WO2011013510A1 - Multi-optical axis photoelectric sensor - Google Patents
Multi-optical axis photoelectric sensor Download PDFInfo
- Publication number
- WO2011013510A1 WO2011013510A1 PCT/JP2010/061852 JP2010061852W WO2011013510A1 WO 2011013510 A1 WO2011013510 A1 WO 2011013510A1 JP 2010061852 W JP2010061852 W JP 2010061852W WO 2011013510 A1 WO2011013510 A1 WO 2011013510A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- wall portions
- optical module
- optical axis
- base
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V8/00—Prospecting or detecting by optical means
- G01V8/10—Detecting, e.g. by using light barriers
- G01V8/20—Detecting, e.g. by using light barriers using multiple transmitters or receivers
Definitions
- the present invention forms a two-dimensional detection area by a plurality of optical axes by arranging a light projector and a light receiver, in which a plurality of optical modules are incorporated, with the light emitting surface and the light receiving surface facing each other.
- Multi-optical axis photoelectric sensor Multi-optical axis photoelectric sensor.
- FIG. 9 shows the configuration of the optical module 200 disclosed in Patent Document 1 by an exploded perspective view (1) and a partially broken perspective view (2).
- an optical IC chip 205 including an optical element (light emitting element or light receiving element), a shield member 204, a trap 202, and a lens member 201 are integrally provided in a resin holder 203 having a light guide 206. It is.
- the trap 202 and the lens member 201 are fixed at the upper end position of the light guide 206, and the optical IC chip 205 is attached to the bottom of the holder 203 with the shield member 204 interposed therebetween.
- the lens member 201 is provided with a projecting piece 201 a for positioning, and a hole 204 a communicating with the light guide 206 is formed at the center of the shield member 204.
- FIG. 10 shows the appearance of a multi-optical axis optical unit using the optical module 200 described above.
- This multi-optical axis optical unit includes a support frame 250 in which a plurality of wall portions 250a are arranged at both end edges, a plurality of fixing holders 230, the same number of optical modules 200 as the fixing holders 230, and eight signals. It is comprised by the flat cable 220 which integrated the wire.
- the respective fixing holders 230 are respectively fitted and fixed between the wall portions 250a and 250a opposed in the width direction of the support frame 250, and the flat cables 220 are supported thereon in the arranging direction of the respective signal lines.
- the optical module 200 is fitted into each fixing holder 230.
- the optical module 200 is held by the standing portions 230a and 230a at both ends of the fixing holder 230 and the wall portions 250a and 250a that support them.
- the lead pins 205a protruding from the optical IC chip 205 are respectively inserted into the flat cable 220 by the pressing force when the optical module 200 is inserted, and the signal lines are sandwiched between the central slits of the lead pins 205a. .
- the lead pins 205a are connected to the signal lines in a one-to-one relationship.
- the number of optical axes of the multi-optical axis optical unit and the distance between the optical axes can be easily changed by changing the length of the support frame 250 and the distance between the optical modules 230. .
- the support frame 250 is made of metal and holds the optical modules 200 and the flat cable 220, and also functions as a shield member for preventing electromagnetic noise from the outside. However, since the optical modules 200 are spaced apart, the upper surface of the flat cable 220 is exposed between the optical modules 200, and this exposed portion may be affected by an external electromagnetic wave. . Therefore, another shield member 260 is put on the multi-optical axis optical unit from above to protect the upper surface of the flat cable 220 from electromagnetic noise.
- a light passing hole 260d is formed at a position corresponding to the optical module 200 of the shield member 260, and locking pieces 260c to the holder 203 of the optical module 200 are provided at both ends. At both ends of the portion that does not correspond to the optical module 200, shielding portions 260b that slope obliquely downward are provided in a row.
- the lower end portion of the shielding portion 260b of the upper shielding member 260 and the upper end portion of the wall portion 250a of the support frame 250 are joined by soldering to form a pair of upper and lower shielding members 250. , 260 are physically and electrically connected.
- the longer the sensor, the more labor required for assembly and the longer the working time if the accuracy of the soldering is poor, the shield member 260 may not be fixed with sufficient strength, and the shielding function may also be deteriorated.
- the positions where the openings 260d and the shields 260b need to be formed correspond to the structure of the multi-optical axis optical unit, so the arrangement intervals of the optical modules 200 may be set plurally.
- the shield member 260 must be prepared according to each configuration.
- the present invention focuses on the above problems, and has an object to eliminate the need to cover a shield member from the top and to ensure a sufficient shield function by a simple method.
- a plurality of optical modules including optical elements and their processing circuits are projected in each housing of a light projector and a light receiver having a frame body having a window for forming light on the front surface.
- the present invention is applied to a multi-optical axis photoelectric sensor having a configuration in which the light surface or the light receiving surface is disposed along the longitudinal direction in a state of facing the window portion.
- a shield member in which a plurality of flexible wall portions are arranged in a row on the side edge of a plate-like base has insulation properties, and the wall portions facing each other across the base
- a multi-optical axis photoelectric sensor having a strip-shaped conductive member electrically connected to each optical module.
- the wall where the fixing holder and the optical module are arranged cooperates with the fixing holder to fix and support the optical module, while the wall where the fixing holder and the optical module are not arranged Are bent inward to shield the strip-shaped conductive member.
- each of the optical modules is supported by the fixing holder disposed at an appropriate position of the shield member and the wall portion in a cooperative relationship with the holder, and the optical module row and the fixing holder A conductive state (a flat cable, a flexible substrate, and the like) in a strip-like conductive member (flat cable, flexible substrate, etc.) sandwiched between the columns is established.
- the location where the fixing holder and the optical module are not provided is shielded by the inwardly bent wall.
- the electromagnetic noise can be prevented from acting on the exposed upper surface of the strip-like conductive member by bending the wall in this manner to approach the strip-like conductive member, it is not necessary to cover another shield member from above. . Therefore, the number of parts can be reduced, and the work for joining the shield members becomes unnecessary. Further, even when the distance between the optical modules is changed, it can be easily coped with by inward bending the wall portion of the portion where the strip-like conductive member is exposed.
- the wall portions are arranged at equal heights on both side edges of the base portion, and when the two opposing wall portions are bent inward on both sides of the base portion, these wall portions Is configured to shield the entire width of the strip-shaped conductive member. According to such a configuration, at the position where the optical module is disposed, the optical module can be stably held on both sides, and a sufficient shielding function is exhibited with respect to the portion where the strip-like conductive member is exposed. be able to.
- the present invention it is not necessary to perform complicated work, and a shielding function for the multi-optical axis optical unit can be secured, and the number of parts can be reduced. Therefore, the cost can be reduced, and the multi-optical axis optical unit can be completed in a short time. In addition, it is possible to easily cope with the case of manufacturing sensors having various numbers of optical axes and intervals between the optical axes.
- FIG. 1 shows the appearance of a multi-optical axis photoelectric sensor to which the present invention is applied.
- the light projector 1 and the light receiver 2 of this multi-optical axis photoelectric sensor are each provided with a plurality of optical elements (the light emitting element 10 in the light projector 1 and the light receiving element 20 in the light receiver 2) and control inside the housing 100 having a long shape.
- a substrate (not shown) is accommodated.
- a cord 101 in which various signal lines are put together is drawn out.
- a second cord 102 for extension is further connected to the cord 101.
- a window 103 for passing light is formed.
- the light emitting element 10 and the light receiving element 20 are arranged to align along the longitudinal direction of the housing 100 with the light emitting surface and the light receiving surface facing the window portion 103.
- the light projector 1 and the light receiver 2 are disposed to face each other at a predetermined interval so that the light emitting elements 10 and the light receiving elements 20 face each other in a one-to-one relationship. As a result, for each combination of the light emitting element 10 and the light receiving element 20, the positions and directions of these optical axes are aligned.
- 2, 3, 4, and 5 respectively show the front side (light emitting surface or light receiving surface) of the configuration of the multi-optical axis optical unit disposed in the housing 100 of the light projector 1 and the light receiver 2 described above. It shows by the perspective view, the front view, the side view, and the top view which were turned up. 2, 4 and 5 show only the configuration corresponding to the first two optical axes, but the same configuration as shown in each drawing is applied to the subsequent optical axes.
- each optical element (the light emitting element 10 in the light projector 1 and the light receiving element 20 in the light receiver 2) is accommodated in an independent optical module 3 as in Patent Document 1 and a plurality of optical modules 3 Are fixedly arranged at desired positions along the length direction of the support frame 4.
- a fixing holder 5 is used to fix each optical module 3.
- the flat cable 6 is sandwiched between the row of the optical modules 3 and the row of the fixing holders 5 so that the optical modules 3 are conducted to the respective signal lines 61 to 68 of the flat cable 6.
- FIG. 6 shows the configuration of the optical module 3.
- This optical module 3 has a shape slightly different from that of the conventional example shown in FIG. 9, but the substantial configuration and function are the same.
- reference numeral 31 denotes a holder having a light guide
- reference numeral 32 denotes a lens member 32 disposed on the upper side of the light guide.
