WO2011015113A1 - 高功率led单颗多晶芯片模组路灯用散光透镜 - Google Patents

高功率led单颗多晶芯片模组路灯用散光透镜 Download PDF

Info

Publication number
WO2011015113A1
WO2011015113A1 PCT/CN2010/075562 CN2010075562W WO2011015113A1 WO 2011015113 A1 WO2011015113 A1 WO 2011015113A1 CN 2010075562 W CN2010075562 W CN 2010075562W WO 2011015113 A1 WO2011015113 A1 WO 2011015113A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
planes
intermediate portion
refractive
light
Prior art date
Application number
PCT/CN2010/075562
Other languages
English (en)
French (fr)
Inventor
杨然森
Original Assignee
Yang Jansen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Jansen filed Critical Yang Jansen
Publication of WO2011015113A1 publication Critical patent/WO2011015113A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0071Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source adapted to illuminate a complete hemisphere or a plane extending 360 degrees around the source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a high power LED single polycrystalline chip module street lamp astigmatism lens, the astigmatism lens and high power LED
  • the single polycrystalline chip module directly adheres to the primary light source with a single lens without gaps, and can realize the batwing rectangular light field light distribution curve required by the street lamp specification. And the uniformity of brightness is higher than the upper limit of the specification.
  • LED street lamps are better in terms of rectangular light field and uniformity of illumination, and granular LED street lamps are better.
  • the concentrating property is very poor, its light efficiency and illuminance are not ideal, it is not energy-saving, and it is not suitable for use with high poles, and maintenance is difficult.
  • the uniformity of rectangular light field and illumination is not good, with existing high-power LEDs.
  • the lens used as a rectangular light field and illumination uniformity is better, most of them are solved by using three light sources.
  • the uniformity of the rectangular light field and illuminance is good with the three-source method, but the light efficiency loss is large.
  • the luminous efficiency is approximately 15 to 25%. Between the intermediate values, if it is three light sources, the luminous efficiency is only 64%.
  • the single polycrystalline chip module combines to form a primary light source, and the primary light source directly forms a batwing rectangular light field light distribution curve required by the street lamp, and the single lens used in the scheme is not disclosed in the related literature.
  • the present invention provides a high power LED
  • the astigmatism lens of the single polycrystalline chip module street lamp is a flat bottom solid body structure, and is directly matched with the high power LED single polycrystalline chip module without gaps, and can be used as a primary light source with a single lens.
  • the brightness uniformity and light efficiency are improved to meet the market demand.
  • the high power LED single polycrystalline chip module street lamp astigmatism lens of the invention is a flat bottom solid lens body with a flat bottom surface and a high power LED
  • the silicone surface of the single polycrystalline chip module has no gaps and close fit, and can realize the batwing rectangular light field light distribution curve required to form a street lamp with a primary light source, which includes:
  • the lower bottom surface of the base is a plane, as a light incident surface
  • the convex portion is located on the base portion, and includes an intermediate portion and two partial spherical portions symmetrically disposed at both ends of the intermediate portion, the refractive spherical surface of the two partial spherical portions and the refractive curved surface of the intermediate portion Smooth connection
  • Two reflecting planes symmetrically disposed in the upper middle portion of the intermediate portion, the two being respectively inclined toward the adjacent partial spherical portions for reflecting part of the light incident from the lower bottom surface into the lens to The refracting spherical surface of the adjacent partial sphere portion is emitted;
  • Two light shielding planes respectively located at the roots of the two reflection planes, near the intersection of the two reflection planes.
