WO2011013421A1 - Liquid crystal dripping apparatus and method wherein jetting mode of liquid crystal is changed - Google Patents

Liquid crystal dripping apparatus and method wherein jetting mode of liquid crystal is changed Download PDF

Info

Publication number
WO2011013421A1
WO2011013421A1 PCT/JP2010/057234 JP2010057234W WO2011013421A1 WO 2011013421 A1 WO2011013421 A1 WO 2011013421A1 JP 2010057234 W JP2010057234 W JP 2010057234W WO 2011013421 A1 WO2011013421 A1 WO 2011013421A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
head
substrate
discharge port
opening
Prior art date
Application number
PCT/JP2010/057234
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 古澤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011524691A priority Critical patent/JP5284474B2/en
Priority to CN201080033500.5A priority patent/CN102472930B/en
Publication of WO2011013421A1 publication Critical patent/WO2011013421A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • B05C5/0212Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles
    • B05C5/0216Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles only at particular parts of the articles by relative movement of article and outlet according to a predetermined path
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process

Definitions

  • the present invention relates to a liquid crystal dropping apparatus and method, and more particularly, to a liquid crystal dropping apparatus and method having a function of changing a discharge mode of liquid crystal to be dropped on a substrate.
  • liquid crystal dropping method a sealing material is disposed on one of two substrates to be bonded to each other. Liquid crystal is dropped on a region corresponding to the inside of the sealing material of either one of the substrates. These two substrates are bonded together in a vacuum.
  • the sealing material is cured.
  • a plurality of liquid crystal display cells are formed on a bonded substrate obtained by bonding two substrates.
  • the bonded substrate is divided into a plurality of panels composed of a plurality of liquid crystal display cells to manufacture a liquid crystal display panel.
  • liquid crystal dropping method a predetermined amount of liquid crystal is dropped on the substrate from the nozzle of the liquid crystal dropping syringe before the substrates are bonded together, and then the substrate is bonded and the liquid crystal is sealed. For this reason, when the dripping amount of the liquid crystal is small, problems such as the liquid crystal display cell containing bubbles or the cell thickness being thin occur. On the other hand, if the amount of liquid crystal dripped is large, problems such as liquid crystal leaking from the liquid crystal display cell and the cell thickness becoming thick occur.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-241208
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-358282
  • a gantry (base) provided so as to straddle the substrate is provided with a plurality of heads fixedly spaced at predetermined intervals so as to face the substrate main surface in order to drop liquid crystal. It is done.
  • the head moves in the short direction while the gantry reciprocates in the longitudinal direction of the substrate. Accordingly, the head moves according to the locus indicated by the arrow in FIG. 38 while dropping the liquid crystal from the discharge port (in this specification, the liquid crystal droplet discharged per drop is also referred to as a droplet).
  • the liquid crystal droplet discharged per drop is also referred to as a droplet).
  • the head is moved at a predetermined pitch and speed, and the liquid crystal is dropped on the entire substrate. For this reason, for example, a single substrate is divided to obtain a plurality of liquid crystal panels having different sizes for display or the like (this is called “co-collection”).
  • tact time production time
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-241208
  • liquid crystal is dropped only from the discharge ports corresponding to the planned dropping region among the plurality of discharge ports provided in a row in the head. To do.
  • Patent Document 2 the liquid crystal is dropped while shifting the positions of a plurality of ejection openings provided in a row in the head with respect to the substrate according to the planned dropping area.
  • an object of the present invention is to provide a liquid crystal dropping apparatus and method capable of shortening the production time with a simple configuration.
  • a liquid crystal dropping device has a hollow columnar shape inside, and a row formed of a plurality of discharge ports for dropping liquid crystal filled in the hollow on a substrate is formed on an outer peripheral surface.
  • a plurality of opening / closing sections provided corresponding to the outlets for opening / closing the corresponding discharge ports, and an opening / closing control section for controlling the plurality of opening / closing sections.
  • the rows extend in a predetermined direction orthogonal to the moving direction of the head, and the interval width of the ejection openings in the row is equal to or less than the minimum width of the drop interval indicated by the liquid crystal drop pattern.
  • the open / close control unit includes a plate, and according to the pattern data corresponding to the liquid crystal dropping pattern, the plate of each open / close unit is electronically slid on the discharge port corresponding to the open / close unit to open / close the discharge port. To do.
  • the head includes a plurality of divided heads divided in a predetermined direction in which the rows extend, and the type of liquid crystal material filled in the hollow is different for each of the plurality of divided heads.
  • a plurality of rows are formed at a predetermined interval width on the outer peripheral surface of the head, and the size of the ejection port is different for each row.
  • the head rotates around a central axis extending in a predetermined direction of the column shape according to an angle corresponding to a predetermined interval width.
  • the position detecting unit detects the position of the head on the substrate, the plurality of types of position data on the substrate, and the plurality of types of position data are different.
  • a storage unit for storing pattern data, and the opening / closing control unit reads the corresponding pattern data from the storage unit based on the position of the head detected by the position detection unit, thereby opening and closing the pattern for opening / closing control. Switch data.
  • a liquid crystal dropping method having a hollow columnar shape inside, and a row of a plurality of discharge ports arranged on the substrate for dropping the liquid crystal filled in the hollow onto the substrate. This is a liquid crystal dropping method using the formed head.
  • the liquid crystal dropping method includes a step of opening and closing each discharge port of the row on the outer peripheral surface of the head, and a step of discharging liquid crystal from each discharge port onto the substrate according to the movement of the head.
  • the rows extend in a predetermined direction orthogonal to the moving direction of the head, and the interval width of the ejection openings in the row is equal to or less than the minimum width of the drop interval indicated by the liquid crystal drop pattern.
  • the discharge port is opened and closed by electronically sliding the plate provided corresponding to each discharge port on the corresponding discharge port.
  • the production time of the liquid crystal substrate can be shortened by simplifying the internal structure of the head.
  • FIG. 1 is a schematic view of a liquid crystal dropping device according to Embodiment 1.
  • FIG. It is a figure explaining the discharge outlet provided in the head concerning each embodiment. It is a figure explaining the opening-and-closing control mechanism of the discharge port provided in the head concerning each embodiment. It is a figure which expands and shows a part of opening-and-closing control mechanism of the discharge outlet provided in the head concerning each embodiment. It is a figure which shows typically the liquid crystal dripping from the discharge outlet provided in the head concerning each embodiment. It is a figure explaining the electronic opening-and-closing control mechanism of the discharge outlet provided in the head concerning each embodiment. It is a figure explaining the electronic opening-and-closing control mechanism of the discharge outlet provided in the head concerning each embodiment.
  • FIG. 2 is a functional configuration diagram of a liquid crystal dropping device according to Embodiment 1.
  • FIG. It is a figure which shows typically the manufacturing process of the liquid crystal panel which concerns on each embodiment. It is a figure which illustrates the liquid crystal dropping process of FIG. 15 simply.
  • 3 is a flowchart of a liquid crystal dropping process according to the first embodiment.
  • FIG. 4 is an overview diagram of a liquid crystal dropping device according to a second embodiment.
  • FIG. 6 is a diagram schematically illustrating a configuration of a head according to a second embodiment.
  • FIG. 6 is an overview of a liquid crystal dropping device according to a third embodiment.
  • FIG. 6 is a diagram for explaining discharge ports formed in a head according to Embodiment 3.
  • FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment.
  • FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment.
  • FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment.
  • FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment.
  • 6 is a functional configuration diagram of a liquid crystal dropping device according to Embodiment 3.
  • FIG. 10 is a flowchart of a liquid crystal dropping process according to Embodiment 3.
  • FIG. 6 is an overview diagram of a liquid crystal dropping device according to a fourth embodiment.
  • FIG. 6 is a diagram schematically illustrating a liquid crystal dropping state by a head according to Embodiment 4.
  • FIG. FIG. 6 is a functional configuration diagram of a liquid crystal dropping device according to a fourth embodiment.
  • 10 is a flowchart of a liquid crystal dropping process according to Embodiment 4.
  • FIG. 10 is a diagram illustrating an example of co-taking by a liquid crystal dropping device according to a fifth embodiment.
  • FIG. 33 is a diagram for explaining co-taking by a conventional liquid crystal dropping device corresponding to FIG. 32. It is a figure explaining the other example of co-recovery by the liquid crystal dropping apparatus which concerns on Embodiment 5.
  • FIG. FIG. 35 is a diagram for explaining co-taking by a conventional liquid crystal dropping device as compared with FIG. 34.
  • FIG. 10 is a functional configuration diagram of a liquid crystal dropping device according to a fifth embodiment. 10 is a flowchart of a liquid crystal dropping process according to the fifth embodiment. It is a figure explaining the conventional liquid crystal dropping apparatus. It is a figure explaining the liquid crystal dripping by the movement of a head in relation to FIG.
  • the liquid crystal dropping apparatus 101 As shown in FIG. 1, the liquid crystal dropping apparatus 101 according to the present embodiment includes a gantry 10, a stage 9 installed on the gantry 10, and a plurality of liquid crystal discharge ports (not shown) facing the surface of the stage 9.
  • the head 11 which has a piece, and the column 42 to which the head 11 was attached are provided.
  • the liquid crystal dropping device 101 includes a liquid crystal supply device 22 attached to the column 42, and a liquid crystal supply pipe 23 for supplying liquid crystal stored in advance in the liquid crystal supply device 22 to the head 11.
  • the stage 9 is formed in a flat plate shape, and a color filter substrate 8 is carried in and placed thereon.
  • a spacer is also provided to keep a distance from a TFT (Thin Film Transistor) substrate to be bonded later.
  • the stage 9 fixes and holds the placed substrate 8, and a positioning mark 8 ⁇ / b> A is printed in advance on the main surface of the substrate 8.
  • a required amount of liquid crystal (liquid substance) is dropped from a plurality of discharge ports (not shown) of the head 11 provided to face the main surface.
  • the surface on which the liquid crystal of the substrate 8 is to be dropped is referred to as a main surface.
  • the surface of the stage 9 and the main surface of the substrate 8 placed on the stage 9 are two-dimensional coordinate planes defined by two orthogonal X and Y axes.
  • the direction in which the X axis extends is referred to as the X direction
  • the direction in which the Y axis extends is referred to as the Y direction.
  • the direction in which the Z axis extends is referred to as the Z direction.
  • the column 42 is mounted in a gate shape on the gantry 10 across the stage 9 in the X direction.
  • the head 11 is integrally attached to the column 42.
  • the column 42 is driven by a head moving motor 661 (described later) provided inside the gantry 10. As a result, the column 42 and the head 11 freely move along an axis extending in the Y direction as indicated by an arrow in the figure.
  • the liquid crystal dropping device 101 further includes a computer 5 having a function for controlling the movement of the column 42 (head 11) and dropping of the liquid crystal from the discharge port, and a camera 4 such as a CCD (Charge Coupled Device) camera.
  • the computer 5 includes a CPU (Central Processing Unit) 51, a memory 53 for storing program data, an input unit 54, an I / F (Interface) 52, and an output unit 55.
  • the input unit 54 including a display, a voice output unit, a printing unit, and the like includes a keyboard, a mouse, and the like for inputting information given from the outside such as an operator's instruction.
  • the I / F 52 inputs image data output when the camera 4 captures a subject and outputs a signal for controlling the movement of the column 42 and the discharge of the liquid crystal.
  • the output unit 55 includes a display, an audio output unit, a printing unit, and the like.
  • the direction in which the camera 4 captures the subject coincides with the direction in which the entire substrate 8 placed on the stage 9 is viewed from above. Therefore, the column 42 straddling the substrate 8 can also be included in the imaging field of view.
  • FIG. 2 to 12 show a discharge port provided in the head 11 and a mechanism for controlling opening and closing of the discharge port.
  • FIG. 13 shows a mechanism for supplying liquid crystal to the head 11.
  • FIG. 14 shows a functional configuration of the liquid crystal dropping device according to the present embodiment.
  • a color filter (CF) layer is provided on one main surface of two glass substrates, and the other glass substrate is provided.
  • a thin film transistor (TFT: Thin Film Transistor) layer is formed on the main surface.
  • An ITO (Indium Tin Oxide) film to be an electrode is formed on the color filter layer on one substrate (in FIG. 15, a glass substrate on which the color filter layer is formed), and then a liquid crystal material is formed on the ITO film.
  • An alignment film for controlling the directivity of the film is formed, and a sealing agent is applied (drawn) onto the alignment film.
  • the sealing agent acts as a sealing agent for a liquid crystal panel to be obtained later by dividing the glass substrate.
  • liquid crystal is dropped onto the main surface of the glass substrate using the liquid crystal dropping device 101 according to this embodiment.
  • the glass substrate on which the liquid crystal is dropped is bonded to the other glass substrate on which the TFT layer is formed with the dropped liquid crystal layer interposed therebetween.
  • the deflecting plate is attached to the substrate obtained by bonding. If necessary, a plurality of liquid crystal panels are manufactured from a single glass substrate by dividing the substrate into a desired panel size (co-removal).
  • FIG. 2 schematically shows a state in which the liquid crystal dropping device 101 according to the present embodiment applies the liquid crystal 6a onto the substrate 8. Specifically, as the head 11 moves in the Y direction on the main surface of the substrate 8 to which the sealant is applied, liquid crystal is dropped from the respective discharge ports of the head 11 onto the main surface of the substrate 8.
  • FIG. 5 shows a direction (Z direction) in which the liquid crystal in FIG. 2 drops.
  • the head 11 has a configuration as shown in FIG.
  • the shape of the head 11 is a cylindrical shape with a hollow inside.
  • a plurality of discharge ports 70 are formed in advance in a line in the X direction on the surface of the head 11 that faces the main surface of the substrate 8 so as to penetrate into the hollow inside. It is assumed that the length of the row extending in the X direction is equal to or longer than the width in the X direction of the dripping planned region of the main surface of the substrate 8 or longer than the width.
  • An interval width DT (hereinafter referred to as a pitch DT), which is a distance between a certain discharge port 70 and an adjacent discharge port 70 in the row, is constant, for example, 2 to 3 mm.
  • the pitch DT indicates a minimum interval width of liquid crystal 6a (droplet) dropping position required for liquid crystal panel production.
  • An electronic shutter 71 is individually provided on the outer peripheral surface of the head 11 to open and close the discharge ports 70 corresponding to the discharge ports 70 arranged in a row. As shown in FIG. 4, each discharge port 70 is freely opened and closed by a corresponding shutter 71.
  • the liquid crystal is dropped, the liquid inside the hollow of the head 11 is filled, so that the liquid crystal can be dropped when the discharge port 70 is in the open state, and when the discharge port 70 is in the closed state. The liquid crystal is not dripped.
  • the head may be a columnar shape, and in each embodiment, it is shown as a columnar shape for the sake of simplicity.
  • FIGS. The structure and operation of the shutter 71 will be described with reference to FIGS.
  • three discharge ports 70 arranged in a row among the discharge ports 70 arranged in a row in FIG. 3 are illustrated as an example. It can be similarly applied to all of the discharge ports 70 arranged in a row.
  • FIGS. 6A and 7A show the shutter structure, taking as an example three consecutive ejection openings 70 of the ejection openings 70 arranged in a row in FIG. It is. 6B and 7B are cross-sectional views of the shutter structure of FIGS. 6A and 7A cut along a plane including the X axis and the Z axis of FIG. It is shown.
  • the shutter 71 corresponding to each discharge port 70 includes a plate 712 that can cover the discharge port 70 and a frame 711 for slidingly moving the plate 712 along the outer peripheral surface of the head 11.
  • 6A shows a state in which all the discharge ports 70 are closed by being covered with the plate 712 of the corresponding shutter 71 (referred to as a shutter ON state).
  • a shutter ON state two of the three outlets 70 are open without being covered by the corresponding plate 712
  • FIG. 8 shows the cross-sectional structure of the shutter 71 shown in FIGS. 6B and 7B in detail.
  • the plate 712 has an electrode 713 for sliding movement on the surface opposite to the discharge port 70, and a frame 711 is for sliding the plate 712, and the electrode 713 of the plate 712 An electrode 713 is provided on the opposite surface.
  • a predetermined voltage is applied to the electrode 713 provided on the plate 712 and the electrode 713 provided on the frame 711, and these are electromagnetized.
  • the plate 712 slides along the frame 711 by the repulsive force of the magnet. A specific finish will be described with reference to FIGS.
  • FIG. 9 a cross section of an electronic shutter 71 is schematically shown and a driving circuit for the shutter is shown.
  • a voltage signal line for supplying a voltage signal from the drive circuit 100 is connected to each electrode corresponding to the electrode 713 arranged in parallel with the stator corresponding to the frame 711. Since the stator corresponds to the frame 711, it is hereinafter referred to as a stator 711.
  • a four-phase voltage signal is applied to these voltage signal lines. Therefore, a voltage signal having the same phase is applied to the electrode 713 every four voltage signal lines.
  • voltage signals are distinguished from each other by attaching A, B, C, and D to the electrodes 713 arranged in a row of the stator 711.
  • Permanently polarized derivatives 5a and 5b are attached to the movable element corresponding to the plate 712 on the surface facing the stator 711. Since the movable element corresponds to the plate 712, the movable element is hereinafter referred to as a movable element 712.
  • FIG. 9 is a schematic diagram only, and the actual number and arrangement interval of electrodes and derivatives depend on various factors such as the size of the shutter 71, the opening area of the discharge port 70, and the resolution required for driving the shutter 71. It is determined as appropriate.
  • the rectangular wave voltage signal (drive pulse signal) generated by the pulse generation circuit 12 is supplied to the phase shifter 13 and the booster circuit 14.
  • the input rectangular wave voltage signal is boosted to a predetermined voltage and branched into two rectangular wave voltage signals.
  • Each of the two rectangular wave voltage signals has two polarities.
  • One of the output rectangular wave voltage signals is supplied to the drive electrode 4A, and the other is supplied to the drive electrode 4C.
  • the rectangular wave voltage signal input to the phase shifter 13 is converted to a waveform delayed by 90 ° by the phase shifter 13 and then output to the booster circuit 14.
  • the booster circuit 14 processes the input rectangular wave voltage signal in the same manner as described above. As a result, two voltage signals are output from the booster circuit 14. Each voltage signal has two polarities. One of the output rectangular wave voltage signals is supplied to the drive electrode 4A, and the other is supplied to the drive electrode 4C.
  • 10A to 10C are timing charts of voltage signals applied from the drive circuit 100 to the drive electrodes 4A to 4D. Since a voltage signal of a rectangular wave train is applied to each of the drive electrodes 4A to 4D, the voltage application state of each of the drive electrodes 4A to 4D changes to four states shown at times t1 to t4. The drive circuit 100 operates such that such a change in state is repeated as time passes.
  • FIG. 11 is a diagram for explaining the operation of the shutter 71.
  • the right side direction in the figure is the traveling direction of the moving element 712.
  • the mover 712 has a positive (plus) derivative 5a on the rear side (left side in the figure) in the traveling direction, and a negative (minus) derivative 5b on the front side (right side in the figure).
  • 11A shows the state (polarity) of the applied voltage between the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D becomes the state at time t1 in FIG.
  • the positive electrode derivative 5a receives a repulsive force from the drive electrode 4A (positive electrode) and receives an attractive force from the drive electrode 4B (negative electrode).
  • the negative electrode derivative 5b receives a repulsive force from the drive electrode 4C (negative electrode) and receives an attractive force from the drive electrode 4D (positive electrode).
  • the moving element 712 receives a force in the right direction toward (A) in FIG. 11 and moves to the right by one pitch d.
  • the pitch d refers to the distance between adjacent drive electrodes.
  • FIG. 11B shows the state (polarity) of the applied voltage between the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D is switched from the state at time t1 to the state at time t2 in FIG. ).
  • the derivative 5a receives a repulsive force from the drive electrode 4B (positive electrode) and receives an attractive force from the drive electrode 4C (negative electrode).
  • the derivative 5b receives a repulsive force from the drive electrode 4D (negative electrode) and receives an attractive force from the drive electrode 4A (positive electrode).
  • the moving element 712 receives a force in the right direction toward (B) in FIG. 11 and moves by one pitch d.
  • FIG. 11C shows the voltage state of the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D is switched from the state at time t2 to the state at time t3 in FIG. Polarity).
  • the derivative 5a receives a repulsive force from the drive electrode 4C (positive electrode) and receives an attractive force from the drive electrode 4D (negative electrode).
  • the derivative 5b receives a repulsive force from yet another drive electrode 4A (negative electrode) and receives a suction force from the drive electrode 4B (positive electrode).
  • the movable element 712 receives a force in the right direction toward (C) in FIG. 11 and moves by one pitch d. Further, FIG.
  • 11D shows the voltage state (polarity) of the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D is switched from the state at time t3 to the state at time t4.
  • the derivative 5a receives a repulsive force from the drive electrode 4D (positive electrode) and receives an attractive force from the drive electrode 4A (negative electrode).
  • the derivative 5b receives a repulsive force from the drive electrode 4B (negative electrode) and receives an attractive force from the drive electrode 4C (positive electrode). Therefore, the mover 712 receives a force in the right direction toward (D) in FIG. 11 and moves by one pitch d.
  • the moving element 712 moves in one direction (the direction of arrow F in FIG. 11D) by repeating the movement of moving by one pitch d.
  • the polarity of the voltage applied to the drive electrode can be switched so as to be opposite to the polarity shown in FIGS. It ’s fine.
  • the moving element 712 of the shutter 71 can be moved in units of pitch d in this way, the amount of movement of the moving element 712 for opening and closing the opening according to the diameter (size) of the opening of the discharge port 70 is determined in units of pitch d. Can be controlled.
  • FIG. 12 shows a schematic configuration of a shutter control unit 67 to be described later in association with the drive circuit 100.
  • the shutter control unit 67 includes an ON / OFF signal generation unit 671 and a timing controller 672.
  • the timing controller 672 has output terminals O1 to O3 connected to the driving circuit 100 of the shutter 71 corresponding to each of the ejection ports 70 shown in FIG.
  • the timing controller 672 receives the signal output from the ON / OFF signal generation unit 671, and outputs the input signal to each drive circuit 100 from the output terminals O1 to O3.
  • the ON / OFF signal generator 671 generates and outputs a signal for ON / OFF control of each shutter 71.
  • FIGS. 13A and 13B schematically show a mechanism for supplying liquid crystal to the head 11.
  • illustration of the discharge port 70 and the shutter 71 formed in the head 11 is omitted in order to simplify the description.
  • the head 11 is connected to a liquid crystal supply device 22 storing liquid crystal by a hollow liquid crystal supply pipe 23.
  • One end of the liquid crystal supply pipe 23 extends into the hollow interior of the head 11, and the other end extends into the liquid crystal tank of the liquid crystal supply device 22.
  • the supply of liquid crystal to the liquid crystal supply pipe 23 is basically realized by pressurizing the inside of the liquid crystal tank of the liquid crystal supply device 22 with gas.
  • the liquid crystal surface in the liquid crystal tank rises by being pressurized using gas, and as a result, the liquid crystal is filled in the liquid crystal supply tube 23 and the hollow interior of the head 11. Therefore, although it fills with the liquid crystal to the vicinity of the discharge port 70, in the state which does not dripping a liquid crystal, it is not dripped from the opening part of the discharge port 70 by surface tension.
  • a cylinder 24 and a piston 25 moving in the cylinder 24 are connected in the middle of the liquid crystal supply pipe 23.
  • a controller 26 is connected to the piston 25.
  • the controller 26 is a stepping motor, and a piston 25 is connected to the shaft of the stepping motor.
  • the stepping motor rotates in a predetermined direction by a predetermined angle based on the instruction signal 39, and then rotates in the reverse direction by a predetermined angle.
  • the piston 25 moves to the position retracted from the position of FIG. 13B (FIG. 13A). As a result, liquid crystal accumulates in the cylinder 24.
  • the amount of liquid crystal per drop is determined depending on the amount of movement of the piston 25 for one reciprocation. Accordingly, the instruction signal 39 for determining the movement amount of the piston 25 can be used to control the liquid crystal dropping amount to be a predetermined amount.
  • the liquid crystal dropping device 101 includes a storage unit 60 corresponding to the memory 53, an image processing unit 61 that processes image data captured and output by the camera 4, an instruction input unit 62 corresponding to the input unit 54, and a main surface of the substrate 8.
  • a position detection unit 63 for detecting the position of the head 11, a discharge signal generation unit 65 for generating and outputting an instruction signal 39 for discharging liquid crystal from each discharge port 70, and a column 42 (head 11) in the Y direction.
  • a movement signal generation unit 66 that generates and outputs an instruction signal 38 for movement and a shutter control unit 67 that generates and outputs an instruction signal 40 for ON / OFF control of the shutter 71 corresponding to each discharge port 70 are provided. .
  • the image processing unit 61 inputs image data output from the camera 4.
  • the camera 4 photographs the substrate 8 in a state where the substrate 8 is placed on the stage 9.
  • the image processing unit 61 performs predetermined processing such as noise removal on the input image data, and then temporarily stores the image data in the storage unit 60.
  • the position detection unit 63 has a coordinate detection unit 64.
  • the position detection unit 63 reads out the image data captured by the camera 4 from the storage unit 60, and detects the current relative position of the head 11 (column 42) with respect to the substrate 8 based on the read-out image data.
  • the image of the image data is defined by a coordinate plane defined by the coordinate axes in the XY directions.
  • the coordinate detection unit 64 detects the mark 8A from the image data, detects the coordinate position of the detected mark 8A, and stores the detected coordinate position in the storage unit 60 as the substrate coordinate data 60A.
  • the position detection unit 63 detects the current coordinate position of the column 42 and stores the detected coordinate position in the storage unit 60 as head position data 60B.
  • the current coordinate position of the column 42 is detected based on the relative distance in the XY direction between the image of the column 42 detected from the image data and the mark 8A and the substrate coordinate data 60A read from the storage unit 60. To do.
  • the discharge signal generation unit 65 generates an instruction signal 39 for discharging liquid crystal from each discharge port 70, and outputs the generated instruction signal 392.
