WO2011013361A1 - Treatment liquid for forming protective film for steel member having nitrogen compound layer, and compound layer protective film - Google Patents

Treatment liquid for forming protective film for steel member having nitrogen compound layer, and compound layer protective film Download PDF

Info

Publication number
WO2011013361A1
WO2011013361A1 PCT/JP2010/004781 JP2010004781W WO2011013361A1 WO 2011013361 A1 WO2011013361 A1 WO 2011013361A1 JP 2010004781 W JP2010004781 W JP 2010004781W WO 2011013361 A1 WO2011013361 A1 WO 2011013361A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound layer
protective film
treatment liquid
metal
steel material
Prior art date
Application number
PCT/JP2010/004781
Other languages
French (fr)
Japanese (ja)
Inventor
小西知義
池田芳宏
別府正昭
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Publication of WO2011013361A1 publication Critical patent/WO2011013361A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a hardened steel material used as a mechanical structural component having excellent mechanical strength such as surface pressure strength, wear resistance, bending fatigue strength, a manufacturing method thereof, and a treatment liquid used therefor.
  • nitriding treatment including soft nitriding treatment
  • carburizing and quenching induction hardening, etc.
  • induction hardening etc.
  • a compound layer made of nitride formed on the outermost surface by nitriding treatment is known to have excellent sliding properties, wear resistance, and high seizure resistance (hereinafter referred to as nitrogen compound).
  • nitrogen compound high seizure resistance
  • Called layer effect I a compound layer made of nitride formed on the outermost surface by nitriding treatment
  • nitrogen compound high seizure resistance
  • Called layer effect I in general, nitriding treatment is inferior in surface pressure strength, fatigue strength, etc. compared to carburizing quenching and induction quenching. For example, when a roller pitching test is performed, the nitrogen compound layer peels from the steel substrate.
  • the nitrogen compound layer was widely believed to have a negative effect in fatigue tests at high surface pressures exceeding 2 GPa.
  • the present inventors have found that this factor is not in the compound layer itself but because the hardened layer depth of the substrate supporting the compound layer is shallow. In other words, the nitriding unit alone has insufficient the depth of the hardened layer immediately below it in order to make full use of the good slidability of the outermost compound layer.
  • a steel material containing nitrogen has a finer martensite structure obtained after quenching than a steel material not containing nitrogen, so that the hardness is increased, and the hardening depth is increased by improving the hardenability.
  • the nitriding treatment can also be used as a nitrogen diffusion pretreatment for forming a nitrogen diffusion layer for improving hardenability (hereinafter referred to as effect II by forming a nitrogen compound layer). That is, the characteristics that can be obtained by using this effect II are not due to the action of the nitrogen compound layer itself, but due to the action of diffused nitrogen in the steel immediately below the nitrogen compound layer generated when the nitrogen compound layer is formed.
  • the nitrogen-containing martensite structure obtained by quenching has high surface pressure strength and high fatigue strength due to resistance to temper softening, resistance to crack initiation and growth, in addition to the above-mentioned high hardness and hardenability improvement. It has been known.
  • the quenching temperature When induction hardening is performed as it is after nitriding, the quenching temperature must be at least the temperature Ac3 transformation point at which an austenite structure is formed, and is usually selected from a temperature range of 750 to 1050 ° C.
  • the nitrogen compound layer formed at a nitriding temperature of 570 ° C. is a combination of iron and nitrogen. When reheated to 650 ° C. or higher in an air atmosphere, the nitrogen compound layer undergoes oxidation and decomposes. It is released as a gas and the nitrogen compound layer disappears. This has been reported for a long time (Non-Patent Document 1).
  • the combined heat treatment technique by nitriding and quenching usually uses only the effect II of the nitrogen diffusion layer obtained by nitriding, and does not use the effect I of the nitrogen compound layer formed by nitriding. That is, the nitrogen compound layer does not stop disappearing during quenching, which is a subsequent process of nitriding.
  • the composite heat treatment described in Patent Documents 1 to 5 can be mentioned.
  • Patent Document 6 discloses a composite heat treatment method in which a nitriding treatment is performed at a temperature of 600 ° C. or higher to form a nitrogen compound layer having a thickness of 5 ⁇ m or less, followed by induction hardening to obtain a quenched member having a nitrogen compound layer having a thickness of 2 ⁇ m or less. ing.
  • the reason why the nitriding condition is set to a high temperature of 600 ° C. or higher in the present technology is that a higher concentration of nitrogen diffusion can be expected at the deeper side of the steel material.
  • Patent Document 7 discloses this.
  • Patent Document 8 to be used for both effects I and II, a hard nitride layer is formed on the surface of a steel material, and further, Ti, Zr, Hf, V, Nb, Ta, Cr, W are formed thereon.
  • a hardened steel member is disclosed in which an inorganic compound layer containing at least one metal oxide selected from the group consisting of Mo and Al is formed.
  • Patent No. 3193320 Japanese Patent No. 3327386 Japanese Patent No. 3145517 JP-A-7-90364 JP 2007-154254 A JP 2007-77411 A JP 58-96815 JP 2008-038220 Heat treatment Vol.16 No.4 P206 1976
  • the present invention investigates and elucidates the mechanism by which the nitrogen compound layer obtained by nitriding treatment causes oxidation during the subsequent high-frequency heat treatment, and develops an effective antioxidant that prevents it. Therefore, it is an object of the present invention to provide a method for producing a quenched steel material, a steel material, and a treatment liquid used therefor that prevent oxidation by induction quenching of a compound layer formed on the surface of the steel material by nitriding.
  • the present invention (2) is a non-aqueous treatment liquid for forming a protective film according to claim 1 for protecting the nitride on a nitride layer formed after nitriding treatment on a steel material, At least one dissolved metal selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo
  • a compound layer protective film-forming treatment solution containing an alkoxide, metal acetylacetonate and / or metal carboxylate.
  • the treatment liquid is selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo.
  • At least one dissolved metal alkoxide selected from: metal acetylacetonate and / or metal carboxylate and / or Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Dispersed particles having an average particle diameter of 4 to 40 nm including at least one selected from the group consisting of Al, Sr, Zn, Mg, and Mo; and Si, Ti, Zr, Hf, V, Ta, Ca, And dispersed particles having an average particle diameter of 40 to 400 nm including at least one selected from the group consisting of Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo.
  • the present invention (4) is the compound layer protective film-forming treatment liquid according to the invention (2) or (3), wherein the treatment liquid contains 0.1 to 400 g / L of at least one amine. is there.
  • the compound layer protective film formed from the treatment liquid according to any one of the inventions (2) to (4) is the nitride.
  • the compound layer protective film formed from the treatment liquid according to any one of the inventions (2) to (4) is the nitride.
  • it is heated for 0.3 to 5 seconds until reaching a predetermined heating temperature, and subjected to induction hardening processing at which the reaching temperature is 750 to 860 ° C. It is a hardened steel material.
  • the present invention (6) is an application process in which a steel material having a nitride layer formed on the surface by nitriding treatment is prepared, and the treatment liquid according to any one of the inventions (2) to (4) is applied onto the nitride layer.
  • a method for producing a hardened steel material comprising: heating and induction hardening with an ultimate temperature of 750 to 860 ° C.
  • the protective layer forming film of the present invention is formed on the compound layer obtained by nitriding treatment.
  • the compound layer protective film it is possible to effectively suppress oxidative decomposition of the compound layer due to subsequent induction hardening.
  • the steel member obtained by the present invention maintains the mechanical strength, sliding resistance, wear resistance and the like based on the characteristics of the compound layer as a result of the remaining compound layer having good sliding characteristics.
  • steel members whose hardenability has been improved by the diffused nitrogen can obtain a deep hardening depth and high hardness by induction hardening, and therefore have high mechanical strength in terms of surface pressure strength, wear resistance, and bending fatigue strength. It can be suitably used for machine structural parts that require strength.
  • the steel material to which the present invention is applied is not particularly limited, and examples thereof include carbon steel, low alloy steel, medium alloy steel, high alloy steel, cast iron and the like.
  • a preferable material in terms of cost is carbon steel, low alloy steel, or the like.
  • carbon steel for machine structural use (S20C to S58C) is suitable as carbon steel, and nickel chrome steel (SNC 236 to 836), nickel chrome molybdenum steel (SNCM 220 to 815), chrome, etc. as low alloy steel.
  • Molybdenum steel (SCM 415 to 445, 822), chromium steel (SCr 415 to 445), manganese steel for mechanical structure (SMn 420 to 443), manganese chrome steel (SMnC 420, 443) and the like are suitable.
  • a tempered steel material H material
  • a tempered steel material that has not been tempered and remains in a ferrite-pearlite structure
  • alloy steel tends to have higher surface hardness
  • a sufficiently deep hardening depth can be obtained even with carbon steel because of the effect of improving the hardenability of effect II by nitrogen.
  • due to the effect II by nitrogen it is not always necessary to use tempered steel, and even a non-tempered steel of ferrite-pearlite structure can provide sufficient mechanical strength.
  • the nitrogen compound layer on the surface of the steel material is obtained by a surface hardening treatment that diffuses active nitrogen on the surface of the steel material to generate a hard and stable nitride.
  • a nitrogen compound layer it is usually composed mainly of Fe as a base material component, and a nitride containing Ti, Zr, Mo, W, Cr, Mn, Al, Ni, C, B, Si, etc. It is preferable that it is a layer.
  • a nitrogen compound layer having an effect I such as salt bath nitriding treatment such as tuftride treatment, isonite treatment, and pulsonite treatment, gas soft nitriding treatment, ion nitriding treatment, plasma nitriding treatment, and nitrogen immediately below the nitrogen compound layer
  • Any nitriding method can be used as long as it is a method in which a region in which is diffused.
  • the nitriding heat treatment temperature for forming the nitrogen compound layer for achieving the effect I is preferably 600 ° C. or lower, more preferably 580 ° C. or lower, and further preferably 570 ° C. or lower.
  • the thickness of the nitrogen compound layer obtained at a processing temperature exceeding 600 ° C. is increased, the effect I can no longer be expected because the hardness decreases.
  • a minimum is not specifically limited, For example, it is 350 degreeC.
  • the thickness of the nitrogen compound layer obtained by nitriding before induction hardening is not particularly limited, but it is usually sufficient if it is formed with a thickness of 1 to 30 ⁇ m, more preferably 2 to 20 ⁇ m, and even more preferably 3 ⁇ 15 ⁇ m.
  • a protective film is formed using a non-aqueous treatment liquid for protecting the nitrogen compound layer.
  • This treatment liquid is a non-aqueous treatment liquid, and a metal group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo It is preferable to contain at least one dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate selected from among the above.
  • the non-aqueous treatment liquid in the present invention refers to a solvent having a single phase and a water content of 30% by mass or less in the solvent.
  • the concentration containing the dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate is a concentration that allows the compound layer protective film to have a predetermined adhesion amount depending on the coating method and the number of repeated coatings.
  • the content may be 0.5 to 100 g / L.
  • the treatment liquid of the present invention is at least selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. 1 dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate and / or Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn , Dispersed particles having an average particle size of 4 to 40 nm including at least one selected from the group consisting of Mg and Mo, Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb , Cr, W, Al, Sr, Zn, Mg and Mo, and dispersed particles having an average particle size of 40 to 400 nm including at least one selected from the group consisting of Mo, Mo and Mo.
  • the average particle diameter in this specification can be measured, for example using the particle size distribution measuring apparatus by a dynamic light scattering method.
  • Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg and Mo decompose and oxidize the nitrogen compound layer during high-frequency heating performed thereafter. It is the main component of the protective film to prevent, and its oxide is thermally and chemically stable.
  • Si, Ti, Zr, Ce, Cr, W, Al, and Mo are more preferable because the diffusion rate of ions in these metal compounds is small.
  • the main components of the protective film Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo are film forming components and stress relaxation components. It is preferable to be composed of two.
  • the film forming component is at least one selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo.
  • the stress relaxation component of the protective film is selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. It is preferable to contain dispersed particles having an average particle diameter of 40 to 400 nm including at least one kind.
  • oxides, hydroxides, nitrides, fluorides, carbonates, and phosphate compounds can be used as the dispersed particles of the film forming component and the stress relaxation component. Oxide particles are particularly preferable.
  • the film forming component and the stress relaxation component are both incorporated into the film and formed, and the mass ratio of the two in the dry solid state (the dry solid state in the protective film before quenching) is 1:10 to 10 When it is set to 1, the action as a protective film for the nitrogen compound layer is most enhanced.
  • the “dried solid state” in the claims and the present specification refers to an oxide equivalent value assuming that all of the metal-containing components as raw materials are oxides. In practice, there may be components that volatilize or exist in other forms or remain in the form of raw material components. However, the ⁇ dry solid state '' in the claims and the specification is only It is an assumed value (theoretical value) on a raw material basis.
  • the technique described in Japanese Patent Application Laid-Open No. 2008-038220 is not necessarily sufficient for preventing the oxidation of the nitrogen compound layer.
  • a part of the surface layer of the nitrogen compound layer is oxidatively decomposed after high-frequency heating.
  • the role required of the protective film is not only to prevent decomposition and oxidation of the nitrogen compound layer that occurs during high-frequency heating performed after the formation of the protective film, but first of all.
  • the nitrogen compound layer has higher corrosion resistance than the iron base itself, it decomposes and oxidizes when it is heated to 50 ° C or higher, especially during wet semi-drying, until the treatment solution is applied and fixed and dried as a protective film.
  • Cheap When wet with a temperature load of about 50 to 200 ° C, it is wet, so in some cases, decomposition and oxidation of the nitrogen compound layer occur compared to the case of high-frequency heating load with a dry protective film performed at 750 to 860 ° C. It becomes easy. From the point of protection of the nitrogen compound layer, it was found that decomposition and oxidation of the compound layer are effectively suppressed when the solvent of the treatment liquid is a non-aqueous organic solvent.
  • the non-aqueous processing liquid is composed of a single phase solvent, and the water content in the solvent is 30% by mass or less, more preferably 10% by mass or less, and further preferably 2% by mass. % Or less.
  • the non-aqueous solvent is not particularly limited as long as it dissolves metal alkoxide, metal acetylacetonate, and / or metal carboxylate, and examples thereof include non-polar hydrocarbons such as hexane, octane, benzene, toluene, and tetralin.
  • non-polar hydrocarbons such as hexane, octane, benzene, toluene, and tetralin.
  • acetylacetone, methanol, ethanol, propanol, propionic acid, ethyl acetate, butyl acetate and the like can be used. These may be used alone or in combination of two or more depending on the type of metal alkoxide, metal acetylacetonate, or metal carboxylate.
  • the treatment liquid of the present invention preferably further contains 0.1 to 400 g / L of amines. More preferably, it is 0.5 to 200 g / L, and still more preferably 1 to 100 g / L.
  • the amines also have high adsorptivity to the surface of the nitrogen compound layer until the dried compound layer protective film is fixed from the treatment liquid, and effectively suppress the dissolution of the compound layer. It has in processing liquid.
  • These amines also have an effect of suppressing oxidation / decomposition of the nitrogen compound layer during high-frequency heating. As a mechanism for this, the present inventors have released nitrogen during high-frequency heating, and the nitrogen is on the nitrogen compound layer side. I guess to spread. These amines only need to be compatible with the organic solvent of the treatment liquid used.
  • an antifoaming agent or a surfactant called a wettability improver for obtaining a uniform film on the surface to be coated, a thickener, and other organic / inorganic additions are appropriately supplemented. It can also be added.
  • the method for applying the treatment liquid is not particularly limited, and dip coating, spin coating, spraying, brushing, and the like can be used.
  • the coating drying / firing temperature at the time of application is preferably 60 to 550 ° C., more preferably 100 to 400 ° C., and further preferably 120 to 300 ° C.
  • the heating time may be 30 seconds to 60 minutes, for example, and it may be sufficiently solidified, dried and fixed by exposure to the atmosphere.
  • the atmosphere during drying is preferably an inert atmosphere, but may be an air atmosphere.
  • air-drying is performed at room temperature or below 50 ° C, and then firing at a predetermined temperature is adopted. Also good.
  • coating and drying may be repeated a plurality of times to adjust the film thickness.
  • the compound layer protective film is formed by coating Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, and the like on a nitride layer formed after nitriding treatment on a steel material as a dry solid state. Containing at least one metal selected from the group consisting of Cr, W, Al, Sr, Zn, Mg, and Mo, and 0.05 to 3 g / m 2 in total in terms of the metal Formed in range. More preferably, it is 0.1 to 1 g / m 2 .
  • Protective effect of total nitride layer is less than 0.05 g / m 2 of the metal basis is insufficient, also already effective economically undesirable to saturate it exceeds 30000 mg / m 2.
  • the film thickness is about 2 to 4 ⁇ m, which is overwhelmingly thinner than Patent Document 7 covering a millimeter-order film and does not impair hardenability. It is thick.
  • induction hardening performed after forming the compound layer protective film it is subjected to induction heating by heating for 0.3 to 5 seconds so as to reach a predetermined heating temperature set at 750 to 860 ° C. After reaching a predetermined temperature, it is immediately cooled by a coolant, whereby a fine martensitic structure containing nitrogen can be obtained.
  • a more preferable heating temperature is 770 to 840 ° C.
  • a further preferable heating temperature is 780 to 830 ° C.
  • the heating time is more preferably 0.8 to 3 seconds, and further preferably 1 to 2 seconds.
  • the heating exceeds 860 ° C., the effect of the compound layer protective film is no longer effective, and the decomposition of the compound layer can no longer be suppressed, and excessive residual austenite tends to be generated in the martensite structure immediately below the compound layer. It is not preferable. Even if the heating time is 0.3 seconds or less, nitrogen is diffused, but it is not sufficiently austenitized, resulting in insufficient quenching. A heating time exceeding 5 seconds is not preferable because the effect of the heating time is almost saturated and the function of the compound layer protective film is lowered.
  • the nitrogen compound layer is sufficiently suppressed from oxidation and decomposition even when the atmosphere during high-frequency heating is in the air.
  • the atmosphere during high-frequency heating may be a vacuum atmosphere, an inert atmosphere with argon gas or nitrogen gas, a low oxygen atmosphere, a hydrocarbon-based reducing atmosphere, an ammonia gas atmosphere, or the like. it can.
  • a multistage temperature raising method including preheating can be appropriately performed. After quenching by high-frequency heating, tempering treatment may be performed under appropriate conditions in the same manner as a normal quenching technique.
  • the compound layer protective film may or may not be removed and can be selected as necessary.
  • the removal of the protective film of the compound layer can be easily performed because the hardness is lower than that of the compound layer, and can be appropriately performed by, for example, lapping, emery paper polishing, buffing, shot blasting, shot pinning, or the like.
  • the nitrogen compound layer remains with the compound layer protective film of the present invention, but the nitrogen compound layer does not necessarily remain 100% of the state of the compound layer before the high frequency heating, and the minimum film thickness is 1 ⁇ m or more.
  • the layer thickness should just be ensured. More preferably, it is 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the hardness of the nitrogen compound layer is HV630 or more in terms of Vickers hardness
  • the hardness region exceeding HV550 of the hard layer containing a fine martensite structure is 200 ⁇ m or more, preferably 400 ⁇ m or more, more preferably 600 ⁇ m or more in terms of the distance from the surface.
  • a steel material having an existing hardness distribution can be obtained.
  • an upper limit is not specifically limited, For example, it is 1.5 mm.
  • the machine part subjected to the treatment of the present invention has high slidability and seizure resistance due to the nitrogen compound layer formed on the outermost surface, and high temper softening resistance due to the nitrogen-containing fine martensite structure. It has crack resistance / crack growth resistance, surface pressure resistance, high fatigue strength, and deep cure depth.
  • the quenching by induction heating by the composite heat treatment according to the present invention is 750 to 860 ° C., and the quenching temperature is sufficiently lower than the induction quenching and carburizing quenching usually performed at temperatures exceeding 900 ° C. This is extremely advantageous in terms of thermal deformation and cracking, and enables a significant reduction in the post-cutting process for adjusting the dimensional accuracy performed after general induction hardening or carburizing and quenching.
  • the steel material to which the present invention is applied is not necessarily required to use a tempered steel because of the effect of improving the hardenability of the effect II caused by nitrogen. Sufficient mechanical strength can be obtained even with steel.
  • alloy steel tends to have a slightly higher surface hardness
  • a sufficiently deep hardening depth can be obtained even with inexpensive carbon steel due to the effect II of nitrogen.
  • carbon steel for mechanical structures such as S45C is a heat treatment material having a hardness profile with sufficient hardness and sufficient depth.
  • S45C is not necessarily a tempered material, and even if the heat treatment of the present invention is applied to a steel member having a non-tempered ferrite-pearlite structure, sufficient martensitic transformation occurs, and sufficient mechanical properties are obtained. It can be a heat-treated machine part with high strength.
  • the application of the present invention improves the mechanical strength of the parts, reduces the cutting process and switches to inexpensive materials, thereby reducing the size and weight of the entire mechanical parts by downsizing the parts, and nitriding and induction hardening. It is possible to reduce the actual cost by surplus to compensate for the cost increase due to the combined processing.
  • the compound layer protective film of the present invention is formed after nitriding treatment by, for example, laser quenching by short-time heating for a few seconds at the most, or impact quenching for a short heating of several milliseconds.
  • nitriding treatment by, for example, laser quenching by short-time heating for a few seconds at the most, or impact quenching for a short heating of several milliseconds.
  • the hardened steel member according to the present invention is suitable for those used in a high load / high surface pressure region.
  • the shape and part type of the steel member are not particularly limited, and examples thereof include shafts, gears, pistons, shafts, cams, and the like, which are suitable for transmission-related parts and powertrain parts for automobiles and construction machinery.
  • Example 1 SCM440 tempered material having a diameter of 8 mm and a length of 50 mm was used as a base material, and after degreasing and cleaning the surface, salt bath soft nitriding treatment at 560 ° C. for 1 hour in a molten salt bath (Isonite treatment: Nippon Parkerizing Co., Ltd.) And a nitrogen compound layer mainly composed of iron nitride having a thickness of about 7 ⁇ m was formed on the surface of the steel material.
  • Isopropyl alcohol as the main solvent alcohol-dispersed silica sol having an average particle size of 5 to 40 nm (“Colcoat P” manufactured by Colcoat Co.) as the film-increasing component is 20 g / L as silica (9.3 g / L as Si), stress As a relaxing component, isopropyl alcohol-dispersed silica sol having an average particle size of 70 to 100 nm (“IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) as silica is 5 g / L (Si is 2.3 g / L), and monomethylamine is 5 g / L. Each of the treatment liquids containing was prepared.
  • the treatment liquid was applied to the substrate using a dip coating method, and after removing the excess liquid, the process of drying at 50 ° C. ⁇ 10 minutes was repeated twice, and finally, baking was performed at 200 ° C. for 10 minutes.
  • the amount of Si deposited on the substrate was measured with a fluorescent X-ray analyzer, the amount of deposited Si was 310 mg / m 2 .
  • the ratio of the film-forming component / stress-relaxing component was 4 for the calculated silica-forming component and the stress-relaxing component.
  • the heating is stopped immediately after reaching 860 ° C. in 0.8 seconds after the start of heating using an induction hardening apparatus. Then, it was cooled and quenched. Later, the steel surface was shot blasted to remove only the compound layer protective film.
  • Example 2 S45C tempered material having a diameter of 8 mm and a length of 50 mm was used as a base material. After degreasing and cleaning this surface, salt bath soft nitriding treatment (Isonite treatment: Nippon Parkerizing Co., Ltd.) at 560 ° C. in a molten salt bath for 2 hours And a nitrogen compound layer mainly composed of iron nitride having a thickness of about 13 ⁇ m was formed on the surface of the steel material.
  • salt bath soft nitriding treatment Isonite treatment: Nippon Parkerizing Co., Ltd.
  • a treatment solution containing isopropyl alcohol as a main solvent, titanium tetraisopropoxide as a film-increasing component as titanium oxide, 40 g / L (24 g / L as Ti), and 10 g / L of triethylamine was prepared.
  • the treatment liquid was applied to the substrate using the dip coating method, and after removing the excess liquid, the process of drying at 150 ° C. ⁇ 30 minutes was repeated 5 times, and finally, baking was performed at 300 ° C. for 10 minutes.
  • the amount of Ti deposited on the substrate was measured with a fluorescent X-ray analyzer, the amount deposited as Ti was 510 mg / m 2 .
  • the steel material in which the compound layer protective film containing titanium oxide is formed on the nitrogen compound layer is further heated immediately after reaching 820 ° C. in 1.0 second after the start of heating using an induction hardening apparatus. After stopping, it was cooled and quenched. Later, the steel surface was shot blasted to remove the compound layer protective film.
  • Example 3 An S45C non-refined material (ferrite / pearlite structure) having a diameter of 8 mm and a length of 50 mm was used as a base material. After degreasing and cleaning this surface, salt bath soft nitriding treatment (Isonite) at 560 ° C. for 1 hour in a molten salt bath Treatment: manufactured by Nihon Parkerizing Co., Ltd.) and water-cooled to form a nitrogen compound layer mainly composed of iron nitride having a thickness of about 12 ⁇ m on the steel surface.
  • salt bath soft nitriding treatment Isonite
  • molten salt bath Treatment manufactured by Nihon Parkerizing Co., Ltd.
  • Isopropyl alcohol-dispersed silica sol having an average particle size of 40 to 100 nm as a stress relaxation component (Nissan Chemical Industries, Ltd.) using ethanol as a main solvent, tetraethoxysilane as a film thickening component as silica (4.7 g / L as Si), and stress relaxation component
  • a treatment solution containing 40 g / L of silica (“IPA-ST-UP”) manufactured by the company (18.7 g / L as Si) was prepared. This treatment liquid was applied to the substrate using a dip coating method, and after removing excess liquid, baking was performed at 320 ° C. for 10 minutes.
  • the adhesion amount on the substrate was measured with a fluorescent X-ray analyzer, the adhesion amount as Si was 160 mg / m 2 .
  • the ratio of the film-forming component / stress-relaxing component was 0.3 for the calculated silica-forming component and the stress-relaxing component.
  • the heating is stopped immediately after reaching 820 ° C. in 1.0 second after the start of heating using the induction hardening apparatus. Then, it was cooled and quenched. Later, the steel surface was shot blasted to remove the compound layer protective film.
  • Table 1 shows a list of evaluation results.
  • the effective curing depth in the table is the depth (mm) from the surface of the portion having a hardness of Hv550 or higher.
  • FIGS. 1, 2 and 3 show cross-sectional photographs of Example 1, Example 2 and Comparative Example 1, respectively.
  • FIG. 4 shows the cross-sectional hardness distribution of Example 3.