  • the astigmatism lens may further include two side reflection planes, the two side reflection planes being symmetrically disposed on the Both sides of the middle portion of the convex portion are plated with an aluminum film or a silver film for controlling the depth of the light field.
  • a single polycrystalline chip module street lamp astigmatism lens characterized in that the astigmatism lens is a flat bottom solid lens body with a flat bottom and high power LED
  • the silicone surface of the single polycrystalline chip module has no gaps and close fit, and can realize the batwing rectangular light field light distribution curve required by the primary light source to form a street lamp, including:
  • the lower bottom surface of the base is a plane, as a light incident surface
  • the convex portion is located on the base portion, and includes an intermediate portion and two partial spherical portions symmetrically disposed at both ends of the intermediate portion, the refractive spherical surface of the two partial spherical portions and the refractive curved surface of the intermediate portion Smooth connection
  • Two reflecting planes are symmetrically disposed in the upper middle portion of the intermediate portion, and the two are respectively inclined toward the adjacent partial spherical portions, and the angle is 50-125 degrees, for reflecting part of the light incident from the lower bottom surface into the lens to the refracting spherical surface of the adjacent partial sphere portion;
  • Two light-shielding planes respectively located at the roots of the two reflection planes, near the intersection of the two reflection planes;
  • auxiliary refractive planes or auxiliary refractive spherical surfaces which are symmetrically disposed on the top surface of the intermediate portion;
  • Two side reflection planes are plated with an aluminum film or a silver film for controlling the depth of the light field.
  • the astigmatism lens of the present invention is a flat bottom solid body structure, and the convex portion composed of the intermediate portion and the two partial spherical portions symmetrically disposed at both ends of the intermediate portion can be shot by two reflecting planes disposed at the upper middle portion of the intermediate portion Part of the light entering the lens is reflected to the refracting spherical surface of the two-part sphere to form a batwing rectangular light field light distribution curve.
  • the single polycrystalline chip module directly adheres to the primary light source with a single lens, and can achieve the batwing rectangular light field light distribution curve required by the street lamp specification, and the brightness uniformity is higher than the specification upper limit of 40. % The light efficiency is improved, and the problem of loss of light efficiency caused by the traditional design method of secondary light source or tertiary light source is avoided.
  • Figure 1 is a perspective view of the embodiment 1
  • FIG. 2a, b, and c are top view, transverse cross-sectional view and longitudinal cross-sectional view of Fig. 1;
  • FIG. 3 is a schematic diagram of an optical path of Embodiment 1;
  • Figure 4 is a perspective view of the embodiment 2 thereof;
  • Figures 5a, b, and c are top, transverse, and longitudinal cross-sectional views of Figure 4;
  • Figure 6 is a schematic view of the optical path of Embodiment 2.
  • the high power LED of Embodiment 1 The single polycrystalline chip module street lamp astigmatism lens is a flat bottom solid lens body with flat bottom surface and high power LED
  • the silicone surface of the single polycrystalline chip module has no gaps and close fit, and can realize the batwing rectangular light field light distribution curve required by the primary light source to form a street lamp.
  • the convex portion 2 includes an intermediate portion 22 and two partial spherical portions 21, 27 symmetrically disposed at both ends of the intermediate portion 22, the two partial spherical portions 21, 27
  • the refractive spherical surface is smoothly connected to the refractive arc of the intermediate portion 22.
  • two reflection planes 24, 25 are symmetrically disposed in the upper middle portion of the intermediate portion 22.
  • the two are respectively inclined to the adjacent partial spheres, and the two reflecting planes 24, 25 are mainly reflected and have a certain refraction (Fig. 3), which is mainly used for the lower bottom surface 11 Part of the light incident on the lens is reflected to the refracting spherical surface of the adjacent partial sphere portion.