  • the discharge signal generator 65 monitors the instruction signal 38. When the discharge signal generation unit 65 detects that the column 42 has started moving based on the instruction signal 38, the discharge signal generation unit 65 starts outputting the instruction signal 39 in synchronization with a predetermined liquid crystal discharge start timing. When the stop of the movement of the column 42 is detected based on the instruction signal 38, the output of the instruction signal 39 is stopped.
  • the movement signal generator 66 generates an instruction signal 38 for moving the column 42 (head 11) in the Y direction and outputs the instruction signal 38 to the head moving motor 661.
  • the rotation axis of the head moving motor 661 is connected to the column 42, and the column 42 moves in conjunction with the rotation of the head moving motor 661. Since the instruction signal 38 indicates the rotation direction and the rotation amount of the head moving motor 661, the movement direction and the movement amount (movement amount per unit time, that is, movement speed) of the column 42 (head 11) are determined by the instruction signal 38. Can be controlled. In the present embodiment, it is assumed that the moving direction corresponds to the Y direction and the moving speed is a predetermined speed.
  • the shutter control unit 67 generates the instruction signal 40 and supplies it to the drive circuit 100 corresponding to each discharge port 70. A procedure for generating the instruction signal 40 will be described.
  • the storage unit 60 stores in advance a plurality of types of data PD for controlling ON / OFF of the shutter 71 corresponding to each discharge port 70.
  • Each of the data PD includes a pattern name PN for uniquely identifying the data and pattern data PA for ON / OFF control of the shutter.
  • the pattern data PA is data for determining whether the shutter 71 corresponding to each discharge port 70 is in an ON state or an OFF state.
  • the pattern data PA includes identification information of output terminals (corresponding to the output terminals O1 to O3 in FIG. 12) to which the corresponding drive circuit 100 is connected in association with each corresponding drive circuit 100, and ON or OFF instruction data. .
  • the pattern name PN uniquely designates a liquid crystal dropping pattern (such as a dropping interval width in the X direction) in the liquid crystal dropping region of the substrate 8. Therefore, the pattern data PA instructs ON / OFF of each shutter 71 according to the pattern name PN (that is, the liquid crystal dropping pattern).
  • the ON / OFF signal generator 671 generates and outputs a corresponding instruction signal 40 to each drive circuit 100 based on the pattern data PA.
  • the generated instruction signal 40 includes identification information of an output terminal to which the drive circuit 100 is connected and ON / OFF instruction data.
  • the timing controller 672 outputs the instruction signal via an output terminal indicated by the identification information of the input instruction signal 40. Thereby, the instruction signal 40 is given to the drive circuit 100 of each shutter 71 individually.
  • the drive circuit 100 generates a signal (see (A) to (D) in FIG. 10) based on the supplied instruction signal 40, and outputs the generated signal.
  • the movable element (plate) 712 of the corresponding shutter 71 moves to a position where the discharge port 70 is closed when the instruction signal indicates “ON” and stops, and when the instruction signal indicates “OFF”, it opens. Move to the position where it will be in the state and stop.
  • the opening / closing state of each ejection port 70 of the head 11 is controlled according to the pattern data PA.
  • a program according to the flowchart of FIG. 17 is stored in the memory 53 in advance.
  • the processing is realized by the CPU 51 reading the program from the memory 53 and executing the instruction code of the read program. It is assumed that the substrate 8 is placed on the stage 9 prior to the liquid crystal dropping. It is assumed that the head 11 (column 42) is placed at a predetermined position at the start of dropping in XY coordinates corresponding to the main surface of the substrate 8 on the stage 9.
  • the operator gives an instruction to start liquid crystal dropping to the liquid crystal dropping apparatus 101 via the input unit 54.
  • the CPU 51 instructs the camera 4 to take an image.
  • the camera 4 images the substrate 8 placed on the stage 9 and outputs image data obtained by the imaging to the image processing unit 61 (step S3).
  • the image processing unit 61 temporarily stores the image data in the storage unit 60 after predetermined processing (step S5).
  • the CPU 51 instructs the position detection unit 63 to detect the position.
  • the position detection unit 63 reads out image data from the storage unit 60 and gives it to the coordinate detection unit 64.
  • the coordinate detection unit 64 detects the position of the mark 8A on the substrate 8 based on the image data, and stores the substrate coordinate data 60A indicating the detection result in the storage unit 60 (step S7).
  • the CPU 51 receives pattern designation data input by the operator via the instruction input unit 62 (step S9).
  • the pattern designation data includes an identifier of data PD corresponding to a dropping condition (such as a dropping interval width) according to the standard of a liquid crystal panel to be manufactured using the substrate 8.
  • the pattern designation data received by the instruction input unit 62 is given to the shutter control unit 67.
  • the shutter control unit 67 searches the data PD in the storage unit 60 based on the identifier of the input pattern designation data (step S11). Based on the search result, the data PD having the pattern name PN that matches the identifier is read from the storage unit 60. Then, the ON / OFF signal generator 671 generates the instruction signal 40 based on the read pattern data PA of the data PD.
  • the generated instruction signal 40 is output to the drive circuit 100 corresponding to each discharge port 70 via each output terminal of the timing controller 672.
  • the state (open or closed) of each discharge port 70 is set by the shutter 71 so as to follow the dropping pattern of the liquid crystal 6A designated by the operator (step S13).
  • the CPU 51 instructs the movement signal generation unit 66 to start moving the head 11.
  • the movement signal generation unit 66 generates an instruction signal 38 when an instruction is input, and outputs the generated instruction signal 38 to the head moving motor 661. Since the head moving motor 661 operates according to the instruction signal 38, the head 11 starts moving according to the direction and speed indicated by the instruction signal 38 in conjunction with the operation (step S15).
  • step S19 the position of the column 42 (head 11) on the substrate 8 is detected (step S19). Specifically, imaging in the direction of the substrate 8 is repeatedly performed by the camera 4 under the control of the CPU 51, and image data is output to the image processing unit 61 for each imaging. Each time image data is input from the camera 4, the image processing unit 61 performs predetermined processing on the input image data and stores the processed image data in the storage unit 60. Each time the camera 4 captures an image, the position detection unit 63 reads image data (image data output by the imaging) from the storage unit 60, and the image of the column 42 (head 11) is obtained from the read image data by pattern matching or the like. Is detected.
  • the position of the column 42 (head 11) is detected based on the distance between the detected image and the image of the mark 8A and the coordinate value indicated by the substrate coordinate data 60A read from the storage unit 60.
  • the detected position is stored in the storage unit 60 as head position data 60B.
  • step S21 it is determined whether or not the liquid crystal 6a should be dropped (step S21). Specifically, the position detection unit 63 determines whether or not the head position data 60B indicates a predetermined position where the dropping of the liquid crystal 6a should be terminated. If the head position data 60B indicates a predetermined position, that is, if it is determined that the dropping should be ended (YES in step S21), the series of processes ends. If the head position data 60B does not indicate a predetermined position, that is, if it is determined that the dropping should not be terminated (NO in step S21), the process returns to step S19. Thereafter, liquid crystal dropping is continuously performed while the column 42 (head 11) is moved.
  • one head 11 is provided with a plurality of ejection openings 70 and a shutter 71 that opens and closes each ejection opening 70, and is controlled to open and close each ejection opening 70 according to the pattern data PA. To do. Thereby, the pitch DT between the discharge ports 70 in the open state and the number of discharge ports 70 in the open state can be variably controlled using the pattern data PA.
  • the number of movements of the head 11 (column 42) in the Y direction can be completed only once, and the tact time can be shortened.
  • the liquid crystal dropping pitch can be changed without replacing the head 11 (column 42).
  • an optimal dropping pitch can be selected according to the liquid crystal material, the screen size of the liquid crystal panel, or the structure and characteristics of the substrate 8 onto which the liquid crystal is dropped.
  • the optimum dropping is performed according to the liquid crystal material, the screen size of the liquid crystal panel, or the structure and characteristics of the substrate on which the liquid crystal is dropped The amount can be selected.
  • a desired liquid crystal panel can be easily manufactured by these synergistic effects.
  • the liquid crystal dropping device 102 includes a plurality of heads 11 shown in the first embodiment.
  • the liquid crystal supply device 22 and the liquid crystal supply pipe 23 to be supplied to each head from now on are independent for each head.
  • the plurality of heads are a plurality of heads obtained by dividing the head 11 shown in the first embodiment into a plurality of heads in the direction in which the rows of the discharge ports 70 extend. Can do.
  • the liquid crystal dropping device 102 is integrally provided with three heads 11A, 11B, and 11C corresponding to the head 11 shown in the first embodiment in the column 42.
  • the heads 11A, 11B, and 11C simultaneously move in the Y direction as the column 42 moves in the Y direction.
  • three heads 11A to 11C are shown, but the number of heads is not limited to three, and may be two, or four or more.
  • the liquid crystal display panel generally uses different liquid crystal materials depending on various conditions such as emphasis on display response speed, emphasis on contrast, emphasis on cost, emphasis on panel size, and the like.
  • different types of liquid crystal 6a can be dropped on one substrate 8 according to the allocation of the panel surface by filling the heads 11A to 11C with different types of liquid crystal materials. it can.
  • the liquid crystal material filled in each of the heads 11A to 11C can be made different or the same depending on the conditions of the common panel.
  • FIG. 19 shows a state in which different types of liquid crystals 6a are discharged from the heads 11A to 11C.
  • the size of the discharge port 70 may be different for each of the heads 11A to 11C. Different sizes of the discharge ports 70 and different types of liquid crystal materials to be filled may be implemented in combination or one of them may be implemented for each head.
  • the liquid crystal dropping device 103 includes a head 111 instead of the head 11 of the first embodiment.
  • the head 111 has a hollow column shape, and its longitudinal direction coincides with the X direction.
  • On the side surface of the head 111 extending in the X direction a plurality of rows of ejection ports extending in the X direction are formed.
  • a plurality of discharge ports are arranged in each row. In the present embodiment, for example, four columns are formed, but the number of columns is not limited to four.
  • the rows extending in the X direction are arranged in parallel at a predetermined interval on the side surface extending in the longitudinal direction of the head 111.
  • FIG. 21 shows a cross section when the head 111 attached to the column 42 of FIG. 20 is cut along a plane including the Y axis and the Z axis.
  • four discharge ports 70 having different sizes (diameters of the discharge ports 70) are formed at predetermined intervals (approximately 90 ° intervals).
  • codes A to D are assigned to the four discharge ports 70 for distinction.
  • the head 111 rotates by a predetermined angle unit corresponding to a predetermined interval in conjunction with the rotation of a head rotating motor 681 (see FIG. 26) provided in association with the column 42. Thereby, the discharge ports 70 having different sizes according to the rotation angle can be made to face the main surface of the substrate 8.
  • the head 111 changes the size of the discharge port opposed to the main surface of the substrate 8 by rotating around the central axis extending in the X direction of the column shape according to an angle corresponding to the predetermined interval width.
  • the cut surface when the head 111 is cut along a plane including the Y axis and the Z axis is a circle. Therefore, the axis passing through the center of the circle in the X direction is the center axis. Point to.
  • the head 111 is not a cylinder, it similarly refers to an axis passing through the center of the inscribed circle or circumscribed circle of the cut surface in the X direction.
  • FIG. 21 four discharge ports “A” to “D” are formed in the head 111 as the discharge ports 70. It is assumed that the diameters of the four discharge ports 70 have a relationship of discharge port “A”> discharge port “B”> discharge port “C”> discharge port “D”.
  • the head 111 shown in FIG. 21 is rotated by a predetermined angle and the discharge port “A” having the maximum size faces the main surface of the substrate 8 as shown in FIG. 22 (see FIG. 22A).
  • the liquid crystal 6a dropped from the discharge port “A” in the direction of the arrow becomes the maximum amount (see FIG. 22B).
  • the discharge port “B” when the head 111 is rotated by a predetermined angle and the discharge port “B” is opposed to the main surface of the substrate 8 instead of the discharge port “A” (see FIG. 23A), the discharge port The amount of liquid crystal 6a dropped from “B” in the direction of the arrow decreases compared to that in FIG. 22B (see FIG. 23B). Further, when the head 111 is rotated by a predetermined angle so that the discharge port “C” faces the main surface of the substrate 8 (see FIG. 24A), the head 111 is dropped from the discharge port “C” in the direction of the arrow. The amount of the liquid crystal 6a to be further reduced (see FIG. 24B).
  • the discharge port 70 that rotates the head 111 by a predetermined angle and opposes the main surface of the substrate 8 is the discharge port “D” of the minimum size (see FIG. 25A), the discharge port “D”. The amount of the liquid crystal 6a dripped in the direction of the arrow is minimized (see FIG. 25B).
  • the size of the discharge port 70 may be switched depending on, for example, the type (viscosity) of the liquid crystal material to be dropped, or may be switched depending on the lot of the liquid crystal material.
  • the mechanism of the shutter 71 described in the first embodiment is provided corresponding to each of the ejection ports 70 provided in the head 111.
  • the liquid crystal supply tube 231 that supplies liquid crystal to the head 111 from the liquid crystal supply device 22 is formed of a flexible hollow tube such as a resin straw. As a result, even if the head 111 rotates, the liquid crystal can be supplied into the head 111 by the flexibility (the property having a deflection) of the liquid crystal supply tube 231.
  • FIG. 26 shows a functional configuration of the liquid crystal dropping device 103 according to the present embodiment.
  • the difference from the functional configuration shown in the first embodiment is that a rotation control unit 68 for rotating the head 111 and a head rotation motor 681 in which the head 111 is connected to a rotation shaft for rotating the head 111. And storing data PD1 instead of data PD.
  • the head rotating motor 681 rotates by a direction and an angle according to the instruction signal 41 given from the rotation control unit 68.
  • the rotation direction and rotation angle (rotation amount) of the head 111 connected to the rotation shaft of the head rotation motor 681 are determined, and the size of the discharge port 70 facing the main surface of the substrate 8 is switched. Can do.
  • data PD1 is stored instead of the data PD shown in the first embodiment.
  • the data PD1 includes a pattern name PN, shutter ON / OFF pattern data PA1, and discharge port size data PB in association with each other.
  • the discharge port size data PB indicates a row of discharge ports 70 having a size to be opposed to the main surface of the substrate 8 among the four discharge ports having different sizes shown in FIG.
  • the pattern data PA1 turns on / off the shutters 71 of the discharge ports 70 in the row of the discharge ports 70 of the size indicated by the corresponding discharge port size data PB, and the discharge ports 70 in the other rows are fully closed ( (Shutter ON state).
  • the shutter control unit 67 Based on the pattern data PA1 of the data PD1 read from the storage unit 60 based on the pattern designation data given from the instruction input unit 62, the shutter control unit 67 turns on / off the shutter 71 of the discharge port 70 indicated by the data. Is output to the drive circuit 100 of each shutter 71. As a result, the discharge ports 70 in the row of the discharge ports 70 of the size indicated by the discharge port size data PB are opened / closed, and the discharge ports 70 in the other rows are fully closed.
  • the discharge port size data PB is data indicating the rotation amount from the initial rotation position (home position) of the head 111.
  • the rotation control unit 68 generates an instruction signal 41 based on the discharge port size data PB of the read data PD1, and outputs the generated instruction signal 41.
  • the head rotation motor 681 is rotated by the instruction signal 41 in accordance with the discharge port size data PB, so that the row of the discharge ports 70 having the size indicated by the discharge port size data PB is displayed on the substrate 8. It can be made to oppose on the main surface.
  • FIG. 27 shows a processing flowchart according to the present embodiment.
  • the processing flowchart of FIG. 27 differs from the processing flowchart of FIG. 17 in that the size of the ejection port 70 of the head 111 is controlled by the step S13a between the steps S13 and S15 of FIG.
  • the rotation processing of the head 111 using the instruction signal 41 is added.
  • Other processes in FIG. 27 are the same as those shown in FIG. 17, and the description thereof is omitted.
  • the head 111 is rotated so that the row of ejection ports 70 having a size designated by the operator faces the main surface of the substrate 8. Thereby, the liquid crystal 6 a can be dropped onto the main surface of the substrate 8 from the row of the discharge ports 70 having the designated size.
  • the diameter (size) of the discharge port 70 it is required that an optimum diameter can be selected depending on the size and specification of the panel to be removed from the substrate 8. According to the present embodiment, the substrate 8 Therefore, it is possible to select the discharge port 70 having a diameter corresponding to the specification of the panel to be jointly taken. Specifically, when the specifications such as the size of the panel to be shared and the cell gap are the same, the amount of liquid crystal discharged is the same, and thus the liquid crystal dropped when the liquid crystal is dropped from the discharge port 70 having a large diameter. Since the amount can be increased, the dropping pitch can be increased. That is, the movement speed (movement amount per unit time) of the column 42 can be increased, and the tact time can be shortened.
  • the fourth embodiment shows a modification of the head 111 of the third embodiment.
  • liquid crystal dropping apparatus 104 according to the present embodiment is provided with heads 111A, 111B, and 111C integrally in column 42.
  • heads 111A to 111C corresponds to the head 111 of the third embodiment.
  • a liquid crystal supply device 22 is provided corresponding to each of the heads 111A to 111C.
  • a corresponding liquid crystal supply device 22 is connected to each head via a flexible liquid crystal supply tube 231.
  • each of the heads 111A, 111B, and 111C is rotated so that the size of the discharge port 70 facing the main surface of the substrate 8 can be varied (see FIG. 29).
  • FIG. 29 shows a state in which the amount of liquid crystal 6a dropped from each of the heads 111A to 111C is different.
  • the types of liquid crystal materials supplied to the heads 111A, 111B, and 111C may be the same or different.
  • the type of liquid crystal material to be dropped and the size of the discharge port 70 to which the liquid crystal is dropped can be made different for each head, and the types of liquid crystal panels to be shared from the substrate 8 can be varied.
  • the number of heads is three, but may be two or four or more.
  • FIG. 30 shows a functional configuration of the liquid crystal dropping device 104 according to the present embodiment.
  • the difference from the functional configuration of the liquid crystal dropping device 103 according to the third embodiment is that a rotation control unit 6811 is provided instead of the rotation control unit 68, and a rotation corresponding to each head is provided instead of the head rotation motor 681.
  • the storage unit 60 stores data PD2 in place of the data PD1.
  • the data PD2 includes a pattern name PN, pattern data PA2 indicating the ON / OFF pattern of the shutter 71 corresponding to each head, and data PB1 indicating the size of the ejection port corresponding to each head.
  • FIG. 31 shows a process flowchart according to the fourth embodiment. 27 differs from the processing flowchart of FIG. 31 in that the processing of steps S13 and S13a of FIG. 27 is performed on the main surface of the substrate 80 and processing step S13b for controlling ON / OFF of the shutter of each head. This is in place of step S13c in which the size of the ejection port 70 to be opposed is controlled for each head.
  • the other processes in FIG. 31 are the same as those shown in FIG. 27, and a description thereof will be omitted.
  • each head sets the ejection ports 70 in the row facing the main surface of the substrate 8 to the open state or the closed state, and all the ejection ports 70 in the other rows are fully closed. (Step S13b). Then, the rotation control unit 6811 generates the instruction signal 41 according to the data PB1 indicated by the data PD2 read from the storage unit 60, and outputs the generated instruction signal 41 to the rotation motor 6812 corresponding to each head. Thus, the rotation motor 6812 corresponding to each head rotates based on the instruction signal 41 provided. In association with this rotation, the corresponding head rotates. As a result, the row of ejection openings 70 having the size indicated by the data PB1 of each head faces the main surface of the substrate 8.
  • the ejection port size control is executed following the shutter ON / OFF control, but the execution order is not limited to this. For example, after all the shutters 71 are turned on (all the ejection ports 70 are fully closed), the size of the ejection ports is controlled by rotating the head, and then the substrate 8 is controlled according to the corresponding pattern data PA2. You may make it control opening / closing of the ejection opening 70 of the row
  • the drop amount or drop pitch of one drop on the main surface of one substrate 8 can be varied, and the liquid crystal material to be dropped as shown in the second embodiment can be used. Since it can be made different for each head, the same effect as in the second and third embodiments can be obtained.
  • the ejection signal generation unit 65 compares the head position data 60B read from the storage unit 60 with the position data of the space in the X direction given in advance. If it is determined that the current head position data 60B indicates the space position based on the comparison result, the output of the instruction signal 39 is temporarily stopped.
  • the liquid crystal is dropped on the panel 8b without moving the liquid crystal in the space extending in each of the X and Y directions by merely moving the head 11 once in the Y direction (reciprocal movement is not necessary). Can do.
  • FIG. 34 shows a case where the size of the panel 8b to be shared using the head 11 of the first embodiment is different.
  • FIG. 35A and FIG. 35B show an example of head movement when the size of the panel 8b to be co-taken by the conventional liquid crystal dropping device is different from that in FIG.
  • FIG. 34 shows two heads 11 for explanation. Of the two heads 11, the upper head 11 is set to open / close the discharge port 70 according to the pattern A, and the lower head 11 is set to open / close the discharge port 70 according to the pattern B.
  • the liquid crystal is dropped while moving the pattern 11 head 11 in order to drop the liquid crystal on the large panel 8b.
  • the liquid crystal is dropped with a relatively large drop interval of the liquid crystal in the Y direction.
  • the opening / closing pattern of the ejection openings 70 of the head 11 is changed to the pattern B, and the head 11 is moved in the Y direction.
  • the number of discharge ports through which liquid crystal is dropped increases.
  • the dropping interval of the liquid crystal can be varied according to the type of panel to be shared. Therefore, the change of the dropping interval is completed only by moving the head 11 once in the Y direction without the conventional reciprocation of the head multiple times (see FIGS. 35A and 35B).
  • FIG. 36 shows a functional configuration of the liquid crystal dropping device according to the fifth embodiment. 36 is different from the functional configuration of the first embodiment shown in FIG. 14 in that the shutter control unit 67 has a switching unit 673 and the data PD stored in the storage unit 60.
  • the data PD3 is replaced.
  • the data PD3 includes pattern designation data P1 associated with each of the pattern name PN, a plurality of types of position data D1 in the Y direction, and the position data D1.
  • the pattern instruction data P1 is a kind of pointer data indicating the pattern data PA3 stored in advance in the storage unit 60.
  • the pattern data PA3 is data for setting the state (ON / OFF) of the shutter 71 corresponding to each discharge port 70.
  • Data PD3 will be described with reference to FIG.
  • the pattern instruction data P1 of the position data D1 corresponding to the coordinates of the range Y1 is read.
  • the shutter 71 of each discharge port 70 is controlled to open and close in accordance with the pattern data PA3 instructed by the read pattern instruction data P1.
  • the switching unit 673 reads the pattern instruction data P1 corresponding to the next position data D1. .
  • the ejection ports 70 of the head 11 are controlled to open and close. Thereby, the state (open or closed) of each discharge port 70 can be switched according to the range in which the head 11 moves (region on the main surface of the substrate 8). As a result, even when a complicated co-printing pattern as shown in FIG. 34 is designated, it is possible to produce a liquid crystal panel according to the designated co-printing pattern only by moving the head 11 once in the Y direction. Become.
  • FIG. 37 shows a processing flowchart according to the fifth embodiment.
  • the processes in steps S3 to S15 are the same as those in the first embodiment.
  • the position detection unit 63 sequentially detects the position of the head 11. Each time a position is detected, the detected position is stored in the storage unit 60 as head position data 60B (step S25). Therefore, the head position data 60B indicates the current position of the head 11.
  • the switching unit 673 of the shutter control unit 67 detects (determines) whether or not to switch the pattern PA3 to be referred to (step S27). Specifically, the head position data 60B read from the storage unit 60 is compared with each of the position data D1 indicated by the data PD3 read from the storage unit 60. If it is determined that the head position data 60B indicates the next position data D1 based on the comparison result, it is determined that the pattern should be switched based on the determination result (YES in step S27). Thereafter, the process proceeds to step S29. If it is determined that the head position data 60B does not indicate the next position data D1, it is determined that the pattern is not switched based on the determination result (NO in step S27). And it is detected whether it is completion
  • step S29 the switching unit 673 reads the pattern instruction data P1 indicated by the next position data D1 from the storage unit 60.
  • Pattern data PA3 pointed to by the read pattern instruction data P1 is read from the storage unit 60.
  • the shutter control unit 67 generates an instruction signal 40 and outputs the generated instruction signal 40 to the drive circuit 100 corresponding to each ejection port 70. Thereby, the state (open or closed) of each discharge port 70 is switched (step S31). Thereafter, the process proceeds to step S25, and the dropping process is continued.
  • the feature of the head 11 according to the fifth embodiment is that the head shown in the second embodiment is prepared by preparing the pattern instruction data P1 and the pattern data PA3 for each head and detecting the position for each head.
  • the total number of discharge ports 70 capable of dropping liquid crystal can be switched by opening and closing each of the discharge ports 70 arranged in a line on the head by the shutter 71.
  • the tact time production time
  • the width of the plate 712 (moving element 712) of the shutter 71 corresponding to each discharge port 70 should be ensured. Can be made sufficiently small.
  • the pressurizing chamber needs to have a size that can store liquid crystal and can obtain a pressurizing effect by the piezoelectric element. Therefore, it becomes difficult to reduce the interval width of the discharge ports due to the limitation of the size of the pressurizing chamber.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Disclosed is a liquid crystal dripping apparatus (101) wherein a row composed of a plurality of jetting ports for dripping a liquid crystal onto a substrate is formed on the outer circumferential surface of a head (11). The liquid crystal dripping apparatus (101) is provided with: a jetting section, which jets the liquid crystal onto the substrate (8) from each jetting port, corresponding to a shift of the head (11) in the Y direction; and a plurality of shutters, which are provided corresponding to respective jetting ports on the outer circumferential surface of the head (11) and open/close the corresponding jetting ports, respectively. The row extends in the X direction, and the interval between the jetting ports in the row is equal to or smaller than the minimum dripping interval instructed by means of a liquid crystal dripping pattern. Each of the shutters includes a plate, and opens/closes each of the jetting ports by electronically sliding the plate in accordance with the pattern data that corresponds to the liquid crystal dripping pattern.