Abstract

Disclosed is a means for preventing oxidation of a compound layer by high-frequency hardening, said compound layer having been formed on the surface of a steel material by nitriding. Specifically disclosed is a treatment liquid for forming a compound layer protective film, which is a nonaqueous treatment liquid for forming a protective film on a nitride layer for the purpose of protecting the compound, said nitride layer having been formed on a steel material after nitriding. The treatment liquid for forming a compound layer protective film is characterized by containing at least one molten metal alkoxide, metal acetylacetonate and/or metal carboxylate of a metal selected from the metal group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg and Mo.

Description

窒素化合物層を有する鉄鋼部材の保護膜形成処理液、および化合物層保護膜Protective film forming treatment liquid for steel member having nitrogen compound layer, and compound layer protective film
 本発明は、面圧強度、耐摩耗性、曲げ疲労強度等の機械的強度に優れた機械構造部品として使用される焼入れ鉄鋼材料、その製造方法およびそれに用いる処理液に関するものである。 The present invention relates to a hardened steel material used as a mechanical structural component having excellent mechanical strength such as surface pressure strength, wear resistance, bending fatigue strength, a manufacturing method thereof, and a treatment liquid used therefor.
 従来、機械的強度の向上のために、鋳鉄や鋼の機械構造部品に窒化処理(軟窒化処理を含む),浸炭焼入れ,高周波焼入れ等の表面硬化処理が施されている。
 このうち、窒化処理により最表面に形成される窒化物からなる化合物層は、摺動性に優れており、摩耗に強く、焼き付き抵抗性が高いことが知られている(以下、これを窒素化合物層による効果Iと呼ぶ)。しかし、一般的に窒化処理は、浸炭焼入れ、高周波焼入れに比較して、面圧強度、疲労強度等において劣っており、例えばローラーピッチング試験を行った場合、窒素化合物層が鋼素地より剥離を生じる場合がある。その為、窒素化合物層は2GPaを越えるような高面圧における疲労試験においては、むしろ悪影響を与える存在であると広く信じられていた。本発明者等は、この要因は化合物層そのものにあるのではなく、化合物層を支える素地の硬化層深さが浅いためであることを見出した。すなわち、窒化処理単体では、最表面の化合物層の良好な摺動性を十分に生かす為には、その直下の硬化層深さが不足していたのである。
Conventionally, in order to improve mechanical strength, surface hardening treatments such as nitriding treatment (including soft nitriding treatment), carburizing and quenching, induction hardening, etc. have been applied to cast iron and steel mechanical structural parts.
Among these, a compound layer made of nitride formed on the outermost surface by nitriding treatment is known to have excellent sliding properties, wear resistance, and high seizure resistance (hereinafter referred to as nitrogen compound). Called layer effect I ). However, in general, nitriding treatment is inferior in surface pressure strength, fatigue strength, etc. compared to carburizing quenching and induction quenching. For example, when a roller pitching test is performed, the nitrogen compound layer peels from the steel substrate. There is a case. For this reason, the nitrogen compound layer was widely believed to have a negative effect in fatigue tests at high surface pressures exceeding 2 GPa. The present inventors have found that this factor is not in the compound layer itself but because the hardened layer depth of the substrate supporting the compound layer is shallow. In other words, the nitriding unit alone has insufficient the depth of the hardened layer immediately below it in order to make full use of the good slidability of the outermost compound layer.
 ところで、窒素を含有する鋼材は、窒素を含有しない鋼材よりも、焼入れ後に得られるマルテンサイト組織が微細になり、そのため硬度は高くなり、また、焼入れ性が向上することによって硬化深さが増大することが知られている。つまり、窒化処理は、焼入れ性向上のための窒素拡散層を形成するための窒素拡散前処理としても利用可能(以下、窒素化合物層を形成することによる効果IIと呼ぶ)である。すなわち、この効果IIを利用し得られる特性とは、窒素化合物層そのものの作用によるものではなく、窒素化合物層を形成する際に生じた窒素化合物層の直下にある鋼材中の拡散窒素の作用によるものである。
 焼入れによって得られた窒素含有のマルテンサイト組織は、上述の高硬度や焼入れ性向上の他に、焼き戻し軟化抵抗性、亀裂発生・成長に対する抵抗故の高面圧強度、高疲労強度を有することが知られている。
By the way, a steel material containing nitrogen has a finer martensite structure obtained after quenching than a steel material not containing nitrogen, so that the hardness is increased, and the hardening depth is increased by improving the hardenability. It is known. That is, the nitriding treatment can also be used as a nitrogen diffusion pretreatment for forming a nitrogen diffusion layer for improving hardenability (hereinafter referred to as effect II by forming a nitrogen compound layer). That is, the characteristics that can be obtained by using this effect II are not due to the action of the nitrogen compound layer itself, but due to the action of diffused nitrogen in the steel immediately below the nitrogen compound layer generated when the nitrogen compound layer is formed. Is.
The nitrogen-containing martensite structure obtained by quenching has high surface pressure strength and high fatigue strength due to resistance to temper softening, resistance to crack initiation and growth, in addition to the above-mentioned high hardness and hardenability improvement. It has been known.
 窒化処理後にそのまま高周波焼入れを行う場合、焼入れ温度は少なくともオーステナイト組織となる温度Ac3変態点以上が必要であり、通常750~1050℃の温度範囲から選択される。窒化温度570℃で形成される窒素化合物層は、鉄と窒素の結合であり、大気雰囲気で650℃以上に再加熱されると酸化を受け分解し、窒素化合物層の窒素は、最表面では窒素ガスとして放出され窒素化合物層が消失してしまう。このことは古くから報告されている(非特許文献1)。 When induction hardening is performed as it is after nitriding, the quenching temperature must be at least the temperature Ac3 transformation point at which an austenite structure is formed, and is usually selected from a temperature range of 750 to 1050 ° C. The nitrogen compound layer formed at a nitriding temperature of 570 ° C. is a combination of iron and nitrogen. When reheated to 650 ° C. or higher in an air atmosphere, the nitrogen compound layer undergoes oxidation and decomposes. It is released as a gas and the nitrogen compound layer disappears. This has been reported for a long time (Non-Patent Document 1).
 窒化処理と焼入れとによる複合熱処理技術は、通常、窒化処理で得られた窒素拡散層による効果IIを利用するのみであり、窒化処理で形成される窒素化合物層の効果Iを利用していない。すなわち窒素化合物層が、窒化処理の後工程である焼入れの際に消失してしまう事を止む無しとしている。この技術に対する開示例は多く、例えば、特許文献1~5の複合熱処理を挙げることができる。 The combined heat treatment technique by nitriding and quenching usually uses only the effect II of the nitrogen diffusion layer obtained by nitriding, and does not use the effect I of the nitrogen compound layer formed by nitriding. That is, the nitrogen compound layer does not stop disappearing during quenching, which is a subsequent process of nitriding. There are many disclosure examples for this technology, and for example, the composite heat treatment described in Patent Documents 1 to 5 can be mentioned.
 特許文献6には、600℃以上の温度で窒化処理を施し5μm以下の窒素化合物層を形成させた後に高周波焼入れを行い、2μm以下の窒素化合物層を有する焼入れ部材を得る複合熱処理方法が開示されている。本技術で窒化条件を600℃以上の高温とする理由は、高温ほど鋼材奥側へ高濃度の窒素拡散が期待できるためであるが、600℃を越える窒化処理温度で得られる窒素化合物層は硬度が低く、効果Iを有さない窒素化合物層である。すなわち、本技術も窒素化合物層による効果IIのみを期待するものであり、2μm以下の残留する窒素化合物層はなくてもよい程度のものである。 Patent Document 6 discloses a composite heat treatment method in which a nitriding treatment is performed at a temperature of 600 ° C. or higher to form a nitrogen compound layer having a thickness of 5 μm or less, followed by induction hardening to obtain a quenched member having a nitrogen compound layer having a thickness of 2 μm or less. ing. The reason why the nitriding condition is set to a high temperature of 600 ° C. or higher in the present technology is that a higher concentration of nitrogen diffusion can be expected at the deeper side of the steel material. Is a nitrogen compound layer having a low effect I. That is, the present technology also expects only the effect II by the nitrogen compound layer, and the remaining nitrogen compound layer of 2 μm or less may be omitted.
 前述のように高面圧における疲労強度においては、窒素化合物層はむしろ悪影響を与える存在であると広く誤信されてきた為に、窒素化合物による効果I、効果IIを兼ね備えようとした技術はほぼ皆無である。このような窒化処理により表面に形成された窒化物層をそのまま高周波焼入れすることによる高温加熱での窒化物層の損傷や消失という問題を解決し、効果I、効果IIを兼ね備えようとした前例のない技術として、窒化処理後の表面上に、酸化ケイ素を成分とするガス窒化・イオン窒化防止剤、浸炭防止剤、酸化防止剤を1~3mmの厚みで被覆し、その後に焼入れを行う方法が、特許文献7に開示されている。 As described above, in fatigue strength at high surface pressure, there has been a widespread misconception that the nitrogen compound layer is rather detrimental, so there is almost no technology that tries to combine the effects I and II with the nitrogen compound. It is. The problem of the damage and disappearance of the nitride layer due to high-temperature heating by induction-hardening the nitride layer formed on the surface by such nitriding treatment as it is is solved and both the effects I and II are attempted. As a non-technical technique, there is a method in which a gas nitriding / ion nitriding inhibitor containing silicon oxide as a component, a carburizing inhibitor, and an antioxidant are coated on the surface after nitriding treatment to a thickness of 1 to 3 mm, followed by quenching. Patent Document 7 discloses this.
 しかし、この方法では、仮に加熱時での酸化現象は防止できても、1mm以上の厚膜のために熱伝導性も低いことから、マルテンサイト変態に必要な焼入れ時の冷却速度が不十分となり、目的とする微細マルテンサイトを得る事は実際には困難であった。 However, in this method, even if the oxidation phenomenon during heating can be prevented, since the thermal conductivity is low due to the thick film of 1 mm or more, the cooling rate during quenching necessary for martensitic transformation becomes insufficient. It was actually difficult to obtain the desired fine martensite.
 また、効果I、IIとも利用しようとした特許文献8には、鉄鋼材料の表面に硬質窒化物層が形成され、さらにその上層として、Ti、Zr、Hf、V、Nb、Ta、Cr、W、Mo及びAlから成る群の中から選択される少なくとも一種の金属酸化物を含む無機化合物層が形成されたことを特徴とする焼入れ鉄鋼部材が開示されている。 Further, in Patent Document 8 to be used for both effects I and II, a hard nitride layer is formed on the surface of a steel material, and further, Ti, Zr, Hf, V, Nb, Ta, Cr, W are formed thereon. A hardened steel member is disclosed in which an inorganic compound layer containing at least one metal oxide selected from the group consisting of Mo and Al is formed.
 この当該特許は中性~アルカリ性の水を溶媒とする「焼入れ表面保護剤」についてのものであるが、必ずしも窒素化合物層の酸化防止に対して十分とは言えず、状況によっては窒素化合物層の表層が酸化分解する場合があった。
特許第3193320号 特許第3327386号 特許第3145517号 特開平7-90364号 特開2007-154254号 特開2007-77411号 特開昭58-96815号 特開2008-038220号 熱処理16巻4号 P206 昭和51年
This patent relates to a “quenched surface protective agent” using neutral to alkaline water as a solvent, but is not necessarily sufficient for preventing oxidation of the nitrogen compound layer. In some cases, the surface layer was oxidatively decomposed.
Patent No. 3193320 Japanese Patent No. 3327386 Japanese Patent No. 3145517 JP-A-7-90364 JP 2007-154254 A JP 2007-77411 A JP 58-96815 JP 2008-038220 Heat treatment Vol.16 No.4 P206 1976
 本発明は上記課題に鑑み、窒化処理によって得られた窒素化合物層が、その後の高周波熱処理の際、酸化を生じるメカニズムを調査・解明し、それを防止する効果的な酸化防止剤を開発するに至り、鉄鋼材料の表面に窒化処理によって形成された化合物層の高周波焼入れによる酸化を防止する焼入れ鉄鋼材料の製造方法、鉄鋼材料およびそれに用いる処理液を提供することを目的としている。 In view of the above problems, the present invention investigates and elucidates the mechanism by which the nitrogen compound layer obtained by nitriding treatment causes oxidation during the subsequent high-frequency heat treatment, and develops an effective antioxidant that prevents it. Therefore, it is an object of the present invention to provide a method for producing a quenched steel material, a steel material, and a treatment liquid used therefor that prevent oxidation by induction quenching of a compound layer formed on the surface of the steel material by nitriding.
 本発明(1)は、鋼材に対し窒化処理後に形成される窒化物層上に乾燥固形状態として被覆されるSi、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の金属を含有する化合物層保護膜であって、その化合物層保護膜が非水系の処理液から該金属換算の合計で0.05~3g/mの範囲で形成され、その後に行う所定の加熱温度に到達するまで0.3~5秒間の加熱を行い、その到達温度が750~860℃である高周波焼入れ時に前記化合物層の分解を抑制することを特徴とする化合物層保護膜である。 In the present invention (1), Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, coated as a dry solid state on a nitride layer formed after nitriding treatment on a steel material, A compound layer protective film containing at least one metal selected from the group consisting of W, Al, Sr, Zn, Mg, and Mo, wherein the compound layer protective film is formed from a non-aqueous treatment liquid. It is formed in a range of 0.05 to 3 g / m 2 in total, and is heated for 0.3 to 5 seconds until reaching a predetermined heating temperature to be performed thereafter, and the reached temperature is 750 to 860 ° C. It is a compound layer protective film that suppresses decomposition of the compound layer during induction hardening.