  • Two light-shielding planes 241 are respectively disposed at the intersection of the roots of the two reflection planes 24, 25 and the two reflection planes, 251.
  • the two shading planes 241 and 251 are total reflection planes, and the light that is incident on both is totally reflected to the refraction spherical surface of the adjacent partial spheres (Fig. 3). .
  • the two light-shielding planes may form a frosted surface by a sanding process at the root of the corresponding reflection plane, or may be coated with a light-shielding layer or a light-shielding film at the root of the corresponding reflection plane.
  • Two side reflection planes 28, 29 are symmetrically disposed on both sides of the intermediate portion 22. And an aluminized film or a silver film, etc., forms a total reflection plane for controlling the depth of the light field.
  • the top surface of the intermediate portion 22 of the protruding portion 2 is symmetrically disposed with two auxiliary refractive spherical surfaces 23, 26
  • the radius of curvature of the auxiliary refractive spherical surface is slightly larger than the radius of curvature of the refractive arc surface of the intermediate portion 22, and the two auxiliary refractive spherical surfaces 23, 26 are arranged to improve the illumination of the intermediate portion.
  • Auxiliary refractive spherical surface 23, 26 It can be replaced by an auxiliary refractive plane.
  • the angle between the two reflection planes 24, 25 can be selected between 50-125 degrees.
  • the top view of the above-mentioned projecting portion 2 has an oblong shape.
  • the connecting portion of the protruding portion 2 and the base portion 1 is provided with a mounting ring surface 12 It is used for the close combination of the astigmatism lens and the bottom portion of the light field reticle, and can make the silica gel on the surface of the astigmatism lens, the light field reticle and the high-power LED single polycrystalline module to be tightly combined without voids.
  • the astigmatism lens of Embodiment 2 is also a flat bottom solid lens. It consists of a base 1 and a connection at the base 1 The upper part of the protrusion 2 and so on.
  • the lower bottom surface 11 of the base 1 is a flat surface as a light incident surface.
  • the protruding portion 2 includes an intermediate portion 22 and two partial spherical portions symmetrically disposed at both ends of the intermediate portion 22 21, 27, the intermediate portion 22 is a longitudinally cut portion of a cylinder, the refractive cylinder (or curved surface) of the intermediate portion 22, and the two partial spherical portions 21, 27 The refraction spherical smooth connection.
  • two reflection planes 24, 25 are symmetrically disposed in the upper middle portion of the intermediate portion 22.
  • the two are respectively inclined to the adjacent partial spheres at an angle of 50-125 degrees, and the two reflecting planes 24, 25 are mainly reflected and have a certain refraction (Fig. 6), and are mainly used for the lower bottom surface.
  • 11 Part of the light incident on the lens is reflected to the refracting spherical surface of the adjacent partial sphere portion.
  • Two light shielding planes 241 and 251 are respectively disposed at the roots of the two reflection planes 24 and 25, and two light shielding planes are disposed.
  • 241 and 251 are frosted planes (total reflection planes) that totally reflect the light incident on both to the refracting sphere of the adjacent partial sphere (Fig. 6).
  • Two side reflection planes 28, 29 are symmetrically disposed on both sides of the intermediate portion 22. And an aluminized film or a silver film, etc., forms a total reflection plane for controlling the depth of the light field.
  • the connecting portion of the protruding portion 2 and the base portion 1 is provided with a mounting ring surface 12 For the close combination of the astigmatism lens and the bottom portion of the light field reticle.
  • the astigmatic lens of the present invention preferably uses glass having good light transmittance, polycarbonate (PC) and plexiglass (PMMA). Made of transparent material.
  • PC polycarbonate
  • PMMA plexiglass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