Description

液晶の吐出態様を変更する液晶滴下装置および方法Liquid crystal dropping apparatus and method for changing liquid crystal discharge mode
 本発明は、液晶滴下装置および方法に関し、特に、基板に滴下するべき液晶の吐出態様を変更する機能を有する液晶滴下装置および方法に関する。 The present invention relates to a liquid crystal dropping apparatus and method, and more particularly, to a liquid crystal dropping apparatus and method having a function of changing a discharge mode of liquid crystal to be dropped on a substrate.
 液晶表示パネルの製造方法では、2枚の基板を互いに貼り合わせる工程と液晶を封入する工程とを別々に行なう方法と、これらの2つの工程を同時に行なうことができる方法とがある。後者の方法として、液晶滴下法が提案されている。 There are two methods for manufacturing a liquid crystal display panel: a method in which two substrates are bonded to each other and a step in which liquid crystal is sealed, and a method in which these two steps can be performed simultaneously. A liquid crystal dropping method has been proposed as the latter method.
 液晶滴下法においては、互いに貼り合わせられる2枚の基板のうちいずれか一方の基板にシール材を配置する。いずれか一方の基板のシール材の内側に対応する領域に液晶を滴下する。真空において、これらの2枚の基板を互いに貼り合わせる。 In the liquid crystal dropping method, a sealing material is disposed on one of two substrates to be bonded to each other. Liquid crystal is dropped on a region corresponding to the inside of the sealing material of either one of the substrates. These two substrates are bonded together in a vacuum.
 次に、大気圧において2枚の基板同士の間隔の調整を行なった後に、シール材を硬化する。2枚の基板を貼り合せることによる得られた貼り合せ基板には、複数の液晶表示セルが形成されている。次に、貼り合せ基板を複数の液晶表示セルからなる複数のパネルに分断して液晶表示パネルを製造する。 Next, after adjusting the distance between the two substrates at atmospheric pressure, the sealing material is cured. A plurality of liquid crystal display cells are formed on a bonded substrate obtained by bonding two substrates. Next, the bonded substrate is divided into a plurality of panels composed of a plurality of liquid crystal display cells to manufacture a liquid crystal display panel.
 液晶滴下法において、液晶は、基板同士を貼り合わせる前に液晶滴下シリンジのノズルから所定量の液晶が基板上に滴下されて、その後、基板を貼り合せると共に液晶を封入する。このため、液晶の滴下量が少ないと液晶表示セルが気泡を含んだりセル厚が薄くなったりするなどの不具合が生じる。また、逆に液晶の滴下量が多いと液晶表示セルから液晶が漏れたり、セル厚が厚くなったりするなどの不具合が生じる。 In the liquid crystal dropping method, a predetermined amount of liquid crystal is dropped on the substrate from the nozzle of the liquid crystal dropping syringe before the substrates are bonded together, and then the substrate is bonded and the liquid crystal is sealed. For this reason, when the dripping amount of the liquid crystal is small, problems such as the liquid crystal display cell containing bubbles or the cell thickness being thin occur. On the other hand, if the amount of liquid crystal dripped is large, problems such as liquid crystal leaking from the liquid crystal display cell and the cell thickness becoming thick occur.
 従来は、液晶を滴下する装置において、液晶の滴下量を適正に維持するために、たとえば、特許文献1(特開2003-241208号公報)および特許文献2(特開2004-358282号公報)の技術が提案されている。 Conventionally, in an apparatus for dropping liquid crystal, in order to maintain an appropriate amount of liquid crystal, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2003-241208) and Patent Document 2 (Japanese Patent Laid-Open No. 2004-358282), Technology has been proposed.
特開2003-241208号公報Japanese Patent Laid-Open No. 2003-241208 特開2004-358282号公報JP 2004-358282 A
 従来の液晶滴下装置による液晶滴下態様の1例が模式的に図38と図39に示される。図38を参照して、基板を跨ぐようにして備えられるガントリ(架台)には、液晶を滴下するために、基板主面に吐出口を対向して有する複数のヘッドが所定間隔で固定に設けられる。基板に液晶を滴下するために、ガントリは基板の長手方向に往復移動しながら、ヘッドが短手方向に移動する。これにより、ヘッドは吐出口から液晶を滴下(本明細書では、1回の滴下あたり吐出される液晶の滴を、液滴ともいう)しながら図38の矢印が示す軌跡に従って移動する。その結果、図39のように、基板の主面上には必要な量の液晶が滴下される。 38 and 39 schematically show an example of a liquid crystal dropping mode using a conventional liquid crystal dropping device. Referring to FIG. 38, a gantry (base) provided so as to straddle the substrate is provided with a plurality of heads fixedly spaced at predetermined intervals so as to face the substrate main surface in order to drop liquid crystal. It is done. In order to drop the liquid crystal on the substrate, the head moves in the short direction while the gantry reciprocates in the longitudinal direction of the substrate. Accordingly, the head moves according to the locus indicated by the arrow in FIG. 38 while dropping the liquid crystal from the discharge port (in this specification, the liquid crystal droplet discharged per drop is also referred to as a droplet). As a result, as shown in FIG. 39, a necessary amount of liquid crystal is dropped on the main surface of the substrate.
 図38と図39の場合には、所定のピッチ、速度にてヘッドを移動させて、基板全体に液晶を滴下する。このため、例えば、1枚の基板を分割してディスプレイ用などのサイズの異なる複数個の液晶パネルを得る(これを、共取という)、共取パネルの種類が多い、ガントリが有するヘッドの個数が少ないなどの条件の下では、往復回数が多くなるため、タクトタイム(生産時間)がかかりすぎるとの課題があった。 38 and 39, the head is moved at a predetermined pitch and speed, and the liquid crystal is dropped on the entire substrate. For this reason, for example, a single substrate is divided to obtain a plurality of liquid crystal panels having different sizes for display or the like (this is called “co-collection”). However, there is a problem that it takes too much tact time (production time) because the number of reciprocations increases under conditions such as a small number of times.
 この課題を解消するために、特許文献1(特開2003-241208号公報)では、ヘッドにおいて一列をなして設けられる複数の吐出口のうち、滴下予定領域に対応する吐出口からのみ液晶を滴下する。特許文献2では、ヘッドにおいて一列をなして設けられる複数の吐出口を、滴下予定領域に従って基材に対して位置をずらしながら液晶を滴下する。 In order to solve this problem, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-241208), liquid crystal is dropped only from the discharge ports corresponding to the planned dropping region among the plurality of discharge ports provided in a row in the head. To do. In Patent Document 2, the liquid crystal is dropped while shifting the positions of a plurality of ejection openings provided in a row in the head with respect to the substrate according to the planned dropping area.
 しかしながら、特許文献1と2では、各吐出口には対応する圧電素子を設け、かつ各圧電素子に独立の加圧室を形成する必要があるので、吐出口間のピッチ(間隔幅)を十分に小さくすることができない。それゆえに、基板における液晶の滴下間隔を十分に小さくすることができない。滴下間隔を小さくするべきパネルを生産する場合には、図38の往復移動が必要とされて、タクトタイムが長くならざるを得ない。 However, in Patent Documents 1 and 2, since it is necessary to provide a piezoelectric element corresponding to each discharge port and to form an independent pressurizing chamber for each piezoelectric element, the pitch (interval width) between the discharge ports is sufficiently large. Cannot be made smaller. Therefore, the liquid crystal dropping interval on the substrate cannot be made sufficiently small. When producing a panel in which the dropping interval is to be reduced, the reciprocation shown in FIG. 38 is required, and the tact time must be increased.
 それゆえに、本発明の目的は、簡単な構成で生産時間を短くすることが可能な液晶滴下装置および方法を提供することである。 Therefore, an object of the present invention is to provide a liquid crystal dropping apparatus and method capable of shortening the production time with a simple configuration.
 この発明のある局面に従う液晶滴下装置は、内部が中空の柱形状を有し、中空に充填される液晶を基板上に滴下するための複数個の吐出口が並んで成る列が外周面に形成されたヘッドと、ヘッドを移動させるための移動部と、移動部によるヘッドの移動に応じて、各吐出口から基板上に液晶を吐出させるための吐出制御部と、ヘッドの外周面において各吐出口に対応して設けられ、且つ、対応の吐出口を開閉するための複数の開閉部と、複数の開閉部を制御するための開閉制御部と、を備える。 A liquid crystal dropping device according to an aspect of the present invention has a hollow columnar shape inside, and a row formed of a plurality of discharge ports for dropping liquid crystal filled in the hollow on a substrate is formed on an outer peripheral surface. A head, a moving unit for moving the head, a discharge control unit for discharging liquid crystal from each discharge port onto the substrate in accordance with the movement of the head by the moving unit, and each discharge on the outer peripheral surface of the head. A plurality of opening / closing sections provided corresponding to the outlets for opening / closing the corresponding discharge ports, and an opening / closing control section for controlling the plurality of opening / closing sections.
 列はヘッドの移動方向に対して直交する所定方向に延びており、且つ、列における吐出口の間隔幅は、液晶滴下パターンが指示する滴下間隔の最小幅以下であり、複数の開閉部それぞれはプレートを含み、開閉制御部は、液晶滴下パターンに応じたパターンデータに従って、各開閉部のプレートを、当該開閉部に対応する吐出口の上において電子的にスライドさせることにより、当該吐出口を開閉する。 The rows extend in a predetermined direction orthogonal to the moving direction of the head, and the interval width of the ejection openings in the row is equal to or less than the minimum width of the drop interval indicated by the liquid crystal drop pattern. The open / close control unit includes a plate, and according to the pattern data corresponding to the liquid crystal dropping pattern, the plate of each open / close unit is electronically slid on the discharge port corresponding to the open / close unit to open / close the discharge port. To do.
 好ましくは、ヘッドは、列が延びる所定方向に分割された複数個の分割ヘッドを含み、複数個の分割ヘッドのそれぞれ毎に、中空に充填される液晶材の種類は相違する。 Preferably, the head includes a plurality of divided heads divided in a predetermined direction in which the rows extend, and the type of liquid crystal material filled in the hollow is different for each of the plurality of divided heads.
 好ましくは、ヘッドの外周面には、複数本の列が所定間隔幅で形成され、且つ、吐出口のサイズは、列毎に異なる。 Preferably, a plurality of rows are formed at a predetermined interval width on the outer peripheral surface of the head, and the size of the ejection port is different for each row.
 好ましくは、ヘッドは、柱形状の所定方向に延びる中心軸を中心に、所定間隔幅に対応した角度に従って回転する。 Preferably, the head rotates around a central axis extending in a predetermined direction of the column shape according to an angle corresponding to a predetermined interval width.
 好ましくは、移動部によってヘッドが移動されるときに、ヘッドの基板上の位置を検出する位置検出部と、基板上の複数種類の位置データと、複数種類の位置データのそれぞれに対応して異なるパターンデータを格納する記憶部と、をさらに備え、開閉制御部は、位置検出部が検出したヘッドの位置に基づき記憶部をから、対応するパターンデータを読出すことにより、開閉制御のためのパターンデータを切替える。 Preferably, when the head is moved by the moving unit, the position detecting unit detects the position of the head on the substrate, the plurality of types of position data on the substrate, and the plurality of types of position data are different. A storage unit for storing pattern data, and the opening / closing control unit reads the corresponding pattern data from the storage unit based on the position of the head detected by the position detection unit, thereby opening and closing the pattern for opening / closing control. Switch data.
 この発明の他の局面に従う液晶滴下方法は、内部が中空の柱形状を有し、中空に充填される液晶を基板上に滴下するための複数個の吐出口が並んで成る列が外周面に形成されたヘッドを用いた液晶滴下方法である。 According to another aspect of the present invention, there is provided a liquid crystal dropping method having a hollow columnar shape inside, and a row of a plurality of discharge ports arranged on the substrate for dropping the liquid crystal filled in the hollow onto the substrate. This is a liquid crystal dropping method using the formed head.
 液晶滴下方法は、ヘッドの外周面において列の各吐出口を開閉するステップと、ヘッドの移動に応じて、各吐出口から基板上に液晶を吐出させるステップと、を備える。 The liquid crystal dropping method includes a step of opening and closing each discharge port of the row on the outer peripheral surface of the head, and a step of discharging liquid crystal from each discharge port onto the substrate according to the movement of the head.
 列はヘッドの移動方向に対して直交する所定方向に延びており、且つ、列における吐出口の間隔幅は、液晶滴下パターンが指示する滴下間隔の最小幅以下である。開閉するステップでは、液晶滴下パターンに応じた開閉パターンデータに従って、各吐出口に対応して設けられたプレートを、対応の吐出口の上において電子的にスライドさせることにより、当該吐出口は開閉される。 The rows extend in a predetermined direction orthogonal to the moving direction of the head, and the interval width of the ejection openings in the row is equal to or less than the minimum width of the drop interval indicated by the liquid crystal drop pattern. In the step of opening and closing, according to the opening and closing pattern data corresponding to the liquid crystal dropping pattern, the discharge port is opened and closed by electronically sliding the plate provided corresponding to each discharge port on the corresponding discharge port. The
 本発明によれば、ヘッドの内部構造を簡単にすることにより、液晶基板の生産時間を短縮することができる。 According to the present invention, the production time of the liquid crystal substrate can be shortened by simplifying the internal structure of the head.
実施の形態1に係る液晶滴下装置の概観図である。1 is a schematic view of a liquid crystal dropping device according to Embodiment 1. FIG. 各実施の形態に係るヘッドに設けられる吐出口を説明する図である。It is a figure explaining the discharge outlet provided in the head concerning each embodiment. 各実施の形態に係るヘッドに設けられる吐出口の開閉制御機構を説明する図である。It is a figure explaining the opening-and-closing control mechanism of the discharge port provided in the head concerning each embodiment. 各実施の形態に係るヘッドに設けられる吐出口の開閉制御機構の一部を拡大して示す図である。It is a figure which expands and shows a part of opening-and-closing control mechanism of the discharge outlet provided in the head concerning each embodiment. 各実施の形態に係るヘッドに設けられる吐出口からの液晶滴下を模式的に示す図である。It is a figure which shows typically the liquid crystal dripping from the discharge outlet provided in the head concerning each embodiment. 各実施の形態に係るヘッドに設けられる吐出口の電子的な開閉制御機構を説明する図である。It is a figure explaining the electronic opening-and-closing control mechanism of the discharge outlet provided in the head concerning each embodiment. 各実施の形態に係るヘッドに設けられる吐出口の電子的な開閉制御機構を説明する図である。It is a figure explaining the electronic opening-and-closing control mechanism of the discharge outlet provided in the head concerning each embodiment. 各実施の形態に係るヘッドに設けられる吐出口の電子的な開閉制御機構を説明する図である。It is a figure explaining the electronic opening-and-closing control mechanism of the discharge outlet provided in the head concerning each embodiment. 各実施の形態に係る吐出口の電子的な開閉制御の回路構成を説明する図である。It is a figure explaining the circuit structure of the electronic opening / closing control of the discharge outlet which concerns on each embodiment. 各実施の形態に係る吐出口の電子的な開閉制御の回路の駆動信号のタイミングチャートである。It is a timing chart of the drive signal of the circuit of the electronic opening / closing control of the discharge outlet concerning each embodiment. 図10のタイミングチャートに関連付けてプレートの移動を説明する図である。It is a figure explaining the movement of a plate in relation to the timing chart of FIG. 各実施の形態に係るシャッタ制御部の構成を周辺回路の構成と関連付けて説明する図である。It is a figure explaining the structure of the shutter control part which concerns on each embodiment in association with the structure of a peripheral circuit. 各実施の形態に係る液晶供給機構を説明する図である。It is a figure explaining the liquid-crystal supply mechanism which concerns on each embodiment. 各実施の形態に係る液晶供給機構を説明する図である。It is a figure explaining the liquid-crystal supply mechanism which concerns on each embodiment. 実施の形態1に係る液晶滴下装置の機能構成図である。2 is a functional configuration diagram of a liquid crystal dropping device according to Embodiment 1. FIG. 各実施の形態に係る液晶パネルの製造工程を模式的に示す図である。It is a figure which shows typically the manufacturing process of the liquid crystal panel which concerns on each embodiment. 図15の液晶滴下工程を簡単に説明する図である。It is a figure which illustrates the liquid crystal dropping process of FIG. 15 simply. 実施の形態1に係る液晶滴下処理のフローチャートである。3 is a flowchart of a liquid crystal dropping process according to the first embodiment. 実施の形態2に係る液晶滴下装置の概観図である。FIG. 4 is an overview diagram of a liquid crystal dropping device according to a second embodiment. 実施の形態2に係るヘッドの構成を模式的に示す図である。FIG. 6 is a diagram schematically illustrating a configuration of a head according to a second embodiment. 実施の形態3に係る液晶滴下装置の概観図である。FIG. 6 is an overview of a liquid crystal dropping device according to a third embodiment. 実施の形態3に係るヘッドに形成される吐出口を説明する図である。FIG. 6 is a diagram for explaining discharge ports formed in a head according to Embodiment 3. 実施の形態3に係る吐出口のサイズと液滴のサイズを説明する図である。FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment. 実施の形態3に係る吐出口のサイズと液滴のサイズを説明する図である。FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment. 実施の形態3に係る吐出口のサイズと液滴のサイズを説明する図である。FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment. 実施の形態3に係る吐出口のサイズと液滴のサイズを説明する図である。FIG. 10 is a diagram for explaining the size of a discharge port and the size of a droplet according to a third embodiment. 実施の形態3に係る液晶滴下装置の機能構成図である。6 is a functional configuration diagram of a liquid crystal dropping device according to Embodiment 3. FIG. 実施の形態3に係る液晶滴下処理のフローチャートである。10 is a flowchart of a liquid crystal dropping process according to Embodiment 3. 実施の形態4に係る液晶滴下装置の概観図である。FIG. 6 is an overview diagram of a liquid crystal dropping device according to a fourth embodiment. 実施の形態4に係るヘッドによる液晶滴下状態を模式的に説明する図である。6 is a diagram schematically illustrating a liquid crystal dropping state by a head according to Embodiment 4. FIG. 実施の形態4に係る液晶滴下装置の機能構成図である。FIG. 6 is a functional configuration diagram of a liquid crystal dropping device according to a fourth embodiment. 実施の形態4に係る液晶滴下処理のフローチャートである。10 is a flowchart of a liquid crystal dropping process according to Embodiment 4. 実施の形態5に係る液晶滴下装置による共取りの一例を説明する図である。FIG. 10 is a diagram illustrating an example of co-taking by a liquid crystal dropping device according to a fifth embodiment. 図32に対応して従来の液晶滴下装置による共取りを説明する図である。FIG. 33 is a diagram for explaining co-taking by a conventional liquid crystal dropping device corresponding to FIG. 32. 実施の形態5に係る液晶滴下装置による共取りの他の例を説明する図である。It is a figure explaining the other example of co-recovery by the liquid crystal dropping apparatus which concerns on Embodiment 5. FIG. 図34に対比して従来の液晶滴下装置による共取りを説明する図である。FIG. 35 is a diagram for explaining co-taking by a conventional liquid crystal dropping device as compared with FIG. 34. 図34に対比して従来の液晶滴下装置による共取りを説明する図である。FIG. 35 is a diagram for explaining co-taking by a conventional liquid crystal dropping device as compared with FIG. 34. 実施の形態5に係る液晶滴下装置の機能構成図である。FIG. 10 is a functional configuration diagram of a liquid crystal dropping device according to a fifth embodiment. 実施の形態5に係る液晶滴下処理のフローチャートである。10 is a flowchart of a liquid crystal dropping process according to the fifth embodiment. 従来の液晶滴下装置を説明する図である。It is a figure explaining the conventional liquid crystal dropping apparatus. 図38に関連してヘッドの移動による液晶滴下を説明する図である。It is a figure explaining the liquid crystal dripping by the movement of a head in relation to FIG.
 以下、本発明の液晶滴下装置の各実施の形態について図面を参照しつつ説明する。なお、同一の構成要素には各図において同一の符号を付し、詳細な説明は繰返さない。 Hereinafter, embodiments of the liquid crystal dropping device of the present invention will be described with reference to the drawings. It should be noted that the same components are denoted by the same reference symbols in the respective drawings, and detailed description thereof will not be repeated.
 (実施の形態1)
 本実施の形態に係る液晶滴下装置101は図1に示すように、架台10、架台10の上に設置されたステージ9、ステージ9の表面に対向する液晶の吐出口(図示せず)を複数個有するヘッド11、およびヘッド11が取付けられたコラム42を備える。さらに液晶滴下装置101は、コラム42に取付けられた液晶供給装置22、液晶供給装置22に予め蓄えられた液晶をヘッド11に供給するための液晶供給管23を備える。ステージ9は平板状に形成され、カラーフィルタ(Color Filter)の基板8が搬入されて載置される。
(Embodiment 1)
As shown in FIG. 1, the liquid crystal dropping apparatus 101 according to the present embodiment includes a gantry 10, a stage 9 installed on the gantry 10, and a plurality of liquid crystal discharge ports (not shown) facing the surface of the stage 9. The head 11 which has a piece, and the column 42 to which the head 11 was attached are provided. Further, the liquid crystal dropping device 101 includes a liquid crystal supply device 22 attached to the column 42, and a liquid crystal supply pipe 23 for supplying liquid crystal stored in advance in the liquid crystal supply device 22 to the head 11. The stage 9 is formed in a flat plate shape, and a color filter substrate 8 is carried in and placed thereon.
 基板8上には、後に貼り合せられるTFT(Thin Film Transistor)基板との間隔を保つためのスペーサも設けられる。ステージ9は載置された基板8を固定して保持し、基板8の主面上には、位置決めのためのマーク8Aが予めプリントされている。基板8の主面上には、当該主面に対向して設けられたヘッド11の複数の吐出口(図示せず)から必要量の液晶(液状物質)が滴下される。ここでは、基板8の液晶が滴下されるべき面を主面という。 On the substrate 8, a spacer is also provided to keep a distance from a TFT (Thin Film Transistor) substrate to be bonded later. The stage 9 fixes and holds the placed substrate 8, and a positioning mark 8 </ b> A is printed in advance on the main surface of the substrate 8. On the main surface of the substrate 8, a required amount of liquid crystal (liquid substance) is dropped from a plurality of discharge ports (not shown) of the head 11 provided to face the main surface. Here, the surface on which the liquid crystal of the substrate 8 is to be dropped is referred to as a main surface.
 ステージ9の表面とステージ9上に載置された基板8の主面は、直交する2本のX軸およびY軸により規定される二次元の座標平面であると想定している。ここでは、X軸が延びる方向をX方向と称しY軸が延びる方向をY方向と称する。X軸およびY軸のそれぞれに直交するZ軸を想定し、Z軸が延びる方向をZ方向と称する。 It is assumed that the surface of the stage 9 and the main surface of the substrate 8 placed on the stage 9 are two-dimensional coordinate planes defined by two orthogonal X and Y axes. Here, the direction in which the X axis extends is referred to as the X direction, and the direction in which the Y axis extends is referred to as the Y direction. Assuming a Z axis orthogonal to each of the X axis and the Y axis, the direction in which the Z axis extends is referred to as the Z direction.
 コラム42は、ステージ9をX方向に跨いで架台10の上に門型に取付けられる。コラム42には、ヘッド11が一体的に取付けられている。コラム42は、架台10の内部に備えられるヘッド移動用モータ661(後述する)により駆動される。その結果、コラム42およびヘッド11は図中矢印に示すように、Y方向に延びる軸に沿って自在に移動する。 The column 42 is mounted in a gate shape on the gantry 10 across the stage 9 in the X direction. The head 11 is integrally attached to the column 42. The column 42 is driven by a head moving motor 661 (described later) provided inside the gantry 10. As a result, the column 42 and the head 11 freely move along an axis extending in the Y direction as indicated by an arrow in the figure.
 液晶滴下装置101は、さらに、コラム42(ヘッド11)の移動、ならびに吐出口からの液晶の滴下を制御するための機能を有するコンピュータ5、およびCCD(Charge Coupled Device)カメラなどのカメラ4を備える。コンピュータ5は、CPU(Central Processing Unit)51、プログラム・データを格納するためのメモリ53、入力部54、I/F(Interface)52、および出力部55を備える。ディスプレイ、音声出力部、印字部などからなる入力部54は、オペレータの指示など外部から与えられる情報を入力するためのキーボード、マウスなどを含む。I/F52は、カメラ4が被写体を撮影することによって出力された画像データを入力し、コラム42の移動および液晶の吐出を制御するための信号を出力する。出力部55は、ディスプレイ、音声出力部、印字部などを含む。 The liquid crystal dropping device 101 further includes a computer 5 having a function for controlling the movement of the column 42 (head 11) and dropping of the liquid crystal from the discharge port, and a camera 4 such as a CCD (Charge Coupled Device) camera. . The computer 5 includes a CPU (Central Processing Unit) 51, a memory 53 for storing program data, an input unit 54, an I / F (Interface) 52, and an output unit 55. The input unit 54 including a display, a voice output unit, a printing unit, and the like includes a keyboard, a mouse, and the like for inputting information given from the outside such as an operator's instruction. The I / F 52 inputs image data output when the camera 4 captures a subject and outputs a signal for controlling the movement of the column 42 and the discharge of the liquid crystal. The output unit 55 includes a display, an audio output unit, a printing unit, and the like.
 カメラ4の被写体を撮像するための方向は、ステージ9上に載置された基板8の全体を上から見る方向に一致する。したがって、基板8を跨ぐコラム42も撮像視野に含むことができる。 The direction in which the camera 4 captures the subject coincides with the direction in which the entire substrate 8 placed on the stage 9 is viewed from above. Therefore, the column 42 straddling the substrate 8 can also be included in the imaging field of view.
 図2~図12には、ヘッド11に設けられる吐出口と、吐出口を開閉制御するための機構が示される。図13には、ヘッド11に液晶を供給するための機構が示される。図14には、本実施の形態に係る液晶滴下装置の機能構成が示される。 2 to 12 show a discharge port provided in the head 11 and a mechanism for controlling opening and closing of the discharge port. FIG. 13 shows a mechanism for supplying liquid crystal to the head 11. FIG. 14 shows a functional configuration of the liquid crystal dropping device according to the present embodiment.
 図15と図16を参照して、液晶パネルの生産工程を説明する。液晶パネルを製造する場合、一般的には、図15および図16に示されるように、2つのガラス基板のうち一方の主面にカラーフィルタ(CF:color filter)層を、他方のガラス基板の主面に薄膜トランジスタ(TFT:Thin Film Transistor)層が形成される。一方の基板(図15では、カラーフィルタ層が形成されたガラス基板)に、カラーフィルタ層上に電極となるべきITO(Indium Tin Oxide)膜が形成されて、続いて、ITO膜上に液晶材の方向性を制御するための配向膜が形成されて、さらに、配向膜上にシール剤が塗布(描画)される。シール剤は、後にガラス基板を分断することにより取得されるべき液晶パネルの封止剤として作用する。シール剤が塗布された後に、ガラス基板の主面上には、本実施の形態に係る液晶滴下装置101を用いて液晶が滴下される。液晶が滴下されたガラス基板は、滴下された液晶層を挟んで、TFT層が形成された他方のガラス基板と貼り合せられる。その後は、貼り合わせることにより得られた基板に偏向板が貼付けられる。必要に応じて、所望のパネルのサイズに基板を分断する(共取りをする)ことによって、1枚のガラス基板から複数の液晶パネルが製造される。 The production process of the liquid crystal panel will be described with reference to FIG. 15 and FIG. When manufacturing a liquid crystal panel, generally, as shown in FIGS. 15 and 16, a color filter (CF) layer is provided on one main surface of two glass substrates, and the other glass substrate is provided. A thin film transistor (TFT: Thin Film Transistor) layer is formed on the main surface. An ITO (Indium Tin Oxide) film to be an electrode is formed on the color filter layer on one substrate (in FIG. 15, a glass substrate on which the color filter layer is formed), and then a liquid crystal material is formed on the ITO film. An alignment film for controlling the directivity of the film is formed, and a sealing agent is applied (drawn) onto the alignment film. The sealing agent acts as a sealing agent for a liquid crystal panel to be obtained later by dividing the glass substrate. After the sealing agent is applied, liquid crystal is dropped onto the main surface of the glass substrate using the liquid crystal dropping device 101 according to this embodiment. The glass substrate on which the liquid crystal is dropped is bonded to the other glass substrate on which the TFT layer is formed with the dropped liquid crystal layer interposed therebetween. Thereafter, the deflecting plate is attached to the substrate obtained by bonding. If necessary, a plurality of liquid crystal panels are manufactured from a single glass substrate by dividing the substrate into a desired panel size (co-removal).
