输带宽; 按照预置规则以及所述传输带宽, 为所述至少两个服务网关分配初始传输带宽; 向所述至少两个服务网关发送 所述分配的初始传输带宽信息;
所述服务网关, 还用于在初始化时接收所述初始传输带宽信息, 基于所 述初始传输带宽进行数据传输。
PCT/CN2010/075787 2009-08-07 2010-08-09 带宽管理方法、演进基站、服务网关和通信系统 WO2011015155A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10806059.1A EP2437542B1 (en) 2009-08-07 2010-08-09 Bandwidth management method, evolution base station, service gateway and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910161059.8 2009-08-07
CN2009101610598A CN101990250B (zh) 2009-08-07 2009-08-07 带宽管理方法、演进基站、服务网关和通信系统

Publications (1)

Publication Number Publication Date
WO2011015155A1 true WO2011015155A1 (zh) 2011-02-10

Family

ID=43543945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075787 WO2011015155A1 (zh) 2009-08-07 2010-08-09 带宽管理方法、演进基站、服务网关和通信系统

Country Status (3)

Country Link
EP (2) EP2925049B1 (zh)
CN (1) CN101990250B (zh)
WO (1) WO2011015155A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135781A1 (fr) 2013-03-07 2014-09-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de distribution de jets de fluide cryogénique avec enveloppe souple de protection
CN105210399A (zh) * 2014-04-23 2015-12-30 华为技术有限公司 一种基于网络共享的动态资源调整方法及装置
CN112868265A (zh) * 2020-11-20 2021-05-28 达闼机器人有限公司 网络资源的管理方法、管理装置、电子设备及存储介质
CN113556243A (zh) * 2020-04-26 2021-10-26 华为技术有限公司 带宽管理方法、装置及存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011144100A2 (zh) * 2011-05-27 2011-11-24 华为技术有限公司 多宽带网络网关下业务调度方法及装置
CN102946432B (zh) * 2012-11-16 2016-06-29 深圳市深信服电子科技有限公司 带宽占用率控制方法及装置
WO2014094236A1 (zh) * 2012-12-18 2014-06-26 华为技术有限公司 控制流量的方法、终端网关、终端设备和系统
CA2896229C (en) * 2012-12-26 2019-11-12 Gang Lin Radio access network sharing method, transmit end, and receive end
CN104980935A (zh) * 2014-04-03 2015-10-14 中兴通讯股份有限公司 一种共享网络的方法、装置和系统
CN103973490B (zh) * 2014-05-05 2016-03-30 江苏鑫软图无线技术股份有限公司 一种基于数据挖掘的ptn传输带宽自适应调整方法
WO2016033810A1 (en) * 2014-09-05 2016-03-10 Panasonic Intellectual Property Corporation Of America Band usage information generating and reporting method, charging method, enodeb, and mme
CN105791164B (zh) * 2016-02-24 2019-06-14 中国联合网络通信集团有限公司 网络资源分配方法和系统
CN107343293A (zh) * 2016-04-29 2017-11-10 迈普通信技术股份有限公司 一种链路保活方法及设备
CN114006820B (zh) * 2020-07-28 2023-09-05 中移(苏州)软件技术有限公司 一种传输带宽调整方法及设备、计算机可读存储介质
CN113783802A (zh) * 2021-08-09 2021-12-10 新华三大数据技术有限公司 带宽调节方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254670A1 (en) * 2006-05-01 2007-11-01 Dean Kawaguchi System and method for optimizing throughput in a wireless network
CN101184041A (zh) * 2007-12-07 2008-05-21 烽火通信科技股份有限公司 一种在多业务传输平台上实现自动分级带宽调整的方法
CN101252789A (zh) * 2008-03-20 2008-08-27 华为技术有限公司 多帧动态带宽分配的方法和装置
CN101282297A (zh) * 2008-05-22 2008-10-08 中兴通讯股份有限公司 带宽调整方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865185B1 (en) * 2000-02-25 2005-03-08 Cisco Technology, Inc. Method and system for queuing traffic in a wireless communications network
US9414255B2 (en) * 2002-09-13 2016-08-09 Alcatel Lucent Packet flow control in a wireless communications network based on an indication contained in a packet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254670A1 (en) * 2006-05-01 2007-11-01 Dean Kawaguchi System and method for optimizing throughput in a wireless network
CN101184041A (zh) * 2007-12-07 2008-05-21 烽火通信科技股份有限公司 一种在多业务传输平台上实现自动分级带宽调整的方法
CN101252789A (zh) * 2008-03-20 2008-08-27 华为技术有限公司 多帧动态带宽分配的方法和装置
CN101282297A (zh) * 2008-05-22 2008-10-08 中兴通讯股份有限公司 带宽调整方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2437542A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135781A1 (fr) 2013-03-07 2014-09-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de distribution de jets de fluide cryogénique avec enveloppe souple de protection
CN105210399A (zh) * 2014-04-23 2015-12-30 华为技术有限公司 一种基于网络共享的动态资源调整方法及装置
CN105210399B (zh) * 2014-04-23 2019-10-18 华为技术有限公司 一种基于网络共享的动态资源调整方法及装置
CN113556243A (zh) * 2020-04-26 2021-10-26 华为技术有限公司 带宽管理方法、装置及存储介质
CN113556243B (zh) * 2020-04-26 2022-11-08 华为技术有限公司 带宽管理方法、装置及存储介质
CN112868265A (zh) * 2020-11-20 2021-05-28 达闼机器人有限公司 网络资源的管理方法、管理装置、电子设备及存储介质
CN112868265B (zh) * 2020-11-20 2023-08-25 达闼机器人股份有限公司 网络资源的管理方法、管理装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN101990250A (zh) 2011-03-23
EP2437542A4 (en) 2012-04-04
EP2925049B1 (en) 2016-05-11
EP2437542B1 (en) 2015-07-22
EP2437542A1 (en) 2012-04-04
CN101990250B (zh) 2013-08-28
EP2925049A1 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2011015155A1 (zh) 带宽管理方法、演进基站、服务网关和通信系统
US10623928B2 (en) Terminal node, method, storage medium for video data transmission
US10721754B2 (en) Data transmission method and apparatus
US11510223B2 (en) Wireless data priority services
US11652751B2 (en) Maintenance of downlink throughput
JP4847541B2 (ja) データパケットトラフィック輻輳を解決する方法及び装置
US20140155043A1 (en) Application quality management in a communication system
EP3826274A1 (en) Flow control method and apparatus
EP3541114A1 (en) Sending data rate information to a wireless access network node
WO2013152472A1 (zh) 通信方法与系统,以及接入网设备与应用服务器
WO2018082597A1 (zh) 拥塞控制方法及装置、基站
EP3522591B1 (en) Access node for cooperative applications
KR20130091051A (ko) 이동 통신 시스템에서 셀 캐패시티를 기반으로 트래픽 전송률을 제어하는 방법 및 장치
CN104753812B (zh) 通信系统中的应用质量管理
WO2015123939A1 (zh) 一种信息交互方法、系统以及基站
US20170099229A1 (en) Relay device and relay method
WO2023151042A1 (zh) 一种无线通信方法及装置、通信设备
EP3179812B1 (en) Cooperative applications in communication systems
WO2022151107A1 (zh) 信号的发送和接收方法、装置和通信系统
JP5925566B2 (ja) 無線通信システム、基地局、及びモバイルルータ
JP2009278256A (ja) 中継装置および中継方法
WO2015139317A1 (zh) 信息交互装置、基站和通信系统
JP2015228589A (ja) 通信ネットワーク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5071/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010806059

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE