WO2011013535A1 - Laser system - Google Patents

Laser system Download PDF

Info

Publication number
WO2011013535A1
WO2011013535A1 PCT/JP2010/062164 JP2010062164W WO2011013535A1 WO 2011013535 A1 WO2011013535 A1 WO 2011013535A1 JP 2010062164 W JP2010062164 W JP 2010062164W WO 2011013535 A1 WO2011013535 A1 WO 2011013535A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
laser
power
active layer
dfb
Prior art date
Application number
PCT/JP2010/062164
Other languages
French (fr)
Japanese (ja)
Inventor
秋山知之
宇佐美真
菅原充
Original Assignee
株式会社Qdレーザ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Qdレーザ filed Critical 株式会社Qdレーザ
Publication of WO2011013535A1 publication Critical patent/WO2011013535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0092Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06213Amplitude modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/341Structures having reduced dimensionality, e.g. quantum wires
    • H01S5/3412Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash

Definitions

  • the present invention relates to a laser system.
  • Patent Document 1 describes a laser system that converts laser light emitted from a semiconductor laser into a harmonic using a nonlinear optical element and emits the same.
  • the intensity of laser light may be modulated.
  • the intensity of the laser light is modulated at a high speed of about 500 MHz, for example.
  • the intensity modulation of the laser beam can be realized by modulating the driving power used for the oscillation of the laser beam.
  • the intensity of the laser beam is modulated by modulating the driving power, a temperature change occurs in the active layer, and as a result, the oscillation wavelength of the laser beam fluctuates.
  • An object of the present invention is to provide a laser system capable of suppressing fluctuations in the wavelength of laser light even when the intensity of the laser light is modulated by modulation of drive power.
  • the present invention provides a DFB laser having a semiconductor layer including an active layer that emits laser light whose intensity is modulated by modulating driving power, and a heater unit for maintaining the temperature of the active layer constant.
  • a control unit that applies heater power modulated to the same frequency as the modulation frequency of the drive power to the heater unit so as to cancel the temperature change of the active layer due to the modulated drive power.
  • control unit may apply the heater power complementary to the modulated driving power to the heater unit. According to this configuration, it is possible to easily cancel the temperature change of the active layer due to the driving power, and to easily maintain the temperature of the active layer constant.
  • the time constant of the temperature change of the active layer based on the driving power and the time constant of the temperature change of the active layer based on the heater power may be approximately the same. According to this configuration, it is possible to make the frequency response characteristic of temperature change due to drive power similar to the frequency response characteristic of temperature change due to heater power, and the heater power is modulated by a signal inverted in the same form as the modulation signal of drive power. By doing so, the temperature change of the active layer due to the driving power can be easily canceled.
  • the semiconductor layer may have an isolated mesa portion, and the driving electrode to which the driving power is applied and the heater portion may be provided on the mesa portion. According to this configuration, the heat capacity of the active layer with respect to driving power and heater power can be made comparable. In addition, the time constant of the temperature change of the active layer based on the driving power and the heater power can be made comparable.
  • the width of the heater portion may be smaller than three times the width of the mesa portion.
  • the heater portion may be provided along the drive electrode.
  • the DFB laser may be a quantum dot DFB laser. According to this configuration, the wavelength variation of the laser beam can be further reduced.
  • the laser beam may be configured to have a harmonic generation element that converts the laser beam into visible light that is a harmonic of the laser beam. According to this configuration, the laser beam can be converted into a harmonic with high conversion efficiency.
  • the harmonic element can be configured to convert the laser beam into a second harmonic of the laser beam.
  • the visible light may be green light.
  • fluctuations in the wavelength of the laser light can be suppressed even when the intensity of the laser light is modulated by modulation of the driving power.
  • FIG. 1 is a block diagram of a laser system according to a comparative example.
  • FIG. 2 is a schematic diagram for explaining the oscillation spectrum of laser light according to the driving power, the wavelength of the laser light, and the conversion efficiency of the harmonic generation element.
  • FIG. 3 is a block diagram of a laser system for explaining the principle of the present invention.
  • FIG. 4 is a schematic diagram for explaining the relationship between the driving power and the output intensity of the laser beam, and the relationship between the driving power and heater power, and the temperature change of the active layer.
  • FIG. 5 is a schematic top view of the laser system according to the first embodiment.
  • FIG. 6A is a schematic cross-sectional view of a DFB laser in a direction parallel to the laser beam emission direction, and FIG.
  • FIG. 6B is a schematic cross-sectional view of a DFB laser in the vertical direction.
  • FIG. 7 is a schematic diagram for explaining the heater power.
  • FIG. 8 is a schematic cross-sectional view illustrating the width of the heater portion.
  • FIG. 9A is a conceptual diagram illustrating an example of a first control method of heater power by the control unit, and
  • FIG. 9B is a conceptual diagram illustrating an example of a second control method.
  • FIG. 10 is a schematic top view of the laser system when no harmonic generation element is provided.
  • FIG. 1 is a block diagram of a laser system according to a comparative example.
  • the laser system according to the comparative example includes a DFB (distributed feedback type) laser 11 and a harmonic generation element 30.
  • the DFB laser 11 is a laser (for example, QD (quantum dot) -DFB laser) that has a corrugation and emits laser light 14 having a single wavelength from an active layer when a driving power is applied to the driving electrode 12. .
  • the DFB laser 11 emits laser light 14 having a wavelength of 1064 nm, for example.
  • the harmonic generation element 30 is a nonlinear optical element, for example, PPLN (PeriodicallydPoled Lithium Niobate).
  • the harmonic generation element 30 converts the laser light 14 having a wavelength of, for example, 1064 nm into green light (visible light) 32 having a wavelength of, for example, 532 nm, which is the second harmonic, and emits it.
  • the laser system of the comparative example is used for laser projection, for example.
  • Laser projection requires that the intensity of laser light be modulated.
  • the intensity modulation of the laser beam can be realized by modulating the driving power used for the oscillation of the laser beam.
  • FIG. 2 shows the oscillation spectrum of the laser beam when the magnitude of the drive power is changed (the upper diagram in FIG. 2), and the relationship between the wavelength of the laser beam and the conversion efficiency of the harmonic generation element (the lower diagram in FIG. 2).
  • FIG. 2 shows the oscillation spectrum of the laser beam when the magnitude of the drive power is changed (the upper diagram in FIG. 2), and the relationship between the wavelength of the laser beam and the conversion efficiency of the harmonic generation element (the lower diagram in FIG. 2).
  • the oscillation wavelength of the laser light shifts to the longer wavelength side.
  • the driving power affects the temperature of the active layer, and the temperature of the active layer changes based on the magnitude of the driving power.
  • the temperature of the active layer changes with time as the magnitude of the driving power changes.
  • the oscillation wavelength of the laser beam Fluctuates.
  • the allowable wavelength range is a narrow wavelength range such as the region 17. .
  • the wavelength of the laser beam is changed.
  • FIG. 3 is a block diagram of a laser system 100 for explaining the principle of the present invention.
  • the laser system 100 includes a DFB laser 10 and a harmonic generation element 30.
  • the DFB laser 10 is provided with a heater unit 16 to which heater power is applied to maintain the temperature of the active layer constant, in addition to the drive electrode 12 to which drive power to oscillate the laser light 14 is applied. Yes.
  • the DFB laser 10 emits intensity-modulated laser light 14 from the active layer by applying modulated drive power to the drive electrode 12.
  • the wavelength of the laser beam 14 is a single wavelength of 1064 nm, for example.
  • the harmonic generation element 30 converts the intensity-modulated laser light 14 into green light (visible light) 32, which is the second harmonic, and emits it.
  • the wavelength of the green light 32 is, for example, 532 nm.
  • Figure 4 shows the relationship between the output intensity of the driving power P DFB laser light and green light, the relationship between the temperature change of the driving power P DFB and the active layer, the relationship between the temperature change of the heater power P Heater and the active layer described It is a schematic diagram to do.
  • the output intensities of the laser light 14 and the green light 32 will be briefly described.
  • the output intensity of the laser beam 14 increases as the drive power PDFB applied to the drive electrode 12 increases (broken line in FIG. 4).
  • the harmonic generation element 30 emits light having an intensity squared with respect to the intensity of the incident light. Therefore, the output intensity of the green light 32 emitted from the harmonic generation element 30 increases as the drive power PDFB increases (thin solid line in FIG. 4).
  • the temperature change of the active layer due to the driving power P DFB and the heater power P heater will be described.
  • the temperature of the active layer is affected by the application of the driving power P DFB and the heater power P heater .
  • a is a proportionality coefficient.
  • b is a proportionality coefficient.
  • the temperature of the active layer changes in proportion to the drive power P DFB and the heater power P heater .
  • the driving power P DFB is modulated. That is, the drive power PDFB changes according to the modulation frequency. Therefore, if the heater power P heater is modulated at the same frequency as the modulation frequency of the drive power P DFB so that the aP DFB + bP heater is constant in time, the temperature change of the active layer due to the drive power P DFB is canceled out.
  • the temperature of the active layer can be made constant over time. Thereby, the wavelength fluctuation
  • FIG. 5 is a schematic top view of the laser system 200 according to the first embodiment.
  • the laser system 200 includes the DFB laser 10, collimating lenses 40 and 42, the harmonic generation element 30, and the control unit 80.
  • the DFB laser 10 is, for example, a QD (quantum dot) -DFB laser.
  • the harmonic generation element 30 is, for example, PPLN.
  • the heater portion 16 is formed on the upper surface of the DFB laser 10, heater power modulated to the same frequency as the modulation frequency of the drive power is applied to cancel the temperature change of the active layer due to the drive power and the drive electrode 12 to which the modulated drive power is applied.
  • the heater portion 16 is formed.
  • the modulation frequency of drive power and heater power is, for example, 500 MHz.
  • the heater portion 16 is formed to extend along the drive electrode 12 above the drive electrode 12. That is, the drive electrode 12 and the heater portion 16 are formed at the same position.
  • an HR (high reflection) film 18 for light having a wavelength of 1064 nm, which is the oscillation wavelength of the DFB laser 10 is formed on the end face of the DFB laser 10 where the laser beam 14 is not emitted.
  • An AR (antireflection) film 20 for light having an oscillation wavelength (eg, 1064 nm) of the DFB laser 10 is formed on the end face of the DFB laser 10 that emits the laser light 14.
  • the laser light 14 emitted from the DFB laser 10 is incident on one end face of the harmonic generation element 30 by the collimating lenses 40 and 42.
  • the surfaces of the collimating lenses 40 and 42 are coated with an AR film for the wavelength of the laser light 14 (for example, 1064 nm).
  • An AR film 34 for the wavelength of the laser light 14 (for example, 1064 nm) is formed on the end face of the harmonic generation element 30 on which the laser light 14 is incident.
  • the harmonic generation element 30 converts the incident laser light 14 into green light 32 that is the second harmonic and emits it.
  • An AR film 36 for the wavelength of the green light 32 of, for example, 532 nm is formed on the end face of the harmonic generation element 30 from which the green light 32 is emitted.
  • the control unit 80 applies the modulated drive power to the drive electrode 12 using the wire 70. Further, the control unit 80 applies the heater power modulated to the same frequency as the modulation frequency of the driving power to the heater unit 16 using the wire 70 in order to cancel the temperature change of the active layer due to the driving power.
  • FIG. 6A is a schematic cross-sectional view of the DFB laser 10 in a direction parallel to the emission direction of the laser light 14, and FIG. 6B is a schematic cross-sectional view of the DFB laser 10 in the vertical direction.
  • an n-type cladding layer 52 made of n-type Al 0.35 Ga 0.65 As is formed on an n-type GaAs substrate 50.
  • An electrode 69 is formed under the substrate 50.
  • a quantum dot active layer 58 having a quantum dot 56 made of InAs in a base layer 54 made of GaAs is formed.
  • a p-type layer 60 made of p-type GaAs is formed on the quantum dot active layer 58.
  • a p-type cladding layer 62 made of p-type InGaP is formed on the p-type layer 60. Between the p-type layer 60 and the p-type cladding layer 62, a corrugation 64 that determines the wavelength of the oscillating laser light is formed. As described above, the semiconductor layer 61 including the n-type cladding layer 52, the p-type layer 60, and the p-type cladding layer 62 including the quantum dot active layer 58 that oscillates laser light is provided.
  • a contact layer 66 made of p + GaAs is formed on the p-type cladding layer 62.
  • a drive electrode 12 is formed on the contact layer 66.
  • An insulating film 68 made of a silicon oxide film is formed on the drive electrode 12.
  • a heater portion 16 made of Pt (platinum) is provided on the insulating film 68.
  • Drive power and heater power are applied to the drive electrode 12 and the heater unit 16 by the control unit 80.
  • the electrode 69 is connected to a constant potential and is grounded, for example.
  • the p-type cladding layer 62 and the contact layer 66 have isolated mesa portions 72.
  • the drive electrode 12 is formed on the mesa portion 72.
  • the heater unit 16 is formed on the drive electrode 12 with an insulating film 68 interposed therebetween.
  • the width W1 of the heater part 16 is narrower than the width W2 of the mesa part 72.
  • the laser system 200 includes the DFB laser 10 and the control unit 80.
  • the DFB laser 10 emits intensity-modulated laser light 14 from the active layer 58 by applying a modulated drive power to the drive electrode 12.
  • the heater power 16 modulated to the same frequency as the modulation frequency of the drive power is applied to the heater unit 16 of the DFB laser 10 so that the temperature change of the active layer 58 due to the drive power is canceled and the temperature of the active layer 58 is maintained constant.
  • the controller 80 Applied by the controller 80.
  • the wavelength of the laser beam 14 can be kept within a wavelength range in which the conversion from the fundamental wave to the harmonic by the harmonic generation element 30 can be performed with high conversion efficiency. Therefore, the harmonic generation element 30 can convert the laser light 14 into green light 32 that is the second harmonic of the laser light 14 with high conversion efficiency.
  • the harmonic generation element 30 describes the case where the laser light 14 is converted into the green light 32 that is the second harmonic of the laser light 14, but the present invention is not limited thereto.
  • the harmonic generation element 30 may convert the laser light 14 into higher-order harmonics of the laser light 14, and the harmonic light may be visible light other than green light.
  • the harmonic generation element 30 preferably converts the laser light 14 into the second harmonic of the laser light 14.
  • the harmonic light emitted from the harmonic generation element 30 is green light.
  • the drive electrode 12 and the heater unit 16 are provided on the mesa unit 72.
  • the drive electrode 12 and the heater unit 16 which are heat sources can be made small with respect to the spread of heat caused by the drive power and the heater power, and the heat capacity of the active layer 58 with respect to the drive power and the heater power can be made comparable. it can.
  • the time constant of the temperature change of the active layer 58 based on the drive power and the temperature change of the active layer 58 based on the heater power are reduced.
  • the time constant can be made comparable.
  • the modulation frequency of the driving power and the heater power is, for example, 500 MHz, the response of heat is slow. Therefore, the time constant of the temperature change of the active layer 58 based on the driving power and the heater power is in the range of, for example, 10 kHz to 100 kHz. For example, 25 kHz.
  • the frequency response characteristics of the temperature change of the active layer 58 due to the drive power and the temperature of the active layer 58 due to the heater power It becomes possible to make the frequency response characteristics of the changes similar, and by modulating the heater power with a signal inverted in the same form as the modulation signal of the driving power, it is possible to easily cancel the temperature change of the active layer due to the driving power.
  • the control unit 80 applies the heater power P heater complementary to the modulation signal of the drive power P DFB to the heater unit 16 as shown in FIG.
  • the control unit 80 supplies the heater power P heater obtained by inverting the drive power P DFB to the half of the power P fix (P fix / 2) at which the aP DFB + bP heater described above is constant. Apply to. Thereby, the temperature change of the active layer 58 due to the driving power can be canceled, and the temperature of the active layer 58 can be kept constant.
  • the drive electrode 12 and the heater unit 16 are formed at the same position and are sufficiently small with respect to the heat spread due to the drive power and the heater power.
  • the heat capacity of the active layer 58 with respect to the driving power and the heater power can be made comparable.
  • the time constant of the temperature change of the active layer 58 based on the driving power and the heater power can be made comparable.
  • the drive electrode 12 and the heater part 16 are preferably provided in the same shape.
  • the heater part 16 extends along the drive electrode 12. It is preferable.
  • the width of the heater portion 16 is preferably smaller than three times the width W of the mesa portion 72. More preferably, the width of the heater portion 16 is smaller than twice the width W of the mesa portion 72. More preferably, the width of the heater portion 16 is smaller than the width W of the mesa portion 72.
  • the DFB laser 10 is a QD-DFB laser as an example.
  • the present invention is not limited to this.
  • a QW (quantum well) -DFB laser may be used. Even in the case of the QW-DFB laser, the temperature change of the active layer due to the modulated driving power can be canceled, and the effect of suppressing the wavelength variation of the laser light can be obtained.
  • the temperature of the active layer can be kept constant, but it is difficult to control the number of carriers to be constant. Therefore, in the case of the QW-DFB laser, the wavelength fluctuation of the laser beam can be suppressed, but it is difficult to completely eliminate the wavelength fluctuation.
  • the main factor affecting the oscillation wavelength of the laser light is the temperature of the active layer.
  • Example 1 in which the temperature of the active layer can be kept constant, it is preferable to use a QD-DFB laser as the DFB laser 10.
  • a QD-DFB laser By using the QD-DFB laser, it is possible to further reduce the wavelength fluctuation of the laser beam when the drive power is modulated to modulate the intensity of the laser beam.
  • FIG. 9 is a conceptual diagram illustrating an example of a method for controlling the heater power by the control unit 80.
  • FIG. 9A is a conceptual diagram illustrating an example of the first control method
  • FIG. 9B is a conceptual diagram illustrating an example of the second control method.
  • the first control method uses a multiplier 90 and an adder 92, and aV DFB is calculated from the driving voltage V DFB , the driving current I DFB , the heater voltage V heater , and the heater current I heater.
  • I DFB + bV heater Determines the current size of I heater .
  • the potential difference is obtained by the differential circuit 94 from the difference from the power P fix for setting the active layer 58 to a constant temperature T fix .
  • the potential difference obtained by the differential circuit 94 is fed back, the magnitude of V heater is controlled, and the heater power is applied to the heater section 16.
  • the magnitude of aV DFB I DFB + bV heater I heater can be made constant at P fix , and the temperature of the active layer 58 can be kept constant at T fix .
  • This also makes it possible to make the size of aV DFB I DFB + bV heater I heater constant at P fix and keep the temperature of the active layer 58 constant at T fix .
  • R heater is the resistance of the heater section 16. a and b are the proportional coefficients described in FIG.
  • the laser system 200 may include the DFB laser 10 and the control unit 80 without the harmonic generation element 30. Even in this case, the intensity of the laser beam can be modulated and the wavelength variation of the laser beam can be suppressed. Therefore, the laser system as shown in FIG. 10 can also be used as a communication laser system in a 1.55 ⁇ m band or a 1.3 ⁇ m band, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The laser system comprises a DFB laser (10) having a semiconductor layer containing an active layer (58) for emitting a laser beam (14) the intensity of which is modulated by driving power being modulated, and a heater (16) for keeping the active layer (58) at a constant temperature; and a controller (80) for applying, to the heater (16), heater power modulated by a signal derived by reversing a modulation signal of the driving power, so as to offset the temperature change in the active layer (58) caused by the modulated driving power.

Description

レーザシステムLaser system
 本発明は、レーザシステムに関する。 The present invention relates to a laser system.
 近年、レーザ光を出射するレーザシステムは様々な分野に用いられ、特に、安価なレーザシステムには半導体レーザが用いられている。例えば、特許文献1には、半導体レーザから出射されたレーザ光を、非線形光学素子を用いて高調波に変換して出射するレーザシステムが記載されている。 In recent years, laser systems that emit laser light have been used in various fields, and in particular, semiconductor lasers have been used in inexpensive laser systems. For example, Patent Document 1 describes a laser system that converts laser light emitted from a semiconductor laser into a harmonic using a nonlinear optical element and emits the same.
特開平6-132595号公報JP-A-6-132595
 レーザシステムでは、レーザ光を強度変調させる場合がある。例えば、プロジェクションにレーザ光を用いたレーザプロジェクションでは、レーザ光を例えば500MHz程度の高速で強度変調させる。 In laser systems, the intensity of laser light may be modulated. For example, in laser projection using laser light for projection, the intensity of the laser light is modulated at a high speed of about 500 MHz, for example.
 レーザ光の強度変調は、レーザ光の発振に用いる駆動電力を変調させることにより実現できる。しかしながら、駆動電力の変調によりレーザ光の強度変調を行うと、活性層に温度変化が生じ、その結果、レーザ光の発振波長が変動してしまう。 The intensity modulation of the laser beam can be realized by modulating the driving power used for the oscillation of the laser beam. However, when the intensity of the laser beam is modulated by modulating the driving power, a temperature change occurs in the active layer, and as a result, the oscillation wavelength of the laser beam fluctuates.
 本発明は、駆動電力の変調によりレーザ光を強度変調させる場合でも、レーザ光の波長の変動を抑制することが可能なレーザシステムを提供することを目的とする。 An object of the present invention is to provide a laser system capable of suppressing fluctuations in the wavelength of laser light even when the intensity of the laser light is modulated by modulation of drive power.
 本発明は、駆動電力が変調されることで強度変調されたレーザ光を出射する活性層を含む半導体層と、前記活性層の温度を一定に維持するためのヒータ部と、を有するDFBレーザと、変調された前記駆動電力による前記活性層の温度変化を打ち消すように、前記駆動電力の変調周波数と同じ周波数に変調されたヒータ電力を前記ヒータ部に印加する制御部と、を具備することを特徴とするレーザシステムである。本発明によれば、駆動電力の変調によりレーザ光を強度変調させる場合でも、レーザ光の波長の変動を抑制することができる。 The present invention provides a DFB laser having a semiconductor layer including an active layer that emits laser light whose intensity is modulated by modulating driving power, and a heater unit for maintaining the temperature of the active layer constant. A control unit that applies heater power modulated to the same frequency as the modulation frequency of the drive power to the heater unit so as to cancel the temperature change of the active layer due to the modulated drive power. This is a featured laser system. According to the present invention, even when the intensity of laser light is modulated by modulation of driving power, fluctuations in the wavelength of the laser light can be suppressed.
 上記構成において、前記制御部は、変調された前記駆動電力に対して相補的な前記ヒータ電力を前記ヒータ部に印加する構成とすることができる。この構成によれば、駆動電力による活性層の温度変化を容易に打ち消すことができ、活性層の温度を一定に維持することを容易に実現できる。 In the above configuration, the control unit may apply the heater power complementary to the modulated driving power to the heater unit. According to this configuration, it is possible to easily cancel the temperature change of the active layer due to the driving power, and to easily maintain the temperature of the active layer constant.
 上記構成において、前記駆動電力に基づく前記活性層の温度変化の時定数と前記ヒータ電力に基づく前記活性層の温度変化の時定数とは同程度である構成とすることができる。この構成によれば、駆動電力による温度変化の周波数応答特性とヒータ電力による温度変化の周波数応答特性を類似させることが可能になり、駆動電力の変調信号と同形で反転した信号でヒータ電力を変調することで、駆動電力による活性層の温度変化を容易に打ち消すことができる。 In the above configuration, the time constant of the temperature change of the active layer based on the driving power and the time constant of the temperature change of the active layer based on the heater power may be approximately the same. According to this configuration, it is possible to make the frequency response characteristic of temperature change due to drive power similar to the frequency response characteristic of temperature change due to heater power, and the heater power is modulated by a signal inverted in the same form as the modulation signal of drive power. By doing so, the temperature change of the active layer due to the driving power can be easily canceled.
 上記構成において、前記半導体層は孤立したメサ部を有し、前記駆動電力が印加される駆動電極と前記ヒータ部とは前記メサ部上に設けられている構成とすることができる。この構成によれば、駆動電力及びヒータ電力に対する活性層の熱容量を同程度にできる。また、駆動電力及びヒータ電力に基づく活性層の温度変化の時定数を同程度にできる。 In the above configuration, the semiconductor layer may have an isolated mesa portion, and the driving electrode to which the driving power is applied and the heater portion may be provided on the mesa portion. According to this configuration, the heat capacity of the active layer with respect to driving power and heater power can be made comparable. In addition, the time constant of the temperature change of the active layer based on the driving power and the heater power can be made comparable.
 上記構成において、前記ヒータ部の幅は前記メサ部の幅の3倍より小さい構成とすることができる。 In the above configuration, the width of the heater portion may be smaller than three times the width of the mesa portion.
 上記構成において、前記ヒータ部は前記駆動電極に沿って設けられている構成とすることができる。 In the above configuration, the heater portion may be provided along the drive electrode.
 上記構成において、前記DFBレーザは量子ドットDFBレーザである構成とすることができる。この構成によれば、レーザ光の波長変動をより小さくすることができる。 In the above configuration, the DFB laser may be a quantum dot DFB laser. According to this configuration, the wavelength variation of the laser beam can be further reduced.
 上記構成において、前記レーザ光を前記レーザ光の高調波である可視光に変換する高調波生成素子を有する構成とすることができる。この構成によれば、レーザ光を高変換効率で高調波に変換させることができる。 In the above configuration, the laser beam may be configured to have a harmonic generation element that converts the laser beam into visible light that is a harmonic of the laser beam. According to this configuration, the laser beam can be converted into a harmonic with high conversion efficiency.
 上記構成において、前記高調波素子は前記レーザ光を前記レーザ光の第2高調波に変換する構成とすることができる。また、上記構成において、前記可視光はグリーン光である構成とすることができる。 In the above configuration, the harmonic element can be configured to convert the laser beam into a second harmonic of the laser beam. In the above configuration, the visible light may be green light.
 本発明によれば、駆動電力の変調によりレーザ光を強度変調させる場合でも、レーザ光の波長の変動を抑制することができる。 According to the present invention, fluctuations in the wavelength of the laser light can be suppressed even when the intensity of the laser light is modulated by modulation of the driving power.
図1は比較例に係るレーザシステムのブロック図である。FIG. 1 is a block diagram of a laser system according to a comparative example. 図2は駆動電力に応じたレーザ光の発振スペクトル、及びレーザ光の波長と高調波生成素子の変換効率を説明する模式図である。FIG. 2 is a schematic diagram for explaining the oscillation spectrum of laser light according to the driving power, the wavelength of the laser light, and the conversion efficiency of the harmonic generation element. 図3は本発明の原理を説明するためのレーザシステムのブロック図である。FIG. 3 is a block diagram of a laser system for explaining the principle of the present invention. 図4は駆動電力とレーザ光の出力強度との関係、並びに駆動電力及びヒータ電力と活性層の温度変化との関係を説明する模式図である。FIG. 4 is a schematic diagram for explaining the relationship between the driving power and the output intensity of the laser beam, and the relationship between the driving power and heater power, and the temperature change of the active layer. 図5は実施例1に係るレーザシステムの上面模式図である。FIG. 5 is a schematic top view of the laser system according to the first embodiment. 図6(a)はレーザ光の出射方向に平行方向のDFBレーザの断面模式図であり、図6(b)は垂直方向のDFBレーザの断面模式図である。FIG. 6A is a schematic cross-sectional view of a DFB laser in a direction parallel to the laser beam emission direction, and FIG. 6B is a schematic cross-sectional view of a DFB laser in the vertical direction. 図7はヒータ電力を説明する模式図である。FIG. 7 is a schematic diagram for explaining the heater power. 図8はヒータ部の幅を説明する断面模式図である。FIG. 8 is a schematic cross-sectional view illustrating the width of the heater portion. 図9(a)は制御部によるヒータ電力の第1の制御方法の例を説明する概念図であり、図9(b)は第2の制御方法の例を説明する概念図である。FIG. 9A is a conceptual diagram illustrating an example of a first control method of heater power by the control unit, and FIG. 9B is a conceptual diagram illustrating an example of a second control method. 図10は高調波生成素子を有さない場合のレーザシステムの上面模式図である。FIG. 10 is a schematic top view of the laser system when no harmonic generation element is provided.
 まず、レーザ光を高調波に変換して出射するレーザシステムを例に、駆動電力の変調によりレーザ光を強度変調させる場合の課題について詳しく説明する。図1は、比較例に係るレーザシステムのブロック図である。図1のように、比較例に係るレーザシステムは、DFB(分布帰還型)レーザ11と高調波生成素子30とを有している。DFBレーザ11は、コルゲーションを有し、駆動電極12に駆動電力が印加されることで、単一波長のレーザ光14を活性層から出射するレーザ(例えばQD(量子ドット)-DFBレーザ)である。DFBレーザ11は、例えば1064nmの波長を有するレーザ光14を出射する。 First, a problem in the case of intensity modulation of laser light by modulation of driving power will be described in detail by taking a laser system that converts laser light into a harmonic and emits it as an example. FIG. 1 is a block diagram of a laser system according to a comparative example. As shown in FIG. 1, the laser system according to the comparative example includes a DFB (distributed feedback type) laser 11 and a harmonic generation element 30. The DFB laser 11 is a laser (for example, QD (quantum dot) -DFB laser) that has a corrugation and emits laser light 14 having a single wavelength from an active layer when a driving power is applied to the driving electrode 12. . The DFB laser 11 emits laser light 14 having a wavelength of 1064 nm, for example.
 高調波生成素子30は、非線形光学素子であり、例えばPPLN(Periodically Poled Lithium Niobate)である。高調波生成素子30は、例えば1064nmの波長を有するレーザ光14を、第2高調波である例えば532nmの波長を有するグリーン光(可視光)32に変換して出射する。 The harmonic generation element 30 is a nonlinear optical element, for example, PPLN (PeriodicallydPoled Lithium Niobate). The harmonic generation element 30 converts the laser light 14 having a wavelength of, for example, 1064 nm into green light (visible light) 32 having a wavelength of, for example, 532 nm, which is the second harmonic, and emits it.
 比較例のレーザシステムは、例えばレーザプロジェクションに用いられる。レーザプロジェクションでは、レーザ光を強度変調させることが求められる。レーザ光の強度変調は、レーザ光の発振に用いる駆動電力を変調させることにより実現できる。図2は、駆動電力の大きさを変化させた場合のレーザ光の発振スペクトル(図2の上図)、及びレーザ光の波長と高調波生成素子の変換効率との関係(図2の下図)を説明する模式図である。 The laser system of the comparative example is used for laser projection, for example. Laser projection requires that the intensity of laser light be modulated. The intensity modulation of the laser beam can be realized by modulating the driving power used for the oscillation of the laser beam. FIG. 2 shows the oscillation spectrum of the laser beam when the magnitude of the drive power is changed (the upper diagram in FIG. 2), and the relationship between the wavelength of the laser beam and the conversion efficiency of the harmonic generation element (the lower diagram in FIG. 2). FIG.
 図2の上図のように、駆動電力が大きくなると、レーザ光の発振波長は長波長側にシフトする。例えば、駆動電力が小さい場合はレーザ光の発振スペクトル13であるのに対して、駆動電力を大きくした場合はレーザ光の発振スペクトル15となり、レーザ光の発振波長が長波長側にシフトしている。これは、駆動電力が活性層の温度に影響を及ぼし、駆動電力の大きさに基づき活性層の温度が変化するためである。 As shown in the upper diagram of FIG. 2, when the driving power increases, the oscillation wavelength of the laser light shifts to the longer wavelength side. For example, when the driving power is small, the laser light oscillation spectrum 13 is obtained, whereas when the driving power is increased, the laser light oscillation spectrum 15 is obtained, and the laser light oscillation wavelength is shifted to the longer wavelength side. . This is because the driving power affects the temperature of the active layer, and the temperature of the active layer changes based on the magnitude of the driving power.
 このように、レーザ光を強度変調させるために駆動電力を変調させると、駆動電力の大きさの時間的変化に伴い、活性層の温度が時間的に変化し、その結果、レーザ光の発振波長が変動する。 As described above, when the driving power is modulated in order to modulate the intensity of the laser beam, the temperature of the active layer changes with time as the magnitude of the driving power changes. As a result, the oscillation wavelength of the laser beam Fluctuates.
 一方、図2の下図のように、高調波生成素子30による基本波から高調波への変換を、高変換効率で行おうとすると、許容される波長範囲は領域17のような狭い波長範囲となる。 On the other hand, as shown in the lower diagram of FIG. 2, when the conversion from the fundamental wave to the harmonic by the harmonic generation element 30 is performed with high conversion efficiency, the allowable wavelength range is a narrow wavelength range such as the region 17. .
 このように、駆動電力を変調させることでレーザ光の強度変調を行うと、レーザ光の波長が変動してしまう。その結果、例えば高調波生成素子により高変換効率で高調波への変換が可能な波長範囲内に、レーザ光の波長を収めることが難しくなり、レーザ光を高変換効率で高調波光に変換できなくなる。そこで、駆動電力の変調によりレーザ光を強度変調させる場合でも、レーザ光の波長の変動を抑制できるレーザシステムについて説明する。 As described above, when the intensity of the laser beam is modulated by modulating the driving power, the wavelength of the laser beam is changed. As a result, for example, it becomes difficult to set the wavelength of the laser light within a wavelength range that can be converted into a harmonic with high conversion efficiency by the harmonic generation element, and the laser light cannot be converted into harmonic light with high conversion efficiency. . Therefore, a laser system that can suppress fluctuations in the wavelength of laser light even when the intensity of the laser light is modulated by modulation of drive power will be described.
 図3及び図4を用いて、本発明の原理について説明する。図3は、本発明の原理を説明するためのレーザシステム100のブロック図である。図3のように、レーザシステム100は、DFBレーザ10と高調波生成素子30とを有している。DFBレーザ10は、レーザ光14を発振させるための駆動電力が印加される駆動電極12に加えて、活性層の温度を一定に維持するためのヒータ電力が印加されるヒータ部16が設けられている。 The principle of the present invention will be described with reference to FIGS. FIG. 3 is a block diagram of a laser system 100 for explaining the principle of the present invention. As shown in FIG. 3, the laser system 100 includes a DFB laser 10 and a harmonic generation element 30. The DFB laser 10 is provided with a heater unit 16 to which heater power is applied to maintain the temperature of the active layer constant, in addition to the drive electrode 12 to which drive power to oscillate the laser light 14 is applied. Yes.
 DFBレーザ10は、変調された駆動電力が駆動電極12に印加されることで、強度変調されたレーザ光14を活性層から出射する。レーザ光14の波長は、例えば1064nmの単一波長である。高調波生成素子30は、強度変調されたレーザ光14を、第2高調波であるグリーン光(可視光)32に変換して出射する。グリーン光32の波長は、例えば532nmである。 The DFB laser 10 emits intensity-modulated laser light 14 from the active layer by applying modulated drive power to the drive electrode 12. The wavelength of the laser beam 14 is a single wavelength of 1064 nm, for example. The harmonic generation element 30 converts the intensity-modulated laser light 14 into green light (visible light) 32, which is the second harmonic, and emits it. The wavelength of the green light 32 is, for example, 532 nm.
 図4は、駆動電力PDFBとレーザ光及びグリーン光の出力強度との関係、駆動電力PDFBと活性層の温度変化との関係、ヒータ電力Pheaterと活性層の温度変化との関係を説明する模式図である。 Figure 4 shows the relationship between the output intensity of the driving power P DFB laser light and green light, the relationship between the temperature change of the driving power P DFB and the active layer, the relationship between the temperature change of the heater power P Heater and the active layer described It is a schematic diagram to do.
 まず、レーザ光14及びグリーン光32の出力強度について簡単に説明する。図4のように、駆動電極12に印加する駆動電力PDFBが大きくなるに従い、レーザ光14の出力強度は大きくなる(図4中の破線)。高調波生成素子30は、入射された光の強度に対して二乗した強度の光を出射する。したがって、高調波生成素子30から出射されるグリーン光32の出力強度は駆動電力PDFBの増加に伴い増大する(図4中の細実線)。 First, the output intensities of the laser light 14 and the green light 32 will be briefly described. As shown in FIG. 4, the output intensity of the laser beam 14 increases as the drive power PDFB applied to the drive electrode 12 increases (broken line in FIG. 4). The harmonic generation element 30 emits light having an intensity squared with respect to the intensity of the incident light. Therefore, the output intensity of the green light 32 emitted from the harmonic generation element 30 increases as the drive power PDFB increases (thin solid line in FIG. 4).
 次に、駆動電力PDFB及びヒータ電力Pheaterによる活性層の温度変化について説明する。図4のように、活性層の温度は、駆動電力PDFBとヒータ電力Pheaterとが印加されることにより影響を受ける。駆動電力PDFBに起因する活性層の温度変化ΔTDFBは、例えば駆動電力PDFBに対して線形的に変化し、ΔTDFB=aPDFBように変化する(図4中の一点鎖線)。aは比例係数である。ヒータ電力Pheaterに起因する活性層の温度変化ΔTheaterは、例えばヒータ電力Pheaterに対して線形的に変化し、ΔTheater=bPheaterのように変化する(図4中の二点鎖線)。bは比例係数である。このように、一般的に、活性層の温度は、駆動電力PDFBとヒータ電力Pheaterに比例して変化する。 Next, the temperature change of the active layer due to the driving power P DFB and the heater power P heater will be described. As shown in FIG. 4, the temperature of the active layer is affected by the application of the driving power P DFB and the heater power P heater . The temperature change ΔT DFB of the active layer caused by the driving power P DFB changes, for example, linearly with respect to the driving power P DFB and changes as ΔT DFB = aP DFB (a chain line in FIG. 4). a is a proportionality coefficient. The temperature change [Delta] T Heater active layer due to the heater power P Heater, for example changes linearly with respect to the heater power P Heater, changes as ΔT heater = bP heater (two-dot chain line in FIG. 4). b is a proportionality coefficient. As described above, generally, the temperature of the active layer changes in proportion to the drive power P DFB and the heater power P heater .
 したがって、駆動電力PDFBとヒータ電力Pheaterとが印加されたことによる活性層の温度変化ΔTは、ΔT=ΔTDFB+ΔTheater=aPDFB+bPheaterとなる。よって、aPDFB+bPheaterが一定の電力Pfixとなれば、活性層の温度変化ΔTは一定となり、その結果、活性層の温度は一定の温度Tfixとなる(図4中の太実線)。 Therefore, the temperature change ΔT of the active layer due to the application of the driving power P DFB and the heater power P heater is ΔT = ΔT DFB + ΔT heater = aP DFB + bP heater . Therefore, if aP DFB + bP heater has a constant power P fix , the temperature change ΔT of the active layer becomes constant, and as a result, the temperature of the active layer becomes a constant temperature T fix (thick solid line in FIG. 4).
 ここで、駆動電力PDFBは変調されている。つまり、変調周波数に応じて駆動電力PDFBは変化している。したがって、aPDFB+bPheaterが時間的に一定となるように、ヒータ電力Pheaterを駆動電力PDFBの変調周波数と同じ周波数で変調させれば、駆動電力PDFBによる活性層の温度変化を打ち消すことができ、活性層の温度を時間的に一定にできる。これにより、活性層から出射されるレーザ光14の波長変動を抑制できる。以下に、この原理を用いた本発明のレーザシステムの実施例を説明する。 Here, the driving power P DFB is modulated. That is, the drive power PDFB changes according to the modulation frequency. Therefore, if the heater power P heater is modulated at the same frequency as the modulation frequency of the drive power P DFB so that the aP DFB + bP heater is constant in time, the temperature change of the active layer due to the drive power P DFB is canceled out. The temperature of the active layer can be made constant over time. Thereby, the wavelength fluctuation | variation of the laser beam 14 radiate | emitted from an active layer can be suppressed. An embodiment of the laser system of the present invention using this principle will be described below.
 図5は、実施例1に係るレーザシステム200の上面模式図である。図5のように、レーザシステム200は、DFBレーザ10、コリメートレンズ40と42、高調波生成素子30、及び制御部80を有している。DFBレーザ10は、例えばQD(量子ドット)-DFBレーザである。高調波生成素子30は、例えばPPLNである。 FIG. 5 is a schematic top view of the laser system 200 according to the first embodiment. As shown in FIG. 5, the laser system 200 includes the DFB laser 10, collimating lenses 40 and 42, the harmonic generation element 30, and the control unit 80. The DFB laser 10 is, for example, a QD (quantum dot) -DFB laser. The harmonic generation element 30 is, for example, PPLN.