 各実施の形態では、これらのプロセスのうちの液晶滴下処理について、説明する。
 液晶滴下装置101による処理としては、図16に示すように、シール剤が塗布された基板8は液晶滴下装置101のステージ9に載置され、その後、液晶滴下装置101によって液晶6aが滴下される。その後、基板8は、液晶滴下装置101の外部へ取り出されて、次の工程へ送られる。図15と図16に示す手順は、他の各実施の形態についても同様に適用される。
In each embodiment, a liquid crystal dropping process among these processes will be described.
As the processing by the liquid crystal dropping device 101, as shown in FIG. 16, the substrate 8 coated with the sealing agent is placed on the stage 9 of the liquid crystal dropping device 101, and then the liquid crystal 6a is dropped by the liquid crystal dropping device 101. . Thereafter, the substrate 8 is taken out of the liquid crystal dropping device 101 and sent to the next step. The procedures shown in FIGS. 15 and 16 are similarly applied to the other embodiments.
 図2には、本実施の形態に係る液晶滴下装置101が基板8上に液晶6aを塗布する状態が模式的に示される。具体的には、シール剤が塗布された基板8の主面上を、ヘッド11がY方向に移動するに従って、ヘッド11の各吐出口から液晶が基板8の主面上に滴下される。図5には、図2における液晶が滴下する方向(Z方向)が示される。 FIG. 2 schematically shows a state in which the liquid crystal dropping device 101 according to the present embodiment applies the liquid crystal 6a onto the substrate 8. Specifically, as the head 11 moves in the Y direction on the main surface of the substrate 8 to which the sealant is applied, liquid crystal is dropped from the respective discharge ports of the head 11 onto the main surface of the substrate 8. FIG. 5 shows a direction (Z direction) in which the liquid crystal in FIG. 2 drops.
 ヘッド11は、図3に示すような構成を有する。ヘッド11の形状は、内部が中空の円柱状である。ヘッド11の基板8の主面と対向する面には、内部の中空にまで貫通するように複数個の吐出口70が、X方向に1列に並んで予め形成されている。当該列のX方向に延びる長さは、基板8の主面の滴下予定領域のX方向の幅以上または当該幅よりも長いと想定する。当該列における或る吐出口70と隣接する吐出口70との間の距離である間隔幅DT(以下、ピッチDTという)は一定、たとえば2~3mmである。ここでは、ピッチDTは、液晶パネル生産のための要求される液晶6a(液滴)の滴下位置の間隔幅の最小以下を指すと想定している。ヘッド11の外周面上には、1列に並んだ吐出口70のそれぞれに対応して、当該吐出口70を開閉するために電子的なシャッタ71が個別に設けられる。図4に示されるように、各吐出口70は、対応のシャッタ71によって自在に開閉される。ここで、液晶を滴下する際には、ヘッド11の中空内部には液晶が充填されていることによって、吐出口70が開状態にあるときは液晶が滴下可能であり、閉状態であるときは液晶は滴下されない。 The head 11 has a configuration as shown in FIG. The shape of the head 11 is a cylindrical shape with a hollow inside. A plurality of discharge ports 70 are formed in advance in a line in the X direction on the surface of the head 11 that faces the main surface of the substrate 8 so as to penetrate into the hollow inside. It is assumed that the length of the row extending in the X direction is equal to or longer than the width in the X direction of the dripping planned region of the main surface of the substrate 8 or longer than the width. An interval width DT (hereinafter referred to as a pitch DT), which is a distance between a certain discharge port 70 and an adjacent discharge port 70 in the row, is constant, for example, 2 to 3 mm. Here, it is assumed that the pitch DT indicates a minimum interval width of liquid crystal 6a (droplet) dropping position required for liquid crystal panel production. An electronic shutter 71 is individually provided on the outer peripheral surface of the head 11 to open and close the discharge ports 70 corresponding to the discharge ports 70 arranged in a row. As shown in FIG. 4, each discharge port 70 is freely opened and closed by a corresponding shutter 71. Here, when the liquid crystal is dropped, the liquid inside the hollow of the head 11 is filled, so that the liquid crystal can be dropped when the discharge port 70 is in the open state, and when the discharge port 70 is in the closed state. The liquid crystal is not dripped.
 ここで、ヘッドは柱形状であればよく、各実施の形態では、説明を簡単にするために円柱状として示す。 Here, the head may be a columnar shape, and in each embodiment, it is shown as a columnar shape for the sake of simplicity.
 図6~図12を参照して、シャッタ71の構造と動作について説明する。これら図面では、説明を簡単にするために、図3の1列に並んだ吐出口70のうちの連続して並んだ3個の吐出口70を例示するが、当該説明は図3の1列に並んだ吐出口70の全てに対して同様に適用することができる。 The structure and operation of the shutter 71 will be described with reference to FIGS. In these drawings, for simplicity of explanation, three discharge ports 70 arranged in a row among the discharge ports 70 arranged in a row in FIG. 3 are illustrated as an example. It can be similarly applied to all of the discharge ports 70 arranged in a row.
 図6の(A)と図7の(A)には、図3の1列に並んだ吐出口70のうちの連続して並んだ3個の吐出口70を例にして、シャッタ構造が示される。図6の(B)と図7の(B)には、図6の(A)と図7の(A)のシャッタ構造を、図1のX軸およびZ軸を含む平面により切断した断面図が示されている。各吐出口70に対応のシャッタ71は、吐出口70を覆うことが可能なプレート712およびプレート712をヘッド11の外周面に沿ってスライド移動させるための枠711を備える。図6の(A)においては、すべての吐出口70が対応のシャッタ71のプレート712により覆われることで閉じられた状態(シャッタON状態という)が示される。図7の(A)では、3つの吐出口70のうち、2つの吐出口が対応のプレート712により覆われることなく開いた状態である(シャッタOFF状態という)。 FIGS. 6A and 7A show the shutter structure, taking as an example three consecutive ejection openings 70 of the ejection openings 70 arranged in a row in FIG. It is. 6B and 7B are cross-sectional views of the shutter structure of FIGS. 6A and 7A cut along a plane including the X axis and the Z axis of FIG. It is shown. The shutter 71 corresponding to each discharge port 70 includes a plate 712 that can cover the discharge port 70 and a frame 711 for slidingly moving the plate 712 along the outer peripheral surface of the head 11. 6A shows a state in which all the discharge ports 70 are closed by being covered with the plate 712 of the corresponding shutter 71 (referred to as a shutter ON state). In FIG. 7A, two of the three outlets 70 are open without being covered by the corresponding plate 712 (referred to as a shutter OFF state).
 図6の(B)と図7の(B)に示すシャッタ71の断面構造が図8に詳細に示される。図8において、プレート712は、吐出口70とは反対の面において、スライド移動のための電極713を有し、枠711はプレート712をスライド移動させるためのものであり、プレート712の電極713と対向する面において電極713を有する。プレート712に設けられた電極713と枠711に設けられた電極713に所定電圧を印加し、これらを電磁石化する。磁石の反発力によりプレート712は枠711に沿ってスライド移動する。具体的な仕みを図9~図11を参照し説明する。 FIG. 8 shows the cross-sectional structure of the shutter 71 shown in FIGS. 6B and 7B in detail. In FIG. 8, the plate 712 has an electrode 713 for sliding movement on the surface opposite to the discharge port 70, and a frame 711 is for sliding the plate 712, and the electrode 713 of the plate 712 An electrode 713 is provided on the opposite surface. A predetermined voltage is applied to the electrode 713 provided on the plate 712 and the electrode 713 provided on the frame 711, and these are electromagnetized. The plate 712 slides along the frame 711 by the repulsive force of the magnet. A specific finish will be described with reference to FIGS.
 図9を参照して、電子的なシャッタ71の断面を模式的に示すと共に該シャッタの駆動回路を示す。シャッタ71に於いて、枠711に対応した固定子に並設された電極713に相当する各電極には、駆動回路100から電圧信号を供給するための電圧信号線が接続されている。なお、固定子は枠711に対応するものであるから、以下、固定子711と呼ぶ。これらの電圧信号線には、四相の電圧信号が印加されるようになっており、したがって、電極713には、4本の電圧信号線毎に同一位相の電圧信号が印加される。図9では、固定子711の列状に並んだ電極713のそれぞれにA、B、C、Dの符号を付すことにより、電圧信号を区別している。 Referring to FIG. 9, a cross section of an electronic shutter 71 is schematically shown and a driving circuit for the shutter is shown. In the shutter 71, a voltage signal line for supplying a voltage signal from the drive circuit 100 is connected to each electrode corresponding to the electrode 713 arranged in parallel with the stator corresponding to the frame 711. Since the stator corresponds to the frame 711, it is hereinafter referred to as a stator 711. A four-phase voltage signal is applied to these voltage signal lines. Therefore, a voltage signal having the same phase is applied to the electrode 713 every four voltage signal lines. In FIG. 9, voltage signals are distinguished from each other by attaching A, B, C, and D to the electrodes 713 arranged in a row of the stator 711.
 プレート712に対応の移動子には、固定子711との対向面に永久分極された誘導体5aと5b(電極713に相当)が取付けられる。移動子はプレート712に対応するので、以下、移動子を移動子712と呼ぶ。 Permanently polarized derivatives 5a and 5b (corresponding to the electrode 713) are attached to the movable element corresponding to the plate 712 on the surface facing the stator 711. Since the movable element corresponds to the plate 712, the movable element is hereinafter referred to as a movable element 712.
 図9は、あくまでも模式図であり、実際の電極や誘導体の数や配置間隔は、シャッタ71の大きさ、吐出口70の開口面積、シャッタ71の駆動に要求される分解能などの様々な要因によって適宜決定されるものである。 FIG. 9 is a schematic diagram only, and the actual number and arrangement interval of electrodes and derivatives depend on various factors such as the size of the shutter 71, the opening area of the discharge port 70, and the resolution required for driving the shutter 71. It is determined as appropriate.
 図9の左側には、上述したシャッタ71の構成と共に、シャッタ71に印加する電圧信号を発生するための駆動回路100の構成が示される。パルス発生回路12で生成した矩形波の電圧信号(駆動パルス信号)は、位相器13および昇圧回路14に供給される。昇圧回路14では、入力された矩形波の電圧信号が所定電圧まで昇圧されると共に、2つの矩形波の電圧信号に分岐されて出力される。2つの矩形波の電圧信号それぞれは、2つの極性を有する。出力された矩形波の電圧信号の一方は、駆動電極4Aに供給され、他方は駆動電極4Cに供給される。一方、位相器13に入力された矩形波の電圧信号は、位相器13によって90°位相が遅れた波形に変換された後に、昇圧回路14に出力される。昇圧回路14では、入力した矩形波の電圧信号を上述と同様に処理する。この結果、昇圧回路14からは、2つの電圧信号が出力される。各電圧信号は、2つの極性を有する。出力された矩形波の電圧信号の一方は、駆動電極4Aに供給され、他方は駆動電極4Cに供給される。 9 shows the configuration of the drive circuit 100 for generating a voltage signal to be applied to the shutter 71 together with the configuration of the shutter 71 described above. The rectangular wave voltage signal (drive pulse signal) generated by the pulse generation circuit 12 is supplied to the phase shifter 13 and the booster circuit 14. In the booster circuit 14, the input rectangular wave voltage signal is boosted to a predetermined voltage and branched into two rectangular wave voltage signals. Each of the two rectangular wave voltage signals has two polarities. One of the output rectangular wave voltage signals is supplied to the drive electrode 4A, and the other is supplied to the drive electrode 4C. On the other hand, the rectangular wave voltage signal input to the phase shifter 13 is converted to a waveform delayed by 90 ° by the phase shifter 13 and then output to the booster circuit 14. The booster circuit 14 processes the input rectangular wave voltage signal in the same manner as described above. As a result, two voltage signals are output from the booster circuit 14. Each voltage signal has two polarities. One of the output rectangular wave voltage signals is supplied to the drive electrode 4A, and the other is supplied to the drive electrode 4C.
 図10の(A)~(C)は、駆動回路100から、駆動電極4A~4Dに印加される電圧信号のタイミングチャートを示す。駆動電極4A~4Dそれぞれには矩形波列の電圧信号が印加されるので、駆動電極4A~4Dそれぞれの電圧の印加状態は、時間t1~t4に示す4つの状態に変化する。駆動回路100は、このような状態の変化が、時間の経過に従って繰り返されるように動作する。 10A to 10C are timing charts of voltage signals applied from the drive circuit 100 to the drive electrodes 4A to 4D. Since a voltage signal of a rectangular wave train is applied to each of the drive electrodes 4A to 4D, the voltage application state of each of the drive electrodes 4A to 4D changes to four states shown at times t1 to t4. The drive circuit 100 operates such that such a change in state is repeated as time passes.
 図11は、シャッタ71の動作を説明する図である。図11の(A)~(D)では、図に向かって右側方向を移動子712の進行方向とする。移動子712は進行方向の後方側(図に向かって左側)に正極(プラス)の誘導体5aを有し、前方側(図に向かって右側)に負極(マイナス)の誘導体5bを有する。 FIG. 11 is a diagram for explaining the operation of the shutter 71. In (A) to (D) of FIG. 11, the right side direction in the figure is the traveling direction of the moving element 712. The mover 712 has a positive (plus) derivative 5a on the rear side (left side in the figure) in the traveling direction, and a negative (minus) derivative 5b on the front side (right side in the figure).
 図11の(A)は、駆動電極4A~4Dそれぞれの電圧の印加状態が、図10の時間t1の状態となった直後における誘導体と駆動電極との印加電圧の状態(極性)を示す。この状態において、正極の誘導体5aは、駆動電極4A(正極)から反発力を受け、駆動電極4B(負極)から吸引力を受ける。同時に、負極の誘導体5bは、駆動電極4C(負極)から反発力を受け、駆動電極4D(正極)から吸引力を受ける。したがって、移動子712は、図11の(A)に向かって右方向に力を受けて、1つのピッチd分だけ右方向に移動する。ピッチdは、隣接する駆動電極間の距離を指す。 11A shows the state (polarity) of the applied voltage between the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D becomes the state at time t1 in FIG. In this state, the positive electrode derivative 5a receives a repulsive force from the drive electrode 4A (positive electrode) and receives an attractive force from the drive electrode 4B (negative electrode). At the same time, the negative electrode derivative 5b receives a repulsive force from the drive electrode 4C (negative electrode) and receives an attractive force from the drive electrode 4D (positive electrode). Accordingly, the moving element 712 receives a force in the right direction toward (A) in FIG. 11 and moves to the right by one pitch d. The pitch d refers to the distance between adjacent drive electrodes.
 図11の(B)は、駆動電極4A~4Dそれぞれの電圧の印加状態が、図10の時間t1の状態から時間t2の状態に切り替わった直後の誘導体と駆動電極との印加電圧の状態(極性)を示す。この状態において、誘導体5aは、駆動電極4B(正極)から反発力を受け、駆動電極4C(負極)から吸引力を受ける。同時に、誘導体5bは、駆動電極4D(負極)から反発力を受け、駆動電極4A(正極)から吸引力を受ける。このため、移動子712は、図11の(B)に向かって右方向に力を受けて、1つのピッチd分だけ移動する。 FIG. 11B shows the state (polarity) of the applied voltage between the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D is switched from the state at time t1 to the state at time t2 in FIG. ). In this state, the derivative 5a receives a repulsive force from the drive electrode 4B (positive electrode) and receives an attractive force from the drive electrode 4C (negative electrode). At the same time, the derivative 5b receives a repulsive force from the drive electrode 4D (negative electrode) and receives an attractive force from the drive electrode 4A (positive electrode). For this reason, the moving element 712 receives a force in the right direction toward (B) in FIG. 11 and moves by one pitch d.
 同様に、図11の(C)は、駆動電極4A~4Dそれぞれの電圧の印加状態が、図10の時間t2の状態から時間t3の状態に切り替わった直後の誘導体と駆動電極の電圧の状態(極性)を示す。この状態において、誘導体5aは、駆動電極4C(正極)から反発力を受け、駆動電極4D(負極)から吸引力を受ける。同時に、誘導体5bは、更に別の駆動電極4A(負極)から反発力を受け、駆動電極4B(正極)から吸引力を受ける。このため、移動子712は、図11の(C)に向かって右方向に力を受けて、1つのピッチd分だけ移動する。更に、図11の(D)に、駆動電極4A~4Dそれぞれの電圧の印加状態が、時間t3の状態から時間t4の状態に切り替わった直後の誘導体と駆動電極の電圧の状態(極性)を示す。この状態に於いて、誘導体5aは、駆動電極4D(正極)から反発力を受け、駆動電極4A(負極)から吸引力を受ける。同時に、誘導体5bは、駆動電極4B(負極)から反発力を受け、駆動電極4C(正極)から吸引力を受ける。このため、移動子712は、図11の(D)に向かって右方向に力を受けて、1つのピッチd分だけ移動する。 Similarly, FIG. 11C shows the voltage state of the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D is switched from the state at time t2 to the state at time t3 in FIG. Polarity). In this state, the derivative 5a receives a repulsive force from the drive electrode 4C (positive electrode) and receives an attractive force from the drive electrode 4D (negative electrode). At the same time, the derivative 5b receives a repulsive force from yet another drive electrode 4A (negative electrode) and receives a suction force from the drive electrode 4B (positive electrode). For this reason, the movable element 712 receives a force in the right direction toward (C) in FIG. 11 and moves by one pitch d. Further, FIG. 11D shows the voltage state (polarity) of the derivative and the drive electrode immediately after the voltage application state of each of the drive electrodes 4A to 4D is switched from the state at time t3 to the state at time t4. . In this state, the derivative 5a receives a repulsive force from the drive electrode 4D (positive electrode) and receives an attractive force from the drive electrode 4A (negative electrode). At the same time, the derivative 5b receives a repulsive force from the drive electrode 4B (negative electrode) and receives an attractive force from the drive electrode 4C (positive electrode). Therefore, the mover 712 receives a force in the right direction toward (D) in FIG. 11 and moves by one pitch d.
 上述したように、移動子712は、1つのピッチdだけ移動する動作を繰り返すことによって、一方の方向(図11の(D)の矢印F方向)に移動する。移動子712を矢印Fの方向とは反対方向に移動させるためには、駆動電極に印加する電圧の極性を、図10の(A)~(D)に示す極性とは反対になるように切り替えれば良い。 As described above, the moving element 712 moves in one direction (the direction of arrow F in FIG. 11D) by repeating the movement of moving by one pitch d. In order to move the mover 712 in the direction opposite to the direction of the arrow F, the polarity of the voltage applied to the drive electrode can be switched so as to be opposite to the polarity shown in FIGS. It ’s fine.
 このようにシャッタ71の移動子712を、ピッチd単位で移動させることができるから、吐出口70の開口の径(サイズ)に従って、開口を開閉するための移動子712の移動量をピッチd単位で制御することができる。 Since the moving element 712 of the shutter 71 can be moved in units of pitch d in this way, the amount of movement of the moving element 712 for opening and closing the opening according to the diameter (size) of the opening of the discharge port 70 is determined in units of pitch d. Can be controlled.
 図12には、後述するシャッタ制御部67の概略構成が、駆動回路100と関連付けて示される。シャッタ制御部67は、ON/OFF信号生成部671とタイミングコントローラ672を備える。タイミングコントローラ672は、図6に示された吐出口70のそれぞれに対応したシャッタ71の駆動回路100のそれぞれに接続された出力端子O1~O3を有する。タイミングコントローラ672は、ON/OFF信号生成部671から出力される信号を入力し、入力した信号を、出力端子O1~O3から各駆動回路100に出力する。ON/OFF信号生成部671は、各シャッタ71をON/OFF制御するための信号を生成し出力する。 FIG. 12 shows a schematic configuration of a shutter control unit 67 to be described later in association with the drive circuit 100. The shutter control unit 67 includes an ON / OFF signal generation unit 671 and a timing controller 672. The timing controller 672 has output terminals O1 to O3 connected to the driving circuit 100 of the shutter 71 corresponding to each of the ejection ports 70 shown in FIG. The timing controller 672 receives the signal output from the ON / OFF signal generation unit 671, and outputs the input signal to each drive circuit 100 from the output terminals O1 to O3. The ON / OFF signal generator 671 generates and outputs a signal for ON / OFF control of each shutter 71.
 図13Aと図13Bには、ヘッド11に液晶を供給するための機構が模式的に示されている。図13Aと図13Bでは説明を簡単にするために、ヘッド11に形成された吐出口70およびシャッタ71の図示が省略される。 FIGS. 13A and 13B schematically show a mechanism for supplying liquid crystal to the head 11. In FIG. 13A and FIG. 13B, illustration of the discharge port 70 and the shutter 71 formed in the head 11 is omitted in order to simplify the description.
 図13Aと図13Bを参照して、各吐出口70から、所定量の液晶を吐出する機構について説明する。ヘッド11は、中空の液晶供給管23によって、液晶を蓄えている液晶供給装置22と接続される。液晶供給管23の一端はヘッド11の中空内部に延びており、他方端は液晶供給装置22の液晶タンク内に延びている。液晶供給管23に対する液晶の供給は、基本的には、液晶供給装置22の液晶タンク内部がガスにより加圧されることで実現される。液晶タンク内の液晶面は、ガスを用いて加圧されることにより上昇し、その結果、液晶供給管23の内部およびヘッド11の中空内部には液晶が充填される。したがって、吐出口70の付近まで液晶で満たされているが、液晶を滴下しない状態においては、表面張力により吐出口70の開口部からは滴下されることはない。 A mechanism for discharging a predetermined amount of liquid crystal from each discharge port 70 will be described with reference to FIG. 13A and FIG. 13B. The head 11 is connected to a liquid crystal supply device 22 storing liquid crystal by a hollow liquid crystal supply pipe 23. One end of the liquid crystal supply pipe 23 extends into the hollow interior of the head 11, and the other end extends into the liquid crystal tank of the liquid crystal supply device 22. The supply of liquid crystal to the liquid crystal supply pipe 23 is basically realized by pressurizing the inside of the liquid crystal tank of the liquid crystal supply device 22 with gas. The liquid crystal surface in the liquid crystal tank rises by being pressurized using gas, and as a result, the liquid crystal is filled in the liquid crystal supply tube 23 and the hollow interior of the head 11. Therefore, although it fills with the liquid crystal to the vicinity of the discharge port 70, in the state which does not dripping a liquid crystal, it is not dripped from the opening part of the discharge port 70 by surface tension.
 シャッタ71によって開状態である吐出口70から所定量の液晶の滴下を行うために、液晶供給管23の途中には、シリンダ24およびシリンダ24内を移動するピストン25が接続される。ピストン25には制御器26が接続される。制御器26はステッピングモータであり、ステッピングモータの軸にはピストン25が接続される。ステッピングモータは、指示信号39が与えられると、指示信号39に基づき所定角度だけ所定方向に回転し、その後、所定角度だけ逆方向に回転する。当該回転に連動してピストン25が図13Bの位置から後退した位置(図13A)にまで移動する。これにより、シリンダ24内に液晶が溜まる。その後、ピストン25は図13Aの位置から、元の位置(図13B)にまで移動する。これにより、シリンダ24内に溜まった液晶は液晶供給管23およびヘッド11を介して吐出口70側へ押し出される。この結果、シリンダ24に溜まった所定量の液晶だけ、液晶供給管23およびヘッド11を経由して、開状態の吐出口70から滴下される。このような動作が繰返されることにより、開状態の吐出口70から液晶が連続して滴下される。 In order to drop a predetermined amount of liquid crystal from the discharge port 70 in an open state by the shutter 71, a cylinder 24 and a piston 25 moving in the cylinder 24 are connected in the middle of the liquid crystal supply pipe 23. A controller 26 is connected to the piston 25. The controller 26 is a stepping motor, and a piston 25 is connected to the shaft of the stepping motor. When the instruction signal 39 is given, the stepping motor rotates in a predetermined direction by a predetermined angle based on the instruction signal 39, and then rotates in the reverse direction by a predetermined angle. In conjunction with the rotation, the piston 25 moves to the position retracted from the position of FIG. 13B (FIG. 13A). As a result, liquid crystal accumulates in the cylinder 24. Thereafter, the piston 25 moves from the position of FIG. 13A to the original position (FIG. 13B). Thereby, the liquid crystal accumulated in the cylinder 24 is pushed out to the discharge port 70 side through the liquid crystal supply pipe 23 and the head 11. As a result, only a predetermined amount of liquid crystal accumulated in the cylinder 24 is dropped from the open discharge port 70 via the liquid crystal supply pipe 23 and the head 11. By repeating such an operation, the liquid crystal is continuously dropped from the discharge port 70 in the open state.
 1回の滴下あたりの液晶の量は、ピストン25の1往復も移動量に依存して決まる。したがって、ピストン25の移動量を決定する指示信号39を用いて、液晶の滴下量が、所定の量となるように制御することができる。 The amount of liquid crystal per drop is determined depending on the amount of movement of the piston 25 for one reciprocation. Accordingly, the instruction signal 39 for determining the movement amount of the piston 25 can be used to control the liquid crystal dropping amount to be a predetermined amount.
 図14を参照して、本実施の形態に係る液晶滴下装置101の機能構成について説明する。液晶滴下装置101は、メモリ53に対応する記憶部60、カメラ4が撮像して出力する画像データを処理する画像処理部61、入力部54に対応する指示入力部62、基板8の主面におけるヘッド11の位置を検出するための位置検出部63、各吐出口70から液晶を吐出させるための指示信号39を生成して出力する吐出信号生成部65、コラム42(ヘッド11)をY方向に移動させるための指示信号38を生成し出力する移動信号生成部66、および各吐出口70に対応したシャッタ71をON/OFF制御するための指示信号40を生成し出力するシャッタ制御部67を備える。 Referring to FIG. 14, the functional configuration of the liquid crystal dropping apparatus 101 according to the present embodiment will be described. The liquid crystal dropping device 101 includes a storage unit 60 corresponding to the memory 53, an image processing unit 61 that processes image data captured and output by the camera 4, an instruction input unit 62 corresponding to the input unit 54, and a main surface of the substrate 8. A position detection unit 63 for detecting the position of the head 11, a discharge signal generation unit 65 for generating and outputting an instruction signal 39 for discharging liquid crystal from each discharge port 70, and a column 42 (head 11) in the Y direction. A movement signal generation unit 66 that generates and outputs an instruction signal 38 for movement and a shutter control unit 67 that generates and outputs an instruction signal 40 for ON / OFF control of the shutter 71 corresponding to each discharge port 70 are provided. .
 画像処理部61は、カメラ4から出力される画像データを入力する。カメラ4は、ステージ9上に、基板8が載置された状態において基板8を撮影する。画像処理部61は、入力した画像データをノイズ除去などの所定処理をした後に、画像データを記憶部60に一旦格納する。 The image processing unit 61 inputs image data output from the camera 4. The camera 4 photographs the substrate 8 in a state where the substrate 8 is placed on the stage 9. The image processing unit 61 performs predetermined processing such as noise removal on the input image data, and then temporarily stores the image data in the storage unit 60.
 位置検出部63は、座標検出部64を有する。位置検出部63は、カメラ4が撮影した画像データを記憶部60から読出し、読み出した画像データに基づき、現在のヘッド11(コラム42)の基板8に対する相対的な位置を検出する。ここでは、画像データの画像は、XY方向の座標軸で規定される座標平面により規定されると想定する。具体的には、座標検出部64は、画像データからマーク8Aを検出し、検出したマーク8Aの座標位置を検出し、検出した座標位置を基板座標データ60Aとして記憶部60に格納する。位置検出部63は、現在のコラム42の座標位置を検出し、検出した座標位置をヘッド位置データ60Bとして記憶部60に格納する。具体的には、画像データから検出したコラム42の画像とマーク8AとのXY方向の相対的距離と、記憶部60から読出した基板座標データ60Aとに基づき、現在のコラム42の座標位置を検出する。 The position detection unit 63 has a coordinate detection unit 64. The position detection unit 63 reads out the image data captured by the camera 4 from the storage unit 60, and detects the current relative position of the head 11 (column 42) with respect to the substrate 8 based on the read-out image data. Here, it is assumed that the image of the image data is defined by a coordinate plane defined by the coordinate axes in the XY directions. Specifically, the coordinate detection unit 64 detects the mark 8A from the image data, detects the coordinate position of the detected mark 8A, and stores the detected coordinate position in the storage unit 60 as the substrate coordinate data 60A. The position detection unit 63 detects the current coordinate position of the column 42 and stores the detected coordinate position in the storage unit 60 as head position data 60B. Specifically, the current coordinate position of the column 42 is detected based on the relative distance in the XY direction between the image of the column 42 detected from the image data and the mark 8A and the substrate coordinate data 60A read from the storage unit 60. To do.
 吐出信号生成部65は、各吐出口70から液晶を吐出させるための指示信号39を生成し、生成した指示信号392を出力する。吐出信号生成部65は、指示信号38をモニタする。吐出信号生成部65は、指示信号38に基づきコラム42が移動を開始したことを検出すると、所定の液晶吐出開始のタイミングに同期して指示信号39を出力開始する。また、指示信号38に基づきコラム42の移動停止を検出すると指示信号39の出力を停止する。 The discharge signal generation unit 65 generates an instruction signal 39 for discharging liquid crystal from each discharge port 70, and outputs the generated instruction signal 392. The discharge signal generator 65 monitors the instruction signal 38. When the discharge signal generation unit 65 detects that the column 42 has started moving based on the instruction signal 38, the discharge signal generation unit 65 starts outputting the instruction signal 39 in synchronization with a predetermined liquid crystal discharge start timing. When the stop of the movement of the column 42 is detected based on the instruction signal 38, the output of the instruction signal 39 is stopped.
