WO2010133094A1 - Led照明光源的非成像光学定向配光方法 - Google Patents

Led照明光源的非成像光学定向配光方法 Download PDF

Info

Publication number
WO2010133094A1
WO2010133094A1 PCT/CN2010/000739 CN2010000739W WO2010133094A1 WO 2010133094 A1 WO2010133094 A1 WO 2010133094A1 CN 2010000739 W CN2010000739 W CN 2010000739W WO 2010133094 A1 WO2010133094 A1 WO 2010133094A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
directional
light distribution
incident
Prior art date
Application number
PCT/CN2010/000739
Other languages
English (en)
French (fr)
Inventor
胡家培
胡民海
Original Assignee
西安智海电力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安智海电力科技有限公司 filed Critical 西安智海电力科技有限公司
Publication of WO2010133094A1 publication Critical patent/WO2010133094A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens

Definitions

  • the invention belongs to the technical field of non-imaging optical light distribution, and particularly relates to a non-imaging optical directional light distribution method for an LED illumination source.
  • Functional lighting fixtures such as street lamps and tunnel lights require that the illumination at every point in the illumination range must meet the minimum illumination index, the highest glare requirement index, the light intensity uniformity indicator, and the illumination area limitation requirements required by the lighting specification. And energy saving, environmental performance and other requirements are also very high.
  • the luminaire In order to improve the lighting effect and protect the health of the human eye, it is necessary to use the luminaire to illuminate the optical system, that is, to illuminate a light field with uniform illumination by a light illumination at a given road location and a given road surface area. Light outside a given area is considered to be invalid light.
  • the light distribution of traditional lighting fixtures mainly relies on the reflection cup to reflect and distribute the light, control the light in a reasonable prescribed area, and improve the uniformity of the light intensity.
  • the main disadvantage of this method of distributing light intensity by reflection is that the light energy loss is large and the power consumption is large.
  • the package of common LED light source is shown in Figure 1.
  • the light intensity distribution E is proportional to the cosine of the light exit angle ⁇ ', and the illuminance formed by the light emitted by the LED light source 101 on the illuminated surface is rapidly attenuated as the exit angle ⁇ increases.
  • the LED light source 101 can be regarded as a Lambertian light source with a 180 degree angle of light, and the intensity distribution is strong in the center, and the surrounding hall is as shown in Fig. 2. If the secondary optical design of the LED light source is not designed, such a light intensity distribution is difficult to meet the needs of functional lighting applications, and the existence of a large amount of ineffective light not only causes a large loss of light energy, but also greatly reduces the lighting effect.
  • the following is the analysis of the conic surface intensity distribution curve of the maximum intensity of existing LED street light fixtures:
  • Figure 3 shows the measured light distribution curve of a 240W symmetrical unsuitable LED street light, which shows that a considerable portion of the light can leak out of the effective area beach 102.
  • the results show that the ineffective light greatly reduces the lighting effect.
  • the power output can only be increased to 240W, resulting in wasted energy.
  • Figure 4 shows the measured light distribution curve of a 150W butterfly type LED street light. The results show that the uniformity of the illumination is poor, there is glare along the illuminated surface, and there is a blind spot in the illuminated area.
  • LED light sources are generally classified into two types: single light source and multiple light source.
  • the light distribution is by adjusting the installation angle of a plurality of light sources to distribute the light intensity
  • the formed lighting fixture is a modular type.
  • Multi-source luminaires are not only heavy, but also create multiple shadows, limiting power expansion and range, especially for vehicles and pedestrians.
  • the light distribution is mainly to imitate the traditional lamps, relying on the reflector cup to reflect the light distribution. Due to the presence of Lambertian's characteristics, the reflector can reflect very little light, and it is impossible to fundamentally improve the center intensity and surrounding characteristics of the LED light source.
  • the object of the present invention is to provide a non-imaging optical directional light distribution method for an LED illumination source, which solves the problem that the prior art cannot fundamentally improve the Lambertian characteristics of the LED light source, thereby failing to achieve directional light distribution, resulting in uniformity of light distribution.
  • Technical problems of poor, low light efficiency and poor lighting effects are also known.
  • the invention overcomes the Lambertian property of the LED light source by utilizing the refraction phenomenon of light from the light-tight substance to the light-dissipating substance, that is, the characteristic that the center of the light intensity distribution is strong and the periphery is weakened.
  • the energy of the directional refractive refracting non-imaging light transmissive LED light source of the invention is redistributed, and the line and the change of the LED light source are realized, so as to realize the full utilization of the light energy and the directional control of the light intensity distribution, so that the LED point light source becomes A uniform surface source for the lens surface.
  • the implementation steps are as follows:
  • the LED light emitted by the LED light source is refracted by the light distribution lens, and the emitted light is refracted toward the set direction to form LED directional light;
