WO2011015083A1 - 下行调制编码方式和多输入多输出模式的调整方法及设备 - Google Patents

下行调制编码方式和多输入多输出模式的调整方法及设备 Download PDF

Info

Publication number
WO2011015083A1
WO2011015083A1 PCT/CN2010/073826 CN2010073826W WO2011015083A1 WO 2011015083 A1 WO2011015083 A1 WO 2011015083A1 CN 2010073826 W CN2010073826 W CN 2010073826W WO 2011015083 A1 WO2011015083 A1 WO 2011015083A1
Authority
WO
WIPO (PCT)
Prior art keywords
coding mode
mode
modulation coding
current
multiple input
Prior art date
Application number
PCT/CN2010/073826
Other languages
English (en)
French (fr)
Inventor
刘广
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2012520895A priority Critical patent/JP2012533947A/ja
Priority to US13/383,280 priority patent/US20120120840A1/en
Publication of WO2011015083A1 publication Critical patent/WO2011015083A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention belongs to the field of mobile communications, and in particular, to a downlink modulation and coding method, a method for adjusting a multiple input multiple output mode, and a base station device.
  • MIMO technology refers to the technology of transmitting/receiving multiple antennas at the transmitter/receiver. It is a research hotspot of multi-antenna technology in the field of wireless mobile antennas, and is also the next generation mobile communication.
  • This technology can resist the various random fading of the channel by using multipath, effectively avoid co-channel interference, change channel quality, and improve network reliability and communication service quality.
  • space resources By utilizing space resources, theoretically, no additional air interface can be consumed. Resources (time, frequency) are multiplied to increase system capacity and spectrum efficiency.
  • STC Space Time Coding
  • SM spatial multiplexing
  • Diversity STC technology utilizes both time and space, does not increase system capacity, but improves diversity and coding gain.
  • the principle is shown in Figure 1.
  • the input characters ie the information source, are divided into two groups, each group being two characters.
  • two characters [C1, C2] of each group are sent from two antennas at the same time.
  • these two characters are transformed into the form [-C2*, C1*] again.
  • Sent from two antennas In this way, the receiving antenna can be greatly improved in a form in which two characters of two characters can be received in two character times, and the bit error rate is lowered, and the reliability of the link is improved.
  • the coverage of the signal is increased.
  • the diversity gain can also be converted into an increase in the data transmission rate, such as using a higher modulation coding scheme.
  • the spatial multiplexing technology utilizes space. As shown in Figure 2, the high-speed data stream is divided into parallel data streams for simultaneous transmission. At this time, the transmission data of each antenna is different, and then performed at the receiving end. Spatial demodulation multiplexing, recombined into high speed serial data streams. With this method, the system transmission rate and throughput can be greatly improved.
  • the spatial multiplexing SM technology can improve the channel transmission rate, thereby improving channel throughput. the amount.
  • the use of STC technology or SM technology alone does not maximize the use of limited band resources.
  • Adaptive Modulation and Coding is a selective link adaptation method in wireless communications.
  • AMC provides mobility to accommodate modulation and coding schemes to achieve an average channel situation for each user. Since the AMC modulation and coding format is changed to match the currently received signal quality or channel conditions.
  • the downlink AMC is usually implemented in a space-time coding mode other than MIMO or MIMO.
  • the selection process of the downlink modulation coding mode and the MIMO mode in the prior art is as follows:
  • the AMC module in the base station determines the downlink modulation coding mode and the hybrid automatic repeat request (HARQ) in the base station by using the downlink carrier to interference and noise ratio (CINR) reported by the terminal.
  • the module determines the MIMO mode by using the packet information fed back by the terminal, that is, the downlink modulation coding mode and the downlink MIMO mode are separately determined and adjusted.
  • the disadvantages of the prior art are: In the data transmission process, since the selection range of the downlink modulation coding mode and the MIMO mode adjustment is relatively small, link reliability may be ensured, but throughput is not improved, or theoretical throughput The amount is improved, but the link reliability is not guaranteed, and eventually the actual throughput is reduced.
  • the technical problem to be solved by the present invention is to provide a downlink modulation coding mode and a multi-input multi-output mode adjustment method and device, so that the current downlink modulation coding mode and the multiple input multiple output mode are suitable for the current channel condition, thereby improving the link. Reliability and system throughput.
  • the present invention provides the following technical solutions:
  • a method for adjusting a downlink modulation coding mode and a multiple input multiple output mode includes: establishing a correspondence table between a combination of a downlink modulation coding mode and a multiple input multiple output mode and a data transmission rate, and the data transmission in the correspondence relationship table The rates are arranged in ascending order;
  • the maximum selectable modulation and coding mode is determined according to the downlink carrier to interference and noise ratio reported by the terminal, and when the currently used downlink modulation and coding mode is greater than the maximum selectable modulation and coding mode, the currently used downlink modulation and coding mode is switched to the maximum selectable modulation mode.
  • Encoding mode switching the currently used multiple input multiple output mode to the space time coding mode;
  • the step of adjusting the currently used downlink modulation coding mode and the multiple input multiple output mode according to the maximum selectable modulation coding mode and the correspondence table includes: calculating the first handover decision period a ratio of the number of valid data packets to the total number of data packets in each reporting period, to obtain a first ratio;
  • the first switching threshold determines that the current downlink modulation coding mode and the multiple input and output mode are not suitable for the current channel condition, and searching for the data transmission rate from the correspondence relationship table is greater than the current data transmission rate, And the downlink modulation and coding mode is not greater than the entry of the maximum selectable modulation and coding mode, and the current downlink modulation coding mode and the multiple input multiple output mode are switched to the downlink modulation coding mode and the multiple input multiple output mode in the first entry found. .
  • the step of adjusting the currently used downlink modulation coding mode and the multiple input multiple output mode according to the maximum selectable modulation coding mode and the correspondence table further includes: calculating the second handover decision period a ratio of the number of valid data packets to the total number of data packets in each reporting period, to obtain a second ratio; Counting the number of times that the second ratio is less than the second threshold, obtaining a second number of times; and determining that the current downlink modulation coding mode and the multiple input and output mode are not suitable for the current channel condition when the second number reaches the second handover threshold
  • the corresponding relationship table searches for an entry whose data transmission rate is lower than the current data transmission rate and the downlink modulation and
  • the step of adjusting the currently used downlink modulation coding mode and the multiple input multiple output mode according to the maximum selectable modulation coding mode and the correspondence table further includes: counting the total number of data packets. The number of consecutive zeros, the third number is obtained;
  • the third number reaches the third switching threshold, determining that the current downlink modulation coding mode and the multiple input and output mode are not suitable for the current channel condition, and searching for the data transmission rate from the correspondence relationship table is smaller than the current data transmission rate, and the downlink is performed.
  • the modulation coding mode is not greater than the entry of the maximum selectable modulation coding mode, and the current downlink modulation coding mode and the multiple input multiple output mode are switched to the downlink modulation coding mode and the multiple input multiple output mode in the first entry found.
  • the first handover decision period is greater than the second handover decision period.
  • the total number of data packets is the number of non-retransmission data packets that the base station counts in one reporting period.
  • a base station device includes:
  • a correspondence relationship table establishing module configured to establish a correspondence table between a combination of a downlink modulation coding mode and a multiple input multiple output mode and a data transmission rate, and the data transmission rates in the correspondence relationship table are arranged in an order from small to large;
  • the adaptive modulation and coding module is configured to determine a maximum selectable modulation and coding mode according to a downlink carrier to interference and noise ratio reported by the terminal, and when the currently used downlink modulation and coding mode is greater than a maximum selectable modulation and coding mode, the currently used downlink is used.
  • the modulation and coding mode is switched to the maximum selectable modulation and coding mode, and the currently used multiple input multiple output mode is switched to the space time coding mode;
  • a hybrid automatic repeat request module configured to count information on a total number of data packets in each reporting period and a number of valid data packets in the data packet;
  • a joint adjustment module configured to determine, according to the total number of data packets and the number of valid data packets, whether the current downlink modulation coding mode and the multiple input/output mode are suitable for the current channel condition, and determine the current downlink modulation coding mode and the multiple input and output mode When it is not suitable for the current channel condition, the currently used downlink modulation coding mode and the multiple input multiple output mode are adjusted according to the maximum selectable modulation coding mode and the correspondence table.
  • the joint adjustment module includes:
  • a first ratio calculation unit configured to calculate a ratio of the number of valid data packets to the total number of data packets in each reporting period of the first handover decision period, to obtain a first ratio
  • a first number of calculation units configured to count the number of times the first ratio is greater than the first threshold, to obtain a first number of times