 移動信号生成部66は、Y方向にコラム42(ヘッド11)を移動させるための指示信号38を生成してヘッド移動用モータ661に出力する。ヘッド移動用モータ661の回転軸はコラム42に連結されており、ヘッド移動用モータ661の回転に連動してコラム42は移動する。指示信号38は、ヘッド移動用モータ661の回転方向および回転量を指示するので、指示信号38によってコラム42(ヘッド11)の移動方向と移動量(単位時間当たりの移動量、すなわち移動速度)を制御することができる。本実施の形態では、移動方向はY方向に対応し、移動速度は所定速度であると想定する。 The movement signal generator 66 generates an instruction signal 38 for moving the column 42 (head 11) in the Y direction and outputs the instruction signal 38 to the head moving motor 661. The rotation axis of the head moving motor 661 is connected to the column 42, and the column 42 moves in conjunction with the rotation of the head moving motor 661. Since the instruction signal 38 indicates the rotation direction and the rotation amount of the head moving motor 661, the movement direction and the movement amount (movement amount per unit time, that is, movement speed) of the column 42 (head 11) are determined by the instruction signal 38. Can be controlled. In the present embodiment, it is assumed that the moving direction corresponds to the Y direction and the moving speed is a predetermined speed.
 シャッタ制御部67は、指示信号40を生成して、各吐出口70に対応の駆動回路100に与える。指示信号40の生成手順について説明する。 The shutter control unit 67 generates the instruction signal 40 and supplies it to the drive circuit 100 corresponding to each discharge port 70. A procedure for generating the instruction signal 40 will be described.
 記憶部60には、各吐出口70に対応のシャッタ71のON/OFFを制御するためのデータPDが予め複数種類格納される。データPDのそれぞれは、当該データを一意に識別するためのパターン名PNおよびシャッタをON/OFF制御するためのパターンデータPAを含む。パターンデータPAは、各吐出口70に対応のシャッタ71をON状態およびOFF状態のいずれにするかを決定するためのデータである。パターンデータPAは、対応の駆動回路100のそれぞれに関連付けて当該駆動回路100が接続される出力端子(図12の出力端子O1~O3に相当)の識別情報と、ONまたはOFFの指示データを含む。ここで、パターン名PNによって、基板8の液晶滴下領域における液晶滴下パターン(X方向の滴下間隔幅など)を一意に指示される。したがって、パターンデータPAはパターン名PN(すなわち液晶滴下パターン)に応じた各シャッタ71のON/OFFを指示する。 The storage unit 60 stores in advance a plurality of types of data PD for controlling ON / OFF of the shutter 71 corresponding to each discharge port 70. Each of the data PD includes a pattern name PN for uniquely identifying the data and pattern data PA for ON / OFF control of the shutter. The pattern data PA is data for determining whether the shutter 71 corresponding to each discharge port 70 is in an ON state or an OFF state. The pattern data PA includes identification information of output terminals (corresponding to the output terminals O1 to O3 in FIG. 12) to which the corresponding drive circuit 100 is connected in association with each corresponding drive circuit 100, and ON or OFF instruction data. . Here, the pattern name PN uniquely designates a liquid crystal dropping pattern (such as a dropping interval width in the X direction) in the liquid crystal dropping region of the substrate 8. Therefore, the pattern data PA instructs ON / OFF of each shutter 71 according to the pattern name PN (that is, the liquid crystal dropping pattern).
 ON/OFF信号生成部671は、パターンデータPAに基づき各駆動回路100に、対応の指示信号40を生成し出力する。生成される指示信号40は、当該駆動回路100が接続される出力端子の識別情報と、ONまたはOFFの指示データを含む。タイミングコントローラ672は、指示信号40を入力すると、入力した指示信号40の識別情報が指す出力端子を介して当該指示信号を出力する。これにより、各シャッタ71の駆動回路100に対し、個別に、指示信号40が与えられる。駆動回路100は、与えられる指示信号40に基づき信号(図10の(A)~(D)を参照)を生成して、生成した信号を出力する。これにより、対応のシャッタ71の移動子(プレート)712は、指示信号が‘ON’を指すときは吐出口70が閉状態となる位置に移動して停止し、‘OFF’を指すときは開状態となる位置に移動して停止する。この結果、ヘッド11の各吐出口70はパターンデータPAに従って開閉状態が制御される。 The ON / OFF signal generator 671 generates and outputs a corresponding instruction signal 40 to each drive circuit 100 based on the pattern data PA. The generated instruction signal 40 includes identification information of an output terminal to which the drive circuit 100 is connected and ON / OFF instruction data. When the instruction signal 40 is input, the timing controller 672 outputs the instruction signal via an output terminal indicated by the identification information of the input instruction signal 40. Thereby, the instruction signal 40 is given to the drive circuit 100 of each shutter 71 individually. The drive circuit 100 generates a signal (see (A) to (D) in FIG. 10) based on the supplied instruction signal 40, and outputs the generated signal. Accordingly, the movable element (plate) 712 of the corresponding shutter 71 moves to a position where the discharge port 70 is closed when the instruction signal indicates “ON” and stops, and when the instruction signal indicates “OFF”, it opens. Move to the position where it will be in the state and stop. As a result, the opening / closing state of each ejection port 70 of the head 11 is controlled according to the pattern data PA.
 図17を参照して、本実施の形態に係る液晶滴下装置101の動作について説明する。図17のフローチャートに従うプログラムは、予めメモリ53に格納されている。CPU51がメモリ53から当該プログラムを読出し、読み出したプログラムの命令コードを実行することにより処理が実現される。液晶滴下に先立って、基板8はステージ9上に載置されていると想定する。ヘッド11(コラム42)は、ステージ9上の基板8の主面に相当するXY座標における滴下開始時の所定位置に、置かれている想定する。 Referring to FIG. 17, the operation of liquid crystal dropping apparatus 101 according to the present embodiment will be described. A program according to the flowchart of FIG. 17 is stored in the memory 53 in advance. The processing is realized by the CPU 51 reading the program from the memory 53 and executing the instruction code of the read program. It is assumed that the substrate 8 is placed on the stage 9 prior to the liquid crystal dropping. It is assumed that the head 11 (column 42) is placed at a predetermined position at the start of dropping in XY coordinates corresponding to the main surface of the substrate 8 on the stage 9.
 まず、オペレータは、液晶滴下の開始指示を、入力部54を介し液晶滴下装置101に与える。液晶滴下の開始指示を入力すると、CPU51はカメラ4に撮像を指示する。カメラ4は、撮像指示を入力したことに応じて、ステージ9上に載置された基板8を撮像して、撮像して得られた画像データを画像処理部61に出力する(ステップS3)。画像処理部61は、画像データを所定処理した後に、記憶部60に一旦格納する(ステップS5)。 First, the operator gives an instruction to start liquid crystal dropping to the liquid crystal dropping apparatus 101 via the input unit 54. When a liquid crystal dripping start instruction is input, the CPU 51 instructs the camera 4 to take an image. In response to the input of the imaging instruction, the camera 4 images the substrate 8 placed on the stage 9 and outputs image data obtained by the imaging to the image processing unit 61 (step S3). The image processing unit 61 temporarily stores the image data in the storage unit 60 after predetermined processing (step S5).
 続いて、CPU51は、位置検出部63に位置検出を指示する。位置検出部63は位置検出指示に応じて、記憶部60から画像データを読出し、座標検出部64に与える。座標検出部64は、画像データに基づき基板8のマーク8Aの位置を検出し、検出結果を指す基板座標データ60Aを記憶部60に格納する(ステップS7)。 Subsequently, the CPU 51 instructs the position detection unit 63 to detect the position. In response to the position detection instruction, the position detection unit 63 reads out image data from the storage unit 60 and gives it to the coordinate detection unit 64. The coordinate detection unit 64 detects the position of the mark 8A on the substrate 8 based on the image data, and stores the substrate coordinate data 60A indicating the detection result in the storage unit 60 (step S7).
 続いて、CPU51は、指示入力部62を介して、オペレータが入力するパターン指定データを受理する(ステップS9)。パターン指定データは、基板8を用いて製造されるべき液晶パネルの規格に従った滴下条件(滴下間隔幅など)に対応したデータPDの識別子を含む。 Subsequently, the CPU 51 receives pattern designation data input by the operator via the instruction input unit 62 (step S9). The pattern designation data includes an identifier of data PD corresponding to a dropping condition (such as a dropping interval width) according to the standard of a liquid crystal panel to be manufactured using the substrate 8.
 指示入力部62によって受理されたパターン指定データは、シャッタ制御部67に与えられる。シャッタ制御部67は、入力するパターン指定データの識別子に基づき、記憶部60のデータPDを検索する(ステップS11)。検索結果に基づき、識別子に一致するパターン名PNを有するデータPDを、記憶部60から読出す。そして、読出したデータPDのパターンデータPAに基づき、ON/OFF信号生成部671は指示信号40を生成する。生成された指示信号40はタイミングコントローラ672の各出力端子を経由して、各吐出口70に対応の駆動回路100に出力される。これにより、オペレータが指定した液晶6Aの滴下パターンに従うように、各吐出口70の状態(開または閉)がシャッタ71によってセットされる(ステップS13)。 The pattern designation data received by the instruction input unit 62 is given to the shutter control unit 67. The shutter control unit 67 searches the data PD in the storage unit 60 based on the identifier of the input pattern designation data (step S11). Based on the search result, the data PD having the pattern name PN that matches the identifier is read from the storage unit 60. Then, the ON / OFF signal generator 671 generates the instruction signal 40 based on the read pattern data PA of the data PD. The generated instruction signal 40 is output to the drive circuit 100 corresponding to each discharge port 70 via each output terminal of the timing controller 672. Thus, the state (open or closed) of each discharge port 70 is set by the shutter 71 so as to follow the dropping pattern of the liquid crystal 6A designated by the operator (step S13).
 続いて、CPU51は、移動信号生成部66にヘッド11の移動開始を指示する。移動信号生成部66は、指示を入力すると指示信号38を生成し、生成された指示信号38をヘッド移動用モータ661に出力する。ヘッド移動用モータ661は、指示信号38に従って動作するので、動作に連動してヘッド11は指示信号38が示す方向および速度に従って移動を開始する(ステップS15)。 Subsequently, the CPU 51 instructs the movement signal generation unit 66 to start moving the head 11. The movement signal generation unit 66 generates an instruction signal 38 when an instruction is input, and outputs the generated instruction signal 38 to the head moving motor 661. Since the head moving motor 661 operates according to the instruction signal 38, the head 11 starts moving according to the direction and speed indicated by the instruction signal 38 in conjunction with the operation (step S15).
 続いて、ヘッド11が移動する間において、コラム42(ヘッド11)の基板8における位置が検出される(ステップS19)。具体的には、CPU51の制御の下にカメラ4により基板8方向の撮像が繰返し行なわれて、撮像毎に画像データが画像処理部61に出力される。画像処理部61は、カメラ4から画像データを入力する毎に、入力した画像データを所定処理して、処理後の画像データを記憶部60に格納する。カメラ4が撮像する毎に、位置検出部63は記憶部60から画像データ(当該撮像により出力された画像データ)を読出し、読出した画像データから、パターンマッチング等によりコラム42(ヘッド11)の画像を検出する。そして、検出した画像とマーク8Aの画像との距離、および記憶部60から読出した基板座標データ60Aが指す座標値に基づき、コラム42(ヘッド11)の位置を検出する。検出した位置は、ヘッド位置データ60Bとして記憶部60に格納する。 Subsequently, while the head 11 moves, the position of the column 42 (head 11) on the substrate 8 is detected (step S19). Specifically, imaging in the direction of the substrate 8 is repeatedly performed by the camera 4 under the control of the CPU 51, and image data is output to the image processing unit 61 for each imaging. Each time image data is input from the camera 4, the image processing unit 61 performs predetermined processing on the input image data and stores the processed image data in the storage unit 60. Each time the camera 4 captures an image, the position detection unit 63 reads image data (image data output by the imaging) from the storage unit 60, and the image of the column 42 (head 11) is obtained from the read image data by pattern matching or the like. Is detected. Then, the position of the column 42 (head 11) is detected based on the distance between the detected image and the image of the mark 8A and the coordinate value indicated by the substrate coordinate data 60A read from the storage unit 60. The detected position is stored in the storage unit 60 as head position data 60B.
 コラム42(ヘッド11)の移動時には、液晶6aの滴下を終了すべきか否かが判定される(ステップS21)。具体的には、位置検出部63は、ヘッド位置データ60Bが、液晶6aの滴下を終了すべき所定の位置を指示するか否かを判定する。ヘッド位置データ60Bは所定の位置を指示する、すなわち滴下を終了すべきと判定すると(ステップS21でYES)、一連の処理は終了する。ヘッド位置データ60Bは所定の位置を指示しない、すなわち滴下を終了すべきでないと判定すると(ステップS21でNO)、処理はステップS19に戻る。以降は、コラム42(ヘッド11)の移動させながら、液晶滴下が継続して行われる。 When the column 42 (head 11) moves, it is determined whether or not the liquid crystal 6a should be dropped (step S21). Specifically, the position detection unit 63 determines whether or not the head position data 60B indicates a predetermined position where the dropping of the liquid crystal 6a should be terminated. If the head position data 60B indicates a predetermined position, that is, if it is determined that the dropping should be ended (YES in step S21), the series of processes ends. If the head position data 60B does not indicate a predetermined position, that is, if it is determined that the dropping should not be terminated (NO in step S21), the process returns to step S19. Thereafter, liquid crystal dropping is continuously performed while the column 42 (head 11) is moved.
 本実施の形態によれば、1個のヘッド11に複数の吐出口70と、各吐出口70を開閉するシャッタ71とを備えて、パターンデータPAに従って、各吐出口70を開閉するように制御する。これにより、開状態である吐出口70間のピッチDTおよび開状態である吐出口70の個数を、パターンデータPAを用いて可変に制御することができる。 According to the present embodiment, one head 11 is provided with a plurality of ejection openings 70 and a shutter 71 that opens and closes each ejection opening 70, and is controlled to open and close each ejection opening 70 according to the pattern data PA. To do. Thereby, the pitch DT between the discharge ports 70 in the open state and the number of discharge ports 70 in the open state can be variably controlled using the pattern data PA.
 その結果、ヘッド11(コラム42)のY方向の移動回数を1回で済ませることが可能となり、タクトタイムを短縮することができる。また、ヘッド11(コラム42)を取り替えることなく液晶滴下ピッチを変更することができる。また、液晶材料や、液晶パネルの画面サイズ、あるいは液晶が滴下される基板8の構造や特性に応じて、最適な滴下ピッチを選択することができる。また、滴下する液晶量の選択について高い自由度を得ることができるので、上記と同様に、液晶材料や液晶パネルの画面サイズ、あるいは液晶を滴下する基板の構造や特性に応じて、最適な滴下量を選択することができる。これらの相乗効果により、所望の液晶パネルを容易に製造することができる。 As a result, the number of movements of the head 11 (column 42) in the Y direction can be completed only once, and the tact time can be shortened. Further, the liquid crystal dropping pitch can be changed without replacing the head 11 (column 42). Further, an optimal dropping pitch can be selected according to the liquid crystal material, the screen size of the liquid crystal panel, or the structure and characteristics of the substrate 8 onto which the liquid crystal is dropped. In addition, since a high degree of freedom can be obtained regarding the selection of the amount of liquid crystal to be dropped, as in the above case, the optimum dropping is performed according to the liquid crystal material, the screen size of the liquid crystal panel, or the structure and characteristics of the substrate on which the liquid crystal is dropped The amount can be selected. A desired liquid crystal panel can be easily manufactured by these synergistic effects.
 (実施の形態2)
 本実施の形態に係る液晶滴下装置102は、図18および図19に示されるように、実施の形態1で示したヘッド11を複数個備える。本実施の形態では、液晶供給装置22と、これから各ヘッドへ供給する液晶供給管23は、ヘッド毎に独立している。ここでは、たとえば、複数個のヘッドは、実施の形態1に示したヘッド11を、吐出口70の列が延びる方向に複数個に分割することにより得られた複数個のヘッドとして、想定することができる。
(Embodiment 2)
As shown in FIG. 18 and FIG. 19, the liquid crystal dropping device 102 according to the present embodiment includes a plurality of heads 11 shown in the first embodiment. In the present embodiment, the liquid crystal supply device 22 and the liquid crystal supply pipe 23 to be supplied to each head from now on are independent for each head. Here, for example, assume that the plurality of heads are a plurality of heads obtained by dividing the head 11 shown in the first embodiment into a plurality of heads in the direction in which the rows of the discharge ports 70 extend. Can do.
 本実施の形態に係る液晶滴下装置102は、実施の形態1で示されたヘッド11に対応する、3つのヘッド11A、11Bおよび11Cをコラム42に一体的に備える。ヘッド11A、11Bおよび11Cは、コラム42のY方向の移動に伴い同時にY方向に移動する。ここでは、3個のヘッド11A~11Cを示すが、ヘッドの数は3個に限定されず、2個であってもよく、また4個以上であってもよい。 The liquid crystal dropping device 102 according to the present embodiment is integrally provided with three heads 11A, 11B, and 11C corresponding to the head 11 shown in the first embodiment in the column 42. The heads 11A, 11B, and 11C simultaneously move in the Y direction as the column 42 moves in the Y direction. Here, three heads 11A to 11C are shown, but the number of heads is not limited to three, and may be two, or four or more.
 液晶表示パネルは、表示の応答速度の重視、コントラストの重視、コストの重視、パネルサイズの重視など、各種条件に応じて滴下する液晶材を異らせることが一般である。本実施の形態では、ヘッド11A~11Cの各ヘッドに種類の異なる液晶材を充填することによって、1つの基板8上において、パネル面の割付けに応じて、異なる種類の液晶6aを滴下することができる。このように、共取りパネルの条件に応じて、ヘッド11A~11Cの各ヘッドに充填する液晶材を異ならせることもでき、また、同じにすることもできる。図19では、ヘッド11A~11Cそれぞれから、異なる種類の液晶6aが吐出されている状態が示される。 The liquid crystal display panel generally uses different liquid crystal materials depending on various conditions such as emphasis on display response speed, emphasis on contrast, emphasis on cost, emphasis on panel size, and the like. In the present embodiment, different types of liquid crystal 6a can be dropped on one substrate 8 according to the allocation of the panel surface by filling the heads 11A to 11C with different types of liquid crystal materials. it can. In this way, the liquid crystal material filled in each of the heads 11A to 11C can be made different or the same depending on the conditions of the common panel. FIG. 19 shows a state in which different types of liquid crystals 6a are discharged from the heads 11A to 11C.
 本実施の形態では、ヘッド11A~11Cのヘッド毎に、吐出口70のサイズを異ならせるようにしてもよい。ヘッド毎に、吐出口70のサイズを異ならせること、および充填する液晶材の種類を異ならせることは、組合わせて実施されてもよく、またはいずれか一方が実施されるとしてもよい。 In the present embodiment, the size of the discharge port 70 may be different for each of the heads 11A to 11C. Different sizes of the discharge ports 70 and different types of liquid crystal materials to be filled may be implemented in combination or one of them may be implemented for each head.
 (実施の形態3)
 本実施の形態3に係る液晶滴下装置103は、図20および図21に示すように、実施の形態1のヘッド11に代替して、ヘッド111を備える。ヘッド111は中空の柱形状を有し、その長手方向がX方向に一致する。ヘッド111のX方向に延びる側面においては、X方向に延びる吐出口の列が複数個形成される。各列においては複数個の吐出口が並んでいる。本実施の形態では、たとえば4個の列が形成されるが、列数は4列に限定されない。X方向に延びる各列は、ヘッド111の長手方向に延びる側面において所定間隔を有して並列される。
(Embodiment 3)
As shown in FIGS. 20 and 21, the liquid crystal dropping device 103 according to the third embodiment includes a head 111 instead of the head 11 of the first embodiment. The head 111 has a hollow column shape, and its longitudinal direction coincides with the X direction. On the side surface of the head 111 extending in the X direction, a plurality of rows of ejection ports extending in the X direction are formed. A plurality of discharge ports are arranged in each row. In the present embodiment, for example, four columns are formed, but the number of columns is not limited to four. The rows extending in the X direction are arranged in parallel at a predetermined interval on the side surface extending in the longitudinal direction of the head 111.
 図21には、図20のコラム42に取り付けられたヘッド111を、Y軸およびZ軸を含む平面で切断した場合の断面が示される。図示されるように、ヘッド111の周面に沿って、サイズ(吐出口70の径)が異なる4個の吐出口70が所定間隔(略90度間隔)をおいて形成される。図21では、4個の吐出口70には、区別するために、符号A~Dを割り当てる。用ヘッド111は、コラム42に関連して設けられているヘッド回転用モータ681(図26参照)の回転に連動して、所定間隔に対応した所定角度単位で回転する。これにより、回転角度に応じてサイズの異なる吐出口70を、基板8の主面に対向させることができる。つまり、ヘッド111は、柱形状のX方向に延びる中心軸を中心に、所定間隔幅に対応した角度に従って回転することで基板8の主面上に対向させる吐出口のサイズを切替えている。ここで、中心軸とは、ヘッド111が円柱の場合には、Y軸およびZ軸を含む平面で切断した場合の切断面は円となるので、その円の中心をX方向に通過する軸を指す。ヘッド111が円柱でない場合には、同様に切断面の図形の内接円または外接円の中心をX方向に通過する軸を指す。 FIG. 21 shows a cross section when the head 111 attached to the column 42 of FIG. 20 is cut along a plane including the Y axis and the Z axis. As shown in the figure, along the circumferential surface of the head 111, four discharge ports 70 having different sizes (diameters of the discharge ports 70) are formed at predetermined intervals (approximately 90 ° intervals). In FIG. 21, codes A to D are assigned to the four discharge ports 70 for distinction. The head 111 rotates by a predetermined angle unit corresponding to a predetermined interval in conjunction with the rotation of a head rotating motor 681 (see FIG. 26) provided in association with the column 42. Thereby, the discharge ports 70 having different sizes according to the rotation angle can be made to face the main surface of the substrate 8. That is, the head 111 changes the size of the discharge port opposed to the main surface of the substrate 8 by rotating around the central axis extending in the X direction of the column shape according to an angle corresponding to the predetermined interval width. Here, when the head 111 is a cylinder, the cut surface when the head 111 is cut along a plane including the Y axis and the Z axis is a circle. Therefore, the axis passing through the center of the circle in the X direction is the center axis. Point to. When the head 111 is not a cylinder, it similarly refers to an axis passing through the center of the inscribed circle or circumscribed circle of the cut surface in the X direction.
 図21では、ヘッド111には吐出口70として4個の吐出口“A”~“D”が形成されている。4個の吐出口70の径は、吐出口“A”>吐出口“B”>吐出口“C”>吐出口“D”の関係を有していると想定する。図21のヘッド111を所定角度だけ回転させて、図22のように、最大サイズの吐出口“A”が基板8の主面と対向している場合には(図22の(A)参照)、吐出口“A”から矢印方向に滴下される液晶6aは最大量となる(図22の(B)参照)。さらに、ヘッド111を所定角度だけ回転させて、吐出口“A”に代替して吐出口“B”が基板8の主面に対向した場合には(図23の(A)参照)、吐出口“B”から矢印方向に滴下される液晶6aの量は図22の(B)のそれに比較し減少する(図23の(B)参照)。さらに、所定角度だけヘッド111を回転させ、それにより吐出口“C”が基板8の主面に対向した場合には(図24の(A)参照)、吐出口“C”から矢印方向に滴下される液晶6aの量はさらに減少する(図24の(B)参照)。さらにヘッド111を所定角度だけ回転させ、基板8の主面に対向させる吐出口70を最小サイズの吐出口“D”とした場合には(図25の(A)参照)、吐出口“D”から矢印方向に滴下される液晶6aの量は最少となる(図25の(B)参照)。 In FIG. 21, four discharge ports “A” to “D” are formed in the head 111 as the discharge ports 70. It is assumed that the diameters of the four discharge ports 70 have a relationship of discharge port “A”> discharge port “B”> discharge port “C”> discharge port “D”. When the head 111 shown in FIG. 21 is rotated by a predetermined angle and the discharge port “A” having the maximum size faces the main surface of the substrate 8 as shown in FIG. 22 (see FIG. 22A). The liquid crystal 6a dropped from the discharge port “A” in the direction of the arrow becomes the maximum amount (see FIG. 22B). Further, when the head 111 is rotated by a predetermined angle and the discharge port “B” is opposed to the main surface of the substrate 8 instead of the discharge port “A” (see FIG. 23A), the discharge port The amount of liquid crystal 6a dropped from “B” in the direction of the arrow decreases compared to that in FIG. 22B (see FIG. 23B). Further, when the head 111 is rotated by a predetermined angle so that the discharge port “C” faces the main surface of the substrate 8 (see FIG. 24A), the head 111 is dropped from the discharge port “C” in the direction of the arrow. The amount of the liquid crystal 6a to be further reduced (see FIG. 24B). Further, when the discharge port 70 that rotates the head 111 by a predetermined angle and opposes the main surface of the substrate 8 is the discharge port “D” of the minimum size (see FIG. 25A), the discharge port “D”. The amount of the liquid crystal 6a dripped in the direction of the arrow is minimized (see FIG. 25B).
 吐出口70のサイズの切替は、たとえば滴下するべき液晶材の種類(粘度)で切替えてもよく、また液晶材のロットで切替えるようにしてもよい。 The size of the discharge port 70 may be switched depending on, for example, the type (viscosity) of the liquid crystal material to be dropped, or may be switched depending on the lot of the liquid crystal material.
 本実施の形態では、ヘッド111に設けられる吐出口70のそれぞれに対応して、実施の形態1で説明したシャッタ71の機構が備えられる。ヘッド111に液晶供給装置22から液晶を供給する液晶供給管231は、樹脂製のストローのような柔軟性のある中空のチューブから形成される。これにより、ヘッド111が回転するとしても、液晶供給管231の可撓性(撓みを有する性質)によってヘッド111内に液晶を供給することができる。 In the present embodiment, the mechanism of the shutter 71 described in the first embodiment is provided corresponding to each of the ejection ports 70 provided in the head 111. The liquid crystal supply tube 231 that supplies liquid crystal to the head 111 from the liquid crystal supply device 22 is formed of a flexible hollow tube such as a resin straw. As a result, even if the head 111 rotates, the liquid crystal can be supplied into the head 111 by the flexibility (the property having a deflection) of the liquid crystal supply tube 231.
 図26には本実施の形態に係る液晶滴下装置103の機能構成が示される。実施の形態1に示した機能構成と比較し異なる点は、ヘッド111を回転するための回転制御部68と、ヘッド111を回転させるために回転軸にヘッド111が接続されるヘッド回転用モータ681を備え、さらにデータPDに代替してデータPD1を格納する点にある。 FIG. 26 shows a functional configuration of the liquid crystal dropping device 103 according to the present embodiment. The difference from the functional configuration shown in the first embodiment is that a rotation control unit 68 for rotating the head 111 and a head rotation motor 681 in which the head 111 is connected to a rotation shaft for rotating the head 111. And storing data PD1 instead of data PD.
 ヘッド回転用モータ681は、回転制御部68から与えられる指示信号41に従う方向および角度だけ回転する。指示信号41により、ヘッド回転用モータ681の回転軸に連結されたヘッド111の回転方向および回転角度(回転量)が決定されて、基板8の主面と対向する吐出口70のサイズを切替えることができる。 The head rotating motor 681 rotates by a direction and an angle according to the instruction signal 41 given from the rotation control unit 68. By the instruction signal 41, the rotation direction and rotation angle (rotation amount) of the head 111 connected to the rotation shaft of the head rotation motor 681 are determined, and the size of the discharge port 70 facing the main surface of the substrate 8 is switched. Can do.
 記憶部60においては、実施の形態1に示したデータPDに代替して、データPD1が格納される。データPD1は、パターン名PNと、シャッタON/OFFパターンデータPA1と、吐出口サイズデータPBとを対応付けて含む。吐出口サイズデータPBは、図21に示したサイズの異なる4個の吐出口のうち基板8の主面に対向すべきサイズの吐出口70の列を指示する。パターンデータPA1は、対応の吐出口サイズデータPBが指示するサイズの吐出口70の列の各吐出口70のシャッタ71をON/OFFし、かつ他の列の吐出口70は全閉とする(シャッタON状態)ことを指示するデータを指す。 In the storage unit 60, data PD1 is stored instead of the data PD shown in the first embodiment. The data PD1 includes a pattern name PN, shutter ON / OFF pattern data PA1, and discharge port size data PB in association with each other. The discharge port size data PB indicates a row of discharge ports 70 having a size to be opposed to the main surface of the substrate 8 among the four discharge ports having different sizes shown in FIG. The pattern data PA1 turns on / off the shutters 71 of the discharge ports 70 in the row of the discharge ports 70 of the size indicated by the corresponding discharge port size data PB, and the discharge ports 70 in the other rows are fully closed ( (Shutter ON state).