  • Multi-directional LED directional light sources are superimposed to form an LED illumination source.
  • the formation of the directional light of the LED described above includes the following implementation steps:
  • the LED light is incident on the light distribution lens at an incident angle ⁇ 1 and is refracted by the light distribution lens to obtain LED directional light.
  • the above-described LED directional light superimposition may include optical processing for directional enhancement of light.
  • the LED directional beam stacking described above may include optical processing that refracts and compresses light.
  • the LED directional light source superposition described above may include optical processing for distributing the spot of the LED illumination source into a basic geometric shape consisting of a rectangle, a triangle, a circle, a semicircle, a sector or a parabola, or distributing the spot of the LED illumination source into Optical processing of a composite shape formed by two or more combinations of basic geometries.
  • optical processing of the LED directional light superimposition, the LED directional beam superposition and the LED directional light source superimposition described above may respectively include the optical processing of the hook-and-groove.
  • the above-mentioned multi-directional LED directional light source is superimposed to form an LED illumination light source, which can be equipped according to the illuminance index, glare index, light intensity index, light uniformity index and spot shape of the illumination area required by the illumination area design.
  • the above-mentioned LED light source can be packaged by COB type superposition, integrated superposition or modular superposition.
  • the light collecting angle is large, and the light energy of the LED light source can be fully utilized, the light efficiency is high, the light energy loss is small, and the power required for realizing the lighting requirement is small, so energy saving can be achieved.
  • the implementation method is simple and low.
  • Figure 1 shows the packaging of existing LED light sources.
  • Figure 2 shows the Lambertian source of the LED light source equivalent to a 180° exit angle.
  • Figure 3 shows the measured light distribution curve of the existing 240W symmetrical type without suitable light distribution LED street light. .
  • Figure 4 shows the measured light distribution curve of the existing 150W butterfly type light distribution LED street light.
  • Figure 5 is a schematic optical view of a directional refractive plane of the present invention.
  • Figure 6 is a schematic view of the light distribution of the present invention.
  • Fig. 7 is a view showing the light-refracting beam refracting of the present invention.
  • Figure 8 is a schematic illustration of the light distribution oriented ribbon refraction of the present invention.
  • Figure 9 is a schematic view showing the structure of a directional refractive light distribution lens of the present invention designed by Pro/Engineer software.
  • Figure 10 is a LightTools software simulation conical surface intensity diagram of a conventional symmetrical LED street light without proper light distribution.
  • Figure 11 is a LightTools software simulation conical surface intensity diagram of an LED street light using the directional refractive light distribution lens of the present invention.
  • Figure 12 is a LightTools software simulation light distribution curve of an LED street light using the directional refractive light distribution lens of the present invention.
  • Figure 13 is a schematic diagram of the engineering application of the illuminating light distribution of the LED streetlight using the directional refractive light distribution of the present invention.
  • Figure 14 is a light distribution diagram of an LED street lamp using the refracting non-imaging optical lens of the present invention.
  • Figure 15 is a measured optical distribution of an LED street lamp using the directional refractive non-imaging optical lens of the present invention. Line.
  • Figure 16 is a comparison of LED street lights of the same power, same light source, and different lens conditions.
  • Figure 17 is a measured light distribution curve of an LED street lamp using 150 watts of the refracting non-imaging optical lens of the present invention.
  • Nm and ⁇ are the refractive indices of the two media, respectively, and 9 m and ⁇ ⁇ are the incident angle and the refraction angle, respectively.
  • the refractive index N1 of the incident medium of the light distribution lens, the refractive index N2 of the light distribution lens, and the refractive index N3 of the exit medium after the LED light passes through the light distribution lens; the incident angle of the LED light incident on the light distribution ⁇ 1, shot The angle of refraction after entering the light distribution lens ⁇ 2, the incident angle ⁇ emitted to the exit medium ⁇ 3, the exit angle ⁇ 4 after the fit; the angle between the incident surface and the exit surface of the light distribution lens ⁇ 0 the refraction of the lens body 203
  • N3sin ⁇ 4 N2sin ⁇ 3
  • (V) Light distribution lens strip-shaped astigmatic refracting As shown in Fig. 8, the LED light of the Lambertian source, which can be equivalent to the 180° exit angle, passes through the toothed oriented strip-shaped refractive lens, and the light will be oriented toward the tooth shape.
  • the vertical strip direction refraction causes the light field to be distributed into a strip shape, and the light intensity is increased in the strip direction, and the light intensity is weakened in other directions, and uniform light processing can be performed.
  • LED directional light (1) The LED light emitted by the LED light source is refracted by the light distribution lens, and the emitted light is refracted toward the set direction to form LED directional light.