 DFBレーザ10の上面には、変調された駆動電力が印加される駆動電極12と、駆動電力による活性層の温度変化を打ち消すため、駆動電力の変調周波数と同じ周波数に変調されたヒータ電力が印加されるヒータ部16とが形成されている。駆動電力及びヒータ電力の変調周波数は、例えば500MHzである。ヒータ部16は、駆動電極12上方に駆動電極12に沿うように延在して形成されている。即ち、駆動電極12とヒータ部16とは同じ位置に形成されている。 On the upper surface of the DFB laser 10, heater power modulated to the same frequency as the modulation frequency of the drive power is applied to cancel the temperature change of the active layer due to the drive power and the drive electrode 12 to which the modulated drive power is applied. The heater portion 16 is formed. The modulation frequency of drive power and heater power is, for example, 500 MHz. The heater portion 16 is formed to extend along the drive electrode 12 above the drive electrode 12. That is, the drive electrode 12 and the heater portion 16 are formed at the same position.
 DFBレーザ10のレーザ光14が出射しない端面には、DFBレーザ10の発振波長である例えば1064nmの光に対するHR(高反射)膜18が形成されている。DFBレーザ10のレーザ光14を出射する端面には、DFBレーザ10の発振波長(例えば1064nm)の光に対するAR(反射防止)膜20が形成されている。 On the end face of the DFB laser 10 where the laser beam 14 is not emitted, an HR (high reflection) film 18 for light having a wavelength of 1064 nm, which is the oscillation wavelength of the DFB laser 10, is formed. An AR (antireflection) film 20 for light having an oscillation wavelength (eg, 1064 nm) of the DFB laser 10 is formed on the end face of the DFB laser 10 that emits the laser light 14.
 DFBレーザ10から出射されたレーザ光14は、コリメートレンズ40及び42により、高調波生成素子30の一端面に入射する。コリメートレンズ40及び42の表面は、レーザ光14の波長(例えば1064nm)に対するAR膜がコーティングされている。 The laser light 14 emitted from the DFB laser 10 is incident on one end face of the harmonic generation element 30 by the collimating lenses 40 and 42. The surfaces of the collimating lenses 40 and 42 are coated with an AR film for the wavelength of the laser light 14 (for example, 1064 nm).
 高調波生成素子30のレーザ光14が入射する端面には、レーザ光14の波長(例えば1064nm)に対するAR膜34が形成されている。高調波生成素子30は、入射されたレーザ光14を第2高調波であるグリーン光32に変換して出射する。高調波生成素子30のグリーン光32が出射される端面には、グリーン光32の波長である例えば532nmに対するAR膜36が形成されている。 An AR film 34 for the wavelength of the laser light 14 (for example, 1064 nm) is formed on the end face of the harmonic generation element 30 on which the laser light 14 is incident. The harmonic generation element 30 converts the incident laser light 14 into green light 32 that is the second harmonic and emits it. An AR film 36 for the wavelength of the green light 32 of, for example, 532 nm is formed on the end face of the harmonic generation element 30 from which the green light 32 is emitted.
 制御部80は、変調した駆動電力を、ワイヤ70を用いて駆動電極12に印加する。また、制御部80は、駆動電力による活性層の温度変化を打ち消すために、駆動電力の変調周波数と同じ周波数に変調されたヒータ電力を、ワイヤ70を用いてヒータ部16に印加する。 The control unit 80 applies the modulated drive power to the drive electrode 12 using the wire 70. Further, the control unit 80 applies the heater power modulated to the same frequency as the modulation frequency of the driving power to the heater unit 16 using the wire 70 in order to cancel the temperature change of the active layer due to the driving power.
 図6(a)はレーザ光14の出射方向に平行方向におけるDFBレーザ10の断面模式図であり、図6(b)は垂直方向におけるDFBレーザ10の断面模式図である。図6(a)のように、n型GaAs基板50上に、n型Al0.35Ga0.65Asからなるn型クラッド層52が形成されている。基板50下には、電極69が形成されている。n型クラッド層52上に、GaAsからなるベース層54内にInAsからなる量子ドット56を有する量子ドット活性層58が形成されている。量子ドット活性層58上に、p型GaAsからなるp型層60が形成されている。p型層60上に、p型InGaPからなるp型クラッド層62が形成されている。p型層60とp型クラッド層62との間には発振するレーザ光の波長を決めるコルゲーション64が形成されている。このように、レーザ光を発振する量子ドット活性層58を含むn型クラッド層52、p型層60、p型クラッド層62の半導体層61が設けられている。 6A is a schematic cross-sectional view of the DFB laser 10 in a direction parallel to the emission direction of the laser light 14, and FIG. 6B is a schematic cross-sectional view of the DFB laser 10 in the vertical direction. As shown in FIG. 6A , an n-type cladding layer 52 made of n-type Al 0.35 Ga 0.65 As is formed on an n-type GaAs substrate 50. An electrode 69 is formed under the substrate 50. On the n-type cladding layer 52, a quantum dot active layer 58 having a quantum dot 56 made of InAs in a base layer 54 made of GaAs is formed. A p-type layer 60 made of p-type GaAs is formed on the quantum dot active layer 58. A p-type cladding layer 62 made of p-type InGaP is formed on the p-type layer 60. Between the p-type layer 60 and the p-type cladding layer 62, a corrugation 64 that determines the wavelength of the oscillating laser light is formed. As described above, the semiconductor layer 61 including the n-type cladding layer 52, the p-type layer 60, and the p-type cladding layer 62 including the quantum dot active layer 58 that oscillates laser light is provided.
 p型クラッド層62上に、pGaAsからなるコンタクト層66が形成されている。コンタクト層66上には、駆動電極12が形成されている。駆動電極12上に、酸化シリコン膜からなる絶縁膜68が形成されている。絶縁膜68上に、例えばPt(白金)で形成されたヒータ部16が設けられている。駆動電極12及びヒータ部16は、制御部80により駆動電力及びヒータ電力が印加される。電極69は、一定電位に接続されていて、例えば接地されている。 A contact layer 66 made of p + GaAs is formed on the p-type cladding layer 62. A drive electrode 12 is formed on the contact layer 66. An insulating film 68 made of a silicon oxide film is formed on the drive electrode 12. On the insulating film 68, for example, a heater portion 16 made of Pt (platinum) is provided. Drive power and heater power are applied to the drive electrode 12 and the heater unit 16 by the control unit 80. The electrode 69 is connected to a constant potential and is grounded, for example.
 図6(b)のように、p型クラッド層62及びコンタクト層66は孤立したメサ部72を有する。駆動電極12は、メサ部72上に形成されている。ヒータ部16は、絶縁膜68を間に挟んで駆動電極12上に形成されている。ヒータ部16の幅W1はメサ部72の幅W2よりも狭い。 As shown in FIG. 6B, the p-type cladding layer 62 and the contact layer 66 have isolated mesa portions 72. The drive electrode 12 is formed on the mesa portion 72. The heater unit 16 is formed on the drive electrode 12 with an insulating film 68 interposed therebetween. The width W1 of the heater part 16 is narrower than the width W2 of the mesa part 72.
 駆動電極12に駆動電力が印加されることにより、駆動電極12と電極69との間を駆動電流が流れる。これにより、量子ドット活性層58で誘導放出が生じ、活性層58からレーザ光14が出射する。駆動電極12に変調された駆動電力が印加されることで、活性層58から出射するレーザ光14を強度変調させることができる。 When drive power is applied to the drive electrode 12, a drive current flows between the drive electrode 12 and the electrode 69. As a result, stimulated emission occurs in the quantum dot active layer 58, and the laser beam 14 is emitted from the active layer 58. By applying the modulated drive power to the drive electrode 12, the intensity of the laser beam 14 emitted from the active layer 58 can be modulated.
 以上のように、実施例1に係るレーザシステム200によれば、DFBレーザ10と制御部80とを有する。DFBレーザ10は、駆動電極12に変調された駆動電力が印加されることで、強度変調されたレーザ光14を活性層58から出射する。DFBレーザ10のヒータ部16には、駆動電力による活性層58の温度変化を打ち消し、活性層58の温度が一定に維持されるよう、駆動電力の変調周波数と同じ周波数に変調されたヒータ電力が制御部80により印加される。これにより、駆動電力を変調させることでレーザ光を強度変調させる場合でも、活性層58の温度を一定に維持でき、レーザ光14の波長の変動を抑制できる。 As described above, the laser system 200 according to the first embodiment includes the DFB laser 10 and the control unit 80. The DFB laser 10 emits intensity-modulated laser light 14 from the active layer 58 by applying a modulated drive power to the drive electrode 12. The heater power 16 modulated to the same frequency as the modulation frequency of the drive power is applied to the heater unit 16 of the DFB laser 10 so that the temperature change of the active layer 58 due to the drive power is canceled and the temperature of the active layer 58 is maintained constant. Applied by the controller 80. Thereby, even when the intensity of the laser beam is modulated by modulating the driving power, the temperature of the active layer 58 can be kept constant, and the fluctuation of the wavelength of the laser beam 14 can be suppressed.
 したがって、高調波生成素子30による基本波から高調波への変換を高変換効率で行うことが可能な波長範囲内に、レーザ光14の波長を収めることができる。よって、高調波生成素子30により、レーザ光14をレーザ光14の第2高調波であるグリーン光32に高変換効率で変換することができる。 Therefore, the wavelength of the laser beam 14 can be kept within a wavelength range in which the conversion from the fundamental wave to the harmonic by the harmonic generation element 30 can be performed with high conversion efficiency. Therefore, the harmonic generation element 30 can convert the laser light 14 into green light 32 that is the second harmonic of the laser light 14 with high conversion efficiency.
 なお、実施例1において、高調波生成素子30は、レーザ光14をレーザ光14の第2高調波であるグリーン光32に変換する場合を説明しているが、これに限られる訳ではない。例えば、高調波生成素子30は、レーザ光14をレーザ光14の高次の高調波に変換する場合でもよく、高調波光はグリーン光以外の可視光の場合でもよい。しかしながら、変換効率の観点から、高調波生成素子30はレーザ光14をレーザ光14の第2高調波に変換する場合が好ましい。また、グリーン光を出射する半導体レーザが実現されていないことから、高調波生成素子30から出射する高調波光はグリーン光である場合が好ましい。 In the first embodiment, the harmonic generation element 30 describes the case where the laser light 14 is converted into the green light 32 that is the second harmonic of the laser light 14, but the present invention is not limited thereto. For example, the harmonic generation element 30 may convert the laser light 14 into higher-order harmonics of the laser light 14, and the harmonic light may be visible light other than green light. However, from the viewpoint of conversion efficiency, the harmonic generation element 30 preferably converts the laser light 14 into the second harmonic of the laser light 14. In addition, since a semiconductor laser that emits green light is not realized, it is preferable that the harmonic light emitted from the harmonic generation element 30 is green light.
 図6(a)及び図6(b)のように、駆動電極12とヒータ部16とは、メサ部72上に設けられている。これにより、駆動電力及びヒータ電力に起因する熱の広がりに対して、熱源である駆動電極12及びヒータ部16を小さくでき、駆動電力及びヒータ電力に対する活性層58の熱容量を同程度にすることができる。 6A and 6B, the drive electrode 12 and the heater unit 16 are provided on the mesa unit 72. Thereby, the drive electrode 12 and the heater unit 16 which are heat sources can be made small with respect to the spread of heat caused by the drive power and the heater power, and the heat capacity of the active layer 58 with respect to the drive power and the heater power can be made comparable. it can.