  • a first adjusting unit configured to determine, when the first number of times reaches the first switching threshold, that the current downlink modulation coding mode and the multiple input and output mode are not suitable for the current channel condition, from the correspondence table Finding an entry whose data transmission rate is greater than the current data transmission rate and the downlink modulation and coding mode is not greater than the maximum selectable modulation and coding mode, and switching the current downlink modulation coding mode and the multiple input multiple output mode to the first entry found.
  • Downlink modulation coding mode and multiple input multiple output mode configured to determine, when the first number of times reaches the first switching threshold, that the current downlink modulation coding mode and the multiple input and output mode are not suitable for the current channel condition, from the correspondence table Finding an entry whose data transmission rate is greater than the current data transmission rate and the downlink modulation and coding mode is not greater than the maximum selectable modulation and coding mode, and switching the current downlink modulation coding mode and the multiple input multiple output mode to the first entry found.
  • the joint adjustment module further includes:
  • a second ratio calculating unit configured to calculate a ratio of the number of valid data packets to the total number of data packets in each reporting period of the second handover decision period, to obtain a second ratio
  • a second number calculating unit configured to count the number of times the second ratio is less than the second threshold, to obtain a second number of times; and a second adjusting unit configured to determine when the second number reaches the second switching threshold.
  • the joint adjustment module further includes:
  • a third number of calculation units configured to count the number of times the total number of data packets is continuously zero, and obtain a third number of times
  • a third adjusting unit configured to: when the third number reaches the third switching threshold, determine that the current downlink modulation coding mode and the multiple input and output mode are not suitable for the current channel condition, and look up the data transmission rate from the correspondence table. An entry that is smaller than the current data transmission rate and whose downlink modulation and coding mode is not greater than the maximum selectable modulation and coding mode, and switches the current downlink modulation and coding mode and the multiple input multiple output mode to the downlink modulation and coding mode in the first entry that is found. And multiple input multiple output mode.
  • the embodiment of the present invention uses the HARQ technology to determine whether the current downlink modulation coding mode and the downlink MIMO mode are suitable for the current channel condition, and performs joint adjustment of the downlink modulation coding mode and the downlink MIMO mode according to the determination result, so that the current downlink modulation coding mode and the current
  • the input multiple output mode is suitable for current channel conditions, thereby improving link reliability and system throughput.
  • Figure 1 is a space-time coding schematic
  • Figure 2 is a schematic diagram of spatial multiplexing
  • FIG. 3 is a flow chart of a method for adjusting a downlink modulation coding mode and a multiple input multiple output mode according to the present invention
  • FIG. 4 is a flow chart of an adjustment method performed in a handover decision period TUP according to the present invention
  • FIG. 5 is a flowchart of an adjustment method performed in a handover decision period T DOWN according to the present invention
  • FIG. 6 is a schematic structural diagram of a base station device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a joint adjustment module in the foregoing base station device. Preferred embodiment of the invention
  • Hybrid Hybrid Automatic Repeat Request
  • HARQ technology is a physical layer technology developed on the basis of Automatic Repeat Request (ARQ) technology. It combines traditional ARQ technology with Forward Error Correction (FEC) technology and sends by sender. When the information is used, the FEC code is used. When the receiving party receives the information error bit number within the error correction capability, the error can be corrected by itself; when the error is serious and cannot be corrected, the retransmission is requested. Due to the use of multiple retransmissions, HARQ technology can better offset the impact of changes in channel conditions, thereby effectively improving transmission efficiency and reliability.
  • ARQ Automatic Repeat Request
  • FEC Forward Error Correction
  • the retransmission mechanism of HARQ technology reflects to some extent whether the current downlink modulation coding mode and the downlink MIMO mode are suitable for the current wireless channel conditions. If there are a lot of data packets that need to be retransmitted in a certain period of time, or a lot of unsuccessful data packets are transmitted, it indicates that the current downlink modulation coding mode and the downlink MIMO mode are not suitable for the current channel condition; conversely, if within a certain period of time, The packet correct rate is very high, and almost no correction and retransmission are needed. It indicates that the current downlink modulation coding mode and the downlink MIMO mode are suitable for the current channel condition.
  • the embodiment of the present invention uses the HARQ technology to determine whether the current downlink modulation coding mode and the downlink MIMO mode are suitable for the current channel condition, and performs joint adjustment of the downlink modulation coding mode and the downlink MIMO mode according to the determination result.
  • the downlink modulation coding mode and the multi-input multiple-output mode adjustment method of the present invention mainly include the following steps:
  • Step 301 The base station establishes a correspondence table between the combination of the downlink modulation and coding mode and the MIMO mode and the data transmission rate, and the data transmission rate in the correspondence table is in the order of decreasing to large;
  • the number of bytes per time slot is also fixed in the case where the modulation coding mode and the MIMO mode are both fixed, the number of bytes on each time slot can be equivalent to the data transmission rate.
  • the different modulation and coding modes for example, the downlink interval code value DIUC
  • the MIMO mode are combined, and the data transmission rates corresponding to the combination are arranged in the order of small to large, that is, the following correspondence table is obtained:
  • Downlink modulation coding eg., the downlink interval code value DIUC
  • Step 302 The adaptive modulation and coding (AMC) module in the base station determines the maximum selectable modulation and coding mode according to the downlink CINR reported by the terminal, and when the currently used downlink modulation and coding mode is greater than the maximum selectable modulation and coding mode, the currently used The downlink modulation and coding mode is switched to the maximum selectable modulation and coding mode, and the currently used MIMO mode is switched to the space-time coding mode;
  • AMC adaptive modulation and coding
  • the size of the modulation and coding mode mentioned in the present invention refers to the size of the data transmission rate corresponding to the modulation and coding mode in the space-time coding mode.
  • the size of the modulation and coding mode follows the following rules:
  • the modulation coding mode with high coding efficiency is larger than the modulation coding mode with low coding efficiency, for example, 16QAM(CTC)3/4>16QAM(CTC)l/2.
  • the AMC module determines whether the currently used downlink modulation and coding mode is greater than the maximum selectable modulation and coding mode, and if so, switches the currently used downlink modulation and coding mode to the maximum selectable modulation and coding mode, and The currently used MIMO mode is switched to the space-time coding mode, otherwise, the current downlink modulation coding mode and the MIMO mode are maintained.
  • Step 303 The hybrid automatic repeat request (HQ) module in the base station collects the total number of data packets in each reporting period and the number of valid data packets therein. Since the channel conditions between different users and base stations may be different, in this step, the HARQ module separately performs the statistics for each user separately. In order to prevent the base station from frequently performing statistics, the resource occupancy rate is too high, and a reporting period TH is set. After the reporting period TH arrives, the HARQ module counts the packet information in the period: the total number of packets M, and the number of packets N successfully transmitted in the M packets, and the successfully transmitted packets are referred to in the present invention. A valid packet.
  • HQ hybrid automatic repeat request
  • the number of data packets transmitted for the first time may be counted, the number of the first transmitted data packets is taken as the total number of the data packets M, and the M data packets are transmitted without being retransmitted.
  • the number of successful valid packets N may be used to determine the number of successful valid packets.
  • Step 304 The base station determines, according to the total number of data packets and the number of valid data packets, whether the current downlink modulation and coding mode and the MIMO mode are suitable for the current channel condition, and when determining that the current downlink modulation and coding mode and the MIMO mode are not suitable for the current channel condition, Adjusting the currently used downlink modulation coding mode and MIMO mode according to the maximum selectable modulation coding mode and the correspondence table.
  • two handover decision periods are set: a first handover decision period (TUP) and a second handover decision period.
  • T DOWM two switching thresholds are also set: a first switching threshold (THUP ) and a second switching threshold (TH DO wM ).
  • THUP first switching threshold
  • TH DO wM second switching threshold
  • Step 401 When each reporting period TH arrives, the HARQ module in the base station counts data packets in the reporting period TH. The total number M and the number of valid data packets N therein;
  • Step 402 Calculate a ratio of the number N of valid data packets in the reporting period TH to the total number M of the data packets, to obtain a first ratio
  • Steps 403 ⁇ 404 determining whether the first ratio is greater than the first threshold (m%), and if so, adding the first number of times NUP, otherwise, proceeds to step 406;
  • the first threshold m% can be flexibly set according to a specific communication environment, and the first number of times NUP is initially 0.
  • Step 405 determining whether the first number of times NUP reaches the first handover threshold THUP, if yes, indicating that the current downlink modulation coding mode and the MIMO mode are not suitable for the current channel condition, proceeding to step 407, otherwise, proceeding to step 406;
  • Step 406 Determine whether the first handover decision period TUP arrives, and if yes, proceed to step 408, otherwise, return to step 401;
  • Step 407 Adjust the currently used downlink modulation coding mode and the MIMO mode according to the maximum selectable modulation coding mode and the correspondence relationship table, thereby adjusting the data transmission rate; specifically, from the correspondence table ( Table 1)