  • the formation of LED directional light includes the following implementation steps:
  • the incident angle ⁇ 1 at which the LED light is incident on the optical fiber is obtained.
  • LED directional light is superimposed to form a LED directional beam.
  • the LED directional light overlay can also include optical processing that directionalally enhances the light.
  • the LED directional beam is superimposed to form an LED directional light source.
  • the LED directional beam stacking can also include optical processing that refracts the light.
  • Multi-directional LED directional light sources are superimposed to form an LED illumination source.
  • the LED directional light source superimposition may comprise optical processing of the basic geometry of the LED illumination source, such as a ship shape, a triangle, a circle, a semicircle, a sector or a parabola, or a spot of the LED illumination source to be distributed by the basic geometry. Optical processing of a composite shape formed by a combination of two or more.
  • the LED directional light superposition, the LED directional beam superposition, and the optical processing of the LED directional light source superposition may include uniform scattering optical processing, respectively.
  • Multi-directional LED directional light source superimposed to form LED lighting source can be used according to the illumination area design requirements of the illuminance index, glare index, light intensity index, light uniformity index and spot shape of the lighting area.
  • the packaging method of the LED light source of the invention can adopt the COB type superposition, the integrated superposition group superposition and the like.
  • the glass mirror, the PC material or the PMMA material may be used in the invention. Glass materials are resistant to high temperatures and high penetration rates.
  • PC material is polycarbonate material
  • PMMA material is polymethyl methacrylate material. These two materials not only have high penetration rate, but also easy to achieve aspherical concentrating, reduce the yellow smudge phenomenon of the spot, and also make the product injection molding. Forming, making production costs lower.
  • the lens body 203 can also be made of a transparent PS material, that is, a transparent polystyrene material, commonly known as benzene.
  • Example of a simulated illumination lamp for a directional refractive non-imaging optical lens of the present invention Using the present invention to combine directional refractive optical fibers in different directions to combine light distribution of the light intensity of the LED light source to achieve light intensity distribution Meet the practical application requirements.
  • Figure 9 shows the directional refracting lens of LED luminaires designed with Pro/Engineer software.
  • the light intensity distribution fully meets the requirements of road illumination intensity distribution. According to the shape of the road, the light intensity distribution of the useless part of the roadside and the outside of the house is refracted and compressed, and the useful light intensity distribution along the road direction is refraction enhanced, and uniform optical processing is performed at the same time.
  • Figure 10 is a symmetrical type of light-emitting LED street light LightTools software simulation conical surface intensity map,
  • the shape is a symmetrical circle, and the central zone has a strong light intensity; away from the center of the circle, the light intensity is attenuated by a cosine shape. That is, most of the luminous flux is irradiated to the center, and the surrounding light intensity is weak.
  • Fig. 11 is a diagram showing the cone-shaped intensity map of the LED street light LightTools software using the directional refracting lens of the present invention.
  • the shape is approximately rectangular, the light intensity is uniform in the rectangular region, and the light intensity distribution is uniform from the center of the rectangle to the periphery.
  • Figure 12 is a simulation of the light distribution curve using the directional refracting lens assembly LED street light LightTools software of the present invention.
  • the light exit angle at 40% of the light intensity is:
  • the light exit angle at 40% light intensity is:
  • Figure 13 is an engineering application for simulating LED streetlights using the directional refracting lens of the present invention:
  • the C0 face 40% light beam angle is 133°
  • its C90 face 40% light beam angle is 90°, which achieves precise control of the strong distribution of the road light.
  • the long side L (C0) and the short side (C90) W of the 40% light intensity road surface are:
  • the directional refractive non-imaging lens is used to redistribute the light, and the light emitted by the LED light source is shaped and changed, thereby realizing the utilization and intensity of the light source.
  • Distributed orientation control System The directional refractive non-imaging optical lens combines the light of the LED light source to be refracted to the surface of the lens, so that the LED point light source is changed into a uniform surface light source on the lens surface, thereby improving the uniformity of light intensity distribution; changing the Lambertian characteristics of the LED light source
  • the attenuation of the LED road light intensity is small with the increase of the exit angle; the structure is simple, the light collection angle is large, and the utilization ratio of the light grain is high.
  • the measured 150W directional refractive non-imaging optical lensing LED street light distribution curve shown in Figure 17 is analyzed. The result is: good illumination uniformity, no glare along the road surface, high illumination efficiency, and low power required to achieve lighting requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