 シャッタ制御部67は、指示入力部62から与えられたパターン指定データに基づき記憶部60から読み出されたデータPD1のパターンデータPA1に従い、当該データで指示する吐出口70のシャッタ71のON/OFFを制御する指示信号40を、各シャッタ71の駆動回路100に出力する。これにより、吐出口サイズデータPBが指示するサイズの吐出口70の列の各吐出口70を開状態/閉状態とし、かつ他の列の吐出口70は全閉とされる。 Based on the pattern data PA1 of the data PD1 read from the storage unit 60 based on the pattern designation data given from the instruction input unit 62, the shutter control unit 67 turns on / off the shutter 71 of the discharge port 70 indicated by the data. Is output to the drive circuit 100 of each shutter 71. As a result, the discharge ports 70 in the row of the discharge ports 70 of the size indicated by the discharge port size data PB are opened / closed, and the discharge ports 70 in the other rows are fully closed.
 吐出口サイズデータPBは、ヘッド111の回転の初期位置(ホームポジション)からの回転量を示すデータである。本実施の形態では、液晶滴下開始時に、または、基板8上に液晶の滴下を終了すると、ヘッド回転用モータ681はホームポジションに戻ると想定する。回転制御部68は、読出されたデータPD1の吐出口サイズデータPBに基づき、指示信号41を生成し、生成された指示信号41を出力する。これにより、液晶滴下開始時には、ヘッド回転用モータ681を吐出口サイズデータPBに従った指示信号41によって回転させることにより、吐出口サイズデータPBが指示するサイズの吐出口70の列を、基板8の主面上に対向させることができる。 The discharge port size data PB is data indicating the rotation amount from the initial rotation position (home position) of the head 111. In the present embodiment, it is assumed that the head rotation motor 681 returns to the home position at the start of the liquid crystal dropping or when the liquid crystal dropping is finished on the substrate 8. The rotation control unit 68 generates an instruction signal 41 based on the discharge port size data PB of the read data PD1, and outputs the generated instruction signal 41. Thus, at the start of liquid crystal dropping, the head rotation motor 681 is rotated by the instruction signal 41 in accordance with the discharge port size data PB, so that the row of the discharge ports 70 having the size indicated by the discharge port size data PB is displayed on the substrate 8. It can be made to oppose on the main surface.
 図27には、本実施の形態に係る処理フローチャートが示される。図27の処理フローチャートを、図17の処理フローチャートと比較し異なる点は、図17のステップS13とS15の間に、ステップS13aによる、ヘッド111の吐出口70のサイズ制御、すなわち回転制御部68からの指示信号41を用いたヘッド111の回転処理が追加されたことにある。図27の他の処理は、図17に示したものと同様であり、その説明は略す。 FIG. 27 shows a processing flowchart according to the present embodiment. The processing flowchart of FIG. 27 differs from the processing flowchart of FIG. 17 in that the size of the ejection port 70 of the head 111 is controlled by the step S13a between the steps S13 and S15 of FIG. The rotation processing of the head 111 using the instruction signal 41 is added. Other processes in FIG. 27 are the same as those shown in FIG. 17, and the description thereof is omitted.
 図27に示されるように、液晶滴下が開始される毎に、オペレータが指定したサイズを有する吐出口70の列が、基板8の主面上に対向するようにヘッド111が回転される。これにより、指定されたサイズの吐出口70の列から基板8の主面に、液晶6aを滴下することができる。 As shown in FIG. 27, each time liquid crystal dropping is started, the head 111 is rotated so that the row of ejection ports 70 having a size designated by the operator faces the main surface of the substrate 8. Thereby, the liquid crystal 6 a can be dropped onto the main surface of the substrate 8 from the row of the discharge ports 70 having the designated size.
 吐出口70の径(サイズ)に関しては、基板8から共取りするべきパネルのサイズや仕様によって、最適な径を選択可能であることが要求されるところ、本実施の形態によれば、基板8から共取りされるべきパネルの仕様に応じた径の吐出口70を選択することができる。具体的には、通常、共取りすべきパネルのサイズおよびセルギャップ等の仕様が同じである場合、液晶の吐出量は同一であるため、径が大きい吐出口70により液晶滴下すると滴下される液晶量を多くできるので、滴下ピッチを大きくすることができる。すなわちコラム42の移動速度(単位時間当たりの移動量)を大きくできて、タクトタイムを短縮できる。 As for the diameter (size) of the discharge port 70, it is required that an optimum diameter can be selected depending on the size and specification of the panel to be removed from the substrate 8. According to the present embodiment, the substrate 8 Therefore, it is possible to select the discharge port 70 having a diameter corresponding to the specification of the panel to be jointly taken. Specifically, when the specifications such as the size of the panel to be shared and the cell gap are the same, the amount of liquid crystal discharged is the same, and thus the liquid crystal dropped when the liquid crystal is dropped from the discharge port 70 having a large diameter. Since the amount can be increased, the dropping pitch can be increased. That is, the movement speed (movement amount per unit time) of the column 42 can be increased, and the tact time can be shortened.
 これに対し、径の小さい吐出口70によって液晶滴下する場合には、滴下ピッチが小さくなるため、コラム42の移動速度が遅くなり、タクトタイムが比較的に長くなる。パネル面上には均一に液晶を滴下する必要があるため、1滴あたりの滴下量は少なく且つ滴下ピッチが小さい場合であっても、滴下のバラツキが目立たなくなるとの特徴を得ることができる。 On the other hand, when the liquid crystal is dropped through the discharge port 70 having a small diameter, the dropping pitch becomes small, so that the moving speed of the column 42 becomes slow and the tact time becomes relatively long. Since it is necessary to uniformly drop the liquid crystal on the panel surface, it is possible to obtain the feature that even when the dropping amount per drop is small and the dropping pitch is small, the variation in dropping becomes inconspicuous.
 (実施の形態4)
 本実施の形態4は、実施の形態3のヘッド111の変形例を示す。図28と図29を参照して、本実施の形態に係る液晶滴下装置104は、ヘッド111A、111Bおよび111Cをコラム42に一体的に備える。ヘッド111A~111Cのそれぞれは、実施の形態3のヘッド111に相当する。ヘッド111A~111Cの各ヘッドに対応して液晶供給装置22が設けられる。各ヘッドには、対応の液晶供給装置22が可撓性の液晶供給管231を介して接続される。
(Embodiment 4)
The fourth embodiment shows a modification of the head 111 of the third embodiment. Referring to FIGS. 28 and 29, liquid crystal dropping apparatus 104 according to the present embodiment is provided with heads 111A, 111B, and 111C integrally in column 42. Each of the heads 111A to 111C corresponds to the head 111 of the third embodiment. A liquid crystal supply device 22 is provided corresponding to each of the heads 111A to 111C. A corresponding liquid crystal supply device 22 is connected to each head via a flexible liquid crystal supply tube 231.
 本実施の形態ではヘッド111のように、ヘッド111A、111Bおよび111Cのそれぞれは基板8の主面に対向する吐出口70のサイズを異ならせることができるように回転される(図29参照)。図29では、ヘッド111A~111Cそれぞれからの滴下される液晶6aの量が異なる状態が示される。 In this embodiment, like the head 111, each of the heads 111A, 111B, and 111C is rotated so that the size of the discharge port 70 facing the main surface of the substrate 8 can be varied (see FIG. 29). FIG. 29 shows a state in which the amount of liquid crystal 6a dropped from each of the heads 111A to 111C is different.
 本実施の形態では、ヘッド111A、111Bおよび111Cに供給される液晶材の種類は同じであってもよく、また異ならせてもよい。これにより、滴下する液晶材の種類および液晶を滴下する吐出口70のサイズを各ヘッド毎に異ならせることが可能となり、基板8から共取りするべき液晶パネルの種類を多様にすることができる。 In this embodiment, the types of liquid crystal materials supplied to the heads 111A, 111B, and 111C may be the same or different. As a result, the type of liquid crystal material to be dropped and the size of the discharge port 70 to which the liquid crystal is dropped can be made different for each head, and the types of liquid crystal panels to be shared from the substrate 8 can be varied.
 本実施の形態ではヘッドの個数は3個としているが、2個であってもよく、4個以上であってもよい。 In the present embodiment, the number of heads is three, but may be two or four or more.
 図30には、本実施の形態に係る液晶滴下装置104の機能構成が示される。実施の形態3の液晶滴下装置103の機能構成と比較し異なる点は、回転制御部68に代替して回転制御部6811を備え、ヘッド回転用モータ681に代替して、各ヘッドに対応の回転用モータ6812を備え、また、記憶部60には、データPD1に代替して、データPD2が格納される点にある。 FIG. 30 shows a functional configuration of the liquid crystal dropping device 104 according to the present embodiment. The difference from the functional configuration of the liquid crystal dropping device 103 according to the third embodiment is that a rotation control unit 6811 is provided instead of the rotation control unit 68, and a rotation corresponding to each head is provided instead of the head rotation motor 681. And the storage unit 60 stores data PD2 in place of the data PD1.
 データPD2は、パターン名PN、各ヘッドに対応したシャッタ71のON/OFFのパターンを指すパターンデータPA2および各ヘッドに対応の吐出口のサイズを指すデータPB1を含む。 The data PD2 includes a pattern name PN, pattern data PA2 indicating the ON / OFF pattern of the shutter 71 corresponding to each head, and data PB1 indicating the size of the ejection port corresponding to each head.
 図31には、本実施の形態4に係る処理フローチャートが示される。図27の処理フローチャートと図31の処理フローチャートを比較し異なる点は、図27のステップS13とS13aの処理が、各ヘッドのシャッタをON/OFF制御する処理ステップS13bと、基板80の主面に対向するべき吐出口70のサイズをヘッド毎に制御するステップS13cとに代替された点にある。図31の他の処理は、図27に示されたものと同様であり、説明は略す。 FIG. 31 shows a process flowchart according to the fourth embodiment. 27 differs from the processing flowchart of FIG. 31 in that the processing of steps S13 and S13a of FIG. 27 is performed on the main surface of the substrate 80 and processing step S13b for controlling ON / OFF of the shutter of each head. This is in place of step S13c in which the size of the ejection port 70 to be opposed is controlled for each head. The other processes in FIG. 31 are the same as those shown in FIG. 27, and a description thereof will be omitted.
 動作において、各ヘッドは、対応のパターンデータPA2に従って、基板8の主面に対向する列の吐出口70は開状態または閉状態に設定されて、他の列の吐出口70は全て全閉状態とされる(ステップS13b)。そして、回転制御部6811は、記憶部60から読出したデータPD2が指示するデータPB1に従い指示信号41を生成して、生成した指示信号41を各ヘッドに対応の回転用モータ6812に出力する。これにより、各ヘッドに対応の回転用モータ6812は、与えられる指示信号41に基づき回転する。この回転に連動して、対応のヘッドは回転する。その結果、各ヘッドのデータPB1が指示するサイズの吐出口70からなる列が、基板8の主面と対向する。 In operation, according to the corresponding pattern data PA2, each head sets the ejection ports 70 in the row facing the main surface of the substrate 8 to the open state or the closed state, and all the ejection ports 70 in the other rows are fully closed. (Step S13b). Then, the rotation control unit 6811 generates the instruction signal 41 according to the data PB1 indicated by the data PD2 read from the storage unit 60, and outputs the generated instruction signal 41 to the rotation motor 6812 corresponding to each head. Thus, the rotation motor 6812 corresponding to each head rotates based on the instruction signal 41 provided. In association with this rotation, the corresponding head rotates. As a result, the row of ejection openings 70 having the size indicated by the data PB1 of each head faces the main surface of the substrate 8.
 なお、図27と図30では、シャッタON/OFF制御に続いて、吐出口サイズ制御を実行しているが、実行の順番はこれに限定されない。たとえば、全てのシャッタ71をON(全ての吐出口70を全閉)状態とした後に、ヘッドを回転させることによって吐出口のサイズ制御を行い、続いて、対応のパターンデータPA2に従って、基板8の主面に対向する列の吐出口70の開閉を制御するようにしてもよい。 In FIGS. 27 and 30, the ejection port size control is executed following the shutter ON / OFF control, but the execution order is not limited to this. For example, after all the shutters 71 are turned on (all the ejection ports 70 are fully closed), the size of the ejection ports is controlled by rotating the head, and then the substrate 8 is controlled according to the corresponding pattern data PA2. You may make it control opening / closing of the ejection opening 70 of the row | line | column facing a main surface.
 本実施の形態によれば、1つの基板8の主面上における、1滴の滴下量、あるいは滴下ピッチを異ならせることができ、さらには実施の形態2に示したように滴下する液晶材をヘッド毎に異ならせることができるので、実施の形態2と3と同様の効果を得ることができる。 According to the present embodiment, the drop amount or drop pitch of one drop on the main surface of one substrate 8 can be varied, and the liquid crystal material to be dropped as shown in the second embodiment can be used. Since it can be made different for each head, the same effect as in the second and third embodiments can be obtained.
 (実施の形態5)
 本実施の形態では、実施の形態1の液晶滴下装置101を用いて、1枚の基板8から、複数種類のパネルを共取りして生産する場合を想定した場合の、ヘッド11の吐出口70の開閉制御について説明する。
(Embodiment 5)
In the present embodiment, the ejection opening 70 of the head 11 when assuming that the liquid crystal dropping device 101 of the first embodiment is used to produce a plurality of types of panels from a single substrate 8. The opening / closing control will be described.
 図32に示すように、1枚の基板8から複数の同一サイズのパネル8bを共取りする場合、各パネル8bの周辺は、切り出し用のためにY方向およびX方向に一定のスペースを設ける必要がある。このスペースには、液晶が滴下されてはならない。 As shown in FIG. 32, when a plurality of panels 8b of the same size are taken together from a single substrate 8, it is necessary to provide a certain space in the Y and X directions around each panel 8b for cutting out. There is. The liquid crystal should not be dripped into this space.
 Y方向に延びるスペースに関しては、図32の上段にあるヘッド11の全ての吐出口70のうち、当該スペースに対応する吐出口70のみが、パターンデータPAに従ってシャッタ71により閉状態とされる。X方向に延びるスペースに関して、吐出信号生成部65は、記憶部60から読出されたヘッド位置データ60Bと、予め与えられているX方向のスペースの位置データとを比較する。比較結果に基づき、現在のヘッド位置データ60Bが当該スペース位置を指示すると判定すると、指示信号39の出力を一旦停止する。 Regarding the space extending in the Y direction, only the discharge ports 70 corresponding to the space among all the discharge ports 70 of the head 11 in the upper part of FIG. 32 are closed by the shutter 71 according to the pattern data PA. Regarding the space extending in the X direction, the ejection signal generation unit 65 compares the head position data 60B read from the storage unit 60 with the position data of the space in the X direction given in advance. If it is determined that the current head position data 60B indicates the space position based on the comparison result, the output of the instruction signal 39 is temporarily stopped.
 これにより、ヘッド11をY方向に1回移動(往復移動は必要ない)させるだけで、XおよびYの各方向に延びるスペースにおいては液晶を滴下することなく、パネル8bには液晶を滴下することができる。 Thus, the liquid crystal is dropped on the panel 8b without moving the liquid crystal in the space extending in each of the X and Y directions by merely moving the head 11 once in the Y direction (reciprocal movement is not necessary). Can do.
 これに対し、従来の単一の吐出口を有したヘッドが移動させながら、図32のようにパネル8bを共取りする場合には、図33に示すように、ヘッドは、スペースを考慮して、Y方向およびX方向に複数回の往復移動をする必要がある。したがって、図32の本実施の形態に比較して、タクトタイムは長くなる。 On the other hand, in the case where the panel 8b is taken together as shown in FIG. 32 while the conventional head having a single discharge port is moved, as shown in FIG. It is necessary to reciprocate a plurality of times in the Y and X directions. Therefore, the tact time is longer than that in the present embodiment of FIG.
 図34には、本実施の形態1のヘッド11を用いて共取りするパネル8bのサイズが異なる場合が示される。35Aと図35Bには、図34に対比させて、従来の液晶滴下装置によって共取りするパネル8bのサイズが異なる場合のヘッドの移動例が示される。 FIG. 34 shows a case where the size of the panel 8b to be shared using the head 11 of the first embodiment is different. FIG. 35A and FIG. 35B show an example of head movement when the size of the panel 8b to be co-taken by the conventional liquid crystal dropping device is different from that in FIG.
 図34には説明のために2本のヘッド11が示される。2本のヘッド11のうち、上側のヘッド11はパターンAに従って吐出口70の開閉状態が設定されており、下側のヘッド11はパターンBに従って吐出口70の開閉状態が設定されている。 FIG. 34 shows two heads 11 for explanation. Of the two heads 11, the upper head 11 is set to open / close the discharge port 70 according to the pattern A, and the lower head 11 is set to open / close the discharge port 70 according to the pattern B.
 動作において、サイズの大きいパネル8bに液晶を滴下するためにパターンAのヘッド11を移動させながら液晶を滴下する。これにより、Y方向の液晶の滴下間隔を比較的大きくして液晶が滴下される。その後、ヘッド11が、小さいサイズのパネル8bの位置に達すると、ヘッド11の吐出口70の開閉パターンをパターンBに変更し、ヘッド11をY方向に移動させる。パターンBに変更後は液晶を滴下する(開状態にある)吐出口の数は増加する。これにより、共取りするパネルの種類に応じて、液晶の滴下間隔を異ならせることができる。したがって、滴下間隔の変更は、従来のヘッドの複数回の往復動作を伴わずに(図35Aと図35Bを参照)、ヘッド11をY方向に1回移動させるだけで完了する。 In operation, the liquid crystal is dropped while moving the pattern 11 head 11 in order to drop the liquid crystal on the large panel 8b. As a result, the liquid crystal is dropped with a relatively large drop interval of the liquid crystal in the Y direction. Thereafter, when the head 11 reaches the position of the small-sized panel 8b, the opening / closing pattern of the ejection openings 70 of the head 11 is changed to the pattern B, and the head 11 is moved in the Y direction. After changing to pattern B, the number of discharge ports through which liquid crystal is dropped (in an open state) increases. Thereby, the dropping interval of the liquid crystal can be varied according to the type of panel to be shared. Therefore, the change of the dropping interval is completed only by moving the head 11 once in the Y direction without the conventional reciprocation of the head multiple times (see FIGS. 35A and 35B).
 図36には、本実施の形態5に係る液晶滴下装置の機能構成が示される。図36の機能構成と図14に示した実施の形態1の機能構成とを比較し異なる点は、シャッタ制御部67が切替部673を有する点、および記憶部60に格納されるデータPDを、データPD3に代替した点にある。データPD3は、パターン名PNと、Y方向についての複数種類の位置データD1と、位置データD1のそれぞれに関連付けてパターン指示データP1を含む。パターン指示データP1は、記憶部60に予め格納されたパターンデータPA3を指示する一種のポインタデータである。パターンデータPA3は、各吐出口70に対応のシャッタ71の状態(ON/OFF)を設定するためのデータである。 FIG. 36 shows a functional configuration of the liquid crystal dropping device according to the fifth embodiment. 36 is different from the functional configuration of the first embodiment shown in FIG. 14 in that the shutter control unit 67 has a switching unit 673 and the data PD stored in the storage unit 60. The data PD3 is replaced. The data PD3 includes pattern designation data P1 associated with each of the pattern name PN, a plurality of types of position data D1 in the Y direction, and the position data D1. The pattern instruction data P1 is a kind of pointer data indicating the pattern data PA3 stored in advance in the storage unit 60. The pattern data PA3 is data for setting the state (ON / OFF) of the shutter 71 corresponding to each discharge port 70.
 データPD3を、図34と関連付けて説明する。ヘッド11の位置がY方向の範囲Y1の座標を指示すると検出されるときは、範囲Y1の座標に対応した位置データD1のパターン指示データP1が読み出される。そして、読み出されたパターン指示データP1が指示するパターンデータPA3に従って各吐出口70のシャッタ71が開閉制御される。その後、ヘッド11が範囲Y1の座標を通過し、ヘッド11の位置が範囲Y2の座標を指示すると検出されるときは、切替部673は次位の位置データD1に対応したパターン指示データP1を読み出す。そして、読み出されたパターン指示データP1が指示するパターンデータPA3に従って、ヘッド11の各吐出口70が開閉制御される。これにより、ヘッド11が移動する範囲(基板8の主面上の領域)に従って、各吐出口70の状態(開または閉)を切替ることができる。その結果、図34のような複雑な共取りパターンが指定される場合であっても、ヘッド11をY方向に1回移動させるだけで、指定された共取りパターンに従う液晶パネルの生産が可能となる。 Data PD3 will be described with reference to FIG. When it is detected that the position of the head 11 indicates the coordinates of the range Y1 in the Y direction, the pattern instruction data P1 of the position data D1 corresponding to the coordinates of the range Y1 is read. Then, the shutter 71 of each discharge port 70 is controlled to open and close in accordance with the pattern data PA3 instructed by the read pattern instruction data P1. Thereafter, when it is detected that the head 11 passes the coordinates of the range Y1 and the position of the head 11 indicates the coordinates of the range Y2, the switching unit 673 reads the pattern instruction data P1 corresponding to the next position data D1. . Then, according to the pattern data PA3 instructed by the read pattern instruction data P1, the ejection ports 70 of the head 11 are controlled to open and close. Thereby, the state (open or closed) of each discharge port 70 can be switched according to the range in which the head 11 moves (region on the main surface of the substrate 8). As a result, even when a complicated co-printing pattern as shown in FIG. 34 is designated, it is possible to produce a liquid crystal panel according to the designated co-printing pattern only by moving the head 11 once in the Y direction. Become.
 図37には、本実施の形態5に係る処理フローチャートが示される。ステップS3~ステップS15の処理は、実施の形態1のそれと同様である。ヘッド11が移動開始すると(ステップS15)、位置検出部63により、ヘッド11の位置が逐次検出される。位置が検出される毎に、検出された位置は、ヘッド位置データ60Bとして記憶部60に格納される(ステップS25)。したがって、ヘッド位置データ60Bは、現在のヘッド11の位置を指す。 FIG. 37 shows a processing flowchart according to the fifth embodiment. The processes in steps S3 to S15 are the same as those in the first embodiment. When the head 11 starts to move (step S15), the position detection unit 63 sequentially detects the position of the head 11. Each time a position is detected, the detected position is stored in the storage unit 60 as head position data 60B (step S25). Therefore, the head position data 60B indicates the current position of the head 11.
 シャッタ制御部67の切替部673は、参照されるべきパターンPA3を切替るか否かを検出(判定)する(ステップS27)。具体的には、記憶部60から読出されたヘッド位置データ60Bと、記憶部60から読出されたデータPD3が指示する位置データD1のそれぞれとを比較する。そして、比較結果に基づき、ヘッド位置データ60Bが、次位の位置データD1を指示すると判定すると、判定結果に基づきパターンを切り替えるべきと判定する(ステップS27でYES)。その後、処理はステップS29に移行する。ヘッド位置データ60Bが、次位の位置データD1を指示しない判定すると、判定結果に基づきパターンの切替はしないと判定する(ステップS27でNO)。そして、ステップS21と同様に滴下終了であるか否かを検出する(ステップS33)。検出結果に応じて滴下処理を継続する。 The switching unit 673 of the shutter control unit 67 detects (determines) whether or not to switch the pattern PA3 to be referred to (step S27). Specifically, the head position data 60B read from the storage unit 60 is compared with each of the position data D1 indicated by the data PD3 read from the storage unit 60. If it is determined that the head position data 60B indicates the next position data D1 based on the comparison result, it is determined that the pattern should be switched based on the determination result (YES in step S27). Thereafter, the process proceeds to step S29. If it is determined that the head position data 60B does not indicate the next position data D1, it is determined that the pattern is not switched based on the determination result (NO in step S27). And it is detected whether it is completion | finish of dripping similarly to step S21 (step S33). The dropping process is continued according to the detection result.
 ステップS29では、切替部673は、記憶部60から、次位の位置データD1が指示するパターン指示データP1を読み出す。読み出されたパターン指示データP1が指すパターンデータPA3が記憶部60から読出される。読出されたパターンデータPA3に従い、シャッタ制御部67は指示信号40を生成し、生成した指示信号40を各吐出口70に対応の駆動回路100に出力する。これにより、各吐出口70の状態(開または閉)が切替えられる(ステップS31)。その後、処理はステップS25に移り、滴下処理は継続する。 In step S29, the switching unit 673 reads the pattern instruction data P1 indicated by the next position data D1 from the storage unit 60. Pattern data PA3 pointed to by the read pattern instruction data P1 is read from the storage unit 60. In accordance with the read pattern data PA3, the shutter control unit 67 generates an instruction signal 40 and outputs the generated instruction signal 40 to the drive circuit 100 corresponding to each ejection port 70. Thereby, the state (open or closed) of each discharge port 70 is switched (step S31). Thereafter, the process proceeds to step S25, and the dropping process is continued.
 本実施の形態によれば、ヘッド11のY方向の1回の移動のみ(往復移動は不要)で、1枚の基板8から液晶滴下のピッチが異なる複数種類のパネルを共取り(図34を参照)することが可能となる。 According to the present embodiment, only a single movement of the head 11 in the Y direction (reciprocal movement is unnecessary) allows multiple types of panels with different liquid crystal dropping pitches to be taken from one substrate 8 (see FIG. 34). Reference).
 なお、本実施の形態5に係るヘッド11の特徴は、パターン指示データP1およびパターンデータPA3をヘッド毎に準備し、且つ、ヘッド毎の位置を検出することによって、実施の形態2に示したヘッド11A~11Bについても、また実施の形態3に示すヘッド111についても、また実施の形態4に示すヘッド111A~111Cについても、同様に適用することができる。 The feature of the head 11 according to the fifth embodiment is that the head shown in the second embodiment is prepared by preparing the pattern instruction data P1 and the pattern data PA3 for each head and detecting the position for each head. The same applies to the heads 11A to 11B, the head 111 shown in the third embodiment, and the heads 111A to 111C shown in the fourth embodiment.
 上述の各実施の形態によれば、ヘッドに列状に並んだ吐出口70それぞれをシャッタ71で開閉することで、液晶を滴下可能な吐出口70の総個数を切替えることができる。この構成は、圧電素子を用いた圧力制御により液晶滴下可能な吐出口を切替える構成に比べて、ヘッド内部に吐出口に対応した加圧室を隔壁で区切って設ける必要がない。また、加圧室毎に液晶供給管を接続する必要もない。その結果、ヘッドの内部構造を簡単にしながら、上述のようにタクトタイム(生産時間)を短縮することができる。 According to each of the above-described embodiments, the total number of discharge ports 70 capable of dropping liquid crystal can be switched by opening and closing each of the discharge ports 70 arranged in a line on the head by the shutter 71. In this configuration, it is not necessary to provide a pressure chamber corresponding to the discharge port in the head separated by a partition as compared with a configuration in which the discharge port capable of dropping liquid crystal is switched by pressure control using a piezoelectric element. Further, it is not necessary to connect a liquid crystal supply pipe for each pressurizing chamber. As a result, the tact time (production time) can be shortened as described above while simplifying the internal structure of the head.
 各実施の形態では、各吐出口70に対応してシャッタ71のプレート712(移動子712)の幅(この幅は、少なくとも吐出口70の径に相当する)を確保すればよいから、ピッチDTを十分に小さくできる。これに対し、圧電素子を用いた場合には、加圧室は、液晶を蓄えることが可能であり、且つ、圧電素子による加圧効果を得ることができるサイズを有する必要がある。そのため、吐出口の間隔幅は、加圧室サイズの制限により小さくすることが困難となる。 In each embodiment, the width of the plate 712 (moving element 712) of the shutter 71 corresponding to each discharge port 70 (this width corresponds to at least the diameter of the discharge port 70) should be ensured. Can be made sufficiently small. On the other hand, when a piezoelectric element is used, the pressurizing chamber needs to have a size that can store liquid crystal and can obtain a pressurizing effect by the piezoelectric element. Therefore, it becomes difficult to reduce the interval width of the discharge ports due to the limitation of the size of the pressurizing chamber.
 このように、今回開示した上記実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 Thus, the above-described embodiment disclosed herein is illustrative in all respects and is not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 4 カメラ、5 コンピュータ、8 基板、8A マーク、10 架台、11 ヘッド、22 液晶供給装置、23,231 液晶供給管、42 コラム、60 記憶部、63 位置検出部、65 吐出信号生成部、66 移動信号生成部、67,671 シャッタ制御部、68,6811 回転制御部、70 吐出口、71 シャッタ、101,102,103,104 液晶滴下装置、673 切替部、711 枠、712 プレート。 4 cameras, 5 computers, 8 substrates, 8A marks, 10 stands, 11 heads, 22 liquid crystal supply devices, 23,231 liquid crystal supply tubes, 42 columns, 60 storage units, 63 position detection units, 65 discharge signal generation units, 66 movements Signal generation unit, 67,671 shutter control unit, 68,6811 rotation control unit, 70 discharge port, 71 shutter, 101,102,103,104 liquid crystal dropping device, 673 switching unit, 711 frame, 712 plate.