 本発明(2)は、鋼材に対し窒化処理後に形成される窒化物層上に当該窒化物を保護するための請求項1記載の保護膜を形成するための非水系の処理液であって、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる金属群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレートを含有することを特徴とする化合物層保護皮膜形成処理液である。 The present invention (2) is a non-aqueous treatment liquid for forming a protective film according to claim 1 for protecting the nitride on a nitride layer formed after nitriding treatment on a steel material, At least one dissolved metal selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo A compound layer protective film-forming treatment solution containing an alkoxide, metal acetylacetonate and / or metal carboxylate.
 本発明(3)は、前記処理液が、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレート並びに/或いはSi、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が4~40nmからなる分散粒子と、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が40~400nmからなる分散粒子と、をともに含有し、前者が乾燥固形状態として占める質量と、後者が乾燥固形状態として占める質量との比が1:10~10:1であることを特徴とする、前記発明(2)の化合物層保護皮膜形成処理液である。 In the present invention (3), the treatment liquid is selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. At least one dissolved metal alkoxide selected from: metal acetylacetonate and / or metal carboxylate and / or Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Dispersed particles having an average particle diameter of 4 to 40 nm including at least one selected from the group consisting of Al, Sr, Zn, Mg, and Mo; and Si, Ti, Zr, Hf, V, Ta, Ca, And dispersed particles having an average particle diameter of 40 to 400 nm including at least one selected from the group consisting of Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. ,in front In the compound layer protective film-forming treatment solution of the invention (2), the ratio of the mass occupied by the dry solid state to the mass occupied by the latter as the dry solid state is 1:10 to 10: 1 is there.
 本発明(4)は、前記処理液が、少なくとも1種のアミン類を0.1~400g/L含むことを特徴とする前記発明(2)または(3)の化合物層保護皮膜形成処理液である。 The present invention (4) is the compound layer protective film-forming treatment liquid according to the invention (2) or (3), wherein the treatment liquid contains 0.1 to 400 g / L of at least one amine. is there.
 本発明(5)は、窒化処理により表面に窒化物層が形成された鋼材において、前記発明(2)~(4)のいずれか一つの処理液から形成された化合物層保護膜が当該窒化物層上に形成された状態で、所定の加熱温度に到達するまで0.3~5秒間の加熱を行い、その到達温度が750~860℃である高周波焼入れ処理が施されたものであることを特徴とする焼き入れ鋼材である。 According to the present invention (5), in the steel material having a nitride layer formed on the surface by nitriding treatment, the compound layer protective film formed from the treatment liquid according to any one of the inventions (2) to (4) is the nitride. In a state where it is formed on the layer, it is heated for 0.3 to 5 seconds until reaching a predetermined heating temperature, and subjected to induction hardening processing at which the reaching temperature is 750 to 860 ° C. It is a hardened steel material.
 本発明(6)は、窒化処理により表面に窒化物層が形成された鋼材を準備し、前記発明(2)~(4)のいずれか一つの処理液を窒化物層上に適用する適用工程と、適用工程後に処理液を乾燥させ、窒化物層上に化合物層保護膜を形成する保護膜形成工程と、保護膜形成工程後に、所定の加熱温度に到達するまで0.3~5秒間の加熱を行い、その到達温度が750~860℃である高周波焼入れ処理と、を有することを特徴とする焼き入れ鋼材の製造方法である。 The present invention (6) is an application process in which a steel material having a nitride layer formed on the surface by nitriding treatment is prepared, and the treatment liquid according to any one of the inventions (2) to (4) is applied onto the nitride layer. A protective film forming step of drying the treatment liquid after the application step and forming a compound layer protective film on the nitride layer; and after the protective film forming step, 0.3 to 5 seconds until a predetermined heating temperature is reached. A method for producing a hardened steel material, comprising: heating and induction hardening with an ultimate temperature of 750 to 860 ° C.
 本発明の金属の窒素化合物層を有する鉄鋼部材の化合物層を高温酸化分解から保護する保護膜形成処理液、および化合物層保護膜によれば、窒化処理によって得られた化合物層上に本発明の化合物層保護膜を形成することにより、その後の高周波焼入れによる化合物層の酸化分解を効果的に抑制可能である。本発明によって得られた鉄鋼部材は、良好な摺動特性を有する化合物層が残存する結果、化合物層の特性に基づく機械的強度や耐摺動性,耐摩耗性等が維持される。さらに、拡散した窒素により焼入れ性が向上している鉄鋼部材は、高周波焼入れにより深い硬化深さ、及び高い硬度を得ることができるため、面圧強度、耐摩耗性、曲げ疲労強度について高い機械的強度を要求する機械構造部品用途に対し好適に利用可能である。 According to the protective film forming treatment liquid for protecting a compound layer of a steel member having a metal nitrogen compound layer of the present invention from high-temperature oxidative decomposition, and the compound layer protective film, the protective layer forming film of the present invention is formed on the compound layer obtained by nitriding treatment. By forming the compound layer protective film, it is possible to effectively suppress oxidative decomposition of the compound layer due to subsequent induction hardening. The steel member obtained by the present invention maintains the mechanical strength, sliding resistance, wear resistance and the like based on the characteristics of the compound layer as a result of the remaining compound layer having good sliding characteristics. Furthermore, steel members whose hardenability has been improved by the diffused nitrogen can obtain a deep hardening depth and high hardness by induction hardening, and therefore have high mechanical strength in terms of surface pressure strength, wear resistance, and bending fatigue strength. It can be suitably used for machine structural parts that require strength.
 本発明の適用対象となる鉄鋼材料は、特に限定されず、例えば、炭素鋼、低合金鋼、中合金鋼、高合金鋼、鋳鉄等を挙げることができる。コストの点から好ましい材料は、炭素鋼や低合金鋼等である。例えば、炭素鋼としては機械構造用炭素鋼鋼材(S20C~S58C)が好適であり、低合金鋼としては、ニッケルクロム鋼鋼材(SNC236~836)、ニッケルクロムモリブデン鋼鋼材(SNCM220~815)、クロムモリブデン鋼鋼材(SCM415~445、822)、クロム鋼鋼材(SCr415~445)、機械構造用マンガン鋼鋼材(SMn420~443)、マンガンクロム鋼鋼材(SMnC420、443)等が好適である。これらの鋼材は、必ずしも調質を行うことによって焼入れ性を保証した調質鋼材(H材)を用いる必要はなく、調質されていないフェライト-パーライト組織ままのならし鋼材を用いてもよい。また、本発明では合金鋼の方が高い表面硬度が得られる傾向はあるものの、窒素による効果IIの焼入れ性向上作用の為、炭素鋼であっても十分に深い硬化深さが得られる。さらに本発明では窒素による効果IIにより、必ずしも調質鋼を用いる必要はなく、非調質鋼であるフェライト-パーライト組織の鋼でも十分な機械強度を得られる。 The steel material to which the present invention is applied is not particularly limited, and examples thereof include carbon steel, low alloy steel, medium alloy steel, high alloy steel, cast iron and the like. A preferable material in terms of cost is carbon steel, low alloy steel, or the like. For example, carbon steel for machine structural use (S20C to S58C) is suitable as carbon steel, and nickel chrome steel (SNC 236 to 836), nickel chrome molybdenum steel (SNCM 220 to 815), chrome, etc. as low alloy steel. Molybdenum steel (SCM 415 to 445, 822), chromium steel (SCr 415 to 445), manganese steel for mechanical structure (SMn 420 to 443), manganese chrome steel (SMnC 420, 443) and the like are suitable. For these steel materials, it is not always necessary to use a tempered steel material (H material) whose hardenability is ensured by tempering, and a tempered steel material that has not been tempered and remains in a ferrite-pearlite structure may be used. Further, in the present invention, although alloy steel tends to have higher surface hardness, a sufficiently deep hardening depth can be obtained even with carbon steel because of the effect of improving the hardenability of effect II by nitrogen. Further, in the present invention, due to the effect II by nitrogen, it is not always necessary to use tempered steel, and even a non-tempered steel of ferrite-pearlite structure can provide sufficient mechanical strength.
 本発明における鉄鋼材料表面の窒素化合物層は、鉄鋼材料の表面に活性窒素を拡散させ、硬質で安定な窒化物を生成する表面硬化処理によって得られる。窒素化合物層である限り特に限定されないが、通常は母材成分であるFeを主体とし、Ti、Zr、Mo、W、Cr、Mn、Al、Ni、C、B、Si等を含む窒化物からなる層であることが好ましい。窒素化合物層の形成方法としては、タフトライド処理、イソナイト処理、パルソナイト処理等の塩浴窒化処理、ガス軟窒化処理、イオン窒化処理、プラズマ窒化処理等、効果Iを有する窒素化合物層およびその直下に窒素が拡散した領域が形成される手法であれば何れの窒化方法でも用いることができる。効果Iを有するための窒素化合物層が形成されるための窒化熱処理温度として、600℃以下であることが好ましく、さらに好ましくは580℃以下、さらに好ましくは570℃以下であることが好ましい。600℃を上回る処理温度で得られる窒素化合物層の厚さは増すが、硬度が低下するため効果Iがもはや期待できなくなる。尚、下限は特に限定されないが、例えば350℃である。
 高周波焼入れ前の窒化処理により得られる窒素化合物層の厚さは特に限定されないが、通常は1~30μmの厚さで形成されていればよく、さらに好ましくは2~20μmであり、さらに好ましくは3~15μmである。
In the present invention, the nitrogen compound layer on the surface of the steel material is obtained by a surface hardening treatment that diffuses active nitrogen on the surface of the steel material to generate a hard and stable nitride. Although it is not particularly limited as long as it is a nitrogen compound layer, it is usually composed mainly of Fe as a base material component, and a nitride containing Ti, Zr, Mo, W, Cr, Mn, Al, Ni, C, B, Si, etc. It is preferable that it is a layer. As a method for forming the nitrogen compound layer, a nitrogen compound layer having an effect I, such as salt bath nitriding treatment such as tuftride treatment, isonite treatment, and pulsonite treatment, gas soft nitriding treatment, ion nitriding treatment, plasma nitriding treatment, and nitrogen immediately below the nitrogen compound layer Any nitriding method can be used as long as it is a method in which a region in which is diffused. The nitriding heat treatment temperature for forming the nitrogen compound layer for achieving the effect I is preferably 600 ° C. or lower, more preferably 580 ° C. or lower, and further preferably 570 ° C. or lower. Although the thickness of the nitrogen compound layer obtained at a processing temperature exceeding 600 ° C. is increased, the effect I can no longer be expected because the hardness decreases. In addition, although a minimum is not specifically limited, For example, it is 350 degreeC.
The thickness of the nitrogen compound layer obtained by nitriding before induction hardening is not particularly limited, but it is usually sufficient if it is formed with a thickness of 1 to 30 μm, more preferably 2 to 20 μm, and even more preferably 3 ~ 15 μm.
 本発明では、鋼材に窒素化合物層を形成後に、この窒素化合物層を保護するための非水系の処理液を用いて保護皮膜を形成する。この処理液は非水系の処理液であって、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる金属群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレートを含有することが好ましい。本発明における非水系の処理液とは、溶媒が単一相からなり、その溶媒中の水の含有量が30質量%以下であるものをいう。 In the present invention, after forming the nitrogen compound layer on the steel material, a protective film is formed using a non-aqueous treatment liquid for protecting the nitrogen compound layer. This treatment liquid is a non-aqueous treatment liquid, and a metal group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo It is preferable to contain at least one dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate selected from among the above. The non-aqueous treatment liquid in the present invention refers to a solvent having a single phase and a water content of 30% by mass or less in the solvent.
 この処理液中に、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレートを含有する濃度は、その塗布法、及びその塗布繰り返し回数によって化合物層保護膜を所定付着量とすることができる濃度であればよく、例えば0.5~100g/Lの含有量とすればよい。 In this treatment solution, at least one selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. The concentration containing the dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate is a concentration that allows the compound layer protective film to have a predetermined adhesion amount depending on the coating method and the number of repeated coatings. For example, the content may be 0.5 to 100 g / L.