LED照明光源的非成像光学定向配光方法 技术领域
本发明属于非成像光学配光技术领域, 具体涉及一种 LED照明光源的非成像光 学定向配光方法。
背景技术
路灯、 隧道灯等功能性照明灯具, 要求照明范围内每一点的照度都必须满足照 明规范要求的最低照度指标、 最高眩光要求指标、 光强均匀度指标以及光照区域限 制要求, 对产品的可靠性及节能、 环保性能等要求也很高。 为了提高照明效果, 保 护人眼睛的健康, 必须利用灯具进行光学系统照明配光, 即在一个给定的道路位置 和给定的路面区域内, 由灯光照射形成一个照度均匀的光场, 照射到给定区域之外 的光被视为无效光。
传统照明灯具的配光主要是依靠反射杯对光线进行反射分配, 将光线控制在合 理的规定区域内, 并提高光强的均匀度。这种通过反射进行光强分配的方法, 其主 要缺点是光能损失大、 耗电量大。
常见 LED光源的封装如图 1所示。 其光强分布 E与出光角 θ ' 的余弦成正比, LED光源 101所发出的光线在被照表面上所形成的照度 Ε随出射角 Θ , 的增大而迅 速衰减。 LED光源 101可看作是一种 180度角度出光的具有朗伯 ( Lambert ian)特 性光源, 光强分布是中心强、 周边廳 如图 2所示。 如果不对 LED光源的特'隨 行二次光学设计, 这样的光强分布很难满足功能照明用途的需求, 大量无效光的存 在不仅使光能损失大, 也大大地降低了照明效果。 以下是现有的 LED路灯灯具最大 光强处圆锥面光强分布曲线分析:
图 3为实测的 240W对称型无适当配光 LED路灯的配光曲线,其显示有相当一部 分光能泄漏到有效区灘 102以外。 结果表明无效光大大地降低了照明效果。 为实 现照明要求, 只能将光源出功率提高至 240W, 造成能源浪费。
图 4为实测的 150W蝶型配光 LED路灯的配光曲线。其显示结果表明照明的均匀 度很差, 沿照射面有眩光, 照射区域内有盲区。
LED光源一般分为单光源和多光源二类。
确认本 现有多光源 LED照明灯具, 其配光是通过调整众多光源的安装角度对光强进行 分配, 形成的照明灯具是模组型的。 多光源灯具不仅童量重, 而且产生了多重 影, 限制了功率扩展和賴范围, 尤其对辆和行人是严重的安全隐患。
现有单光源 LED照明灯具, 其配光主要是模仿传统灯具, 依靠反射杯对光线进 行反射分配。 由于朗伯 (Lambertian)特性的存在, 反光杯可以反射的光线很少, 无法从根本上改善 LED光源光强分布中心强、 周边 的特性。
发明内容
本发明的目的在于提供一种 LED照明光源的非成像光学定向配光方法, 其解决 了现有技术无法从根本上改善 LED光源的朗伯特性, 从而不能实现定向配光, 导致 配光均匀度差、 光效低、 照明效果差的技术问题。
本发明的技术方案如下:
本发明利用光线从光密物质到光疏物质的折射现象, 来克服 LED光源的朗伯特 性, 即光强分布中心强、 周边减弱的特性。 本发明逝定向折射非成像配光透髓 LED光源的能量进行重新分配, 对 LED光源所发出的 行 、 改变, 以实现光 能的充分利用和光强分布的定向控制, 使 LED点光源变为透镜表面均匀的面光源。 其实现步骤如下:
(1) LED光源发出的 LED光线经配光透镜折射, 出射光朝设定的方向折射,形成 LED定向光线;
(2) LED定向光线¾¾, 形成 LED定向光束;
(3) LED定向光束叠加, 形成 LED定向光源;
(4)多方向 LED定向光源叠加, 形成 LED照明光源。
以上所述 LED定向光线的形成包括以下实现步骤:
(1. 1)根据 LED照明光源的光斑的设计要求,确定 LED光线经配光透镜后出射光 的方向, 由此可得 LED光线经配光纖后的出射角 Θ 4;
(1. 2)选定 LED光线入射至配光 的入射介质折射率 Nl、 配光透寧折射率 N2 以及 LED光线经配 后的出射介质折射率 N3;使 LED光线入射至配^ 1镜的入 射角 Θ 1、经配光纖后的出射角 Θ 4以及入射介质折射率 N1、配光纖折射率 N2、 出射介质折射率 N3满足下列函数关系: Θ 4=sin-l (N2sin( Θ - sin- 1 (Nlsin Θ /N2)/N3) ),
得到 LED光线入射至配光»的入射角 Θ 1;
(1. 3)使配光透镜的入射面与出射面的夹角 Θ .LED光线入射至配光透镜的入射 角 Θ 1满足下列关系:
θ = Θ 1;
得到配光透镜入射面与出射面的夹角 Θ,由此可确定配光透镜的入射面与出射 面;
(1. 4)使 LED光线以入射角 Θ 1入射至配光透镜,经配光透镜折射后,得到 LED 定向光线。
以上所述 LED定向光线叠加可包括对光进行定向增强的光学处理。
以上所述 LED定向光束叠加可包括对光进行折射压缩的光学处理。
以上所述的 LED定向光源叠加可包括使 LED照明光源的光斑分布成矩形、 三角 形、 圆形、 半圆形、 扇形或抛物线构成的基本几何形状的光学处理, 或使 LED照明 光源的光斑分布成由基本几何形状之二至多种组合形成的复合形状的光学处理。
以上所述 LED定向光线叠加、 LED定向光束叠加以及 LED定向光源叠加的光学 处理可分别包括均勾髓光学处理。
以上所述多方向 LED定向光源叠加形成 LED照明光源可根据照明区域设计要求 的照度指标、 眩光指标、 光强度指标、 光均匀度指标以及照明区域的光斑形状等进 行配光
以上所述 LED光源的封装方式可采用 COB式叠加、 集成式叠加或模组式叠加等 方式。
本发明具有如下优点:
1.收集光线角度大, 能充分利用 LED光源的光能, 光效高, 光能损失小, 实现 照明要求所需要的功率小, 因此可节能。
2.可对 LED光源的光强分布定向控制, 将光线控制在规定照明区域内, 并提高 光强的均匀度, 节能且照明效果佳。
3.从根本上改变了 LED光源的朗伯特性, 使 LED光源的光强分布随着出射角度 增大的衰减较小, 功率扩展便捷, 适用于各类功能照明用途的灯具, 产品的可靠性 高。
4.使 LED点光源变成 it t表面均匀的面光源, 配光均勾度高, 可实现精密光分 布控制。 -
5.可以使照明范围内每一点的照度都完全满足照明规范要求, 即满足最低照度 指标、 最高眩光要求指标、 光强均匀度指标以及光照区域限制要求等。
6.照射区域内无盲区、无眩光,照明的均匀度高,使用环保,利于人眼睛健康。 灯具重量轻, 使用无安全隐患。
7.实现方法简单, 财低。
附图说明:
图 1为现有常见 LED光源的封装方式。
图 2为 LED光源等效为 180° 出光角的朗伯光源。
图 3为实测的现有 240W对称型无适当配光 LED路灯的配光曲线。 .
图 4为实测的现有 150W蝶型配光 LED路灯的配光曲线。
图 5是本发明的定向折射平面光学示意图。
图 6是本发明配光 «定向散光折射示意图。
图 7是本发明配光 定向束光折射示意图。
图 8是本发明配光 定向带状折射示意图。
图 9是用 Pro/Engineer软件设计的本发明定向折射配光透镜的结构示意图。 图 10是现有的对称型无适当配光的 LED路灯的 LightTools软件仿真圆锥面光 强图。
图 11是使用本发明定向折射配光透镜的 LED路灯的 LightTools软件仿真圆锥 面光强图。
图 12是使用本发明定向折射配光透镜的 LED路灯的 LightTools软件仿真配光 曲线。
图 13是使用本发明定向折射配光 模拟仿真 LED路灯的工程应用示意图。 图 14是实测的使用本发明定向折射非成像光学配光透镜的 LED路灯的光分布 图。
图 15是实测的使用本发明定向折射非成像光学配光透镜的 LED路灯的配光曲 线。
图 16是同功率、 同光源、 不同透镜条件的 LED路灯的对比图。
图 17是实测 150W使用本发明定向折射非成像光学配光透镜的 LED路灯的配光 曲线。
具体实施方式
本发明配^ t镜的定向折射原理: τ
(i)斯涅尔定律: 光入射到不同介质的界面上会发生反射和折射。 其中入射光 和折射光位于同一个平面上, 并且与界面法线的夹角满足下列关系:
斯涅尔公式 Nmsin Θ m=Nnsin θ η
其中 Nm、 Νη分别是两个介质的折射率, 9m和 θη分别是入射角和折射角。
(ϋ)配光透镜定向折射原理:
如图 5所示, 配光透镜的入射介质折射率 Nl、配光透镜折射率 N2、 LED光线经 配光透镜后的出射介质折射率 N3; LED光线入射至配光 的入射角 Θ 1、 射入配 光透镜后的折射角 Θ 2、出射至出射介质的入射角 Θ 3、经配^ tit后的出射角 Θ4; 配光透镜的入射面与出射面的夹角 θ 0透镜体 203的折射率 N2=l.56; '透镜体 203 的入射介质、 出射介质均为空气, 贝 IJ入射介质折射率 Nl=出射介厕斤射率 N3=l。
当 LED光源的光线从空气入射至透镜体 203时, N2>N1; 则 Θ1〉Θ2, 光线发 生偏向法线的折射; 当纖 体 203射入空气中时, Ν2>Ν3, 则 Θ4>Θ3, 光 线发生偏离法线的折射, 其偏离法线, 定向折射的角度为 Θ 4。
*.· Θ 1= θ ,
NlsinB l=N2sin62
sin Θ 2=Nlsin θ 1/ Ν2
θ 2=sin-l (Nlsin θ 1/ Ν2) =sin- 1 (Nlsin θ / N2)
Θ3= θ 1-Θ2= Θ-Θ2= Θ - sin- 1 (Nlsin θ/ Ν2)
N3sin θ 4=N2sin θ 3
sin θ 4=N2sin θ 3/ Ν3
04=sin-l(N2sin63/ Ν3)
即 04=sin— l(N2sin ( Θ - sin-1 (Nlsin θ / N2)/ N3) ) 若 θ =30°
则 θ 4=sin-l (1. 56sin (30° - sin— 1 (sin30° /1. 56) ) ) =18°
(iii)配光 定向散光折射: 如图 6所示, 可等效为 180° 出光角的朗伯光源 的 LED光线穿过定向散光齿形透镜后, 光线会朝向和齿形垂直且偏离中心的方向折 射, 由此可改变光场分布形状, 使折射方向光强提高, 其他方向光强廳§, 还可进 «匀腿光学处理。
(iv)配光透镜定向束光折射: 如图 7所示, 可等效为 180° 出光角的朗伯光源 的 LED光线穿过定向束光齿形透镜后, 光线会朝向和齿形垂直且向着中心的方向折 射, 由此可改变光场分布形状, 使折射方向光强提高, 其他方向光强繊§, 还可对 照射至有效照明区域以外的光进行折射压缩及光均匀处理。
( V )配光透镜带状定向散光折射: 如图 8所示, 可等效为 180° 出光角的朗伯 光源的 LED光线穿过齿形定向带状折射透镜后, 光线会朝向和齿形垂直带状方向折 射, 使光场分布成带状形状, 在带状方向光强提高, 其他方向光强减弱, 还可进行 光均匀处理。
本发明具体实现步骤如下:
(1) LED光源发出的 LED光线经配光透镜折射, 出射光朝设定的方向折射,形成 LED定向光线。 LED定向光线的形成包括以下实现步骤:
(1. 1)根据 LED照明光源的光斑的设计要求,确定 LED光线经配光透镜后出射光 的方向, 由此可得 LED光线经配光纖后的出射角 Θ 40
