WO2011013637A1 - Surface-modified zirconia nanocrystal particles and method for producing same, and silicone composite material and method for producing same - Google Patents

Surface-modified zirconia nanocrystal particles and method for producing same, and silicone composite material and method for producing same Download PDF

Info

Publication number
WO2011013637A1
WO2011013637A1 PCT/JP2010/062566 JP2010062566W WO2011013637A1 WO 2011013637 A1 WO2011013637 A1 WO 2011013637A1 JP 2010062566 W JP2010062566 W JP 2010062566W WO 2011013637 A1 WO2011013637 A1 WO 2011013637A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified
zirconia
nanocrystal particles
zirconia nanocrystal
modified zirconia
Prior art date
Application number
PCT/JP2010/062566
Other languages
French (fr)
Japanese (ja)
Inventor
秀造 徳光
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2011524776A priority Critical patent/JPWO2011013637A1/en
Publication of WO2011013637A1 publication Critical patent/WO2011013637A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black

Definitions

  • the present invention relates to surface-modified zirconia nanocrystal particles and a method for producing the same, and a silicone-based composite material obtained using the surface-modified zirconia nanocrystal particles and a method for producing the same. More particularly, the present invention relates to surface-modified zirconia nanocrystal particles stably dispersible in a thermosetting silicone resin matrix, an effective method for producing the same, and the surface-modified zirconia nano particles in the thermosetting silicone resin matrix.
  • the present invention relates to a silicone-based composite material useful as an LED (light emitting diode) sealing material or the like, which contains crystal particles with high dispersibility, and an effective manufacturing method thereof.
  • thermosetting silicone resin used as an LED sealing material is excellent in heat resistance and weather resistance, but has a problem that the refractive index is low and the light extraction efficiency from the LED is low.
  • Properties necessary for nanocrystalline particles for producing a composite with silicone resin include crystallinity of nanocrystalline particles themselves for securing refractive index, high dispersibility in silicone resin matrix, and dispersion in silicone resin matrix Stability etc. are mentioned.
  • the nanoparticles described in the patent document 1 have an integrated structure because the coating portion for coating the surface of the nanoparticles and the surface modifier for solvent dispersibility are derived from the same raw material. There is. Therefore, when it is intended to apply to various purposes, there is a problem that the range of selection of surface modifiers on the surface of titania nanocrystalline particles is narrow. In addition, when changing the surface modifier, it is necessary to review the synthesis method each time.
  • Patent Document 1 forms a bond by a crosslinking reaction due to condensation between the silicone resin and the surface modifier of the surface of the nanocrystal particle
  • the method of Patent Document 1 is tried in practice.
  • the dispersion stability of the nanocrystal particles is low, the dispersion in the silicone resin matrix is low, and furthermore, the stability of the physical properties of the product is low, and the method of Patent Document 1 has many problems. It has been found.
  • titania nanocrystalline particles exhibit photochromism that is colored in blue upon irradiation with ultraviolet light, the visible light transmittance is significantly changed. Therefore, it was found that a composite using titania nanocrystalline particles is unsuitable as an LED encapsulant.
  • zirconia nanocrystalline particles can be substituted for titania nanocrystalline particles as high refractive index, high strength materials.
  • Non-Patent Document 1 describes a method of producing solvent-dispersible zirconia nanocrystal particles by synthesizing surface-non-dispersible zirconia nanocrystal particles and then modifying the surface of the nanocrystal particle. .
  • Non-Patent Document 1 describes that solvent dispersible zirconia nanocrystal particles were obtained by optimizing the concentration.
  • this non-patent document 1 is characterized by the benzyl alcohol decomposition method which is an anhydrous system, and the surface of the produced zirconia nanocrystal particles is characterized by being covered with molecules derived from benzyl alcohol (generally The sol-gel method is covered with hydroxyl groups, which allows modification by surface modifiers.
  • Non-Patent Document 1 the benzyl alcohol decomposition method of Non-Patent Document 1 is problematic in that it uses a large amount of benzyl alcohol having a boiling point close to 200 ° C. and that the zirconium alkoxide as a raw material is expensive, and is not suitable for mass production. .
  • Non-Patent Document 1 reports that the concentration of zirconia nanocrystal particles in THF solvent is very low, about 1 mass%, and that the solvent dispersibility is obtained, it was intended for mixing into a silicone resin matrix.
  • the nanocrystal particles can not be said to have sufficient functions.
  • an oxygen-containing organic solvent is used as a reaction medium for the reaction in which the metal oxide precursor is converted to metal oxide nanocrystals, and as a solvent for supplying oxygen to the metal oxide precursor. I use it. Furthermore, modifying the obtained metal oxide nanocrystal with carboxylic acids is also described by adding carboxylic acids as an additive different from the oxygen-containing organic solvent.
  • Patent Document 2 metal oxide nanocrystals are modified with an organic component to improve the dispersibility of metal oxide nanocrystals in an organic compound.
  • Patent Document 1 since only the surface modifier is added as an additive, even if only nanocrystal particles are isolated from the dispersion by centrifugation etc. The possibility of remaining on the surface of nanocrystalline particles is low.
  • a first object of the present invention is to provide surface-modified zirconia nanocrystal particles that can be stably dispersed in a thermosetting silicone resin matrix and a method for producing the same. is there.
  • a second object of the present invention is to provide a silicone-based composite material including the surface-modified zirconia nanocrystal particles well dispersed in a thermosetting silicone resin matrix, and a method for producing the same.
  • the present inventor has found that, in one molecule, a dispersive contribution to a dispersion medium such as organosiloxane or a modification such as carboxylic acid carboxyl group. Besides, it has been found that stable solvent dispersibility can be imparted by modifying the surface of the zirconia nanocrystal with a compound having a predetermined carbon skeleton and provided with a portion capable of imparting stability to dispersibility.
  • the polyorganosiloxane chain of a specific length which contributes mainly to the improvement of the dispersibility in the thermosetting silicone resin matrix, and furthermore, a coordinator for the specific length of this polyorganosiloxane chain (ie, As a role of stabilizing the improved dispersibility, it was conceived to surface-modify zirconia nanocrystal particles with a compound having an aliphatic carboxylic acid residue of a specific carbon number. And it discovered that the above-mentioned purpose could be achieved by this surface modification zirconia nanocrystal particle.
  • the above-mentioned object can be achieved by subjecting zirconia nanocrystal particles, which are surface-modified with an arylsulfonic acid residue, to substitution with the above-mentioned aliphatic carboxylic acid residue in an organic solvent. I found out.
  • the present invention has been completed based on such findings.
  • the present invention (1) a modification for surface modification of zirconia nanoparticles; A stability contribution consisting of a carbon skeleton bound to said modification; A dispersive contribution to a dispersion medium consisting of a polymer chain coupled to the stability contributing part; A surface-modified zirconia nanocrystal particle, wherein the zirconia nanoparticle is modified by a compound provided in one molecule, (2)
  • the dispersion contributing portion is a polyorganosiloxane chain having 4 to 100 organosiloxane units,
  • a combination of the stability contributing portion and the modifying portion is a group derived from an aliphatic carboxylic acid, and is an aliphatic carboxylic acid residue having 2 to 18 carbon atoms in the aliphatic group,
  • the surface-modified zirconia nanocrystal particle according to (1) which is obtained by surface-modifying a zirconia nanoparticle with the aliphatic carboxylic acid residue.
  • thermosetting silicone resin the silicone resin before crosslinking and curing
  • silicone resin after crosslinking and curing is referred to as "thermosetting silicone resin”.
  • a group derived from an aliphatic carboxylic acid and chemically bonded to the surface of the zirconia nanocrystal eg, “a carboxyl group in an aliphatic carboxylic acid”, “aliphatic carboxy group”, etc.
  • aliphatic carboxylic acid residue a group derived from an aliphatic carboxylic acid and chemically bonded to the surface of the zirconia nanocrystal
  • aryl sulfonic acid residue includes those having a substituent on the aromatic ring and those having no substituent on the aromatic ring.
  • thermosetting silicone resin matrix stably dispersible in a thermosetting silicone resin matrix
  • a method for producing the same and the surface-modified zirconia nanocrystal particles in the thermosetting silicone resin matrix with good dispersibility It is possible to provide a silicone based composite material containing the same and a method for producing the same.
  • Embodiment 1 First, in the present embodiment, the surface modified zirconia nanocrystal particles manufactured by this method will be described while describing the manufacturing method.
  • a zirconia precursor is reacted with an organic sulfonic acid, preferably an arylsulfonic acid such as benzenesulfonic acid or p-toluenesulfonic acid, particularly preferably p-toluenesulfonic acid,
  • an organic sulfonic acid preferably an arylsulfonic acid such as benzenesulfonic acid or p-toluenesulfonic acid, particularly preferably p-toluenesulfonic acid
  • Aryl sulfonic acid residue modified zirconia nanocrystal particles particularly preferably p-toluene sulfonic acid residue (sometimes abbreviated as PTSH) modified zirconia nanocrystal particles are formed.
  • PTSH p-toluene sulfonic acid residue
  • zirconia precursor used at this time zirconyl chloride, tetraalkoxyzirconium and the like can be used, but zirconyl chloride is preferable from the viewpoint of reactivity, and zirconyl chloride octahydrate (ZrOCl 2 ⁇ 8H 2 O) is particularly preferable. It is suitable.
  • the molar ratio of Zr to p-toluenesulfonic acid in the zirconia precursor is preferably 8: 1 to 1: 2. If the proportion of p-toluenesulfonic acid is less than the above range, the dispersibility of the PTSH modified zirconia nanocrystal particles may be reduced. A more preferable molar ratio of Zr to p-toluenesulfonic acid is in the range of 4: 1 to 1: 1.
  • the organic solvent A is not particularly limited as long as it can effectively form PTSH modified zirconia nanocrystal particles, and for example, a mixed solvent of ethanol and triethyl orthoformate can be preferably used.
  • the reaction is carried out in a pressure vessel, preferably at a temperature of 100 to 240 ° C., more preferably 120 to 200 ° C.
  • the reaction time depends on the reaction temperature, the amount of p-toluenesulfonic acid, and the like, and can not be generally determined, but is usually about 8 to 120 hours, preferably 12 to 60 hours.
  • the crystal structure of zirconia nanocrystals can be selected depending on the reaction time. That is, although the optimum reaction time changes depending on the raw material concentration, the molar ratio of the zirconia precursor and the sulfonic acid, and the reaction temperature, shortening the reaction temperature produces tetragonal zirconia nanocrystals, and lengthening the monoclinic zirconia nanocrystals It tends to generate. Tetragonal zirconia nanocrystals have a higher refractive index than monoclinic zirconia nanocrystals, and monoclinic zirconia nanocrystals appear to be more chemically stable than tetragonal zirconia nanocrystals. It is possible to make each separately according to a use application.
  • the solvent in the reaction solution is preferably distilled off under reduced pressure to obtain PTSH-modified zirconia nanocrystal particles having a structure represented by the following formula (1).
  • the PTSH modified zirconia nanocrystal particles are obtained as a white powder, can be redispersed in an organic solvent such as methanol or methylene chloride, and a colorless and transparent zirconia nanocrystal particle dispersion can be obtained.
  • the dispersion contributing portion is a polyorganosiloxane chain having 4 to 100 organosiloxane units
  • the combination of the stability contributing portion and the modifying portion is an aliphatic carboxylic acid.
  • the polyorganosiloxane chain preferably has 4 to 100 organosiloxane units.
  • the organosiloxane unit of the polyorganosiloxane chain is smaller than 4, the dispersibility of the zirconia nanocrystal particles in the silicone resin matrix is reduced.
  • the organosiloxane chain unit is more than 100, the formation of the zirconia nanocrystal particles modified with the aliphatic carboxylic acid residue is significantly delayed. The reason is speculated to be due to steric hindrance of the polyorganosiloxane chain.
  • a polydimethylsiloxane (hereinafter sometimes abbreviated as PDMS) chain is preferable.
  • the carbon number of the aliphatic group is preferably 2 to 18, and a linear saturated monocarboxylic acid is preferable.
  • the carbon number of the aliphatic group is less than 2, the aliphatic carboxylic acid becomes unstable and is decomposed during the reaction. If the carbon number of the aliphatic group is more than 18, the volume occupied by the aliphatic group becomes extremely large, and the meaning of the improvement of the refractive index is lost.
  • the methylene chain has a small contribution to the dispersibility in silicone, it is better to be as short as possible.
  • the COOH group in the aliphatic carboxylic acid having a polyorganosiloxane chain may be present at the end of the polyorganosiloxane chain or may be present in the side chain, but it is required to be present at the end preferable.
  • an aliphatic carboxylic acid having a polyorganosiloxane chain as a surface modification may be abbreviated as POS-COOH
  • an aliphatic carboxylic acid having a polydimethylsiloxane chain may be abbreviated as PDMS-COOH.
  • the surface modifier may be abbreviated as a residue of an aliphatic carboxylic acid (PDMS-COOH) having a polydimethylsiloxane chain (hereinafter, referred to as “PDMS-COOH residue”. Is preferred.
  • the PTSH modified zirconia nanocrystal particles obtained as described above are re-dispersed in a suitable organic solvent B, The above PDMS-COOH is added to this, sodium carbonate is further added, and it is possible to stir at room temperature overnight.
  • the organic solvent B is not particularly limited, but, for example, a mixed solvent of methanol and methylene chloride is preferably used. After completion of the reaction, for example, the following operation is performed.
  • n represents the number of dimethylsiloxane units
  • m represents the number of carbon atoms of the aliphatic group in the aliphatic carboxylic acid residue
  • the silicone-based composite material of the present embodiment is a dispersion medium, which is crosslinked and cured in the thermosetting silicone resin matrix, and the zirconia nano-porous material is surface-modified with the above-mentioned POS-COOH residue, preferably PDMS-COOH residue. It is characterized in that crystal particles are dispersed.
  • the zirconia nanocrystal particles surface-modified with the above POS-COOH residue, preferably PDMS-COOH residue, have a siloxane unit in the modifier, so they are crosslinked and cured in a thermosetting silicone resin (ie, dispersed) Very well and in a stable manner).
  • the content of the surface-modified zirconia nanocrystal particles is preferably 5 to 80% by mass, and preferably 10 to 50% by mass as ZrO 2 from the viewpoint of improvement of the refractive index and dispersibility. More preferable.
  • the content of nanocrystalline particles is less than 5% by mass, the improvement of the refractive index has little meaning.
  • the content of the nanocrystal particles exceeds 80%, the possibility of devitrification due to the aggregation of the particles increases, and even if it is transparent, it is extremely fragile, and the properties of the resin are impaired.
  • the content of the surface-modified zirconia nanocrystal particles is more preferably 10 to 50% by mass as ZrO 2 .
  • the said silicone type composite material can be efficiently manufactured according to the method of this embodiment shown below.
  • the method for producing the silicone-based composite material of the present invention is (A) Preparation of mixed solution containing thermosetting silicone resin, organic solvent dispersion of zirconia nanocrystal particles surface-modified with the above POS-COOH residue, preferably PDMS-COOH residue, and curing catalyst The process to (B) distilling off the solvent in the liquid mixture; (C) heat treating the mixture after evaporation of the solvent to crosslink and cure the thermosetting silicone resin.
  • thermosetting silicone resin used at the said (a) process the mixture of an addition reaction type silicone resin and a silicone type crosslinking agent can be used.
  • this addition reaction type silicone resin for example, at least one selected from polyorganosiloxanes having an alkenyl group as a functional group in the molecule can be mentioned.
  • Preferred examples of the polyorganosiloxane having an alkenyl group as a functional group in the molecule include polydimethylsiloxane having a vinyl group as a functional group, polydimethylsiloxane having a hexenyl group as a functional group, and a mixture thereof. .
  • silicone type crosslinking agent for example, a polyorganosiloxane having at least two silicon-bonded hydrogen atoms in one molecule, specifically, a dimethylhydrogensiloxy end-capped dimethylsiloxane-methylhydrogensiloxane copolymer, Examples thereof include trimethylsiloxy end-capped dimethylsiloxane-methyl hydrogen siloxane copolymer, trimethylsiloxane end-capped poly (methyl hydrogen siloxane), poly (hydrogensilsesquioxane) and the like.
  • a platinum compound is usually used as a curing catalyst.
  • the platinum-based compound include particulate platinum, particulate platinum adsorbed on a carbon powder carrier, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, palladium, rhodium catalyst and the like. .
  • the highly colorless and transparent zirconia nanocrystal particle-containing silicone resin dispersion can be obtained by the steps (a) and (b).
  • step (c) the thermosetting resin is crosslinked and cured by heating the silicone resin dispersion, for example, at a temperature of 100 to 200 ° C. for about 1 to 12 hours.
  • a base composite material is obtained.
  • the silicone-based composite material thus obtained is transparent, and the refractive index is usually about 1.4 to 1.6, though it depends on the content of the zirconia nanocrystal particles.
  • the surface-modified zirconia nanocrystal particles capable of stably maintaining good dispersibility in the dispersion medium can be contained in the thermosetting silicone resin matrix with high dispersibility.
  • Embodiment 3 The technical scope of the present invention is not limited to the above-described embodiments, and includes various modifications and improvements as long as specific effects obtained by the constituent elements of the invention and the combination thereof can be derived. Therefore, in the present embodiment, various modifications in the first embodiment will be described. The points not particularly mentioned are the same as in the first embodiment.
  • the compound having the modifying portion, the stability contributing portion and the dispersibility contributing portion in one structural formula is mentioned, and as a specific example thereof, a fat having both the modifying portion and the stability contributing portion Are listed for the group carboxylic acid residue.
  • a fat having both the modifying portion and the stability contributing portion Are listed for the group carboxylic acid residue.
  • the zirconia nanoparticles it may be considered that they may not be aliphatic carboxylic acid residues.
  • ketone groups or aldehyde groups may be applicable.
  • a predetermined number of carbon chains may be bonded to these modified portions.
  • the dispersibility contributing portion other than the polyorganosiloxane chain may be used as long as the surface modified zirconia nanoparticles can be well dispersed.
  • the adjustment for stabilizing the dispersibility may be performed by changing the number of carbon atoms in the stability contributing portion, providing a substituent in the carbon skeleton, or the like.
  • a modification part a stability contribution part, and a dispersibility contribution part, if another functional group, a carbon chain, etc. are combined to the functional group in each part, if each function can be exhibited, here Those containing other functional groups and carbon chains mentioned in the above are referred to as a modified portion, a stability contributing portion and a dispersive contributing portion.
  • the zirconia nanoparticles modified by aliphatic carboxylic acid residues but also the steps before this modification is performed, that is, the steps modified by aryl sulfonic acid residues are also described.
  • the arylsulfonic acid residue is described, but what can be used for the pretreatment is not limited to the arylsulfonic acid residue, as long as it can be substituted by the above-mentioned compound later.
  • organic sulfonic acids other than aryl sulfonic acids may be used, and those having a ketone group or an aldehyde group may be applicable.
  • Example 1 [1. Preparation of PTSH modified zirconia nanocrystal particles] Oxide chloride, zirconium octahydrate (ZrOCl 2 ⁇ 8H 2 O, manufactured by Kanto Kagaku) 1.29 g and (4 mmol) p-toluenesulfonic acid monohydrate (manufactured by Kanto Chemical) 190 mg (1 mmol), ethanol (Wako Pure It was made to melt
  • the solution was filled in a pressure vessel (stainless steel with a 50 ml Teflon (registered trademark) inner cylinder), heated in an oven at 170 ° C. for 40 hours, allowed to cool to room temperature, and then released. At this time, the reaction solution was clear and colorless, and no precipitation was observed.
  • a pressure vessel stainless steel with a 50 ml Teflon (registered trademark) inner cylinder
  • reaction solution was subjected to an evaporator, and then methanol was added in excess, and centrifugation was performed to collect a precipitate. It was confirmed that the precipitate was well dispersed in toluene. The same methanol wash was repeated several times.
  • the obtained toluene dispersion is filtered to remove sodium carbonate, p-toluenesulfonic acid is substituted, and a dispersion of zirconia nanocrystals surface-modified with PDMS-COOH residues (ie PDMS-COO group) is obtained. It was done.
  • the surface modifier of the surface of the zirconia nanocrystal particle was substituted from a PTSH to a PDMS-COOH residue because the sulfur almost disappeared.
  • the portion of the zirconia nanocrystal did not change from the nanocrystal obtained in Example 1. That is, it was confirmed that the crystal form was a tetragonal zirconium oxide crystal as it was, and it was a microcrystalline with a diameter of 2 to 3 nm.
  • Example 2 The surface-modified zirconia nanocrystals obtained in the above (1) were added to 2 g of “SS-6001” (thermosetting silicone resin) A and B mixed in equal amounts by Saint-Yurek Co., Ltd. 1 g of a toluene dispersion of particles was added as ZrO 2 and mixed well to prepare a mixture.
  • SS-6001 thermosetting silicone resin
  • this silicone resin dispersion was heated and cured in an oven at 160 ° C. for 12 hours to obtain a transparent ZrO 2 -silicone composite material.
  • the ZrO 2 content in this composite material was 50% by mass, and the refractive index of the composite material was 1.51.
  • the refractive index of the silicone resin prepared without adding the zirconia nanocrystals was 1.41, and it was shown that mixing with the zirconia nanocrystals is effective for improving the resin refractive index.
  • the surface-modified zirconia nanocrystal particles of the present invention can be stably dispersed in a thermosetting silicone resin matrix, and can provide a silicone-based composite material useful as an LED sealing material or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed are surface-modified zirconia nanocrystal particles which are obtained by surface-modifying zirconia nanoparticles with a compound that comprises, in each molecule, a modifying moiety for surface-modifying a zirconia nanoparticle, a stability-providing moiety that is composed of a carbon skeleton bound to the modifying moiety, and a dispersibility-providing moiety that is composed of a polymer chain bound to the stability-providing moiety and provides the dispersion medium with dispersibility. Also disclosed is a silicone composite material which is obtained by dispersing the surface-modified zirconia nanocrystal particles in a thermoset silicone resin matrix that is cured by crosslinking.