  • the entry in the downward looking data transmission rate is greater than the current data transmission rate, and the downlink modulation coding mode is not greater than the maximum selectable modulation coding mode, and the current downlink modulation coding mode and the MIMO mode are switched to the first one found.
  • the downlink modulation coding mode and MIMO mode in the entry is not greater than the maximum selectable modulation coding mode
  • Step 408 All statistics are cleared to the next handover decision cycle.
  • FIG. 5 is a flowchart of an adjustment method performed in a handover decision period T DOWN according to the present invention, which mainly includes the following steps:
  • Step 501 When each reporting period TH arrives, the HARQ module in the base station counts the total number of data packets M in the reporting period TH and the number of valid data packets N therein;
  • Step 502 Calculate a ratio of the number N of valid data packets in the reporting period TH to the total number M of the data packets, to obtain a second ratio;
  • Steps 503 to 504 determining whether the second ratio is less than a second threshold ( ⁇ %), and if so, adding a second number of times N DO WN to 1, otherwise, proceeding to step 506;
  • the second threshold n% can be flexibly set according to a specific communication environment, and the second number N DO WN is initially 0.
  • Step 505 Determine whether the second number N DOWN reaches the second handover threshold TH DOWN , and if yes, indicating that the current downlink modulation coding mode and the MIMO mode are not suitable for the current channel condition, proceed to step 507, otherwise, proceed to step 506;
  • Step 506 Determine whether the second handover decision period T DOWN arrives, and if yes, proceed to step 508. Otherwise, return to step 501;
  • Step 507 Adjust the currently used downlink modulation and coding mode and the MIMO mode according to the maximum selectable modulation and coding mode and the corresponding relationship table, thereby reducing the data transmission rate; specifically, from the correspondence table ( Table 1) Looking up the entry in which the data transmission rate is lower than the current data transmission rate and the downlink modulation coding mode is not greater than the maximum selectable modulation coding mode, and switching the current downlink modulation coding mode and the MIMO mode to the first entry found.
  • the downlink modulation coding mode and the MIMO mode is the correspondence table
  • Step 508 All statistics are cleared to the next handover decision period.
  • the method includes: collecting a number of times that the total number of data packets is consecutively zero, and obtaining a third number of times; when the third number of times reaches a third switching threshold, searching for the data transmission rate from the correspondence relationship table is smaller than a current data transmission rate.
  • the downlink modulation and coding scheme is not greater than the entry of the maximum selectable modulation and coding scheme, and the current downlink modulation and coding scheme and the MIMO mode are switched to the downlink modulation and coding scheme and the MIMO mode in the first entry that is found.
  • a base station device that implements the above method is given below.
  • the base station device 60 of the embodiment of the present invention includes:
  • the correspondence relationship table establishing module 61 is configured to establish a correspondence table between the combination of the downlink modulation coding mode and the multiple MIMO mode and the data transmission rate, and the data transmission rates in the correspondence relationship table are arranged in descending order.
  • the number of bytes per time slot is also fixed in the case where the modulation coding mode and the MIMO mode are both fixed, the number of bytes on each time slot can be equivalent to the data transmission rate.
  • the different modulation and coding modes are combined with the MIMO mode, and the data transmission rates corresponding to the combination are arranged in ascending order to obtain a correspondence table as shown in Table 1.
  • the adaptive modulation and coding module 62 is configured to determine a maximum selectable modulation and coding mode according to the downlink CINR reported by the terminal, and to use the currently used downlink modulation and coding mode when the currently used downlink modulation and coding mode is greater than the maximum selectable modulation and coding mode. Switch to the maximum optional modulation and coding mode, Switch the currently used MIMO mode to the space-time coding mode.
  • the hybrid automatic repeat request module 63 is arranged to count information on the total number of packets in each reporting period and the number of valid packets in the packet.
  • the hybrid automatic repeat request module 63 Since the channel conditions between different users and base stations may be different, the hybrid automatic repeat request module 63 separately performs the statistics for each user separately. In order to avoid frequent statistics, the resource occupancy rate is too high, and a reporting period TH is set. After the reporting period TH arrives, the hybrid automatic repeat request module 63 counts the total number M of packets in the period, and the number of valid packets N in the M packets. The successfully transmitted data packet is referred to in the present invention. A valid packet. .
  • the number of data packets transmitted for the first time may be counted, the number of the first transmitted data packets is taken as the total number of the data packets M, and the M data packets are transmitted without being retransmitted.
  • the number of successful valid packets N may be used to determine the number of successful valid packets.
  • the joint adjustment module 64 is configured to determine, according to the total number of data packets and the number of valid data packets, whether the current downlink modulation and coding mode and the MIMO mode are suitable for the current channel condition, and determine that the current downlink modulation and coding mode and the MIMO mode are not suitable for the current In the channel condition, the currently used downlink modulation and coding mode and the MIMO mode are adjusted according to the maximum selectable modulation and coding scheme and the correspondence table.
  • two handover decision periods are set: a first handover decision period (TUP) and a second handover decision period.
  • T DOWM two switching thresholds are also set: a first switching threshold (THUP) and a second switching threshold (TH DO wM ).
  • THUP first switching threshold
  • TH DO wM second switching threshold
  • the joint adjustment module 64 specifically includes:
  • a first ratio calculating unit 71 configured to calculate a ratio of the number of valid data packets to the total number of data packets in each reporting period of the first switching decision period, to obtain a first ratio
  • a first number calculation unit 72 configured to count the number of times the first ratio is greater than the first threshold, to obtain a first number of times
  • the first adjusting unit 73 is configured to: when the first number of times reaches the first switching threshold, determine that the current downlink modulation and coding mode and the MIMO mode are not suitable for the current channel condition, and search for the data transmission from the correspondence table. An entry whose rate is greater than the current data transmission rate and whose downlink modulation and coding mode is not greater than the maximum selectable modulation and coding mode, and switches the current downlink modulation and coding mode and the MIMO mode to the downlink modulation coding mode and MIMO in the first entry found. mode;
  • a second ratio calculating unit 74 configured to calculate a ratio of the number of valid data packets to the total number of data packets in each reporting period of the second switching decision period, to obtain a second ratio
  • a second number calculating unit 75 configured to count the number of times the second ratio is less than the second threshold to obtain a second number of times; and a second adjusting unit 76 configured to when the second number reaches the second switching threshold Determining that the current downlink modulation coding mode and the MIMO mode are not suitable for the current channel condition, and searching for an entry in the correspondence relationship table that the data transmission rate is smaller than the current data transmission rate, and the downlink modulation coding mode is not greater than the maximum selectable modulation coding mode, The current downlink modulation coding mode and the MIMO mode are switched to the downlink modulation coding mode and the MIMO mode in the first entry found.
  • the joint adjustment module 64 may further include:
  • a third number of calculation units (not shown), configured to count the number of times the total number of data packets is continuously zero, to obtain a third number of times;
  • a third adjusting unit (not shown), configured to: when the third number reaches the third switching threshold, the upward looking data transmission rate is lower than the current data transmission rate, and the downlink modulation and coding mode is not An entry larger than the maximum selectable modulation coding mode switches the current downlink modulation coding mode and the MIMO mode to the downlink modulation coding mode and the MIMO mode in the first entry found.
  • Table 1 is instantiated to obtain the following Table 2: Downlink modulation coding mode Number of bytes per time slot
  • the current downlink modulation and coding mode is: 16 QAM (CTC) 1/2
  • the downlink MIMO mode is: SM mode
  • the downlink CINR reported by the terminal does not change. If the download performance of the terminal is not good at this time, the data transmission rate needs to be lowered.
  • the current downlink modulation and coding mode 16QAM (CTC) 1/2 is maintained, and the downlink MIMO mode is adjusted to: STC mode.
  • the technical solution of the present invention will look up from the current entry of Table 2 (16QAM (CTC) 1/2, SM), and the data transmission rate is lower than the current data transmission rate (24), and the downlink modulation coding mode is not greater than the maximum.
  • the search result is: QPSK (CTC) 3/4, SM, and switch the current downlink modulation and coding mode and MIMO mode to: QPSK (CTC) ) 3/4, SM.
  • the HARQ technique is used to judge whether the current downlink modulation coding mode and the downlink MIMO mode are suitable for the current channel condition.
  • the present invention can effectively improve the data transmission rate and spectrum utilization, thereby improving the reliability of the link and the throughput of the system.
  • the downlink modulation coding method, the multi-input multiple-output mode adjustment method, and the base station apparatus provided by the present invention use HARQ technology to determine whether the current downlink modulation coding mode and the downlink MIMO mode are suitable for the current channel condition, and perform downlink according to the determination result.
  • the joint adjustment of the modulation coding mode and the downlink MIMO mode effectively improves the reliability of the link and the throughput of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