(1. 2)选定 LED光线入射至配光,的入射介质折射率 Nl、 配光透镜折射率 N2 以及 LED光线经配 « ^后的出射介质折射率 N3;使 LED光线入射至配 ¾g镜的入 射角 Θ 1、经配光,后的出射角 Θ 4以及入射介质折射率 Nl、配光透镜折射率 N2、 出射介质折射率 N3满足下列函数关系:
94=sin-l (N2sin( e - sin-1 (Nlsin θ /Ν2)/Ν3)) ,
得到 LED光线入射至配光纖的入射角 θ 1。
(1. 3)使配光透镜的入射面与出射面的夹角 Θ、 LED光线入射至配光透镜的入射 角 θ 1满足关系: θ = Θ 1, 得到配光透^ Λ射面与出射面的夹角 Θ, '由此可确定 配光透镜的入射面与出射面。 (1. 4)使 LED光线以入射角 Θ 1入射至配光透镜,经配光透镜折射后,得到 LED 定向光线。
(2) LED定向光线叠加, 形成 LED定向光束。 LED定向光线叠加还可包括对光进 行定向增强的光学处理。
(3) LED定向光束叠加, 形成 LED定向光源。 LED定向光束叠加还可包括对光进 行折射压缩的光学处理。
(4)多方向 LED定向光源叠加,形成 LED照明光源。 LED定向光源叠加可包括使 LED照明光源的光斑分布舰形、 三角形、 圆形、 半圆形、 扇形或抛物线构成的基 本几何形状的光学处理, 或使 LED照明光源的光斑分布成由基本几何形状之二至多 种组合形成的复合形状的光学处理。 LED定向光线叠加、 LED定向光束叠加以及 LED 定向光源叠加的光学处理可分别包括均匀散射光学处理。 多方向 LED定向光源叠加 形成 LED照明光源可根据照明区域设计要求的照度指标、 眩光指标、 光虽度指标、 光均匀度指标以及照明区域的光斑形状等进行配光。
本发明 LED光源的封装方式可采用 COB式叠加、 集成式叠加 组式叠加等方 式。
本发明配^ g镜可采用玻璃材料、 PC材料或 PMMA材料等。 玻璃材料具有耐高 温、穿透率高 点。 PC材料即聚碳酸酯材料, PMMA材料即聚甲基丙烯酸甲酯材料, 此两种材料不仅穿透率较高, 容易实现非球面聚光, 减少光斑的黄晕斑现象, 还可 以使产品注塑成型,使生产成本较低。透镜体 203也可以采用透明 PS材料,即透明 聚苯乙烯材料, 俗称透苯。
本发明定向折射非成像光学配光透镜的模拟仿真照明灯实例: : 利用本发明对不同方向的定向折射配光纖进行组合, 对 LED光源的擁光光 强分布进行配光, 可使光强分布满足实际应用要求。
图 9是用 Pro/Engineer软件设计的 LED灯具定向折射配光透镜,其光强分布完 全满足道路照明光强分布的要求。 根据道路形状对路边、 屋边以外无用部分光强分 布进行折射压缩, 对道路沿伸方向的有用光强分布进行折射增强, 同时进行均匀散 射光学处理。
而图 10是对称型无适当配光 LED路灯 LightTools软件仿真圆锥面光强图,其 形状为对称圆形, 中心地带光强很强; 沿径向远离圆心, 光强以余弦形 ¾ϋ衰减。 即大部分光通量照射到中心地带, 周边光强很弱。
图 11是使用本发明定向折射配光透镜的 LED路灯 LightTools软件仿真圆锥面 光强图, 其形状近似为长方形, 长方形区域内光强均匀, 远离长方形中心向周边的 光强分布线性均匀。
图 12是使用本发明定向折射配光透镜 LED路灯 LightTools软件仿真配光曲 线。
在实线所示的长边 CO面, 其光强 40%时的出光角为:
C0= (225+22. 5) - (135- 22. 5) =135° ;
在虚线所示的短边 C90面, 其光强 40%时的出光角为:
C90=225- 135=90° 。
图 13是用本发明定向折射配光透镜模拟仿真 LED路灯的工程应用:
40%光强 C0方向 (矩形长边)长度:
L=2HXtan(C0/2) =2HX tan(135° /2) =4. 42H;
40%光强 C90方向 (矩形短边)长度:
W=2HX tan (C90/2) =2H X tan (90° /2) =2H。
BP:当满足定向折射配雄镜 LED路灯 LightTools软件仿真配光曲线时,路灯 擁到路面的光强分布为近似矩形, 矩形的长 C0与宽 C90之比例为: 2. 41ο
由图 14所示的光强分布图以及图 15所示的配光曲线可见: 实测结果与模拟仿 真数据基本一致。其 C0面 40%光强光束角为 133° ,其 C90面 40%光强光束角为 90° , 实现了对路灯光强分布的精密控制。
当路灯杆高度为 10m时, 40%光强路面分布矩形长边 L (C0)及短边(C90) W 为:
L=2HX tan(C0/2) =2HX tan(133° /2) =46(m)
W=2HX tan (C90/2) =2HX tan (90° /2) =20(m)
实例效果结论- 如图 16所示,通过定向折射非成像配光透镜对光的肯遣进行重新分配,对 LED 光源所发出的光进行整形和改变, 从而实现了光源^ *的利用和光强分布的定向控 制。 定向折射非成像光学配光透镜, 把 LED光源的光线定向成折射到了透镜表面, 使 LED点光源改变成为透镜表面均匀的面光源,提高了光强分布均匀度;改变了 LED 光源的朗伯特性, 使 LED路灯光强的分布随着出射角度增大的衰减较小; 其结构简 单、 收集光线角度大、 光肯糧利用率高。
分析图 17所示的实测 150W定向折射非成像光学配光透镜 LED路灯配光曲线, 结果是: 照明均匀度好, 沿路面没有眩光, 照明效率高, 实现照明要求所需要的功 率小。

