WO2011010737A1 - Guide nucleic acid for cleavage of micro-rna - Google Patents

Guide nucleic acid for cleavage of micro-rna Download PDF

Info

Publication number
WO2011010737A1
WO2011010737A1 PCT/JP2010/062470 JP2010062470W WO2011010737A1 WO 2011010737 A1 WO2011010737 A1 WO 2011010737A1 JP 2010062470 W JP2010062470 W JP 2010062470W WO 2011010737 A1 WO2011010737 A1 WO 2011010737A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
microrna
guide nucleic
mir
base sequence
Prior art date
Application number
PCT/JP2010/062470
Other languages
French (fr)
Japanese (ja)
Inventor
正之 梨本
陽史 山田
哲郎 吉田
Original Assignee
学校法人新潟科学技術学園新潟薬科大学
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人新潟科学技術学園新潟薬科大学, 協和発酵キリン株式会社 filed Critical 学校法人新潟科学技術学園新潟薬科大学
Publication of WO2011010737A1 publication Critical patent/WO2011010737A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs

Definitions

  • the present invention relates to a guide nucleic acid for cleaving microRNA useful as a therapeutic agent for diseases, and a method for cleaving microRNA using the same.
  • MicroRNA is a small non-coding single-stranded RNA of about 22 nucleotides that is not translated into protein, and has been confirmed to exist in many organisms including humans (Non-Patent Documents 1 and 2). MicroRNAs are generated from genes that are transcribed into single or clustered microRNA precursors. That is, the primary transcript, primary-microRNA (pri-miRNA), is first transcribed from the gene, and then a characteristic hairpin structure is formed from the pri-miRNA in stepwise processing from the pri-miRNA to the mature microRNA. Precursor-microRNA (pre-miRNA) having a length of about 70 bases is generated. Further, mature microRNA (also simply referred to as microRNA) is generated from pre-miRNA by Dicer-mediated processing (Non-patent Document 3).
  • MicroRNAs are thought to be involved in post-transcriptional control of gene expression by binding to target mRNAs in a complementary manner to suppress translation of mRNA, or by degrading mRNA.
  • miRBase http://microrna.sanger.ac.uk/
  • microRNA database miRBase http://microrna.sanger.ac.uk/
  • Physiologically microRNAs that have been revealed to be involved in diseases such as differentiation into specific functional cells or canceration, especially miR-21, suggesting an association with carcinogenesis There is also. It is known that there is a relationship between microRNA overexpression and disease, and suppressing microRNA expression is useful for the treatment of diseases associated with microRNA overexpression.
  • Non-patent Document 4 Antisense RNA having a sequence complementary to microRNA (Non-patent Document 4) and decoy expression vector having a microRNA recognition sequence (Non-patent Documents 5 and 6) have been developed as suppression of microRNA expression. In both cases, expression is suppressed by hybridization with microRNA, and the microRNA itself is not cleaved.
  • tRNaseZ is one of endonucleases involved in maturation of tRNA (transfer RNA). Usually, tRNA is first transcribed as a precursor tRNA, and then becomes a mature tRNA having a function through a processing process. When the enzyme involved in the processing is a eukaryote, RNaseP is involved in the 5′-side endonuclease, and tRNaseZ is involved in the 3′-side endonuclease (Non-patent Documents 7 and 8). An example of cleaving a specific mRNA artificially using the activity of tRNaseZ has been reported.
  • Non-patent Document 11 From around 2003, research on the concept of cleaving mRNA using endogenous tRNaseZ by introducing a guide nucleic acid from the outside into cells has been proceeding, and synthetic 2'-O-Me with a minimum length of 7 bases Inhibition of the targeted Luciferase gene by introduction of -RNA (Non-patent Document 11), but it is sufficient that the target sequence also has a structure consisting of one stem loop (Micro-Pre-tRNA). It is known (Non-patent Document 12). Furthermore, it is known that a mere 12-18 bp stem structure without even one loop is weak but shows a cleavage activity (Non-patent Document 13).
  • Non-patent Documents 14 and 15 Non-patent Documents 14 and 15
  • tRNaseZ cleaves microRNA.
  • Patent Document 1 a method of cleaving microRNA by introducing an appropriate guide nucleic acid and allowing RNaseP to recognize it is known (Patent Document 1), but this method requires a guide nucleic acid having a length of at least 30 bases or more. It is.
  • An object of the present invention is to provide a guide nucleic acid for cleaving microRNA, a method for cleaving microRNA using the same, and a therapeutic drug for diseases caused by overexpression of microRNA.
  • the present invention relates to the following (1) to (10).
  • a base sequence complementary to a base sequence continuous from any one of the first to fourth bases from the 5 ′ end of the microRNA to be cleaved, or a base having 90% or more identity to the complementary base sequence A guide nucleic acid for cleaving microRNA, comprising a single-stranded nucleic acid having a sequence and a length of 11 to 15 bases.
  • the guide nucleic acid according to (1) above, wherein the microRNA to be cleaved is a microRNA that is overexpressed in cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
  • the microRNA to be cleaved is hsa-miR-16, 17, 18a, 19a, 19b, 20a, 21, 92a, 103, 122, 125b, 142-3p, 155, 181a, 208a, 221, 222,
  • the guide nucleic acid of (1) or (2) above which is 372 or 373.
  • the guide nucleic acid according to (1) or (2) above, wherein the complementary base sequence is the base sequence represented by any one of SEQ ID NOs: 1 to 19.
  • (6) A method for determining the function of a microRNA using the guide nucleic acid according to any one of (1) to (4) above.
  • a therapeutic agent for a disease caused by overexpression of microRNA comprising the guide nucleic acid according to any one of (1) to (4) as an active ingredient.
  • the therapeutic agent according to (7) above, wherein the disease caused by overexpression of microRNA is cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
  • a method for treating a disease caused by overexpression of microRNA in a subject comprising administering an effective amount of the guide nucleic acid according to any one of (1) to (4) to the subject.
  • the method according to (9) above, wherein the disease caused by overexpression of microRNA is cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
  • the present invention can provide a guide nucleic acid for cleaving microRNA, a method for cleaving microRNA using the same, and a therapeutic drug for diseases caused by overexpression of microRNA.
  • FIG. 1 (1) is an electrophoresis diagram of miR-103 in which various guide nucleic acids are allowed to act. 5'product indicates a cleavage product.
  • FIG. 1 (2) is a diagram of the expression level of miR-103 in which various guide nucleic acids are allowed to act.
  • FIG. 2 (1) is a diagram of miR-16 electrophoresis using various guide nucleic acids. 5'product indicates a cleavage product.
  • FIG. 2 (2) is a diagram of miR-16 electrophoresis with and without various guide nucleic acids and tRNasetZL siRNA.
  • FIG. 2 (3) is a graph showing the relative expression level of miR-16 on which various guide nucleic acids were allowed to act.
  • FIG. 1 (2) is a diagram of the expression level of miR-103 in which various guide nucleic acids are allowed to act.
  • FIG. 1 (2) is a diagram of the expression level of miR-103 in which various guide nucleic acids are allowed to act.
  • FIG. 2 (1)
  • FIG. 3 (1) shows the relationship between the sequence of miR-16 and the base sequences of various guide nucleic acids. The arrow is the position where it is expected to be cut.
  • FIG. 3 (2) is a diagram of miR-16 electrophoresis using various guide nucleic acids.
  • FIG. 4 (1) is a graph showing the relative expression level of miR-16 in 293 cells to which various guide nucleic acids were allowed to act.
  • FIG. 4 (2) is a graph showing the relative expression level of miR-122 in Huh-7 cells to which various guide nucleic acids were allowed to act.
  • FIG. 4 (3) is a graph showing the relative expression level of miR-19a in RPMI-8226 cells with various guide nucleic acids.
  • FIG. 4 (4) is a graph showing the relative expression level of miR-142-3p in human lymphoma cell line Daudi with various guide nucleic acids.
  • FIG. 4 (5) is a graph showing the relative expression level of miR-142-3p in HL-60 cells on which various guide nucleic acids were allowed to act.
  • FIG. 5 is a graph showing the relative number of cells when various guide nucleic acids are allowed to act on melanoma cells.
  • the guide nucleic acid for cleaving microRNA of the present invention (hereinafter also simply referred to as guide nucleic acid) is any one of the first to fourth bases from the 5 ′ end of the microRNA to be cleaved, preferably the 5 ′ end base. Having a base sequence complementary to a continuous base sequence or a base sequence having 90% or more, preferably 95% or more identity with the complementary base sequence, and a length of 11 to 15 bases, preferably 12 to Examples thereof include nucleic acids consisting of single-stranded RNA having a length of 14 bases, more preferably 14 bases.
  • microRNA refers to a single-stranded RNA having a length of 17 to 28 bases present in a cell.
  • RNA transcribed from the surrounding genome including DNA encoding microRNA has a sequence capable of forming a hairpin structure, and microRNA can be excised from any one strand of the hairpin.
  • MicroRNAs complementarily bind to their target mRNA and suppress mRNA translation, or promote post-transcriptional regulation of mRNA expression by promoting mRNA degradation.
  • a complementary base sequence refers to a base sequence composed of nucleotides capable of forming base pairs by hydrogen bonding with respect to nucleotides constituting RNA.
  • nucleotides constituting RNA include adenine (A), cytosine (C), guanine (G), and uracil (U).
  • Adenine is uracil
  • cytosine is guanine
  • guanine is cytosine or Uracil and uracil can base pair with adenine.
  • a guide nucleic acid comprising a base sequence having 90% or more identity is BLAST [J. Mol. Biol., 215, 403 (1990)] or FASTA [Methods Enzymology, 183, 63 (1990). ], which is a nucleic acid having a base sequence of 90% or more when calculated using an analysis software such as Examples of the base sequence having 90% or more identity with the complementary base sequence include base sequences in which the complementary base sequence is substituted with 2 bases or less, preferably 1 base.
  • the base sequence of microRNA is registered in, for example, a database called miRBase (http://microrna.sanger.ac.uk/), and this base sequence can be used as the base sequence of the microRNA to be cleaved.
  • the base sequence of the guide nucleic acid can be determined as a sequence complementary to a base sequence continuous from any one of the first to fourth bases from the 5 ′ end of the microRNA.
  • hsa-miR-16 (SEQ ID NO: 31), 17 (SEQ ID NO: 32), 18a (SEQ ID NO: 33), 19a (SEQ ID NO: 34), 19b (SEQ ID NO: 35), 20a (SEQ ID NO: 36), 21 ( SEQ ID NO: 37), 92a (SEQ ID NO: 38), 103 (SEQ ID NO: 39), 122 (SEQ ID NO: 40), 125b (SEQ ID NO: 41), 142-3p (SEQ ID NO: 42), 155 (SEQ ID NO: 43), 181a
  • the nucleotide sequences of the guide nucleic acids of (SEQ ID NO: 44), 208a (SEQ ID NO: 45), 221 (SEQ ID NO: 46), 222 (SEQ ID NO: 47), 372 (SEQ ID NO: 48) and 373 (SEQ ID NO: 49) are respectively SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 can be exempl
  • the guide nucleic acid can be synthesized based on it.
  • the method for synthesizing the guide nucleic acid of the present invention is not particularly limited, and the guide nucleic acid can be produced by a method using a known chemical synthesis or an enzymatic transcription method. Examples of known chemical synthesis methods include phosphoramidite method, phosphorothioate method, phosphotriester method, and the like.
  • ABI3900 high-throughput nucleic acid synthesizer (Applied Biosystems) or NTS H- 6Nucleic acid synthesizer (manufactured by Nippon Techno Service) or Oligopilot 10 nucleic acid synthesizer (GE Healthcare)
  • Examples of the enzymatic transcription method include transcription using a typical phage RNA polymerase, for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having the target base sequence as a template.
  • nucleic acid used for the guide nucleic acid of the present invention any nucleic acid may be used as long as it is a polymer obtained by polymerizing nucleotides or molecules having functions equivalent to the nucleotides.
  • nucleotide polymer for example, RNA, which is a polymer of ribonucleotides, DNA which is a polymer of deoxyribonucleotides, a polymer in which a polymer in which ribonucleotides and deoxyribonucleotides are mixed is a molecule in which molecules having functions equivalent to those nucleotides are polymerized Examples thereof include nucleotide polymers containing nucleotide analogues.
  • RNA is preferably used as the nucleic acid.
  • Nucleotide analogs include, for example, to improve or stabilize the nuclease resistance of nucleotide polymers, to increase affinity with complementary strand nucleic acids, to increase cell permeability, or to be visualized compared to RNA or DNA.
  • any molecule may be used as long as it is a ribonucleotide, deoxyribonucleotide, RNA or DNA modified. Examples thereof include sugar moiety-modified nucleotide analogs and phosphodiester bond-modified nucleotide analogs.
  • the sugar moiety-modified nucleotide analog may be any one obtained by adding or substituting any chemical structural substance to a part or all of the chemical structure of the sugar of the nucleotide.
  • any chemical structural substance for example, 2'-O-methyl Nucleotide analogues substituted with ribose, nucleotide analogues substituted with 2'-O-propylribose, nucleotide analogues substituted with 2'-methoxyethoxyribose, substituted with 2'-O-methoxyethylribose Nucleotide analogues, nucleotide analogues substituted with 2'-O- [2- (guanidinium) ethyl] ribose, nucleotide analogues substituted with 2'-O-fluororibose, introducing a bridging structure into the sugar moiety Bridged synthetic nucleic acid (BNA) having two circular structures, more specifically
  • the phosphodiester bond-modified nucleotide analog may be any one obtained by adding or substituting an arbitrary chemical substance to a part or all of the chemical structure of a phosphodiester bond of a nucleotide.
  • Examples include nucleotide analogues substituted with thioate linkages, nucleotide analogues substituted with N3'-P5 'phosphoramidate linkages [Cell engineering, 16, 1463-1473 (1997)] [RNAi method And Antisense, Kodansha (2005)].
  • nucleotide analogues include atoms (for example, hydrogen atoms, oxygen atoms) or functional groups (for example, hydroxyl groups, amino groups) of nucleic acid base moieties, ribose moieties, phosphodiester bond moieties, etc.
  • a molecule to which another chemical substance is added such as lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, and a dye may be used.
  • Examples of molecules obtained by adding another chemical substance to nucleic acid include 5′-polyamine addition derivatives, cholesterol addition derivatives, steroid addition derivatives, bile acid addition derivatives, vitamin addition derivatives, Cy5 addition derivatives, Cy3 addition derivatives, and 6-FAM. Examples include addition derivatives, biotin addition derivatives, and the like.
  • the target microRNA can be cleaved.
  • the cleavage can be performed by bringing the guide nucleic acid of the present invention into contact with the microRNA to be cleaved in the presence of tRNaseZ.
