WO2011013376A1 - Test container and test method using same - Google Patents

Test container and test method using same Download PDF

Info

Publication number
WO2011013376A1
WO2011013376A1 PCT/JP2010/004807 JP2010004807W WO2011013376A1 WO 2011013376 A1 WO2011013376 A1 WO 2011013376A1 JP 2010004807 W JP2010004807 W JP 2010004807W WO 2011013376 A1 WO2011013376 A1 WO 2011013376A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
container
irradiation
specimen
gas
Prior art date
Application number
PCT/JP2010/004807
Other languages
French (fr)
Japanese (ja)
Inventor
一成 藤原
英朗 田中
美和 笹沼
博男 雨澤
甚作 細川
勇一 小沼
隆 齋藤
邦雄 鬼沢
義幸 坂詰
Original Assignee
日本原子力発電株式会社
東京電力株式会社
東北電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力発電株式会社, 東京電力株式会社, 東北電力株式会社 filed Critical 日本原子力発電株式会社
Publication of WO2011013376A1 publication Critical patent/WO2011013376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • G01N2203/024Corrosive

Definitions

  • the present invention can prevent excessive drying of the specimen due to the sweep gas by providing a specimen storage section for storing the specimen, particularly the concrete specimen, and appropriately influence the radiation on the specimen.
  • the present invention relates to a test container that can be evaluated and a test method thereof.
  • the radiation irradiation test is performed by irradiating a test container storing a test body such as concrete or metal with radiation.
  • the hydrogen gas concentration in the test container is preferably 4% or less.
  • Non-Patent Document 1 As a structure that makes it possible to reduce the hydrogen gas concentration in the test container, for example, there is a structure in which helium gas having a humidity of 0% is supplied into the test container and the gas generated in the test container is flowed out (for example, Non-Patent Document 1).
  • Non-Patent Document 1 it is possible to remove the gas generated from the specimen by bringing the helium gas into direct contact with the concrete specimen.
  • Non-Patent Document 2 it is said that heat generation due to radiation is also affecting the performance of concrete, and there are many documents in which the strength decreases when a concrete specimen is exposed in a high temperature environment. Therefore, there is a need for a test method that takes into account the effects of heat generated by radiation.
  • Non-Patent Document 1 since the helium gas directly contacts the concrete specimen, the concrete specimen is exposed to severe dry conditions for a long time. There is a possibility of deterioration. Depending on the degree of deterioration, it may not be possible to determine the presence or absence of radiation from the test results.
  • a method of supplying moisture by adding moisture to the supplied helium gas can be considered.
  • a large-scale remodeling to prevent supply loss is necessary, which is not realistic.
  • it is necessary to use pure water for moisture to prevent activation of impurities contained in water there is a possibility that concrete will be further deteriorated by using pure water.
  • the present invention has been made to solve such a conventional problem. By providing a test specimen storage container having a small hole, it is possible to prevent the test specimen from being dried and to the test specimen. It is an object of the present invention to provide a test container and a test method capable of appropriately evaluating the effects of radiation.
  • the test container of the present invention is disposed adjacent to the generated gas mixing section where the sweep gas is supplied and discharged, and discharges the gas generated from the specimen during the test to the generated gas mixing section. And at least one small hole portion, and a test body storage portion that seals and stores the test body other than the small hole portion.
  • the test method of the present invention includes a test body stored in a test container and irradiated with radiation to perform a radiation irradiation test, and the test body is stored in a test container and heated only at the monitoring temperature of the radioactive irradiation test.
  • the test is performed, and the result of the radiation irradiation test is compared with the result of the irradiation effect confirmation test to separate and evaluate the influence of radiation on the specimen.
  • test container and the test method of the present invention it is possible to prevent excessive drying of the specimen, and at the same time, it is possible to appropriately evaluate the influence of radiation on the specimen.
  • FIG. 1 It is sectional drawing which shows the structure of the test container of embodiment of this invention. It is a figure which shows the relationship of the radiation irradiation test and influence confirmation test of this embodiment. It is a figure explaining the prior confirmation test method which confirms the drying prevention effect of the test container of this invention. It is a figure which shows an example of the gas concentration measurement result of the hydrogen gas and oxygen gas which generate
  • test container which is an embodiment of the present invention will be described in detail with reference to the drawings.
  • the radiation irradiation test will be mainly described as an example, but the present invention is not limited to this, and can naturally be used for general tests.
  • the test container of the present embodiment is also referred to as a semi-seal container.
  • the semi-seal refers to a seal that does not completely seal but has a small hole for degassing.
  • FIG. 1 is a cross-sectional view showing the configuration of the test container of the present embodiment.
  • the test container 100 of the present embodiment has a circular cross section of about ⁇ 60 mm, and the overall length of the container main body has an outer shape of approximately 1300 mm.
  • the full length and shape of the test container of this embodiment are not restricted to this, It can change suitably according to the shape etc. of a test body (for example, prismatic shape etc.).
  • the test container 100 of the present embodiment includes an outer cylinder container 10, a discharge pipe 20, a supply pipe 30, a first inner cylinder container 40, and a second inner cylinder container 50.
  • the outer cylinder container 10 has a substantially hollow cylindrical shape.
  • the upper end plug 10a is provided in the upper part inside the outer cylinder container 10, and the lower end plug 10b is provided in the lower part.
  • a space between the upper end plug 10a and the lower end plug 10b (hereinafter referred to as a generated gas mixing unit 10c) is kept airtight with respect to the outside.
  • the supply pipe 30 penetrates the upper end plug 10a from the upper part of the outer cylindrical container 10 and enters the generated gas mixing part 10c, and the outlet part 30a of the supply pipe 30 is arranged at the lower part in the generated gas mixing part 10c. Is done. And the supply pipe
  • the discharge pipe 20 passes through the upper end plug 10a from the upper part of the outer cylindrical container 10 and enters the generated gas mixing part 10c, and the inlet part 20a of the discharge pipe 20 is arranged at the upper part in the generated gas mixing part 10c. Is done.
  • the discharge pipe 20 discharges the sweep gas from the generated gas mixing unit 10c to the outside.
  • the 1st inner cylinder container 40 is arrange
  • the first inner cylinder container 40 has a gas vent hole 40a having a diameter of about ⁇ 1 mm that is very small with respect to the diameter of the container. On the side to be). And the 1st inner cylinder container 40 stores the concrete test body A in the test body storage part 40b substantially sealed in places other than the gas vent hole 40a.
  • the second inner cylinder container 50 is disposed in the lower part of the generated gas mixing unit 10 c and in the lower part of the first inner cylinder container 40. Similarly to the first inner cylinder container 40, the second inner cylinder container 50 has a gas vent hole 50a having a diameter of about ⁇ 1 mm.
  • the gas vent hole 50a is formed in the container upper surface direction (that is, the first inner cylinder container 50). It is arranged on the side facing the cylindrical container 40.
  • the 2nd inner cylinder container 50 stores the concrete test body B in the test body storage part 50b substantially sealed in places other than the gas vent hole 50a.
  • the distance between the inner wall of the first inner cylinder container 40 and the side surface of the concrete specimen A and the distance between the inner wall of the second inner cylinder container 50 and the side surface of the concrete specimen B should be 0.1 to 0.2 mm. Is preferred. This is because the generated hydrogen gas and oxygen gas are not properly discharged when the inner wall of the inner cylinder container and the concrete specimen are in close contact, and when the interval is wider than 0.2 mm, This is because it is considered that the drying of the concrete specimen is likely to proceed.
  • the number of inner cylinder containers is two, but the number is not limited to this, and the number can be increased or decreased as appropriate according to the number of test specimens.
  • test bodies A and B are stored in the first inner cylinder container 40 and the second inner cylinder container 50, respectively.
  • the inner cylindrical containers 40 and 50 are arranged in the generated gas mixing section 10c in which the flow of the sweep gas is formed in the inside so that the small holes face the downstream direction of the flow of the sweep gas. And store.
  • a sweep gas for example, helium gas
  • a predetermined flow rate is supplied from the supply pipe 30 into the generated gas mixing unit 10c.
  • the supplied helium gas is supplied from the outlet portion 30a of the supply pipe 30 and is discharged from the inlet portion 20a of the discharge pipe 20. Therefore, the helium gas in a certain direction from the lower part to the upper part of the generated gas mixing part 10c.
  • a flow is formed along the outside of the first inner cylinder container 40 and the second inner cylinder container 50.
  • the concrete test bodies A and B are stored in the first inner cylinder container 40 and the second inner cylinder container 50, and the gas vent holes 40a and 50a are arranged in the downstream direction of the flow of helium gas. Therefore, the flow of helium gas does not directly contact the concrete specimens A and B. Thereby, it becomes possible to prevent the concrete test bodies A and B from being excessively dried.
  • the specimen storage parts 40b and 50b inside the first inner cylinder container 40 and the second inner cylinder container 50 are used.
  • the generated hydrogen gas and oxygen gas are discharged from the specimen storage parts 40b and 50b to the generated gas mixing part 10c through the gas vent holes 40a and 50a having a diameter of about ⁇ 1 mm.
  • the inside of the generated gas mixing unit 10c is a constant pressure equivalent to the atmospheric pressure, the pressure in the specimen storage units 40b and 50b is higher than the pressure in the generated gas mixing unit 10c during the test. Accordingly, the sweep gas in the generated gas mixing unit 10c does not flow into the specimen storage units 40b and 50b from the gas vent holes 40a and 50a.
  • the hydrogen gas released to the generated gas mixing unit 10c is discharged from the discharge pipe 20 to the outside of the test vessel 100 together with the helium gas flowing from the lower part to the upper part of the generated gas mixing part 10c. Thereby, it becomes possible to prevent the hydrogen gas concentration inside the test container 100 from being excessively increased.
  • the diameters of the gas vent holes 40a and 50a if the diameter is large, it is expected that moisture release from the concrete specimen accelerates and drying proceeds, and if the diameter is small, hydrogen gas may not be released sufficiently. .
  • the diameter of the vent holes 40a, 50a is preferably about ⁇ 1 mm from the viewpoint of drying the concrete and releasing hydrogen gas.
  • the test consists of a radiation test of a concrete specimen using the Japan Atomic Energy Agency's Material Test Reactor (JMTR) and an effect confirmation test to evaluate the result of the test.
  • JMTR Japan Atomic Energy Agency's Material Test Reactor
  • the radiation irradiation test is an accelerated irradiation test, it has been confirmed by preliminary analysis that the temperature of the concrete specimen rises to about 60 ° C due to internal heat generated by ⁇ rays. Moreover, the test body is loaded in the semi-seal container for the purpose of avoiding extreme drying by the dry helium gas flowing in the test container. In order to analyze and evaluate the changes in the physical properties of concrete in structures that receive radiation, it is necessary to eliminate such conditions related to temperature and humidity that are peculiar to the test environment.
  • the impact confirmation test is conducted to evaluate the difference between concrete subjected to radiation and concrete not subjected to radiation, namely, an irradiation effect confirmation test, a drying effect confirmation test, and a basic test.
  • Irradiation effect confirmation test is conducted to remove only the effects of radiation from the irradiation test and to extract only the effects of radiation. This is a test in which a test body is placed in a semi-seal container having the same shape as that of the radiation irradiation test, and the set temperature outside the container is heated at the monitoring temperature of the irradiation test (the average measured temperature of the test body in the radiation irradiation test).
  • Drying effect confirmation test is carried out with the specimen exposed without using the semi-seal container from the irradiation effect confirmation test in order to evaluate the influence of the semi-seal container conditions.
  • the temperature conditions are the same as in the irradiation effect confirmation test, and heating is performed at the monitoring temperature of the irradiation test, and the humidity is constant at 60% RH.
  • the basic test is a test at a constant temperature of 20 ° C and a humidity of 60% RH in order to see the changes over time in the physical properties of the concrete specimen.
  • Table 1 is a table showing the results of an impact confirmation test using the test container of the present embodiment.
  • the test container of this embodiment can prevent excessive drying of the test body, and at the same time, can facilitate the discharge of gas inside the test container.
  • the supplied sweep gas is helium gas.
  • the present invention is not limited to this, and an inert gas or the like can be appropriately used according to the purpose of use.
  • the concrete test body is described as an example of the test body.
  • the present invention is not limited to this, and the present invention can be applied to various test bodies that need to prevent drying.
  • the test container is a combination of the inner cylinder container and the outer cylinder container.
  • the present invention is not limited to this.
  • the generated gas mixing section into which the sweep gas flows in and out, and the generated gas It is good also as an integral structure which has the test body storage part connected to a mixing part through a gas vent hole with a diameter of about ⁇ 1 mm.
  • Table 2 shows the test parameters and the number of test specimens.
  • the experiment case is configured to supply 0% RH helium gas at 60cc / min to a semi-sealed container installed in a constant temperature / humidity chamber and exhaust the gas mixed with water vapor directly from the semi-sealed container to the outside of the constant temperature / humidity chamber. It was.
  • Measurement Items (1) Measurement Items: Mass (Before test start and after 30 days) (2) A trap was provided in the gas vent pipe from the generated gas mixing area, and the humidity of the released gas was measured.
  • Table 3 is a table showing the test results.
  • Test method 1.1 Concrete specimens Table 4 shows the mix of concrete specimens. The materials used to make the specimens were selected from those commonly used in Japanese nuclear power plants. The shape of the concrete test specimen was a cylindrical shape of ⁇ 50 mm ⁇ 100 mm in consideration of the size of the test container. After placing the concrete, it was sealed and cured for 3 months in an environment of 20 ° C and 60% RH, and then air-cured in the same environment until the start of the test. In order to compare the effects of irradiation on concrete specimens, tests using non-irradiated specimens exposed to an environment of 20 ° C and 60% RH during the irradiation period were also conducted.
  • Irradiation test container In this test, a stainless steel test container with a diameter of 60 mm and a height of about 1 m was used (see Fig. 1). In this test vessel, four concrete specimens ( ⁇ 50mm ⁇ 100mm), four concrete specimens for temperature measurement with embedded thermocouples ( ⁇ 50mm ⁇ 25mm), fluence monitor for measuring neutron irradiation, etc. Loaded.
  • the temperature of the concrete specimen shall be below the limit of 65 ° C stipulated by the Japan Society of Mechanical Engineers' concrete reactor containment standard, which is the design standard for nuclear power plants in Japan. It was a goal.
  • the temperature limit value of 65 ° C is set based on the value (150 ° F) indicated in the American Society of Mechanical Engineers (ASME) standard for concrete reactor containment vessels. (Table 5)
  • Measurement items The measurement items during irradiation and the measurement items using the concrete specimen after irradiation are shown below.
  • the fast neutron irradiation dose exceeded the target value at all steps. Also, in Step 3, which assumed 40 years, the fast neutron dose (3.0 ⁇ 10 18 n / cm 2 (E> 0.1MeV)) for 60 years outside the reactor pressure vessel of a standard BWR It was over. The maximum fast neutron dose was 12.0 ⁇ 10 18 n / cm 2 (E> 0.1 MeV).
  • FIG. 4 shows an example of the gas concentration measurement results of hydrogen gas and oxygen gas generated during irradiation. Since the hydrogen gas concentration showed a peak immediately after the start of irradiation and then gradually decreased, it is considered that the decomposition of water due to the irradiation was stopped. The oxygen gas concentration was confirmed after about 100 hours from the start of irradiation and gradually decreased after about 400 hours. These trends showed the same trend at all steps.
  • nitrogen gas was also measured, but only a slight amount was detected at the start of irradiation.
  • FIG. 5 shows the relationship between the fast neutron dose and the compressive strength of the concrete specimen.
  • the vertical axis of the figure shows the ratio of the compression strength of the irradiated specimen to the compressive strength (average value of four specimens) of the non-irradiated specimen.
  • the compression strength of the irradiated specimen was equivalent to that of the non-irradiated specimen regardless of the irradiation amount. It was also found that the compressive strength was almost constant without being affected by the neutron dose up to the maximum dose of 12.0 ⁇ 10 18 n / cm 2 (E> 0.1 MeV) in this test.
  • Static elastic modulus Figure 6 shows the relationship between the fast neutron dose and the static elastic modulus of the concrete specimen.
  • the vertical axis of the figure shows the ratio of the static elastic modulus of the irradiated specimen to the static elastic modulus (average of four specimens) of the non-irradiated specimen.
  • the static elastic modulus of the irradiated specimen is about 60 years of fast neutron dose (3.0 ⁇ 10 18 n / cm 2 (E> 0.1MeV)) outside the standard BWR reactor pressure vessel. And there was no change. When it exceeds 6.0 ⁇ 10 18 n / cm 2 , there is a tendency to decrease slightly, but it is not a decrease that affects the concrete structure.
  • Figure 7 shows the tendency of compressive strength to decrease with increasing dose, but as a result of our investigation of the individual data plotted, it was found that the following data was included: .
  • the higher the irradiation density the higher the temperature of the specimen and the greater the influence of temperature. That is, the cause of the decrease in compressive strength is not only the dose, but also the effect of temperature during irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