- a shield member 37 and an optical IC chip 35 having a plurality of lead pins 36 are mounted at the bottom of the holder 31 .
- the holder 31 is a molded article made of resin, and the portion surrounding the lens member 32 is formed wide. At the corners (a total of four places) of the wide parts, rod-like locking pieces 33 having claws 34 at their tips are integrally provided with the length direction facing downward. Further, a second rod-like locking piece 38 not having a claw portion is provided integrally integrally with the length direction facing downward, slightly inside the locking pieces 33, respectively.
- FIG. 7 shows the structure of the support frame 4.
- the support frame 4 of this embodiment has a shape in which a plurality of wall portions 41A and 41B are integrally lined at both ends of a plate-like base 42 having a longitudinal shape, and is made of flexible metal (for example, phosphorus It is formed by a molding process using bronze or aluminum). In the molding step, a frame having a considerable length is formed, and the frame cut out in accordance with the length of the housing 100 is the support frame 4.
- the support frame 4 is electrically connected to a shield wire (not shown).
- the support frame 4 is set to have a function as a shield member.
- the wall portions 41A and 41B of the support frame 4 are disposed opposite to each other with the base 42 interposed therebetween.
- Each of the wall portions 41A and 41B has a width corresponding to one optical module 3, and the height is approximately half the width of the base 42.
- the lower wall width is formed wide, and the step portion 44 is formed at both end edges of the portion where the wall width changes.
- a groove 48 along the width direction is provided at a position slightly above the step portion.
- a pair of holes 45 and 45 are formed in the connection position of each wall 41A and the base 42 provided on one side edge of the support frame 4 respectively.
- One wide hole 47 is formed at the connection position between each wall 41B and the base 42 provided on the other side edge of the support frame 4.
- a pair of holes 46, 46 is formed on the groove 48 in any of the wall portions 41A, 41B.
- notch holes 49 are formed respectively connected to the gaps between the wall portions.
- the wall portions 41A and 41B of the support frame 4 can be bent inward at the position of the groove 48. Further, by bending the opposing wall portions 41A and 41B with the base portion 42 interposed therebetween, the entire width of the base portion 42 can be covered with the wall portions 41A and 41B.
- FIG. 8 (1) and 8 (2) show the configuration of the fixing holder 5.
- FIG. The fixing holder 5 has a pair of rising portions 50A and 50B connected to both side edges of the base 52 on the surface of which three corrugated plates 59a, 59b and 59c are formed. It is comprised by integral molding with resin.
- 502 in the figure is a hole which arose when it was pulled out from a jig
- Each of the rising portions 50A and 50B has a configuration in which the columnar bodies 51 are continuously provided on both sides of the U-shaped main portion 58, respectively.
- a pair of locking pieces 56 are provided so as to protrude on both sides of the notch groove 58a.
- a pair of locking pieces 55 project from the lower end edge of the main portion 58 of the rising portion 50A, and a wide locking piece 57 protrudes from the lower edge of the main portion 58 of the rising portion 50B.
- These locking pieces 55, 57 are bent below the lower surface of the base 52, respectively, and there is a gap between the bent portion and the lower surface of the base 52 according to the thickness of the base 42 of the support frame 4. It is set.
- Each columnar body 51 is formed higher than the main portion 58, and a step is formed on the outer wall surface by forming the upper portion thick. The step is set to substantially the same height as the locking piece 56 of the main portion 58. Further, the entire length of each columnar body 51 corresponds to the length of the locking piece 38 of the optical module 3, and the length of the thick portion 54 of each columnar body 51 corresponds to the claw portion of the locking piece 33 of the optical module 3 It corresponds to the length except 34.
- the longer projecting pieces of the respective projecting portions 53 are parallel to the wall surfaces of the columnar bodies 51 of the respective rising portions 50A and 50B, and face each other with an interval corresponding to the thickness of the locking piece 38 of the optical module 3 .
- Each corrugated plate 59a, 59b, 59c is provided with a number (eight) of grooves corresponding to the flat cable 6, respectively. Further, a projecting piece 501 for positioning the flat cable 6 is provided on the central long wave plate 59a.
- the locking pieces 55, 55 on the side of the rising portion 50A of the fixing holder 5 are holes 45 in the wall portion 41A with respect to the wall portions 41A, 41B opposite to each other with the base portion 42 of the support frame 4 interposed therebetween.
- the locking pieces 57 on the side of the rising portion 50B of the fixing holder 5 engage with the holes 47 of the wall portion 41B, and the locking pieces 56 of the main portion 58 of the rising portions 50A and 50B are walls
- the wall portions 41A and 41B are held.
- the flat cable 6 has a configuration in which eight signal lines 61 to 68 arranged in parallel are embedded in a resin.
- holes (not shown) are formed at regular intervals in the line in which the signal line corresponding to the projecting piece 501 of the base 52 of the fixing holder 5 is embedded. By fitting this hole into the projection 501, the flat cable 6 is fixed in a state where each signal line is aligned with the corresponding groove of each of the wave plates 59a, 59b, 59c.
- the hole of the flat cable 6 is provided in the position of the signal wire
- the flat cable 6 is bent downward at the front end edge of the support frame 4 and connected to the connector 60.
- the optical module 3 is fixedly held by positioning the optical module 3 so as to be in the gap between the two and applying pressure to the optical module 3.
- the locking piece 33 of the holder 31 of the optical module 3 is engaged with the thick portion 54 of the columnar body 51 at the upper position of each step portion 44 of the wall portions 41A and 41B, and the fixing holder
- the locking piece 38 enters the gap between the protrusion 53 provided on the base portion 52 of the fifth member 5 and the columnar body 51.
- the claws 34 of the locking pieces 33 engage with the lower surface of the thick portion 54, and the locking pieces 33, 33 positioned on the step portions 44, 44 at both ends of the wall portions 41A, 41B. With the wall portion 41A or 41B sandwiched in between, removal of the holder 31 is restricted.
- the lead pins 36 of the optical IC chip 35 attached to the bottom of the holder 31 break the coating of the flat cable 6 and are inserted inside, and the lead pins and the signal lines 61 to 68 are paired It becomes conductive in one relationship.
- the fixing holder 5 and the optical module 3 are disposed at intervals of one wall along the length direction of the support frame 4.
- the wall portions 41A and 41B at positions where the fixing holder 5 and the optical module 3 are not disposed are bent inward at the position of the groove 48 as shown in FIGS.
- the exposed portion of the flat cable 6 between the optical modules 3 is shielded over the entire width except the portion near the adjacent optical module 3.
- the strength of the shield for the flat cable 6 is enhanced by bending the wall portions 41A and 41B close to the upper surface of the flat cable 6, it goes without saying that the portions shielded by the wall portions 41A and 41B are of course It is also possible to protect electromagnetic noise to a portion not covered by the wall portions 41A and 41B.
- the lower surface and the upper surface of the flat cable 6 can be protected by a single shield member (support frame 4).
- the exposed portion of the cable 6 can be shielded only by bending the wall portions 41A and 41B in a position where the optical axis module 3 is not disposed inward, the arrangement interval of the optical modules 3 is changed. , It is not necessary to change the component parts and can be easily coped with. Therefore, even when manufacturing a long sensor, the work for setting the shield does not require much time and the number of parts for the shield can be reduced to one, so that the cost and labor can be significantly reduced.
- each optical module 3 is disposed at an interval of one wall along the length direction, but the present invention is not limited to this.
- Each optical module 3 may be disposed open.
- the intervals between the optical modules 3 are not limited to equal intervals, and there are a portion in which the optical modules 3 are densely arranged and a portion in which the optical modules 3 are sparsely arranged depending on the use environment of the sensor. It is also good.
- the upper surface of the flat cable 6 is exposed by bending the wall portions 41A and 41B in which the fixing holder 5 and the optical module 3 are not disposed inward as in the above embodiment. Since electromagnetic noise to a certain place can be protected, it is possible to easily cope with a change in the configuration of the multi-optical axis optical unit.
- the optical modules 3 can be disposed without spacing, that is, the optical modules 3 can be disposed to the adjacent wall portions in the length direction. It is. Also in this arrangement, the wall portions 41A and 41B in which the fixing holder 5 and the optical module 3 are not arranged are directed inward, unless the optical module 3 is arranged on all the wall portions 41A and 41B of the support frame 4 By bending, the exposed portion of the top surface of the flat cable 6 can be protected from electromagnetic noise.
- the flat cables 6 are shielded by equalizing the heights of the wall portions 41A and 41B of both end edges of the support frame 4 and bending the both wall portions 41A and 41B.
- the wall of one side may be made higher than the other, and only the higher wall may be bent to shield the flat cable 6.
- each optical module 3 is connected to the flat cable 6 through a pressure contact type lead pin, but instead of the flat cable 6, a flexible substrate on which each signal line is wired is used It is also possible.
- a plurality of bump electrodes may be provided on the bottom surface of the optical IC chip 35 instead of the lead pin 36 and each bump electrode may be soldered to the signal line.
- the optical modules 3 for one optical axis are spaced apart, but the present invention is not limited to this, and the above-described optical modules may be arranged in a row in which a plurality of optical elements are accommodated.
- the width of each wall of the support frame is sized so that a plurality of walls are arranged on both sides of the optical module, and the optical modules are arranged with one or more walls apart. be able to.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Switches Operated By Changes In Physical Conditions (AREA)
Abstract
A multi-optical axis optical unit is provided in each of the casings of a projector and an optical receiver of a multi-optical axis photoelectric sensor. Each multi-optical axis optical unit includes a shield member (support frame 4) where a plurality of flexible wall portions (41A, 41B) are arrayed on the side edges of a plate base (42), a plurality of fixing holders (5) which have insulation properties and are fitted between the wall portions (41A, 41B) opposed to each other by sandwiching the base (42), a plurality of optical modules (3) supported by the fixing holders (5), and a strip-shaped conductive member (flat cable 6) held between each fixing holder (5) and each optical module (3) on the upper surface of the base (42) of the shield member and electrically connected to each optical module (3). Wall portions (41A, 41B) in positions where a fixing holder (5) and optical module (3) are arranged hold the optical module (3) cooperatively with the fixing holder (5). On the other hand, wall portions (41A, 41B) in positions where no fixing holder (5) and optical module (3) are arranged are bent inward to shield the conductive member.
Description
本発明は、それぞれ複数の光学モジュールが組み込まれた投光器および受光器を、投光面と受光面とを対向させた状態にして配置することにより、複数の光軸による2次元の検知エリアが形成される多光軸光電センサに関する。
The present invention forms a two-dimensional detection area by a plurality of optical axes by arranging a light projector and a light receiver, in which a plurality of optical modules are incorporated, with the light emitting surface and the light receiving surface facing each other. Multi-optical axis photoelectric sensor.
出願人は、先般、投光素子や受光素子の1つ1つを独立の光学モジュールに収容し、この光学モジュールの数や間隔をセンサが設置される環境や目的に応じて変更できるようにした多光軸光電センサを開発した(特許文献1を参照)。
The applicant has recently accommodated each of the light emitting element and the light receiving element in an independent optical module, and has made it possible to change the number and spacing of the optical modules according to the environment and purpose in which the sensor is installed. A multi-optical axis photoelectric sensor was developed (see Patent Document 1).
図9は、特許文献1に開示されている光学モジュール200の構成を、分解斜視図(1)および一部を破断した斜視図(2)により示す。
この光学モジュール200は、導光路206を有する樹脂製のホルダ203に光学素子(投光素子または受光素子)を含む光ICチップ205、シールド部材204、トラップ202、レンズ部材201を一体に設けたものである。トラップ202およびレンズ部材201は導光路206の上端位置に固定され、光ICチップ205はシールド部材204を挟んでホルダ203の底部に装着される。
なお、レンズ部材201には、位置決め用の突片201aが設けられ、シールド部材204の中央部には、導光路206に連通する孔部204aが形成されている。 FIG. 9 shows the configuration of theoptical module 200 disclosed in Patent Document 1 by an exploded perspective view (1) and a partially broken perspective view (2).
In thisoptical module 200, an optical IC chip 205 including an optical element (light emitting element or light receiving element), a shield member 204, a trap 202, and a lens member 201 are integrally provided in a resin holder 203 having a light guide 206. It is. The trap 202 and the lens member 201 are fixed at the upper end position of the light guide 206, and the optical IC chip 205 is attached to the bottom of the holder 203 with the shield member 204 interposed therebetween.
Thelens member 201 is provided with a projecting piece 201 a for positioning, and a hole 204 a communicating with the light guide 206 is formed at the center of the shield member 204.
この光学モジュール200は、導光路206を有する樹脂製のホルダ203に光学素子(投光素子または受光素子)を含む光ICチップ205、シールド部材204、トラップ202、レンズ部材201を一体に設けたものである。トラップ202およびレンズ部材201は導光路206の上端位置に固定され、光ICチップ205はシールド部材204を挟んでホルダ203の底部に装着される。
なお、レンズ部材201には、位置決め用の突片201aが設けられ、シールド部材204の中央部には、導光路206に連通する孔部204aが形成されている。 FIG. 9 shows the configuration of the
In this
The
光ICチップ205の両端縁からは、それぞれ先端が二股に別れた圧接式のリードピン205aが4本ずつ突き出ている。図9(1)(2)には、いずれも一方の端縁のリードピン205aしか示していないが、これらのリードピン205aと図示されていない他端縁のリードピン205aとは、チップ205の長さ方向に沿って互い違いに位置する。
From the end edges of the optical IC chip 205, four pressure contact type lead pins 205a each having a bifurcated tip are protruded. 9 (1) and 9 (2), although only the lead pins 205a at one end are shown, these lead pins 205a and the lead pins 205a at the other end not shown are in the longitudinal direction of the chip 205. Alternately located along the.
図10は、上記の光学モジュール200を用いた多光軸光学ユニットの外観を示す。
この多光軸光学ユニットは、両端縁に複数の壁部250aが列設された支持フレーム250と、複数の固定用ホルダ230と、固定用ホルダ230と同数の光学モジュール200と、8本の信号線を一体化したフラットケーブル220とにより構成される。組立に際しては、各固定用ホルダ230を、それぞれ支持フレーム250の幅方向で対向する壁部250a,250aの間に嵌め込んで固定し、その上にフラットケーブル220を各信号線の並び方向を支持フレーム250の幅方向に合わせて配備し、さらに各固定用ホルダ230に光学モジュール200を嵌め込む。光学モジュール200は、固定用ホルダ230の両端の起立部230a,230aと、これらを支持している壁部250a,250aとにより保持される。 FIG. 10 shows the appearance of a multi-optical axis optical unit using theoptical module 200 described above.
This multi-optical axis optical unit includes asupport frame 250 in which a plurality of wall portions 250a are arranged at both end edges, a plurality of fixing holders 230, the same number of optical modules 200 as the fixing holders 230, and eight signals. It is comprised by the flat cable 220 which integrated the wire. At the time of assembly, the respective fixing holders 230 are respectively fitted and fixed between the wall portions 250a and 250a opposed in the width direction of the support frame 250, and the flat cables 220 are supported thereon in the arranging direction of the respective signal lines. In accordance with the width direction of the frame 250, the optical module 200 is fitted into each fixing holder 230. The optical module 200 is held by the standing portions 230a and 230a at both ends of the fixing holder 230 and the wall portions 250a and 250a that support them.
この多光軸光学ユニットは、両端縁に複数の壁部250aが列設された支持フレーム250と、複数の固定用ホルダ230と、固定用ホルダ230と同数の光学モジュール200と、8本の信号線を一体化したフラットケーブル220とにより構成される。組立に際しては、各固定用ホルダ230を、それぞれ支持フレーム250の幅方向で対向する壁部250a,250aの間に嵌め込んで固定し、その上にフラットケーブル220を各信号線の並び方向を支持フレーム250の幅方向に合わせて配備し、さらに各固定用ホルダ230に光学モジュール200を嵌め込む。光学モジュール200は、固定用ホルダ230の両端の起立部230a,230aと、これらを支持している壁部250a,250aとにより保持される。 FIG. 10 shows the appearance of a multi-optical axis optical unit using the
This multi-optical axis optical unit includes a
また、光学モジュール200を嵌め込む際の押圧力によって、光ICチップ205から突き出た各リードピン205aがそれぞれフラットケーブル220に差し込まれ、各信号線がリードピン205aの中央のスリットに挟み込まれた状態になる。これにより、各リードピン205aは各信号線に一対一の関係をもって接続される。
In addition, the lead pins 205a protruding from the optical IC chip 205 are respectively inserted into the flat cable 220 by the pressing force when the optical module 200 is inserted, and the signal lines are sandwiched between the central slits of the lead pins 205a. . Thus, the lead pins 205a are connected to the signal lines in a one-to-one relationship.
上記の組立構造によれば、支持フレーム250の長さや光学モジュール230を配置する間隔を変更することによって、多光軸光学ユニットの光軸数や光軸間の間隔を容易に変更することができる。
According to the above-described assembly structure, the number of optical axes of the multi-optical axis optical unit and the distance between the optical axes can be easily changed by changing the length of the support frame 250 and the distance between the optical modules 230. .
支持フレーム250は金属製であって、各光学モジュール200やフラットケーブル220を保持するほか、外部からの電磁ノイズを防御するためのシールド部材として機能する。しかし、光学モジュール200が間隔をあけて配置されているので、各光学モジュール200の間でフラットケーブル220の上面が露出した状態になり、この露出部分に外部からの電磁波の影響が及ぶおそれがある。このため、多光軸光学ユニットには、上方から別のシールド部材260が被せられて、フラットケーブル220の上面を電磁ノイズから防御するようにしている。
The support frame 250 is made of metal and holds the optical modules 200 and the flat cable 220, and also functions as a shield member for preventing electromagnetic noise from the outside. However, since the optical modules 200 are spaced apart, the upper surface of the flat cable 220 is exposed between the optical modules 200, and this exposed portion may be affected by an external electromagnetic wave. . Therefore, another shield member 260 is put on the multi-optical axis optical unit from above to protect the upper surface of the flat cable 220 from electromagnetic noise.
このシールド部材260の光学モジュール200に対応する箇所には、光の通過孔260dが形成されるとともに、両端に光学モジュール200のホルダ203への係止片260cが設けられる。光学モジュール200に対応しない箇所の両端には、それぞれ斜め下に傾斜する遮蔽部260bが連設される。
A light passing hole 260d is formed at a position corresponding to the optical module 200 of the shield member 260, and locking pieces 260c to the holder 203 of the optical module 200 are provided at both ends. At both ends of the portion that does not correspond to the optical module 200, shielding portions 260b that slope obliquely downward are provided in a row.
上記の構成の多光軸光学ユニットでは、上部のシールド部材260の遮蔽部260bの下端部と支持フレーム250の壁部250aの上端部とをはんだ付けにより接合することによって、上下一対のシールド部材250,260を物理的および電気的に接続するようにしている。しかし、このような構成では、センサが長尺になるほど、組立に要する労力が増し、作業時間も長くなる。また、はんだ付けの精度が悪いと、シールド部材260が十分な強度で固定されず、シールド機能も低下するおそれがある。
In the multi-optical axis optical unit having the above configuration, the lower end portion of the shielding portion 260b of the upper shielding member 260 and the upper end portion of the wall portion 250a of the support frame 250 are joined by soldering to form a pair of upper and lower shielding members 250. , 260 are physically and electrically connected. However, in such a configuration, the longer the sensor, the more labor required for assembly and the longer the working time. In addition, if the accuracy of the soldering is poor, the shield member 260 may not be fixed with sufficient strength, and the shielding function may also be deteriorated.
さらに、上部のシールド部材260では、開口部260dや遮蔽部260bの形成位置を多光軸光学ユニットの構造に対応させる必要があるため、光学モジュール200の配置間隔が複数とおりに設定される場合には、それぞれに応じた構成のシールド部材260を用意しなければならない。
Furthermore, in the upper shield member 260, the positions where the openings 260d and the shields 260b need to be formed correspond to the structure of the multi-optical axis optical unit, so the arrangement intervals of the optical modules 200 may be set plurally. In this case, the shield member 260 must be prepared according to each configuration.
多光軸光学ユニットの上部全体を被覆する方法に代えて、フラットケーブルが露出する箇所にのみシールド部材を取り付ける方法も提案されている(特許文献1の図22を参照。)。しかし、この方法でも、上方のシールド部材を支持フレーム250にはんだ付けしたり、光学モジュール250の配置間隔に応じた幅のシールド部材を使用する必要があるから、上述した問題を解決することはできない。
In place of the method of covering the entire upper part of the multi-optical axis optical unit, a method of attaching the shield member only to the portion where the flat cable is exposed is also proposed (see FIG. 22 of Patent Document 1). However, even with this method, it is necessary to solder the upper shield member to the support frame 250 or to use a shield member having a width corresponding to the arrangement distance of the optical module 250, so the above-mentioned problems can not be solved. .
本発明は上記の問題に着目し、上部からシールド部材を被せる必要をなくし、簡単な方法で十分なシールド機能を確保できるようにすることを課題とする。
The present invention focuses on the above problems, and has an object to eliminate the need to cover a shield member from the top and to ensure a sufficient shield function by a simple method.
本発明は、前面に光を通過させるための窓部が形成された枠体を筐体とする投光器および受光器の各筐体内に、光学素子およびその処理回路を含む複数個の光学モジュールが投光面または受光面を前記窓部に対向させた状態で長手方向に沿って配備された構成の多光軸光電センサに適用される。各筐体の内部には、板状の基部の側縁に複数の可撓性を有する壁部が列設されたシールド部材と、それぞれ絶縁性を有し、基部を挟んで対向する壁部の間に嵌め込まれる複数の固定用ホルダと、各固定用ホルダにそれぞれ支持される複数の光学モジュールと、シールド部材の基部の上面において各固定用ホルダと各光学モジュールとの間に挟まれて保持され、かつ各光学モジュールに電気接続された帯状の導電部材とを有する多光軸光電センサが設けられる。また、固定用ホルダおよび光学モジュールが配置された位置の壁部は固定用ホルダと協働して前記光学モジュールを固定支持する一方、前記固定用ホルダおよび光学モジュールが配置されていない位置の壁部は内向きに曲げられて帯状の導電部材を遮蔽する。
According to the present invention, a plurality of optical modules including optical elements and their processing circuits are projected in each housing of a light projector and a light receiver having a frame body having a window for forming light on the front surface. The present invention is applied to a multi-optical axis photoelectric sensor having a configuration in which the light surface or the light receiving surface is disposed along the longitudinal direction in a state of facing the window portion. Inside each case, a shield member in which a plurality of flexible wall portions are arranged in a row on the side edge of a plate-like base has insulation properties, and the wall portions facing each other across the base A plurality of fixing holders to be fitted between each other, a plurality of optical modules respectively supported by the respective fixing holders, and a holding member held between the respective fixing holders and the respective optical modules on the upper surface of the base of the shield member And a multi-optical axis photoelectric sensor having a strip-shaped conductive member electrically connected to each optical module. Further, the wall where the fixing holder and the optical module are arranged cooperates with the fixing holder to fix and support the optical module, while the wall where the fixing holder and the optical module are not arranged Are bent inward to shield the strip-shaped conductive member.
上記構成によれば、各光学モジュールは、シールド部材の適所に配置された固定用ホルダとこのホルダと協働する関係にある壁部とにより支持されるとともに、光学モジュールの列と固定用ホルダの列との間に挟まれた帯状の導電部材(フラットケーブル、フレキシブル基板など)に導通した状態になる。固定用ホルダおよび光学モジュールが設けられていない箇所は、内向きに曲げられた壁部により遮蔽される。
According to the above configuration, each of the optical modules is supported by the fixing holder disposed at an appropriate position of the shield member and the wall portion in a cooperative relationship with the holder, and the optical module row and the fixing holder A conductive state (a flat cable, a flexible substrate, and the like) in a strip-like conductive member (flat cable, flexible substrate, etc.) sandwiched between the columns is established. The location where the fixing holder and the optical module are not provided is shielded by the inwardly bent wall.
このように壁部を曲げて帯状の導電部材に近づけることによって、帯状の導電部材の露出した上面に電磁ノイズが作用するのを防ぐことができるから、別のシールド部材を上から被せる必要がなくなる。よって、部品点数を減らすことができ、シールド部材の接合のための作業も不要になる。また、光学モジュール間の間隔が変更された場合にも、帯状の導電部材が露出する箇所の壁部を内向きに曲げることにより容易に対応することができる。
Since the electromagnetic noise can be prevented from acting on the exposed upper surface of the strip-like conductive member by bending the wall in this manner to approach the strip-like conductive member, it is not necessary to cover another shield member from above. . Therefore, the number of parts can be reduced, and the work for joining the shield members becomes unnecessary. Further, even when the distance between the optical modules is changed, it can be easily coped with by inward bending the wall portion of the portion where the strip-like conductive member is exposed.
上記の光学部材の好ましい態様では、壁部は、前記基部の両側縁にそれぞれ等しい高さをもって列設され、基部を挟んで対向する2つの壁部を内向きに曲げたとき、これらの壁部により帯状の導電部材の全幅が遮蔽されるように構成される。このような構成によれば、光学モジュールが配置される位置では、当該光学モジュールを両側で安定して保持することができ、帯状の導電部材が露出する箇所に対して十分なシールド機能を発揮することができる。
In a preferred aspect of the above optical member, the wall portions are arranged at equal heights on both side edges of the base portion, and when the two opposing wall portions are bent inward on both sides of the base portion, these wall portions Is configured to shield the entire width of the strip-shaped conductive member. According to such a configuration, at the position where the optical module is disposed, the optical module can be stably held on both sides, and a sufficient shielding function is exhibited with respect to the portion where the strip-like conductive member is exposed. be able to.
本発明によれば、複雑な作業を行う必要がなく、多光軸光学ユニットに対するシールド機能を確保することができ、部品点数も減らすことができる。よって、コストを削減でき、多光軸光学ユニットを短時間で完成させることができる。また、光軸数や光軸間の間隔が種々異なるセンサを製作する場合にも、容易に対応することが可能になる。
According to the present invention, it is not necessary to perform complicated work, and a shielding function for the multi-optical axis optical unit can be secured, and the number of parts can be reduced. Therefore, the cost can be reduced, and the multi-optical axis optical unit can be completed in a short time. In addition, it is possible to easily cope with the case of manufacturing sensors having various numbers of optical axes and intervals between the optical axes.
図1は、本発明が適用された多光軸光電センサの外観を示す。
この多光軸光電センサの投光器1および受光器2は、それぞれ長手形状の筐体100の内部に複数の光学素子(投光器1では発光素子10、受光器2では受光素子20である。)や制御基板(図示せず。)が収容された構成のものである。各筐体100の下端部からは、各種の信号線をまとめたコード101が引き出されている。コード101には、さらに延長用の第2のコード102が接続される。 FIG. 1 shows the appearance of a multi-optical axis photoelectric sensor to which the present invention is applied.
Thelight projector 1 and the light receiver 2 of this multi-optical axis photoelectric sensor are each provided with a plurality of optical elements (the light emitting element 10 in the light projector 1 and the light receiving element 20 in the light receiver 2) and control inside the housing 100 having a long shape. A substrate (not shown) is accommodated. From the lower end portion of each case 100, a cord 101 in which various signal lines are put together is drawn out. A second cord 102 for extension is further connected to the cord 101.
この多光軸光電センサの投光器1および受光器2は、それぞれ長手形状の筐体100の内部に複数の光学素子(投光器1では発光素子10、受光器2では受光素子20である。)や制御基板(図示せず。)が収容された構成のものである。各筐体100の下端部からは、各種の信号線をまとめたコード101が引き出されている。コード101には、さらに延長用の第2のコード102が接続される。 FIG. 1 shows the appearance of a multi-optical axis photoelectric sensor to which the present invention is applied.
The
各筐体100の前面には、光を通過させるための窓部103が形成されている。発光素子10および受光素子20は、それぞれの投光面や受光面を窓部103に対向させた状態にして、筐体100の長手方向に沿って整列するように配置される。投光器1と受光器2とは、各発光素子10と各受光素子20とが一対一の関係で対向する状態になるように、所定の間隔を隔てて対向配備される。これにより、発光素子10と受光素子20との組み合わせ毎にこれらの光軸の位置や方向が合わせられた状態になる。
At the front of each case 100, a window 103 for passing light is formed. The light emitting element 10 and the light receiving element 20 are arranged to align along the longitudinal direction of the housing 100 with the light emitting surface and the light receiving surface facing the window portion 103. The light projector 1 and the light receiver 2 are disposed to face each other at a predetermined interval so that the light emitting elements 10 and the light receiving elements 20 face each other in a one-to-one relationship. As a result, for each combination of the light emitting element 10 and the light receiving element 20, the positions and directions of these optical axes are aligned.
図2、図3,図4,図5は、上記の投光器1および受光器2の筐体100内に配備される多光軸光学ユニットの構成を、それぞれ前面(投光面または受光面)を上にした斜視図、正面図、側面図、上面図により示す。なお、図2,図4,図5では、先頭の2光軸に対応する構成に限定して示しているが、後続の光軸にも各図に示すものと同様の構成が適用される。
2, 3, 4, and 5 respectively show the front side (light emitting surface or light receiving surface) of the configuration of the multi-optical axis optical unit disposed in the housing 100 of the light projector 1 and the light receiver 2 described above. It shows by the perspective view, the front view, the side view, and the top view which were turned up. 2, 4 and 5 show only the configuration corresponding to the first two optical axes, but the same configuration as shown in each drawing is applied to the subsequent optical axes.
この実施例では、特許文献1と同様に、1つ1つの光学素子(投光器1では投光素子10、受光器2では受光素子20)を独立の光学モジュール3に収容し、複数の光学モジュール3を支持フレーム4の長さ方向に沿って所望の位置に固定配置する。各光学モジュール3の固定には、それぞれ固定用ホルダ5が用いられる。また、光学モジュール3の列と固定用ホルダ5の列との間にはフラットケーブル6が挟み込まれ、フラットケーブル6の各信号線61~68に光学モジュール3を導通させた状態となっている。
In this embodiment, each optical element (the light emitting element 10 in the light projector 1 and the light receiving element 20 in the light receiver 2) is accommodated in an independent optical module 3 as in Patent Document 1 and a plurality of optical modules 3 Are fixedly arranged at desired positions along the length direction of the support frame 4. A fixing holder 5 is used to fix each optical module 3. Further, the flat cable 6 is sandwiched between the row of the optical modules 3 and the row of the fixing holders 5 so that the optical modules 3 are conducted to the respective signal lines 61 to 68 of the flat cable 6.
図6は、光学モジュール3の構成を示す。この光学モジュール3は、図9に示した従来例とは形状が若干異なるが、実質的な構成や機能は同一である。図中、31は、導光路を有するホルダであり、32は導光路の上部に配備されたレンズ部材32である。また、ホルダ31の底部には、シールド部材37や、複数のリードピン36を有する光ICチップ35が装着されている。
FIG. 6 shows the configuration of the optical module 3. This optical module 3 has a shape slightly different from that of the conventional example shown in FIG. 9, but the substantial configuration and function are the same. In the figure, reference numeral 31 denotes a holder having a light guide, and reference numeral 32 denotes a lens member 32 disposed on the upper side of the light guide. Further, at the bottom of the holder 31, a shield member 37 and an optical IC chip 35 having a plurality of lead pins 36 are mounted.
ホルダ31は、樹脂による成形品であって、レンズ部材32を取り囲む部分が幅広に形成される。この幅広部の角部(計4箇所)には、それぞれ先端に爪部34を有する棒状の係止片33が長さ方向を下に向けて一体に設けられる。さらに、これらの係止片33よりやや内側に、それぞれ爪部を持たない第2の棒状の係止片38が、同様に、長さ方向を下に向けて一体に設けられる。
The holder 31 is a molded article made of resin, and the portion surrounding the lens member 32 is formed wide. At the corners (a total of four places) of the wide parts, rod-like locking pieces 33 having claws 34 at their tips are integrally provided with the length direction facing downward. Further, a second rod-like locking piece 38 not having a claw portion is provided integrally integrally with the length direction facing downward, slightly inside the locking pieces 33, respectively.
図7は、支持フレーム4の構成を示す。この実施例の支持フレーム4は、長手形状で板状の基部42の両端縁にそれぞれ複数の壁部41A,41Bが一体に列設された形状のもので、可撓性を有する金属(たとえばリン青銅やアルミニウム)を材料とする成型加工により形成される。なお、成型工程では、相当の長さのフレームが形成され、これから筐体100の長さに合わせて切り出されたものが支持フレーム4となる。
また、支持フレーム4は、図示しないシールド線に電気接続される。これにより支持フレーム4には、光学モジュール3やフラットケーブル6を保持する機能のほか、シールド部材としての機能が設定される。 FIG. 7 shows the structure of thesupport frame 4. The support frame 4 of this embodiment has a shape in which a plurality of wall portions 41A and 41B are integrally lined at both ends of a plate-like base 42 having a longitudinal shape, and is made of flexible metal (for example, phosphorus It is formed by a molding process using bronze or aluminum). In the molding step, a frame having a considerable length is formed, and the frame cut out in accordance with the length of the housing 100 is the support frame 4.
In addition, thesupport frame 4 is electrically connected to a shield wire (not shown). Thus, in addition to the function of holding the optical module 3 and the flat cable 6, the support frame 4 is set to have a function as a shield member.
また、支持フレーム4は、図示しないシールド線に電気接続される。これにより支持フレーム4には、光学モジュール3やフラットケーブル6を保持する機能のほか、シールド部材としての機能が設定される。 FIG. 7 shows the structure of the
In addition, the
支持フレーム4の壁部41A,41Bは、基部42を挟んで対向配備される。各壁部41A,41Bとも、横幅が1個の光学モジュール3に対応する長さで、高さは基部42の横幅のほぼ半分になる。各壁部41A,41Bは、下部の壁幅が広く形成され、壁幅が変化している箇所の両端縁にそれぞれ段部44が形成されている。また、壁部41A,41Bの内面には、段部より少し上の位置に、幅方向に沿う溝48が設けられている。
The wall portions 41A and 41B of the support frame 4 are disposed opposite to each other with the base 42 interposed therebetween. Each of the wall portions 41A and 41B has a width corresponding to one optical module 3, and the height is approximately half the width of the base 42. In each of the wall portions 41A and 41B, the lower wall width is formed wide, and the step portion 44 is formed at both end edges of the portion where the wall width changes. Further, on the inner surface of the wall portions 41A and 41B, a groove 48 along the width direction is provided at a position slightly above the step portion.
支持フレーム4の一方の側縁に設けられた各壁部41Aと基部42との連絡位置には、それぞれ一対の孔45,45が形成されている。支持フレーム4の他方の側縁に設けられた各壁部41Bと基部42との連絡位置には、それぞれ幅広の孔47が1つ形成されている。また、いずれの壁部41A,41Bにも、溝48の上に一対の孔46,46が形成されている。
また、基部41の両側縁には、それぞれ各壁部間の隙間に連なる切り欠き孔49が形成されている。 A pair of holes 45 and 45 are formed in the connection position of each wall 41A and the base 42 provided on one side edge of the support frame 4 respectively. One wide hole 47 is formed at the connection position between each wall 41B and the base 42 provided on the other side edge of the support frame 4. Further, a pair of holes 46, 46 is formed on the groove 48 in any of the wall portions 41A, 41B.
Further, on both side edges of thebase portion 41, notch holes 49 are formed respectively connected to the gaps between the wall portions.
また、基部41の両側縁には、それぞれ各壁部間の隙間に連なる切り欠き孔49が形成されている。 A pair of
Further, on both side edges of the
上記の支持フレーム4の各壁部41A,41Bは、溝48の位置で内向きに曲げることができる。また、基部42を挟んで対向する壁部41A,41Bをそれぞれ曲げることにより、基部42の全幅をこれらの壁部41A,41Bで覆うことができる。
The wall portions 41A and 41B of the support frame 4 can be bent inward at the position of the groove 48. Further, by bending the opposing wall portions 41A and 41B with the base portion 42 interposed therebetween, the entire width of the base portion 42 can be covered with the wall portions 41A and 41B.
図8(1)(2)は、固定用ホルダ5の構成を示す。この固定用ホルダ5は、表面に3つの波板59a,59b,59cが形成された基部52の両側縁に一対の起立部50A,50Bが連設されたもので、以下に示す各構成を、樹脂により一体成形することにより構成される。なお、図中の502は、成形後に治具から引き抜かれる際に生じた穴である。
8 (1) and 8 (2) show the configuration of the fixing holder 5. FIG. The fixing holder 5 has a pair of rising portions 50A and 50B connected to both side edges of the base 52 on the surface of which three corrugated plates 59a, 59b and 59c are formed. It is comprised by integral molding with resin. In addition, 502 in the figure is a hole which arose when it was pulled out from a jig | tool after shaping | molding.
各起立部50A,50Bは、U字状の主部58の両側にそれぞれ柱状体51を連設した構成のものである。各起立部50A,50Bの主部58の上端位置には、それぞれ切り欠き溝58aを挟んで一対の係止片56が突設されている。また、起立部50Aの主部58の下端縁からは一対の係止片55,55が突出し、起立部50Bの主部58の下端縁からは幅広の係止片57が1つ突出する。これらの係止片55,57は、それぞれ基部52の下面の下方に曲げられており、屈曲した部分と基部52の下面との間には、支持フレーム4の基部42の厚みに応じた間隙が設定される。
Each of the rising portions 50A and 50B has a configuration in which the columnar bodies 51 are continuously provided on both sides of the U-shaped main portion 58, respectively. At the upper end position of the main portion 58 of each of the rising portions 50A and 50B, a pair of locking pieces 56 are provided so as to protrude on both sides of the notch groove 58a. A pair of locking pieces 55 project from the lower end edge of the main portion 58 of the rising portion 50A, and a wide locking piece 57 protrudes from the lower edge of the main portion 58 of the rising portion 50B. These locking pieces 55, 57 are bent below the lower surface of the base 52, respectively, and there is a gap between the bent portion and the lower surface of the base 52 according to the thickness of the base 42 of the support frame 4. It is set.
各柱状体51は、主部58より高く形成され、また上部が肉厚に形成されたことにより外壁面に段差が形成されている。この段差は主部58の係止片56とほぼ同じ高さに設定される。また、各柱状体51の全長は光学モジュール3の係止片38の長さに対応づけられ、各柱状体51の肉厚部54の長さは、光学モジュール3の係止片33の爪部34を除く長さに対応づけられている。
Each columnar body 51 is formed higher than the main portion 58, and a step is formed on the outer wall surface by forming the upper portion thick. The step is set to substantially the same height as the locking piece 56 of the main portion 58. Further, the entire length of each columnar body 51 corresponds to the length of the locking piece 38 of the optical module 3, and the length of the thick portion 54 of each columnar body 51 corresponds to the claw portion of the locking piece 33 of the optical module 3 It corresponds to the length except 34.
基部52の上面には、4つのL字状の突部53が設けられる。各突部53の長い方の突片は、それぞれ各起立部50A,50Bの柱状体51の壁面に平行であって、光学モジュール3の係止片38の厚みに対応する間隔を隔てて対向する。
Four L-shaped protrusions 53 are provided on the upper surface of the base 52. The longer projecting pieces of the respective projecting portions 53 are parallel to the wall surfaces of the columnar bodies 51 of the respective rising portions 50A and 50B, and face each other with an interval corresponding to the thickness of the locking piece 38 of the optical module 3 .
各波板59a,59b,59cには、それぞれフラットケーブル6に対応する数(8個)の溝が設けられている。また、中央の長い波板59aには、フラットケーブル6を位置決めするための突片501が設けられている。
Each corrugated plate 59a, 59b, 59c is provided with a number (eight) of grooves corresponding to the flat cable 6, respectively. Further, a projecting piece 501 for positioning the flat cable 6 is provided on the central long wave plate 59a.
以下、図2~8に基づき、多光軸光学ユニットの組立構造について説明する。
固定用ホルダ5は、支持フレーム4の基部42を挟んで対向する壁部41A,41Bに対し、固定用ホルダ5の起立部50Aの側の係止片55,55が壁部41Aの孔45,45に係合し、固定用ホルダ5の起立部50Bの側の係止片57が壁部41Bの孔47に係合し、起立部50A,50Bの主部58の各係止片56が壁部41A,41Bの孔46内に入り込んだ状態になることにより、壁部41A,41B間に保持される。また、各係止片55,55,57の先端部分と基部52の下面との間に支持フレーム4の基部42が挟まれた状態になるので、固定用ホルダ5の抜けが規制される。また、このとき、各起立部50A,50Bの柱状体51の肉厚部54は、それぞれ対応する壁部41A,41Bの段部44の上方に位置する状態となる。 The assembly structure of the multi-optical axis optical unit will be described below with reference to FIGS.
In the fixingholder 5, the locking pieces 55, 55 on the side of the rising portion 50A of the fixing holder 5 are holes 45 in the wall portion 41A with respect to the wall portions 41A, 41B opposite to each other with the base portion 42 of the support frame 4 interposed therebetween. 45, the locking pieces 57 on the side of the rising portion 50B of the fixing holder 5 engage with the holes 47 of the wall portion 41B, and the locking pieces 56 of the main portion 58 of the rising portions 50A and 50B are walls By entering the holes 46 of the portions 41A and 41B, the wall portions 41A and 41B are held. In addition, since the base 42 of the support frame 4 is sandwiched between the end portions of the locking pieces 55, 55, and 57 and the lower surface of the base 52, removal of the fixing holder 5 is restricted. Further, at this time, the thick portions 54 of the columnar bodies 51 of the rising portions 50A and 50B are located above the step portions 44 of the corresponding wall portions 41A and 41B.
固定用ホルダ5は、支持フレーム4の基部42を挟んで対向する壁部41A,41Bに対し、固定用ホルダ5の起立部50Aの側の係止片55,55が壁部41Aの孔45,45に係合し、固定用ホルダ5の起立部50Bの側の係止片57が壁部41Bの孔47に係合し、起立部50A,50Bの主部58の各係止片56が壁部41A,41Bの孔46内に入り込んだ状態になることにより、壁部41A,41B間に保持される。また、各係止片55,55,57の先端部分と基部52の下面との間に支持フレーム4の基部42が挟まれた状態になるので、固定用ホルダ5の抜けが規制される。また、このとき、各起立部50A,50Bの柱状体51の肉厚部54は、それぞれ対応する壁部41A,41Bの段部44の上方に位置する状態となる。 The assembly structure of the multi-optical axis optical unit will be described below with reference to FIGS.
In the fixing
フラットケーブル6は、平行に配列された8本の信号線61~68が樹脂に埋設された構成のものである。このフラットケーブル6には、固定用ホルダ5の基部52の突片501に対応する信号線が埋設されるラインに、一定の間隔で孔(図示せず。)が形成される。この孔を突片501に嵌め込むことにより、フラットケーブル6は、各信号線が各波板59a,59b,59cの対応する溝に位置合わせされた状態で固定される。
The flat cable 6 has a configuration in which eight signal lines 61 to 68 arranged in parallel are embedded in a resin. In the flat cable 6, holes (not shown) are formed at regular intervals in the line in which the signal line corresponding to the projecting piece 501 of the base 52 of the fixing holder 5 is embedded. By fitting this hole into the projection 501, the flat cable 6 is fixed in a state where each signal line is aligned with the corresponding groove of each of the wave plates 59a, 59b, 59c.
なお、フラットケーブル6の孔は、光軸間での電気接続を遮断する必要がある信号線の位置に設けられる。また、このフラットケーブル6は、支持フレーム4の前端縁で下方に曲げられて、コネクタ60に接続される。
In addition, the hole of the flat cable 6 is provided in the position of the signal wire | line which needs to cut off the electrical connection between optical axes. The flat cable 6 is bent downward at the front end edge of the support frame 4 and connected to the connector 60.
上記のようにフラットケーブル6を支持する状態になった固定用ホルダ5に対し、各起立部50A,50Bの両端の柱状体51がそれぞれ光学モジュール3のホルダ31の係止片33,38の間の隙間に入るように光学モジュール3を位置合わせして、光学モジュール3に押圧力をかけることにより、光学モジュール3が固定保持される。具体的には、壁部41A,41Bの各段部44の上方位置で、それぞれ光学モジュール3のホルダ31の係止片33が柱状体51の肉厚部54に係合するとともに、固定用ホルダ5の基部52に設けられた突部53と柱状体51との間の隙間に係止片38が入り込む状態になる。このとき、係止片33の爪部34は肉厚部54の下面と咬み合い、各壁部41A,41Bの両端の段部44,44の上に位置づけられた各係止片33,33の間に壁部41Aまたは41Bが挟まれた状態になって、ホルダ31の抜けが規制される。
Between the locking pieces 33, 38 of the holder 31 of the optical module 3, the pillars 51 at both ends of each of the rising portions 50A, 50B, respectively, with respect to the fixing holder 5 in the state of supporting the flat cable 6 as described above. The optical module 3 is fixedly held by positioning the optical module 3 so as to be in the gap between the two and applying pressure to the optical module 3. Specifically, the locking piece 33 of the holder 31 of the optical module 3 is engaged with the thick portion 54 of the columnar body 51 at the upper position of each step portion 44 of the wall portions 41A and 41B, and the fixing holder The locking piece 38 enters the gap between the protrusion 53 provided on the base portion 52 of the fifth member 5 and the columnar body 51. At this time, the claws 34 of the locking pieces 33 engage with the lower surface of the thick portion 54, and the locking pieces 33, 33 positioned on the step portions 44, 44 at both ends of the wall portions 41A, 41B. With the wall portion 41A or 41B sandwiched in between, removal of the holder 31 is restricted.
光学モジュール3が押圧されたとき、ホルダ31の底部に装着されている光ICチップ35のリードピン36がフラットケーブル6の被覆を破って内部に挿入され、各リードピンと信号線61~68とが一対一の関係で導通した状態になる。
When the optical module 3 is pressed, the lead pins 36 of the optical IC chip 35 attached to the bottom of the holder 31 break the coating of the flat cable 6 and are inserted inside, and the lead pins and the signal lines 61 to 68 are paired It becomes conductive in one relationship.
この実施例では、支持フレーム4の長さ方向に沿って、壁部1つ分の間隔をおいて固定用ホルダ5および光学モジュール3を配置している。固定用ホルダ5および光学モジュール3が配置されない位置にある壁部41A,41Bは、図4,5に示すように、溝48の位置で内向きに曲げられる。これにより、光学モジュール3の間のフラットケーブル6が露出した箇所は、隣の光学モジュール3に近い箇所を除き、全幅にわたって遮蔽された状態になる。また、壁部41A,41Bを曲げてフラットケーブル6の上面に近づけたことによって、フラットケーブル6に対するシールドの強度が高められるので、壁部41A,41Bにより遮蔽された箇所は勿論のこと、その近傍の壁部41A,41Bに覆われていない箇所への電磁ノイズも防御することが可能になる。
In this embodiment, the fixing holder 5 and the optical module 3 are disposed at intervals of one wall along the length direction of the support frame 4. The wall portions 41A and 41B at positions where the fixing holder 5 and the optical module 3 are not disposed are bent inward at the position of the groove 48 as shown in FIGS. As a result, the exposed portion of the flat cable 6 between the optical modules 3 is shielded over the entire width except the portion near the adjacent optical module 3. Further, since the strength of the shield for the flat cable 6 is enhanced by bending the wall portions 41A and 41B close to the upper surface of the flat cable 6, it goes without saying that the portions shielded by the wall portions 41A and 41B are of course It is also possible to protect electromagnetic noise to a portion not covered by the wall portions 41A and 41B.
上記の構成によれば、フラットケーブル6の下面および上面を、単独のシールド部材(支持フレーム4)により保護することができる。また、光軸モジュール3が配置されない位置にある壁部41A,41Bを内向きに曲げるだけでケーブル6の露出部分を遮蔽することができるから、光学モジュール3の配置間隔が変更された場合にも、構成部品を変更する必要がなく、容易に対応することができる。したがって、長尺のセンサを製作する場合でも、シールドを設定するための作業に手間がかからず、シールド用の部品点数も1つにできるから、コストや労力を大幅に削減することができる。
According to the above configuration, the lower surface and the upper surface of the flat cable 6 can be protected by a single shield member (support frame 4). In addition, since the exposed portion of the cable 6 can be shielded only by bending the wall portions 41A and 41B in a position where the optical axis module 3 is not disposed inward, the arrangement interval of the optical modules 3 is changed. , It is not necessary to change the component parts and can be easily coped with. Therefore, even when manufacturing a long sensor, the work for setting the shield does not require much time and the number of parts for the shield can be reduced to one, so that the cost and labor can be significantly reduced.
また、上記の実施例では、各光学モジュール3を、長さ方向に沿って壁部1つ分の間隔をあけて配置したが、これに限らず、複数個分の壁部に相当する間隔をあけて各光学モジュール3を配置してもよい。また、各光学モジュール3の間の間隔は等間隔に限らず、センサの使用環境によっては、光学モジュール3が密に配置される部分と、光学モジュール3が疎に配置される部分とがあってもよい。
いずれの配置をとる場合でも、上記の実施例と同様に、固定用ホルダ5および光学モジュール3が配置されていない壁部41A,41Bを内向きに曲げることでフラットケーブル6の上面が露出している箇所への電磁ノイズを防御することができるから、多光軸光学ユニットの構成の変更に容易に対応することができる。 Further, in the above embodiment, eachoptical module 3 is disposed at an interval of one wall along the length direction, but the present invention is not limited to this. Each optical module 3 may be disposed open. Further, the intervals between the optical modules 3 are not limited to equal intervals, and there are a portion in which the optical modules 3 are densely arranged and a portion in which the optical modules 3 are sparsely arranged depending on the use environment of the sensor. It is also good.
In any arrangement, the upper surface of theflat cable 6 is exposed by bending the wall portions 41A and 41B in which the fixing holder 5 and the optical module 3 are not disposed inward as in the above embodiment. Since electromagnetic noise to a certain place can be protected, it is possible to easily cope with a change in the configuration of the multi-optical axis optical unit.
いずれの配置をとる場合でも、上記の実施例と同様に、固定用ホルダ5および光学モジュール3が配置されていない壁部41A,41Bを内向きに曲げることでフラットケーブル6の上面が露出している箇所への電磁ノイズを防御することができるから、多光軸光学ユニットの構成の変更に容易に対応することができる。 Further, in the above embodiment, each
In any arrangement, the upper surface of the
また、上記の支持フレーム4の構成によれば、各光学モジュール3を間隔をあけずに配置すること、すなわち、長さ方向において隣り合う壁部に対してそれぞれ光学モジュール3を配置することも可能である。この配置においても、支持フレーム4の全ての壁部41A,41Bに光学モジュール3が配置される場合を除き、固定用ホルダ5および光学モジュール3が配置されていない壁部41A,41Bを内向きに曲げることによって、フラットケーブル6の上面が露出している箇所を電磁ノイズから守ることができる。
Moreover, according to the configuration of the support frame 4 described above, the optical modules 3 can be disposed without spacing, that is, the optical modules 3 can be disposed to the adjacent wall portions in the length direction. It is. Also in this arrangement, the wall portions 41A and 41B in which the fixing holder 5 and the optical module 3 are not arranged are directed inward, unless the optical module 3 is arranged on all the wall portions 41A and 41B of the support frame 4 By bending, the exposed portion of the top surface of the flat cable 6 can be protected from electromagnetic noise.
さらに、上記の実施例では、支持フレーム4の両端縁の壁部41A,41Bの高さを等しくして、双方の壁部41A,41Bを曲げることによりフラットケーブル6を遮蔽しているが、これに限らず、一方の側の壁部を他方よりも高くして、高い方の壁部のみを曲げてフラットケーブル6を遮蔽するようにしてもよい。
Furthermore, in the above embodiment, the flat cables 6 are shielded by equalizing the heights of the wall portions 41A and 41B of both end edges of the support frame 4 and bending the both wall portions 41A and 41B. The wall of one side may be made higher than the other, and only the higher wall may be bent to shield the flat cable 6.
また、上記の実施例では、各光学モジュール3を圧接式のリードピンを介してフラットケーブル6に接続するようにしたが、フラットケーブル6に代えて、各信号線が配線されたフレキシブル基板を使用することも可能である。この場合、光学モジュール3を信号線に接続するのに、リードピン36に代えて光ICチップ35の底面に複数のバンプ電極を設け、各バンプ電極を信号線にはんだ付けするようにしてもよい。
In the above embodiment, each optical module 3 is connected to the flat cable 6 through a pressure contact type lead pin, but instead of the flat cable 6, a flexible substrate on which each signal line is wired is used It is also possible. In this case, in order to connect the optical module 3 to the signal line, a plurality of bump electrodes may be provided on the bottom surface of the optical IC chip 35 instead of the lead pin 36 and each bump electrode may be soldered to the signal line.
また、上記の実施例では、一光軸分の光学モジュール3を間隔をあけて配置したが、これに限らず、複数の光学素子を収容した構成の光学モジュールを列設する場合にも、上記実施例と同様の構成を適用することにより、1つのシールド部材で各光学モジュールの間の配線を電磁ノイズから防御することが可能になる。また、この場合に、支持フレームの各壁部の幅を、光学モジュールの両側にそれぞれ複数の壁部が配置される大きさにして、各光学モジュールを1つ以上の壁部を隔てて配置することができる。
Further, in the above embodiment, the optical modules 3 for one optical axis are spaced apart, but the present invention is not limited to this, and the above-described optical modules may be arranged in a row in which a plurality of optical elements are accommodated. By applying the same configuration as that of the embodiment, it is possible to protect the wiring between each optical module from electromagnetic noise with one shield member. Also, in this case, the width of each wall of the support frame is sized so that a plurality of walls are arranged on both sides of the optical module, and the optical modules are arranged with one or more walls apart. be able to.