 本発明の処理液は、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレート並びに/或いはSi、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が4~40nmからなる分散粒子と、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が40~400nmからなる分散粒子と、をともに含有し、前者が乾燥固形状態として占める質量と、後者が乾燥固形状態として占める質量との比が1:10~10:1であることが好ましい。尚、本明細書における平均粒径は、例えば動的光散乱法による粒径分布測定装置を用いて測定可能である。
 Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoは、その後に行われる高周波加熱時に窒素化合物層の分解や酸化を防ぐための保護膜の主たる成分であり、その酸化物が熱的、化学的に安定なものである。特に、Si、Ti、Zr、Ce、Cr、W、Al、Moは、これら金属化合物中でのイオンの拡散速度が小さいためより好ましい。
The treatment liquid of the present invention is at least selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. 1 dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate and / or Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn , Dispersed particles having an average particle size of 4 to 40 nm including at least one selected from the group consisting of Mg and Mo, Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb , Cr, W, Al, Sr, Zn, Mg and Mo, and dispersed particles having an average particle size of 40 to 400 nm including at least one selected from the group consisting of Mo, Mo and Mo. shape And mass occupied as the ratio of the mass occupied latter as a dry solid state between 1:10 and 10: 1. In addition, the average particle diameter in this specification can be measured, for example using the particle size distribution measuring apparatus by a dynamic light scattering method.
Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg and Mo decompose and oxidize the nitrogen compound layer during high-frequency heating performed thereafter. It is the main component of the protective film to prevent, and its oxide is thermally and chemically stable. In particular, Si, Ti, Zr, Ce, Cr, W, Al, and Mo are more preferable because the diffusion rate of ions in these metal compounds is small.
 保護膜の主成分であるSi、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoは、造膜成分と応力緩和成分の2つから構成されることが好ましい。造膜成分としては、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレート、並びに/或いは、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg、及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が4~40nmからなる分散粒子が好ましい。
 保護膜の応力緩和成分としては、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が40~400nmからなる分散粒子、を含有することが好ましい。
 造膜成分と応力緩和成分の分散粒子は、例えば、酸化物、水酸化物、窒化物、フッ化物、炭酸塩、りん酸塩化合物を用いることができる。特に酸化物粒子が好ましい。
The main components of the protective film, Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo are film forming components and stress relaxation components. It is preferable to be composed of two. The film forming component is at least one selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. Seed dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate, and / or Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Dispersed particles having an average particle diameter of 4 to 40 nm including at least one selected from the group consisting of Zn, Mg, and Mo are preferable.
The stress relaxation component of the protective film is selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. It is preferable to contain dispersed particles having an average particle diameter of 40 to 400 nm including at least one kind.
For example, oxides, hydroxides, nitrides, fluorides, carbonates, and phosphate compounds can be used as the dispersed particles of the film forming component and the stress relaxation component. Oxide particles are particularly preferable.
 応力緩和成分単体のみを塗布しても、平均粒子径が大きいために造膜性に乏しく、皮膜としての連続性・密着性が弱いため、保護皮膜としての作用が不十分となる場合がある。
 造膜成分単体のみを塗布した場合、窒素化合物層上に連続皮膜を形成できるが、乾燥時の大きな体積収縮で生じる保護皮膜内の応力を緩和できず、保護膜に亀裂や剥離が生じる場合がある。
 上記の理由により、造膜成分と応力緩和成分を、共に皮膜内に取り込み形成させ、乾燥固形状態(焼入れ前の保護皮膜内での乾燥固体状態)として占める両者の質量比が1:10~10:1とすることが、最も窒素化合物層に対する保護皮膜としての作用が高くなる。より好ましくは1:5~5:1であり、さらに好ましくは1:3~3:1である。ここで、本特許請求の範囲及び本明細書における「乾燥固体状態」とは、原料である金属含有成分がすべて酸化物になったことを想定した酸化物換算値を指す。尚、実際には、揮発したり他の形態で存在する形態や原料成分の形態で留まる成分も存在することがあるが、本特許請求の範囲及び本明細書における「乾燥固体状態」は、あくまで原料ベースでの想定値(理論値)である。
Even if only the stress relaxation component alone is applied, the average particle size is large, so that the film forming property is poor, and the continuity and adhesion as a film are weak, so that the action as a protective film may be insufficient.
When only the film forming component is applied, a continuous film can be formed on the nitrogen compound layer, but the stress in the protective film caused by large volume shrinkage during drying cannot be relieved, and the protective film may crack or peel. is there.
For the above reasons, the film forming component and the stress relaxation component are both incorporated into the film and formed, and the mass ratio of the two in the dry solid state (the dry solid state in the protective film before quenching) is 1:10 to 10 When it is set to 1, the action as a protective film for the nitrogen compound layer is most enhanced. More preferably, it is 1: 5 to 5: 1, and still more preferably 1: 3 to 3: 1. Here, the “dried solid state” in the claims and the present specification refers to an oxide equivalent value assuming that all of the metal-containing components as raw materials are oxides. In practice, there may be components that volatilize or exist in other forms or remain in the form of raw material components. However, the `` dry solid state '' in the claims and the specification is only It is an assumed value (theoretical value) on a raw material basis.
 前述のように、特開2008-038220号記載の手法では、必ずしも窒素化合物層の酸化防止に対して十分とは言えず、状況によっては高周波加熱後に窒素化合物層の表層の一部が酸化分解する場合があった。本発明者等はその要因を鋭意調査した結果、保護膜に求められる役割は、保護膜形成後に行われる高周波加熱時に生じる窒素化合物層の分解や酸化を防ぐことにあるのみでなく、まず第一に、保護膜そのものの形成時に窒素化合物層の分解や酸化を防ぐことが必須であることを見出した。窒素化合物層は鉄素地そのものよりも耐食性は高いものの、処理液が塗布され保護膜として固着乾燥するまでの、特にウェットの半乾燥で50℃以上に加温されている時、分解や酸化を生じやすい。ウェットで50~200℃程度の温度負荷時は、ウェットである故、場合によっては750~860℃で行われるドライな保護皮膜での高周波加熱負荷の場合より、窒素化合物層の分解や酸化を生じやすくなる。
 この窒素化合物層の保護の点から、処理液の溶媒が非水系の有機溶媒である場合に、化合物層の分解や酸化が効果的に抑制されることを見出した。そのメカニズムは定かではないが、特に有機溶媒の場合、極性が水よりも低く、また揮発しやすくウェットでいる時間が短いため、窒素化合物層の溶解が抑制されると思われる。本発明における非水系の処理液とは、溶媒が単一相からなり、その溶媒中の水の含有量が30質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは2質量%以下である。非水系の溶媒としては、金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレートを溶解するものであればよく、例えば極性のない炭化水素類ヘキサン、オクタン、ベンゼン、トルエン、テトラリン等が挙げられる。その他、例えばアセチルアセトン、メタノール、エタノール、プロパノール、プロピオン酸、酢酸エチル、酢酸ブチルなどを用いることができる。これらは金属アルコキシド、金属アセチルアセトナート、又は金属カルボキシレートの種類に応じて1種、または2種以上を組み合わせて用いることができる。
As described above, the technique described in Japanese Patent Application Laid-Open No. 2008-038220 is not necessarily sufficient for preventing the oxidation of the nitrogen compound layer. Depending on the situation, a part of the surface layer of the nitrogen compound layer is oxidatively decomposed after high-frequency heating. There was a case. As a result of earnest investigations by the inventors, the role required of the protective film is not only to prevent decomposition and oxidation of the nitrogen compound layer that occurs during high-frequency heating performed after the formation of the protective film, but first of all. Furthermore, it has been found that it is essential to prevent decomposition and oxidation of the nitrogen compound layer when forming the protective film itself. Although the nitrogen compound layer has higher corrosion resistance than the iron base itself, it decomposes and oxidizes when it is heated to 50 ° C or higher, especially during wet semi-drying, until the treatment solution is applied and fixed and dried as a protective film. Cheap. When wet with a temperature load of about 50 to 200 ° C, it is wet, so in some cases, decomposition and oxidation of the nitrogen compound layer occur compared to the case of high-frequency heating load with a dry protective film performed at 750 to 860 ° C. It becomes easy.
From the point of protection of the nitrogen compound layer, it was found that decomposition and oxidation of the compound layer are effectively suppressed when the solvent of the treatment liquid is a non-aqueous organic solvent. Although the mechanism is not clear, especially in the case of an organic solvent, the polarity is lower than that of water, and since it is easy to volatilize and has a short wet time, dissolution of the nitrogen compound layer seems to be suppressed. In the present invention, the non-aqueous processing liquid is composed of a single phase solvent, and the water content in the solvent is 30% by mass or less, more preferably 10% by mass or less, and further preferably 2% by mass. % Or less. The non-aqueous solvent is not particularly limited as long as it dissolves metal alkoxide, metal acetylacetonate, and / or metal carboxylate, and examples thereof include non-polar hydrocarbons such as hexane, octane, benzene, toluene, and tetralin. In addition, for example, acetylacetone, methanol, ethanol, propanol, propionic acid, ethyl acetate, butyl acetate and the like can be used. These may be used alone or in combination of two or more depending on the type of metal alkoxide, metal acetylacetonate, or metal carboxylate.
 本発明の処理液は、さらにアミン類を0.1~400g/L含むことが好ましい。より好ましくは、0.5~200g/Lであり、さらに好ましくは1~100g/Lである。アミン類もまた、処理液から乾燥した化合物層保護膜を固着させるまでにおいて、窒素化合物層の表面への吸着性が高く、化合物層の溶解を効果的に抑制する働きを本発明の溶剤系の処理液において有する。またこれらアミン類は、高周波加熱時の窒素化合物層の酸化・分解を抑制する効果も有するが、この機構として本発明者等は高周波加熱時にアミン類が窒素を放出しその窒素が窒素化合物層側へ拡散するためと推測している。このアミン類は、用いる処理液の有機溶媒に相溶するものであればよく、例えば、アンモニア、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン、N,N-ジイソプロピルエチルアミン、ピペリジン、ピペラジン、モルホリン、ピリジン、4-ジメチルアミノピリジン、エチレンジアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミン、アニリン、カテコールアミン、フェネチルアミン等、を使用することができる。これらのいずれもが加熱時に分解や揮発可能なものである。 The treatment liquid of the present invention preferably further contains 0.1 to 400 g / L of amines. More preferably, it is 0.5 to 200 g / L, and still more preferably 1 to 100 g / L. The amines also have high adsorptivity to the surface of the nitrogen compound layer until the dried compound layer protective film is fixed from the treatment liquid, and effectively suppress the dissolution of the compound layer. It has in processing liquid. These amines also have an effect of suppressing oxidation / decomposition of the nitrogen compound layer during high-frequency heating. As a mechanism for this, the present inventors have released nitrogen during high-frequency heating, and the nitrogen is on the nitrogen compound layer side. I guess to spread. These amines only need to be compatible with the organic solvent of the treatment liquid used. For example, ammonia, urea, methylamine, ethylamine, trimethylamine, triethylamine, triethanolamine, N, N-diisopropylethylamine, piperidine, piperazine Morpholine, pyridine, 4-dimethylaminopyridine, ethylenediamine, tetramethylethylenediamine, hexamethylenediamine, aniline, catecholamine, phenethylamine, and the like can be used. Any of these can be decomposed or volatilized when heated.
 なお、本発明の処理液には、消泡剤や被塗面に均一な皮膜を得るための濡性向上剤と呼ばれる界面活性剤、増粘剤、その他の有機/無機添加を補助的に適宜添加することもできる。 In the treatment liquid of the present invention, an antifoaming agent or a surfactant called a wettability improver for obtaining a uniform film on the surface to be coated, a thickener, and other organic / inorganic additions are appropriately supplemented. It can also be added.
 処理液の塗布方法は特に限定されないが、ディップコート法、スピンコート法、スプレー法、刷毛塗りなどを用いることができる。塗布時の皮膜乾燥・焼成温度は、好ましくは60~550℃で行えばよく、より好ましくは100~400℃であり、さらに好ましくは120~300℃である。加温時間は、例えば30秒~60分間とし雰囲気にさらし、十分に固化乾燥・固着させればよい。乾燥時の雰囲気は不活性な雰囲気が好ましいが、大気雰囲気でもよい。鋼部品形状によっては液溜まり部での高温かつ長時間ウェットが保たれる厳しい状態を避けるため、室温や50℃以下において送風乾燥させた後、所定温度で焼成する多段階の加熱方法を採ってもよい。また、所定の膜厚とするために塗布乾燥を複数回繰り返し行い、膜厚調整をしてもよい。 The method for applying the treatment liquid is not particularly limited, and dip coating, spin coating, spraying, brushing, and the like can be used. The coating drying / firing temperature at the time of application is preferably 60 to 550 ° C., more preferably 100 to 400 ° C., and further preferably 120 to 300 ° C. The heating time may be 30 seconds to 60 minutes, for example, and it may be sufficiently solidified, dried and fixed by exposure to the atmosphere. The atmosphere during drying is preferably an inert atmosphere, but may be an air atmosphere. Depending on the shape of the steel part, in order to avoid the severe condition where the wet state is maintained at the liquid reservoir for a long time, air-drying is performed at room temperature or below 50 ° C, and then firing at a predetermined temperature is adopted. Also good. Further, in order to obtain a predetermined film thickness, coating and drying may be repeated a plurality of times to adjust the film thickness.
 本発明における化合物層保護膜は、鋼材に対し窒化処理後に形成される窒化物層上に乾燥固形状態として被覆されるSi、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の金属を含有するものであって、該金属換算の合計で0.05~3g/mの範囲で形成される。より好ましくは0.1~1g/mである。
 該金属換算の合計が0.05g/m未満では窒化物層の保護効果が不十分となり、また、30000mg/mを超えると既に効果が飽和するためコスト的に好ましくない。この該金属換算の合計付着量が30000mg/mの時、その皮膜厚さは2~4μm程度であり、ミリオーダーの皮膜を被覆する特許文献7に比べ圧倒的に薄く、焼入れ性を阻害しない厚さとなっている。
In the present invention, the compound layer protective film is formed by coating Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, and the like on a nitride layer formed after nitriding treatment on a steel material as a dry solid state. Containing at least one metal selected from the group consisting of Cr, W, Al, Sr, Zn, Mg, and Mo, and 0.05 to 3 g / m 2 in total in terms of the metal Formed in range. More preferably, it is 0.1 to 1 g / m 2 .
Protective effect of total nitride layer is less than 0.05 g / m 2 of the metal basis is insufficient, also already effective economically undesirable to saturate it exceeds 30000 mg / m 2. When the total metal deposition amount is 30000 mg / m 2 , the film thickness is about 2 to 4 μm, which is overwhelmingly thinner than Patent Document 7 covering a millimeter-order film and does not impair hardenability. It is thick.
 化合物層保護膜を形成した後に行う高周波焼入れとして、750~860℃に設定された所定の加熱温度に到達するように、0.3~5秒間加熱することによる高周波加熱に供される。所定の温度に到達後は、冷却剤によって直ちに冷却されることによって、窒素を含有する微細なマルテンサイト組織を得ることができる。加熱温度について、より好ましい加熱温度は770~840℃であり、さらに好ましい加熱温度は780~830℃である。また加熱時間について、より好ましい加熱時間は0.8~3秒間で、さらに好ましくは1~2秒間である。
 750℃以下の加熱では窒素が入っているとは言え、この温度では十分にオーステナイト化されないため焼入れ不十分となる。加熱が860℃を上回る温度では、もはや化合物層保護膜の作用が効かなくなり、化合物層の分解を抑制しきれず、また、化合物層直下のマルテンサイト組織中に過剰な残留オーステナイトが発生しやすくなるため好ましくない。加熱時間が0.3秒以下の加熱では窒素が拡散しているとは言え、十分にオーステナイト化されないため焼入れ不十分となる。5秒を上回る加熱時間では、もはや加熱時間の効果がほぼ飽和する上、化合物層保護膜の作用が低下するため好ましくない。
 本発明の化合物層保護膜を用いることにより、高周波加熱時の雰囲気が大気中であっても、窒素化合物層は酸化や分解から十分に抑制される。また、設備導入が可能であれば、高周波加熱時の雰囲気は、真空雰囲気、アルゴンガスや窒素ガスによる不活性雰囲気、低酸素雰囲気、炭化水素系の還元性雰囲気、アンモニアガス雰囲気等で行うこともできる。
 高周波加熱時、処理物が大きい場合などは、予備加熱を含めた多段の昇温法を適宜行うことができる。高周波加熱による焼入れ後は、通常の焼入れ手法と同様に適当な条件にて焼き戻し処理を行ってもよい。
As induction hardening performed after forming the compound layer protective film, it is subjected to induction heating by heating for 0.3 to 5 seconds so as to reach a predetermined heating temperature set at 750 to 860 ° C. After reaching a predetermined temperature, it is immediately cooled by a coolant, whereby a fine martensitic structure containing nitrogen can be obtained. Regarding the heating temperature, a more preferable heating temperature is 770 to 840 ° C., and a further preferable heating temperature is 780 to 830 ° C. The heating time is more preferably 0.8 to 3 seconds, and further preferably 1 to 2 seconds.
Although heating is performed at 750 ° C. or lower, nitrogen is contained, at this temperature, the material is not sufficiently austenitic, and thus quenching is insufficient. When the heating exceeds 860 ° C., the effect of the compound layer protective film is no longer effective, and the decomposition of the compound layer can no longer be suppressed, and excessive residual austenite tends to be generated in the martensite structure immediately below the compound layer. It is not preferable. Even if the heating time is 0.3 seconds or less, nitrogen is diffused, but it is not sufficiently austenitized, resulting in insufficient quenching. A heating time exceeding 5 seconds is not preferable because the effect of the heating time is almost saturated and the function of the compound layer protective film is lowered.
By using the compound layer protective film of the present invention, the nitrogen compound layer is sufficiently suppressed from oxidation and decomposition even when the atmosphere during high-frequency heating is in the air. If equipment can be introduced, the atmosphere during high-frequency heating may be a vacuum atmosphere, an inert atmosphere with argon gas or nitrogen gas, a low oxygen atmosphere, a hydrocarbon-based reducing atmosphere, an ammonia gas atmosphere, or the like. it can.
When the treatment is large at the time of high-frequency heating, a multistage temperature raising method including preheating can be appropriately performed. After quenching by high-frequency heating, tempering treatment may be performed under appropriate conditions in the same manner as a normal quenching technique.
 一連の熱処理終了後、本発明による処理品を機械部品として組み込む際、化合物層保護膜は除去しても除去しなくてもよく、必要に応じて選定することができる。化合物層保護膜の除去は、化合物層に比べ硬度が低いため容易にでき、例えばラッピング処理、エメリー紙研磨、バフ研磨、ショットブラスト、ショットピニング等によって適宜行うことができる。 When the processed product according to the present invention is incorporated as a machine part after a series of heat treatments, the compound layer protective film may or may not be removed and can be selected as necessary. The removal of the protective film of the compound layer can be easily performed because the hardness is lower than that of the compound layer, and can be appropriately performed by, for example, lapping, emery paper polishing, buffing, shot blasting, shot pinning, or the like.
 高周波加熱後、本発明の化合物層保護膜によって窒素化合物層は残存するが、窒素化合物層は高周波加熱前の化合物層状態に対し必ずしも100%残存する必要はなく、最低膜厚として1μm以上の化合物層厚さが確保されていればよい。より好ましくは2μm以上の残存であり、さらに好ましくは3μm以上である。窒素化合物層の酸化を受けた部位が表層に存在する場合、そこは脆く硬度が低いため、前述の化合物層保護膜の除去作業工程を行った場合は、保護膜とともにほとんどが除去されることになる。 After the high frequency heating, the nitrogen compound layer remains with the compound layer protective film of the present invention, but the nitrogen compound layer does not necessarily remain 100% of the state of the compound layer before the high frequency heating, and the minimum film thickness is 1 μm or more. The layer thickness should just be ensured. More preferably, it is 2 μm or more, and more preferably 3 μm or more. When the oxidized layer of the nitrogen compound layer is present on the surface layer, it is brittle and low in hardness. Therefore, when the above-described compound layer protective film removal operation step is performed, most of the protective layer is removed together with the protective film. Become.
 以上のような複合熱処理によって、表面に1~30μmの厚みを有する窒素化合物層を有し、その直下から内部に向かって漸減する硬度分布を有する窒素を含有する微細マルテンサイト組織を含む硬質層を兼ね備え、窒素化合物層の硬度がビッカーズ硬度換算でHV630以上であり、微細マルテンサイト組織を含む硬質層のHV550を越える硬度領域が表面からの距離で200μm以上、好ましくは400μm以上、さらに好ましくは600μm以上存在する硬度分布を持つ鉄鋼材料を得ることができる。尚、上限は特に限定されないが、例えば1.5mmである。 A hard layer containing a fine martensite structure containing nitrogen having a nitrogen compound layer having a thickness of 1 to 30 μm on the surface and having a hardness distribution gradually decreasing from directly below to the inside by the composite heat treatment as described above. In addition, the hardness of the nitrogen compound layer is HV630 or more in terms of Vickers hardness, and the hardness region exceeding HV550 of the hard layer containing a fine martensite structure is 200 μm or more, preferably 400 μm or more, more preferably 600 μm or more in terms of the distance from the surface. A steel material having an existing hardness distribution can be obtained. In addition, although an upper limit is not specifically limited, For example, it is 1.5 mm.
 以上の本発明の処理によって、窒素化合物層の効果I、IIを兼ね備える機械部品が得られる。すなわち、本発明の処理が施された機械部品は、最表面に形成された窒素化合物層による高い摺動性、耐焼付き性を有し、かつ、窒素含有微細マルテンサイト組織による高い焼き戻し軟化抵抗、亀裂発生・亀裂成長抵抗性、耐面圧強度、高疲労強度、深い硬化深さを有している。 By the above-described treatment of the present invention, a mechanical component having both effects I and II of the nitrogen compound layer is obtained. That is, the machine part subjected to the treatment of the present invention has high slidability and seizure resistance due to the nitrogen compound layer formed on the outermost surface, and high temper softening resistance due to the nitrogen-containing fine martensite structure. It has crack resistance / crack growth resistance, surface pressure resistance, high fatigue strength, and deep cure depth.
 本発明による複合熱処理による高周波加熱による焼入れは750~860℃であり、通常900℃を越える温度で行う高周波焼入れや浸炭焼入れに対して、焼入れ温度は十分に低い。これは熱変形や焼き割れにおいて極めて有利であり、一般的な高周波焼入れや浸炭焼入れ後に行う寸法精度調整の為の後切削工程の大幅な低減を可能とするものである。
 先に述べたように本発明の適用対象となる鉄鋼材料は、窒素による効果IIの焼入れ性向上作用の為、必ずしも調質鋼を用いる必要はなく、非調質鋼であるフェライト-パーライト組織の鋼でも十分な機械強度を得られる。また合金鋼の方がやや高い表面硬度が得られる傾向はあるものの、窒素による効果IIにより、安価な炭素鋼であっても十分に深い硬化深さが得られる。例えば、S45Cなどの機械構造用炭素鋼においても、十分な硬度、かつ十分な深さの硬度プロファイルを持つ熱処理材となる。また、そのS45Cでさえ、必ずしも調質材である必要はなく、非調質のフェライト-パーライト組織の鋼部材に本発明の熱処理を適用しても、十分なマルテンサイト変態を生じ、十分な機械的強度を有する熱処理機械部品となりえる。
 以上のように本発明の適用により、部品の機械強度の向上、切削工程の低減や安価な材料への切り替えによって、部品の小型化による機械部品全体の小型・軽量化、および窒化処理と高周波焼入れとの複合処理によるコスト増を補って余るだけの実質コストの低減が可能となる。
The quenching by induction heating by the composite heat treatment according to the present invention is 750 to 860 ° C., and the quenching temperature is sufficiently lower than the induction quenching and carburizing quenching usually performed at temperatures exceeding 900 ° C. This is extremely advantageous in terms of thermal deformation and cracking, and enables a significant reduction in the post-cutting process for adjusting the dimensional accuracy performed after general induction hardening or carburizing and quenching.
As described above, the steel material to which the present invention is applied is not necessarily required to use a tempered steel because of the effect of improving the hardenability of the effect II caused by nitrogen. Sufficient mechanical strength can be obtained even with steel. Further, although alloy steel tends to have a slightly higher surface hardness, a sufficiently deep hardening depth can be obtained even with inexpensive carbon steel due to the effect II of nitrogen. For example, carbon steel for mechanical structures such as S45C is a heat treatment material having a hardness profile with sufficient hardness and sufficient depth. Further, even S45C is not necessarily a tempered material, and even if the heat treatment of the present invention is applied to a steel member having a non-tempered ferrite-pearlite structure, sufficient martensitic transformation occurs, and sufficient mechanical properties are obtained. It can be a heat-treated machine part with high strength.
As described above, the application of the present invention improves the mechanical strength of the parts, reduces the cutting process and switches to inexpensive materials, thereby reducing the size and weight of the entire mechanical parts by downsizing the parts, and nitriding and induction hardening. It is possible to reduce the actual cost by surplus to compensate for the cost increase due to the combined processing.