高功率 LED 单颗多晶芯片 模组路灯用散光透镜
技术领域
本发明涉及一种 高功率 LED 单颗多晶芯片 模组路灯用散光透镜 ,该散光透镜和高功率 LED 单颗多晶芯片模块直接无空隙紧密贴合作为 具有单一透镜的一次光源 使用,可实现路灯规范所要求的 蝙蝠翼矩形光场配光曲线 ,而且亮度的均匀性高于规范的要求值上限。
背景技术
目前, LED 路灯在矩形光场和照度的均匀性方面, 颗粒式 LED 路灯比较好, 但聚光性很差,其光效和照度不理想,比较不节能, 不 适用 于高 的灯杆 使用,维修又困难 。
对于采用高功率 LED 单颗多晶芯片模块的路灯则矩形光场和照度的均匀性不好,以现有的高功率 LED 单颗多晶芯片模块路灯,所使用的透镜作为矩形光场和照度的均匀性 要好一些, 绝大多数都是使用三次光源的方式来解决。 采用三次光源的方式其矩形光场和照度的均匀性虽好 , 但是光效损失很大。 以二次光源来说,光效大约折损 15 ~ 25% 之间,以中间值来算如果是三次光源则光效就只剩 64% 了。
所以为何很多传统灯具厂家都说目前虽然高功率、高亮度 LED 在路灯上使用,并没有真正的节能。其实并不完全是高功率 LED 的发光效率眼前才能达到 25% ~ 28% 而已,也不全然只有因为散热不好而导致发光效率不好。 分析其原因如下, 以现有的高功率 LED 发光虽已能达到 120Lm/W 甚至以上,但也不尽然 因散热不好而使效率下降 ,还有因为使用搭配出了问题。举例来说:很多厂家都因为散热不好解决,而采取颗粒式的组装来解决散热问题,但他们不知道,因为这样的方法解决散热会使光源被分散,导致发光效率的损失,照度的下降。另一种是虽然他们在解决散热问题有一套较好的方法,而敢采用单颗多晶芯片模块方式即芯片式的做法,在大约 4 ~ 10 平方公分的面积即可达到 100 瓦~ 250 瓦的 LED 模块,但他们却也碰到因为光源的集中,而导致矩形光场和照度均匀性的处理出现困难, 仍然采取二次光源或三次光源的方式来解决, 以期达到理想的矩形光场和照度的均匀性,也因此被牺牲了光效率的问题。基于以上的种种原因致使高功率 LED 在路灯上的使用被曲扭成不节能的灯具。
目前,以单颗透镜与高功率 LED 单颗多晶芯片模组结合构成一次光源,以该一次光源直接形成路灯要求的蝙蝠翼矩形光场配光曲线的方案,及该方案中采用的单颗透镜,未见有关文献披露。
发明内容
为克服现有技术存在的上述缺陷,本发明提供一种高功率 LED 单颗多晶芯片模组路灯用散光透镜,该散光透镜为平底面实心体结构,与高功率 LED 单颗多晶芯片模块直接无空隙紧密贴合可作为具有单一透镜的一次光源使用 , 以实现路灯规范所要求的蝙蝠翼矩形光场配光曲线 , 提高亮度的均匀性和 光效 , 满足市场需要。
本发明高功率 LED 单颗多晶芯片模组路灯用散光透镜为一平底面实心透镜体,以其平底面与高功率 LED 单颗多晶芯片模组表面的硅胶无空隙紧密贴合,能实现以一次光源形成路灯要求的蝙蝠翼矩形光场配光曲线,它包括:
一基部,该基部的下底面为平面,作为光入射面;