Claims

权利要求书
1.一种 LED照明光源的非成像光学定向配光方法, 其实现步骤包括'
(l)LED光源发出的 LED光线经配光透镜折射, 出射光朝设定的方向折射, 形 成 LED定向光线;
(2) LED定向光线叠加, 形成 LED定向光束;
(3) LED定向光束叠加, 形成 LED定向光源;
(4)多方向 LED定向光源叠加, 形成 LED照明光源。
2.根据权利要求 1所述的 LED照明光源的非成像光学定向配光方法,其特征在 于, 所述 LED定向光线的形成包括以下实现步骤:
(1. 1)根据 LED照明光源的光斑的设计要求, 确定 LED光线经配光透镜后出射 光的方向, 由此可得 LED光线经配光■后的出射角 9 4;
(1.2)选定 LED光线入射至配光纖的入射介质折射率 Nl、配光纖折射率 N2 以及 LED光线经配光透镜后的出射介质折射率 N3;使 LED光线入射至配光透镜的入 射角 Θ 1、经配光 后的出射角 Θ 4以及入射介质折射率 Nl、配光■折射率 N2、 出射介质折射率 N3满足下列函数关系:
Θ 4=sin-l (N2sin ( Θ - sin-1 (Nlsin Θ /N2) /N3) ),
得到 LED光线入射至配光«的入射角 θ 1;
(1.3)使配光透镜的入射面与出射面的夹角 Θ、 LED光线入射至配光透镜的入射 角 Θ 1满足下列关系:
θ = Θ 1; :
得到配光透镜入射面与出射面的夹角 Θ, 由此可确定配光透镜的入射面与出射面;
(1. 4)使 LED光线以入射角 Θ 1入射至配光透镜,经配 ¾it镜折射后,得到 LED 定向光线。
3.根据权利要求 1或 2所述的 LED照明光源的非成像光学定向配光方法,其特 征在于: 所述的 LED定向光线叠加包括对光进行定向增强的光学处理。
4.根据权利要求 3所述的 LED照明光源的非成像光学定向配光方法,其特征在 于: 所述的 LED定向光束叠加包括对光进行折射压缩的光学处理。
5.根据权利要求 4所述的 LED照明光源的非成像光学定向配光方法,其特征在 于: 所述的 LED定向光源叠加包括使 LED照明光源的光斑分布成矩形、 三角形、 圆 形、 半圆形、 扇形或抛物线构成的基本几何形状的光学处锂, 或使 LED照明光源的 光斑分布成由基本几何形状之二至多种组合形成的复合形状的光学处理。
6.根据权利要求 5所述的 LED照明光源的非成像光学定向配光方法,其特征在 于: 所述 LED定向光线叠加、 LED定向光束叠加以及 LED定向光源叠加的光学处理 分别包括均匀酣光学处理。
7.根据权利要求 6所述的 LED照明光源的非成像光学定向配光方法,其特征在 于: 所述多方向 LED定向光源叠加形成 LED照明光源是根据照明区域设计要求的照 度指标、弦光指标、光强度指标、光均匀度指标以及照明区域的光斑形状进行配光。
8.根据权利要求 7所述的 LED照明光源的非成像光学定向配光方法,其特征在 于: 所述 LED光源的封装方式为 COB式 集成式叠加或模组式 S¾口。
PCT/CN2010/000739 2009-05-22 2010-05-24 Led照明光源的非成像光学定向配光方法 WO2010133094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910022669XA CN101684917B (zh) 2009-05-22 2009-05-22 Led照明光源的非成像光学定向配光方法
CN200910022669.X 2009-05-22

Publications (1)

Publication Number Publication Date
WO2010133094A1 true WO2010133094A1 (zh) 2010-11-25

Family

ID=42048206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000739 WO2010133094A1 (zh) 2009-05-22 2010-05-24 Led照明光源的非成像光学定向配光方法

Country Status (2)