Description

表面修飾ジルコニアナノ結晶粒子とその製造方法、並びにシリコーン系複合材料とその製造方法Surface-modified zirconia nanocrystal particles and method for producing the same, and silicone based composite material and method for producing the same
 本発明は、表面修飾ジルコニアナノ結晶粒子とその製造方法、並びに前記表面修飾ジルコニアナノ結晶粒子を用いて得られたシリコーン系複合材料とその製造方法に関する。
 さらに詳しくは、本発明は、熱硬化シリコーン樹脂マトリックス中に安定して分散可能な表面修飾ジルコニアナノ結晶粒子と、その効果的な製造方法、並びに熱硬化シリコーン樹脂マトリックス中に、前記表面修飾ジルコニアナノ結晶粒子を分散性よく含む、LED(発光ダイオード)封止材などとして有用なシリコーン系複合材料と、その効果的な製造方法に関するものである。
The present invention relates to surface-modified zirconia nanocrystal particles and a method for producing the same, and a silicone-based composite material obtained using the surface-modified zirconia nanocrystal particles and a method for producing the same.
More particularly, the present invention relates to surface-modified zirconia nanocrystal particles stably dispersible in a thermosetting silicone resin matrix, an effective method for producing the same, and the surface-modified zirconia nano particles in the thermosetting silicone resin matrix. The present invention relates to a silicone-based composite material useful as an LED (light emitting diode) sealing material or the like, which contains crystal particles with high dispersibility, and an effective manufacturing method thereof.
 従来、LED封止材として用いられている熱硬化シリコーン樹脂は、耐熱性、耐候性に優れているが、屈折率が低く、LEDからの光取り出し効率が低いという問題点がある。 Conventionally, a thermosetting silicone resin used as an LED sealing material is excellent in heat resistance and weather resistance, but has a problem that the refractive index is low and the light extraction efficiency from the LED is low.
 これを解決するために、表面修飾により親油性としたチタニアナノ結晶粒子と、熱硬化シリコーン樹脂とのコンポジットを作製することで屈折率向上を目指している(特許文献1)。 In order to solve this, it aims at refractive index improvement by producing the composite of the titania nanocrystal particle made lipophilic by surface modification, and a thermosetting silicone resin (patent document 1).
 シリコーン樹脂とのコンポジットを作製するためのナノ結晶粒子に必要な特性としては、屈折率確保のためのナノ結晶粒子自体の結晶性、シリコーン樹脂マトリックスへの高分散性、シリコーン樹脂マトリックス中での分散安定性などが挙げられる 。 Properties necessary for nanocrystalline particles for producing a composite with silicone resin include crystallinity of nanocrystalline particles themselves for securing refractive index, high dispersibility in silicone resin matrix, and dispersion in silicone resin matrix Stability etc. are mentioned.
WO2008/075784号公報WO 2008/075784 特開2007-269601号公報JP 2007-269601A
 前記特許文献1に記載のナノ粒子は、ナノ粒子表面を被覆する被覆部と、溶媒分散性のための表面修飾子は、同一の原料に起因していることから、一体化した構造となっている。そのため、様々な用途目的に適用しようとした場合、チタニアナノ結晶粒子表面の表面修飾子の選択の幅が狭いという問題がある。また、表面修飾子を変更する場合には、その都度合成方法を見直す必要がある。 The nanoparticles described in the patent document 1 have an integrated structure because the coating portion for coating the surface of the nanoparticles and the surface modifier for solvent dispersibility are derived from the same raw material. There is. Therefore, when it is intended to apply to various purposes, there is a problem that the range of selection of surface modifiers on the surface of titania nanocrystalline particles is narrow. In addition, when changing the surface modifier, it is necessary to review the synthesis method each time.
 また、特許文献1に記載のシリコーンコンポジットは、シリコーン樹脂とナノ結晶粒子表面の表面修飾子の間の縮合による架橋反応で結合を形成しているが、実際に特許文献1の方法を試してみると、ナノ結晶粒子の分散安定性が低いこと、およびシリコーン樹脂マトリックスへの分散性が低いこと、さらには生成物の物性の安定性が低いことが判明し、特許文献1の手法は問題が多いことが判明した。 Moreover, although the silicone composite described in Patent Document 1 forms a bond by a crosslinking reaction due to condensation between the silicone resin and the surface modifier of the surface of the nanocrystal particle, the method of Patent Document 1 is tried in practice. In addition, the dispersion stability of the nanocrystal particles is low, the dispersion in the silicone resin matrix is low, and furthermore, the stability of the physical properties of the product is low, and the method of Patent Document 1 has many problems. It has been found.
 また、チタニアナノ結晶粒子は、紫外光の照射によって青色に着色するフォトクロミズムを示すため、可視光透過率が著しく変化してしまう。このため、チタニアナノ結晶粒子を用いたコンポジットは、LED封止材としては不適切であることが判明した。 In addition, since the titania nanocrystalline particles exhibit photochromism that is colored in blue upon irradiation with ultraviolet light, the visible light transmittance is significantly changed. Therefore, it was found that a composite using titania nanocrystalline particles is unsuitable as an LED encapsulant.
 チタニアナノ結晶粒子における上述の問題を考慮すると、高屈折率・高強度材料として、ジルコニアナノ結晶粒子がチタニアナノ結晶粒子の代替とされ得る。 Given the above problems with titania nanocrystalline particles, zirconia nanocrystalline particles can be substituted for titania nanocrystalline particles as high refractive index, high strength materials.
 一方、非特許文献1には、溶媒非分散性のジルコニアナノ結晶粒子を合成した後に、ナノ結晶粒子表面に表面修飾を施して溶媒分散性のジルコニアナノ結晶粒子を作製する方法が記載されている。 On the other hand, Non-Patent Document 1 describes a method of producing solvent-dispersible zirconia nanocrystal particles by synthesizing surface-non-dispersible zirconia nanocrystal particles and then modifying the surface of the nanocrystal particle. .
 具体的には、非特許文献1の著者らが開発したベンジルアルコール分解法により得られた非分散性ジルコニアナノ結晶粒子に対し、テトラヒドロフラン(THF)を溶媒として、ビニル基を有する4種類の表面修飾子3-(トリメトキシシリル)プロピルメタクリレート(MPS)、エチル3,4-ジヒドロキシシンナメイト(EDHC)、アリルマロン酸(AMA)、トリメチロールプロピンモノアリルエーテル(TMPMA)をそれぞれ用いて表面修飾子の濃度を最適化することにより、溶媒分散性ジルコニアナノ結晶粒子が得られた、と、非特許文献1には記載されている。 Specifically, four types of surface modification having a vinyl group using tetrahydrofuran (THF) as a solvent with respect to the non-dispersed zirconia nanocrystal particles obtained by the benzyl alcohol decomposition method developed by the authors of Non-Patent Document 1 Surface modifiers using 3- (trimethoxysilyl) propyl methacrylate (MPS), ethyl 3,4-dihydroxycinnamate (EDHC), allylmalonic acid (AMA), and trimethylolpropyne monoallyl ether (TMPMA), respectively Non-Patent Document 1 describes that solvent dispersible zirconia nanocrystal particles were obtained by optimizing the concentration.
 また、この非特許文献1では、無水系であるベンジルアルコール分解法に特徴があり、生成したジルコニアナノ結晶粒子の表面はベンジルアルコール由来の分子により覆われている点が特徴的であり(通常のゾルゲル法は水酸基で覆われている)、これが表面修飾子による修飾を可能としている。 In addition, this non-patent document 1 is characterized by the benzyl alcohol decomposition method which is an anhydrous system, and the surface of the produced zirconia nanocrystal particles is characterized by being covered with molecules derived from benzyl alcohol (generally The sol-gel method is covered with hydroxyl groups, which allows modification by surface modifiers.
 しかしながら、非特許文献1のベンジルアルコール分解法は、200℃近い沸点を有するベンジルアルコールを大量に使用する点、原料であるジルコニウムアルコキシドが高価である点が問題であり、量産化には適していない。 However, the benzyl alcohol decomposition method of Non-Patent Document 1 is problematic in that it uses a large amount of benzyl alcohol having a boiling point close to 200 ° C. and that the zirconium alkoxide as a raw material is expensive, and is not suitable for mass production. .
 さらに、非特許文献1では、THF溶媒中のジルコニアナノ結晶粒子濃度が約1質量%と非常に低く、溶媒分散性が得られたと報告されているものの、シリコーン樹脂マトリックスへの混合を目的としたナノ結晶粒子としては、十分な機能を有しているとは言えない。 Furthermore, although Non-Patent Document 1 reports that the concentration of zirconia nanocrystal particles in THF solvent is very low, about 1 mass%, and that the solvent dispersibility is obtained, it was intended for mixing into a silicone resin matrix. The nanocrystal particles can not be said to have sufficient functions.
 また、ナノ結晶粒子分散液が得られたという報告はあるが、表面修飾子を単に加えただけであることから、分散液からナノ結晶粒子のみを遠心分離法などで単離させても表面修飾子がナノ結晶粒子表面に残存している可能性は低い。実際、本発明者が実験した結果、単離したナノ結晶粒子を再び溶媒に分散させようとしても、分散できなかった。
 すなわち、非特許文献1のジルコニアナノ結晶粒子では、安定した溶媒分散性が確保されていない。
In addition, although there is a report that a nanocrystal particle dispersion has been obtained, the surface modification is only added, so even if only nanocrystal particles are isolated from the dispersion by centrifugation etc. It is unlikely that the particles remain on the surface of the nanocrystalline particle. In fact, as a result of experiments conducted by the present inventors, it was not possible to disperse the isolated nanocrystal particles even if they were to be dispersed again in the solvent.
That is, in the zirconia nanocrystal particle of Non-Patent Document 1, stable solvent dispersibility is not ensured.
 また、関連技術であるが、低温度において、短時間で、結晶性が高い金属酸化物ナノ結晶を得ることができる金属酸化物ナノ結晶の製造方法も知られている(特許文献2)。 Moreover, although it is related technology, the manufacturing method of the metal oxide nanocrystal which can obtain a metal oxide nanocrystal with high crystallinity in low temperature and a short time is also known (patent document 2).
 特許文献2の技術においては、含酸素有機溶媒を、金属酸化物前駆体が金属酸化物ナノ結晶へと変化する反応の反応媒として使用すると共に、金属酸化物前駆体に酸素を供給する溶媒として使用している。更に、含酸素有機溶媒とは別の添加剤としてカルボン酸類を加えることにより、得られる金属酸化物ナノ結晶をカルボン酸類で修飾することも記載されている。 In the technique of Patent Document 2, an oxygen-containing organic solvent is used as a reaction medium for the reaction in which the metal oxide precursor is converted to metal oxide nanocrystals, and as a solvent for supplying oxygen to the metal oxide precursor. I use it. Furthermore, modifying the obtained metal oxide nanocrystal with carboxylic acids is also described by adding carboxylic acids as an additive different from the oxygen-containing organic solvent.
 しかしながら、特許文献2においては、金属酸化物ナノ結晶を有機成分で修飾し、金属酸化物ナノ結晶の有機化合物に対する分散性を向上させている。しかしながら、この場合も非特許文献1と同様に、表面修飾子を添加剤として加えただけであることから、分散液からナノ結晶粒子のみを遠心分離法などで単離させても表面修飾子がナノ結晶粒子表面に残存している可能性は低い。 However, in Patent Document 2, metal oxide nanocrystals are modified with an organic component to improve the dispersibility of metal oxide nanocrystals in an organic compound. However, also in this case, as in Non-Patent Document 1, since only the surface modifier is added as an additive, even if only nanocrystal particles are isolated from the dispersion by centrifugation etc. The possibility of remaining on the surface of nanocrystalline particles is low.
 本発明はこのような、状況下でなされたものであり、第1の目的は、熱硬化シリコーン樹脂マトリックス中に安定して分散可能な表面修飾ジルコニアナノ結晶粒子及びその製造方法を提供することにある。