A test container provided with a generated gas mixing section (10c) to which and from which a sweep gas is supplied and discharged, and also with a containing section (40b, 50b) which is disposed adjacent to the generated gas mixing section, has at least one small hole (40a, 50a) for discharging, to the generated gas mixing section, gas which is generated during a test from a body (A, B) being tested, and contains and encapsulates the body except the small hole. The test container can prevent the body being tested from excessively drying.

Description

試験容器及びその試験容器を用いた試験方法Test container and test method using the test container
 本発明は、試験体、特にコンクリート試験体を格納する試験体格納部を備えることにより、スイープガスによる試験体の過度の乾燥を防止することを可能とし、試験体への放射線の影響を適切に評価することを可能とした試験容器及びその試験方法に関するものである。 The present invention can prevent excessive drying of the specimen due to the sweep gas by providing a specimen storage section for storing the specimen, particularly the concrete specimen, and appropriately influence the radiation on the specimen. The present invention relates to a test container that can be evaluated and a test method thereof.
 近年、放射線を受けるコンクリートの特性に関する研究が進められている。一般に放射線照射試験は、コンクリートや金属等の試験体を格納する試験容器に放射線を照射することにより実施される。 In recent years, research on the properties of concrete receiving radiation has been underway. Generally, the radiation irradiation test is performed by irradiating a test container storing a test body such as concrete or metal with radiation.
 コンクリートの放射線照射試験では、試験容器に格納したコンクリートに放射線を照射することによりコンクリート中の水分が分解し、水素ガスが発生する。このため、完全密封された試験容器の場合には、水素ガス濃度が上昇し続けることになる。試験容器内の水素ガス濃度が高まると様々な支障が生じるため、試験容器内の水素ガス濃度を4%以下とすることが好ましい。 In the radiation irradiation test of concrete, when the concrete stored in the test container is irradiated with radiation, the moisture in the concrete is decomposed and hydrogen gas is generated. For this reason, in the case of a completely sealed test container, the hydrogen gas concentration continues to rise. Since various problems occur when the hydrogen gas concentration in the test container increases, the hydrogen gas concentration in the test container is preferably 4% or less.
 試験容器内の水素ガス濃度を低減することを可能とする構造としては、例えば、試験容器内に湿度0%のヘリウムガスを供給し、試験容器内に発生したガスを流しだす構造がある(例えば、非特許文献1参照)。 As a structure that makes it possible to reduce the hydrogen gas concentration in the test container, for example, there is a structure in which helium gas having a humidity of 0% is supplied into the test container and the gas generated in the test container is flowed out (for example, Non-Patent Document 1).
 非特許文献1に記載の試験容器によれば、コンクリート試験体に直接ヘリウムガスを接触させることにより、試験体から発生するガスを除去することを可能としている。 According to the test container described in Non-Patent Document 1, it is possible to remove the gas generated from the specimen by bringing the helium gas into direct contact with the concrete specimen.
 さらに、非特許文献2によれば、放射線による発熱もコンクリートの性能に影響しているとされ、高温環境下にコンクリート試験体を暴露した場合には強度が低下するとした文献も多数存在する。したがって、放射線による発熱の影響を加味した試験方法が必要とされている。 Furthermore, according to Non-Patent Document 2, it is said that heat generation due to radiation is also affecting the performance of concrete, and there are many documents in which the strength decreases when a concrete specimen is exposed in a high temperature environment. Therefore, there is a need for a test method that takes into account the effects of heat generated by radiation.
 しかしながら、非特許文献1に記載の試験容器によれば、ヘリウムガスが直接コンクリート試験体に接触することとなるため、コンクリート試験体は厳しい乾燥状態に長時間曝されることとなり、コンクリート試験体が劣化する可能性がある。そして、劣化の度合いによっては試験結果から放射線の影響の有無を判断することができなくなる可能性がある。 However, according to the test container described in Non-Patent Document 1, since the helium gas directly contacts the concrete specimen, the concrete specimen is exposed to severe dry conditions for a long time. There is a possibility of deterioration. Depending on the degree of deterioration, it may not be possible to determine the presence or absence of radiation from the test results.
 また、供給するヘリウムガスに湿分を含ませ、供給する手法も考えられる。この場合には、試験容器内を60℃、60%RHとすることが好ましいが、現状の放射線を照射する装置等では制御することが困難であり、これ以上の湿度を確保するには、ガスの供給ロスを防ぐための大掛かりな改造が必要となり、現実的ではない。また、湿分には、水に含まれる不純物の放射化を防ぐために純水を使用する必要があるため、純水の使用によりコンクリートをさらに劣化させる可能性もある。 Also, a method of supplying moisture by adding moisture to the supplied helium gas can be considered. In this case, it is preferable to set the inside of the test container to 60 ° C. and 60% RH, but it is difficult to control with a current radiation irradiation apparatus or the like. A large-scale remodeling to prevent supply loss is necessary, which is not realistic. Moreover, since it is necessary to use pure water for moisture to prevent activation of impurities contained in water, there is a possibility that concrete will be further deteriorated by using pure water.
 また、熱によるコンクリート試験体への影響も考慮し、コンクリート試験体への放射線の影響を適切に評価する必要もある。 Also, it is necessary to appropriately evaluate the influence of radiation on the concrete specimen, taking into account the effect of heat on the concrete specimen.
 本発明は、このような従来の問題を解決するためになされたもので、小孔を有する試験体格納容器を備えることにより、試験体の乾燥を防止することを可能とするとともに、試験体への放射線の影響を適切に評価することを可能とした試験容器及び試験方法を提供しようとするものである。 The present invention has been made to solve such a conventional problem. By providing a test specimen storage container having a small hole, it is possible to prevent the test specimen from being dried and to the test specimen. It is an object of the present invention to provide a test container and a test method capable of appropriately evaluating the effects of radiation.
 本発明の試験容器は、スイープガスの供給及び排出が行われる発生ガス混合部と、発生ガス混合部に隣接して配置され、試験中に試験体から発生するガスを発生ガス混合部へ排出するための少なくとも1つの小孔部を有し、小孔部以外は試験体を密閉して格納する試験体格納部とを備えることを特徴とする。 The test container of the present invention is disposed adjacent to the generated gas mixing section where the sweep gas is supplied and discharged, and discharges the gas generated from the specimen during the test to the generated gas mixing section. And at least one small hole portion, and a test body storage portion that seals and stores the test body other than the small hole portion.
 また、本発明の試験方法は、試験体を試験容器に格納し放射線を照射して放射線照射試験を行い、試験体を試験容器に格納し放射性照射試験のモニタリング温度で加熱のみを行う照射影響確認試験を行い、放射線照射試験の結果と照射影響確認試験の結果とを比較して、試験体への放射線の影響を分離して評価することを特徴とする。 In addition, the test method of the present invention includes a test body stored in a test container and irradiated with radiation to perform a radiation irradiation test, and the test body is stored in a test container and heated only at the monitoring temperature of the radioactive irradiation test. The test is performed, and the result of the radiation irradiation test is compared with the result of the irradiation effect confirmation test to separate and evaluate the influence of radiation on the specimen.
 本発明の試験容器及び試験方法によれば、試験体の過度の乾燥を防止することが可能となり、同時に、試験体への放射線の影響を適切に評価することが可能となる According to the test container and the test method of the present invention, it is possible to prevent excessive drying of the specimen, and at the same time, it is possible to appropriately evaluate the influence of radiation on the specimen.
本発明の実施形態の試験容器の構成を示す断面図である。It is sectional drawing which shows the structure of the test container of embodiment of this invention. 本実施形態の放射線照射試験及び影響確認試験の関連を示す図である。It is a figure which shows the relationship of the radiation irradiation test and influence confirmation test of this embodiment. 本発明の試験容器の乾燥防止効果を確認する事前確認試験方法を説明する図である。It is a figure explaining the prior confirmation test method which confirms the drying prevention effect of the test container of this invention. 照射中に発生した水素ガスと酸素ガスのガス濃度測定結果の一例を示す図である。It is a figure which shows an example of the gas concentration measurement result of the hydrogen gas and oxygen gas which generate | occur | produced during irradiation. 高速中性子照射量とコンクリート試験体の圧縮強度との関係を示す図である。It is a figure which shows the relationship between a fast neutron irradiation amount and the compressive strength of a concrete test body. 高速中性子照射量とコンクリート試験体の静弾性係数との関係を示す図である。It is a figure which shows the relationship between a fast neutron irradiation amount and the static elastic modulus of a concrete test body. Hilsdorfらによりまとめられた中性子照射量と圧縮強度の関係を示す図である。It is a figure which shows the relationship between the neutron irradiation amount and the compressive strength put together by Hilsdorf et al. 本発明者らが、図7をスクリーニングし再整理した図である。It is the figure which the present inventors screened and rearranged FIG.
 以下、本発明の実施形態である試験容器について、図を参照して詳細に説明をする。なお、以下の説明においては、主に放射線照射試験を例に説明をするがこれに限られるものではなく、一般的な試験に使用することも当然に可能である。また、以下の説明において、本実施形態の試験容器のことをセミシール容器とも呼ぶものとする。ここで、セミシールとは、完全密封しないで、一部にガス抜き用の小孔を有するシールのことをいう。 Hereinafter, a test container which is an embodiment of the present invention will be described in detail with reference to the drawings. In the following description, the radiation irradiation test will be mainly described as an example, but the present invention is not limited to this, and can naturally be used for general tests. In the following description, the test container of the present embodiment is also referred to as a semi-seal container. Here, the semi-seal refers to a seal that does not completely seal but has a small hole for degassing.