 本発明の高周波焼入れによる焼入れ手法の置き換えとして、例えば長くとも数秒の短時間加熱によるレーザー焼入れ、あるいは数ミリ秒の短時間加熱となる衝撃焼入れによって、窒化処理後に本発明の化合物層保護皮膜を形成した部品に焼入れを行った場合は、窒化物層は十分に保護され、その層の下の鋼素地部分は用いた焼入れ手法に応じた焼入れ組織を得ることができる。 As a replacement for the quenching method by induction quenching of the present invention, the compound layer protective film of the present invention is formed after nitriding treatment by, for example, laser quenching by short-time heating for a few seconds at the most, or impact quenching for a short heating of several milliseconds. When the obtained parts are quenched, the nitride layer is sufficiently protected, and the steel base portion under the layer can obtain a quenched structure corresponding to the used quenching technique.
 次に、本発明に係る焼入れ鉄鋼材料の用途について説明する。本発明に係る焼入れ鉄鋼部材は、高負荷・高面圧領域で使用されるものに好適である。鉄鋼部材の形状、部品種は特に限定されず、例えば、軸、歯車、ピストン、シャフト、カム等を挙げることができ、自動車や建機のミッション関連部品、パワートレイン用部品に好適である。 Next, the use of the hardened steel material according to the present invention will be described. The hardened steel member according to the present invention is suitable for those used in a high load / high surface pressure region. The shape and part type of the steel member are not particularly limited, and examples thereof include shafts, gears, pistons, shafts, cams, and the like, which are suitable for transmission-related parts and powertrain parts for automobiles and construction machinery.
 以下に本発明の実施形態について実施例を挙げて説明するが、本発明の範囲は、以下の実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to examples, but the scope of the present invention is not limited to the following examples.
<実施例1>
 基材として直径8mm、長さ50mmのSCM440調質材を使用し、この表面を脱脂洗浄したのち、溶融塩浴中において560℃で1時間塩浴軟窒化処理(イソナイト処理:日本パーカライジング(株)製)して油冷し、鋼材表面に厚さ約7μmの窒化鉄を主体とする窒素化合物層を形成した。
<Example 1>
SCM440 tempered material having a diameter of 8 mm and a length of 50 mm was used as a base material, and after degreasing and cleaning the surface, salt bath soft nitriding treatment at 560 ° C. for 1 hour in a molten salt bath (Isonite treatment: Nippon Parkerizing Co., Ltd.) And a nitrogen compound layer mainly composed of iron nitride having a thickness of about 7 μm was formed on the surface of the steel material.
 イソプロピルアルコールを主溶媒とし、増膜性成分として平均粒子径が5~40nmのアルコール分散シリカゾル(コルコート社製「コルコート P」)をシリカとして20g/L(Siとしては9.3g/L)、応力緩和成分として平均粒子径70~100nmのイソプロピルアルコール分散シリカゾル(日産化学工業社製「IPA-ST-ZL」)をシリカとして5g/L(Siとしては2.3g/L)、モノメチルアミン5g/Lを各々含有する処理液を準備した。基材にディップコーティング法を用いてこの処理液を塗布し、余分な液を除去した後に50℃×10分で乾燥させる工程を2回繰り返し、最後に200℃で10分間焼成した。基材上のSi付着量を蛍光X線分析装置で測定したところ、Siとしての付着量は310mg/mであった。この保護皮膜において、計算される造膜成分のシリカと応力緩和成分のシリカについて、造膜成分/応力緩和成分の比率は4であった。 Isopropyl alcohol as the main solvent, alcohol-dispersed silica sol having an average particle size of 5 to 40 nm (“Colcoat P” manufactured by Colcoat Co.) as the film-increasing component is 20 g / L as silica (9.3 g / L as Si), stress As a relaxing component, isopropyl alcohol-dispersed silica sol having an average particle size of 70 to 100 nm (“IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) as silica is 5 g / L (Si is 2.3 g / L), and monomethylamine is 5 g / L. Each of the treatment liquids containing was prepared. The treatment liquid was applied to the substrate using a dip coating method, and after removing the excess liquid, the process of drying at 50 ° C. × 10 minutes was repeated twice, and finally, baking was performed at 200 ° C. for 10 minutes. When the amount of Si deposited on the substrate was measured with a fluorescent X-ray analyzer, the amount of deposited Si was 310 mg / m 2 . In this protective film, the ratio of the film-forming component / stress-relaxing component was 4 for the calculated silica-forming component and the stress-relaxing component.
 このようにしてシリカを含む化合物層保護膜を窒素化合物層上に形成した鋼材に対し、さらに高周波焼入れ装置を使用して加熱開始後0.8秒で860℃に達した後、直ちに加熱を停止して、冷却を行い焼入れを行った。後に鋼材表面をショットブラストし化合物層保護膜のみを除去した。 In this way, for the steel material in which the compound layer protective film containing silica is formed on the nitrogen compound layer, the heating is stopped immediately after reaching 860 ° C. in 0.8 seconds after the start of heating using an induction hardening apparatus. Then, it was cooled and quenched. Later, the steel surface was shot blasted to remove only the compound layer protective film.
<実施例2>
 基材として直径8mm、長さ50mmのS45C調質材を使用し、この表面を脱脂洗浄したのち、溶融塩浴中において560℃で2時間塩浴軟窒化処理(イソナイト処理:日本パーカライジング(株)製)して油冷し、鋼材表面に厚さ約13μmの窒化鉄を主体とする窒素化合物層を形成した。
<Example 2>
S45C tempered material having a diameter of 8 mm and a length of 50 mm was used as a base material. After degreasing and cleaning this surface, salt bath soft nitriding treatment (Isonite treatment: Nippon Parkerizing Co., Ltd.) at 560 ° C. in a molten salt bath for 2 hours And a nitrogen compound layer mainly composed of iron nitride having a thickness of about 13 μm was formed on the surface of the steel material.
 イソプロピルアルコールを主溶媒とし、増膜性成分としてチタンテトライソプロポキシドを酸化チタンとして40g/L(Tiとしては24g/L)、トリエチルアミン10g/Lを各々含有する処理液を準備した。基材にディップコーティング法を用いてこの処理液を塗布し、余分な液を除去した後に150℃×30分で乾燥させる工程を5回繰り返し、最後に300℃で10分間焼成した。基材上のTi付着量を蛍光X線分析装置で測定したところ、Tiとしての付着量は510mg/mであった。 A treatment solution containing isopropyl alcohol as a main solvent, titanium tetraisopropoxide as a film-increasing component as titanium oxide, 40 g / L (24 g / L as Ti), and 10 g / L of triethylamine was prepared. The treatment liquid was applied to the substrate using the dip coating method, and after removing the excess liquid, the process of drying at 150 ° C. × 30 minutes was repeated 5 times, and finally, baking was performed at 300 ° C. for 10 minutes. When the amount of Ti deposited on the substrate was measured with a fluorescent X-ray analyzer, the amount deposited as Ti was 510 mg / m 2 .
 このようにして酸化チタンを含む化合物層保護膜を窒素化合物層上に形成した鋼材に対し、さらに高周波焼入れ装置を使用して加熱開始後1.0秒で820℃に達した後、直ちに加熱を停止して、冷却を行い焼入れを行った。後に鋼材表面をショットブラストし化合物層保護膜を除去した。 In this way, the steel material in which the compound layer protective film containing titanium oxide is formed on the nitrogen compound layer is further heated immediately after reaching 820 ° C. in 1.0 second after the start of heating using an induction hardening apparatus. After stopping, it was cooled and quenched. Later, the steel surface was shot blasted to remove the compound layer protective film.
<実施例3>
 基材として直径8mm、長さ50mmのS45C非調質材(フェライト・パーライト組織)を使用し、この表面を脱脂洗浄した後、溶融塩浴中において560℃で1時間塩浴軟窒化処理(イソナイト処理:日本パーカライジング(株)製)して水冷し、鋼材表面に厚さ約12μmの窒化鉄を主体とする窒素化合物層を形成した。
<Example 3>
An S45C non-refined material (ferrite / pearlite structure) having a diameter of 8 mm and a length of 50 mm was used as a base material. After degreasing and cleaning this surface, salt bath soft nitriding treatment (Isonite) at 560 ° C. for 1 hour in a molten salt bath Treatment: manufactured by Nihon Parkerizing Co., Ltd.) and water-cooled to form a nitrogen compound layer mainly composed of iron nitride having a thickness of about 12 μm on the steel surface.
 エタノールを主溶媒とし、増膜性成分としてテトラエトキシシランをシリカとして10g/L(Siとしては4.7g/L)、応力緩和成分として平均粒子径40~100nmのイソプロピルアルコール分散シリカゾル(日産化学工業社製「IPA-ST-UP」)をシリカとして40g/L(Siとしては18.7g/L)を各々含有する処理液を準備した。基材にディップコーティング法を用いてこの処理液を塗布し、余分な液を除去した後に320℃×10分で焼成した。基材上のSi付着量を蛍光X線分析装置で測定したところ、Siとしての付着量は160mg/mであった。この保護皮膜において、計算される造膜成分のシリカと応力緩和成分のシリカについて、造膜成分/応力緩和成分の比率は0.3であった。 Isopropyl alcohol-dispersed silica sol having an average particle size of 40 to 100 nm as a stress relaxation component (Nissan Chemical Industries, Ltd.) using ethanol as a main solvent, tetraethoxysilane as a film thickening component as silica (4.7 g / L as Si), and stress relaxation component A treatment solution containing 40 g / L of silica (“IPA-ST-UP”) manufactured by the company (18.7 g / L as Si) was prepared. This treatment liquid was applied to the substrate using a dip coating method, and after removing excess liquid, baking was performed at 320 ° C. for 10 minutes. When the Si adhesion amount on the substrate was measured with a fluorescent X-ray analyzer, the adhesion amount as Si was 160 mg / m 2 . In this protective film, the ratio of the film-forming component / stress-relaxing component was 0.3 for the calculated silica-forming component and the stress-relaxing component.
 このようにしてシリカを含む化合物層保護膜を窒素化合物層上に形成した鋼材に対し、さらに高周波焼入れ装置を使用して加熱開始後1.0秒で820℃に達した後、直ちに加熱を停止して、冷却を行い焼入れを行った。後に鋼材表面をショットブラストし化合物層保護膜を除去した。 In this way, for the steel material in which the compound layer protective film containing silica is formed on the nitrogen compound layer, the heating is stopped immediately after reaching 820 ° C. in 1.0 second after the start of heating using the induction hardening apparatus. Then, it was cooled and quenched. Later, the steel surface was shot blasted to remove the compound layer protective film.
<比較例1>
 基材として直径8mm、長さ50mmのSCM440調質材を使用し、この表面を脱脂洗浄したのち、溶融塩浴中において560℃で1時間塩浴軟窒化処理(イソナイト処理:日本パーカライジング(株)製)して油冷し、鋼材表面に厚さ約7μmの窒化鉄を主体とする窒素化合物層を形成した。これに化合物層保護膜を塗布せずに、さらに高周波焼入れ装置を使用して加熱開始後0.8秒で860℃に達した後、直ちに加熱を停止して、冷却を行い焼入れを行った。
<Comparative Example 1>
SCM440 tempered material having a diameter of 8 mm and a length of 50 mm was used as a base material, and after degreasing and cleaning the surface, salt bath soft nitriding treatment at 560 ° C. for 1 hour in a molten salt bath (Isonite treatment: Nippon Parkerizing Co., Ltd.) And a nitrogen compound layer mainly composed of iron nitride having a thickness of about 7 μm was formed on the surface of the steel material. Without applying the compound layer protective film to this, after reaching 860 ° C. in 0.8 seconds after the start of heating using an induction hardening apparatus, heating was immediately stopped, cooling was performed, and quenching was performed.
(評価試験)
 これらの処理を行った鋼材をマイクロカッターで切断し、樹脂中に埋め込み、金属顕微鏡により断面観察を行った。また、この埋め込みサンプルを用いて、マイクロビッカース硬度計を用いて断面硬度測定を行った。
(Evaluation test)
The steel material subjected to these treatments was cut with a microcutter, embedded in a resin, and cross-sectional observation was performed with a metal microscope. Moreover, cross-sectional hardness measurement was performed using this embedded sample using a micro Vickers hardness tester.
 表1に評価の結果一覧を示す。表中の有効硬化深さとは、Hv550以上の硬度を有する部分の表面からの深さ(mm)である。例として図1、図2及び図3にそれぞれ実施例1、実施例2及び比較例1の断面写真をそれぞれ示す。また、図4に実施例3の断面硬度分布を示す。 Table 1 shows a list of evaluation results. The effective curing depth in the table is the depth (mm) from the surface of the portion having a hardness of Hv550 or higher. For example, FIGS. 1, 2 and 3 show cross-sectional photographs of Example 1, Example 2 and Comparative Example 1, respectively. FIG. 4 shows the cross-sectional hardness distribution of Example 3.
 表1より、本発明の実施例1~3においては、いずれも高周波焼入れ後においても表面の窒素化合物層が1μm以上残存している。化合物層保護膜のない比較例1においては、図2のように全面が酸化している様子が観察された。
Figure JPOXMLDOC01-appb-T000001
From Table 1, in Examples 1 to 3 of the present invention, the nitrogen compound layer on the surface remains 1 μm or more even after induction hardening. In Comparative Example 1 without the compound layer protective film, it was observed that the entire surface was oxidized as shown in FIG.
Figure JPOXMLDOC01-appb-T000001
実施例1の鋼材の焼入れ後の窒素化合物層の断面写真Cross-sectional photograph of nitrogen compound layer after quenching of steel material of Example 1 実施例2の鋼材の焼入れ後の窒素化合物層の断面写真Cross-sectional photograph of nitrogen compound layer after quenching of steel of Example 2 比較例1の鋼材の焼入れ後の窒素化合物層の断面写真Cross-sectional photograph of nitrogen compound layer after quenching of steel of Comparative Example 1 実施例3鋼材の断面硬度分布Example 3 Cross-sectional hardness distribution of steel