Claims (9)

  1.  内部が中空の柱形状を有し、前記中空に充填される液晶を基板上に滴下するための複数個の吐出口(70)が並んで成る列が外周面に形成されたヘッド(11)と、
     前記ヘッドを移動させるための移動部(42)と、
     前記移動部による前記ヘッドの移動に応じて、各吐出口から前記基板(8)上に前記液晶を吐出させるための吐出制御部と、
     前記ヘッドの前記外周面において各吐出口に対応して設けられ、且つ、対応の前記吐出口を開閉するための複数の開閉部(71)と、
     前記複数の開閉部を制御するための開閉制御部と、を備え、
     前記列は前記ヘッドの移動方向に対して直交する所定方向に延びており、且つ、前記列における前記吐出口の間隔幅は、液晶滴下パターンが指示する滴下間隔の最小幅以下であり、
     前記複数の開閉部それぞれはプレート(712)を含み、
     前記開閉制御部は、前記液晶滴下パターンに応じたパターンデータに従って、各開閉部の前記プレートを、当該開閉部に対応する前記吐出口の上において電子的にスライドさせることにより、当該吐出口を開閉する、液晶滴下装置。
    A head (11) having a hollow columnar shape inside, and a row formed by arranging a plurality of discharge ports (70) for dropping the liquid crystal filled in the hollow onto the substrate; ,
    A moving part (42) for moving the head;
    A discharge controller for discharging the liquid crystal from each discharge port onto the substrate (8) in accordance with the movement of the head by the moving unit;
    A plurality of opening / closing portions (71) provided on the outer peripheral surface of the head corresponding to the respective discharge ports and for opening and closing the corresponding discharge ports;
    An open / close control unit for controlling the plurality of open / close units,
    The row extends in a predetermined direction orthogonal to the moving direction of the head, and the interval width of the ejection ports in the row is equal to or less than the minimum width of the drop interval indicated by the liquid crystal drop pattern,
    Each of the plurality of opening / closing parts includes a plate (712),
    The opening / closing control unit opens and closes the discharge port by electronically sliding the plate of each opening / closing unit on the discharge port corresponding to the opening / closing unit according to pattern data corresponding to the liquid crystal dropping pattern. A liquid crystal dropping device.
  2.  前記ヘッドの前記外周面には、複数本の前記列が所定間隔幅で形成され、且つ、前記吐出口のサイズは、列毎に異なる、請求の範囲第1項に記載の液晶滴下装置。 2. The liquid crystal dropping device according to claim 1, wherein a plurality of the rows are formed on the outer peripheral surface of the head at a predetermined interval width, and the size of the discharge port is different for each row.
  3.  前記ヘッドは、前記柱形状の前記所定方向に延びる中心軸を中心に、前記所定間隔幅に対応した角度に従って回転する、請求の範囲第2項に記載の液晶滴下装置。 3. The liquid crystal dropping device according to claim 2, wherein the head rotates around a central axis extending in the predetermined direction of the column shape according to an angle corresponding to the predetermined interval width.
  4.  前記移動部によって前記ヘッドが移動されるときに、前記ヘッドの前記基板上の位置を検出する位置検出部と、
     前記基板上の複数種類の位置データと、前記複数種類の位置データのそれぞれに対応して異なる前記パターンデータを格納する記憶部と、をさらに備え、
     前記開閉制御部は、前記位置検出部が検出した前記ヘッドの位置に基づき前記記憶部をから、対応する前記パターンデータを読出すことにより、開閉制御のための前記パターンデータを切替える、請求の範囲第1項から第3項のいずれかに記載の液晶滴下装置。
    A position detection unit that detects a position of the head on the substrate when the head is moved by the moving unit;
    A plurality of types of position data on the substrate, and a storage unit that stores the different pattern data corresponding to each of the plurality of types of position data,
    The opening / closing control unit switches the pattern data for opening / closing control by reading the corresponding pattern data from the storage unit based on the position of the head detected by the position detection unit. 4. The liquid crystal dropping device according to any one of items 1 to 3.
  5.  前記ヘッドは、前記列が延びる前記所定方向に分割された複数個の分割ヘッドを含み、
     前記複数個の分割ヘッドのそれぞれ毎に、前記中空に充填される液晶材の種類は相違する、請求の範囲第1項に記載の液晶滴下装置。
    The head includes a plurality of divided heads divided in the predetermined direction in which the row extends,
    The liquid crystal dropping device according to claim 1, wherein the liquid crystal material filled in the hollow is different for each of the plurality of divided heads.
  6.  前記複数の分割ヘッドそれぞれの前記外周面には、複数本の前記列が所定間隔幅で形成され、且つ、前記吐出口のサイズは、列毎に異なる、請求の範囲第5項に記載の液晶滴下装置。 6. The liquid crystal according to claim 5, wherein a plurality of the rows are formed at a predetermined interval width on the outer peripheral surface of each of the plurality of divided heads, and the size of the ejection port is different for each row. Dripping device.
  7.  前記複数の分割ヘッドそれぞれは、前記柱形状の前記所定方向に延びる中心軸を中心に、前記所定間隔幅に対応した角度に従って回転する、請求の範囲第6項に記載の液晶滴下装置。 The liquid crystal dropping device according to claim 6, wherein each of the plurality of divided heads rotates around an axis corresponding to the predetermined interval width around a central axis extending in the predetermined direction of the columnar shape.
  8.  前記移動部によって前記複数の分割ヘッドが移動されるときに、前記複数の分割ヘッドそれぞれの前記基板上の位置を検出する位置検出部(63)と、
     前記基板上の複数種類の位置データと、前記複数種類の位置データのそれぞれに対応して異なる前記パターンデータを格納する記憶部(60)と、をさらに備え、
     前記開閉制御部は、前記位置検出部が検出した前記複数の分割ヘッドそれぞれの位置に基づき前記記憶部をから、対応する前記パターンデータを読出すことにより、開閉制御のための前記パターンデータを切替える、請求の範囲第5項から第7項のいずれかに記載の液晶滴下装置。
    A position detection unit (63) for detecting a position of each of the plurality of divided heads on the substrate when the plurality of divided heads are moved by the moving unit;
    A plurality of types of position data on the substrate, and a storage unit (60) for storing the different pattern data corresponding to each of the plurality of types of position data,
    The opening / closing control unit switches the pattern data for opening / closing control by reading the corresponding pattern data from the storage unit based on the positions of the plurality of divided heads detected by the position detecting unit. A liquid crystal dropping device according to any one of claims 5 to 7.
  9.  内部が中空の柱形状を有し、前記中空に充填される液晶を基板上に滴下するための複数個の吐出口(70)が並んで成る列が外周面に形成されたヘッド(11)を用いた液晶滴下方法であって、
     前記ヘッドの前記外周面において前記列の各吐出口を開閉するステップと、
     前記ヘッドの移動に応じて、各吐出口から前記基板上に前記液晶を吐出させるステップと、を備え、
     前記列は前記ヘッドの移動方向に対して直交する所定方向に延びており、且つ、前記列における前記吐出口の間隔幅は、液晶滴下パターンが指示する滴下間隔の最小幅以下であり、
     前記開閉するステップでは、前記液晶滴下パターンに応じた開閉パターンデータに従って、各吐出口に対応して設けられたプレート(712)を、対応の前記吐出口の上において電子的にスライドさせることにより、当該吐出口は開閉される、液晶滴下方法。
    A head (11) having a hollow columnar shape inside, and a row in which a plurality of discharge ports (70) are arranged on the outer peripheral surface for dropping the liquid crystal filled in the hollow onto the substrate. The liquid crystal dropping method used,
    Opening and closing each outlet in the row on the outer peripheral surface of the head;
    Discharging the liquid crystal from each discharge port onto the substrate according to the movement of the head, and
    The row extends in a predetermined direction orthogonal to the moving direction of the head, and the interval width of the ejection ports in the row is equal to or less than the minimum width of the drop interval indicated by the liquid crystal drop pattern,
    In the opening and closing step, according to the opening / closing pattern data corresponding to the liquid crystal dropping pattern, the plate (712) provided corresponding to each discharge port is electronically slid on the corresponding discharge port, A liquid crystal dropping method in which the discharge port is opened and closed.
PCT/JP2010/057234 2009-07-29 2010-04-23 Liquid crystal dripping apparatus and method wherein jetting mode of liquid crystal is changed WO2011013421A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011524691A JP5284474B2 (en) 2009-07-29 2010-04-23 Liquid crystal dropping apparatus and method for changing liquid crystal discharge mode
CN201080033500.5A CN102472930B (en) 2009-07-29 2010-04-23 Liquid crystal dripping apparatus and method wherein jetting mode of liquid crystal is changed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-176467 2009-07-29
JP2009176467 2009-07-29