 更に、第2の目的は、熱硬化シリコーン樹脂マトリックス中に、前記表面修飾ジルコニアナノ結晶粒子を分散性よく含むシリコーン系複合材料及びその製造方法を提供することにある。
The present invention has been made under such circumstances, and a first object of the present invention is to provide surface-modified zirconia nanocrystal particles that can be stably dispersed in a thermosetting silicone resin matrix and a method for producing the same. is there.
A second object of the present invention is to provide a silicone-based composite material including the surface-modified zirconia nanocrystal particles well dispersed in a thermosetting silicone resin matrix, and a method for producing the same.
 本発明者は、前記目的を達成するために鋭意研究を重ねた結果、1つの分子中に、オルガノシロキサンのような分散媒体への分散性寄与部や、カルボン酸のカルボキシル基のような修飾部のみならず、所定の炭素骨格からなり、分散性に安定性を付与できる部分を設けた化合物によりジルコニアナノ結晶の表面を修飾することにより、安定した溶媒分散性を付与できるという知見を得た。
 より具体的には、主として熱硬化シリコーン樹脂マトリックスへの分散性向上に寄与する特定の長さのポリオルガノシロキサン鎖を有し、更に、このポリオルガノシロキサン鎖の特定の長さに対する調整役(即ち向上された分散性を安定させる役割)として、特定の炭素数の脂肪族カルボン酸残基を有する化合物によりジルコニアナノ結晶粒子を表面修飾することを想到した。そして、この表面修飾ジルコニアナノ結晶粒子により、上述の目的を達成し得ることを見出した。
 また、有機溶媒中において、アリールスルホン酸残基で表面修飾されてなるジルコニアナノ結晶粒子に対して、上述の脂肪族カルボン酸残基による置換処理を施すことにより、同じく上述の目的を達成し得ることを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventor has found that, in one molecule, a dispersive contribution to a dispersion medium such as organosiloxane or a modification such as carboxylic acid carboxyl group. Besides, it has been found that stable solvent dispersibility can be imparted by modifying the surface of the zirconia nanocrystal with a compound having a predetermined carbon skeleton and provided with a portion capable of imparting stability to dispersibility.
More specifically, it has a polyorganosiloxane chain of a specific length which contributes mainly to the improvement of the dispersibility in the thermosetting silicone resin matrix, and furthermore, a coordinator for the specific length of this polyorganosiloxane chain (ie, As a role of stabilizing the improved dispersibility, it was conceived to surface-modify zirconia nanocrystal particles with a compound having an aliphatic carboxylic acid residue of a specific carbon number. And it discovered that the above-mentioned purpose could be achieved by this surface modification zirconia nanocrystal particle.
Also, the above-mentioned object can be achieved by subjecting zirconia nanocrystal particles, which are surface-modified with an arylsulfonic acid residue, to substitution with the above-mentioned aliphatic carboxylic acid residue in an organic solvent. I found out.
The present invention has been completed based on such findings.
 すなわち、本発明は、
(1)ジルコニアナノ粒子を表面修飾するための修飾部と、
 前記修飾部と結合する炭素骨格からなる安定性寄与部と、
 前記安定性寄与部と結合する高分子鎖からなる、分散媒体への分散性寄与部と、
を、1分子中に備えた化合物により、前記ジルコニアナノ粒子が修飾されたことを特徴とする表面修飾ジルコニアナノ結晶粒子、
(2)前記分散性寄与部が、オルガノシロキサン単位の数が4~100のポリオルガノシロキサン鎖であり、
 前記安定性寄与部と前記修飾部とを合わせたものが、脂肪族カルボン酸に由来する基であって、脂肪族基の炭素数が2~18の脂肪族カルボン酸残基であり、
 前記脂肪族カルボン酸残基により、ジルコニアナノ粒子を表面修飾してなることを特徴とする(1)に記載の表面修飾ジルコニアナノ結晶粒子、
(3)前記脂肪族カルボン酸が、直鎖状飽和モノカルボン酸である、(2)に記載の表面修飾ジルコニアナノ結晶粒子、
(4)前記ポリオルガノシロキサン鎖が、ポリジメチルシロキサン鎖である(2)または(3)に記載の表面修飾ジルコニアナノ結晶粒子、
(5)前記分散媒体が熱硬化シリコーン樹脂マトリックスであることを特徴とする(1)~(4)のいずれか1項に記載の表面修飾ジルコニアナノ結晶粒子、
(6)有機溶媒中において、芳香環上に置換基を有してもよいアリールスルホン酸残基によって、ジルコニアナノ結晶粒子を表面修飾する工程と、
 ジルコニアナノ粒子を表面修飾するための修飾部と、前記修飾部と結合する炭素骨格からなる安定性寄与部と、前記安定分散性寄与部と結合する高分子鎖からなる分散性寄与部とを1つの分子中に備えた化合物により、前記アリールスルホン酸残基を置換する工程と、
を含むことを特徴とする表面修飾ジルコニアナノ結晶粒子の製造方法、
(7)前記アリール系スルホン酸がp-トルエンスルホン酸である、(6)に記載の表面修飾ジルコニアナノ結晶粒子の製造方法、
(8)架橋硬化してなる熱硬化シリコーン樹脂マトリックス中に、(1)~(5)のいずれか1項に記載の表面修飾ジルコニアナノ結晶粒子が分散されてなることを特徴とするシリコーン系複合材料、
(9)表面装飾ジルコニアナノ結晶粒子の含有量が、ZrO2として5~80質量%である、(8)に記載のシリコーン系複合材料、及び、
(10)(a)熱硬化性シリコーン樹脂と、(1)~(5)のいずれか1項に記載の表面修飾ジルコニアナノ結晶粒子の有機溶媒分散液と、硬化触媒とを含む混合液を調製する工程と、
(b)前記混合液中の溶媒を留去させる工程と、
(c)溶媒留去後の混合物を加熱処理して、熱硬化性シリコーン樹脂を架橋硬化させる工程と、
を含むことを特徴とするシリコーン系複合材料の製造方法
を提供するものである。
That is, the present invention
(1) a modification for surface modification of zirconia nanoparticles;
A stability contribution consisting of a carbon skeleton bound to said modification;
A dispersive contribution to a dispersion medium consisting of a polymer chain coupled to the stability contributing part;
A surface-modified zirconia nanocrystal particle, wherein the zirconia nanoparticle is modified by a compound provided in one molecule,
(2) The dispersion contributing portion is a polyorganosiloxane chain having 4 to 100 organosiloxane units,
A combination of the stability contributing portion and the modifying portion is a group derived from an aliphatic carboxylic acid, and is an aliphatic carboxylic acid residue having 2 to 18 carbon atoms in the aliphatic group,
The surface-modified zirconia nanocrystal particle according to (1), which is obtained by surface-modifying a zirconia nanoparticle with the aliphatic carboxylic acid residue.
(3) The surface-modified zirconia nanocrystal particle according to (2), wherein the aliphatic carboxylic acid is a linear saturated monocarboxylic acid.
(4) The surface-modified zirconia nanocrystal particle according to (2) or (3), wherein the polyorganosiloxane chain is a polydimethylsiloxane chain,
(5) The surface-modified zirconia nanocrystal particle according to any one of (1) to (4), wherein the dispersion medium is a thermosetting silicone resin matrix.
(6) surface-modifying zirconia nanocrystal particles with an arylsulfonic acid residue which may have a substituent on an aromatic ring in an organic solvent;
A modification for surface modification of zirconia nanoparticles, a stability contributing part comprising a carbon skeleton binding to the modifying part, and a dispersion contributing part comprising a polymer chain binding to the stable dispersion contributing part Replacing the aryl sulfonic acid residue with a compound provided in one molecule;
A method of producing surface-modified zirconia nanocrystals particles comprising
(7) The method for producing surface-modified zirconia nanocrystal particles according to (6), wherein the aryl sulfonic acid is p-toluene sulfonic acid,
(8) A silicone-based composite characterized in that the surface-modified zirconia nanocrystal particles according to any one of (1) to (5) are dispersed in a thermosetting silicone resin matrix formed by crosslinking and curing. material,
(9) The silicone-based composite material according to (8), wherein the content of the surface-modified zirconia nanocrystal particles is 5 to 80% by mass as ZrO 2, and
(10) (a) Preparation of a mixed liquid containing a thermosetting silicone resin, an organic solvent dispersion of the surface-modified zirconia nanocrystal particles according to any one of (1) to (5), and a curing catalyst The process to
(B) distilling off the solvent in the liquid mixture;
(C) heat treating the mixture after evaporation of the solvent to crosslink and cure the thermosetting silicone resin;
And providing a method of producing a silicone-based composite material.
 なお、本明細書において、架橋硬化前のシリコーン樹脂を「熱硬化性シリコーン樹脂」と、架橋硬化後のシリコーン樹脂を「熱硬化シリコーン樹脂」と呼称する。
 また、本明細書において、脂肪族カルボン酸に由来する基であってジルコニアナノ結晶表面と化学結合する基(例えば「脂肪族カルボン酸におけるカルボキシル基」「脂肪族カルボキシオキシ基」等)を、「脂肪族カルボン酸残基」と呼称する。同様に、アリールスルホン酸に由来する基であってジルコニアナノ結晶表面と化学結合する基(例えば、「アリールスルホン酸におけるスルホン基」「アリールスルホニルオキシ基」等)を、「アリールスルホン酸残基」と呼称する。なお、前記「アリールスルホン酸残基」は、芳香環上に置換基を有するもの、及び、芳香環上に置換基を有さないものも含む。
In the present specification, the silicone resin before crosslinking and curing is referred to as "thermosetting silicone resin", and the silicone resin after crosslinking and curing is referred to as "thermosetting silicone resin".
Further, in the present specification, a group derived from an aliphatic carboxylic acid and chemically bonded to the surface of the zirconia nanocrystal (eg, “a carboxyl group in an aliphatic carboxylic acid”, “aliphatic carboxy group”, etc.) It is called "aliphatic carboxylic acid residue". Similarly, a group derived from aryl sulfonic acid and chemically bonded to the surface of zirconia nanocrystal (eg, "sulfone group in aryl sulfonic acid", "arylsulfonyloxy group", etc.), "aryl sulfonic acid residue" It is called. The “aryl sulfonic acid residue” includes those having a substituent on the aromatic ring and those having no substituent on the aromatic ring.
 本発明によれば、熱硬化シリコーン樹脂マトリックスに安定して分散可能な表面修飾ジルコニアナノ結晶粒子及びその製造方法、並びに、熱硬化シリコーン樹脂マトリックス中に、前記表面修飾ジルコニアナノ結晶粒子を分散性よく含むシリコーン系複合材料及びその製造方法を提供することができる。 According to the present invention, surface-modified zirconia nanocrystal particles stably dispersible in a thermosetting silicone resin matrix, a method for producing the same, and the surface-modified zirconia nanocrystal particles in the thermosetting silicone resin matrix with good dispersibility It is possible to provide a silicone based composite material containing the same and a method for producing the same.
 以下、本発明にかかる実施形態について述べる。
順番としては、<実施の形態1>においては、表面修飾ジルコニアナノ結晶粒子及びその製造方法について述べる。
 そして、<実施の形態2>においては、表面修飾ジルコニアナノ結晶粒子を含むシリコーン系複合材料及びその製造方法について述べる。
 更に、<実施の形態3>については種々の変形例について述べる。
Hereinafter, embodiments according to the present invention will be described.
As order, in <Embodiment 1>, surface modified zirconia nanocrystal particles and a method for producing the same will be described.
Then, in <Embodiment 2>, a silicone-based composite material including surface modified zirconia nanocrystal particles and a method for producing the same will be described.
Furthermore, <Modification 3> will be described with respect to various modified examples.
<実施の形態1>
 まず、本実施形態においては、製造方法について述べつつ、この方法により製造された表面修飾ジルコニアナノ結晶粒子について説明する。
Embodiment 1
First, in the present embodiment, the surface modified zirconia nanocrystal particles manufactured by this method will be described while describing the manufacturing method.
[ジルコニアナノ結晶粒子に対する有機スルホン酸による修飾]
 まず適当な有機溶媒Aの中において、ジルコニア前駆体と、有機スルホン酸、好ましくはベンゼンスルホン酸やp-トルエンスルホン酸などのアリールスルホン酸、特に好ましくはp-トルエンスルホン酸とを反応させて、アリールスルホン酸残基修飾ジルコニアナノ結晶粒子、特に好ましくはp-トルエンスルホン酸残基(PTSHと略記することがある。)修飾ジルコニアナノ結晶粒子を形成させる。