  • tRNaseZ is one of endonucleases involved in tRNA maturation, and has an activity of cleaving the 3 ′ side when a precursor tRNA is matured into a mature tRNA.
  • tRNaseZ either tRNaseZL or tRNaseZS may be used, but tRNaseZL is preferably used.
  • tRNaseZ endogenous to the cell or animal individual can be used.
  • the nucleic acid described below can be used. It can be carried out in the same manner as in the case of determining the function of microRNA using or the use of the nucleic acid as a medicine.
  • any method can be used as long as it can detect a cleavage product, and examples thereof include a labeled RNA cleavage assay.
  • the cleavage product may be detected by collecting the sample RNA and further collecting the low molecular weight RNA fraction and determining the base sequence.
  • the cleavage may be detected indirectly by measuring the expression level of microRNA using Northern hybridization or quantitative PCR.
  • the microRNA to be cleaved is labeled with a radioisotope or a fluorescent reagent, reacted with a guide nucleic acid and tRNaseZ, and then electrophoresed on an acrylamide denaturing gel, and then the gel A method of analyzing the band length by exposing the film to an imaging plate or the like is used.
  • tRNaseZ can be produced and purified as a recombinant protein, for example, according to the method described in PLoS ONE 4, e5908 ⁇ (2009).
  • sample-derived RNA is separated by gel electrophoresis, then transferred to a support such as a nylon filter, and a probe labeled appropriately based on the base sequence of the microRNA is prepared for hybridization and washing.
  • a method for detecting a band specifically bound to microRNA is used. Specifically, for example, it can be performed according to the method described in Science, 294, 853-858 (2001).
  • the labeled probe is complementary to the base sequence of the microRNA by, for example, radioisotope, biotin, digoxigenin, fluorescent group, chemiluminescent group, etc. by methods such as nick translation, random priming, or phosphorylation at the 5 ′ end.
  • the binding amount of the labeled probe reflects the amount of microRNA (or its cleavage product)
  • the quantitative PCR method is a method for quantifying cDNA synthesized from a sample-derived RNA by PCR using a reverse transcription primer and a reverse transcriptase (hereinafter referred to as a sample-derived cDNA).
  • a reverse transcription primer to be used for cDNA synthesis a specific primer such as a random primer or a primer having a sequence complementary to a base sequence corresponding to microRNA can be used.
  • PCR is performed using a template-specific primer designed from a base sequence corresponding to microRNA or a base sequence corresponding to a primer for reverse transcription, and microRNA is The contained cDNA fragment is amplified, and the amount of microRNA contained in the sample-derived RNA is detected from the number of cycles until a certain amount is reached.
  • a template-specific primer an appropriate region corresponding to the microRNA can be selected, and a DNA or LNA pair consisting of a sequence complementary to that region can be used. Specifically, it can be performed according to the method described in Nucleic Acids Research, 32, e43 (2004).
  • a specific RT primer having a stem-loop structure can also be used as a reverse transcription primer for cDNA synthesis. Specifically, it can be performed using the method described in Nucleic Acids Research, 33, e179 (2005) or TaqMan MicroRNA Assays (Applied Biosystems).
  • the sample-derived cDNA is hybridized to a filter or slide glass, silicon, or other substrate on which DNA corresponding to a base sequence containing at least one microRNA or a DNA sequence or LNA is immobilized, and washed. By doing so, fluctuations in the amount of microRNA can be detected. Examples of methods based on such hybridization include methods using differential hybridization [Trends Genet., 7, 314 (1991)] and microarrays [Genome Res., 6, 639 (1996)].
  • the amount of microRNA between the control sample (without the guide nucleic acid) and the target sample (with the guide nucleic acid) is fixed by immobilizing an internal control such as a nucleotide sequence corresponding to U6 RNA on a filter or substrate. It is possible to accurately detect the difference.
  • labeled cDNA synthesis using differently labeled dNTPs mixturetures of dATP, dGTP, dCTP, and dTTP
  • MicroRNA can be quantified by simultaneously hybridizing labeled cDNA.
  • microRNA can be detected using a microarray described in Proc. Natl. Acad. Sci. USA, 101, 9740-9744 (2004), Nucleic Acids Research, 32, e188 (2004). Specifically, it can be detected or quantified in the same manner as mirVana miRNA Bioarray (Ambion).
  • a guide nucleic acid for cleaving microRNA used in the present invention is introduced into a cell or animal individual to reduce microRNA expression, and the function of microRNA is determined by observing and measuring changes occurring in the cell or individual. Can do.
  • lipofection reagents such as Lipofectamine 2000 (Invitrogen) and electroporation to introduce a guide nucleic acid for cleaving microRNA into cells, but it can also be introduced by adding the guide nucleic acid directly into the cell culture medium. be able to.
  • introducing a guide nucleic acid into an animal individual it can be carried out according to the administration method as a pharmaceutical described later.
  • the guide nucleic acid for cleaving microRNA used in the present invention can be used as a therapeutic agent for diseases caused by overexpression of microRNA by suppressing the expression of microRNA.
  • diseases caused by overexpression of microRNA include cancer, allergic disease, cardiovascular disease, neurodegenerative disease, hepatitis and the like.
  • microRNAs related to canceration by overexpression include miR-16, miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-21, miR-92a, miR- 103, miR-155, miR-181a, miR-372, miR-373 and the like.
  • microRNAs that increase the number of mast cells that contribute to the development of allergic diseases include miR-221 and miR-222.
  • miR-142- 3p As microRNAs that promote degranulation activity of mast cells, miR-142- 3p can be given.
  • MiR-208a is a microRNA that leads to cardiac hypertrophy due to overexpression
  • miR-125b is a microRNA highly expressed in the brain of Alzheimer's disease
  • miR-122 is a microRNA that propagates hepatitis C virus. , You can give each.
  • the therapeutic agent containing the nucleic acid used in the present invention as an active ingredient can be administered alone, but it is usually mixed with one or more pharmacologically acceptable carriers to prepare pharmaceutical technology. It is desirable to administer as a pharmaceutical formulation produced by any method well known in the art. It is desirable to use the most effective route for treatment, and oral administration or parenteral administration such as buccal, respiratory tract, rectal, subcutaneous, intramuscular and intravenous is desirable. Can be given intravenously. Examples of the dosage form include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
  • Suitable formulations for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
  • Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p-hydroxybenzoic acid Preservatives such as esters, and flavors such as strawberry flavor and peppermint can be used as additives.
  • excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl alcohol, hydroxy A binder such as propylcellulose and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.
  • Formulations suitable for parenteral administration include injections, suppositories, sprays and the like.
  • the injection is prepared using a carrier made of a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using a carrier such as cocoa butter, hydrogenated fat or carboxylic acid.
  • the spray is prepared using a carrier that does not irritate the recipient's oral cavity and airway mucosa, and that facilitates absorption by dispersing the active ingredient as fine particles.
  • Specific examples of the carrier include lactose and glycerin.
  • preparations such as aerosols and dry powders are possible.
  • the components exemplified as additives for oral preparations can also be added.
  • the dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, body weight, etc., but is usually 10 ⁇ g / kg to 20 ⁇ g / kg per day for an adult.
  • the guide nucleic acid for microRNA cleavage used in the present invention can also be transferred by a non-viral nucleic acid transfer method.
  • a non-viral nucleic acid transfer method For example, calcium phosphate coprecipitation method (Virology, 52, 456-467 (1973); Science, 209, 1414-1422 (1980)), microinjection method (Proc.cNatl. Acad. Sci. USA, 77, 5399-5403 ( 1980); Proc. Natl. Acad. Sci. USA, 77, 7380-7384 (1980); Cell, 27, 223-231 (1981); Nature, 294, 92-94 (1981)), liposome-mediated membrane Fusion-mediated transfer (Proc. Natl.tlAcad. Sci.
  • the membrane fusion-mediated transfer method via liposomes allows the nucleic acid used in the present invention to be taken up locally and expressed in the tissue by directly administering the liposome preparation to the target tissue [Hum. Gene Ther., 3, 399 (1992)].
  • a technique for directly incorporating the nucleic acid For example, receptor-mediated nucleic acid transfer can be performed by binding a nucleic acid to a protein ligand via polylysine. The ligand is selected based on the presence of the corresponding ligand receptor on the cell surface of the target cell or tissue.
  • the ligand-nucleic acid conjugate can be injected directly into the blood vessel, if desired, and can be directed to a target tissue where receptor binding and internalization of the nucleic acid-protein complex occurs.
  • adenovirus can be co-infected to disrupt endosomal function.
  • a guide nucleic acid that induces cleavage of miR-103 was designed and examined to cleave miR-103.
  • (1) Verification in cell-free system It was examined whether miR-103 was cleaved by reacting labeled miR-103, various guide nucleic acids for miR-103, and tRNaseZL in vitro.
  • miR-103 was prepared by transcription using T7 RNA polymerase (manufactured by Promega) using a synthetic DNA corresponding to the base sequence of miR-103 as a template, and extraction by denaturing gel electrophoresis. Transcription with T7 RNA polymerase followed the method described in the instructions attached to the product.
  • miR-103 was treated with alkaline phosphatase (Takara Bio) to remove the 5'-terminal phosphate group, and then reacted with T4 polynucleotide kinase (Takara Bio) and ATP ⁇ S. After the reaction, fluorescein And fluorescently labeled.
  • the labeling procedure was in accordance with the method described in the GE Healthcare manual.
  • SgR103-10 represented by SEQ ID NO: 20, sgR103-14 represented by SEQ ID NO: 9, sgR103-16 represented by SEQ ID NO: 21, and sgR103 represented by SEQ ID NO: 22 synthesized by Nippon Bioservice Co., Ltd. -23 was used as the guide nucleic acid for miR-103.
  • sgR103-10, sgR103-14, sgR103-16, and sgR103-23 consist of base sequences that are complementary to base sequences that are 10, 14, 16, and 23 consecutive bases from the 5 ′ end of miR-103, respectively. It is a single-stranded RNA, and all bases are 2'-O-methylated.
  • tRNaseZL can be produced and purified by a conventional method as a recombinant protein using E. coli as a host. Specifically, it can be performed according to the method described in PLoS ONE 4, e5908 (2009), for example. The cleavage assay was performed as follows.
  • a guide nucleic acid was introduced into a plate seeded with 293 cells using a lipofection method, specifically, Lipofectamine 2000 (manufactured by Invitrogen) to a final concentration of 0.1 ⁇ M. Lipofection followed the method described in the instructions attached to the product. 18 hours after introducing the guide nucleic acid by the lipofection method, total RNA was extracted from 293 cells using ISOGEN (Nippon Gene). Of this, 20 ⁇ g was electrophoresed on 15% polyacryamide-8M urea gel, transferred to Hybond N + membrane (GE Healthcare), and subjected to UV cross-linking treatment.
  • a lipofection method specifically, Lipofectamine 2000 (manufactured by Invitrogen) to a final concentration of 0.1 ⁇ M. Lipofection followed the method described in the instructions attached to the product. 18 hours after introducing the guide nucleic acid by the lipofection method, total RNA was extracted from 293 cells using ISOGEN (Nippon Gene). Of this, 20 ⁇
  • a DNA oligo corresponding to the miR-103 sequence was labeled with 32 P as a probe, and the membrane was subjected to a hybridization reaction in QuickHyb buffer (Stratagene). After the membrane was washed, the presence or absence of a band corresponding to miR-103 was measured with Typhoon 9210. As a result, as shown in FIG. 1 (2), the amount of miR-103 decreased in the cells into which sgR103-14 was introduced.
  • the labeling procedure was in accordance with the method described in the GE Healthcare manual.
  • the former is a single-stranded RNA consisting of a base sequence complementary to the base sequence of 14 bases from the 5 'end of miR-16, and the latter is a base sequence of 14 bases from the 3' end of miR-16. It is a single-stranded RNA consisting of a complementary base sequence, both of which have all bases 2'-O-methylated.
  • tRNaseZL can be produced and purified by a conventional method as a recombinant protein using E. coli as a host. Specifically, it can be performed according to the method described in PLoS ONE 4, e5908 (2009), for example.
  • the cleavage assay was performed as follows. That is, 2 pmol labeled miR-16, 20 pmol guide nucleic acid, 50 ng tRNaseZL in 6 ⁇ L reaction solution (10 mM Tris-HCl (pH 7.5), 1.5 mM dithiothreitol, 3.3 mM MgCl 2 ) The reaction was carried out at 37 ° C.
  • sgR16-22 is a single-stranded RNA consisting of a base sequence complementary to a base sequence that is 22 bases continuous from the 5 ′ end of miR-16, and in any guide nucleic acid, all bases are 2′-O. -Methylated.
  • siRNA for human tRNaseZL siRNA consisting of SEQ ID NO: 25 and SEQ ID NO: 26 was purchased from QIAGEN and used.
  • a guide nucleic acid was introduced into a plate seeded with 293 cells using a lipofection method, specifically, Lipofectamine 2000 (manufactured by Invitrogen) to a final concentration of 0.1 ⁇ M.
  • siRNA for tRNaseZL was simultaneously introduced by a lipofection method to a final concentration of 0.1 ⁇ M. Lipofection followed the method described in the instructions attached to the product. 18 hours after introduction of the guide nucleic acid by the lipofection method (42 hours after introduction of the tRNaseZL siRNA), total RNA was extracted from 293 cells using ISOGEN (Nippon Gene). Of this, 5 ⁇ g was electrophoresed with 15% polyacryamide-8M urea gel, transferred to Hybond N + membrane (GE Healthcare), and subjected to UV cross-linking treatment.
  • a DNA oligo corresponding to the miR-16 sequence is labeled with 32 P as a probe, the membrane is hybridized in QuickHyb buffer (Stratagene), the membrane is washed, and miR-16 is supported with Typhoon 9210 The presence or absence of a band to be measured was measured.
  • the miR-16 band disappeared by the introduction of sgR16-14 and sgR16-22 in the group not introduced with tRNaseZL siRNA, whereas in the group introduced with tRNaseZL siRNA.
  • miR-16 expression suppression by sgR16-22 does not depend on tRNaseZL, but miR-16 expression suppression by sgR16-14 depends on tRNaseZL.
  • cDNA synthesis and real-time PCR were performed on the obtained total RNA using TaqMan MicroRNA Assays (Applied Biosystems), and the expression level of miR-16 was measured. The measurement followed the method described in the instructions attached to the product. At the same time, the expression level of sno234 RNA was measured and normalized to calculate the relative expression level. As a result, as shown in FIG.
  • miR-16 expression level was reduced by the introduction of sg16-14 and sgR16-22 in the group not introduced with tRNaseZL siRNA.
  • a decrease in the expression level was observed only with sgR16-22.