Country Link
CN (1) CN101684917B (zh)
WO (1) WO2010133094A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890342A (zh) * 2012-10-23 2013-01-23 浙江大学 一种用于点光源配光的自由曲面光学元件的设计方法
CN107795894A (zh) * 2016-08-30 2018-03-13 欧普照明股份有限公司 一种led照明装置
CN109445093A (zh) * 2018-10-29 2019-03-08 浙江大学 一种用于倾斜面均匀照明的led自由曲面透镜阵列装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101684917B (zh) * 2009-05-22 2011-04-20 西安智海电力科技有限公司 Led照明光源的非成像光学定向配光方法
CN101684918A (zh) * 2009-05-22 2010-03-31 西安智海电力科技有限公司 Led光源的非成像光学定向配光透镜
CN112954846B (zh) * 2021-02-09 2021-10-15 天津九安医疗电子股份有限公司 快速定量调节照明装置光束角的方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430272A1 (de) * 1984-08-17 1986-02-27 Robert Bosch Gmbh, 7000 Stuttgart Nebelscheinwerfer fuer kraftfahrzeuge
JPH0340307A (ja) * 1990-03-19 1991-02-21 Toshiba Lighting & Technol Corp 照明器具
CN2401777Y (zh) * 1999-08-24 2000-10-18 陈学智 投光灯上使用的透光灯罩
CN2553238Y (zh) * 2002-06-19 2003-05-28 桂林机床电器有限公司 增强信号灯有效光强的灯罩
CN101329031A (zh) * 2007-06-18 2008-12-24 住友化学株式会社 光路偏转板、面光源装置及透过型图像显示装置
CN101382251A (zh) * 2007-09-07 2009-03-11 胡晓兵 一种led灯具
CN100487303C (zh) * 2007-02-12 2009-05-13 深圳市邦贝尔电子有限公司 Led路灯及其透镜
CN201412773Y (zh) * 2009-06-05 2010-02-24 张志强 Led灯用条形光均光板
CN101684917A (zh) * 2009-05-22 2010-03-31 西安智海电力科技有限公司 Led照明光源的非成像光学定向配光方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2384231Y (zh) * 1999-07-19 2000-06-21 三水市京安机电交通设施有限公司 一种交通信号灯透镜
US7229199B2 (en) * 2005-10-21 2007-06-12 Eastman Kodak Company Backlight using surface-emitting light sources
CN101078477A (zh) * 2007-06-01 2007-11-28 天津大学 具有微结构光学系统的散射元件的节能型道路照明器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3430272A1 (de) * 1984-08-17 1986-02-27 Robert Bosch Gmbh, 7000 Stuttgart Nebelscheinwerfer fuer kraftfahrzeuge
JPH0340307A (ja) * 1990-03-19 1991-02-21 Toshiba Lighting & Technol Corp 照明器具
CN2401777Y (zh) * 1999-08-24 2000-10-18 陈学智 投光灯上使用的透光灯罩
CN2553238Y (zh) * 2002-06-19 2003-05-28 桂林机床电器有限公司 增强信号灯有效光强的灯罩
CN100487303C (zh) * 2007-02-12 2009-05-13 深圳市邦贝尔电子有限公司 Led路灯及其透镜
CN101329031A (zh) * 2007-06-18 2008-12-24 住友化学株式会社 光路偏转板、面光源装置及透过型图像显示装置
CN101382251A (zh) * 2007-09-07 2009-03-11 胡晓兵 一种led灯具
CN101684917A (zh) * 2009-05-22 2010-03-31 西安智海电力科技有限公司 Led照明光源的非成像光学定向配光方法
CN201412773Y (zh) * 2009-06-05 2010-02-24 张志强 Led灯用条形光均光板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890342A (zh) * 2012-10-23 2013-01-23 浙江大学 一种用于点光源配光的自由曲面光学元件的设计方法
CN102890342B (zh) * 2012-10-23 2014-11-12 浙江大学 一种用于点光源配光的自由曲面光学元件的设计方法
CN107795894A (zh) * 2016-08-30 2018-03-13 欧普照明股份有限公司 一种led照明装置
CN109445093A (zh) * 2018-10-29 2019-03-08 浙江大学 一种用于倾斜面均匀照明的led自由曲面透镜阵列装置

Also Published As

Publication number Publication date
CN101684917B (zh) 2011-04-20
CN101684917A (zh) 2010-03-31

Similar Documents

Publication Publication Date Title
WO2015109891A1 (zh) 能照射到3、5车道的cob模块led路灯透镜的配光方法
CN101737679B (zh) Led信号灯
CN102654268A (zh) Led透镜装置、led透镜装置模组及led灯具
WO2010133094A1 (zh) Led照明光源的非成像光学定向配光方法
AU2012365473B2 (en) Improved optical systems and LED luminaires
WO2017054568A1 (zh) Led射灯
CN102121678B (zh) Led灯具配光模块的设计方法
US20110134638A1 (en) Led lamp and street lamp using the same
WO2010133183A1 (zh) Led光源的非成像光学定向配光透镜
TWI471616B (zh) Lens module for light emitting diode light source
CN103471033B (zh) 一种led透镜及其透镜模组
WO2010133182A1 (zh) Led光源的非成像光学定向配光方法
CN104169776A (zh) 改进的光学系统和led灯具
US8371725B2 (en) Shaped optical prism structure
ATE329204T1 (de) Dünne, plattenförmige kraftfahrzeugleuchte
CN201787488U (zh) 一种旋转对称型透镜
CN104180298B (zh) 全反射型投光透镜及使用该投光透镜的灯具
CN102042559A (zh) 二次光学非对称透镜
CN104214668A (zh) 透镜及其应用该透镜的led灯具
RU2317612C1 (ru) Светодиодное устройство
CN201954466U (zh) 二次光学非对称透镜
KR20200043198A (ko) Led 등기구용 광학 렌즈
CN104864361A (zh) Led准直透镜
CN217714810U (zh) 发光装置、便携照明装置和车用前照灯
CN107228338A (zh) 一种道路照明用马鞍形led透镜及led光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777298

Country of ref document: EP

Kind code of ref document: A1