[Modification of zirconia nanocrystal particles by organic sulfonic acid]
First, in an appropriate organic solvent A, a zirconia precursor is reacted with an organic sulfonic acid, preferably an arylsulfonic acid such as benzenesulfonic acid or p-toluenesulfonic acid, particularly preferably p-toluenesulfonic acid, Aryl sulfonic acid residue modified zirconia nanocrystal particles, particularly preferably p-toluene sulfonic acid residue (sometimes abbreviated as PTSH) modified zirconia nanocrystal particles are formed.
 この際用いるジルコニア前駆体としては、塩化ジルコニルやテトラアルコキシジルコニウムなどを用いることができるが、反応性の観点から、塩化ジルコニルが好ましく、特に塩化ジルコニル8水和物(ZrOCl・8HO)が好適である。 As the zirconia precursor used at this time, zirconyl chloride, tetraalkoxyzirconium and the like can be used, but zirconyl chloride is preferable from the viewpoint of reactivity, and zirconyl chloride octahydrate (ZrOCl 2 · 8H 2 O) is particularly preferable. It is suitable.
 アリールスルホン酸としてp-トルエンスルホン酸を使用する場合には、前記ジルコニア前駆体におけるZrとp-トルエンスルホン酸のモル比は8:1~1:2が好ましい。p-トルエンスルホン酸の割合が上記範囲より少ないと、PTSH修飾ジルコニアナノ結晶粒子の分散性が低下するおそれがある。Zrとp-トルエンスルホン酸のより好ましいモル比は4:1~1:1の範囲である。 When p-toluenesulfonic acid is used as the arylsulfonic acid, the molar ratio of Zr to p-toluenesulfonic acid in the zirconia precursor is preferably 8: 1 to 1: 2. If the proportion of p-toluenesulfonic acid is less than the above range, the dispersibility of the PTSH modified zirconia nanocrystal particles may be reduced. A more preferable molar ratio of Zr to p-toluenesulfonic acid is in the range of 4: 1 to 1: 1.
 有機溶媒Aとしては、PTSH修飾ジルコニアナノ結晶粒子が効果的に形成される溶媒であればよく、特に制限はないが、例えばエタノールとオルトギ酸トリエチルとの混合溶媒などを好ましく用いることができる。 The organic solvent A is not particularly limited as long as it can effectively form PTSH modified zirconia nanocrystal particles, and for example, a mixed solvent of ethanol and triethyl orthoformate can be preferably used.
 また、上述の有機溶媒Aとしては前記のエタノールとオルトギ酸トリエチルとの混合溶媒を、上述のジルコニア前駆体としては前記塩化ジルコニル8水和物を、上述のアリールスルホン酸としては前記のp-トルエンスルホン酸をそれぞれ用いる場合、反応は、加圧容器中において、好ましくは100~240℃、より好ましくは120~200℃の温度にて行われる。 Moreover, as the above-mentioned organic solvent A, a mixed solvent of the above-mentioned ethanol and triethyl orthoformate, as the above-mentioned zirconia precursor, the above-mentioned zirconyl chloride octahydrate, and as the above-mentioned arylsulfonic acid, the above-mentioned p-toluene When each sulfonic acid is used, the reaction is carried out in a pressure vessel, preferably at a temperature of 100 to 240 ° C., more preferably 120 to 200 ° C.
 この反応時間は、反応温度やp-トルエンスルホン酸の量などに左右され、一概に決めることはできないが、通常8~120時間程度、好ましくは12~60時間である。 The reaction time depends on the reaction temperature, the amount of p-toluenesulfonic acid, and the like, and can not be generally determined, but is usually about 8 to 120 hours, preferably 12 to 60 hours.
 なお、反応時間によって生成するジルコニアナノ結晶の結晶構造を選択できる。即ち、原料濃度やジルコニア前駆体とスルホン酸のモル比率、反応温度によって最適な反応時間は変化するが、反応温度を短くすると正方晶ジルコニアナノ結晶が生成し、長くすると単斜晶ジルコニアナノ結晶が生成する傾向にある。
 正方晶ジルコニアナノ結晶は単斜晶ジルコニアナノ結晶より高い屈折率を有しており、単斜晶ジルコニアナノ結晶は正方晶ジルコニアナノ結晶より化学的に安定であると思われる。使用用途に応じてそれぞれを作り分けることが可能である。
Note that the crystal structure of zirconia nanocrystals can be selected depending on the reaction time. That is, although the optimum reaction time changes depending on the raw material concentration, the molar ratio of the zirconia precursor and the sulfonic acid, and the reaction temperature, shortening the reaction temperature produces tetragonal zirconia nanocrystals, and lengthening the monoclinic zirconia nanocrystals It tends to generate.
Tetragonal zirconia nanocrystals have a higher refractive index than monoclinic zirconia nanocrystals, and monoclinic zirconia nanocrystals appear to be more chemically stable than tetragonal zirconia nanocrystals. It is possible to make each separately according to a use application.
 反応終了後、反応液中の溶媒を、好ましくは減圧下に留去させることにより、下記式(1)で表される構造を有するPTSH修飾ジルコニアナノ結晶粒子が得られる。 After completion of the reaction, the solvent in the reaction solution is preferably distilled off under reduced pressure to obtain PTSH-modified zirconia nanocrystal particles having a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 このPTSH修飾ジルコニアナノ結晶粒子は、白色粉末として得られ、メタノールや塩化メチレンなどの有機溶媒に再分散可能であり、無色透明なジルコニアナノ結晶粒子分散液を得ることができる。 The PTSH modified zirconia nanocrystal particles are obtained as a white powder, can be redispersed in an organic solvent such as methanol or methylene chloride, and a colorless and transparent zirconia nanocrystal particle dispersion can be obtained.
[ジルコニアナノ結晶粒子に対する本実施形態の化合物による修飾]
 次に、このようにして得られたPTSH修飾ジルコニアナノ結晶粒子に対し、ジルコニアナノ粒子を表面修飾するための修飾部と、前記修飾部と結合する炭素骨格からなる安定性寄与部と、分散媒体への分散性寄与部であって前記安定性寄与部と結合する高分子鎖からなる分散性寄与部とを1分子中に備えた化合物による修飾を行う 。
[Modification of zirconia nanocrystal particles by the compound of this embodiment]
Next, to the thus-obtained PTSH-modified zirconia nanocrystal particle, a modified portion for modifying the surface of the zirconia nanoparticle, a stability contributing portion comprising a carbon skeleton bonded to the modified portion, and a dispersion medium The compound is modified with a compound having, in one molecule thereof, a dispersiveness contributing portion, and a dispersiveness contributing portion consisting of a polymer chain that is bonded to the stability contributing portion.
 具体的には、前記分散性寄与部が、オルガノシロキサン単位の数が4~100のポリオルガノシロキサン鎖であり、前記安定性寄与部と前記修飾部とを合わせたものが、脂肪族カルボン酸に由来する基であって、脂肪族基の炭素数が2~18の脂肪族カルボン酸残基であり、前記脂肪族カルボン酸残基により、ジルコニアナノ粒子を表面修飾してなるジルコニアナノ結晶粒子を形成させる。 Specifically, the dispersion contributing portion is a polyorganosiloxane chain having 4 to 100 organosiloxane units, and the combination of the stability contributing portion and the modifying portion is an aliphatic carboxylic acid. A group derived from an aliphatic carboxylic acid residue having 2 to 18 carbon atoms in the aliphatic group, and surface-modified zirconia nanoparticles by the aliphatic carboxylic acid residue; Let it form.
 前記ポリオルガノシロキサン鎖は、オルガノシロキサン単位の数が4~100が好ましい。
 前記ポリオルガノシロキサン鎖のオルガノシロキサン単位が4より小さい場合、ジルコニアナノ結晶粒子のシリコーン樹脂マトリクス中への分散性が低下する。
 一方、オルガノシロキサン鎖単位が100より大きい場合は、該脂肪族カルボン酸残基で修飾されたジルコニアナノ結晶粒子の形成が著しく遅くなる。この理由は、ポリオルガノシロキサン鎖の立体障害のためと推測される。
The polyorganosiloxane chain preferably has 4 to 100 organosiloxane units.
When the organosiloxane unit of the polyorganosiloxane chain is smaller than 4, the dispersibility of the zirconia nanocrystal particles in the silicone resin matrix is reduced.
On the other hand, when the organosiloxane chain unit is more than 100, the formation of the zirconia nanocrystal particles modified with the aliphatic carboxylic acid residue is significantly delayed. The reason is speculated to be due to steric hindrance of the polyorganosiloxane chain.
 前記ポリオルガノシロキサン鎖としては、ポリジメチルシロキサン(以下、PDMSと略記することがある。)鎖が好ましい。 As the polyorganosiloxane chain, a polydimethylsiloxane (hereinafter sometimes abbreviated as PDMS) chain is preferable.
 一方、脂肪族カルボン酸としては、脂肪族基の炭素数は2~18が好ましく、直鎖状飽和モノカルボン酸が好ましい。
 脂肪族基の炭素数が2より小さいと該脂肪族カルボン酸が不安定になり、反応中に分解してしまう。
 脂肪族基の炭素数が18より大きいと、脂肪族基の占める体積が極めて大きくなるため、屈折率向上の意味をなさなくなる。
 また、メチレン鎖はシリコーンへの分散性への寄与が小さいので、できるだけ短い方が良い。
On the other hand, as the aliphatic carboxylic acid, the carbon number of the aliphatic group is preferably 2 to 18, and a linear saturated monocarboxylic acid is preferable.
When the carbon number of the aliphatic group is less than 2, the aliphatic carboxylic acid becomes unstable and is decomposed during the reaction.
If the carbon number of the aliphatic group is more than 18, the volume occupied by the aliphatic group becomes extremely large, and the meaning of the improvement of the refractive index is lost.
In addition, since the methylene chain has a small contribution to the dispersibility in silicone, it is better to be as short as possible.
 ポリオルガノシロキサン鎖を有する脂肪族カルボン酸におけるCOOH基は、該ポリオルガノシロキサン鎖の末端に存在していてもよいし、側鎖に存在していてもよいが、末端に存在していることが好ましい。 The COOH group in the aliphatic carboxylic acid having a polyorganosiloxane chain may be present at the end of the polyorganosiloxane chain or may be present in the side chain, but it is required to be present at the end preferable.
 なお、表面修飾としてのポリオルガノシロキサン鎖を有する脂肪族カルボン酸はPOS-COOHと略記することがあり、ポリジメチルシロキサン鎖を有する脂肪族カルボン酸はPDMS-COOHと略記することがある。
 上述のように、本実施形態においては表面修飾子として、ポリジメチルシロキサン鎖を有する脂肪族カルボン酸(PDMS-COOH)の残基(以降、「PDMS-COOH残基」と略記することがある。)が好適である。
An aliphatic carboxylic acid having a polyorganosiloxane chain as a surface modification may be abbreviated as POS-COOH, and an aliphatic carboxylic acid having a polydimethylsiloxane chain may be abbreviated as PDMS-COOH.
As described above, in the present embodiment, the surface modifier may be abbreviated as a residue of an aliphatic carboxylic acid (PDMS-COOH) having a polydimethylsiloxane chain (hereinafter, referred to as “PDMS-COOH residue”. Is preferred.
 本実施形態において、前記PDMS-COOH残基で修飾されたジルコニアナノ結晶粒子を得るには、上述のようにして得られたPTSH修飾ジルコニアナノ結晶粒子を、適当な有機溶媒Bに再分散させ、これに前記のPDMS-COOHを加え、さらに炭酸ナトリウムを添加し、室温で一晩程度攪拌する方法がとられる。 In this embodiment, in order to obtain the zirconia nanocrystal particles modified with the PDMS-COOH residue, the PTSH modified zirconia nanocrystal particles obtained as described above are re-dispersed in a suitable organic solvent B, The above PDMS-COOH is added to this, sodium carbonate is further added, and it is possible to stir at room temperature overnight.
 また、前記有機溶媒Bとしては、特に制限はないが、例えばメタノールと塩化メチレンとの混合溶媒が好ましく用いられる。反応終了後の反応液は、例えば下記の操作が施される。 The organic solvent B is not particularly limited, but, for example, a mixed solvent of methanol and methylene chloride is preferably used. After completion of the reaction, for example, the following operation is performed.