一凸出部分,该凸出部分位于所述基部上,包含中间部和对称设置于该中间部两头的两个部分球体部,该两个部分球体部的折射球面和该中间部的 折射弧面 平滑连接;
两个反射平面,该两个反射平面对称设置于所述中间部的上中部内,两者分别向相邻的部分球体部倾斜,用于将从所述下底面射入透镜的部分光反射到相邻的部分球体部的折射球面射出;以及,
两个遮光平面,该两个遮光平面分别位于所述两个反射平面的根部,近所述两个反射平面的交线处。
所述散光透镜可进一步包括两个侧反射平面,该两个侧反射平面对称设置于所述 凸出部分的中间部的两侧,并镀铝膜或银膜,用于控制光场的深度。
一种高功率 LED 单颗多晶芯片模组路灯用散光透镜,其特征是该散光透镜为一平底面实心透镜体,以其平面底与高功率 LED 单颗多晶芯片模组表面的硅胶无空隙紧密贴合,能实现以一次光源形成路灯要求的蝙蝠翼矩形光场配光曲线,包括:
一基部,该基部的下底面为平面,作为光入射面;
一凸出部分,该凸出部分位于所述基部上,包含中间部和对称设置于该中间部两头的两个部分球体部,该两个部分球体部的折射球面和该中间部的折射弧面平滑连接;
两个反射平面,该两个反射平面对称设置于所述中间部的上中部内,两者分别向相邻的部分球体部倾斜,夹角为 50-125 度,用于将从所述下底面射入透镜的部分光反射到相邻的部分球体部的折射球面射出;
两个遮光平面, 该两个遮光平面分别位于所述两个反射平面的根部,近所述两个反射平面的交线处;
两个辅助折射平面或辅助折射球面,两者对称设置于所述中间部分的顶面;以及,
两个侧反射平面,该两个侧反射平面对称设置于所述 凸出部分的中间部的两侧,并镀铝膜或银膜,用于控制光场的深度。
本发明散光透镜为平底面实心体结构,其由中间部和对称设置于中间部两头的两个部分球体部构成的凸出部分,通过设置于中间部的上中部的两个反射平面可将射入透镜的部分光反射到两部分球体部的折射球面射出,形成蝙蝠翼矩形光场配光曲线。
它和高功率 LED 单颗多晶芯片模块直接无空隙紧密贴合作为具有单一透镜的一次光源使用,可达到路灯规范所要求的蝙蝠翼矩形光场配光曲线,而且亮度的均匀性高于规范的要求值上限 40% ,光效提高,避免了传统采取二次光源或三次光源的设计方式导致的光效损失问题。
附图说明
图 1 为其实施例 1 立体图;
图 2a 、 b 、 c 为图 1 的俯视图、横向剖视图和纵向剖视图;
图 3 为实施例 1 的光路示意图;
图 4 为其实施例 2 立体图;
图 5a 、 b 、 c 为图 4 的俯视图、横向剖视图和纵向剖视图;
图 6 为实施例 2 的光路示意图。
具体实施方式
下面结合实施例附图对本发明做进一步说明。
参照图 1-3 ,实施例 1 的高功率 LED 单颗多晶芯片模组路灯用散光透镜为一平底面实心透镜体,以其平底面与高功率 LED 单颗多晶芯片模组表面的硅胶无空隙紧密贴合,能实现以一次光源形成路灯要求的蝙蝠翼矩形光场配光曲线。
它包括基部 1 和连接在基部 1 上的凸出部分 2 等部分。该基部 1 的下底面 11 为平面,作为光入射面;该凸出部分 2 包含中间部 22 和对称设置于该中间部 22 两头的两个部分球体部 21 、 27 ,该两个部分球体部 21 、 27 的折射球面和该中间部 22 的折射弧面平滑连接。