Claims (6)

  1.  鋼材に対し窒化処理後に形成される窒化物層上に乾燥固形状態として被覆されるSi、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の金属を含有する化合物層保護膜であって、その化合物層保護膜が非水系の処理液から該金属換算の合計で0.05~3g/mの範囲で形成され、その後に行う所定の加熱温度に到達するまで0.3~5秒間の加熱を行い、その到達温度が750~860℃である高周波焼入れ時に前記化合物層の分解を抑制することを特徴とする化合物層保護膜。 Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn coated as a dry solid state on a nitride layer formed after nitriding treatment on a steel material , A compound layer protective film containing at least one metal selected from the group consisting of Mg and Mo, and the compound layer protective film is 0.05 in total in terms of metal from a non-aqueous processing liquid. Formed in a range of ˜3 g / m 2 , and then heated for 0.3 to 5 seconds until reaching a predetermined heating temperature to be performed thereafter, and when the induction temperature is 750 to 860 ° C., A compound layer protective film characterized by suppressing decomposition.
  2.  鋼材に対し窒化処理後に形成される窒化物層上に当該窒化物を保護するための請求項1記載の保護膜を形成するための非水系の処理液であって、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる金属群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレートを含有することを特徴とする化合物層保護皮膜形成処理液。 A non-aqueous treatment liquid for forming a protective film according to claim 1 for protecting a nitride on a nitride layer formed after nitriding treatment on a steel material, wherein Si, Ti, Zr, Hf V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg and Mo, at least one dissolved metal alkoxide selected from the metal group, metal acetylacetonate, and A compound layer protective film-forming treatment liquid characterized by containing a metal carboxylate.
  3.  前記処理液が、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種の溶解した金属アルコキシド、金属アセチルアセトナート及び/又は金属カルボキシレート並びに/或いはSi、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が4~40nmからなる分散粒子と、Si、Ti、Zr、Hf、V、Ta、Ca、Ce、Sc、Nb、Cr、W、Al、Sr、Zn、Mg及びMoからなる群の中から選択される少なくとも1種を含む平均粒径が40~400nmからなる分散粒子と、をともに含有し、前者が乾燥固形状態として占める質量と、後者が乾燥固形状態として占める質量との比が1:10~10:1であることを特徴とする、請求項2に記載の化合物層保護皮膜形成処理液。 The treatment liquid is at least one selected from the group consisting of Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg, and Mo. Dissolved metal alkoxide, metal acetylacetonate and / or metal carboxylate and / or Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr, W, Al, Sr, Zn, Mg And dispersed particles having an average particle diameter of 4 to 40 nm including at least one selected from the group consisting of Mo, Si, Ti, Zr, Hf, V, Ta, Ca, Ce, Sc, Nb, Cr , W, Al, Sr, Zn, Mg and Mo, and dispersed particles having an average particle size of 40 to 400 nm including at least one selected from the group consisting of W, Al, Sr, Zn, Mg and Mo. And a mass occupied by the ratio of the mass of the latter occupied as a dry solid state 1:10 to 10: characterized in that it is a 1, compound layer protective film formation treatment solution according to claim 2.
  4.  前記処理液が、少なくとも1種のアミン類を0.1~400g/L含むことを特徴とする請求項2または3に記載の化合物層保護皮膜形成処理液。 The compound layer protective film-forming treatment liquid according to claim 2 or 3, wherein the treatment liquid contains 0.1 to 400 g / L of at least one amine.
  5.  窒化処理により表面に窒化物層が形成された鋼材において、請求項2~4のいずれか一項に記載された処理液から形成された化合物層保護膜が当該窒化物層上に形成された状態で、所定の加熱温度に到達するまで0.3~5秒間の加熱を行い、その到達温度が750~860℃である高周波焼入れ処理が施されたものであることを特徴とする焼き入れ鋼材。 A steel material having a nitride layer formed on the surface thereof by nitriding, wherein the compound layer protective film formed from the treatment liquid according to any one of claims 2 to 4 is formed on the nitride layer. A hardened steel material that has been subjected to induction hardening at a temperature of 750 to 860 ° C. for 0.3 to 5 seconds until reaching a predetermined heating temperature.
  6.  窒化処理により表面に窒化物層が形成された鋼材を準備し、請求項2~4のいずれか一項記載の処理液を窒化物層上に適用する適用工程と、適用工程後に処理液を乾燥させ、窒化物層上に化合物層保護膜を形成する保護膜形成工程と、保護膜形成工程後に、所定の加熱温度に到達するまで0.3~5秒間の加熱を行い、その到達温度が750~860℃である高周波焼入れ処理と、を有することを特徴とする焼き入れ鋼材の製造方法。
     