下行调制编码方式和多输入多输出模式的调整方法及设备
技术领域
本发明属于移动通信领域, 特别涉及一种下行调制编码方式和多输入多 输出模式的调整方法及基站设备。
背景技术
多输入多输出 ( Multiple Input and Multiple Output, MIMO )技术, 是指 在发射机 /接收机利用多天线发送 /接收的技术,是无线移动天线领域中多天线 技术的研究热点, 也是下一代移动通信系统中釆用的关键技术之一。 此技术 通过利用多径来抗击信道的各种随机衰落, 有效地避免共道干扰, 改变信道 质量, 从而改进网络的可靠性以及通信服务质量; 通过利用空间资源, 理论 上可以在不消耗额外空口资源 (时间、 频率) 的基础上成倍地提高系统容量 和频谱效率。
MIMO技术主要有两种应用: 分集空时编码( Space Time Coding, STC )
(包括发射分集和接收分集) , 以及空间复用 ( Spatial Multiplexing, SM ) 。
分集 STC技术同时利用了时间和空间, 不提高系统容量, 但是提高分集 和编码增益, 其原理见图 1。 如图 1 所示, 输入字符即信息源被分为两组, 每组为两个字符。 在第一个字符时间内, 每组的两个字符 [C1,C2]同时从两根 天线发送, 在下一个字符时间内, 这两个字符被变换成形式为 [-C2*,C1*]再次 从两根天线发出。 这样接收天线在两个字符时间内就可以收到两个字符的两 两个字符的一种形式相比得到了很大程度的提高, 表现为误码率降低, 链路 的可靠性被提高, 进而提高信号的覆盖范围。 在覆盖范围一定且用户的误码 率要求一定时, 分集增益也可以转化为数据传输速率的提高, 如釆用更高的 调制编码方式等。
空间复用技术利用了空间, 如图 2所示, 高速的数据流被分成并行的数 据流同时进行发射, 此时每根天线的发射数据是不一样的, 在接收端再进行 空间解调复用, 重新组合成高速串行数据流。 利用这种方法, 可以很大程度 的提高系统传输速率和吞吐量。
由于无线信道实时变化, 在某些时刻使用分集 STC可以得到更好的信道 增益, 提高链路传输可靠性; 在某些时刻釆用空间复用 SM技术可以提高信 道传输速率, 从而提高信道的吞吐量。 单独使用 STC技术或者 SM技术都不 能最大限度的利用有限的频带资源。
自适应调制和编码 ( Adaptive Modulation and Coding, AMC )在无线通信 中是一个选择性的链路适应方法, AMC提供机动性来配合调制编码方案使每 个用户到达平均信道情形。 由于 AMC调制和编码格式被改变使之符合当前 接收到的信号质量或信道情形。下行 AMC通常是在非 MIMO或者 MIMO的 空时编码模式下实现。
现有技术的下行调制编码方式和 MIMO模式的选择流程如下: 基站中的 AMC模块利用终端上报的下行载波与干扰噪声比 (CINR ) 决定下行调制编 码方式, 基站中的混合自动重传请求 (HARQ )模块利用终端反馈的数据包 信息决定 MIMO模式,即下行调制编码方式与下行 MIMO模式是分开判断和 调整的。 现有技术的缺点在于: 在数据传输过程中, 由于下行调制编码方式 和 MIMO模式调整的选择范围比较小, 有可能出现链路可靠性得到保证, 但 吞吐量得不到提高, 或者, 理论吞吐量得到提升但是由于链路可靠性得不到 保证, 最终导致实际吞吐量反而下降的情况。
发明内容
本发明所要解决的技术问题是提供一种下行调制编码方式和多输入多输 出模式的调整方法及设备, 使得当前下行调制编码方式和多输入多输出模式 适合于当前信道条件, 从而提高链路的可靠性和系统的吞吐量。
为解决上述技术问题, 本发明提供技术方案如下:
一种下行调制编码方式和多输入多输出模式的调整方法, 包括: 建立下行调制编码方式和多输入多输出模式的组合与数据传输速率的对 应关系表, 且所述对应关系表中的数据传输速率按从小到大的顺序排列; 根据终端上报的下行载波与干扰噪声比确定最大可选调制编码方式, 并 在当前使用的下行调制编码方式大于最大可选调制编码方式时, 将当前使用 的下行调制编码方式切换为最大可选调制编码方式, 将当前使用的多输入多 输出模式切换为空时编码模式;
统计在每个上报周期内的数据包总数和所述数据包中的有效数据包数的 信息; 以及
根据所述数据包总数和所述有效数据包数判断当前下行调制编码方式和 多输入输出模式是否适合当前信道条件, 并在确定当前下行调制编码方式和 多输入输出模式不适合当前信道条件时, 根据所述最大可选调制编码方式和 所述对应关系表对当前使用的下行调制编码方式和多输入多输出模式进行调 整。
上述的调整方法, 所述根据所述数据包总数和所述有效数据包数判断当 前下行调制编码方式和多输入输出模式是否适合当前信道条件, 并在确定当 前下行调制编码方式和多输入输出模式不适合当前信道条件时, 根据所述最 大可选调制编码方式和所述对应关系表对当前使用的下行调制编码方式和多 输入多输出模式进行调整的步骤包括: 计算在第一切换判决周期的每个上报 周期内所述有效数据包数与所述数据包总数的比值, 得到第一比值;
统计所述第一比值大于第一门限的次数, 得到第一次数; 以及
在所述第一次数达到第一切换门限时, 确定当前下行调制编码方式和多 输入输出模式不适合当前信道条件, 从所述对应关系表中向下查找数据传输 速率大于当前数据传输速率、 且下行调制编码方式不大于最大可选调制编码 方式的条目, 将当前下行调制编码方式和多输入多输出模式切换为所查找到 的第一个条目中的下行调制编码方式和多输入多输出模式。
上述的调整方法, 所述根据所述数据包总数和所述有效数据包数判断当 前下行调制编码方式和多输入输出模式是否适合当前信道条件, 并在确定当 前下行调制编码方式和多输入输出模式不适合当前信道条件时, 根据所述最 大可选调制编码方式和所述对应关系表对当前使用的下行调制编码方式和多 输入多输出模式进行调整的步骤还包括: 计算在第二切换判决周期的每个上 报周期内所述有效数据包数与所述数据包总数的比值, 得到第二比值; 统计所述第二比值小于第二门限的次数, 得到第二次数; 以及 在所述第二次数达到第二切换门限时, 确定当前下行调制编码方式和多 输入输出模式不适合当前信道条件, 从所述对应关系表中向上查找数据传输 速率小于当前数据传输速率、 且下行调制编码方式不大于最大可选调制编码 方式的条目, 将当前下行调制编码方式和多输入多输出模式切换为所查找到 的第一个条目中的下行调制编码方式和多输入多输出模式。
上述的调整方法, 在所述根据所述数据包总数和所述有效数据包数判断 当前下行调制编码方式和多输入输出模式是否适合当前信道条件, 并在确定 当前下行调制编码方式和多输入输出模式不适合当前信道条件时, 根据所述 最大可选调制编码方式和所述对应关系表对当前使用的下行调制编码方式和 多输入多输出模式进行调整的步骤还包括: 统计所述数据包总数连续为零的次数, 得到第三次数; 以及
在所述第三次数达到第三切换门限时, 确定当前下行调制编码方式和多 输入输出模式不适合当前信道条件, 从所述对应关系表中向上查找数据传输 速率小于当前数据传输速率、 且下行调制编码方式不大于最大可选调制编码 方式的条目, 将当前下行调制编码方式和多输入多输出模式切换为所查找到 的第一个条目中的下行调制编码方式和多输入多输出模式。
上述的调整方法, 其中, 所述第一切换判决周期大于第二切换判决周期。 上述的调整方法, 其中, 所述数据包总数为基站在一个上报周期内统计 的非重传数据包的数目。
一种基站设备, 包括:
对应关系表建立模块, 其设置为建立下行调制编码方式和多输入多输出 模式的组合与数据传输速率的对应关系表, 且所述对应关系表中的数据传输 速率按从小到大的顺序排列;
自适应调制编码模块, 其设置为根据终端上报的下行载波与干扰噪声比 确定最大可选调制编码方式, 并在当前使用的下行调制编码方式大于最大可 选调制编码方式时, 将当前使用的下行调制编码方式切换为最大可选调制编 码方式, 将当前使用的多输入多输出模式切换为空时编码模式; 混合自动重传请求模块, 其设置为统计在每个上报周期内的数据包总数 和所述数据包中的有效数据包数的信息; 以及
联合调整模块, 其设置为根据所述数据包总数和所述有效数据包数判断 当前下行调制编码方式和多输入输出模式是否适合当前信道条件, 并在确定 当前下行调制编码方式和多输入输出模式不适合当前信道条件时, 根据所述 最大可选调制编码方式和所述对应关系表对当前使用的下行调制编码方式和 多输入多输出模式进行调整。 其中, 所述联合调整模块包括:
第一比值计算单元, 其设置为用于计算在第一切换判决周期的每个上报 周期内所述有效数据包数与所述数据包总数的比值, 得到第一比值;
第一次数计算单元, 其设置为用于统计所述第一比值大于第一门限的次 数, 得到第一次数; 以及
第一调整单元, 其设置为用于在所述第一次数达到第一切换门限时, 确 定当前下行调制编码方式和多输入输出模式不适合当前信道条件, 从所述对 应关系表中向下查找数据传输速率大于当前数据传输速率、 且下行调制编码 方式不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和多输 入多输出模式切换为所查找到的第一个条目中的下行调制编码方式和多输入 多输出模式。
所述联合调整模块还包括:
第二比值计算单元, 其设置为计算在第二切换判决周期的每个上报周期 内所述有效数据包数与所述数据包总数的比值, 得到第二比值;