并,在所述中间部 22 的上中部内对称设置有两个反射平面 24 、 25 ,两者分别向相邻的部分球体部倾斜,两个反射平面 24 、 25 以反射为主并有一定折射 ( 图 3) , 主要用于将从所述下底面 11 射入透镜的部分光反射到相邻的部分球体部的折射球面射出。
在所述两个反射平面 24 、 25 的根部、近所述两个反射平面的交线处分别设置有两个遮光平面 241 、 251 ,两个遮光平面 241 、 251 为全反射平面,将射到两者上的光全反射到相邻的部分球体部的折射球面射出 ( 图 3) 。两个遮光平面可以在相应的反射平面的根部通过磨砂工艺形成 磨砂面, 也可以在相应的反射平面的根部 涂覆遮光层或贴遮光膜等 。
在所述中间部 22 的两侧还对称设置有两个侧反射平面 28 、 29 ,并镀铝膜或银膜等,形成全反射平面,用于控制光场的深度。
所述凸出部分 2 的中间部 22 的顶面对称设置两个辅助折射球面 23 、 26 ,该辅助折射球面的曲率半径稍大于该中间部 22 的折射弧面的曲率半径,两个辅助折射球面 23 、 26 设置为改善中间部的照度。辅助折射球面 23 、 26 可以用辅助折射平面代替。
根据实际设计需要,上述两个反射平面 24 、 25 之间的夹角可在 50-125 度之间选择。
上述凸出部分 2 的俯视图的外形呈长圆形。
所述凸出部分 2 和基部 1 的衔接部环设一安装环面 12 ,用于该散光透镜和光场光罩底口部的紧密结合,并可使散光透镜、光场光罩和高功率 LED 单颗多晶模组表面的硅胶达到以无空隙紧密结合一起。
参照图 4-6 ,实施例 2 散光透镜同样为一平底面实心透镜体。它包括基部 1 和连接在基部 1 上的凸出部分 2 等部分。该基部 1 的下底面 11 为平面,作为光入射面。该凸出部分 2 包含中间部 22 和对称设置于该中间部 22 两头的两个部分球体部 21 、 27 , 中间部 22 呈一圆柱体的纵向切开的一部分,中间部 22 的折射柱面(或弧面) 和所述两个部分球体部 21 、 27 的折射球面平滑连接。
并,在所述中间部 22 的上中部内对称设置有两个反射平面 24 、 25 ,两者分别向相邻的部分球体部倾斜,夹角为 50-125 度,两个反射平面 24 、 25 以反射为主并有一定折射 ( 图 6) ,主要用于将从所述下底面 11 射入透镜的部分光反射到相邻的部分球体部的折射球面射出。
在所述两个反射平面 24 、 25 的根部分别设置有两个遮光平面 241 、 251 ,两个遮光平面 241 、 251 为磨砂平面(全反射平面),将射到两者上的光全反射到相邻的部分球体部的折射球面射出 ( 图 6) 。
在所述中间部 22 的两侧还对称设置有两个侧反射平面 28 、 29 ,并镀铝膜或银膜等,形成全反射平面,用于控制光场的深度。
所述凸出部分 2 和基部 1 的衔接部环设一安装环面 12 ,用于该散光透镜和光场光罩底口部的紧密结合。
本发明散光透镜 优选采用透光性能好的玻璃、聚碳酸酯( PC )及有机玻璃 (PMMA) 等透明材料制成。