 反応液中の溶媒を留去したのち、過剰のメタノールを添加し、遠心分離などの固液分離手段を施し、得られた沈殿物をトルエンなどの溶媒に再分散させ、さらに前記と同様のメタノール洗浄を数回繰り返す。次いで、このトルエン分散液を濾過して炭酸ナトリウムを除去することにより、下記式(2)で表される構造を有するPDMS-COOH残基(即ちPDMS-COO基)で修飾されたジルコニアナノ結晶粒子を含む分散液を得ることができる After distilling off the solvent in the reaction solution, an excess of methanol is added, solid-liquid separation means such as centrifugation is applied, the obtained precipitate is re-dispersed in a solvent such as toluene, and the same methanol as above. Repeat the wash several times. Then, the toluene dispersion liquid is filtered to remove sodium carbonate, whereby zirconia nanocrystal particles modified with PDMS-COOH residue (that is, PDMS-COO group) having a structure represented by the following formula (2) To obtain a dispersion containing
Figure JPOXMLDOC01-appb-C000002
(式中、nはジメチルシロキサン単位の数を示し、mは、脂肪族カルボン酸残基における脂肪族基の炭素数を示す。)
Figure JPOXMLDOC01-appb-C000002
(Wherein, n represents the number of dimethylsiloxane units, and m represents the number of carbon atoms of the aliphatic group in the aliphatic carboxylic acid residue).
[本実施形態の効果]
 本実施形態によれば、1つの分子中に、オルガノシロキサンのような、分散媒体への分散性寄与部や、カルボン酸のカルボキシル基のような修飾部のみならず、所定の炭素骨格からなり且つ分散性に安定性を付与できる部分を設けた化合物によりジルコニアナノ結晶の表面を修飾することにより、安定した溶媒分散性を付与することができる。
[Effect of this embodiment]
According to this embodiment, not only the dispersive contribution portion to the dispersion medium such as organosiloxane, the modification portion such as carboxyl group of carboxylic acid but also a predetermined carbon skeleton in one molecule and By modifying the surface of the zirconia nanocrystal with a compound provided with a portion capable of imparting stability to dispersibility, stable solvent dispersibility can be imparted.
<実施の形態2>
 次に、実施の形態1において表面修飾されたジルコニアナノ結晶粒子を含有するシリコーン系複合材料について説明する。
Second Embodiment
Next, a silicone-based composite material containing the surface-modified zirconia nanocrystal particles in Embodiment 1 will be described.
 本実施形態のシリコーン系複合材料は、分散媒体であって架橋硬化してなる熱硬化シリコーン樹脂マトリックス中に、前述したPOS-COOH残基、好ましくはPDMS-COOH残基で表面修飾されたジルコニアナノ結晶粒子が分散されてなることを特徴とする。 The silicone-based composite material of the present embodiment is a dispersion medium, which is crosslinked and cured in the thermosetting silicone resin matrix, and the zirconia nano-porous material is surface-modified with the above-mentioned POS-COOH residue, preferably PDMS-COOH residue. It is characterized in that crystal particles are dispersed.
 前記のPOS-COOH残基、好ましくはPDMS-COOH残基で表面修飾されたジルコニアナノ結晶粒子は、修飾子中にシロキサン単位を有することから、架橋硬化してなる熱硬化シリコーン樹脂中(即ち分散媒体中)に、極めて良好に、かつ安定して分散する。 The zirconia nanocrystal particles surface-modified with the above POS-COOH residue, preferably PDMS-COOH residue, have a siloxane unit in the modifier, so they are crosslinked and cured in a thermosetting silicone resin (ie, dispersed) Very well and in a stable manner).
 本実施形態のシリコーン系複合材料においては、屈折率の向上及び分散性の観点から、表面修飾ジルコニアナノ結晶粒子の含有量は、ZrOとして5~80質量%が好ましく、10~50質量%がより好ましい。
 ナノ結晶粒子の含有量が5質量%を下回った場合、屈折率の向上にはほとんど意味を有さない。
 一方、ナノ結晶粒子の含有量が80%を上回った場合、粒子同士の凝集により失透する可能性が高くなり、透明であっても極端にもろくなるなど、樹脂の特性を損なってしまう。
 屈折率の向上とシリコーン樹脂マトリクスへの分散性の両立の観点から、表面修飾ジルコニアナノ結晶粒子の含有量は、ZrOとして10~50質量%がより好ましい。
In the silicone-based composite material of the present embodiment, the content of the surface-modified zirconia nanocrystal particles is preferably 5 to 80% by mass, and preferably 10 to 50% by mass as ZrO 2 from the viewpoint of improvement of the refractive index and dispersibility. More preferable.
When the content of nanocrystalline particles is less than 5% by mass, the improvement of the refractive index has little meaning.
On the other hand, when the content of the nanocrystal particles exceeds 80%, the possibility of devitrification due to the aggregation of the particles increases, and even if it is transparent, it is extremely fragile, and the properties of the resin are impaired.
From the viewpoint of achieving both the improvement of the refractive index and the dispersibility in the silicone resin matrix, the content of the surface-modified zirconia nanocrystal particles is more preferably 10 to 50% by mass as ZrO 2 .
 当該シリコーン系複合材料は、以下に示す本実施形態の方法に従えば、効率よく製造することができる。 The said silicone type composite material can be efficiently manufactured according to the method of this embodiment shown below.
 本発明のシリコーン系複合材料の製造方法は、
(a)熱硬化性シリコーン樹脂と、前記のPOS-COOH残基、好ましくはPDMS-COOH残基で表面修飾されたジルコニアナノ結晶粒子の有機溶媒分散液と、硬化触媒とを含む混合液を調製する工程と、
(b)前記混合液中の溶媒を留去させる工程と、
(c)溶媒留去後の混合物を加熱処理して、熱硬化性シリコーン樹脂を架橋硬化させる工程と、を含むことを特徴とする。
The method for producing the silicone-based composite material of the present invention is
(A) Preparation of mixed solution containing thermosetting silicone resin, organic solvent dispersion of zirconia nanocrystal particles surface-modified with the above POS-COOH residue, preferably PDMS-COOH residue, and curing catalyst The process to
(B) distilling off the solvent in the liquid mixture;
(C) heat treating the mixture after evaporation of the solvent to crosslink and cure the thermosetting silicone resin.
 前記(a)工程で用いられる熱硬化性シリコーン樹脂としては、付加反応型シリコーン樹脂とシリコーン系架橋剤との混合物を用いることができる。この付加反応型シリコーン樹脂としては、例えば分子中に官能基としてアルケニル基を有するポリオルガノシロキサンの中から選ばれる少なくとも1種を挙げることができる。
 上記の分子中に官能基としてアルケニル基を有するポリオルガノシロキサンの好ましいものとしては、ビニル基を官能基とするポリジメチルシロキサン、ヘキセニル基を官能基とするポリジメチルシロキサン及びこれらの混合物などが挙げられる。
As a thermosetting silicone resin used at the said (a) process, the mixture of an addition reaction type silicone resin and a silicone type crosslinking agent can be used. As this addition reaction type silicone resin, for example, at least one selected from polyorganosiloxanes having an alkenyl group as a functional group in the molecule can be mentioned.
Preferred examples of the polyorganosiloxane having an alkenyl group as a functional group in the molecule include polydimethylsiloxane having a vinyl group as a functional group, polydimethylsiloxane having a hexenyl group as a functional group, and a mixture thereof. .
 シリコーン系架橋剤としては、例えば一分子中に少なくとも2個のケイ素原子結合水素原子を有するポリオルガノシロキサン、具体的には、ジメチルハイドロジェンシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキシ基末端封鎖ジメチルシロキサン-メチルハイドロジェンシロキサン共重合体、トリメチルシロキサン基末端封鎖ポリ(メチルハイドロジェンシロキサン)、ポリ(ハイドロジェンシルセスキオキサン)などが挙げられる。 As a silicone type crosslinking agent, for example, a polyorganosiloxane having at least two silicon-bonded hydrogen atoms in one molecule, specifically, a dimethylhydrogensiloxy end-capped dimethylsiloxane-methylhydrogensiloxane copolymer, Examples thereof include trimethylsiloxy end-capped dimethylsiloxane-methyl hydrogen siloxane copolymer, trimethylsiloxane end-capped poly (methyl hydrogen siloxane), poly (hydrogensilsesquioxane) and the like.
 また、硬化触媒としては、通常白金系化合物が用いられる。この白金系化合物の例としては、微粒子状白金、炭素粉末担体上に吸着された微粒子状白金、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、パラジウム、ロジウム触媒などが挙げられる。 Further, as a curing catalyst, a platinum compound is usually used. Examples of the platinum-based compound include particulate platinum, particulate platinum adsorbed on a carbon powder carrier, chloroplatinic acid, alcohol-modified chloroplatinic acid, olefin complexes of chloroplatinic acid, palladium, rhodium catalyst and the like. .
 本実施形態においては、(a)工程及び(b)工程により、粘性の高い無色透明のジルコニアナノ結晶粒子含有シリコーン樹脂分散液が得られる。
 次に、(c)工程において、該シリコーン樹脂分散液を、例えば100~200℃の温度で、1~12時間程度加熱処理することにより、前記熱硬化性シリコーン樹脂を架橋硬化させて、当該シリコーン系複合材料が得られる。
In the present embodiment, the highly colorless and transparent zirconia nanocrystal particle-containing silicone resin dispersion can be obtained by the steps (a) and (b).
Next, in step (c), the thermosetting resin is crosslinked and cured by heating the silicone resin dispersion, for example, at a temperature of 100 to 200 ° C. for about 1 to 12 hours. A base composite material is obtained.
 このようにして得られたシリコーン系複合材料は透明であって、屈折率はジルコニアナノ結晶粒子の含有量に左右されるが、通常1.4~1.6程度である。 The silicone-based composite material thus obtained is transparent, and the refractive index is usually about 1.4 to 1.6, though it depends on the content of the zirconia nanocrystal particles.
 本実施形態によれば、分散媒体に対して良好な分散性を安定して維持できる表面修飾ジルコニアナノ結晶粒子を、熱硬化シリコーン樹脂マトリックス中に分散性よく含ませることができる。 According to this embodiment, the surface-modified zirconia nanocrystal particles capable of stably maintaining good dispersibility in the dispersion medium can be contained in the thermosetting silicone resin matrix with high dispersibility.
<実施の形態3>
 本発明の技術的範囲は上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
 そこで、本実施形態においては、実施の形態1における各種変形例について示す。特筆しない点は、実施の形態1と同様である。
Embodiment 3
The technical scope of the present invention is not limited to the above-described embodiments, and includes various modifications and improvements as long as specific effects obtained by the constituent elements of the invention and the combination thereof can be derived.
Therefore, in the present embodiment, various modifications in the first embodiment will be described. The points not particularly mentioned are the same as in the first embodiment.
 実施の形態1では、修飾部と安定性寄与部と分散性寄与部とを、1つの構造式中に備えた化合物について挙げ、その具体例として、修飾部と安定性寄与部とを兼ね備えた脂肪族カルボン酸残基について挙げた。
 一方、ジルコニアナノ粒子を修飾することができるのならば、脂肪族カルボン酸残基でなくとも良い場合も考えられ、例えばケトン基やアルデヒド基等であっても適用できる可能性もある。
 また、炭素骨格からなる安定性寄与部についても、これらの修飾部に対して所定の数の炭素鎖を結合させれば良い。
In the first embodiment, the compound having the modifying portion, the stability contributing portion and the dispersibility contributing portion in one structural formula is mentioned, and as a specific example thereof, a fat having both the modifying portion and the stability contributing portion Are listed for the group carboxylic acid residue.
On the other hand, as long as the zirconia nanoparticles can be modified, it may be considered that they may not be aliphatic carboxylic acid residues. For example, ketone groups or aldehyde groups may be applicable.
In addition, with respect to the stability contributing portion made of a carbon skeleton, a predetermined number of carbon chains may be bonded to these modified portions.