  • sgR16 (4-17) represented by SEQ ID NO: 28 synthesized by Nippon Bioservice Co., Ltd. was used as a guide nucleic acid for miR-16.
  • sgR16 (1-14), sgR16 (1-12) and sgR16 (4-17) are single-stranded RNAs each consisting of a sequence complementary to a base sequence that is 14 bases continuous from the 5 'end of miR-16.
  • all bases are 2'-O-methylated.
  • the relationship between miR-16 and each guide nucleic acid is shown in FIG. Using the same method as in Example 2, labeled miR-16 and tRNaseZL cleavage assays were performed. As a result, as shown in FIG. 3 (2), in any case of sgR16 (1-14), sgR16 (1-12), sgR16 (4-17), apart from miR-16 consisting of 22 bases, A fragment shorter than miR-16 was confirmed.
  • the former is a single-stranded RNA consisting of a base sequence complementary to the base sequence of 14 bases from the 5 'end of miR-122, and the latter is a base sequence of 14 bases from the 3' end of miR-122. It is a single-stranded RNA consisting of a complementary base sequence, and all bases are 2′-O-methylated in any guide nucleic acid.
  • Huh-7 cells were cultured in a DMEM medium (Sigma) containing 10% fetal bovine serum (FBS, manufactured by MP Biomedicals) in an incubator at 37 ° C in a 5% CO 2 concentration, and Huh-7 cells were seeded. It added to the plate so that it might become final concentration of 2 micromol.
  • sgR19a-14 represented by SEQ ID NO: 4 was prepared. This is a single-stranded RNA consisting of a base sequence complementary to the base sequence that is 14 bases continuous from the 5 'end of miR-19a. All but 2a-O-methylated except for a at the 3' end, The 3 'terminal a was LNA and 3' phosphorylated, and was synthesized by Nippon Bioservice. A guide nucleic acid was added to a plate seeded with RPMI-8226 cells to a final concentration of 1 ⁇ M.
  • the guide nucleic acid for miR-142-3p was prepared as sgR142-3p-14 represented by SEQ ID NO: 11 and sgR142-3p-14d represented by SEQ ID NO: 30.
  • the former is a single-stranded RNA consisting of a base sequence complementary to a base sequence that is 14 bases continuous from the 5 'end of miR-142-3p. All bases are 2'-O-methylated, and 3' The terminal is phosphorylated.
  • the latter is a single-stranded RNA consisting of a base sequence complementary to the base sequence that is 14 bases continuous from the 3 'end of miR-142-3p, and all bases are 2'-O-methylated, The terminal is phosphorylated. Both were synthesized by Nippon Bioservice. Guide nucleic acid was added to a plate seeded with human lymphoma cell line Daudi to a final concentration of 1 ⁇ M. After 24 hours, total RNA was extracted from the cells using ISOGEN (Nippon Gene), and cDNA synthesis and real-time PCR were performed on the total RNA using TaqMan MicroRNA Assays (Applied Biosystems). The expression level of miR-142-3p was measured. The measurement followed the method described in the instructions attached to the product.
  • the expression level of sno234 RNA was measured and normalized to calculate the relative expression level. As a result, as shown in FIG. 4 (4), it was confirmed that when sgR142-3p-14 was added, the expression level of miR-142-3p decreased.
  • a guide nucleic acid was added to a plate seeded with HL-60 cells to a final concentration of 1 ⁇ M. 48 hours later, total RNA was extracted from the cells using ISOGEN (Nippon Gene), and cDNA synthesis and real-time PCR were performed on the total RNA using TaqMan MicroRNA Assays (Applied Biosystems). The expression level of miR-142-3p was measured. The measurement followed the method described in the instructions attached to the product.
  • the expression level of sno234 RNA was measured and normalized to calculate the relative expression level. As a result, as shown in FIG. 4 (5), it was confirmed that when sgR142-3p-14 was added, the expression level of miR-142-3p decreased.
  • the former is a single-stranded RNA consisting of a base sequence complementary to the base sequence that is 14 bases continuous from the 5 'end of miR-19a
  • the latter is a base sequence that is 14 bases continuous from the 5' end of miR-181a.
  • It is a single-stranded RNA consisting of a complementary base sequence. In both cases, all bases are 2'-O-methylated and the 3 'end is phosphorylated.
  • Guide nucleic acid was added to a plate seeded with KMM-1 cells and Oda cells to a final concentration of 0.5 ⁇ M, and 3 days later, the number of cells was measured using TetraColor ONE (Seikagaku Corporation). The measurement followed the method described in the instructions attached to the product. As a result, as shown in FIG. 5, the number of cells decreased in cells into which sgR19a-14 or sgR181-14 was introduced, compared to control cells.
  • the present invention provides a guide nucleic acid that causes microRNA cleavage.
  • the guide nucleic acid of the present invention it is possible to treat a disease caused by overexpression of microRNA.

Abstract

A guide nucleic acid for use in the cleavage of micro-RNA, wherein the guide nucleic acid comprises a single-stranded nucleic acid which has a complementary nucleotide sequence to a nucleotide sequence that is composed of contiguous nucleotides starting from any nucleotide selected from the 1st to 4th nucleotides numbered from the 5'-terminal of micro-RNA to be cleaved or a nucleotide sequence having a 90% or higher identity to the complementary nucleotide sequence, and which has a length of 11 to 15 nucleotides; a method for cleaving micro-RNA, which comprises bringing the guide nucleic acid into contact with micro-RNA to be cleaved in the presence of tRNaseZ; and a therapeutic agent for diseases associated with the overexpression of micro-RNA, which comprises the guide nucleic acid as an active ingredient.

Description

マイクロRNA切断用のガイド核酸Guide nucleic acids for microRNA cleavage
 本発明は、疾患の治療薬として有用なマイクロRNA切断用のガイド核酸、およびそれを用いたマイクロRNAの切断方法に関する。 The present invention relates to a guide nucleic acid for cleaving microRNA useful as a therapeutic agent for diseases, and a method for cleaving microRNA using the same.
 マイクロRNA(miRNA)は、蛋白質に翻訳されない約22ヌクレオチドの小さな非コード一本鎖RNAであり、ヒトを含む生物に多数存在することが確認されている(非特許文献1、2)。
 マイクロRNAは、単一又はクラスター化されたマイクロRNA前駆体に転写される遺伝子から生成される。すなわち、まず、遺伝子から一次転写産物であるprimary-microRNA (pri-miRNA)が転写され、次いで、pri-miRNAから成熟型マイクロRNAへの段階的プロセシングにおいて、pri-miRNAから特徴的なヘアピン構造を有する約70塩基長のprecursor-microRNA (pre-miRNA)が生成される。さらに、Dicer介在によるプロセシングによりpre-miRNAから成熟型マイクロRNA(単にマイクロRNAともいう)が生成される(非特許文献3)。
MicroRNA (miRNA) is a small non-coding single-stranded RNA of about 22 nucleotides that is not translated into protein, and has been confirmed to exist in many organisms including humans (Non-Patent Documents 1 and 2).
MicroRNAs are generated from genes that are transcribed into single or clustered microRNA precursors. That is, the primary transcript, primary-microRNA (pri-miRNA), is first transcribed from the gene, and then a characteristic hairpin structure is formed from the pri-miRNA in stepwise processing from the pri-miRNA to the mature microRNA. Precursor-microRNA (pre-miRNA) having a length of about 70 bases is generated. Further, mature microRNA (also simply referred to as microRNA) is generated from pre-miRNA by Dicer-mediated processing (Non-patent Document 3).
 マイクロRNAは、標的となるmRNAに相補的に結合してmRNAの翻訳を抑制する、あるいはmRNAを分解することにより、遺伝子発現の転写後制御に関与していると考えられている。2009年6月現在、マイクロRNAのデータベースmiRBase(http://microrna.sanger.ac.uk/)には、ヒトで885種、全生物種で10097種のマイクロRNAが登録されている。生理的には、ある特定の機能細胞への分化あるいは、癌化などに代表される疾患に関与することが明らかになってきており、特にmiR-21など発癌との関連が示唆されるマイクロRNAもある。
 マイクロRNAの過剰発現と疾患との関連があることが知られており、マイクロRNAの発現を抑制することは、該マイクロRNAの過剰発現と関連する疾患の治療に有用である。マイクロRNAの発現抑制として、マイクロRNAに相補する配列を有するアンチセンスRNA(非特許文献4)や、マイクロRNA認識配列を有するデコイ発現ベクター(非特許文献5、6)が開発されているが、両者ともマイクロRNAとのハイブリダイゼーションによる発現抑制であり、マイクロRNAそのものを切断させることはない。
MicroRNAs are thought to be involved in post-transcriptional control of gene expression by binding to target mRNAs in a complementary manner to suppress translation of mRNA, or by degrading mRNA. As of June 2009, the microRNA database miRBase (http://microrna.sanger.ac.uk/) has registered 885 microRNAs for humans and 10097 types for all biological species. Physiologically, microRNAs that have been revealed to be involved in diseases such as differentiation into specific functional cells or canceration, especially miR-21, suggesting an association with carcinogenesis There is also.
It is known that there is a relationship between microRNA overexpression and disease, and suppressing microRNA expression is useful for the treatment of diseases associated with microRNA overexpression. Antisense RNA having a sequence complementary to microRNA (Non-patent Document 4) and decoy expression vector having a microRNA recognition sequence (Non-patent Documents 5 and 6) have been developed as suppression of microRNA expression. In both cases, expression is suppressed by hybridization with microRNA, and the microRNA itself is not cleaved.
 tRNaseZはtRNA(transfer RNA)の成熟化に関わるエンドヌクレアーゼの一つである。通常 tRNAは、まず前駆体tRNAとして転写され、その後、プロセシング過程を経て機能を持った成熟型tRNAとなる。このプロセシングに関わる酵素は真核生物の場合、5’側のエンドヌクレアーゼはRNaseP、3’側のエンドヌクレアーゼはtRNaseZが関与している(非特許文献7、8)。
 tRNaseZの活性を利用して、人為的にある特定のmRNAを切断させる例が報告されている。切断したい標的mRNAに対していかに適切なガイドRNAを用いてtRNA様の構造を取らせ、tRNaseZに認識させるかが重要である。哺乳類ではtRNaseZSとtRNaseZLの2種類のtRNaseZが存在することが知られている。標的配列とガイド核酸の組み合わせで、いかにtRNA様の構造をとらせるかについて、1990年代は主としてブタから精製したtRNaseZを用いてin vitroで検討が行われた結果、tRNaseZの認識に必要なtRNA様の構造としては、Acceptor-StemとT-Stem-Loopのみで良いことがわかり、ガイド核酸も最短で7塩基長で十分であることが示された(非特許文献9、10)。また2003年頃からは、外からガイド核酸を細胞内に導入して内在性のtRNaseZを利用してmRNAを切断するというコンセプトでの研究が進められ、最短7塩基長の合成2’-O-Me-RNAの導入により、標的としたLuciferase遺伝子の抑制を認める一方(非特許文献11)、標的配列も一つのステム・ループからなる構造をもつ(Micro-Pre-tRNA)だけで十分であることが知られている(非特許文献12)。さらに、その一つのループさえもない単なる12-18bpのステム構造だけでも弱いながら切断活性が見られることも知られている(非特許文献13)。細胞に内在する遺伝子の発現抑制に対しては、GSK-3やVEGFに対するガイド核酸導入である程度のmRNA発現抑制が報告されている(非特許文献14、15)。しかし、tRNaseZがマイクロRNAを切断するということは知られていない。また、適切なガイド核酸を導入してRNasePに認識させることでマイクロRNAを切断させる方法は知られているが(特許文献1)、当該方法では少なくとも30塩基以上の長さを有するガイド核酸が必要である。
tRNaseZ is one of endonucleases involved in maturation of tRNA (transfer RNA). Usually, tRNA is first transcribed as a precursor tRNA, and then becomes a mature tRNA having a function through a processing process. When the enzyme involved in the processing is a eukaryote, RNaseP is involved in the 5′-side endonuclease, and tRNaseZ is involved in the 3′-side endonuclease (Non-patent Documents 7 and 8).
An example of cleaving a specific mRNA artificially using the activity of tRNaseZ has been reported. It is important how tRNA-like structure is recognized by using a suitable guide RNA for the target mRNA to be cleaved. In mammals, it is known that there are two types of tRNaseZ, tRNaseZS and tRNaseZL. As a result of in vitro studies mainly using tRNaseZ purified from swine in the 1990s on how to make a tRNA-like structure by combining the target sequence and the guide nucleic acid, it was necessary to recognize tRNaseZ. As a structure, it was found that only Acceptor-Stem and T-Stem-Loop were sufficient, and it was shown that a guide nucleic acid with a minimum length of 7 bases is sufficient (Non-patent Documents 9 and 10). From around 2003, research on the concept of cleaving mRNA using endogenous tRNaseZ by introducing a guide nucleic acid from the outside into cells has been proceeding, and synthetic 2'-O-Me with a minimum length of 7 bases Inhibition of the targeted Luciferase gene by introduction of -RNA (Non-patent Document 11), but it is sufficient that the target sequence also has a structure consisting of one stem loop (Micro-Pre-tRNA). It is known (Non-patent Document 12). Furthermore, it is known that a mere 12-18 bp stem structure without even one loop is weak but shows a cleavage activity (Non-patent Document 13). Regarding the suppression of the expression of genes inherent in cells, some suppression of mRNA expression has been reported by introducing a guide nucleic acid into GSK-3 or VEGF (Non-patent Documents 14 and 15). However, it is not known that tRNaseZ cleaves microRNA. In addition, a method of cleaving microRNA by introducing an appropriate guide nucleic acid and allowing RNaseP to recognize it is known (Patent Document 1), but this method requires a guide nucleic acid having a length of at least 30 bases or more. It is.
WO2009/026576WO2009 / 026576
 本発明は、マイクロRNA切断用のガイド核酸、ならびに、それを用いたマイクロRNAの切断方法およびマイクロRNAの過剰発現に起因する疾患の治療薬を提供することを課題とする。 An object of the present invention is to provide a guide nucleic acid for cleaving microRNA, a method for cleaving microRNA using the same, and a therapeutic drug for diseases caused by overexpression of microRNA.