 また、熱の広がりに対して、熱源である駆動電極12及びヒータ部16を小さくすることで、駆動電力に基づく活性層58の温度変化の時定数とヒータ電力に基づく活性層58の温度変化の時定数とを同程度にすることができる。駆動電力及びヒータ電力の変調周波数が例えば500MHzである場合、熱の応答は遅いことから、駆動電力及びヒータ電力に基づく活性層58の温度変化の時定数は例えば10kHz~100kHzの範囲内になる。例えば、25kHzになる。このように、駆動電力及びヒータ電力に基づく活性層58の温度変化の時定数が同程度になることで、駆動電力による活性層58の温度変化の周波数応答特性とヒータ電力による活性層58の温度変化の周波数応答特性を類似させることが可能になり、駆動電力の変調信号と同形で反転した信号でヒータ電力を変調することで、駆動電力による活性層の温度変化を容易に打ち消すことができる。 Further, by reducing the drive electrode 12 and the heater unit 16 that are heat sources with respect to the spread of heat, the time constant of the temperature change of the active layer 58 based on the drive power and the temperature change of the active layer 58 based on the heater power are reduced. The time constant can be made comparable. When the modulation frequency of the driving power and the heater power is, for example, 500 MHz, the response of heat is slow. Therefore, the time constant of the temperature change of the active layer 58 based on the driving power and the heater power is in the range of, for example, 10 kHz to 100 kHz. For example, 25 kHz. As described above, since the time constants of the temperature change of the active layer 58 based on the drive power and the heater power are approximately the same, the frequency response characteristics of the temperature change of the active layer 58 due to the drive power and the temperature of the active layer 58 due to the heater power. It becomes possible to make the frequency response characteristics of the changes similar, and by modulating the heater power with a signal inverted in the same form as the modulation signal of the driving power, it is possible to easily cancel the temperature change of the active layer due to the driving power.
 したがって、例えば、制御部80は、図7のような、駆動電力PDFBの変調信号に対して相補的なヒータ電力Pheaterをヒータ部16に印加する。換言すると、制御部80は、前述したaPDFB+bPheaterが一定になる電力Pfixの半分(Pfix/2)に対して、駆動電力PDFBを反転させたヒータ電力Pheaterを、ヒータ部16に印加する。これにより、駆動電力による活性層58の温度変化を打ち消すことができ、活性層58の温度を一定に維持できる。 Therefore, for example, the control unit 80 applies the heater power P heater complementary to the modulation signal of the drive power P DFB to the heater unit 16 as shown in FIG. In other words, the control unit 80 supplies the heater power P heater obtained by inverting the drive power P DFB to the half of the power P fix (P fix / 2) at which the aP DFB + bP heater described above is constant. Apply to. Thereby, the temperature change of the active layer 58 due to the driving power can be canceled, and the temperature of the active layer 58 can be kept constant.
 このように、駆動電極12とヒータ部16とは同じ位置に形成され、且つ駆動電力及びヒータ電力による熱の広がりに対して十分小さい場合が好ましい。これにより、駆動電力及びヒータ電力に対する活性層58の熱容量を同程度にできる。また、駆動電力及びヒータ電力に基づく活性層58の温度変化の時定数を同程度にできる。 As described above, it is preferable that the drive electrode 12 and the heater unit 16 are formed at the same position and are sufficiently small with respect to the heat spread due to the drive power and the heater power. Thereby, the heat capacity of the active layer 58 with respect to the driving power and the heater power can be made comparable. In addition, the time constant of the temperature change of the active layer 58 based on the driving power and the heater power can be made comparable.
 駆動電極12とヒータ部16とは同様の形状で設けられている場合が好ましく、例えば駆動電極12が延在して設けられている場合は、ヒータ部16は駆動電極12に沿って延在している場合が好ましい。また、図8のように、駆動電極12がメサ部72の上面にのみ形成されている場合、ヒータ部16の幅は、メサ部72の幅Wの3倍よりも小さい場合が好ましい。ヒータ部16の幅はメサ部72の幅Wの2倍よりも小さい場合がより好ましい。ヒータ部16の幅はメサ部72の幅Wよりも小さい場合がさらに好ましい。 The drive electrode 12 and the heater part 16 are preferably provided in the same shape. For example, when the drive electrode 12 extends and is provided, the heater part 16 extends along the drive electrode 12. It is preferable. Further, as shown in FIG. 8, when the drive electrode 12 is formed only on the upper surface of the mesa portion 72, the width of the heater portion 16 is preferably smaller than three times the width W of the mesa portion 72. More preferably, the width of the heater portion 16 is smaller than twice the width W of the mesa portion 72. More preferably, the width of the heater portion 16 is smaller than the width W of the mesa portion 72.
 実施例1においては、DFBレーザ10は、QD-DFBレーザである場合を例に示したが、これに限られる訳ではない。例えば、QW(量子井戸)-DFBレーザである場合でもよい。QW-DFBレーザの場合でも、変調された駆動電力による活性層の温度変化を打ち消すことができ、レーザ光の波長変動を抑制する効果を得ることができる。 In the first embodiment, the DFB laser 10 is a QD-DFB laser as an example. However, the present invention is not limited to this. For example, a QW (quantum well) -DFB laser may be used. Even in the case of the QW-DFB laser, the temperature change of the active layer due to the modulated driving power can be canceled, and the effect of suppressing the wavelength variation of the laser light can be obtained.
 QW-DFBレーザにおいては、活性層の温度だけでなくキャリアの数も、レーザ光の発振波長に影響を及ぼす。駆動電力を変調させてレーザ光の強度変調を行う場合、実施例1によれば、活性層の温度を一定に維持できるが、キャリアの数を一定に制御することは難しい。したがって、QW-DFBレーザの場合は、レーザ光の波長変動を抑制できるが、完全に波長変動をなくすことは難しい。一方、QD-DFBレーザにおいては、レーザ光の発振波長に影響を及ぼす主要因は活性層の温度である。したがって、活性層の温度を一定に維持できる実施例1においては、DFBレーザ10にQD-DFBレーザを用いることが好ましい。QD-DFBレーザを用いることにより、駆動電力を変調させてレーザ光の強度変調を行う場合のレーザ光の波長変動をより小さくすることができる。 In the QW-DFB laser, not only the temperature of the active layer but also the number of carriers affects the oscillation wavelength of the laser beam. When modulating the driving power to modulate the intensity of the laser light, according to the first embodiment, the temperature of the active layer can be kept constant, but it is difficult to control the number of carriers to be constant. Therefore, in the case of the QW-DFB laser, the wavelength fluctuation of the laser beam can be suppressed, but it is difficult to completely eliminate the wavelength fluctuation. On the other hand, in the QD-DFB laser, the main factor affecting the oscillation wavelength of the laser light is the temperature of the active layer. Therefore, in Example 1 in which the temperature of the active layer can be kept constant, it is preferable to use a QD-DFB laser as the DFB laser 10. By using the QD-DFB laser, it is possible to further reduce the wavelength fluctuation of the laser beam when the drive power is modulated to modulate the intensity of the laser beam.
 図9は、制御部80によるヒータ電力の制御方法の例を説明する概念図である。図9(a)は、第1の制御方法の例を説明する概念図であり、図9(b)は、第2の制御方法の例を説明する概念図である。図9(a)のように、第1の制御方法は、乗算器90及び加算器92を用い、駆動電圧VDFB、駆動電流IDFB、ヒータ電圧Vheater、及びヒータ電流Iheaterから、aVDFBDFB+bVheaterheaterの現時点の大きさを求める。そして、活性層58を一定の温度Tfixにするための電力Pfixとの差から電位差を差動回路94により求める。差動回路94で求めた電位差をフィードバックし、Vheaterの大きさを制御してヒータ電力をヒータ部16に印加する。これにより、aVDFBDFB+bVheaterheaterの大きさをPfixの一定にでき、活性層58の温度をTfixの一定に維持することができる。 FIG. 9 is a conceptual diagram illustrating an example of a method for controlling the heater power by the control unit 80. FIG. 9A is a conceptual diagram illustrating an example of the first control method, and FIG. 9B is a conceptual diagram illustrating an example of the second control method. As shown in FIG. 9A, the first control method uses a multiplier 90 and an adder 92, and aV DFB is calculated from the driving voltage V DFB , the driving current I DFB , the heater voltage V heater , and the heater current I heater. I DFB + bV heater Determines the current size of I heater . Then, the potential difference is obtained by the differential circuit 94 from the difference from the power P fix for setting the active layer 58 to a constant temperature T fix . The potential difference obtained by the differential circuit 94 is fed back, the magnitude of V heater is controlled, and the heater power is applied to the heater section 16. Thereby, the magnitude of aV DFB I DFB + bV heater I heater can be made constant at P fix , and the temperature of the active layer 58 can be kept constant at T fix .
 図9(b)のように、第2の制御方法は、駆動電圧VDFB及び駆動電流IDFBの値からヒータ電圧Vheater及びヒータ電流Iheaterを算出する計算テーブルを予め作成しておく。そして、駆動電極12に印加する駆動電力(PDFB=VDFBDFB)から、計算テーブルを用いて、Vheater及びIheaterを算出してヒータ電力(Pheater=Vheaterheater)を印加する。これによっても、aVDFBDFB+bVheaterheaterの大きさをPfix一定にでき、活性層58の温度をTfix一定に維持することができる。なお、計算テーブルの例として、Vheater=(Pfix-aVDFBDFB)/bRheater、Iheater=Vheater/Rheaterが挙げられる。Rheaterは、ヒータ部16の抵抗である。a、bは図4で説明した比例係数である。 As shown in FIG. 9B, in the second control method, a calculation table for calculating the heater voltage V heater and the heater current I heater from the values of the drive voltage V DFB and the drive current I DFB is created in advance. Then, from the driving power applied to the driving electrode 12 (P DFB = V DFB I DFB ), using the calculation table, V heater and I heat are calculated, and the heater power (P heater = V heater I heater ) is applied. . This also makes it possible to make the size of aV DFB I DFB + bV heater I heater constant at P fix and keep the temperature of the active layer 58 constant at T fix . Examples of the calculation table include V heater = (P fix -aV DFB I DFB ) / bR heater and I heater = V heater / R heater . R heater is the resistance of the heater section 16. a and b are the proportional coefficients described in FIG.
 実施例1に係るレーザシステム200では、図5のように、高調波生成素子30を有している場合を例に説明したが、これに限られる訳ではない。図10のように、レーザシステムは、高調波生成素子30を有さずに、DFBレーザ10と制御部80とからなる場合でもよい。この場合でも、レーザ光の強度変調ができ、且つレーザ光の波長変動を抑制できる。したがって、図10のようなレーザシステムは、例えば1.55μm帯や1.3μm帯の通信用のレーザシステムとして用いることもできる。 In the laser system 200 according to the first embodiment, the case where the harmonic generation element 30 is provided as illustrated in FIG. 5 has been described as an example, but the present invention is not limited thereto. As shown in FIG. 10, the laser system may include the DFB laser 10 and the control unit 80 without the harmonic generation element 30. Even in this case, the intensity of the laser beam can be modulated and the wavelength variation of the laser beam can be suppressed. Therefore, the laser system as shown in FIG. 10 can also be used as a communication laser system in a 1.55 μm band or a 1.3 μm band, for example.
 以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims.・ Change is possible.