 図1は、本実施形態の試験容器の構成を示す断面図である。本実施形態の試験容器100は、約φ60mmの円形断面を有し、容器本体部の全長が、おおよそ1300mmの外形を有する。なお、本実施形態の試験容器の全長及び形状はこれに限られず、試験体の形状等に合わせて適宜変更可能(例えば、角柱状など)である。 FIG. 1 is a cross-sectional view showing the configuration of the test container of the present embodiment. The test container 100 of the present embodiment has a circular cross section of about φ60 mm, and the overall length of the container main body has an outer shape of approximately 1300 mm. In addition, the full length and shape of the test container of this embodiment are not restricted to this, It can change suitably according to the shape etc. of a test body (for example, prismatic shape etc.).
 本実施形態の試験容器100は、外筒容器10と、排出管20と、供給管30と、第1の内筒容器40と、第2の内筒容器50とを有する。 The test container 100 of the present embodiment includes an outer cylinder container 10, a discharge pipe 20, a supply pipe 30, a first inner cylinder container 40, and a second inner cylinder container 50.
 外筒容器10は、略中空円筒上の形状を有する。外筒容器10内部の上部には上部端栓10aが備わり、下部には下部端栓10bが備わる。そして、上部端栓10a及び下部端栓10bの間の空間(以下、発生ガス混合部10cとする)は外界に対して気密の状態が保たれている。 The outer cylinder container 10 has a substantially hollow cylindrical shape. The upper end plug 10a is provided in the upper part inside the outer cylinder container 10, and the lower end plug 10b is provided in the lower part. A space between the upper end plug 10a and the lower end plug 10b (hereinafter referred to as a generated gas mixing unit 10c) is kept airtight with respect to the outside.
 供給管30は、外筒容器10の上部から上部端栓10aを貫通して発生ガス混合部10c内に進入しており、供給管30の出口部30aは発生ガス混合部10c内の下部に配置される。そして、供給管30は、不図示のスイープガス供給装置からのスイープガスを発生ガス混合部10cに供給する。 The supply pipe 30 penetrates the upper end plug 10a from the upper part of the outer cylindrical container 10 and enters the generated gas mixing part 10c, and the outlet part 30a of the supply pipe 30 is arranged at the lower part in the generated gas mixing part 10c. Is done. And the supply pipe | tube 30 supplies the sweep gas from the sweep gas supply apparatus not shown to the generation gas mixing part 10c.
 排出管20は、外筒容器10の上部から上部端栓10aを貫通して発生ガス混合部10c内に進入しており、排出管20の入口部20aは発生ガス混合部10c内の上部に配置される。そして、排出管20は、発生ガス混合部10cからスイープガスを外部に排出する。 The discharge pipe 20 passes through the upper end plug 10a from the upper part of the outer cylindrical container 10 and enters the generated gas mixing part 10c, and the inlet part 20a of the discharge pipe 20 is arranged at the upper part in the generated gas mixing part 10c. Is done. The discharge pipe 20 discharges the sweep gas from the generated gas mixing unit 10c to the outside.
 このような構成により、外筒容器10の内部には、供給管30の出口部30aから排出管20の入口部20aへ向かうスイープガスの一定方向の流れが形成されることとなる。 With such a configuration, a flow in a certain direction of the sweep gas from the outlet part 30a of the supply pipe 30 toward the inlet part 20a of the discharge pipe 20 is formed inside the outer cylinder container 10.
 第1の内筒容器40は、発生ガス混合部10c内の上部かつ排出管20の入口部20aの下部に配置される。第1の内筒容器40は、その容器径に対して微小な径の約φ1mmのガス抜き穴40aを有し、ガス抜き穴40aは、容器上面(すなわち、排出管20の入口部20aに面する側)に配置されている。そして、第1の内筒容器40は、試験体格納部40b内に、コンクリート試験体Aを、ガス抜き穴40a以外の箇所において、ほぼ密閉して格納する。 1st inner cylinder container 40 is arrange | positioned at the upper part in generated gas mixing part 10c, and the lower part of the inlet part 20a of the discharge pipe 20. As shown in FIG. The first inner cylinder container 40 has a gas vent hole 40a having a diameter of about φ1 mm that is very small with respect to the diameter of the container. On the side to be). And the 1st inner cylinder container 40 stores the concrete test body A in the test body storage part 40b substantially sealed in places other than the gas vent hole 40a.
 第2の内筒容器50は、発生ガス混合部10c内の下部かつ第1の内筒容器40の下部に配置される。また、第2の内筒容器50は、第1の内筒容器40と同様に直径が約φ1mmのガス抜き穴50aを有し、ガス抜き穴50aは、容器上面方向(すなわち、第1の内筒容器40に面する側)に配置されている。そして、第2の内筒容器50は、試験体格納部50b内に、コンクリート試験体Bを、ガス抜き穴50a以外の箇所において、ほぼ密閉して格納する。 The second inner cylinder container 50 is disposed in the lower part of the generated gas mixing unit 10 c and in the lower part of the first inner cylinder container 40. Similarly to the first inner cylinder container 40, the second inner cylinder container 50 has a gas vent hole 50a having a diameter of about φ1 mm. The gas vent hole 50a is formed in the container upper surface direction (that is, the first inner cylinder container 50). It is arranged on the side facing the cylindrical container 40. And the 2nd inner cylinder container 50 stores the concrete test body B in the test body storage part 50b substantially sealed in places other than the gas vent hole 50a.
 なお、第1の内筒容器40の内壁とコンクリート試験体A側面との間隔、及び、第2の内筒容器50の内壁とコンクリート試験体B側面との間隔は、0.1から0.2mmとすることが好ましい。これは、内筒容器の内壁とコンクリート試験体とが密着している場合には、発生する水素ガス及び酸素ガスが適切に排出されないからであり、また、0.2mmより間隔が広い場合には、コンクリート試験体の乾燥が進みやすいと考えられるからである。 The distance between the inner wall of the first inner cylinder container 40 and the side surface of the concrete specimen A and the distance between the inner wall of the second inner cylinder container 50 and the side surface of the concrete specimen B should be 0.1 to 0.2 mm. Is preferred. This is because the generated hydrogen gas and oxygen gas are not properly discharged when the inner wall of the inner cylinder container and the concrete specimen are in close contact, and when the interval is wider than 0.2 mm, This is because it is considered that the drying of the concrete specimen is likely to proceed.
 なお、本実施形態においては、内筒容器の個数を2つとしたが、これに限られるものではなく、試験体の数に応じて、適宜個数を増減させること可能である。 In the present embodiment, the number of inner cylinder containers is two, but the number is not limited to this, and the number can be increased or decreased as appropriate according to the number of test specimens.
 次に、本実施形態の試験容器の使用方法について説明をする。 Next, a method for using the test container of this embodiment will be described.
 まず、第1の内筒容器40及び第2の内筒容器50に試験体A、Bを各々格納する。そして、スイープガスの一定方向の流れが内部に形成される発生ガス混合部10cの内部に、各内筒容器40、50を各小孔部がスイープガスの流れの下流の方向に向くように配置して収納する。 First, the test bodies A and B are stored in the first inner cylinder container 40 and the second inner cylinder container 50, respectively. Then, the inner cylindrical containers 40 and 50 are arranged in the generated gas mixing section 10c in which the flow of the sweep gas is formed in the inside so that the small holes face the downstream direction of the flow of the sweep gas. And store.
 次に、本実施形態の試験容器100を、放射線を照射する装置等に装荷した後に、供給管30から発生ガス混合部10c内に所定の流量のスイープガス(例えば、ヘリウムガス)を供給する。 Next, after loading the test container 100 of the present embodiment on an apparatus for irradiating radiation, a sweep gas (for example, helium gas) with a predetermined flow rate is supplied from the supply pipe 30 into the generated gas mixing unit 10c.
 供給されたヘリウムガスは、供給管30の出口部30aから供給され、排出管20の入口部20aから排出されるため、発生ガス混合部10cの下部から上部へ向けてのヘリウムガスの一定方向の流れが、第1の内筒容器40及び第2の内筒容器50の外側に沿って形成される。 The supplied helium gas is supplied from the outlet portion 30a of the supply pipe 30 and is discharged from the inlet portion 20a of the discharge pipe 20. Therefore, the helium gas in a certain direction from the lower part to the upper part of the generated gas mixing part 10c. A flow is formed along the outside of the first inner cylinder container 40 and the second inner cylinder container 50.
 ここで、コンクリート試験体A、Bについては、第1の内筒容器40及び第2の内筒容器50に格納されており、また、ガス抜き穴40a、50aは、ヘリウムガスの流れの下流方向に配置されているため、コンクリート試験体A、Bにヘリウムガスの流れが直接接触することはない。これにより、コンクリート試験体A、Bの過度の乾燥を防止することが可能となる。 Here, the concrete test bodies A and B are stored in the first inner cylinder container 40 and the second inner cylinder container 50, and the gas vent holes 40a and 50a are arranged in the downstream direction of the flow of helium gas. Therefore, the flow of helium gas does not directly contact the concrete specimens A and B. Thereby, it becomes possible to prevent the concrete test bodies A and B from being excessively dried.
 また、コンクリート試験体A、B内の水分が放射線照射により水素及び酸素に分解されることにより、第1の内筒容器40及び第2の内筒容器50の内部の試験体格納部40b、50bの圧力が高まり、発生した水素ガス及び酸素ガスが直径約φ1mmのガス抜き穴40a、50aを通して、試験体格納部40b、50bから発生ガス混合部10cに放出される。 In addition, when the moisture in the concrete specimens A and B is decomposed into hydrogen and oxygen by irradiation, the specimen storage parts 40b and 50b inside the first inner cylinder container 40 and the second inner cylinder container 50 are used. The generated hydrogen gas and oxygen gas are discharged from the specimen storage parts 40b and 50b to the generated gas mixing part 10c through the gas vent holes 40a and 50a having a diameter of about φ1 mm.
 また、発生ガス混合部10c内は大気圧と同等の一定の圧力であるため、試験時には試験体格納部40b、50b内の圧力は、発生ガス混合部10c内の圧力よりも高くなる。したがって、発生ガス混合部10c内のスイープガスが、ガス抜き穴40a、50aから試験体格納部40b、50b内に流入することはない。 Further, since the inside of the generated gas mixing unit 10c is a constant pressure equivalent to the atmospheric pressure, the pressure in the specimen storage units 40b and 50b is higher than the pressure in the generated gas mixing unit 10c during the test. Accordingly, the sweep gas in the generated gas mixing unit 10c does not flow into the specimen storage units 40b and 50b from the gas vent holes 40a and 50a.