Claims (1)

  1. 1 、一种高功率 LED 单颗多晶芯片模组路灯用散光透镜,其特征是该透镜为一平底面实心透镜体,以其平底面与高功率 LED 单颗多晶芯片模组表面的硅胶无空隙紧密贴合,能实现以一次光源形成路灯要求的蝙蝠翼矩形光场配光曲线,包括:
    一基部,该基部的下底面为平面,作为光入射面;
    一凸出部分,该凸出部分位于所述基部上,包含中间部和对称设置于该中间部两头的两个部分球体部,该两个部分球体部的折射球面和该中间部的折射弧面平滑连接;
    两个反射平面,该两个反射平面对称设置于所述中间部的上中部内,分别向相邻的部分球体部倾斜,用于将从所述下底面射入透镜的部分光反射到相邻的部分球体部的折射球面射出;以及,
    两个遮光平面,该两个遮光平面分别位于所述两个反射平面的根部,近所述两个反射平面的交线处。
    2 、如权利要求 1 所述的散光透镜,其特征在于:进一步包括两个侧反射平面,该两个侧反射平面对称设置于所述凸出部分的中间部的两侧,并镀铝膜或银膜,用于控制光场的深度。
    3 、如权利要求 2 所述的散光透镜,其特征在于:所述凸出部分的中间部的顶面具有两个辅助折射平面或辅助折射球面,该辅助折射球面的曲率半径稍大于所述中间部的折射弧面的曲率半径。
    4 、如权利要求 2 所述的散光透镜,其特征在于:所述两个反射平面之间的夹角为 50-125 度。
    5 、如权利要求 1 所述的散光透镜,其特征在于:所述凸出部分的中间部的顶面具有两个辅助折射平面或辅助折射球面。
    6 、如权利要求 1 所述的散光透镜,其特征在于:所述两个反射平面之间的夹角为 50-125 度。
    7 、如权利要求 1 所述的散光透镜,其特征在于:所述凸出部分的中间部呈一圆柱体的纵向切开的一部分,所述中间部的折射柱面和所述两个部分球体部的折射球面平滑连接。
    8 、如权利要求 7 所述的散光透镜,其特征在于:所述两个反射平面之间的夹角为 50-125 度。
    9 、如权利要求 1 所述的散光透镜,其特征在于:进一步包括两个侧反射平面,该两个侧反射平面对称设置于所述凸出部分的中间部的两侧,并镀铝膜或银膜,用于控制光场的深度;所述凸出部分的中间部呈一圆柱体的纵向切开的一部分,所述中间部的折射柱面和所述两个部分球体部的折射球面平滑连接。
    10 、如权利要求 7 或 9 所述的散光透镜,其特征在于:所述凸出部分的俯视图的外形呈长圆形。
    11 、如权利要求 1 或 9 所述的散光透镜,其特征在于:所述凸出部分和基部的衔接部环设一安装环面,用于该散光透镜和光场光罩底口部的紧密结合。
    12 、高功率 LED 单颗多晶芯片模组路灯用散光透镜,其特征是该散光透镜为一平底面实心透镜体,以其平面底与高功率 LED 单颗多晶芯片模组表面的硅胶无空隙紧密贴合,能实现以一次光源形成路灯要求的蝙蝠翼矩形光场配光曲线,包括:
    一基部,该基部的下底面为平面,作为光入射面;
    一凸出部分,该凸出部分位于所述基部上,包含中间部和对称设置于该中间部两头的两个部分球体部,两者的折射球面和该中间部的折射弧面平滑连接;
    两个反射平面,两者对称设置于所述中间部的上中部内,分别向相邻的部分球体部倾斜,夹角为 50-125 度,用于将从所述下底面射入透镜的部分光反射到相邻的部分球体部的折射球面射出;
    两个遮光平面, 两者分别位于所述两个反射平面的根部;
    两个辅助折射平面或球面,两者对称设置于所述中间部分的顶面;以及,
    两个侧反射平面,两者对称设置于所述凸出部分的中间部的两侧,用于控制光场的深度。
    13 、如权利要求 12 所述的散光透镜,其特征在于:所述凸出部分和基部的衔接部环设一安装环面,用于该散光透镜和光场光罩底口部的紧密结合。
    14 、如权利要求 12 所述的散光透镜,其特征在于:所述两个反射平面涂覆有铝膜或银膜。
PCT/CN2010/075562 2009-08-03 2010-07-29 高功率led单颗多晶芯片模组路灯用散光透镜 WO2011015113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910109063.X 2009-08-03
CN200910109063XA CN101988677B (zh) 2009-08-03 2009-08-03 高功率led单颗多晶芯片模组路灯用散光透镜