Claims (10)

  1.  駆動電力が変調されることで強度変調されたレーザ光を出射する活性層を含む半導体層と、前記活性層の温度を一定に維持するためのヒータ部と、を有するDFBレーザと、
     変調された前記駆動電力による前記活性層の温度変化を打ち消すように、前記駆動電力の変調周波数と同じ周波数に変調されたヒータ電力を前記ヒータ部に印加する制御部と、を具備することを特徴とするレーザシステム。
    A DFB laser having a semiconductor layer including an active layer that emits laser light whose intensity is modulated by modulating driving power, and a heater unit for maintaining the temperature of the active layer constant;
    A control unit that applies a heater power modulated to the same frequency as the modulation frequency of the drive power to the heater unit so as to cancel the temperature change of the active layer due to the modulated drive power. A laser system.
  2.  前記制御部は、変調された前記駆動電力に対して相補的な前記ヒータ電力を前記ヒータ部に印加することを特徴とする請求項1記載のレーザシステム。 The laser system according to claim 1, wherein the controller applies the heater power complementary to the modulated driving power to the heater section.
  3.  前記駆動電力に基づく前記活性層の温度変化の時定数と前記ヒータ電力に基づく前記活性層の温度変化の時定数とは同程度であることを特徴とする請求項1又は2記載のレーザシステム。 3. The laser system according to claim 1, wherein the time constant of the temperature change of the active layer based on the driving power and the time constant of the temperature change of the active layer based on the heater power are approximately the same.
  4.  前記半導体層は孤立したメサ部を有し、
     前記駆動電力が印加される駆動電極と前記ヒータ部とは前記メサ部上に設けられていることを特徴とする請求項1から3のいずれか一項記載のレーザシステム。
    The semiconductor layer has an isolated mesa portion;
    4. The laser system according to claim 1, wherein the driving electrode to which the driving power is applied and the heater unit are provided on the mesa unit. 5.
  5.  前記ヒータ部の幅は前記メサ部の幅の3倍より小さいことを特徴とする請求項4記載のレーザシステム。 The laser system according to claim 4, wherein a width of the heater portion is smaller than three times a width of the mesa portion.
  6.  前記ヒータ部は前記駆動電極に沿って設けられていることを特徴とする請求項4又は5記載のレーザシステム。 6. The laser system according to claim 4, wherein the heater section is provided along the drive electrode.
  7.  前記DFBレーザは量子ドットDFBレーザであることを特徴とする請求項1から6のいずれか一項記載のレーザシステム。 The laser system according to any one of claims 1 to 6, wherein the DFB laser is a quantum dot DFB laser.
  8.  前記レーザ光を前記レーザ光の高調波である可視光に変換する高調波生成素子を有することを特徴とする請求項1から7のいずれか一項記載のレーザシステム。 The laser system according to claim 1, further comprising a harmonic generation element that converts the laser light into visible light that is a harmonic of the laser light.
  9.  前記高調波素子は前記レーザ光を前記レーザ光の第2高調波に変換することを特徴とする請求項8記載のレーザシステム。 9. The laser system according to claim 8, wherein the harmonic element converts the laser beam into a second harmonic of the laser beam.
  10.  前記可視光はグリーン光であることを特徴とする請求項8又は9記載のレーザシステム。 10. The laser system according to claim 8, wherein the visible light is green light.
PCT/JP2010/062164 2009-07-27 2010-07-20 Laser system WO2011013535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-173987 2009-07-27
JP2009173987A JP2011029426A (en) 2009-07-27 2009-07-27 Laser system