 本発明は以下の(1)~(10)に関する。
(1) 切断対象のマイクロRNAの5’末端から1~4番目のいずれかの塩基から連続する塩基配列と相補的な塩基配列または該相補的な塩基配列と90%以上の同一性をもつ塩基配列を有し、かつ11~15塩基長の一本鎖核酸からなる、マイクロRNA切断用のガイド核酸。
(2) 切断対象のマイクロRNAが、癌、アレルギー疾患、神経変性疾患、心血管疾患または肝炎で過剰発現するマイクロRNAである、上記(1)のガイド核酸。
(3) 切断対象のマイクロRNAが、hsa-miR-16、17、18a、19a、19b、20a、21、92a、103、122、125b、142-3p、155、181a、208a、221、222、372または373である、上記(1)または(2)のガイド核酸。
(4) 相補的な塩基配列が配列番号1~19のいずれかで表される塩基配列である、上記(1)または(2)のガイド核酸。
(5) 上記(1)~(4)のいずれかのガイド核酸を用いて、マイクロRNAを切断する方法。
(6) 上記(1)~(4)のいずれかのガイド核酸を用いて、マイクロRNAの機能を決定する方法。
(7) 上記(1)~(4)のいずれかのガイド核酸を有効成分として含有する、マイクロRNAの過剰発現に起因する疾患の治療薬。
(8) マイクロRNAの過剰発現に起因する疾患が、癌、アレルギー疾患、神経変性疾患、心血管疾患または肝炎である、上記(7)の治療薬。
(9) 対象に、有効量の上記(1)~(4)のいずれかのガイド核酸を投与することを含む、該対象におけるマイクロRNAの過剰発現に起因する疾患の治療方法。
(10) マイクロRNAの過剰発現に起因する疾患が、癌、アレルギー疾患、神経変性疾患、心血管疾患または肝炎である、上記(9)の治療方法。
The present invention relates to the following (1) to (10).
(1) A base sequence complementary to a base sequence continuous from any one of the first to fourth bases from the 5 ′ end of the microRNA to be cleaved, or a base having 90% or more identity to the complementary base sequence A guide nucleic acid for cleaving microRNA, comprising a single-stranded nucleic acid having a sequence and a length of 11 to 15 bases.
(2) The guide nucleic acid according to (1) above, wherein the microRNA to be cleaved is a microRNA that is overexpressed in cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
(3) The microRNA to be cleaved is hsa-miR-16, 17, 18a, 19a, 19b, 20a, 21, 92a, 103, 122, 125b, 142-3p, 155, 181a, 208a, 221, 222, The guide nucleic acid of (1) or (2) above, which is 372 or 373.
(4) The guide nucleic acid according to (1) or (2) above, wherein the complementary base sequence is the base sequence represented by any one of SEQ ID NOs: 1 to 19.
(5) A method of cleaving microRNA using the guide nucleic acid of any one of (1) to (4) above.
(6) A method for determining the function of a microRNA using the guide nucleic acid according to any one of (1) to (4) above.
(7) A therapeutic agent for a disease caused by overexpression of microRNA, comprising the guide nucleic acid according to any one of (1) to (4) as an active ingredient.
(8) The therapeutic agent according to (7) above, wherein the disease caused by overexpression of microRNA is cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
(9) A method for treating a disease caused by overexpression of microRNA in a subject, comprising administering an effective amount of the guide nucleic acid according to any one of (1) to (4) to the subject.
(10) The method according to (9) above, wherein the disease caused by overexpression of microRNA is cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
 本発明により、マイクロRNA切断用のガイド核酸、ならびに、それを用いたマイクロRNAの切断方法およびマイクロRNAの過剰発現に起因する疾患の治療薬を提供することができる。 The present invention can provide a guide nucleic acid for cleaving microRNA, a method for cleaving microRNA using the same, and a therapeutic drug for diseases caused by overexpression of microRNA.
図1(1)は、各種ガイド核酸を作用させたmiR-103の電気泳動の図である。5’productは切断産物を示す。図1(2)は、各種ガイド核酸を作用させたmiR-103の発現量の図である。FIG. 1 (1) is an electrophoresis diagram of miR-103 in which various guide nucleic acids are allowed to act. 5'product indicates a cleavage product. FIG. 1 (2) is a diagram of the expression level of miR-103 in which various guide nucleic acids are allowed to act. 図2(1)は、各種ガイド核酸を作用させたmiR-16の電気泳動の図である。5’productは切断産物を示す。図2(2)は、各種ガイド核酸およびtRNase ZL siRNAの有無によるmiR-16の電気泳動の図である。図2(3)は、各種ガイド核酸を作用させたmiR-16の相対発現量を表すグラフである。FIG. 2 (1) is a diagram of miR-16 electrophoresis using various guide nucleic acids. 5'product indicates a cleavage product. FIG. 2 (2) is a diagram of miR-16 electrophoresis with and without various guide nucleic acids and tRNasetZL siRNA. FIG. 2 (3) is a graph showing the relative expression level of miR-16 on which various guide nucleic acids were allowed to act. 図3(1)は、miR-16の配列と各種ガイド核酸の塩基配列の関係性を表す。矢印は切断されると予想される位置である。図3(2)は、各種ガイド核酸を作用させたmiR-16の電気泳動の図である。FIG. 3 (1) shows the relationship between the sequence of miR-16 and the base sequences of various guide nucleic acids. The arrow is the position where it is expected to be cut. FIG. 3 (2) is a diagram of miR-16 electrophoresis using various guide nucleic acids. 図4(1)は、各種ガイド核酸を作用させた293細胞における、miR-16の相対発現量を表すグラフである。図4(2)は、各種ガイド核酸を作用させたHuh-7細胞における、miR-122の相対発現量を表すグラフである。図4(3)は、各種ガイド核酸を作用させたRPMI-8226細胞における、miR-19aの相対発現量を表すグラフである。図4(4)は、各種ガイド核酸を作用させたヒトリンパ腫細胞株Daudiにおける、miR-142-3pの相対発現量を表すグラフである。図4(5)は、各種ガイド核酸を作用させたHL-60細胞における、miR-142-3pの相対発現量を表すグラフである。FIG. 4 (1) is a graph showing the relative expression level of miR-16 in 293 cells to which various guide nucleic acids were allowed to act. FIG. 4 (2) is a graph showing the relative expression level of miR-122 in Huh-7 cells to which various guide nucleic acids were allowed to act. FIG. 4 (3) is a graph showing the relative expression level of miR-19a in RPMI-8226 cells with various guide nucleic acids. FIG. 4 (4) is a graph showing the relative expression level of miR-142-3p in human lymphoma cell line Daudi with various guide nucleic acids. FIG. 4 (5) is a graph showing the relative expression level of miR-142-3p in HL-60 cells on which various guide nucleic acids were allowed to act. 図5は、メラノーマ細胞に各種ガイド核酸を作用させた際の、相対的な細胞数を表すグラフである。FIG. 5 is a graph showing the relative number of cells when various guide nucleic acids are allowed to act on melanoma cells.
 本発明のマイクロRNA切断用のガイド核酸(以下、単にガイド核酸ともいう。)としては、切断対象のマイクロRNAの5’末端から1~4番目のいずれかの塩基、好ましくは5’末端の塩基から連続する塩基配列と相補的な塩基配列または該相補的な塩基配列と90%以上、好ましくは95%以上の同一性を持つ塩基配列を有し、かつ11~15塩基長、好ましくは12~14塩基長、さらに好ましくは14塩基長の一本鎖RNAからなる核酸をあげることができる。 The guide nucleic acid for cleaving microRNA of the present invention (hereinafter also simply referred to as guide nucleic acid) is any one of the first to fourth bases from the 5 ′ end of the microRNA to be cleaved, preferably the 5 ′ end base. Having a base sequence complementary to a continuous base sequence or a base sequence having 90% or more, preferably 95% or more identity with the complementary base sequence, and a length of 11 to 15 bases, preferably 12 to Examples thereof include nucleic acids consisting of single-stranded RNA having a length of 14 bases, more preferably 14 bases.
 本発明において、マイクロRNAとは、細胞内に存在する、17~28塩基長からなる一本鎖RNAをいう。マイクロRNAをコードするDNAを含む周辺ゲノムから転写されるRNAはヘアピン構造を形成し得る配列を有しており、マイクロRNAは該ヘアピンのいずれか片鎖から切り出され得る。マイクロRNAは、その標的となるmRNAに相補的に結合してmRNAの翻訳を抑制し、あるいはmRNAの分解を促進することで遺伝子発現の転写後制御を行う。 In the present invention, microRNA refers to a single-stranded RNA having a length of 17 to 28 bases present in a cell. RNA transcribed from the surrounding genome including DNA encoding microRNA has a sequence capable of forming a hairpin structure, and microRNA can be excised from any one strand of the hairpin. MicroRNAs complementarily bind to their target mRNA and suppress mRNA translation, or promote post-transcriptional regulation of mRNA expression by promoting mRNA degradation.
 本発明において、相補的な塩基配列とは、RNAを構成するヌクレオチドに対して、水素結合で塩基対を形成できるヌクレオチドからなる塩基配列をいう。RNAを構成するヌクレオチドは、具体的にはアデニン(A)、シトシン(C)、グアニン(G)、ウラシル(U)があげられ、それぞれ、アデニンはウラシルと、シトシンはグアニンと、グアニンはシトシンあるいはウラシルと、ウラシルはアデニンと、塩基対を形成することができる。 In the present invention, a complementary base sequence refers to a base sequence composed of nucleotides capable of forming base pairs by hydrogen bonding with respect to nucleotides constituting RNA. Specific examples of nucleotides constituting RNA include adenine (A), cytosine (C), guanine (G), and uracil (U). Adenine is uracil, cytosine is guanine, and guanine is cytosine or Uracil and uracil can base pair with adenine.
 本発明において、90%以上の同一性をもつ塩基配列からなるガイド核酸とは、BLAST[J. Mol. Biol., 215, 403 (1990)]やFASTA[Methods in Enzymology, 183, 63 (1990)]等の解析ソフトを用いて計算したときに、90%以上の塩基配列が一致する核酸をいう。相補的な塩基配列と90%以上の同一性をもつ塩基配列としては、該相補的な塩基配列と2塩基以下、好ましくは1塩基が置換した塩基配列があげられる。 In the present invention, a guide nucleic acid comprising a base sequence having 90% or more identity is BLAST [J. Mol. Biol., 215, 403 (1990)] or FASTA [Methods Enzymology, 183, 63 (1990). ], Which is a nucleic acid having a base sequence of 90% or more when calculated using an analysis software such as Examples of the base sequence having 90% or more identity with the complementary base sequence include base sequences in which the complementary base sequence is substituted with 2 bases or less, preferably 1 base.
 マイクロRNAの塩基配列は、例えばmiRBase (http://microrna.sanger.ac.uk/) というデータベースに登録されており、この塩基配列を切断対象のマイクロRNAの塩基配列として用いることができる。
 ガイド核酸の塩基配列は、マイクロRNAの5’末端から1~4番目のいずれかの塩基から連続する塩基配列と相補的な配列として決定することができる。例えば、hsa-miR-16(配列番号31)、17(配列番号32)、18a(配列番号33)、19a(配列番号34)、19b(配列番号35)、20a(配列番号36)、21(配列番号37)、92a(配列番号38)、103(配列番号39)、122(配列番号40)、125b(配列番号41)、142-3p(配列番号42)、155(配列番号43)、181a(配列番号44)、208a(配列番号45)、221(配列番号46)、222(配列番号47)、372(配列番号48)および373(配列番号49)のガイド核酸の塩基配列としては、それぞれ配列番号1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18および19を例示することができる。
The base sequence of microRNA is registered in, for example, a database called miRBase (http://microrna.sanger.ac.uk/), and this base sequence can be used as the base sequence of the microRNA to be cleaved.
The base sequence of the guide nucleic acid can be determined as a sequence complementary to a base sequence continuous from any one of the first to fourth bases from the 5 ′ end of the microRNA. For example, hsa-miR-16 (SEQ ID NO: 31), 17 (SEQ ID NO: 32), 18a (SEQ ID NO: 33), 19a (SEQ ID NO: 34), 19b (SEQ ID NO: 35), 20a (SEQ ID NO: 36), 21 ( SEQ ID NO: 37), 92a (SEQ ID NO: 38), 103 (SEQ ID NO: 39), 122 (SEQ ID NO: 40), 125b (SEQ ID NO: 41), 142-3p (SEQ ID NO: 42), 155 (SEQ ID NO: 43), 181a The nucleotide sequences of the guide nucleic acids of (SEQ ID NO: 44), 208a (SEQ ID NO: 45), 221 (SEQ ID NO: 46), 222 (SEQ ID NO: 47), 372 (SEQ ID NO: 48) and 373 (SEQ ID NO: 49) are respectively SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 can be exemplified.
 一旦、ガイド核酸の塩基配列が決定されれば、それをもとにガイド核酸を合成することができる。本発明のガイド核酸を合成する方法としては、特に限定されず、公知の化学合成を用いる方法、あるいは、酵素的転写法等にて製造することができる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスフォロチオエート法、ホスホトリエステル法等をあげることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)やNTS H-6核酸合成機(日本テクノサービス社製)、Oligopilot10核酸合成機(GEヘルスケア社製)により合成することができる。酵素的転写法としては、目的の塩基配列を有したプラスミドまたはDNAを鋳型として典型的なファージRNAポリメラーゼ、例えば、T7、T3、またはSP6 RNAポリメラーゼを用いた転写をあげることができる。 Once the base sequence of the guide nucleic acid is determined, the guide nucleic acid can be synthesized based on it. The method for synthesizing the guide nucleic acid of the present invention is not particularly limited, and the guide nucleic acid can be produced by a method using a known chemical synthesis or an enzymatic transcription method. Examples of known chemical synthesis methods include phosphoramidite method, phosphorothioate method, phosphotriester method, and the like. For example, ABI3900 high-throughput nucleic acid synthesizer (Applied Biosystems) or NTS H- 6Nucleic acid synthesizer (manufactured by Nippon Techno Service) or Oligopilot 10 nucleic acid synthesizer (GE Healthcare) Examples of the enzymatic transcription method include transcription using a typical phage RNA polymerase, for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having the target base sequence as a template.
 本発明のガイド核酸に用いられる核酸としては、ヌクレオチドまたは該ヌクレオチドと同等の機能を有する分子が重合した分子であればいかなるものでもよい。ヌクレオチド重合体としては、例えばリボヌクレオチドの重合体であるRNA、デオキシリボヌクレオチドの重合体であるDNA、リボヌクレオチドおよびデオキシリボヌクレオチドが混合した重合体が、該ヌクレオチドと同等の機能を有する分子が重合した分子としては、例えばヌクレオチド類似体を含むヌクレオチド重合体が、それぞれあげられる。該核酸としては、RNAが好適に用いられる。 As the nucleic acid used for the guide nucleic acid of the present invention, any nucleic acid may be used as long as it is a polymer obtained by polymerizing nucleotides or molecules having functions equivalent to the nucleotides. As the nucleotide polymer, for example, RNA, which is a polymer of ribonucleotides, DNA which is a polymer of deoxyribonucleotides, a polymer in which a polymer in which ribonucleotides and deoxyribonucleotides are mixed is a molecule in which molecules having functions equivalent to those nucleotides are polymerized Examples thereof include nucleotide polymers containing nucleotide analogues. As the nucleic acid, RNA is preferably used.