 発生ガス混合部10cに放出された水素ガスは、発生ガス混合部10cの下部から上部へ流れるヘリウムガスとともに、排出管20から試験容器100の外部へと排出される。これにより、試験容器100内部の水素ガス濃度が過度に高まることを防止することが可能となる。 The hydrogen gas released to the generated gas mixing unit 10c is discharged from the discharge pipe 20 to the outside of the test vessel 100 together with the helium gas flowing from the lower part to the upper part of the generated gas mixing part 10c. Thereby, it becomes possible to prevent the hydrogen gas concentration inside the test container 100 from being excessively increased.
 ガス抜き穴40a、50aの直径については、径が大きいとコンクリート試験体からの湿分の放出が促進し乾燥が進むことが予想され、径が小さいと水素ガスが十分に放出しない可能性がある。本発明者らの評価の結果、ガス抜き穴40a、50aの直径を約φ1mmとすることがコンクリートの乾燥及び水素ガスの放出の面から好ましいことが判明した。 As for the diameters of the gas vent holes 40a and 50a, if the diameter is large, it is expected that moisture release from the concrete specimen accelerates and drying proceeds, and if the diameter is small, hydrogen gas may not be released sufficiently. . As a result of the evaluation by the present inventors, it has been found that the diameter of the vent holes 40a, 50a is preferably about φ1 mm from the viewpoint of drying the concrete and releasing hydrogen gas.
 次に、本実施形態の試験容器を用いた影響確認試験について説明をする。 Next, an influence confirmation test using the test container of this embodiment will be described.
 本試験では、放射線を受けるコンクリートの健全性を評価する項目として、1)圧縮強度、2)静弾性係数、3)水分量等のコンクリート物性を対象としている。試験は、日本原子力研究開発機構の材料試験炉(JMTR)を用いたコンクリート試験体の放射線照射試験及び、照射試験の結果を評価するための影響確認試験で構成されている。各試験の関連図を図2に示す。 In this test, concrete physical properties such as 1) compressive strength, 2) static elastic modulus, and 3) moisture content are targeted as items to evaluate the soundness of concrete receiving radiation. The test consists of a radiation test of a concrete specimen using the Japan Atomic Energy Agency's Material Test Reactor (JMTR) and an effect confirmation test to evaluate the result of the test. The related figure of each test is shown in FIG.
 放射線照射試験は加速照射試験であるため、γ線による内部発熱によりコンクリート試験体の温度が約60℃程度まで上昇することが事前解析により確認されている。また、試験体は、試験容器内を流れる乾燥したヘリウムガスによる極度の乾燥を避ける目的で、セミシール容器に装荷している。放射線を受ける構造物のコンクリートの物性変化を分析・評価するためには、このような試験環境に特有な温度・湿度に関わる条件を排除する必要がある。 Since the radiation irradiation test is an accelerated irradiation test, it has been confirmed by preliminary analysis that the temperature of the concrete specimen rises to about 60 ° C due to internal heat generated by γ rays. Moreover, the test body is loaded in the semi-seal container for the purpose of avoiding extreme drying by the dry helium gas flowing in the test container. In order to analyze and evaluate the changes in the physical properties of concrete in structures that receive radiation, it is necessary to eliminate such conditions related to temperature and humidity that are peculiar to the test environment.
 そこで、本試験では、加速照射試験の他に、図2に示した各種の「影響確認試験」(基本試験、乾燥影響確認試験、照射影響確認試験)を実施する。 Therefore, in this test, in addition to the accelerated irradiation test, various “effect confirmation tests” (basic test, drying effect confirmation test, irradiation effect confirmation test) shown in FIG. 2 are performed.
(a)放射線照射試験
 放射線照射試験は加速照射試験であるため、γ線によるコンクリート試験体の内部発熱により試験体の温度が約60℃に上昇することが本試験を対象とした解析により確認されている。また、試験体は、試験容器内を流れる乾燥したヘリウムガスによる極度の乾燥を避ける目的で、セミシール容器に装荷している。
(A) Radiation irradiation test Since the radiation irradiation test is an accelerated irradiation test, it was confirmed by the analysis for this test that the temperature of the specimen rises to about 60 ° C due to internal heat generation of the concrete specimen due to γ rays. ing. Moreover, the test body is loaded in the semi-seal container for the purpose of avoiding extreme drying by the dry helium gas flowing in the test container.
(b)影響確認試験
 影響確認試験は、放射線を受けるコンクリートと受けないコンクリートの違いを評価するための試験として、照射影響確認試験、乾燥影響確認試験および基本試験の3種類を実施する。
(B) Impact Confirmation Test The impact confirmation test is conducted to evaluate the difference between concrete subjected to radiation and concrete not subjected to radiation, namely, an irradiation effect confirmation test, a drying effect confirmation test, and a basic test.
i)照射影響確認試験
 照射影響確認試験は、放射線照射試験から発熱の影響、乾燥の影響を取除き、放射線の影響のみを抽出するために実施している。試験体を放射線照射試験と同形状のセミシール容器に入れ、容器外部の設定温度を照射試験のモニタリング温度(上記放射線照射試験における試験体の平均計測温度)で加熱した試験である。
i) Irradiation effect confirmation test The irradiation effect confirmation test is conducted to remove only the effects of radiation from the irradiation test and to extract only the effects of radiation. This is a test in which a test body is placed in a semi-seal container having the same shape as that of the radiation irradiation test, and the set temperature outside the container is heated at the monitoring temperature of the irradiation test (the average measured temperature of the test body in the radiation irradiation test).
ii)乾燥影響確認試験
 乾燥影響確認試験は、セミシール容器条件の影響を評価するため、照射影響確認試験からセミシール容器を使用せず、試験体を露出した状態で、実施するものである。温度条件は、照射影響確認試験と同じく照射試験のモニタリング温度で加熱し、湿度は60% RH一定としている。
ii) Drying effect confirmation test The drying effect confirmation test is carried out with the specimen exposed without using the semi-seal container from the irradiation effect confirmation test in order to evaluate the influence of the semi-seal container conditions. The temperature conditions are the same as in the irradiation effect confirmation test, and heating is performed at the monitoring temperature of the irradiation test, and the humidity is constant at 60% RH.
iii)基本試験
 基本試験は、コンクリート試験体物性の経時変化を見るために温度20℃、湿度60%RH一定とした試験である。
iii) Basic test The basic test is a test at a constant temperature of 20 ° C and a humidity of 60% RH in order to see the changes over time in the physical properties of the concrete specimen.
 表1は、本実施形態の試験容器を用いた影響確認試験を行った結果を示す表である。 Table 1 is a table showing the results of an impact confirmation test using the test container of the present embodiment.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1からわかるように、コンクリート試験体の質量は試験方法により変化することがわかる。したがって、データを比較すればコンクリート試験体の質量変化の要因を分析することが可能となる。 As can be seen from Table 1, the mass of the concrete specimen varies depending on the test method. Therefore, by comparing the data, it is possible to analyze the cause of the mass change of the concrete specimen.
 このように、放射線照射試験と照射影響確認試験との結果を比較することにより、放射線の影響のみ評価することが可能となる。また、照射影響確認試験と乾燥影響確認試験との結果を比較することにより、シール条件の影響を評価することが可能となる。また、乾燥影響確認試験と基本試験との結果を比較することにより温度の影響を評価することが可能となる。さらに、放射線照射試験と基本試験との結果を比較することにより強度の基準、材齢の補正を行うことが可能となる。 Thus, it becomes possible to evaluate only the influence of radiation by comparing the results of the radiation irradiation test and the irradiation effect confirmation test. Further, by comparing the results of the irradiation effect confirmation test and the drying effect confirmation test, it becomes possible to evaluate the influence of the sealing condition. Moreover, it becomes possible to evaluate the influence of temperature by comparing the results of the drying effect confirmation test and the basic test. Further, by comparing the results of the radiation irradiation test and the basic test, it is possible to correct the strength standard and the age of the material.
 以上説明したように、本実施形態の試験容器は、試験体の過度の乾燥を防止することが可能となり、同時に、試験容器内部のガスの排出を促進することが可能となる。 As described above, the test container of this embodiment can prevent excessive drying of the test body, and at the same time, can facilitate the discharge of gas inside the test container.
 また、本実施形態の試験容器を用いた試験方法によれば、影響確認試験を行うことにより、放射線を受けるコンクリートと受けないコンクリートの違いを適切に評価することが可能となる。 In addition, according to the test method using the test container of the present embodiment, it is possible to appropriately evaluate the difference between the concrete that receives radiation and the concrete that does not receive radiation by performing an impact confirmation test.
 なお、上記実施形態においては、供給するスイープガスをヘリウムガスとしたが、これに限られず、使用目的に応じて、適宜不活性ガス等を用いることも可能である。 In the above embodiment, the supplied sweep gas is helium gas. However, the present invention is not limited to this, and an inert gas or the like can be appropriately used according to the purpose of use.
 また、上記実施形態においては、不要なガスの例として、水素ガスを例に挙げて説明をしたが、これに限られず、水素ガス以外のガスが発生する試験体に適用することも可能である。 Moreover, in the said embodiment, although hydrogen gas was mentioned and demonstrated as an example of unnecessary gas, it is not restricted to this, It is also possible to apply to the test body which generate | occur | produces gas other than hydrogen gas. .
 また、上記実施形態においては、試験体の例として、コンクリート試験体を例に挙げて説明をしたが、これに限られず、乾燥を防ぐ必要のある各種試験体に適用することも可能である。 In the above embodiment, the concrete test body is described as an example of the test body. However, the present invention is not limited to this, and the present invention can be applied to various test bodies that need to prevent drying.