第二次数计算单元, 其设置为统计所述第二比值小于第二门限的次数, 得到第二次数; 以及 第二调整单元, 其设置为在所述第二次数达到第二切换门限时, 确定当 前下行调制编码方式和多输入输出模式不适合当前信道条件, 从所述对应关 系表中向上查找数据传输速率小于当前数据传输速率、 且下行调制编码方式 不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和多输入多 输出模式切换为所查找到的第一个条目中的下行调制编码方式和多输入多输 出模式。
所述联合调整模块还包括:
第三次数计算单元, 其设置为统计所述数据包总数连续为零的次数, 得 到第三次数; 以及
第三调整单元, 其设置为在所述第三次数达到第三切换门限时, 确定当 前下行调制编码方式和多输入输出模式不适合当前信道条件, 从所述对应关 系表中向上查找数据传输速率小于当前数据传输速率、 且下行调制编码方式 不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和多输入多 输出模式切换为所查找到的第一个条目中的下行调制编码方式和多输入多输 出模式。
本发明的实施例利用 HARQ技术来判断当前下行调制编码方式和下行 MIMO模式是否适合当前信道条件, 并根据判断结果进行下行调制编码方式 和下行 MIMO模式的联合调整, 使得当前下行调制编码方式和多输入多输出 模式适合于当前信道条件, 从而提高链路的可靠性和系统的吞吐量。 附图概述
图 1 为空时编码原理图;
图 2 为空间复用原理图;
图 3为本发明的下行调制编码方式和多输入多输出模式的调整方法流程 图; 图 4 为本发明在切换判决周期 TUP内执行的调整方法流程图;
图 5 为本发明在切换判决周期 TDOWN内执行的调整方法流程图; 图 6 为本发明实施例的基站设备的结构示意图;
图 7 为上述基站设备中联合调整模块的结构示意图。 本发明的较佳实施方式
为便于更好的理解本发明, 这里首先对混合自动重传请求 (Hybrid Automatic Repeat Request, HARQ )技术进行介绍。
HARQ技术是在自动重传请求(Automatic Repeat Request, ARQ )技术 的基础上发展起来的物理层技术, 它将传统 ARQ技术和前向纠错(Forward Error Correction, FEC )技术结合起来, 发送方发送信息时釆用 FEC编码, 接 收方当接收信息出错比特数在纠错能力之内时, 错误可以自行修正; 当差错 严重, 无法纠正时, 就请求重传。 由于釆用了多次重传, 可以使 HARQ技术 能够较好抵消信道条件的变化带来的影响, 从而有效提高传输的效率和可靠 性。
HARQ技术的重传机制在一定程度上反映了当前下行调制编码方式和下 行 MIMO模式是否适合当前的无线信道条件。 如果在某一段时间内, 需要被 重传的数据包很多, 或者传输不成功的数据包很多, 则说明当前下行调制编 码方式和下行 MIMO模式不适合当前信道条件; 反之, 如果某一段时间内, 数据包正确率很高, 几乎不需要被纠正与重传, 则说明当前下行调制编码方 式和下行 MIMO模式适合当前信道条件。
因此, 本发明的实施例利用 HARQ技术来判断当前下行调制编码方式和 下行 MIMO模式是否适合当前信道条件, 并根据判断结果进行下行调制编码 方式和下行 MIMO模式的联合调整。
参照图 3 , 本发明的下行调制编码方式和多输入多输出模式的调整方法, 主要包括如下步骤:
步骤 301 : 基站建立下行调制编码方式和 MIMO模式的组合与数据传输 速率的对应关系表, 且该对应关系表中的数据传输速率按从小到大的顺序排 歹 |J ;
由于在调制编码方式以及 MIMO模式均固定的情况下, 每个时隙上的字 节数也是固定的, 所以可以将每个时隙上的字节数等效于数据传输速率。 将 不同的调制编码方式(例如下行间隔使用码值 DIUC )和 MIMO模式进行组 合, 并将该组合对应的数据传输速率按从小到大的顺序进行排列, 即得到如 下的对应关系表: 下行调制编码方式 (例如
MIMO模式 数据传输速率
DIUC )
DIUC1 MIM01 VI
DIUC2 MIM02 V2
DIUC3 MIM03 V3
表 1
表 1中, VI V2 V3... , 即, 数据传输速率逐级上升 , DIUC和 MIMO 模式则是不同的组合。 本发明对下行调制编码方式和 MIMO模式的调整就是 根据上表 1来进行的。 在调整过程中, 当遇到不同的组合, 但数据传输速率 相等时,在可使用的 DIUC范围内,优先选择 MIMO模式为 STC模式的组合, 以尽可能保证链路可靠性。
步骤 302: 基站中的自适应调制编码(AMC )模块根据终端上报的下行 CINR确定最大可选调制编码方式 ,并在当前使用的下行调制编码方式大于最 大可选调制编码方式时, 将当前使用的下行调制编码方式切换为最大可选调 制编码方式, 将当前使用的 MIMO模式切换为空时编码模式;
本发明中提到的调制编码方式的大小, 是指该调制编码方式在空时编码 模式下对应的数据传输速率的大小, 调制编码方式的大小遵循如下规则:
16QAM(CTC)l/2>QPSK(CTC)3/4;
2、调制阶数相同时, 编码效率高的调制编码方式大于编码效率低的调制 编码方式, 例如, 16QAM(CTC)3/4>16QAM(CTC)l/2。
AMC模块在确定最大可选调制编码方式后,判断当前使用的下行调制编 码方式是否大于最大可选调制编码方式, 若是, 则将当前使用的下行调制编 码方式切换为最大可选调制编码方式, 并将当前使用的 MIMO模式切换为空 时编码模式, 否则, 保持当前的下行调制编码方式和 MIMO模式不变。
步骤 303: 基站中的混合自动重传请求( HARQ )模块统计在每个上报周 期内的数据包总数和其中的有效数据包数信息; 由于不同的用户与基站之间的信道条件可能不同, 在本步骤中, HARQ 模块是分别针对每个用户单独进行所述统计。 为了避免基站频繁进行统计导 致资源占用率过高, 设定一个上报周期 TH。 上报周期 TH到达后, HARQ模 块统计在该周期内的数据包信息: 数据包总数 M, 以及这 M个数据包中传输 成功的数据包数 N, 传输成功的数据包在本发明中被称为有效数据包。
为了更准确的反映信道情况, 可以只统计首次传输的数据包数, 将所述 首次传输的数据包的数目作为所述数据包总数 M,并统计这 M个数据包中未 经重传就传输成功的有效数据包的个数 N。
步骤 304 : 基站根据所述数据包总数和所述有效数据包数判断当前下行 调制编码方式和 MIMO模式是否适合当前信道条件, 并在确定当前下行调制 编码方式和 MIMO模式不适合当前信道条件时, 根据所述最大可选调制编码 方式和所述对应关系表对当前使用的下行调制编码方式和 MIMO模式进行调 整。
考虑到频繁的调整会导致系统开销过大, 同时考虑到系统数据传输的稳 定性, 在本实施例中, 设定两个切换判决周期: 第一切换判决周期(TUP )和 第二切换判决周期 (TDOWM ) , 相应地, 还设定两个切换门限: 第一切换门 限(THUP )和第二切换门限(THDOwM )。 其中, 在第一切换判决周期内判断 是否需要上调数据传输速率, 在第二切换判决周期内判断是否需要下调数据 传输速率。 为了在最大限度地保证系统传输数据稳定性的基础上提高系统的 吞吐量, 可以实现慢升快降, 即 TDOWM < Tup。
图 4为本发明在切换判决周期 TUP内执行的调整方法流程图, 主要包括 如下步骤: 步骤 401 : 在每个上报周期 TH到达时, 基站中的 HARQ模块统计在该 上报周期 TH内的数据包总数 M和其中的有效数据包数 N;
步骤 402: 计算该上报周期 TH内所述有效数据包数 N与所述数据包总 数 M的比值, 得到第一比值;
步骤 403 ~ 404: 判断所述第一比值是否大于第一门限(m% ) , 若是, 将第一次数 NUP加 1 , 否则, 进入步骤 406; 其中, 第一门限 m%可以根据具体的通信环境灵活设定, 第一次数 NUP 初始时为 0。
步骤 405 : 判断所述第一次数 NUP是否达到第一切换门限 THUP, 若是, 说明当前下行调制编码方式和 MIMO模式不适合当前信道条件, 进入步骤 407 , 否则, 进入步骤 406;
步骤 406: 判断第一切换判决周期 TUP是否到达, 若是, 进入步骤 408 , 否则, 返回步骤 401 ;
步骤 407 : 根据所述最大可选调制编码方式和所述对应关系表, 对当前 使用的下行调制编码方式和 MIMO模式进行调整, 从而上调数据传输速率; 具体地, 是从所述对应关系表(表 1 ) 中向下查找数据传输速率大于当 前数据传输速率、且下行调制编码方式不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和 MIMO模式切换为所查找到的第一个条目中的下 行调制编码方式和 MIMO模式。
步骤 408: 所有统计数据清零, 进入下一个切换判决周期。
图 5为本发明在切换判决周期 TDOWN内执行的调整方法流程图, 主要包 括如下步骤:
步骤 501 : 在每个上报周期 TH到达时, 基站中的 HARQ模块统计在该 上报周期 TH内的数据包总数 M和其中的有效数据包数 N;
步骤 502: 计算该上报周期 TH内所述有效数据包数 N与所述数据包总 数 M的比值, 得到第二比值;
步骤 503 ~ 504: 判断所述第二比值是否小于第二门限(η% ) , 若是, 将 第二次数 NDOWN加 1 , 否则, 进入步骤 506;