 ヌクレオチド類似体としては、例えばRNAまたはDNAと比較して、ヌクレオチド重合体のヌクレアーゼ耐性を向上または安定化させるため、相補鎖核酸とのアフィニティーを上げるため、細胞透過性を上げるため、あるいは可視化させるために、リボヌクレオチド、デオキシリボヌクレオチド、RNAまたはDNAに修飾を施した分子であればいかなる分子でもよい。例えば、糖部修飾ヌクレオチド類似体やリン酸ジエステル結合修飾ヌクレオチド類似体等があげられる。 Nucleotide analogs include, for example, to improve or stabilize the nuclease resistance of nucleotide polymers, to increase affinity with complementary strand nucleic acids, to increase cell permeability, or to be visualized compared to RNA or DNA. In addition, any molecule may be used as long as it is a ribonucleotide, deoxyribonucleotide, RNA or DNA modified. Examples thereof include sugar moiety-modified nucleotide analogs and phosphodiester bond-modified nucleotide analogs.
 糖部修飾ヌクレオチド類似体としては、ヌクレオチドの糖の化学構造の一部あるいは全てに対し、任意の化学構造物質を付加あるいは置換したものであればいかなるものでもよく、例えば、2’-O-メチルリボースで置換されたヌクレオチド類似体、2’-O-プロピルリボースで置換されたヌクレオチド類似体、2’-メトキシエトキシリボースで置換されたヌクレオチド類似体、2’-O-メトキシエチルリボースで置換されたヌクレオチド類似体、2’-O-[2-(グアニジウム)エチル]リボースで置換されたヌクレオチド類似体、2’-O-フルオロリボースで置換されたヌクレオチド類似体、糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)、より具体的には、2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA)、およびエチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[Nucleic Acid Research, 32, e175 (2004)]があげられ、さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)]、およびペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等をあげることができる。 The sugar moiety-modified nucleotide analog may be any one obtained by adding or substituting any chemical structural substance to a part or all of the chemical structure of the sugar of the nucleotide. For example, 2'-O-methyl Nucleotide analogues substituted with ribose, nucleotide analogues substituted with 2'-O-propylribose, nucleotide analogues substituted with 2'-methoxyethoxyribose, substituted with 2'-O-methoxyethylribose Nucleotide analogues, nucleotide analogues substituted with 2'-O- [2- (guanidinium) ethyl] ribose, nucleotide analogues substituted with 2'-O-fluororibose, introducing a bridging structure into the sugar moiety Bridged synthetic nucleic acid (BNA) having two circular structures, more specifically, an oxygen atom at the 2 ′ position And 4'-position carbon atoms cross-linked via methylene (Locked Nucleic Acid) (LNA), and ethylene-bridged artificial nucleic acid (Ethylene bridged nucleic acid) (ENA) [Nucleic Acid Research, 32, e175 (2004)], peptide nucleic acids (PNA) [Acc. Chem. Res., 32, 624 (1999)], oxypeptide nucleic acids (OPNA) [J. Am. Chem. Soc., 123, 4653 ( 2001)], and peptide ribonucleic acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)].
 リン酸ジエステル結合修飾ヌクレオチド類似体としては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の化学物質を付加あるいは置換したものであればいかなるものでもよく、例えば、ホスフォロチオエート結合に置換されたヌクレオチド類似体、N3’-P5’ホスフォアミデート結合に置換されたヌクレオチド類似体等をあげることができる[細胞工学, 16, 1463-1473 (1997)][RNAi法とアンチセンス法、講談社(2005)]。 The phosphodiester bond-modified nucleotide analog may be any one obtained by adding or substituting an arbitrary chemical substance to a part or all of the chemical structure of a phosphodiester bond of a nucleotide. Examples include nucleotide analogues substituted with thioate linkages, nucleotide analogues substituted with N3'-P5 'phosphoramidate linkages [Cell engineering, 16, 1463-1473 (1997)] [RNAi method And Antisense, Kodansha (2005)].
 ヌクレオチド類似体としては、その他に、核酸の塩基部分、リボース部分、リン酸ジエステル結合部分等の原子(例えば、水素原子、酸素原子)もしくは官能基(例えば、水酸基、アミノ基)が他の原子(例えば、水素原子、硫黄原子)、官能基(例えば、アミノ基)、もしくは炭素数1~6のアルキル基で置換されたものまたは保護基(例えばメチル基またはアシル基)で保護されたもの、核酸に、例えば脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、色素など、別の化学物質を付加した分子等を用いてもよい。
 核酸に別の化学物質を付加した分子としては、例えば、5’-ポリアミン付加誘導体、コレステロール付加誘導体、ステロイド付加誘導体、胆汁酸付加誘導体、ビタミン付加誘導体、Cy5付加誘導体、Cy3付加誘導体、6-FAM付加誘導体、およびビオチン付加誘導体等をあげることができる。
Other nucleotide analogues include atoms (for example, hydrogen atoms, oxygen atoms) or functional groups (for example, hydroxyl groups, amino groups) of nucleic acid base moieties, ribose moieties, phosphodiester bond moieties, etc. For example, a hydrogen atom, a sulfur atom), a functional group (for example, an amino group), a group substituted with an alkyl group having 1 to 6 carbon atoms, or a group protected with a protecting group (for example, a methyl group or an acyl group), a nucleic acid In addition, for example, a molecule to which another chemical substance is added such as lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, and a dye may be used.
Examples of molecules obtained by adding another chemical substance to nucleic acid include 5′-polyamine addition derivatives, cholesterol addition derivatives, steroid addition derivatives, bile acid addition derivatives, vitamin addition derivatives, Cy5 addition derivatives, Cy3 addition derivatives, and 6-FAM. Examples include addition derivatives, biotin addition derivatives, and the like.
 本発明のガイド核酸を用いることにより、対象となるマイクロRNAを切断することができる。該切断は、tRNaseZの存在下で、切断対象のマイクロRNAに本発明のガイド核酸を接触させることにより行うことができる。
 tRNaseZは、tRNAの成熟化に関わるエンドヌクレアーゼの一つであり、前駆体tRNAをmature tRNAへと成熟化する際に3’側を切断する活性を有する。tRNaseZとしては、tRNaseZLおよびtRNaseZSのいずれを用いてもよいが、tRNaseZLが好適に用いられる。
 細胞内あるいは動物個体内で発現するマイクロRNAを本発明のガイド核酸を用いて切断する場合は、該細胞あるいは動物個体に内在のtRNaseZを利用することができ、具体的には、後述の該核酸を用いてマイクロRNAの機能を決定する場合あるいは該核酸を医薬として用いる場合と同様にして実施することができる。
By using the guide nucleic acid of the present invention, the target microRNA can be cleaved. The cleavage can be performed by bringing the guide nucleic acid of the present invention into contact with the microRNA to be cleaved in the presence of tRNaseZ.
tRNaseZ is one of endonucleases involved in tRNA maturation, and has an activity of cleaving the 3 ′ side when a precursor tRNA is matured into a mature tRNA. As tRNaseZ, either tRNaseZL or tRNaseZS may be used, but tRNaseZL is preferably used.
When cleaving a microRNA expressed in a cell or an animal individual using the guide nucleic acid of the present invention, tRNaseZ endogenous to the cell or animal individual can be used. Specifically, the nucleic acid described below can be used. It can be carried out in the same manner as in the case of determining the function of microRNA using or the use of the nucleic acid as a medicine.
 本発明のガイド核酸を用いたマイクロRNAの切断を確認する方法としては、切断産物が検出できる方法であればいかなる方法を用いてもよく、例えば、標識RNA切断アッセイ法があげられる。あるいは、検体RNAを回収し、さらに低分子RNA画分を回収して塩基配列を決定することにより切断産物を検出してもよい。また、ノーザンハイブリダイゼーション法や定量PCR法を用いてマイクロRNAの発現量を測定して、間接的に切断を検出してもよい。 As a method for confirming the cleavage of microRNA using the guide nucleic acid of the present invention, any method can be used as long as it can detect a cleavage product, and examples thereof include a labeled RNA cleavage assay. Alternatively, the cleavage product may be detected by collecting the sample RNA and further collecting the low molecular weight RNA fraction and determining the base sequence. Alternatively, the cleavage may be detected indirectly by measuring the expression level of microRNA using Northern hybridization or quantitative PCR.
 標識RNA切断アッセイ法としては、切断対象のマイクロRNAをラジオアイソトープまたは蛍光試薬などで標識しておき、ガイド核酸およびtRNaseZと反応させた後、アクリルアミド変性ゲルにてRNAを電気泳動し、その後、ゲルをイメージングプレート等に感光させてバンドの長さを解析する方法が用いられる。tRNaseZは、例えば、PLoS ONE 4, e5908 (2009)に記載の方法等に従って、組み換え蛋白質として作製、精製することができる。 In the labeled RNA cleavage assay, the microRNA to be cleaved is labeled with a radioisotope or a fluorescent reagent, reacted with a guide nucleic acid and tRNaseZ, and then electrophoresed on an acrylamide denaturing gel, and then the gel A method of analyzing the band length by exposing the film to an imaging plate or the like is used. tRNaseZ can be produced and purified as a recombinant protein, for example, according to the method described in PLoS ONE 4, e5908 等 (2009).
 ノーザンブロット法としては、検体由来RNAをゲル電気泳動で分離後、ナイロンフィルター等の支持体に転写し、マイクロRNAの塩基配列をもとに適宜標識をしたプローブを作製し、ハイブリダイゼーションおよび洗浄をおこなうことで、マイクロRNA(またはその切断産物)に特異的に結合したバンドを検出する方法等が用いられる。具体的には、例えば、Science, 294, 853-858 (2001)に記載の方法等に従って行うことができる。標識プローブは、例えば、ニック・トランスレーション、ランダム・プライミングまたは5’末端のリン酸化等の方法により放射性同位体、ビオチン、ジゴキシゲニン、蛍光基、化学発光基等を、マイクロRNAの塩基配列と相補的な配列を有するDNAやRNA、あるいはLNAに取り込ませることで調製できる。標識プローブの結合量はマイクロRNA(またはその切断産物)の量を反映することから、結合した標識プローブの量を定量することでマイクロRNA(またはその切断産物)の量を定量することができる。電気泳動、メンブレンへの移行、プローブの調製、ハイブリダイゼーション、核酸の検出については、例えば、モレキュラー・クローニング第3版(Cold Spring Harbor Laboratory Press)に記載の方法により行うことができる。 In Northern blotting, sample-derived RNA is separated by gel electrophoresis, then transferred to a support such as a nylon filter, and a probe labeled appropriately based on the base sequence of the microRNA is prepared for hybridization and washing. By performing this, a method for detecting a band specifically bound to microRNA (or its cleavage product) is used. Specifically, for example, it can be performed according to the method described in Science, 294, 853-858 (2001). The labeled probe is complementary to the base sequence of the microRNA by, for example, radioisotope, biotin, digoxigenin, fluorescent group, chemiluminescent group, etc. by methods such as nick translation, random priming, or phosphorylation at the 5 ′ end. It can be prepared by incorporating it into DNA or RNA having an appropriate sequence or LNA. Since the binding amount of the labeled probe reflects the amount of microRNA (or its cleavage product), the amount of microRNA (or its cleavage product) can be quantified by quantifying the amount of bound labeled probe. Electrophoresis, transfer to a membrane, probe preparation, hybridization, and detection of nucleic acid can be performed, for example, by the method described in Molecular Cloning 3rd Edition (Cold Spring Harbor Laboratory Press).
 定量PCR法は検体由来RNAから、逆転写用プライマーと逆転写酵素を用いてPCRを行って合成したcDNA(以下、検体由来cDNAという。)を定量する方法である。cDNA合成に供する逆転写用プライマーとして、ランダムプライマー、あるいはマイクロRNAに対応する塩基配列に相補する配列を有するプライマーである、特異的RTプライマー等を用いることができる。
 例えば、検体由来cDNAを合成後、これを鋳型とし、マイクロRNAに対応する塩基配列、あるいは逆転写用プライマーに対応する塩基配列から設計した鋳型特異的なプライマーを用いてPCRを行い、マイクロRNAを含むcDNAの断片を増幅させ、ある一定量に達するまでのサイクル数から検体由来RNAに含まれるマイクロRNAの量を検出する。鋳型特異的なプライマーとしては、マイクロRNAに対応する適当な領域を選択し、その領域と相補的な配列からなるDNAまたはLNAの組を用いることができる。具体的には、Nucleic Acids Research, 32, e43 (2004)に記載の方法等に準じて行うことができる。
 また、cDNA合成に供する逆転写用プライマーとして、ステム・ループ構造を有した特異的RTプライマーを用いることもできる。具体的には、Nucleic Acids Research, 33, e179 (2005)に記載の方法、あるいは、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて行うことができる。
The quantitative PCR method is a method for quantifying cDNA synthesized from a sample-derived RNA by PCR using a reverse transcription primer and a reverse transcriptase (hereinafter referred to as a sample-derived cDNA). As a reverse transcription primer to be used for cDNA synthesis, a specific primer such as a random primer or a primer having a sequence complementary to a base sequence corresponding to microRNA can be used.
For example, after synthesizing a sample-derived cDNA, using this as a template, PCR is performed using a template-specific primer designed from a base sequence corresponding to microRNA or a base sequence corresponding to a primer for reverse transcription, and microRNA is The contained cDNA fragment is amplified, and the amount of microRNA contained in the sample-derived RNA is detected from the number of cycles until a certain amount is reached. As a template-specific primer, an appropriate region corresponding to the microRNA can be selected, and a DNA or LNA pair consisting of a sequence complementary to that region can be used. Specifically, it can be performed according to the method described in Nucleic Acids Research, 32, e43 (2004).
A specific RT primer having a stem-loop structure can also be used as a reverse transcription primer for cDNA synthesis. Specifically, it can be performed using the method described in Nucleic Acids Research, 33, e179 (2005) or TaqMan MicroRNA Assays (Applied Biosystems).