Publications (1)

Publication Number Publication Date
WO2011013535A1 true WO2011013535A1 (en) 2011-02-03

Family

ID=43529194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062164 WO2011013535A1 (en) 2009-07-27 2010-07-20 Laser system

Country Status (2)

Country Link
JP (1) JP2011029426A (en)
WO (1) WO2011013535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210305776A1 (en) * 2018-08-01 2021-09-30 Osram Oled Gmbh Laser diode chip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673253B2 (en) 2011-03-16 2015-02-18 富士通株式会社 Optical semiconductor device, semiconductor laser, and manufacturing method of optical semiconductor device
JP5974590B2 (en) * 2012-03-30 2016-08-23 富士通株式会社 Optical semiconductor device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116878A (en) * 1990-09-07 1992-04-17 Ricoh Co Ltd Semiconductor laser element with heater
JPH0575202A (en) * 1991-09-12 1993-03-26 Hitachi Ltd Variable wave length laser and manufacture thereof
JP2000294869A (en) * 1999-04-07 2000-10-20 Hitachi Ltd Wavelength variable light source and optical device using the same
JP2002158399A (en) * 2000-11-22 2002-05-31 Fujitsu Ltd Laser diode
JP2003298177A (en) * 2002-03-29 2003-10-17 Matsushita Electric Ind Co Ltd Method for controlling light source unit
WO2008033251A1 (en) * 2006-09-13 2008-03-20 Corning Incorporated Thermal compensation in semiconductor lasers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116878A (en) * 1990-09-07 1992-04-17 Ricoh Co Ltd Semiconductor laser element with heater
JPH0575202A (en) * 1991-09-12 1993-03-26 Hitachi Ltd Variable wave length laser and manufacture thereof
JP2000294869A (en) * 1999-04-07 2000-10-20 Hitachi Ltd Wavelength variable light source and optical device using the same
JP2002158399A (en) * 2000-11-22 2002-05-31 Fujitsu Ltd Laser diode
JP2003298177A (en) * 2002-03-29 2003-10-17 Matsushita Electric Ind Co Ltd Method for controlling light source unit
WO2008033251A1 (en) * 2006-09-13 2008-03-20 Corning Incorporated Thermal compensation in semiconductor lasers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210305776A1 (en) * 2018-08-01 2021-09-30 Osram Oled Gmbh Laser diode chip

Also Published As

Publication number Publication date
JP2011029426A (en) 2011-02-10

Similar Documents

Publication Publication Date Title
US8896911B2 (en) Laser system
US8654803B2 (en) Light emitting device and method of controlling light emitting device
JP2010503987A (en) Thermal correction method for semiconductor laser
JP2009545161A (en) Semiconductor laser micro heating element structure
JP2001320124A (en) Modulator integrated light source and module for optical communication
WO2011114907A1 (en) Laser system
WO2005062434A1 (en) Surface-emitting laser and laser projector
US20040086012A1 (en) Coherent light source and method for driving the same
WO2011013535A1 (en) Laser system
EP0635917B1 (en) Optical modulator
US7085297B2 (en) Driving method and driving circuit of light source apparatus
JP2010182999A (en) Semiconductor laser, optical transmitting device, optical transmitting/receiving device, driving method of optical transmitting device
WO2011114906A1 (en) Laser system and method for producing same
JP2001326418A (en) Semiconductor laser beam source and modulation method therefor
WO2010122899A1 (en) Laser system
JPH04115585A (en) Array type semiconductor laser device and manufacture thereof
JP5621706B2 (en) Optical semiconductor device
JPH0357286A (en) Semiconductor luminous device
JP2004140142A (en) Semiconductor laser and element for light communication
JP2004165651A (en) Coherent light source and its driving method
KR100429531B1 (en) Distributed feedback semiconductor laser
JP2018060973A (en) Semiconductor optical integrated element and optical transmission/reception module mounted with the same
JP2018037491A (en) Semiconductor laser element
JP4606053B2 (en) Driving method and driving circuit of light source device
JP2018060975A (en) Direct modulation laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804281

Country of ref document: EP

Kind code of ref document: A1