其中, 第二门限 n%可以根据具体的通信环境灵活设定, 第二次数 NDOWN 初始时为 0。
步骤 505 : 判断所述第二次数 NDOWN是否达到第二切换门限 THDOWN, 若 是, 说明当前下行调制编码方式和 MIMO模式不适合当前信道条件, 进入步 骤 507 , 否则, 进入步骤 506;
步骤 506:判断第二切换判决周期 TDOWN是否到达,若是,进入步骤 508 , 否则, 返回步骤 501 ;
步骤 507: 根据所述最大可选调制编码方式和所述对应关系表, 对当前 使用的下行调制编码方式和 MIMO模式进行调整, 从而下调数据传输速率; 具体地, 是从所述对应关系表(表 1 ) 中向上查找数据传输速率小于当 前数据传输速率、且下行调制编码方式不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和 MIMO模式切换为所查找到的第一个条目中的下 行调制编码方式和 MIMO模式。
步骤 508: 所有统计数据清零, 进入下一个切换判决周期。
此外, 如果 HARQ模块的统计结果显示有连续多次数据包总数为零, 那 么, 有可能是信道条件突然恶化导致数据无法传输, 或者是不再做业务传输, 此时也需要降低数据传输速率, 以尽可能的增加信道增益, 保证链路可靠性。 具体包括: 统计所述数据包总数连续为零的次数, 得到第三次数; 在所述第 三次数达到第三切换门限时, 从所述对应关系表中向上查找数据传输速率小 于当前数据传输速率、 且下行调制编码方式不大于最大可选调制编码方式的 条目, 将当前下行调制编码方式和 MIMO模式切换为所查找到的第一个条目 中的下行调制编码方式和 MIMO模式。
以下给出实现上述方法的基站设备。
参照图 6, 本发明实施例的基站设备 60, 包括:
对应关系表建立模块 61 ,其设置为建立下行调制编码方式和多 MIMO模 式的组合与数据传输速率的对应关系表, 且所述对应关系表中的数据传输速 率按从小到大的顺序排列。
由于在调制编码方式以及 MIMO模式均固定的情况下, 每个时隙上的字 节数也是固定的, 所以可以将每个时隙上的字节数等效于数据传输速率。 将 不同的调制编码方式和 MIMO模式进行组合, 并将该组合对应的数据传输速 率按从小到大的顺序进行排列, 得到如表 1所示的对应关系表。
自适应调制编码模块 62, 其设置为根据终端上报的下行 CINR确定最大 可选调制编码方式, 并在当前使用的下行调制编码方式大于最大可选调制编 码方式时, 将当前使用的下行调制编码方式切换为最大可选调制编码方式, 将当前使用的 MIMO模式切换为空时编码模式。
混合自动重传请求模块 63 , 其设置为统计在每个上报周期内的数据包总 数和所述数据包中的有效数据包数的信息。
由于不同的用户与基站之间的信道条件可能不同, 混合自动重传请求模 块 63是分别针对每个用户单独进行所述统计。为了避免频繁进行统计导致资 源占用率过高, 设定一个上报周期 TH。 上报周期 TH到达后, 混合自动重传 请求模块 63统计在该周期内的数据包总数 M, 以及这 M个数据包中的有效 数据包数 N, 传输成功的数据包在本发明中被称为有效数据包。 。
为了更准确的反映信道情况, 可以只统计首次传输的数据包数, 将所述 首次传输的数据包的数目作为所述数据包总数 M,并统计这 M个数据包中未 经重传就传输成功的有效数据包的个数 N。
联合调整模块 64 , 其设置为根据所述数据包总数和所述有效数据包数判 断当前下行调制编码方式和 MIMO模式是否适合当前信道条件, 并在确定当 前下行调制编码方式和 MIMO模式不适合当前信道条件时, 根据所述最大可 选调制编码方式和所述对应关系表对当前使用的下行调制编码方式和 MIMO 模式进行调整。
考虑到频繁的调整会导致系统开销过大, 同时考虑到系统数据传输的稳 定性, 在本实施例中, 设定两个切换判决周期: 第一切换判决周期(TUP )和 第二切换判决周期 (TDOWM ) , 相应地, 还设定两个切换门限: 第一切换门 限( THUP )和第二切换门限( THDOwM )。 其中, 在第一切换判决周期内判断 是否需要上调数据传输速率, 在第二切换判决周期内判断是否需要下调数据 传输速率。 为了在最大限度的保证系统传输数据稳定性的基础上提高系统的 吞吐量, 可以实现慢升快降, 即 TDOWM < Tup。
参照图 7 , 所述联合调整模块 64具体包括:
第一比值计算单元 71 , 其设置为计算在第一切换判决周期的每个上报周 期内, 所述有效数据包数与所述数据包总数的比值, 得到第一比值;
第一次数计算单元 72,其设置为统计所述第一比值大于第一门限的次数, 得到第一次数; 第一调整单元 73 , 其设置为在所述第一次数达到第一切换门限时, 确定 当前下行调制编码方式和 MIMO模式不适合当前信道条件, 从所述对应关系 表中向下查找数据传输速率大于当前数据传输速率、 且下行调制编码方式不 大于最大可选调制编码方式的条目, 将当前下行调制编码方式和 MIMO模式 切换为所查找到的第一个条目中的下行调制编码方式和 MIMO模式;
第二比值计算单元 74, 其设置为计算在第二切换判决周期的每个上报周 期内, 所述有效数据包数与所述数据包总数的比值, 得到第二比值;
第二次数计算单元 75,其设置为统计所述第二比值小于第二门限的次数, 得到第二次数; 以及 第二调整单元 76, 其设置为在所述第二次数达到第二切换门限时, 确定 当前下行调制编码方式和 MIMO模式不适合当前信道条件, 从所述对应关系 表中向上查找数据传输速率小于当前数据传输速率、 且下行调制编码方式不 大于最大可选调制编码方式的条目, 将当前下行调制编码方式和 MIMO模式 切换为所查找到的第一个条目中的下行调制编码方式和 MIMO模式。
此外, 如果 HARQ模块的统计结果显示有连续多次数据包总数为零, 那 么, 有可能是信道条件突然恶化导致数据无法传输, 或者是不再做业务传输, 此时也需要降低数据传输速率, 以尽可能的增加信道增益, 保证链路可靠性。 因此, 所述联合调整模块 64中还可包括:
第三次数计算单元(图未示) , 其设置为统计所述数据包总数连续为零 的次数, 得到第三次数;
第三调整单元(图未示) , 其设置为在所述第三次数达到第三切换门限 时, 从所述对应关系表中向上查找数据传输速率小于当前数据传输速率、 且 下行调制编码方式不大于最大可选调制编码方式的条目, 将当前下行调制编 码方式和 MIMO模式切换为所查找到的第一个条目中的下行调制编码方式和 MIMO模式。
为更好的说明本发明的有益效果, 将表 1实例化得到如下的表 2: 下行调制编码方式 每个时隙上的字节数
MIMO模式
( DIUC ) (相当于数据传输速率) QPSK (CTC) 1/2 STC 6
QPSK (CTC) 3/4 STC 9
QPSK (CTC) 1/2 SM 12
16QAM ( CTC ) 1/2 STC 12
QPSK ( CTC ) 3/4 SM 18
16QAM(CTC)3/4 STC 18
64QAM(CTC)l/2 STC 18
16QAM(CTC)l/2 SM 24
64QAM(CTC)2/3 STC 24
64QAM(CTC)3/4 STC 27
64QAM(CTC)5/6 STC 30
16QAM(CTC)3/4 SM 36
64QAM(CTC)l/2 SM 36
64QAM(CTC)2/3 SM 48
64QAM(CTC)3/4 SM 54
64QAM(CTC)5/6 SM 60
表 2
假设当前下行调制编码方式为: 16 QAM (CTC) 1/2, 下行 MIMO模式 为: SM模式, 且终端上报的下行 CINR不变。 如果终端在此时的下载性能不 好, 需要下调数据传输速率。 根据现有技术, 会维持当前的下行调制编码方 式 16QAM (CTC) 1/2不变, 将下行 MIMO模式调整为: STC模式。
而本发明的技术方案则会从表 2的当前条目 (16QAM(CTC) 1/2、 SM) 处, 向上查找数据传输速率小于当前数据传输速率(24) 、 且下行调制编码 方式不大于最大可选调制编码方式(16 QAM (CTC) 1/2) 的第一个条目, 查找结果为: QPSK (CTC) 3/4、 SM, 并将当前下行调制编码方式和 MIMO 模式切换为: QPSK (CTC) 3/4、 SM。 在后续过程中, 会利用 HARQ技术来 判断当前下行调制编码方式和下行 MIMO模式是否适合当前信道条件, 如果 合适, 从表 2可以看出 QPSK ( CTC ) 3/4、 SM模式比 16 QAM ( CTC ) 1/2、 STC模式的数据传输速率高 50%; 如果不合适, 再切换为 16 QAM ( CTC ) 1/2、 STC模式。
根据以上的比较可知,本发明能够有效提高数据传输速率和频谱利用率, 从而提高链路的可靠性和系统的吞吐量。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非限制, 本领域的普通技术人员应当理解, 可以对本发明的技术方案进行修改或者等 同替换, 而不脱离本发明技术方案的精神范围, 其均应涵盖在本发明的权利 要求范围当中。
工业实用性 本发明提供的下行调制编码方式和多输入多输出模式的调整方法及基站 设备,利用 HARQ技术来判断当前下行调制编码方式和下行 MIMO模式是否 适合当前信道条件, 并根据判断结果进行下行调制编码方式和下行 MIMO模 式的联合调整, 从而有效地提高了链路的可靠性和系统的吞吐量。