 さらに、上記実施形態では、試験容器を内筒容器と外筒容器との組み合わせとしたが、これに限られるものではなく、例えば、スイープガスが流入及び流出する発生ガス混合部と、この発生ガス混合部に直径約φ1mmのガス抜き穴を介して接続する試験体格納部とを有する一体的な構造としてもよい。 Furthermore, in the above-described embodiment, the test container is a combination of the inner cylinder container and the outer cylinder container. However, the present invention is not limited to this. For example, the generated gas mixing section into which the sweep gas flows in and out, and the generated gas It is good also as an integral structure which has the test body storage part connected to a mixing part through a gas vent hole with a diameter of about φ1 mm.
(第1実験例)
 次に、本実施形態の試験容器を用いた試験方法について説明をする。第1実験例として本発明の試験容器の乾燥防止効果を確認する事前確認試験について説明をする。
(First Experiment Example)
Next, a test method using the test container of this embodiment will be described. A preliminary confirmation test for confirming the drying prevention effect of the test container of the present invention will be described as a first experimental example.
1.試験の目的
 照射試験中に発生する水素ガスを強制的に排出する目的で、湿度0%のヘリウムガスが約60cc/minの速度で試験容器内に流される。ヘリウムガスが直接コンクリート試験体に当たることにより懸念される試験体の極度の乾燥を防ぐための対策として計画された、試験体のセミシール化の有効性を確認する。 
1. Purpose of the test In order to forcibly discharge the hydrogen gas generated during the irradiation test, helium gas with a humidity of 0% is flowed into the test container at a rate of about 60 cc / min. Confirm the effectiveness of semi-sealing of the test specimen, which is planned as a measure to prevent extreme drying of the test specimen, which is a concern when helium gas directly hits the concrete specimen.
2.試験の概要
2.1 セミシール容器(図1参照)
 (1)材料:SUS304
 (2)サイズ
 内径:φ50.4mm
 容器内上部空間(試験体上面と内筒容器上壁との間隔)の高さ:7mm
 発生ガス混合エリア(発生ガス混合部10c)の高さ:25mm
 (3)構造:上部にφ1mmの穴を設け、それ以外は全て密閉
2. Exam overview
2.1 Semi-sealed container (see Fig. 1)
(1) Material: SUS304
(2) Size Inner diameter: φ50.4mm
Height of the upper space in the container (the distance between the upper surface of the specimen and the upper wall of the inner cylinder container): 7 mm
Generated gas mixing area (generated gas mixing part 10c) height: 25 mm
(3) Structure: φ1mm hole is provided in the upper part, and all others are sealed.
2.2 コンクリート試験体
 (1)調合:照射試験用コンクリート試験体と同一材料、同一調合、同一製作方法
 (2)サイズ:φ50×100(ダミー試験体:φ50×25)
2.2 Concrete specimen (1) Mixing: Same material, same composition and same manufacturing method as irradiation test concrete specimen (2) Size: φ50 × 100 (Dummy specimen: φ50 × 25)
2.3 試験パラメータ及び試験体数
 表2は、試験パラメータ及び試験体数を示す表である。
2.3 Test parameters and number of test specimens Table 2 shows the test parameters and the number of test specimens.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
2.4 試験方法(図3参照)
 実験ケースは、恒温・恒湿槽内に設置したセミシール容器に0%RHのヘリウムガスを60cc/minで供給し、水蒸気と混合したガスをセミシール容器から直接恒温・恒湿槽外部へ排気する構成とした。
2.4 Test method (see Fig. 3)
The experiment case is configured to supply 0% RH helium gas at 60cc / min to a semi-sealed container installed in a constant temperature / humidity chamber and exhaust the gas mixed with water vapor directly from the semi-sealed container to the outside of the constant temperature / humidity chamber. It was.
 また、比較ケース、標準ケースは、それぞれコンクリート試験体を恒温・恒湿槽及び養生室にシール無しで静置した。 Also, in the comparative case and the standard case, the concrete specimens were left in the thermostatic / humidity bath and the curing room without sealing.
2.5 測定項目
 (1)測定項目:質量(試験開始前および30日経過後)
 (2)発生ガス混合エリアからのガス抜き管にトラップを設け、放出ガスの湿度を測定した。
2.5 Measurement Items (1) Measurement Items: Mass (Before test start and after 30 days)
(2) A trap was provided in the gas vent pipe from the generated gas mixing area, and the humidity of the released gas was measured.
 表3は、試験結果を示す表である。 Table 3 is a table showing the test results.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
3.試験結果
 (1)実験ケースと標準ケースの質量変化は、ほぼ同じである。
 (2)比較ケースは、実験ケースや標準ケースと比較して、質量変化が4倍以上大きくなる。
3. Test results (1) The mass changes in the experimental case and the standard case are almost the same.
(2) Compared with the experimental case and the standard case, the change in mass is four times or more larger.
4.結論
 φ1mmの穴のみ開けた容器にコンクリート試験体を封入するセミシール容器は、湿度0%のヘリウムガスによる試験体の極度の乾燥に対する防止策として有効であることを確認した。
4. Conclusion It was confirmed that the semi-sealed container in which the concrete specimen was sealed in a container with only a hole with a diameter of 1 mm was effective as a preventive measure against extreme drying of the specimen with helium gas at 0% humidity.
(第2実験例)
 次に第2実験例として、本発明の試験容器を用いた実際のコンクリート評価について説明をする。
(Second Experimental Example)
Next, actual concrete evaluation using the test container of the present invention will be described as a second experimental example.
1.試験方法
1.1 コンクリート試験体
 コンクリート試験体の調合を表4に示す。試験体の作製に使用した材料は、日本の原子力発電所で一般的に使用されているものの中から選定した。コンクリート試験体の形状は、試験容器の大きさを踏まえ、φ50mm×100mmの円筒形とした。コンクリートは打設後、20℃、60%RHの環境で3か月間の封緘養生を行った後、試験開始まで同環境で気中養生を行った。なお、照射によるコンクリート試験体への影響を比較するため、照射期間中、20℃、60%RHの環境下に暴露した非照射の試験体を用いた試験も実施した。
1. Test method
1.1 Concrete specimens Table 4 shows the mix of concrete specimens. The materials used to make the specimens were selected from those commonly used in Japanese nuclear power plants. The shape of the concrete test specimen was a cylindrical shape of φ50 mm × 100 mm in consideration of the size of the test container. After placing the concrete, it was sealed and cured for 3 months in an environment of 20 ° C and 60% RH, and then air-cured in the same environment until the start of the test. In order to compare the effects of irradiation on concrete specimens, tests using non-irradiated specimens exposed to an environment of 20 ° C and 60% RH during the irradiation period were also conducted.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
1.2 照射設備
 照射試験は、日本原子力研究開発機構大洗研究開発センターの材料試験炉(JMTR)を使用して行った。
1.2 Irradiation equipment Irradiation tests were conducted using a material testing reactor (JMTR) of the Oarai Research and Development Center, Japan Atomic Energy Agency.
1.3 照射試験容器
 本試験では、上部にφ1mmの穴を設け、それ以外は全て密閉された構造を有する直径60mm、高さ約1mのステンレス製の試験容器を用いた(図1参照)。この試験容器の中に、コンクリート試験体(φ50mm×100mm)4体、熱電対を埋め込んだ温度測定用のコンクリート試験体(φ50mm×25mm)4体、中性子照射量を測定するためのフルエンスモニタ等を装荷した。
1.3 Irradiation test container In this test, a stainless steel test container with a diameter of 60 mm and a height of about 1 m was used (see Fig. 1). In this test vessel, four concrete specimens (φ50mm × 100mm), four concrete specimens for temperature measurement with embedded thermocouples (φ50mm × 25mm), fluence monitor for measuring neutron irradiation, etc. Loaded.
1.4 照射条件
(1)温度
 コンクリート試験体の温度は、日本の原子力発電所の設計規格である社団法人日本機械学会のコンクリート製原子炉格納容器規格で定められている65℃の制限値以下に収めることを目標とした。なお、この65℃という温度制限値は、The American Society of Mechanical Engineers(ASME)のコンクリート製原子炉格納容器に関する規格に示される値(150°F)を踏まえて設定されている。(表5)
1.4 Irradiation conditions (1) Temperature The temperature of the concrete specimen shall be below the limit of 65 ° C stipulated by the Japan Society of Mechanical Engineers' concrete reactor containment standard, which is the design standard for nuclear power plants in Japan. It was a goal. The temperature limit value of 65 ° C is set based on the value (150 ° F) indicated in the American Society of Mechanical Engineers (ASME) standard for concrete reactor containment vessels. (Table 5)
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
(2)中性子照射量
 選定した照射孔における照射条件に基づき、中性子照射量を3水準設定した。3水準のステップごとの目標中性子照射量を表6に示す。最終的な目標中性子照射量は、標準的な沸騰水型原子炉(BWR)の原子炉圧力容器外側における60年分の高速中性子照射量(3.0×1018n/cm2(E>0.1MeV))を超える値とし、ステップ1では10年分、ステップ2では60年分、ステップ3では40年分の中性子照射量を設定した。
(2) Neutron irradiation amount Based on the irradiation conditions in the selected irradiation holes, three levels of neutron irradiation amount were set. Table 6 shows the target neutron dose for each of the three levels of steps. The final target neutron dose is 60 years of fast neutron dose outside the reactor pressure vessel of a standard boiling water reactor (BWR) (3.0 x 10 18 n / cm 2 (E> 0.1 MeV)) ) Neutron dose for 10 years in Step 1, 60 years in Step 2, and 40 years in Step 3.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
(3)発生ガス濃度
 コンクリートに放射線を照射すると、コンクリート中の水分が分解し、水素ガス等が発生する。そのため、水素ガス濃度を4%以下に抑えるために、試験容器内に一定流量のキャリアガスを供給し、発生したガスを逃がすこととした。また、発生ガスの濃度を確認するため、定期的に測定を行った。
(3) Concentration of generated gas When radiation is applied to concrete, moisture in the concrete is decomposed and hydrogen gas is generated. Therefore, in order to suppress the hydrogen gas concentration to 4% or less, a carrier gas having a constant flow rate is supplied into the test container and the generated gas is allowed to escape. Moreover, in order to confirm the density | concentration of generated gas, it measured regularly.
1.5 測定項目
 照射中の測定項目及び照射後のコンクリート試験体を用いた測定項目を以下に示す。
(1)照射中:温度、中性子照射量、発生ガス濃度(水素ガス、酸素ガス、窒素ガス)
(2)照射後:圧縮強度、静弾性係数、寸法、外観、走査型電子顕微鏡(SEM)観察
1.5 Measurement items The measurement items during irradiation and the measurement items using the concrete specimen after irradiation are shown below.