 更に、分散性寄与部についても、表面修飾ジルコニアナノ粒子を良好に分散させることができるのならば、ポリオルガノシロキサン鎖以外を用いても良い。この場合、分散性を安定させるための調整については、安定性寄与部において炭素数を変動させたり炭素骨格に置換基を設けたりする等により行うことも考えられる。 Furthermore, as to the dispersibility contributing portion, other than the polyorganosiloxane chain may be used as long as the surface modified zirconia nanoparticles can be well dispersed. In this case, the adjustment for stabilizing the dispersibility may be performed by changing the number of carbon atoms in the stability contributing portion, providing a substituent in the carbon skeleton, or the like.
 なお、修飾部、安定性寄与部、分散性寄与部については、各々の部分における官能基に他の官能基や炭素鎖等が結合したものについても、各々の機能を発揮できるのならば、ここで述べた他の官能基や炭素鎖等を含んだものを、修飾部、安定性寄与部、分散性寄与部という。 In addition, about a modification part, a stability contribution part, and a dispersibility contribution part, if another functional group, a carbon chain, etc. are combined to the functional group in each part, if each function can be exhibited, here Those containing other functional groups and carbon chains mentioned in the above are referred to as a modified portion, a stability contributing portion and a dispersive contributing portion.
 一方、脂肪族カルボン酸残基により修飾されたジルコニアナノ粒子ではなく、この修飾が行われる前の段階、即ちアリールスルホン酸残基により修飾された段階についても述べる。
 実施の形態1では、アリールスルホン酸残基について述べたが、後で上述の化合物により置換することができるのならば、前処理に用いられるのはアリールスルホン酸残基に限られない。例えば、アリールスルホン酸以外の有機スルホン酸でも良いし、ケトン基やアルデヒド基等を有するものであっても適用できる可能性もある。
On the other hand, not the zirconia nanoparticles modified by aliphatic carboxylic acid residues, but also the steps before this modification is performed, that is, the steps modified by aryl sulfonic acid residues are also described.
In Embodiment 1, the arylsulfonic acid residue is described, but what can be used for the pretreatment is not limited to the arylsulfonic acid residue, as long as it can be substituted by the above-mentioned compound later. For example, organic sulfonic acids other than aryl sulfonic acids may be used, and those having a ketone group or an aldehyde group may be applicable.
 次に、本発明を実施例により更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.
<実施例1>
[1.PTSH修飾ジルコニアナノ結晶粒子の製造]
 酸化塩化ジルコニウム8水和物(ZrOCl・8HO、関東化学製)1.29g(4mmol)とp-トルエンスルホン酸1水和物(関東化学製)190mg(1mmol)を、エタノール(和光純薬工業製)20mlとオルトギ酸トリエチル(関東化学製)5mlとの混合溶媒に溶解させた。
Example 1
[1. Preparation of PTSH modified zirconia nanocrystal particles]
Oxide chloride, zirconium octahydrate (ZrOCl 2 · 8H 2 O, manufactured by Kanto Kagaku) 1.29 g and (4 mmol) p-toluenesulfonic acid monohydrate (manufactured by Kanto Chemical) 190 mg (1 mmol), ethanol (Wako Pure It was made to melt | dissolve in the mixed solvent of 20 ml of pharmaceutical industry and 5 ml of triethyl orthoformates (made by Kanto Chemical Co., Ltd.).
 この溶液を加圧容器(50mlテフロン(登録商標)内筒付のステンレス製)に充填し、オーブン中にて170℃で40時間加熱したのち、室温に放冷後、加圧容器を解放した。このとき反応溶液は無色透明であり、かつ沈殿は見られなかった。 The solution was filled in a pressure vessel (stainless steel with a 50 ml Teflon (registered trademark) inner cylinder), heated in an oven at 170 ° C. for 40 hours, allowed to cool to room temperature, and then released. At this time, the reaction solution was clear and colorless, and no precipitation was observed.
 反応溶液をエバポレーターで減圧にて溶媒除去後、白色の粉末のジルコニアナノ結晶670mgが得られた。これにメタノール(関東化学製)3mlと塩化メチレン(和光純薬工業製)3mlを加えると、均一に再分散可能であり、無色透明なジルコニアナノ粒子分散溶液が得られる。 After removing the solvent of the reaction solution with an evaporator under reduced pressure, 670 mg of white powdery zirconia nanocrystals was obtained. When 3 ml of methanol (manufactured by Kanto Chemical Co., Ltd.) and 3 ml of methylene chloride (manufactured by Wako Pure Chemical Industries, Ltd.) are added thereto, uniform redispersion is possible and a colorless and transparent zirconia nanoparticle dispersion solution is obtained.
 前記白色粉末を粉末X線回折(XRD)により分析した結果、結晶形は正方晶酸化ジルコニウム結晶であることが確認された。また、前記白色粉末であるPTSH表面修飾ジルコニアナノ結晶粒子は、赤外分光法(IR)による観察の結果、PTSHがジルコニアナノ粒子表面と化学結合していることが確認された。
 また、透過型電子顕微鏡(TEM)による観察の結果、直径2~3nmの微結晶であることが確認された。また、誘導結合プラズマ原子発光(ICP-AES)を用いた元素分析により生成物の組成比を測定したところ、Zr/S=4.06[mol比]であった。
As a result of analyzing the white powder by powder X-ray diffraction (XRD), it was confirmed that the crystal form is a tetragonal zirconium oxide crystal. In addition, as a result of observation by infrared spectroscopy (IR), it is confirmed that PTSH is chemically bonded to the surface of the zirconia nanoparticles as the white powder PTSH surface-modified zirconia nanocrystal particles.
In addition, as a result of observation by a transmission electron microscope (TEM), it was confirmed that the crystal was a microcrystal with a diameter of 2 to 3 nm. Further, when the compositional ratio of the product was measured by elemental analysis using inductively coupled plasma atomic emission (ICP-AES), it was found that Zr / S = 4.06 [molar ratio].
[2.PTSH修飾ジルコニアナノ結晶粒子の表面修飾子置換]
 上記の工程で得たPTSH修飾ジルコニアナノ結晶粒子を、メタノールと塩化メチレン体積比10:3の混合溶媒に再分散させた。この 際、Zr4mmol当たり、溶媒約10mlとなるように再分散させた。その結果、無色透明なジルコニアナノ粒子分散溶液が得られた。
[2. Surface modifier substitution of PTSH modified zirconia nanocrystal particles]
The PTSH modified zirconia nanocrystal particles obtained in the above steps were re-dispersed in a mixed solvent of methanol and methylene chloride at a volume ratio of 10: 3. At this time, the solvent was redispersed so as to be about 10 ml of solvent per 4 mmol of Zr. As a result, a colorless and transparent zirconia nanoparticle dispersion solution was obtained.
 この再分散液10mlに、ポリジメチルシロキサン単位の平均数が12のポリジメチルシロキサン鎖を有するカルボン酸を1mmolと、炭酸ナトリウム0.55mmolを加え、室温で一晩攪拌して白濁の反応液を得た。なお、このカルボン酸としては、式(2)を形成する表面修飾用分子であって、nの平均が12、m=10の分子を用いた(Polymer Source社製)。 To 10 ml of this redispersed solution, 1 mmol of a carboxylic acid having a polydimethylsiloxane chain with an average number of polydimethylsiloxane units of 12 and 0.55 mmol of sodium carbonate are added, and the mixture is stirred overnight at room temperature to obtain a cloudy reaction solution. The In addition, as this carboxylic acid, it is a molecule | numerator for surface modification which forms Formula (2), Comprising: The average of n used the molecule | numerator of 12 and m = 10 (made by Polymer Source).
 次いで、この反応液をエバポレーターにかけた後、メタノールを過剰に添加し、遠心分離を行い、沈殿物を回収した。沈殿はトルエンに良好に分散することが確認された。同様のメタノール洗浄を数回繰り返した。 Next, the reaction solution was subjected to an evaporator, and then methanol was added in excess, and centrifugation was performed to collect a precipitate. It was confirmed that the precipitate was well dispersed in toluene. The same methanol wash was repeated several times.
 得られたトルエン分散液を濾過し、炭酸ナトリウムを除去すると、p-トルエンスルホン酸が置換され、PDMS-COOH残基(即ちPDMS-COO基)により表面修飾されたジルコニアナノ結晶粒子分散液が得られた。ICP-AESを用いた元素分析によりZr/Sの組成比を測定したところ、置換前では上述の通りZr/S=4.06[mol比]であったのに対し、置換後ではZr/S=431[mol比]となり、Zrに対して硫黄はほぼ消失していた。 The obtained toluene dispersion is filtered to remove sodium carbonate, p-toluenesulfonic acid is substituted, and a dispersion of zirconia nanocrystals surface-modified with PDMS-COOH residues (ie PDMS-COO group) is obtained. It was done. When the composition ratio of Zr / S was measured by elemental analysis using ICP-AES, it was Zr / S = 4.06 [mol ratio] as described above before substitution, whereas it was Zr / S after substitution. It became = 431 [mol ratio], and sulfur almost disappeared to Zr.
 以上の通り、硫黄がほぼ消失していることから、ジルコニアナノ結晶粒子表面の表面修飾子がPTSHからPDMS-COOH残基に置換されたことが確認された。
 また、PDMS-COOH残基がナノ結晶粒子表面を表面修飾していることは、IR測定により確認した。さらに、XRD、およびTEMの観察により、ジルコニアナノ結晶の部分が実施例1で得られたナノ結晶から変化していないことを確認した。即ち、結晶形が正方晶酸化ジルコニウム結晶のままであること、直径2~3nmの微結晶のままであることを確認した。
As described above, it was confirmed that the surface modifier of the surface of the zirconia nanocrystal particle was substituted from a PTSH to a PDMS-COOH residue because the sulfur almost disappeared.
In addition, it was confirmed by IR measurement that the PDMS-COOH residue was surface-modified on the nanocrystal particle surface. Furthermore, it was confirmed by the observation of XRD and TEM that the portion of the zirconia nanocrystal did not change from the nanocrystal obtained in Example 1. That is, it was confirmed that the crystal form was a tetragonal zirconium oxide crystal as it was, and it was a microcrystalline with a diameter of 2 to 3 nm.
<実施例2>
 サンユレック社製「SS-6001」(熱硬化性シリコーン樹脂)A、B両成分を等量混合したもの2gに、上記(1)で得られたPDMS-COO-基で表面修飾されたジルコニアナノ結晶粒子のトルエン分散液を、ZrOとして1g加え、よくかき混ぜて混合液を調製した。
Example 2
The surface-modified zirconia nanocrystals obtained in the above (1) were added to 2 g of “SS-6001” (thermosetting silicone resin) A and B mixed in equal amounts by Saint-Yurek Co., Ltd. 1 g of a toluene dispersion of particles was added as ZrO 2 and mixed well to prepare a mixture.
 次いで、この混合液中の溶媒をエバポレーターによって留去させることにより、比較的粘度の高い無色透明のZrOナノ結晶粒子含有シリコーン樹脂分散液を得た。 Then, the solvent in the mixture was distilled off with an evaporator to obtain a colorless and transparent ZrO 2 nanocrystal particle-containing silicone resin dispersion having a relatively high viscosity.
 次に、このシリコーン樹脂分散液を、オーブン中160℃で12時間加熱処理して硬化させることにより、透明なZrO・シリコーン系複合材料が得られた。 Next, this silicone resin dispersion was heated and cured in an oven at 160 ° C. for 12 hours to obtain a transparent ZrO 2 -silicone composite material.
 この複合材料中のZrO含有量は50質量%であり、該複合材料の屈折率は1.51であった。ジルコニアナノ結晶を加えないで作製したシリコーン樹脂の屈折率は1.41であり、ジルコニアナノ結晶との混合が樹脂屈折率の向上に有効であることが示された。 The ZrO 2 content in this composite material was 50% by mass, and the refractive index of the composite material was 1.51. The refractive index of the silicone resin prepared without adding the zirconia nanocrystals was 1.41, and it was shown that mixing with the zirconia nanocrystals is effective for improving the resin refractive index.
 本発明の表面修飾ジルコニアナノ結晶粒子は、熱硬化シリコーン樹脂マトリックス中に安定して分散可能であり、LED封止材料などとして有用なシリコーン系複合材料を与えることができる。 The surface-modified zirconia nanocrystal particles of the present invention can be stably dispersed in a thermosetting silicone resin matrix, and can provide a silicone-based composite material useful as an LED sealing material or the like.