Claims

权 利 要 求 书
1、 一种下行调制编码方式和多输入多输出模式的调整方法, 包括: 建立下行调制编码方式和多输入多输出模式的组合与数据传输速率的对 应关系表, 且所述对应关系表中的数据传输速率按从小到大的顺序排列; 根据终端上报的下行载波与干扰噪声比确定最大可选调制编码方式, 并 在当前使用的下行调制编码方式大于最大可选调制编码方式时, 将当前使用 的下行调制编码方式切换为最大可选调制编码方式, 将当前使用的多输入多 输出模式切换为空时编码模式;
统计在每个上报周期内的数据包总数和所述数据包中的有效数据包数的 信息; 以及
根据所述数据包总数和所述有效数据包数判断当前下行调制编码方式和 多输入输出模式是否适合当前信道条件, 并在确定当前下行调制编码方式和 多输入输出模式不适合当前信道条件时, 根据所述最大可选调制编码方式和 所述对应关系表对当前使用的下行调制编码方式和多输入多输出模式进行调 整。
2. 如权利要求 1所述的调整方法, 其中, 所述根据所述数据包总数和所 述有效数据包数判断当前下行调制编码方式和多输入输出模式是否适合当前 信道条件, 并在确定当前下行调制编码方式和多输入输出模式不适合当前信 道条件时, 根据所述最大可选调制编码方式和所述对应关系表对当前使用的 下行调制编码方式和多输入多输出模式进行调整的步骤包括: 计算在第一切 换判决周期的每个上报周期内所述有效数据包数与所述数据包总数的比值, 得到第一比值;
统计所述第一比值大于第一门限的次数, 得到第一次数; 以及
在所述第一次数达到第一切换门限时, 确定当前下行调制编码方式和多 输入输出模式不适合当前信道条件, 从所述对应关系表中向下查找数据传输 速率大于当前数据传输速率、 且下行调制编码方式不大于最大可选调制编码 方式的条目, 将当前下行调制编码方式和多输入多输出模式切换为所查找到 的第一个条目中的下行调制编码方式和多输入多输出模式。
3. 如权利要求 2所述的调整方法, 其中, 所述根据所述数据包总数和所 述有效数据包数判断当前下行调制编码方式和多输入输出模式是否适合当前 信道条件, 并在确定当前下行调制编码方式和多输入输出模式不适合当前信 道条件时, 根据所述最大可选调制编码方式和所述对应关系表对当前使用的 下行调制编码方式和多输入多输出模式进行调整的步骤还包括: 计算在第二 切换判决周期的每个上报周期内所述有效数据包数与所述数据包总数的比 值, 得到第二比值;
统计所述第二比值小于第二门限的次数, 得到第二次数; 以及
在所述第二次数达到第二切换门限时, 确定当前下行调制编码方式和多 输入输出模式不适合当前信道条件, 从所述对应关系表中向上查找数据传输 速率小于当前数据传输速率、 且下行调制编码方式不大于最大可选调制编码 方式的条目, 将当前下行调制编码方式和多输入多输出模式切换为所查找到 的第一个条目中的下行调制编码方式和多输入多输出模式。
4. 如权利要求 3所述的调整方法, 其中, 在所述根据所述数据包总数和 所述有效数据包数判断当前下行调制编码方式和多输入输出模式是否适合当 前信道条件, 并在确定当前下行调制编码方式和多输入输出模式不适合当前 信道条件时, 根据所述最大可选调制编码方式和所述对应关系表对当前使用 的下行调制编码方式和多输入多输出模式进行调整的步骤还包括:
统计所述数据包总数连续为零的次数, 得到第三次数; 以及
在所述第三次数达到第三切换门限时, 确定当前下行调制编码方式和多 输入输出模式不适合当前信道条件, 从所述对应关系表中向上查找数据传输 速率小于当前数据传输速率、 且下行调制编码方式不大于最大可选调制编码 方式的条目, 将当前下行调制编码方式和多输入多输出模式切换为所查找到 的第一个条目中的下行调制编码方式和多输入多输出模式。
5. 如权利要求 3所述的调整方法, 其中:
所述第一切换判决周期大于所述第二切换判决周期。
6. 如权利要求 1至 5中任一项所述的调整方法, 其中:
所述数据包总数为基站在一个上报周期内统计的非重传数据包的数目。
7. 一种基站设备, 包括:
对应关系表建立模块, 其设置为建立下行调制编码方式和多输入多输出 模式的组合与数据传输速率的对应关系表, 且所述对应关系表中的数据传输 速率按从小到大的顺序排列;
自适应调制编码模块, 其设置为根据终端上报的下行载波与干扰噪声比 确定最大可选调制编码方式, 并在当前使用的下行调制编码方式大于最大可 选调制编码方式时, 将当前使用的下行调制编码方式切换为最大可选调制编 码方式, 将当前使用的多输入多输出模式切换为空时编码模式;
混合自动重传请求模块, 其设置为统计在每个上报周期内的数据包总数 和所述数据包中的有效数据包数的信息; 以及
联合调整模块, 其设置为根据所述数据包总数和所述有效数据包数判断 当前下行调制编码方式和多输入输出模式是否适合当前信道条件, 并在确定 当前下行调制编码方式和多输入输出模式不适合当前信道条件时, 根据所述 最大可选调制编码方式和所述对应关系表对当前使用的下行调制编码方式和 多输入多输出模式进行调整。
8. 如权利要求 7所述的基站设备, 其中, 所述联合调整模块包括: 第一比值计算单元, 其设置为计算在第一切换判决周期的每个上报周期 内所述有效数据包数与所述数据包总数的比值, 得到第一比值;
第一次数计算单元, 其设置为统计所述第一比值大于第一门限的次数, 得到第一次数; 以及
第一调整单元, 其设置为在所述第一次数达到第一切换门限时, 确定当 前下行调制编码方式和多输入输出模式不适合当前信道条件, 从所述对应关 系表中向下查找数据传输速率大于当前数据传输速率、 且下行调制编码方式 不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和多输入多 输出模式切换为所查找到的第一个条目中的下行调制编码方式和多输入多输 出模式。
9. 如权利要求 8所述的基站设备, 其中, 所述联合调整模块还包括: 第二比值计算单元, 其设置为计算在第二切换判决周期的每个上报周期 内所述有效数据包数与所述数据包总数的比值, 得到第二比值; 第二次数计算单元, 其设置为统计所述第二比值小于第二门限的次数, 得到第二次数; 以及 第二调整单元, 其设置为在所述第二次数达到第二切换门限时, 确定当 前下行调制编码方式和多输入输出模式不适合当前信道条件, 从所述对应关 系表中向上查找数据传输速率小于当前数据传输速率、 且下行调制编码方式 不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和多输入多 输出模式切换为所查找到的第一个条目中的下行调制编码方式和多输入多输 出模式。
10. 如权利要求 9所述的基站设备, 其中, 所述联合调整模块还包括: 第三次数计算单元, 其设置为统计所述数据包总数连续为零的次数, 得 到第三次数; 以及
第三调整单元, 其设置为在所述第三次数达到第三切换门限时, 确定当 前下行调制编码方式和多输入输出模式不适合当前信道条件, 从所述对应关 系表中向上查找数据传输速率小于当前数据传输速率、 且下行调制编码方式 不大于最大可选调制编码方式的条目, 将当前下行调制编码方式和多输入多 输出模式切换为所查找到的第一个条目中的下行调制编码方式和多输入多输 出模式。
PCT/CN2010/073826 2009-08-04 2010-06-11 下行调制编码方式和多输入多输出模式的调整方法及设备 WO2011015083A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012520895A JP2012533947A (ja) 2009-08-04 2010-06-11 ダウンリンク変調符号化方式及びマルチ入力マルチ出力モードの調整方法、並びに設備
US13/383,280 US20120120840A1 (en) 2009-08-04 2010-06-11 Adjusting Method for Downlink Modulation Coding Mode and Multiple-Input-Multiple-Output Mode and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910090269.2 2009-08-04
CN2009100902692A CN101990315B (zh) 2009-08-04 2009-08-04 下行调制编码方式和多输入多输出模式的调整方法及设备