Publications (1)

Publication Number Publication Date
WO2011013421A1 true WO2011013421A1 (en) 2011-02-03

Family

ID=43529088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057234 WO2011013421A1 (en) 2009-07-29 2010-04-23 Liquid crystal dripping apparatus and method wherein jetting mode of liquid crystal is changed

Country Status (3)

Country Link
JP (1) JP5284474B2 (en)
CN (1) CN102472930B (en)
WO (1) WO2011013421A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399433B (en) * 2013-08-14 2016-05-25 深圳市华星光电技术有限公司 Liquid crystal drop filling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014360A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method and device for manufacturing liquid crystal panel
JP2003241208A (en) * 2002-02-19 2003-08-27 Shibaura Mechatronics Corp Liquid crystal dropping device and method of manufacturing liquid crystal display panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100996554B1 (en) * 2003-06-24 2010-11-24 엘지디스플레이 주식회사 Liquid crystal dispensing apparatus having a separatable liquid crystal discharging pump
KR100966451B1 (en) * 2003-06-25 2010-06-28 엘지디스플레이 주식회사 Liquid crystal dispensing apparatus
JP4391211B2 (en) * 2003-12-10 2009-12-24 シャープ株式会社 Manufacturing method of liquid crystal display device and liquid crystal dropping device used therefor
CN100573278C (en) * 2005-12-28 2009-12-23 上海广电Nec液晶显示器有限公司 Liquid crystal drip-injection method
JP4829630B2 (en) * 2006-02-07 2011-12-07 ケイミュー株式会社 Powder spreader
JP2008229481A (en) * 2007-03-20 2008-10-02 Seiko Epson Corp Droplet discharge device and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014360A (en) * 2000-06-29 2002-01-18 Matsushita Electric Ind Co Ltd Method and device for manufacturing liquid crystal panel
JP2003241208A (en) * 2002-02-19 2003-08-27 Shibaura Mechatronics Corp Liquid crystal dropping device and method of manufacturing liquid crystal display panel

Also Published As

Publication number Publication date
CN102472930A (en) 2012-05-23
JP5284474B2 (en) 2013-09-11
CN102472930B (en) 2014-10-01
JPWO2011013421A1 (en) 2013-01-07

Similar Documents

Publication Publication Date Title
US7946669B2 (en) Aligning apparatus
KR100690539B1 (en) Droplet-discharging apparatus, electrooptic device, method for producing electrooptic device, and electronic apparatus
US7851020B2 (en) Droplet discharge method, electro-optic device, and electronic apparatus
KR100505288B1 (en) Formation apparatus and method of thin film, manufacturing apparatus and method of liquid crystal device, manufacturing apparatus and method of thin film structure, liquid crystal device, thin film structure, and electronic equipment
JP2007152339A (en) Ejection method, manufacturing method of color filter, electro-optical device and electronic equipment
KR20040025678A (en) Inkjet deposition apparatus and method
JP5246945B2 (en) Method and apparatus for applying liquid material
JP5284474B2 (en) Liquid crystal dropping apparatus and method for changing liquid crystal discharge mode
JP3791518B2 (en) Film forming method and film forming apparatus
JP2008051109A (en) Pump module
KR100633368B1 (en) Method and apparatus for manufacturing color filter substrate, method and apparatus for manufacturing electroluminescent substrate, method for manufacturing electro-optical device, and method for manufacturing electronic apparatus
US7950345B2 (en) Dispenser for liquid crystal display panel and dispensing method using the same
JP2005221848A (en) Film forming method, electrooptical device, and electronic equipment
JP4438800B2 (en) Droplet discharge device
TWI500367B (en) Substrate manufacturing apparatus and substrate manufacturing method
JP2005106978A (en) Color filter substrate, method for manufacturing color filter substrate, device for manufacturing color filter substrate, liquid crystal device and method for manufacturing liquid crystal device
US20060279201A1 (en) Droplet discharge method, electro optical device and electronic apparatus
JP2006320808A (en) Liquid drop delivery apparatus, production method for liquid crystal display apparatus and liquid crystal display apparatus
JP2007033589A (en) Manufacturing method for display device, and coating apparatus
JPH0933710A (en) Production of color filter, device therefor, color liquid crystal panel using the color filter, and display device using the panel
US7678410B2 (en) Dispenser for liquid crystal display panel and dispensing method using the same
JP2005004090A (en) Manufacturing method of liquid crystal device, liquid crystal device and electronic apparatus
JP4645674B2 (en) Color filter substrate, method for manufacturing color filter substrate, device for manufacturing color filter substrate, liquid crystal device, and method for manufacturing liquid crystal device
JP2004341110A (en) Film forming method, method for manufacturing liquid crystal system, the liquid crystal system, and electronic equipment
JP2005218984A (en) Film forming method, liquid drop discharge device, electro-optical device and electric device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033500.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804169

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011524691

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804169

Country of ref document: EP

Kind code of ref document: A1