(1) During irradiation: temperature, neutron irradiation amount, generated gas concentration (hydrogen gas, oxygen gas, nitrogen gas)
(2) After irradiation: compressive strength, static elastic modulus, dimensions, appearance, scanning electron microscope (SEM) observation
2.測定結果
 照射中の測定結果の一覧を表7に示す。
2. Measurement results Table 7 shows a list of measurement results during irradiation.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
(1) 温度
 照射中のコンクリート試験体の温度は、すべてのステップで温度制限値(65℃)以下を満足した。
(1) Temperature The temperature of the concrete specimen during irradiation satisfied the temperature limit value (65 ℃) or less at all steps.
(2) 中性子照射量
 中性子照射量を解析により算出するとともに、フルエンスモニタの放射化量から得られた中性子照射量により解析結果を補正した。
(2) Neutron irradiation amount The neutron irradiation amount was calculated by analysis, and the analysis result was corrected by the neutron irradiation amount obtained from the activation amount of the fluence monitor.
 高速中性子照射量は、すべてのステップで目標値を上回ることができた。また、40年を想定していたステップ3においても、標準的なBWRの原子炉圧力容器外側における60年分の高速中性子照射量(3.0×1018n/cm2(E>0.1MeV))を超えていた。最大高速中性子照射量は12.0×1018n/cm2(E>0.1MeV)であった。 The fast neutron irradiation dose exceeded the target value at all steps. Also, in Step 3, which assumed 40 years, the fast neutron dose (3.0 × 10 18 n / cm 2 (E> 0.1MeV)) for 60 years outside the reactor pressure vessel of a standard BWR It was over. The maximum fast neutron dose was 12.0 × 10 18 n / cm 2 (E> 0.1 MeV).
(3) 発生ガス
 照射中に発生した水素ガスと酸素ガスのガス濃度測定結果の一例を図4に示す。水素ガス濃度は、照射開始直後にピークを示し、その後徐々に減少したことから、放射線照射による水の分解が収まっていると考えられる。また、酸素ガス濃度は、照射開始から約100時間後から確認され、約400時間後から徐々に減少した。これらの傾向は、全てのステップで同じ傾向を示した。
(3) Generated gas Fig. 4 shows an example of the gas concentration measurement results of hydrogen gas and oxygen gas generated during irradiation. Since the hydrogen gas concentration showed a peak immediately after the start of irradiation and then gradually decreased, it is considered that the decomposition of water due to the irradiation was stopped. The oxygen gas concentration was confirmed after about 100 hours from the start of irradiation and gradually decreased after about 400 hours. These trends showed the same trend at all steps.
 なお、これらのガス以外に、窒素ガスも測定したが、照射開始時点でごくわずかに検出されただけであった。 In addition to these gases, nitrogen gas was also measured, but only a slight amount was detected at the start of irradiation.
3.照射後の測定結果
(1) 圧縮強度
 高速中性子照射量とコンクリート試験体の圧縮強度との関係を図5に示す。図の縦軸は、非照射試験体の圧縮強度(4体の平均値)に対する照射試験体の圧縮強度の比率を示している。
3. Measurement results after irradiation
(1) Compressive strength Fig. 5 shows the relationship between the fast neutron dose and the compressive strength of the concrete specimen. The vertical axis of the figure shows the ratio of the compression strength of the irradiated specimen to the compressive strength (average value of four specimens) of the non-irradiated specimen.
 この図から明らかなように、照射試験体の圧縮強度は、照射量に関わらず非照射試験体と同等であった。また、本試験の最大照射量である12.0×1018n/cm2(E>0.1MeV)まで、中性子照射量の影響を受けず、ほぼ一定の圧縮強度を示すことが分かった。 As is clear from this figure, the compression strength of the irradiated specimen was equivalent to that of the non-irradiated specimen regardless of the irradiation amount. It was also found that the compressive strength was almost constant without being affected by the neutron dose up to the maximum dose of 12.0 × 10 18 n / cm 2 (E> 0.1 MeV) in this test.
(2) 静弾性係数
 高速中性子照射量とコンクリート試験体の静弾性係数との関係を図6に示す。図の縦軸は、非照射試験体の静弾性係数(4体の平均値)に対する照射試験体の静弾性係数の比率を示している。
(2) Static elastic modulus Figure 6 shows the relationship between the fast neutron dose and the static elastic modulus of the concrete specimen. The vertical axis of the figure shows the ratio of the static elastic modulus of the irradiated specimen to the static elastic modulus (average of four specimens) of the non-irradiated specimen.
 照射試験体の静弾性係数は、標準的なBWRの原子炉圧力容器外側における60年分の高速中性子照射量(3.0×1018n/cm2(E>0.1MeV))程度では非照射試験体と変わりがなかった。6.0×1018n/cm2を超えるとやや低下する傾向が見られるが、コンクリート構造体に影響を与えるほどの低下ではない。 The static elastic modulus of the irradiated specimen is about 60 years of fast neutron dose (3.0 × 10 18 n / cm 2 (E> 0.1MeV)) outside the standard BWR reactor pressure vessel. And there was no change. When it exceeds 6.0 × 10 18 n / cm 2 , there is a tendency to decrease slightly, but it is not a decrease that affects the concrete structure.
(3) 寸法
 照射前後のコンクリート試験体の直径、高さを比較した結果、いずれの試験体も変化率は±0.1%以内で、測定器の測定誤差と同等であり、照射による寸法変化はほとんど無いことが分かった。
(3) Dimensions As a result of comparing the diameters and heights of the concrete specimens before and after irradiation, all specimens have a change rate of within ± 0.1%, which is equivalent to the measurement error of the measuring instrument, and there is almost no dimensional change due to irradiation. I found that there was no.
(4) 外観・走査型電子顕微鏡(SEM)観察
 照射後のコンクリート試験体の外観に変状やひび割れは観察されなかった。さらに、コンクリートを微視的に観察するために、試験体を破砕し、破砕面のSEM観察を行った。この結果、非照射試験体との明らかな違いは観察されなかった。
(4) Appearance / Scanning Electron Microscope (SEM) Observation No deformation or cracks were observed in the appearance of the concrete specimen after irradiation. Furthermore, in order to observe concrete microscopically, the specimen was crushed and SEM observation of the crushed surface was performed. As a result, no clear difference from the non-irradiated specimen was observed.
4.既往の知見との比較
 Hilsdorfらの文献中に掲載されている、中性子照射量と圧縮強度の関係を示した図は、日本の高経年化した原子力発電所のコンクリートの健全性を評価する際に引用されている。
4). Comparison with previous knowledge The figure showing the relationship between neutron irradiation dose and compressive strength, published in Hilsdorf et al., Is used to evaluate the soundness of concrete in aged nuclear power plants in Japan. Quoted.
 図7は照射量の増加に伴い、圧縮強度が低下する傾向を示しているが、プロットされている個々のデータを我々が調査した結果、以下のデータが含まれていることが明らかになった。 Figure 7 shows the tendency of compressive strength to decrease with increasing dose, but as a result of our investigation of the individual data plotted, it was found that the following data was included: .
(a) 照射中の試験体の温度が100℃以上の高温になっている。(約140℃~550℃)
(b) 試験体の大きさが非常に小さい。(一辺が8mm~15mm)
(c) 圧縮強度ではなく、曲げ強度のデータで評価している。
(a) The temperature of the specimen during irradiation is a high temperature of 100 ° C or higher. (About 140 ℃ ~ 550 ℃)
(b) The size of the specimen is very small. (One side is 8mm to 15mm)
(c) Evaluation is based on bending strength data, not compressive strength.
 100℃を超える高温環境下にコンクリートを暴露した場合、圧縮強度が低下することを示す文献は多く存在する。例えば、社団法人日本コンクリート工学協会「コンクリート便覧」では、コンクリートの耐熱性に関して、「圧縮強度の低下は100℃前後までは比較的小さいが、それ以上では加熱温度に反比例して残存圧縮強度比が小さくなる傾向を示す」と結論付ける試験結果の例を示している。 There are many documents that show that compressive strength decreases when concrete is exposed to high temperature environments exceeding 100 ° C. For example, according to the Japan Concrete Institute “Concrete Handbook”, regarding the heat resistance of concrete, “the decrease in compressive strength is relatively small until around 100 ° C, but above that the residual compressive strength ratio is inversely proportional to the heating temperature. An example of a test result that concludes that “it tends to be smaller” is shown.
 一般に、照射密度が大きくなるほど、試験体の温度は高くなり、温度による影響は大きくなる。すなわち、圧縮強度が低下する原因は、照射量だけではなく、照射中の温度の影響も大きい。 Generally, the higher the irradiation density, the higher the temperature of the specimen and the greater the influence of temperature. That is, the cause of the decrease in compressive strength is not only the dose, but also the effect of temperature during irradiation.
 そこで、図7のデータのうち、(a)~(c)に該当するデータをスクリーニングし、再整理した。その結果を図8に示す。これによると、中性子照射量の範囲は限られるが、中性子照射量の増加に伴い、コンクリートの圧縮強度が低下する傾向はないことが分かる。この図に本試験の結果をあわせてプロットした結果、本試験の照射量の範囲では、既往の知見とほぼ同等の傾向となった。 Therefore, the data corresponding to (a) to (c) in the data of FIG. 7 was screened and rearranged. The result is shown in FIG. According to this, although the range of neutron irradiation amount is limited, it turns out that the compressive strength of concrete does not fall with the increase in neutron irradiation amount. As a result of plotting the results of this test together with this figure, the range of irradiation dose in this test showed a tendency similar to the previous findings.
5.まとめ
 以上の結果から、本試験における照射量の範囲では、放射線照射はコンクリートの圧縮強度に大きな影響を及ぼさず、遮へい性能への大きな影響も無いことを確認した。また、本試験においては、放射線による寸法や組織の変化もほとんど生じないことや、放射線分解によるガスの発生挙動等の知見が得られた。これらの知見は、原子力発電所のコンクリート構造物のみならず、放射線を受ける原子力施設等の長期的な健全性評価においても有用な知見であると考えられる。
5. Summary From the above results, it was confirmed that, within the range of irradiation dose in this test, irradiation did not have a significant effect on the compressive strength of the concrete and had no significant effect on the shielding performance. In addition, in this test, knowledge such as the fact that there was almost no change in size and structure due to radiation, and the gas generation behavior due to radiolysis was obtained. These findings are considered to be useful not only for concrete structures of nuclear power plants, but also for long-term soundness assessment of nuclear facilities that receive radiation.