Publications (1)

Publication Number Publication Date
WO2011015113A1 true WO2011015113A1 (zh) 2011-02-10

Family

ID=43543925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075562 WO2011015113A1 (zh) 2009-08-03 2010-07-29 高功率led单颗多晶芯片模组路灯用散光透镜

Country Status (2)

Country Link
CN (1) CN101988677B (zh)
WO (1) WO2011015113A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085275A1 (de) * 2011-07-08 2013-01-10 Zumtobel Lighting Gmbh Optisches Element
US9360172B2 (en) 2011-07-19 2016-06-07 Zumtobel Lighting Gmbh Arrangement for emitting light

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322503B (zh) * 2012-03-19 2016-09-07 展晶科技(深圳)有限公司 光学透镜和使用该光学透镜的发光二极管灯源装置
JP6655807B2 (ja) * 2015-03-04 2020-02-26 パナソニックIpマネジメント株式会社 レンズユニット及び照明器具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703719A (en) * 1997-01-17 1997-12-30 Chen; Judy Reflector road sign with self-provided light means
US5898267A (en) * 1996-04-10 1999-04-27 Mcdermott; Kevin Parabolic axial lighting device
US20030031028A1 (en) * 2001-08-09 2003-02-13 Murray Timothy B. Vehicle emergency warning light having TIR lens, LED light engine and heat sink
US20050068777A1 (en) * 2003-09-25 2005-03-31 Dragoslav Popovic Modular LED light and method
CN101373048A (zh) * 2008-08-05 2009-02-25 周广跃 一种led光源结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100578077C (zh) * 2007-07-30 2010-01-06 深圳市邦贝尔电子有限公司 Led隧道灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898267A (en) * 1996-04-10 1999-04-27 Mcdermott; Kevin Parabolic axial lighting device
US5703719A (en) * 1997-01-17 1997-12-30 Chen; Judy Reflector road sign with self-provided light means
US20030031028A1 (en) * 2001-08-09 2003-02-13 Murray Timothy B. Vehicle emergency warning light having TIR lens, LED light engine and heat sink
US20050068777A1 (en) * 2003-09-25 2005-03-31 Dragoslav Popovic Modular LED light and method
CN101373048A (zh) * 2008-08-05 2009-02-25 周广跃 一种led光源结构

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085275A1 (de) * 2011-07-08 2013-01-10 Zumtobel Lighting Gmbh Optisches Element
US9234644B2 (en) 2011-07-08 2016-01-12 Zumtobel Lighting Gmbh Optical element
US9562665B2 (en) 2011-07-08 2017-02-07 Zumtobel Lighting Gmbh Light modifier having complex lenses for LED luminaires
US9618182B2 (en) 2011-07-08 2017-04-11 Zumtobel Lighting Gmbh Light-influencing element for influencing the light emission of essentially point light sources
DE102011085275B4 (de) * 2011-07-08 2021-01-28 Zumtobel Lighting Gmbh Optisches Element
US9360172B2 (en) 2011-07-19 2016-06-07 Zumtobel Lighting Gmbh Arrangement for emitting light

Also Published As

Publication number Publication date
CN101988677B (zh) 2012-11-14
CN101988677A (zh) 2011-03-23

Similar Documents

Publication Publication Date Title
WO2015109891A1 (zh) 能照射到3、5车道的cob模块led路灯透镜的配光方法
EP2951496A1 (en) Optical waveguide and lamp including same
WO2011015114A1 (zh) 高功率led单颗多晶芯片模组路灯
WO2011060618A1 (zh) 封装固态发光芯片的方法、结构及使用该封装结构的光源装置
WO2011015113A1 (zh) 高功率led单颗多晶芯片模组路灯用散光透镜
WO2011011980A1 (zh) 高效合光的舞台灯光照明装置
WO2010133094A1 (zh) Led照明光源的非成像光学定向配光方法
WO2012006952A1 (zh) 光学系统
CN105927867A (zh) 一种聚光灯光路散热组合系统
CN201944780U (zh) Led餐吊灯反射器
CN2913822Y (zh) Led光源照明灯
CN205678441U (zh) 一种聚光灯光路散热组合系统
WO2018174323A1 (ko) 계단형 도파로를 기반으로 하는 복합 태양광 조명 시스템 및 방법
WO2009056000A1 (fr) Lentille combinée et luminaire l'utilisant
CN201218485Y (zh) 高效散热的大功率led射灯
CN2864326Y (zh) 复合透镜矿灯
CN107044618B (zh) 一种适用于博物馆的全光谱led照明灯
WO2019137386A1 (zh) 一种全光谱照明装置
WO2019014975A1 (zh) 一种均匀照射的植物灯具及其组件
WO2016173482A1 (zh) 一种照明模组及照明灯具
WO2013029523A1 (zh) 一种反射式led照明灯
WO2013044614A1 (zh) 一种超小型大功率led节能石英灯
TWI379965B (en) Led illuminating device
CN206572260U (zh) 一种led可变角度准直发光系统
WO2010048754A1 (zh) Led摄影灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806017

Country of ref document: EP

Kind code of ref document: A1