Claims (10)

  1.  ジルコニアナノ粒子を表面修飾するための修飾部と、
     前記修飾部と結合する炭素骨格からなる安定性寄与部と、
     前記安定性寄与部と結合する高分子鎖からなる、分散 媒体への分散性寄与部と、
    を、1分子中に備えた化合物により、前記ジルコニアナノ粒子が修飾されたことを特徴とする表面修飾ジルコニアナノ結晶粒子。
    A modification for surface-modifying zirconia nanoparticles;
    A stability contribution consisting of a carbon skeleton bound to said modification;
    A dispersive contribution to a dispersion medium comprising a polymer chain coupled to the stability contributing part;
    Surface-modified zirconia nanocrystal particles characterized in that the zirconia nanoparticles are modified by a compound provided in one molecule.
  2.  前記分散性寄与部が、オルガノシロキサン単位の数が4~100のポリオルガノシロキサン鎖であり、
     前記安定性寄与部と前記修飾部とを合わせたものが、脂肪族カルボン酸に由来する基であって、脂肪族基の炭素数が2~18の脂肪族カルボン酸残基であり、
    前記脂肪族カルボン酸残基により、ジルコニアナノ粒子を表面修飾してなることを特徴とする請求項1に記載の表面修飾ジルコニアナノ結晶粒子。
    The dispersibility contributing portion is a polyorganosiloxane chain having 4 to 100 organosiloxane units,
    A combination of the stability contributing portion and the modifying portion is a group derived from an aliphatic carboxylic acid, and is an aliphatic carboxylic acid residue having 2 to 18 carbon atoms in the aliphatic group,
    The surface-modified zirconia nanocrystal particle according to claim 1, wherein the surface of the zirconia nanoparticle is modified with the aliphatic carboxylic acid residue.
  3.  前記脂肪族カルボン酸が、直鎖状飽和モノカルボン酸である、請求項2に記載の表面修飾ジルコニアナノ結晶粒子。 The surface-modified zirconia nanocrystal particle according to claim 2, wherein the aliphatic carboxylic acid is a linear saturated monocarboxylic acid.
  4.  前記ポリオルガノシロキサン鎖が、ポリジメチルシロキサン鎖である、請求項2または3に記載の表面修飾ジルコニアナノ結晶粒子。 The surface-modified zirconia nanocrystal particle according to claim 2 or 3, wherein the polyorganosiloxane chain is a polydimethylsiloxane chain.
  5.  前記分散媒体が熱硬化シリコーン樹脂マトリックスである請求項1ないし4のいずれか1項に記載の表面修飾ジルコニアナノ結晶粒子。 The surface-modified zirconia nanocrystal particle according to any one of claims 1 to 4, wherein the dispersion medium is a thermosetting silicone resin matrix.
  6.  有機溶媒中において、芳香環上に置換基を有してもよいアリールスルホン酸残基によって、ジルコニアナノ結晶粒子を表面修飾する工程と、
     ジルコニアナノ粒子を表面修飾するための修飾部と、前記修飾部と結合する炭素骨格からなる安定性寄与部と、前記安定分散性寄与部と結合する高分子鎖からなる分散性寄与部とを1分子中に備えた化合物により、前記アリールスルホン酸残基を置換する工程と、
    を含むことを特徴とする表面修飾ジルコニアナノ結晶粒子の製造方法。
    Surface-modifying zirconia nanocrystal particles with an arylsulfonic acid residue which may have a substituent on an aromatic ring in an organic solvent;
    A modification for surface modification of zirconia nanoparticles, a stability contributing part comprising a carbon skeleton binding to the modifying part, and a dispersion contributing part comprising a polymer chain binding to the stable dispersion contributing part Substituting the arylsulfonic acid residue with a compound provided in the molecule;
    A method for producing surface-modified zirconia nanocrystal particles, comprising:
  7.  前記アリールスルホン酸がp-トルエンスルホン酸である、請求項6に記載の表面修飾ジルコニアナノ結晶粒子の製造方法。 The method for producing surface modified zirconia nanocrystal particles according to claim 6, wherein the arylsulfonic acid is p-toluenesulfonic acid.
  8.  架橋硬化してなる熱硬化シリコーン樹脂マトリックス中に、請求項1~5のいずれか1項に記載の表面修飾ジルコニアナノ結晶粒子が分散されてなることを特徴とするシリコーン系複合材料。 A silicone-based composite material comprising the surface-modified zirconia nanocrystal particles according to any one of claims 1 to 5 dispersed in a thermosetting silicone resin matrix formed by crosslinking and curing.
  9.  表面装飾ジルコニアナノ結晶粒子の含有量が、ZrOとして5~80質量%である、請求項8に記載のシリコーン系複合材料。 The silicone-based composite material according to claim 8, wherein the content of the surface-modified zirconia nanocrystal particles is 5 to 80% by mass as ZrO 2 .
  10. (a)熱硬化性シリコーン樹脂と、請求項1~5のいずれか1項に記載の表面修飾ジルコニアナノ結晶粒子の有機溶媒分散液と、硬化触媒とを含む混合液を調製する工程と、
    (b)前記混合液中の溶媒を留去させる工程と、
    (c)溶媒留去後の混合物を加熱処理して、熱硬化性シリコーン樹脂を架橋硬化させる工程と、
    を含むことを特徴とするシリコーン系複合材料の製造方法。
    (A) preparing a liquid mixture comprising a thermosetting silicone resin, an organic solvent dispersion of the surface-modified zirconia nanocrystal particles according to any one of claims 1 to 5, and a curing catalyst;
    (B) distilling off the solvent in the liquid mixture;
    (C) heat treating the mixture after evaporation of the solvent to crosslink and cure the thermosetting silicone resin;
    A method of producing a silicone based composite material, comprising:
PCT/JP2010/062566 2009-07-28 2010-07-27 Surface-modified zirconia nanocrystal particles and method for producing same, and silicone composite material and method for producing same WO2011013637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011524776A JPWO2011013637A1 (en) 2009-07-28 2010-07-27 Surface-modified zirconia nanocrystal particles and production method thereof, and silicone-based composite material and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-175267 2009-07-28
JP2009175267 2009-07-28