 更に別の方法として、マイクロRNAを少なくとも1つ以上含む塩基配列に対応するDNAあるいはLNAを固定化させたフィルターあるいはスライドガラスやシリコンなどの基盤に対して、検体由来cDNAをハイブリダイゼーションし、洗浄を行うことにより、マイクロRNAの量の変動を検出することができる。このようなハイブリダイゼーションに基づく方法には、ディファレンシャルハイブリダイゼーション[Trends Genet., 7, 314 (1991)]やマイクロアレイ[Genome Res., 6, 639 (1996)]を用いる方法があげられる。いずれの方法もフィルターあるいは基盤上にU6 RNAに対応する塩基配列などの内部コントロールを固定化することで、対照検体(ガイド核酸なし)と標的検体(ガイド核酸あり)の間でのマイクロRNAの量の違いを正確に検出することができる。また対照検体と標的検体由来のRNAをもとにそれぞれ異なる標識のdNTP(dATP、dGTP、dCTP、dTTPの混合物)を用いて標識cDNA合成を行い、1枚のフィルターあるいは1枚の基盤に2つの標識cDNAを同時にハイブリダイズさせることでマイクロRNAの定量を行うことができる。例えば、Proc. Natl. Acad. Sci. USA, 101, 9740-9744 (2004)やNucleic Acids Research, 32, e188 (2004)等に記載のマイクロアレイを用いてマイクロRNAを検出することができる。具体的には、mirVana miRNA Bioarray(Ambion社製)と同様にして検出または定量することができる。 As another method, the sample-derived cDNA is hybridized to a filter or slide glass, silicon, or other substrate on which DNA corresponding to a base sequence containing at least one microRNA or a DNA sequence or LNA is immobilized, and washed. By doing so, fluctuations in the amount of microRNA can be detected. Examples of methods based on such hybridization include methods using differential hybridization [Trends Genet., 7, 314 (1991)] and microarrays [Genome Res., 6, 639 (1996)]. In both methods, the amount of microRNA between the control sample (without the guide nucleic acid) and the target sample (with the guide nucleic acid) is fixed by immobilizing an internal control such as a nucleotide sequence corresponding to U6 RNA on a filter or substrate. It is possible to accurately detect the difference. In addition, labeled cDNA synthesis using differently labeled dNTPs (mixtures of dATP, dGTP, dCTP, and dTTP) based on RNA derived from the control sample and the target sample, and two filters on one filter or one substrate. MicroRNA can be quantified by simultaneously hybridizing labeled cDNA. For example, microRNA can be detected using a microarray described in Proc. Natl. Acad. Sci. USA, 101, 9740-9744 (2004), Nucleic Acids Research, 32, e188 (2004). Specifically, it can be detected or quantified in the same manner as mirVana miRNA Bioarray (Ambion).
 本発明で用いるマイクロRNA切断用のガイド核酸は、細胞あるいは動物個体に導入してマイクロRNA発現を低下させ、細胞あるいは個体に起こる変化を観察、測定することにより、マイクロRNAの機能を決定することができる。マイクロRNA切断用のガイド核酸を細胞内へ導入させるには、リポフェクション試薬、例えばLipofectamine2000(Invitrogen社)やエレクトロポレーション法などがあるが、ガイド核酸をそのまま細胞培養液中に添加することでも導入することができる。ガイド核酸を動物個体に導入する場合は、後述の医薬としての投与方法に準じて行うことができる。 A guide nucleic acid for cleaving microRNA used in the present invention is introduced into a cell or animal individual to reduce microRNA expression, and the function of microRNA is determined by observing and measuring changes occurring in the cell or individual. Can do. There are lipofection reagents such as Lipofectamine 2000 (Invitrogen) and electroporation to introduce a guide nucleic acid for cleaving microRNA into cells, but it can also be introduced by adding the guide nucleic acid directly into the cell culture medium. be able to. When introducing a guide nucleic acid into an animal individual, it can be carried out according to the administration method as a pharmaceutical described later.
 本発明で用いるマイクロRNA切断用のガイド核酸は、マイクロRNAの発現を抑制することにより、マイクロRNAの過剰発現に起因する疾患の治療薬として用いることができる。マイクロRNAの過剰発現に起因する疾患としては、癌、アレルギー疾患、心血管疾患、神経変性疾患、肝炎等をあげることができる。
 過剰発現することで癌化に関連するマイクロRNAとしては、例えばmiR-16、miR-17、miR-18a、miR-19a、miR-19b、miR-20a、miR-21、miR-92a、miR-103、miR-155、miR-181a、miR-372、miR-373等をあげることができる。アレルギー疾患発症の一因である、肥満細胞の数を増加させるマイクロRNAとして、miR-221、miR-222をあげることができ、肥満細胞の脱顆粒活性を促進させるマイクロRNAとして、miR-142-3pをあげることができる。過剰発現により心肥大につながるマイクロRNAとしてはmiR-208aを、アルツハイマー病の脳で高発現しているマイクロRNAとしてはmiR-125bを、C型肝炎ウィルスを増殖させるマイクロRNAとしてはmiR-122を、それぞれあげることができる。
The guide nucleic acid for cleaving microRNA used in the present invention can be used as a therapeutic agent for diseases caused by overexpression of microRNA by suppressing the expression of microRNA. Examples of the disease caused by overexpression of microRNA include cancer, allergic disease, cardiovascular disease, neurodegenerative disease, hepatitis and the like.
Examples of microRNAs related to canceration by overexpression include miR-16, miR-17, miR-18a, miR-19a, miR-19b, miR-20a, miR-21, miR-92a, miR- 103, miR-155, miR-181a, miR-372, miR-373 and the like. Examples of microRNAs that increase the number of mast cells that contribute to the development of allergic diseases include miR-221 and miR-222. As microRNAs that promote degranulation activity of mast cells, miR-142- 3p can be given. MiR-208a is a microRNA that leads to cardiac hypertrophy due to overexpression, miR-125b is a microRNA highly expressed in the brain of Alzheimer's disease, and miR-122 is a microRNA that propagates hepatitis C virus. , You can give each.
 本発明で用いる核酸を有効成分として含有する治療薬は、単独で投与することもできるが、通常は薬理学的に許容される1つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として投与するのが望ましい。
 投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内などの非経口投与をあげることができ、望ましくは静脈内投与をあげることができる。
 投与形態としては、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏、テープ剤などがあげられる。
The therapeutic agent containing the nucleic acid used in the present invention as an active ingredient can be administered alone, but it is usually mixed with one or more pharmacologically acceptable carriers to prepare pharmaceutical technology. It is desirable to administer as a pharmaceutical formulation produced by any method well known in the art.
It is desirable to use the most effective route for treatment, and oral administration or parenteral administration such as buccal, respiratory tract, rectal, subcutaneous, intramuscular and intravenous is desirable. Can be given intravenously.
Examples of the dosage form include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤などがあげられる。
 乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖などの糖類、ポリエチレングリコール、プロピレングリコールなどのグリコール類、ごま油、オリーブ油、大豆油などの油類、p-ヒドロキシ安息香酸エステル類などの防腐剤、ストロベリーフレーバー、ペパーミントなどのフレーバー類などを添加剤として用いて製造できる。
 カプセル剤、錠剤、散剤、顆粒剤などは、乳糖、ブドウ糖、ショ糖、マンニトールなどの賦形剤、デンプン、アルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチンなどの結合剤、脂肪酸エステルなどの界面活性剤、グリセリンなどの可塑剤などを添加剤として用いて製造できる。
Suitable formulations for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p-hydroxybenzoic acid Preservatives such as esters, and flavors such as strawberry flavor and peppermint can be used as additives.
For capsules, tablets, powders, granules, etc., excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl alcohol, hydroxy A binder such as propylcellulose and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.
 非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤などがあげられる。
 注射剤は、塩溶液、ブドウ糖溶液あるいは両者の混合物からなる担体などを用いて調製される。座剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて調製される。また、噴霧剤は受容者の口腔および気道粘膜を刺激せず、かつ有効成分を微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。
 担体として具体的には乳糖、グリセリンなどが例示される。本発明で用いる核酸、さらには用いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。
Formulations suitable for parenteral administration include injections, suppositories, sprays and the like.
The injection is prepared using a carrier made of a salt solution, a glucose solution, or a mixture of both. Suppositories are prepared using a carrier such as cocoa butter, hydrogenated fat or carboxylic acid. The spray is prepared using a carrier that does not irritate the recipient's oral cavity and airway mucosa, and that facilitates absorption by dispersing the active ingredient as fine particles.
Specific examples of the carrier include lactose and glycerin. Depending on the nature of the nucleic acid used in the present invention and the carrier used, preparations such as aerosols and dry powders are possible. In these parenteral preparations, the components exemplified as additives for oral preparations can also be added.
 投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより異なるが、通常成人1日当たり10 μg/kg~20 mg/kgである。 The dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, body weight, etc., but is usually 10 μg / kg to 20 μg / kg per day for an adult.
 本発明で用いるマイクロRNA切断用のガイド核酸は、非ウィルス核酸移入法によっても移入することができる。例えば、リン酸カルシウム共沈法(Virology, 52, 456-467 (1973);Science, 209, 1414-1422 (1980))、マイクロインジェクション法(Proc. Natl. Acad. Sci. USA,77, 5399-5403 (1980);Proc. Natl. Acad. Sci. USA,77, 7380-7384 (1980);Cell, 27, 223-231 (1981);Nature, 294, 92-94 (1981))、リポソームを介した膜融合-介在移入法(Proc. Natl. Acad. Sci. USA, 84, 7413-7417 (1987);Biochemistry, 28, 9508-9514 (1989);J. Biol. Chem., 264, 12126-12129 (1989);Hum. Gene Ther., 3, 267-275, (1992);Science, 249, 1285-1288 (1990);Circulation, 83, 2007-2011 (1992))あるいは直接DNA取り込みおよび受容体-媒介DNA移入法(Science, 247, 1465-1468 (1990);J. Biol. Chem., 266, 14338-14342 (1991);Proc. Natl. Acad. Sci. USA, 87, 3655-3659 (1991);J. Biol. Chem., 264, 16985-16987 (1989);BioTechniques, 11, 474-485 (1991);Proc. Natl. Acad. Sci. USA,87, 3410-3414 (1990);Proc. Natl. Acad. Sci. USA,88, 4255-4259 (1991);Proc. Natl. Acad. Sci. USA, 87, 4033-4037 (1990);Proc. Natl. Acad. Sci. USA, 88, 8850-8854 (1991);Hum. Gene Ther., 3, 147-154 (1991))等により移入することができる。 The guide nucleic acid for microRNA cleavage used in the present invention can also be transferred by a non-viral nucleic acid transfer method. For example, calcium phosphate coprecipitation method (Virology, 52, 456-467 (1973); Science, 209, 1414-1422 (1980)), microinjection method (Proc.cNatl. Acad. Sci. USA, 77, 5399-5403 ( 1980); Proc. Natl. Acad. Sci. USA, 77, 7380-7384 (1980); Cell, 27, 223-231 (1981); Nature, 294, 92-94 (1981)), liposome-mediated membrane Fusion-mediated transfer (Proc. Natl.tlAcad. Sci. USA, 84, 7413-7417 (1987); Biochemistry, 28, 9508-9514 (1989); J. Biol. Chem., 264, 12126-12129 (1989) ); Hum. Gene Ther., 3, 267-275, (1992); Science, 249, 1285-1288 (1990); Circulation, 83, 2007-2011 (1992)) or direct DNA uptake and receptor-mediated DNA Transfer method (Science, 247, 1465-1468 (1990); J. Biol. Chem., 266, 14338-14342 (1991); Proc. Natl. Acad. Sci. USA, 87, 3655-3659 (1991); J Biol. Chem., 264, 16985-16987 (1989); BioTechniques, 11, 474-485 (1991); Proc. Natl. Acad. Sci. USA, 87, 3410-3414 (1990); Proc. Natl. Acad. Sci. USA, 88, 4255-4259 (1991); Proc. Natl. Acad. Sci. USA, 87, 4033-4037 (1990); Proc. Natl. Acad. Sci. USA, 88, 8850-8854 (1991); Hum. Gene Ther., 3, 147-154 (1991)).
 リポソームを介した膜融合-介在移入法は、リポソーム調製物を目的とする組織に直接投与することにより、本発明で用いる核酸を当該組織の局所に取り込み、および発現させることができる[Hum. Gene Ther., 3, 399 (1992)]。核酸を病巣に直接ターゲッティングするには、核酸を直接取り込む技術を用いることが好ましい。
 受容体-媒介核酸移入は、例えば、ポリリジンを介して、蛋白質リガンドに核酸を結合することによって行う方法をあげることができる。リガンドは、目的細胞または組織の細胞表面上の対応するリガンド受容体の存在に基づいて選択する。当該リガンド-核酸コンジュゲートは、所望により、血管に直接注射することができ、受容体結合および核酸-蛋白質コンプレックスの内在化が起こる標的組織に指向し得る。核酸の細胞内破壊を防止するために、アデノウィルスを同時感染させて、エンドソーム機能を崩壊させることもできる。
The membrane fusion-mediated transfer method via liposomes allows the nucleic acid used in the present invention to be taken up locally and expressed in the tissue by directly administering the liposome preparation to the target tissue [Hum. Gene Ther., 3, 399 (1992)]. In order to target the nucleic acid directly to the lesion, it is preferable to use a technique for directly incorporating the nucleic acid.
For example, receptor-mediated nucleic acid transfer can be performed by binding a nucleic acid to a protein ligand via polylysine. The ligand is selected based on the presence of the corresponding ligand receptor on the cell surface of the target cell or tissue. The ligand-nucleic acid conjugate can be injected directly into the blood vessel, if desired, and can be directed to a target tissue where receptor binding and internalization of the nucleic acid-protein complex occurs. To prevent intracellular destruction of nucleic acids, adenovirus can be co-infected to disrupt endosomal function.
 以下、実施例を示してこの出願の発明について具体的に説明するが、この出願の発明は以下の例によって限定されるものではない。 Hereinafter, the invention of this application will be specifically described with reference to examples, but the invention of this application is not limited by the following examples.
miR-103を切断するガイド核酸
 miR-103の切断を誘発するガイド核酸を設計し、miR-103を切断するかを調べた。
(1)無細胞系での検証
 ラベル化したmiR-103、miR-103に対する種々のガイド核酸、およびtRNaseZLを試験管内で反応させ、miR-103が切断されるかを検討した。
 まずmiR-103の塩基配列に対応する合成DNAを鋳型にしてT7 RNA polymerase(プロメガ社製)で転写し、変性ゲル電気泳動で抽出してmiR-103を作製した。T7 RNA polymeraseによる転写は、製品に添付された説明書に記載された方法に従った。その後、miR-103をalkaline phosphatase(タカラバイオ社製)処理して5’末端のリン酸基を除去した後、T4 polynucleotide kinase(タカラバイオ社製)とATPγSを加えて反応させ、その反応後fluoresceinと混合し、蛍光ラベル化した。ラベル化の手順はGE Healthcare社の説明書に記載された方法に従った。
 日本バイオサービス社で合成された、配列番号20で表されるsgR103-10、配列番号9で表されるsgR103-14、配列番号21で表されるsgR103-16、配列番号22で表されるsgR103-23を、miR-103のガイド核酸として用いた。sgR103-10、sgR103-14、sgR103-16およびsgR103-23は、miR-103の5’末端から、それぞれ10、14、16および23塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAであり、全ての塩基が2’-O-メチル化されている。
 tRNaseZLは大腸菌を宿主とした組み換え蛋白質として通常の方法で作製、精製することができる。具体的には、例えば、PLoS ONE 4, e5908 (2009)に記載の方法等に従って行うことができる。
 切断アッセイは以下のようにして実施した。すなわち、2 pmolのラベル化したmiR-103、20 pmolのガイド核酸、50 ngのtRNaseZLを6 μLの反応液中(10 mM Tris-HCl (pH 7.5)、1.5 mM dithiothreitol、3.3 mM MgCl2)で37℃で反応させ、分解産物の有無は、15% polyacrylamide - 8M urea gelの電気泳動後、Typhoon 9210(GE Healthcare社製)にて解析した。
 その結果、図1(1)に示されるように、tRNaseZLとsgR103-14を添加した場合において、23塩基長からなるmiR-103以外にも14-15塩基長程度の産物が検出された。
Guide nucleic acid that cleaves miR-103 A guide nucleic acid that induces cleavage of miR-103 was designed and examined to cleave miR-103.