Claims (8)

  1.  スイープガスの供給及び排出が行われる発生ガス混合部と、
     前記発生ガス混合部に隣接して配置され、試験中に試験体から発生するガスを前記発生ガス混合部へ排出するための少なくとも1つの小孔部を有し、前記小孔部以外は前記試験体を密閉して格納する試験体格納部と、
    を備えることを特徴とする試験容器。
    A generated gas mixing section for supplying and discharging a sweep gas;
    It is arranged adjacent to the generated gas mixing part, and has at least one small hole part for discharging the gas generated from the specimen during the test to the generated gas mixing part, and the test is performed except for the small hole part. A specimen storage section for sealing and storing the body;
    A test container comprising:
  2.  前記発生ガス混合部を備え、前記スイープガスの一定方向の流れが内部に形成される外筒容器と、
     前記試験体格納部を備え、前記小孔部を前記スイープガスの流れの下流の方向に向けて前記外筒容器の内部に配置された内筒容器と、
    を備えることを特徴とする請求項1に記載の試験容器。
    An outer tube container that includes the generated gas mixing unit and in which a flow in a certain direction of the sweep gas is formed;
    An inner cylinder container provided inside the outer cylinder container with the test specimen storage section, with the small hole portion directed in the downstream direction of the flow of the sweep gas;
    The test container according to claim 1, comprising:
  3.  前記試験容器は、放射線照射試験用の試験容器であることを特徴とする請求項1または2に記載の試験容器。 The test container according to claim 1 or 2, wherein the test container is a test container for a radiation irradiation test.
  4.  前記試験容器は、加熱試験用の試験容器であることを特徴とする請求項1または2に記載の試験容器。 The test container according to claim 1 or 2, wherein the test container is a test container for a heating test.
  5.  放射線照射試験時又は加熱試験時には、前記試験体から発生するガスにより、前記試験体格納部内の圧力が前記発生ガス混合部内の圧力よりも高くなり、前記小孔部から前記試験体格納部内への前記スイープガスの流入が阻止されることを特徴とする請求項1から4のいずれかに記載の試験容器。 During the radiation irradiation test or the heating test, the gas generated from the test body causes the pressure in the test body storage part to be higher than the pressure in the generated gas mixing part, and the pressure from the small hole part into the test body storage part. The test container according to claim 1, wherein an inflow of the sweep gas is blocked.
  6.  試験体を請求項1から5のいずれかに記載の試験容器に格納し、放射線を照射して放射線照射試験を行い、
     前記試験体を請求項1から5のいずれかに記載の試験容器に格納し、前記放射性照射試験のモニタリング温度で加熱のみを行う照射影響確認試験を行い、
     前記放射線照射試験の結果と前記照射影響確認試験の結果とを比較して、前記試験体への放射線の影響を分離して評価することを特徴とする試験方法。
    The test body is stored in the test container according to any one of claims 1 to 5, and a radiation irradiation test is performed by irradiating with radiation.
    The test body is stored in the test container according to any one of claims 1 to 5, and an irradiation effect confirmation test is performed in which only heating is performed at the monitoring temperature of the radioactive irradiation test,
    A test method characterized in that the result of the radiation irradiation test and the result of the irradiation effect confirmation test are compared to separate and evaluate the influence of radiation on the specimen.
  7.  前記試験体を請求項1から5のいずれかに記載の試験容器に格納せずに、所定の恒湿とした環境下で前記放射性照射試験のモニタリング温度で加熱を行う乾燥影響確認試験をさらに行い、
     前記照射影響確認試験の結果と前記乾燥影響確認試験の結果とを比較して、前記試験体への前記試験容器の影響を分離して評価することを特徴とする請求項6に記載の試験方法。
    Without further storing the test body in the test container according to any one of claims 1 to 5, a drying effect confirmation test is performed in which heating is performed at the monitoring temperature of the radioactive irradiation test in an environment with a predetermined constant humidity. ,
    The test method according to claim 6, wherein the result of the irradiation effect confirmation test and the result of the drying effect confirmation test are compared, and the influence of the test container on the test body is separated and evaluated. .
  8.  前記試験体を請求項1から5のいずれかに記載の試験容器に格納せずに、所定の恒温及び所定の恒湿とした環境下で静置する基本試験をさらに行い、
     前記乾燥影響確認試験の結果と前記基本試験との結果とを比較して、前記試験体への前記温度の影響を分離して評価することを特徴とする請求項7に記載の試験方法。
    Without further storing the test body in the test container according to any one of claims 1 to 5, further conducting a basic test in which the test body is allowed to stand in an environment having a predetermined constant temperature and a predetermined constant humidity,
    The test method according to claim 7, wherein the result of the drying effect confirmation test is compared with the result of the basic test, and the effect of the temperature on the test specimen is separated and evaluated.
PCT/JP2010/004807 2009-07-30 2010-07-29 Test container and test method using same WO2011013376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-177922 2009-07-30
JP2009177922A JP5205644B2 (en) 2009-07-30 2009-07-30 Test container and test method using the test container