1 投光器
2 受光器
3 光学モジュール
4 支持フレーム
5 固定用ホルダ
6 フラットケーブル
10 発光素子
20 受光素子
31 ホルダ
33,38 係止片
41A,41B 壁部
42 基部
45,46,47 孔
50A,50B 起立部
51 柱状体
52 基部
53 突部
54 肉厚部
55,56,57 係止片Reference Signs List 1 light emitter 2 light receiver 3 optical module 4 support frame 5 fixing holder 6 flat cable 10 light emitting element 20 light receiving element 31 holder 33, 38 locking piece 41A, 41B wall 42 base 45, 46, 47 hole 50A, 50B standing portion 51 columnar body 52 base 53 protrusion 54 thick portion 55, 56, 57 locking piece
2 受光器
3 光学モジュール
4 支持フレーム
5 固定用ホルダ
6 フラットケーブル
10 発光素子
20 受光素子
31 ホルダ
33,38 係止片
41A,41B 壁部
42 基部
45,46,47 孔
50A,50B 起立部
51 柱状体
52 基部
53 突部
54 肉厚部
55,56,57 係止片
Claims (2)
- 前面に光を通過させるための窓部が形成された枠体を筐体とする投光器および受光器の各筐体内に、光学素子およびその処理回路を含む複数個の光学モジュールが投光面または受光面を前記窓部に対向させた状態で長手方向に沿って配備される多光軸光電センサであって、
前記筐体の内部には、板状の基部の側縁に複数の可撓性を有する壁部が列設されたシールド部材と、それぞれ絶縁性を有し、前記基部を挟んで対向する壁部の間に嵌め込まれる複数の固定用ホルダと、各固定用ホルダにそれぞれ支持される複数の光学モジュールと、シールド部材の基部の上面において各固定用ホルダと各光学モジュールとの間に挟まれて保持され、かつ各光学モジュールに電気接続された帯状の導電部材とを有する多光軸光学ユニットが設けられ、
前記固定用ホルダおよび光学モジュールが配置された位置の壁部は固定用ホルダと協働して前記光学モジュールを保持する一方、前記固定用ホルダおよび光学モジュールが配置されていない位置の壁部は内向きに曲げられて前記帯状の導電部材を遮蔽するようにした多光軸光電センサ。 A plurality of optical modules including an optical element and its processing circuit are provided in the housing of a light projector and a light receiver, each of which has a frame body having a window portion for transmitting light on the front surface as a housing A multi-optical axis photoelectric sensor disposed along a longitudinal direction with a surface facing the window portion, comprising:
In the inside of the housing, a shielding member in which a plurality of flexible wall portions are arranged in a row on the side edge of a plate-like base has insulating properties, and is a wall portion facing the sandwiching the base Between a plurality of fixing holders fitted between the plurality of optical modules supported respectively by the respective fixing holders, and between the respective fixing holders and the respective optical modules on the upper surface of the base of the shield member A multi-optical axis optical unit having a strip-shaped conductive member electrically connected to each of the optical modules,
The wall where the fixing holder and the optical module are arranged cooperates with the fixing holder to hold the optical module, while the wall where the fixing holder and the optical module are not arranged is inside A multi-optical axis photoelectric sensor which is bent in a direction to shield the strip-like conductive member. - 前記壁部は、前記基部の両側縁にそれぞれ等しい高さをもって列設され、前記基部を挟んで対向する2つの壁部を内向きに曲げたとき、これらの壁部により前記帯状の導電部材の全幅が遮蔽されるようにした、多光軸光電センサ。 The wall portions are arranged at equal heights on both side edges of the base portion, and when the two wall portions facing each other across the base portion are bent inward, the wall portions of the strip-shaped conductive member Multi-optical axis photoelectric sensor with full width shielded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011524730A JP5131386B2 (en) | 2009-07-30 | 2010-07-13 | Multi-axis photoelectric sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-178326 | 2009-07-30 | ||
JP2009178326 | 2009-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011013510A1 true WO2011013510A1 (en) | 2011-02-03 |
Family
ID=43529169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061852 WO2011013510A1 (en) | 2009-07-30 | 2010-07-13 | Multi-optical axis photoelectric sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5131386B2 (en) |
WO (1) | WO2011013510A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012001401A1 (en) | 2012-01-26 | 2013-08-01 | provedo GmbH | Electric line for building automation system, for electricity installation over guard safe voltage in building e.g. house building, is provided with two electrical conductive conductors and is designed as a flat band spacer |
DE102012001402A1 (en) | 2012-01-26 | 2013-08-01 | provedo GmbH | Building automation device of building automation system, has connection module, actuator module and sensor module which are connected with each other |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002124170A (en) * | 2000-08-11 | 2002-04-26 | Omron Corp | Optical curtain creating device |
JP2006107797A (en) * | 2004-09-30 | 2006-04-20 | Omron Corp | Multiple optical axes optical sensor |
JP2006222089A (en) * | 2003-02-17 | 2006-08-24 | Keyence Corp | Multiple optical axis photoelectric sensor |
JP2009110815A (en) * | 2007-10-30 | 2009-05-21 | Sunx Ltd | Multiple optical axis photoelectric sensor |
-
2010
- 2010-07-13 JP JP2011524730A patent/JP5131386B2/en active Active
- 2010-07-13 WO PCT/JP2010/061852 patent/WO2011013510A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002124170A (en) * | 2000-08-11 | 2002-04-26 | Omron Corp | Optical curtain creating device |
JP2006222089A (en) * | 2003-02-17 | 2006-08-24 | Keyence Corp | Multiple optical axis photoelectric sensor |
JP2006107797A (en) * | 2004-09-30 | 2006-04-20 | Omron Corp | Multiple optical axes optical sensor |
JP2009110815A (en) * | 2007-10-30 | 2009-05-21 | Sunx Ltd | Multiple optical axis photoelectric sensor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012001401A1 (en) | 2012-01-26 | 2013-08-01 | provedo GmbH | Electric line for building automation system, for electricity installation over guard safe voltage in building e.g. house building, is provided with two electrical conductive conductors and is designed as a flat band spacer |
DE102012001402A1 (en) | 2012-01-26 | 2013-08-01 | provedo GmbH | Building automation device of building automation system, has connection module, actuator module and sensor module which are connected with each other |
DE202012013137U1 (en) | 2012-01-26 | 2014-12-12 | provedo GmbH | System for building automation |
DE202012013136U1 (en) | 2012-01-26 | 2014-12-12 | provedo GmbH | Device and system for building automation |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011013510A1 (en) | 2013-01-07 |
JP5131386B2 (en) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7815474B1 (en) | Probe connector having a mounting platform | |
US7122782B2 (en) | Multi-optical axis photoelectric sensor | |
US20050237637A1 (en) | Lens module and assembling method thereof | |
TWI447612B (en) | Optoelectronic module provided with at least one photoreceptor circuit | |
US8974251B2 (en) | Electrical connector assembly and method of manufacturing the same | |
TWI530236B (en) | Methods, apparatuses and systems for mid-plane mounting parallel optical communications modules on circuit boards | |
US6575770B2 (en) | Optoelectronic module apparatus and method of assembly | |
US20120115359A1 (en) | Cable assembly adapted for power and signal transmitting | |
US7175327B1 (en) | Transmitting module structure with rigid light pipes | |
JP2013004437A (en) | Substrate mounting component and substrate mounting component manufacturing method | |
WO2011013510A1 (en) | Multi-optical axis photoelectric sensor | |
JP4297269B2 (en) | FOT and shield case mounting aid, optical connector, and hybrid connector | |
EP0884809B1 (en) | Connector for circuit board | |
KR20180036404A (en) | BATTERY CELL CONNECTING DEVICE and | |
JP4177996B2 (en) | Multi-optical axis photoelectric sensor light projecting unit and light receiving unit | |
KR101693024B1 (en) | A signal transfer assembly for sensor | |
TWI713265B (en) | Connector assembly | |
JPS63167925A (en) | Touch input device with highly reliable wiring board connection | |
JP4821619B2 (en) | Optical module | |
KR102695676B1 (en) | Substrate Connector | |
JPWO2020022299A1 (en) | LCD backlight device | |
KR100961035B1 (en) | Socket in which shielding can be made without restriction by the shape of a connection object | |
KR101501178B1 (en) | Camera module | |
JP2007150210A (en) | Assembled article and method for assembling thereof | |
JP2014006335A (en) | Optical transceiver, circuit board with optical transceiver, optical communication equipment, and method for manufacturing optical transceiver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10804256 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011524730 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10804256 Country of ref document: EP Kind code of ref document: A1 |