    A steel material having a nitride layer formed on the surface by nitriding is prepared, and an application step of applying the treatment liquid according to any one of claims 2 to 4 on the nitride layer, and drying the treatment liquid after the application step A protective film forming step for forming a compound layer protective film on the nitride layer, and after the protective film forming step, heating is performed for 0.3 to 5 seconds until a predetermined heating temperature is reached. A method for producing a quenched steel material, comprising: induction hardening at 860 ° C.
PCT/JP2010/004781 2009-07-31 2010-07-28 Treatment liquid for forming protective film for steel member having nitrogen compound layer, and compound layer protective film WO2011013361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009178496A JP5520536B2 (en) 2009-07-31 2009-07-31 Protective film forming treatment liquid for steel member having nitrogen compound layer, and compound layer protective film
JP2009-178496 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013361A1 true WO2011013361A1 (en) 2011-02-03

Family

ID=43529031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004781 WO2011013361A1 (en) 2009-07-31 2010-07-28 Treatment liquid for forming protective film for steel member having nitrogen compound layer, and compound layer protective film

Country Status (2)

Country Link
JP (1) JP5520536B2 (en)
WO (1) WO2011013361A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886537B2 (en) * 2011-04-18 2016-03-16 日本パーカライジング株式会社 High durability engine valve
JP6321842B2 (en) * 2017-02-23 2018-05-09 シャープ株式会社 Data processing method and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183846A (en) * 1975-01-21 1976-07-22 Hino Motors Ltd
WO1996010710A1 (en) * 1994-10-04 1996-04-11 Nippon Steel Corporation Steel pipe joint having high galling resistance and surface treatment method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328545B2 (en) * 2009-07-31 2013-10-30 日本パーカライジング株式会社 Steel member having nitrogen compound layer and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183846A (en) * 1975-01-21 1976-07-22 Hino Motors Ltd
WO1996010710A1 (en) * 1994-10-04 1996-04-11 Nippon Steel Corporation Steel pipe joint having high galling resistance and surface treatment method thereof

Also Published As

Publication number Publication date
JP5520536B2 (en) 2014-06-11
JP2011032513A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5328545B2 (en) Steel member having nitrogen compound layer and method for producing the same
JP5520535B2 (en) Protective film forming treatment liquid for steel member having nitrogen compound layer, and compound layer protective film
JP4762077B2 (en) Hardening method of steel member, hardened steel member and hardened surface protective agent
JP5322001B2 (en) Steel material, manufacturing method thereof and induction-hardened component
WO2011013559A1 (en) Method of combined heat treatment and quench-hardened steel member
JP5649884B2 (en) Steel member having nitrogen compound layer and method for producing the same
EP2679701B1 (en) Manufacturing method of a nitrided steel member
US20130126048A1 (en) Nitrogen Alloyed Martensitic Stainless Steel and Process
JP2005047001A (en) Method for manufacturing molded part with very high mechanical properties formed by stamping strip of coated rolled steel sheet and more particularly coated hot rolled steel sheet
EP2703516A2 (en) Manufacturing method of cast-iron friction member
CN112041476B (en) Coated steel substrate
JP5520536B2 (en) Protective film forming treatment liquid for steel member having nitrogen compound layer, and compound layer protective film
Writzl et al. Influence of laser-hardening on microstructure and hardness of plasma-nitrided compacted graphite iron
JP2019522722A (en) Method for producing sliding bearing composite material, sliding bearing composite material and sliding element comprising such a sliding bearing composite material
KR102463834B1 (en) Method of carbonitriding process for metal products
JP5886537B2 (en) High durability engine valve
JP5258928B2 (en) Hardening method of steel member, hardened steel member and hardened surface protective agent
CN105369193B (en) A kind of high-carbon steel piece surface processing method
JP4494995B2 (en) Metal surface treatment method
JP5483914B2 (en) Carburized annealed steel strip with good punchability and method for producing the same
KR20140081616A (en) Ultra-high strenth galvinized steel sheet having galvanizing property and adhesion and method for manufacturing the same
JP2015121228A (en) High durability engine valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804112

Country of ref document: EP

Kind code of ref document: A1