(1) Verification in cell-free system It was examined whether miR-103 was cleaved by reacting labeled miR-103, various guide nucleic acids for miR-103, and tRNaseZL in vitro.
First, miR-103 was prepared by transcription using T7 RNA polymerase (manufactured by Promega) using a synthetic DNA corresponding to the base sequence of miR-103 as a template, and extraction by denaturing gel electrophoresis. Transcription with T7 RNA polymerase followed the method described in the instructions attached to the product. Then, miR-103 was treated with alkaline phosphatase (Takara Bio) to remove the 5'-terminal phosphate group, and then reacted with T4 polynucleotide kinase (Takara Bio) and ATPγS. After the reaction, fluorescein And fluorescently labeled. The labeling procedure was in accordance with the method described in the GE Healthcare manual.
SgR103-10 represented by SEQ ID NO: 20, sgR103-14 represented by SEQ ID NO: 9, sgR103-16 represented by SEQ ID NO: 21, and sgR103 represented by SEQ ID NO: 22 synthesized by Nippon Bioservice Co., Ltd. -23 was used as the guide nucleic acid for miR-103. sgR103-10, sgR103-14, sgR103-16, and sgR103-23 consist of base sequences that are complementary to base sequences that are 10, 14, 16, and 23 consecutive bases from the 5 ′ end of miR-103, respectively. It is a single-stranded RNA, and all bases are 2'-O-methylated.
tRNaseZL can be produced and purified by a conventional method as a recombinant protein using E. coli as a host. Specifically, it can be performed according to the method described in PLoS ONE 4, e5908 (2009), for example.
The cleavage assay was performed as follows. That is, 2 pmol labeled miR-103, 20 pmol guide nucleic acid, 50 ng tRNaseZL in 6 μL reaction solution (10 mM Tris-HCl (pH 7.5), 1.5 mM dithiothreitol, 3.3 mM MgCl 2 ) The reaction was carried out at 37 ° C., and the presence or absence of degradation products was analyzed with Typhoon 9210 (GE Healthcare) after electrophoresis of 15% polyacrylamide-8M urea gel.
As a result, as shown in FIG. 1 (1), when tRNaseZL and sgR103-14 were added, a product having a length of about 14-15 bases was detected in addition to miR-103 consisting of 23 bases.
(2)293細胞での検証
 293細胞に対し、miR-103に対する種々のガイド核酸を導入し、miR-103の発現量を検討した。
 293細胞は10%ウシ胎児血清(FBS、MP Biomedicals社製)を含むDMEM培地(Sigma社製)で37℃の5%CO2濃度のインキュベーター中で培養した。実施例1(1)で記載したsgR103-10、sgR103-14、sgR103-16、sgR103-23の4種類のガイド核酸を細胞へ導入した。
 293細胞を播種したプレートに、ガイド核酸をリポフェクション法、具体的にはLipofectamine2000(Invitrogen社製)を用いて、終濃度0.1 μMとなるように導入した。リポフェクションは、製品に添付された説明書に記載された方法に従った。リポフェクション法によりガイド核酸を導入した18時間後、293細胞からISOGEN(ニッポンジーン社製)を用いて全RNAを抽出した。このうち、20 μg分を15% polyacryamide - 8M urea gelにて電気泳動し、Hybond N+メンブレン(GE Healthcare社製)に転写し、UVクロスリンク処理を施した。miR-103配列に対応するDNAオリゴを32Pでラベルしてプローブとし、上記メンブレンをQuickHyb buffer(Stratagene社製)中でハイブリダイゼーション反応させた。メンブレンを洗浄した後、Typhoon 9210でmiR-103に対応するバンドの有無を測定した結果、図1(2)に示されるように、sgR103-14を導入した細胞ではmiR-103量が低下した。
(2) Verification in 293 cells Various guide nucleic acids for miR-103 were introduced into 293 cells, and the expression level of miR-103 was examined.
293 cells were cultured in a DMEM medium (manufactured by Sigma) containing 10% fetal bovine serum (FBS, manufactured by MP Biomedicals) in an incubator at 37 ° C. and 5% CO 2 concentration. Four types of guide nucleic acids, sgR103-10, sgR103-14, sgR103-16, and sgR103-23 described in Example 1 (1) were introduced into cells.
A guide nucleic acid was introduced into a plate seeded with 293 cells using a lipofection method, specifically, Lipofectamine 2000 (manufactured by Invitrogen) to a final concentration of 0.1 μM. Lipofection followed the method described in the instructions attached to the product. 18 hours after introducing the guide nucleic acid by the lipofection method, total RNA was extracted from 293 cells using ISOGEN (Nippon Gene). Of this, 20 μg was electrophoresed on 15% polyacryamide-8M urea gel, transferred to Hybond N + membrane (GE Healthcare), and subjected to UV cross-linking treatment. A DNA oligo corresponding to the miR-103 sequence was labeled with 32 P as a probe, and the membrane was subjected to a hybridization reaction in QuickHyb buffer (Stratagene). After the membrane was washed, the presence or absence of a band corresponding to miR-103 was measured with Typhoon 9210. As a result, as shown in FIG. 1 (2), the amount of miR-103 decreased in the cells into which sgR103-14 was introduced.
miR-16を切断するガイド核酸(1)
 miR-103に対するガイド核酸と同様に、miR-16の切断を誘発するガイド核酸も設計し、miR-16を切断するかを調べた。
(1)無細胞系での検証
 ラベル化したmiR-16、miR-16に対する種々のガイド核酸、およびtRNaseZLを試験管内で反応させ、miR-16が切断されるかを検討した。
 日本バイオサービス社で合成されたmiR-16をT4 polynucleotide kinase(タカラバイオ社製)とATPγSを加えて反応させ、その反応後fluoresceinと混合し、蛍光ラベル化miR-16を用意した。ラベル化の手順はGE Healthcare社の説明書に記載された方法に従った。
 日本バイオサービス社で合成された、配列番号1で表されるsgR16-14、配列番号23で表されるsgR16-14dを、miR-16のガイド核酸として用いた。前者はmiR-16の5’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNA、後者はmiR-16の3’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAであり、どちらも全ての塩基が2’-O-メチル化されている。
 tRNaseZLは大腸菌を宿主とした組み換え蛋白質として通常の方法で作製、精製することができる。具体的には、例えば、PLoS ONE 4, e5908 (2009)に記載の方法等に従って行うことができる。
 切断アッセイは以下のようにして実施した。すなわち、2 pmolのラベル化したmiR-16、20 pmolのガイド核酸、50 ngのtRNaseZLを6 μLの反応液中(10 mM Tris-HCl (pH 7.5)、1.5 mM dithiothreitol、3.3 mM MgCl2)で37℃で30分もしくは60分反応させ、分解産物の有無は、15% polyacrylamide - 8M urea gelの電気泳動後、Typhoon 9210(GE Healthcare社製)にて解析した。
 その結果、図2(1)に示されるとおり、tRNaseZLとsgR16-14とを添加した場合において、22塩基長からなるmiR-16とは別に、miR-16より短い断片が確認された。これは、miR-16が切断されたことを示すものである。一方、tRNaseZLとsgR16-14dとを添加した場合には、miR-16以外の短い断片は確認できなかった。
Guide nucleic acid that cleaves miR-16 (1)
Similar to the guide nucleic acid for miR-103, a guide nucleic acid that induces cleavage of miR-16 was also designed and examined to cleave miR-16.
(1) Verification in cell-free system It was examined whether miR-16 is cleaved by reacting labeled miR-16, various guide nucleic acids for miR-16, and tRNaseZL in vitro.
MiR-16 synthesized by Nippon Bioservice Co., Ltd. was reacted with T4 polynucleotide kinase (manufactured by Takara Bio Inc.) and ATPγS, and then mixed with fluorescein to prepare fluorescently labeled miR-16. The labeling procedure was in accordance with the method described in the GE Healthcare manual.
The sgR16-14 represented by SEQ ID NO: 1 and the sgR16-14d represented by SEQ ID NO: 23, which were synthesized by Nippon Bioservice, were used as guide nucleic acids for miR-16. The former is a single-stranded RNA consisting of a base sequence complementary to the base sequence of 14 bases from the 5 'end of miR-16, and the latter is a base sequence of 14 bases from the 3' end of miR-16. It is a single-stranded RNA consisting of a complementary base sequence, both of which have all bases 2'-O-methylated.
tRNaseZL can be produced and purified by a conventional method as a recombinant protein using E. coli as a host. Specifically, it can be performed according to the method described in PLoS ONE 4, e5908 (2009), for example.
The cleavage assay was performed as follows. That is, 2 pmol labeled miR-16, 20 pmol guide nucleic acid, 50 ng tRNaseZL in 6 μL reaction solution (10 mM Tris-HCl (pH 7.5), 1.5 mM dithiothreitol, 3.3 mM MgCl 2 ) The reaction was carried out at 37 ° C. for 30 or 60 minutes, and the presence or absence of degradation products was analyzed by Typhoon 9210 (GE Healthcare) after electrophoresis of 15% polyacrylamide-8M urea gel.
As a result, as shown in FIG. 2 (1), when tRNaseZL and sgR16-14 were added, a fragment shorter than miR-16 was confirmed apart from miR-16 consisting of 22 bases. This indicates that miR-16 has been cleaved. On the other hand, when tRNaseZL and sgR16-14d were added, short fragments other than miR-16 could not be confirmed.
(2)293細胞での検証
 293細胞に対し、miR-16に対する種々のガイド核酸を導入し、miR-16の発現量を検討した。また同時に、tRNaseZLに対するsiRNAも導入して、tRNaseZLの関与を調べた。
 293細胞は10%ウシ胎児血清(FBS、MP Biomedicals社製)を含むDMEM培地(Sigma社製)で37℃の5% CO2濃度のインキュベーター中で培養した。実施例2(1)で記載した、sgR16-14およびsgR16-14d、ならびに配列番号24で表されるsgR16-22の3種類のガイド核酸を細胞へ導入した。sgR16-22は、miR-16の5’末端から22塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAであり、どのガイド核酸においても、全ての塩基が2’-O-メチル化されている。ヒトtRNaseZLに対するsiRNAとしては、配列番号25と配列番号26からなるsiRNAをQIAGEN社より購入して使用した。
 293細胞を播種したプレートに、ガイド核酸をリポフェクション法、具体的にはLipofectamine2000(Invitrogen社製)を用いて、終濃度0.1 μMとなるように導入した。また、場合によってはtRNaseZLに対するsiRNAも同時に、終濃度0.1 μMとなるようにリポフェクション法により導入した。リポフェクションは、製品に添付された説明書に記載された方法に従った。リポフェクション法によりガイド核酸を導入した18時間後(tRNaseZL siRNAを導入した細胞は42時間後)、293細胞からISOGEN(ニッポンジーン社製)を用いて全RNAを抽出した。このうち、5 μg分を15% polyacryamide - 8M urea gelにて電気泳動し、Hybond N+メンブレン(GE Healthcare社製)に転写し、UVクロスリンク処理を施した。miR-16配列に対応するDNAオリゴを32Pでラベルしてプローブとし、上記メンブレンをQuickHyb buffer(Stratagene社製)中でハイブリダイゼーション反応させ、メンブレンを洗浄した後、Typhoon 9210でmiR-16に対応するバンドの有無を測定した。
 その結果、図2(2)に示されるとおり、tRNaseZL siRNAを導入していない群では、sgR16-14、sgR16-22導入によりmiR-16のバンドが消失し、一方、tRNaseZL siRNAを導入した群では、sgR16-22導入のみでmiR-16のバンドが消失した。このことは、sgR16-22によるmiR-16発現抑制はtRNaseZLには依存しないが、sgR16-14によるmiR-16発現抑制はtRNaseZLに依存することを示すものである。
 また上記取得した全RNAに対して、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて、cDNA合成およびリアルタイムPCRをおこない、miR-16の発現量を測定した。測定は製品に添付された説明書に記載された方法に従った。なお、同時にsno234 RNA発現量を測定して、normalizeして相対発現量を算出した。
 その結果、図2(3)に示されるとおり、northern解析と同様、tRNaseZL siRNAを導入していない群では、sg16-14およびsgR16-22導入によりmiR-16発現量低下が認められ、tRNaseZL siRNAを導入した群では、sgR16-22のみで発現量低下が認められた。
(2) Verification in 293 cells Various guide nucleic acids for miR-16 were introduced into 293 cells, and the expression level of miR-16 was examined. At the same time, siRNA for tRNaseZL was also introduced to investigate the involvement of tRNaseZL.
293 cells were cultured in DMEM medium (manufactured by Sigma) containing 10% fetal bovine serum (FBS, manufactured by MP Biomedicals) in an incubator at 37 ° C. and 5% CO 2 concentration. Three types of guide nucleic acids described in Example 2 (1), sgR16-14 and sgR16-14d, and sgR16-22 represented by SEQ ID NO: 24 were introduced into cells. sgR16-22 is a single-stranded RNA consisting of a base sequence complementary to a base sequence that is 22 bases continuous from the 5 ′ end of miR-16, and in any guide nucleic acid, all bases are 2′-O. -Methylated. As siRNA for human tRNaseZL, siRNA consisting of SEQ ID NO: 25 and SEQ ID NO: 26 was purchased from QIAGEN and used.