Publications (1)

Publication Number Publication Date
WO2011013637A1 true WO2011013637A1 (en) 2011-02-03

Family

ID=43529292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062566 WO2011013637A1 (en) 2009-07-28 2010-07-27 Surface-modified zirconia nanocrystal particles and method for producing same, and silicone composite material and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2011013637A1 (en)
WO (1) WO2011013637A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922397A (en) * 2013-01-15 2014-07-16 日挥触媒化成株式会社 Modified zirconium oxide particle powder, modified zirconium oxide particle dispersed sol and making method thereof
JP2017115111A (en) * 2015-12-21 2017-06-29 住友大阪セメント株式会社 Dispersion liquid containing surface-modified inorganic particle, silicone resin composition, cured body, optical member, light-emitting device, display device and surface-modified inorganic particle
EP3134462A4 (en) * 2014-04-24 2017-12-13 Rensselaer Polytechnic Institute Matrix-free polymer nanocomposites and related products and methods thereof
JP2018009099A (en) * 2016-07-14 2018-01-18 信越化学工業株式会社 Curable silicone resin composition and method for preparing curable silicone resin composition
CN114634737A (en) * 2022-05-23 2022-06-17 潍坊工程职业学院 High chlorinated polyethylene coating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308345A (en) * 2006-05-19 2007-11-29 Sumitomo Osaka Cement Co Ltd Transparent particle having high refractive index and transparent composite having high refractive index using it as well as light emitting element
JP2008044835A (en) * 2006-07-18 2008-02-28 Nippon Shokubai Co Ltd Zirconium oxide nanoparticle and method for producing the same
JP2008120605A (en) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd Surface-modified zirconium oxide particles, dispersion of the surface-modified zirconium oxide particles, transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element
JP2008137848A (en) * 2006-12-01 2008-06-19 Sumitomo Osaka Cement Co Ltd Transparent fluid dispersion of inorganic oxide and transparent composite, composition for sealing light-emitting element and light-emitting element, and method for producing the transparent composite
WO2008075784A1 (en) * 2006-12-20 2008-06-26 Hoya Corporation Metal oxide nanoparticle, method for producing the same, nanoparticle dispersed resin and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308345A (en) * 2006-05-19 2007-11-29 Sumitomo Osaka Cement Co Ltd Transparent particle having high refractive index and transparent composite having high refractive index using it as well as light emitting element
JP2008044835A (en) * 2006-07-18 2008-02-28 Nippon Shokubai Co Ltd Zirconium oxide nanoparticle and method for producing the same
JP2008120605A (en) * 2006-11-08 2008-05-29 Sumitomo Osaka Cement Co Ltd Surface-modified zirconium oxide particles, dispersion of the surface-modified zirconium oxide particles, transparent composite, optical member, composition for sealing light-emitting element, and light-emitting element
JP2008137848A (en) * 2006-12-01 2008-06-19 Sumitomo Osaka Cement Co Ltd Transparent fluid dispersion of inorganic oxide and transparent composite, composition for sealing light-emitting element and light-emitting element, and method for producing the transparent composite
WO2008075784A1 (en) * 2006-12-20 2008-06-26 Hoya Corporation Metal oxide nanoparticle, method for producing the same, nanoparticle dispersed resin and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103922397A (en) * 2013-01-15 2014-07-16 日挥触媒化成株式会社 Modified zirconium oxide particle powder, modified zirconium oxide particle dispersed sol and making method thereof
EP3134462A4 (en) * 2014-04-24 2017-12-13 Rensselaer Polytechnic Institute Matrix-free polymer nanocomposites and related products and methods thereof
US10138331B2 (en) 2014-04-24 2018-11-27 Rensselaer Polytechnic Institute Matrix-free polymer nanocomposites and related products and methods thereof
JP2017115111A (en) * 2015-12-21 2017-06-29 住友大阪セメント株式会社 Dispersion liquid containing surface-modified inorganic particle, silicone resin composition, cured body, optical member, light-emitting device, display device and surface-modified inorganic particle
JP2018009099A (en) * 2016-07-14 2018-01-18 信越化学工業株式会社 Curable silicone resin composition and method for preparing curable silicone resin composition
CN114634737A (en) * 2022-05-23 2022-06-17 潍坊工程职业学院 High chlorinated polyethylene coating and preparation method thereof

Also Published As

Publication number Publication date
JPWO2011013637A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5603582B2 (en) Surface-modified zirconia nanocrystal particles and method for producing the same
Rangappa et al. Transparent CoAl2O4 hybrid nano pigment by organic ligand-assisted supercritical water
Li et al. Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency
CN105593234B (en) Novel organopolysiloxane, the surface conditioning agent comprising it, the resin combination comprising it and their gel-like product or cured product
CN107075289B (en) Surface-modified metal oxide particle dispersion, silicone resin composite composition and composite, optical member, and light-emitting device
TWI541277B (en) Composite composition including silicone resin and inorganic oxide particles, manufacturing method of the same, transparent composite and manufacturing method of the same
TWI525140B (en) A complex composition including an inorganic oxide particle and a silicone resin, and a transparent composite
JP6481599B2 (en) Inorganic particle-polysiloxane composite, dispersion containing the same, solid material, and method for producing the inorganic particle-polysiloxane composite
TW201512211A (en) Novel organic silicon compound, surface treatment agent containing same, resin composition containing same, and gel or cured product of same
JP2014077117A (en) Highly refractive surface treatment agent, and fine member and optical material surface-treated by using the same
WO2011013637A1 (en) Surface-modified zirconia nanocrystal particles and method for producing same, and silicone composite material and method for producing same
JP5602379B2 (en) Silicone resin composition containing metal oxide fine particles
Morselli et al. Poly (methyl methacrylate)-TiO2 nanocomposite obtained by non-hydrolytic sol–gel synthesis
Siddiquey et al. A rapid method for the preparation of silica-coated ZrO2 nanoparticles by microwave irradiation
JP2008303299A (en) Zirconia-containing silicone resin composition
JP7190431B2 (en) Coated inorganic fine particles and method for producing the same
CN107140677B (en) A kind of preparation method of function element metal oxide nanoparticles
He et al. Sub-kilogram-scale synthesis of highly dispersible zirconia nanoparticles for hybrid optical resins
He et al. Surface engineering of titanium dioxide nanoparticles for silicone-based transparent hybrid films with ultrahigh refractive indexes
Abdullahi et al. Facile synthesis of nickel-based supported halloysite nanotube catalysts and their role in photocatalytic degradation of liquid epoxidized natural rubber
WO2010073970A1 (en) Polysiloxane composition and method for producing the same
Mädler et al. Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers
JP2009149454A (en) Silicone-coated metal oxide ultrafine particle
WO2010073969A2 (en) Polysiloxane composition and method for producing the same
Du et al. Low‐cost water soluble silicon quantum dots and biocompatible fluorescent composite films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011524776

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804383

Country of ref document: EP

Kind code of ref document: A1