Publications (1)

Publication Number Publication Date
WO2011015083A1 true WO2011015083A1 (zh) 2011-02-10

Family

ID=43543908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073826 WO2011015083A1 (zh) 2009-08-04 2010-06-11 下行调制编码方式和多输入多输出模式的调整方法及设备

Country Status (4)

Country Link
US (1) US20120120840A1 (zh)
JP (1) JP2012533947A (zh)
CN (1) CN101990315B (zh)
WO (1) WO2011015083A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761387B (zh) * 2011-04-26 2015-06-03 中兴通讯股份有限公司 自适应调制与编码方法及装置
CN102833034B (zh) * 2011-06-16 2017-03-15 中兴通讯股份有限公司 确定调制编码方式的方法及装置
CN102916764B (zh) * 2011-08-03 2017-08-25 中兴通讯股份有限公司 一种升阶周期的调整方法及系统
US9036608B2 (en) * 2012-11-09 2015-05-19 Telefonaktiebolaget L M Ericsson (Publ) Adaptive transmission mode switching
JP6440176B2 (ja) 2014-07-07 2018-12-19 華為技術有限公司Huawei Technologies Co.,Ltd. ワイヤレスフィディリティ技術の帯域幅選択方法およびアクセスポイントap
KR20170128019A (ko) * 2016-05-13 2017-11-22 삼성전자주식회사 전자 장치 및 전자 장치에서의 무선 통신 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567759A (zh) * 2003-06-27 2005-01-19 上海贝尔阿尔卡特股份有限公司 一种自适应正交频分复用(ofdm)系统中的反馈信息传输方法
CN101039164A (zh) * 2006-03-14 2007-09-19 华为技术有限公司 多输入输出系统下行链路数据处理方法和模块
CN101478364A (zh) * 2008-01-02 2009-07-08 中国移动通信集团上海有限公司 用于wcdma网络高速下行分组接入的自适应调制编码方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706347B2 (en) * 2003-05-15 2010-04-27 Lg Electronics Inc. Signal processing apparatus and method using multi-output mobile communication system
US7843887B2 (en) * 2004-11-02 2010-11-30 Panasonic Corporation Mobile station device and communication partner selection method
CN101375523B (zh) * 2005-01-12 2012-12-12 高通创锐讯有限公司 在mimo系统中选择mcs的方法
CN101030833B (zh) * 2006-03-01 2012-09-05 株式会社Ntt都科摩 自适应空时编码调制方法及使用其的发射机
JP5388529B2 (ja) * 2008-09-30 2014-01-15 株式会社日立国際電気 無線通信装置
US8107888B2 (en) * 2009-03-04 2012-01-31 Clearwire IP Holdings, LLC Communication operating mode selection based on multi-path signal power measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567759A (zh) * 2003-06-27 2005-01-19 上海贝尔阿尔卡特股份有限公司 一种自适应正交频分复用(ofdm)系统中的反馈信息传输方法
CN101039164A (zh) * 2006-03-14 2007-09-19 华为技术有限公司 多输入输出系统下行链路数据处理方法和模块
CN101478364A (zh) * 2008-01-02 2009-07-08 中国移动通信集团上海有限公司 用于wcdma网络高速下行分组接入的自适应调制编码方法

Also Published As

Publication number Publication date
US20120120840A1 (en) 2012-05-17
CN101990315A (zh) 2011-03-23
CN101990315B (zh) 2013-08-07
JP2012533947A (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
USRE48260E1 (en) Automatic retransmission in communications systems
JP4711750B2 (ja) 移動通信システム、移動局及び基地局並びに通信制御方法
CN101124763B (zh) 用于对确认进行高效传输的装置和方法
US7366133B1 (en) Integrated, self-optimizing, multi-parameter/multi-variable point-to-multipoint communication system [II]
TW200421752A (en) Implementing a physical layer automatic repeat request for a subscriber unit
WO2011015083A1 (zh) 下行调制编码方式和多输入多输出模式的调整方法及设备
WO2010130187A1 (zh) 一种混合自动重传方法及装置
CN102208962A (zh) 无线数据传输方法
JP2005501473A (ja) 基地局の物理層自動リピート要求の方法
CN101931505B (zh) 一种下行多输入多输出模式的切换方法及基站设备
WO2011134137A1 (zh) 一种amc调整方法及基站
Chan et al. A Link Adaptation Algorithm in MIMO-based WiMAX Systems.
Soundararajan et al. An efficient HARQ retransmission algorithm in OFDMA based wireless networks
US8897153B2 (en) Method and base station for combined adjusting downlink AMC and MIMO mode
Ericsson et al. Scheduling and adaptive transmission for the downlink in 4G systems
Mohana et al. HARQ scheme for different MCS users over LTE and LTE-advanced networks
Xia et al. Adaptive Aggregated Multi-Process Transmission for LEO Satellites Integrated with 5G
Sun et al. Goodput performance of ultrahigh-speed WLAN via link adaptation algorithm
Mitra A PHY-MAC cross layer design for low PER with adaptive modulation and coding
Shi et al. Cross-layer performance analysis of TCP over wireless link with AMC and type-III HARQ
Bahloul et al. Cross layer strategies in wireless networks
Anggadjaja et al. Packet Switching, AM Adjustment and Retry Mechanisms for Cross-Layer MIMO Link Design
Chang et al. Exploiting Opportunistic Packet Delivery for Rate Control in 802.11 Wireless Networks
Xiao et al. A cross-layer adaptive transmission scheme over correlated fading channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805987

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13383280

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012520895

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805987

Country of ref document: EP

Kind code of ref document: A1