Publications (1)

Publication Number Publication Date
WO2011013376A1 true WO2011013376A1 (en) 2011-02-03

Family

ID=43529046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004807 WO2011013376A1 (en) 2009-07-30 2010-07-29 Test container and test method using same

Country Status (2)

Country Link
JP (1) JP5205644B2 (en)
WO (1) WO2011013376A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592357A (en) * 2012-12-12 2014-02-19 青岛理工大学 Precision concrete carbonization measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697446B2 (en) * 2001-08-20 2004-02-24 Korea Atomic Energy Research Institute Instrumented capsule for materials irradiation tests in research reactor
JP2005321209A (en) * 2004-05-06 2005-11-17 Japan Atom Energy Res Inst Neutron irradiation tester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697446B2 (en) * 2001-08-20 2004-02-24 Korea Atomic Energy Research Institute Instrumented capsule for materials irradiation tests in research reactor
JP2005321209A (en) * 2004-05-06 2005-11-17 Japan Atom Energy Res Inst Neutron irradiation tester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592357A (en) * 2012-12-12 2014-02-19 青岛理工大学 Precision concrete carbonization measuring method
CN103592357B (en) * 2012-12-12 2015-07-15 青岛理工大学 Precision concrete carbonization measuring method

Also Published As

Publication number Publication date
JP2011033399A (en) 2011-02-17
JP5205644B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
Hou et al. The mechanism of stress corrosion cracking of Alloy 690TT in a caustic solution containing lead
Stuckert et al. QUENCH-LOCA program at KIT on secondary hydriding and results of the commissioning bundle test QUENCH-L0
Arioka et al. Role of cavity formation in crack initiation of cold-worked carbon steel in high-temperature water
Hózer et al. Ductile-to-brittle transition of oxidised Zircaloy-4 and E110 claddings
JP4901630B2 (en) Method and apparatus for testing fuel cladding
EP0517238A1 (en) Method of and apparatus for estimating remaining service life of material being exposed to irradiation
Kozsda-Barsy et al. Post-test examinations on Zr-1% Nb claddings after ballooning and burst, high-temperature oxidation and secondary hydriding
JP5205644B2 (en) Test container and test method using the test container
Xiong et al. Effects of 100 ppb dissolved oxygen on low-cycle fatigue behaviors of 316LN austenitic stainless steel in borated and lithiated high temperature water and mechanism behind these effects
Fujiwara et al. Experimental Study of the Effect of Radiation Exposure to Concrete.
Whillock et al. Localized corrosion of stainless steel in a nuclear waste cooling water system—Part 1: Crevice corrosion studies
Grosse et al. Neutron imaging investigations of the secondary hydriding of nuclear fuel cladding alloys during loss of coolant accidents
Kasiviswanathan et al. Performance assessment of fuel and core structural materials irradiated in FBTR
Almomani et al. Ductile tearing criteria and failure probability estimation of hydrided Zircaloy-4 cladding under axial loads
Onizawa et al. Improvements to PFM analysis code PASCAL and some case studies on RPV integrity during pressurized thermal shock
Cho et al. Probabilistic Assessment of CANDU Reactor Core for Risk of Pressure Tube Failure due to Presence of In-Service Flaws
RU2409403C1 (en) Method for ignition and explosion prevention in transportation and storage of hydrogen or hydrogenous gas mix disengage materials
Margolin et al. Mechanisms of Stress Corrosion Cracking of Irradiated Austenitic Chromium–Nickel Steels Used for WWER and PWR Vessel Internals
Stuckert et al. Experimental results of the commissioning bundle test QUENCH-L0 performed in the framework of the QUENCH-LOCA program
Nemoto et al. Study on Loss-of-Cooling and Loss-of-Coolant Accidents in Spent Fuel Pool,(2) Fuel cladding oxidation
Lee et al. A study on the reaction of Zircaloy-4 tube with hydrogen/steam mixture
Jacobs The Relationship of Grain Boundary Composition in Irradiated Type 304SS to Neutron Fluence and IASCC
Murugan et al. Irradiation testing of structural materials in fast breeder test reactor
Kim et al. Probabilistic Fracture Mechanics Analysis of Boiling Water Reactor Vessel on Relatively Low Failure Probability Problem Using PROFAS-RV PFM Analysis Code
Gillen et al. 4.4 Manuscript 3: High resolution crystallographic and chemical characterisation of iodine induced stress corrosion crack tips formed in irradiated and non-irradiated zirconium alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804127

Country of ref document: EP

Kind code of ref document: A1