A guide nucleic acid was introduced into a plate seeded with 293 cells using a lipofection method, specifically, Lipofectamine 2000 (manufactured by Invitrogen) to a final concentration of 0.1 μM. In some cases, siRNA for tRNaseZL was simultaneously introduced by a lipofection method to a final concentration of 0.1 μM. Lipofection followed the method described in the instructions attached to the product. 18 hours after introduction of the guide nucleic acid by the lipofection method (42 hours after introduction of the tRNaseZL siRNA), total RNA was extracted from 293 cells using ISOGEN (Nippon Gene). Of this, 5 μg was electrophoresed with 15% polyacryamide-8M urea gel, transferred to Hybond N + membrane (GE Healthcare), and subjected to UV cross-linking treatment. A DNA oligo corresponding to the miR-16 sequence is labeled with 32 P as a probe, the membrane is hybridized in QuickHyb buffer (Stratagene), the membrane is washed, and miR-16 is supported with Typhoon 9210 The presence or absence of a band to be measured was measured.
As a result, as shown in Fig. 2 (2), the miR-16 band disappeared by the introduction of sgR16-14 and sgR16-22 in the group not introduced with tRNaseZL siRNA, whereas in the group introduced with tRNaseZL siRNA. The miR-16 band disappeared only by introducing sgR16-22. This indicates that miR-16 expression suppression by sgR16-22 does not depend on tRNaseZL, but miR-16 expression suppression by sgR16-14 depends on tRNaseZL.
Moreover, cDNA synthesis and real-time PCR were performed on the obtained total RNA using TaqMan MicroRNA Assays (Applied Biosystems), and the expression level of miR-16 was measured. The measurement followed the method described in the instructions attached to the product. At the same time, the expression level of sno234 RNA was measured and normalized to calculate the relative expression level.
As a result, as shown in FIG. 2 (3), as in the case of the northern analysis, miR-16 expression level was reduced by the introduction of sg16-14 and sgR16-22 in the group not introduced with tRNaseZL siRNA. In the introduced group, a decrease in the expression level was observed only with sgR16-22.
miR-16を切断するガイド核酸(2)
 実施例2で示したガイド核酸以外の3種のガイド核酸を設計し、ラベル化したmiR-16が切断されるかを検討した。
 日本バイオサービス社で合成された、配列番号1で表されるsgR16(1-14)、配列番号27で表されるsgR16(1-12)、配列番号28で表されるsgR16(4-17)を、miR-16のガイド核酸として用いた。sgR16(1-14)、sgR16(1-12)およびsgR16(4-17)は、それぞれmiR-16の5’末端から14塩基連続した塩基配列に対して相補的な配列からなる一本鎖RNA、miR-16の5’末端から12塩基連続した塩基配列に対して相補的な配列からなる一本鎖RNA、およびmiR-16の5’末端から4番目の塩基から14塩基連続した塩基配列に対して相補的な配列からなる一本鎖RNAである。どのガイド核酸においても、全ての塩基が2’-O-メチル化されている。miR-16とそれぞれのガイド核酸との関係を図3(1)に示す。
 実施例2と同様の方法を用いて、ラベル化したmiR-16およびtRNaseZLの切断アッセイを実施した。その結果、図3(2)に示されるとおり、sgR16(1-14)、sgR16(1-12)、sgR16(4-17)いずれの場合でも、22塩基長からなるmiR-16とは別に、miR-16より短い断片が確認された。
Guide nucleic acid that cleaves miR-16 (2)
Three types of guide nucleic acids other than the guide nucleic acid shown in Example 2 were designed to examine whether the labeled miR-16 is cleaved.
SgR16 (1-14) represented by SEQ ID NO: 1, sgR16 (1-12) represented by SEQ ID NO: 27, and sgR16 (4-17) represented by SEQ ID NO: 28 synthesized by Nippon Bioservice Co., Ltd. Was used as a guide nucleic acid for miR-16. sgR16 (1-14), sgR16 (1-12) and sgR16 (4-17) are single-stranded RNAs each consisting of a sequence complementary to a base sequence that is 14 bases continuous from the 5 'end of miR-16. , A single-stranded RNA consisting of a sequence complementary to the base sequence of 12 bases from the 5 'end of miR-16, and a base sequence of 14 bases from the 4th base from the 5' end of miR-16 It is a single-stranded RNA consisting of a complementary sequence. In any guide nucleic acid, all bases are 2'-O-methylated. The relationship between miR-16 and each guide nucleic acid is shown in FIG.
Using the same method as in Example 2, labeled miR-16 and tRNaseZL cleavage assays were performed. As a result, as shown in FIG. 3 (2), in any case of sgR16 (1-14), sgR16 (1-12), sgR16 (4-17), apart from miR-16 consisting of 22 bases, A fragment shorter than miR-16 was confirmed.
リポフェクション試薬非使用下でのガイド核酸の効果
 培養細胞に対してリポフェクション試薬を用いずにガイド核酸を作用させた場合の、miRNA発現抑制について検討した。
(1)miR-16に対するガイド核酸
 ガイド核酸は、実施例2(2)で用いたsgR16-14、sgR16-14dおよびsgR16-22を、それぞれ293細胞を播種したプレートに終濃度1 μMとなるように添加した。18時間後、293細胞からISOGEN(ニッポンジーン社製)を用いて全RNAを抽出し、全RNAに対して、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて、cDNA合成およびリアルタイムPCRをおこない、miR-16の発現量を測定した。測定は製品に添付された説明書に記載された方法に従った。なお、同時に発現が変化しないと考えられるsno234 RNA発現量を測定して、その値で補正し、相対発現量を算出した。その結果、図4(1)に示されるとおり、sgR16-14を添加した場合のみ、miR-16の発現量低下が認められた。
(2)miR-122に対するガイド核酸
 日本バイオサービス社で合成された、配列番号10で表されるsgR122-14、配列番号29で表されるsgR122-14dを、miR-122に対するガイド核酸として用いた。前者はmiR-122の5’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNA、後者はmiR-122の3’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAであり、どのガイド核酸においても、全ての塩基が2’-O-メチル化されている。
 Huh-7細胞は10%ウシ胎児血清(FBS、MP Biomedicals社製)を含むDMEM培地(Sigma社製)で37℃の5% CO2濃度のインキュベーター中で培養し、Huh-7細胞を播種したプレートに終濃度2μMとなるように添加した。18時間後、Huh-7細胞からISOGEN(ニッポンジーン社製)を用いて全RNAを抽出して、この全RNAに対して、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて、cDNA合成およびリアルタイムPCRをおこない、miR-122の発現量を測定した。測定は製品に添付された説明書に記載された方法に従った。なお、同時にsno234 RNA発現量を測定して、normalizeし、相対発現量を算出した。その結果、図4(2)に示されるとおり、sgR122-14を添加した場合のみ、miR-122の発現量低下が認められた。
(3)miR-19aに対するガイド核酸
 miR-19aに対するガイド核酸は、配列番号4で表されるsgR19a-14を準備した。これはmiR-19aの5’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAで、3’ 末端のa以外はすべて2’-O-メチル化しており、3’末端のaはLNAかつ3’リン酸化してあり、日本バイオサービス社で合成されたものを使用した。
 RPMI-8226細胞を播種したプレートにガイド核酸を終濃度1 μMとなるように添加した。18時間後、RPMI-8226細胞からISOGEN(ニッポンジーン社製)を用いて全RNAを抽出して、この全RNAに対して、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて、cDNA合成およびリアルタイムPCRをおこない、miR-19aの発現量を測定した。測定は製品に添付された説明書に記載された方法に従った。なお、同時にsno234 RNA発現量を測定して、normalizeし、相対発現量を算出した。その結果、図4(3)に示されるとおり、sgR19a-14を添加すると、miR-19aの発現量が低下することが確認できた。
(4)miR-142-3pに対するガイド核酸
 miR-142-3pに対するガイド核酸は、配列番号11で表されるsgR142-3p-14および配列番号30で表されるsgR142-3p-14dを準備した。前者はmiR-142-3pの5’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAで、すべての塩基が2’-O-メチル化しており、3’末端はリン酸化してある。後者はmiR-142-3pの3’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAで、すべての塩基が2’-O-メチル化しており、3’末端はリン酸化してある。どちらも日本バイオサービス社で合成されたものを使用した。
 ヒトリンパ腫細胞株Daudiを播種したプレートにガイド核酸を終濃度1 μMとなるように添加した。24時間後、細胞からISOGEN(ニッポンジーン社製)を用いて全RNAを抽出して、この全RNAに対して、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて、cDNA合成およびリアルタイムPCRをおこない、miR-142-3pの発現量を測定した。測定は製品に添付された説明書に記載された方法に従った。なお、同時にsno234 RNA発現量を測定して、normalizeし、相対発現量を算出した。その結果、図4(4)に示されるとおり、sgR142-3p-14を添加した場合に、miR-142-3pの発現量が低下することが確認できた。
 また、HL-60細胞を播種したプレートにもガイド核酸を終濃度1 μMとなるように添加した。48時間後、細胞からISOGEN(ニッポンジーン社製)を用いて全RNAを抽出して、この全RNAに対して、TaqMan MicroRNA Assays(アプライドバイオシステムズ社製)を用いて、cDNA合成およびリアルタイムPCRをおこない、miR-142-3pの発現量を測定した。測定は製品に添付された説明書に記載された方法に従った。なお、同時にsno234 RNA発現量を測定して、normalizeし、相対発現量を算出した。その結果、図4(5)に示されるとおり、sgR142-3p-14を添加した場合に、miR-142-3pの発現量が低下することが確認できた。
Effect of guide nucleic acid in the absence of lipofection reagent The miRNA expression suppression when a guide nucleic acid was allowed to act on cultured cells without using a lipofection reagent was examined.
(1) Guide nucleic acid for miR-16 As for the guide nucleic acid, sgR16-14, sgR16-14d and sgR16-22 used in Example 2 (2) were each plated at a final concentration of 1 μM on a plate seeded with 293 cells. Added to. After 18 hours, total RNA was extracted from 293 cells using ISOGEN (Nippon Gene), and cDNA synthesis and real-time PCR were performed on total RNA using TaqMan MicroRNA Assays (Applied Biosystems). The expression level of miR-16 was measured. The measurement followed the method described in the instructions attached to the product. At the same time, the expression level of sno234 RNA, whose expression is considered not to change, was measured and corrected with that value to calculate the relative expression level. As a result, as shown in FIG. 4 (1), a decrease in the expression level of miR-16 was observed only when sgR16-14 was added.
(2) Guide nucleic acid for miR-122 The sgR122-14 represented by SEQ ID NO: 10 and sgR122-14d represented by SEQ ID NO: 29, synthesized by Nippon Bioservice, were used as the guide nucleic acid for miR-122. . The former is a single-stranded RNA consisting of a base sequence complementary to the base sequence of 14 bases from the 5 'end of miR-122, and the latter is a base sequence of 14 bases from the 3' end of miR-122. It is a single-stranded RNA consisting of a complementary base sequence, and all bases are 2′-O-methylated in any guide nucleic acid.
Huh-7 cells were cultured in a DMEM medium (Sigma) containing 10% fetal bovine serum (FBS, manufactured by MP Biomedicals) in an incubator at 37 ° C in a 5% CO 2 concentration, and Huh-7 cells were seeded. It added to the plate so that it might become final concentration of 2 micromol. After 18 hours, total RNA was extracted from Huh-7 cells using ISOGEN (Nippon Gene), and cDNA synthesis and real-time analysis were performed on this total RNA using TaqMan MicroRNA Assays (Applied Biosystems). PCR was performed to measure the expression level of miR-122. The measurement followed the method described in the instructions attached to the product. At the same time, the expression level of sno234 RNA was measured and normalized to calculate the relative expression level. As a result, as shown in FIG. 4 (2), a decrease in the expression level of miR-122 was observed only when sgR122-14 was added.
(3) Guide nucleic acid for miR-19a As a guide nucleic acid for miR-19a, sgR19a-14 represented by SEQ ID NO: 4 was prepared. This is a single-stranded RNA consisting of a base sequence complementary to the base sequence that is 14 bases continuous from the 5 'end of miR-19a. All but 2a-O-methylated except for a at the 3' end, The 3 'terminal a was LNA and 3' phosphorylated, and was synthesized by Nippon Bioservice.
A guide nucleic acid was added to a plate seeded with RPMI-8226 cells to a final concentration of 1 μM. 18 hours later, total RNA was extracted from RPMI-8226 cells using ISOGEN (Nippon Gene), and cDNA synthesis and real-time analysis were performed on this total RNA using TaqMan MicroRNA Assays (Applied Biosystems). PCR was performed to measure the expression level of miR-19a. The measurement followed the method described in the instructions attached to the product. At the same time, the expression level of sno234 RNA was measured and normalized to calculate the relative expression level. As a result, as shown in FIG. 4 (3), it was confirmed that when sgR19a-14 was added, the expression level of miR-19a decreased.
(4) Guide nucleic acid for miR-142-3p The guide nucleic acid for miR-142-3p was prepared as sgR142-3p-14 represented by SEQ ID NO: 11 and sgR142-3p-14d represented by SEQ ID NO: 30. The former is a single-stranded RNA consisting of a base sequence complementary to a base sequence that is 14 bases continuous from the 5 'end of miR-142-3p. All bases are 2'-O-methylated, and 3' The terminal is phosphorylated. The latter is a single-stranded RNA consisting of a base sequence complementary to the base sequence that is 14 bases continuous from the 3 'end of miR-142-3p, and all bases are 2'-O-methylated, The terminal is phosphorylated. Both were synthesized by Nippon Bioservice.
Guide nucleic acid was added to a plate seeded with human lymphoma cell line Daudi to a final concentration of 1 μM. After 24 hours, total RNA was extracted from the cells using ISOGEN (Nippon Gene), and cDNA synthesis and real-time PCR were performed on the total RNA using TaqMan MicroRNA Assays (Applied Biosystems). The expression level of miR-142-3p was measured. The measurement followed the method described in the instructions attached to the product. At the same time, the expression level of sno234 RNA was measured and normalized to calculate the relative expression level. As a result, as shown in FIG. 4 (4), it was confirmed that when sgR142-3p-14 was added, the expression level of miR-142-3p decreased.
In addition, a guide nucleic acid was added to a plate seeded with HL-60 cells to a final concentration of 1 μM. 48 hours later, total RNA was extracted from the cells using ISOGEN (Nippon Gene), and cDNA synthesis and real-time PCR were performed on the total RNA using TaqMan MicroRNA Assays (Applied Biosystems). The expression level of miR-142-3p was measured. The measurement followed the method described in the instructions attached to the product. At the same time, the expression level of sno234 RNA was measured and normalized to calculate the relative expression level. As a result, as shown in FIG. 4 (5), it was confirmed that when sgR142-3p-14 was added, the expression level of miR-142-3p decreased.
ガイド核酸導入細胞の増殖能アッセイ
 miR-19aおよびmiR-181aは、癌細胞においてアンチセンス導入によりその発現を抑制させると、その増殖が抑制されることが知られている[Proc. Natl. Acad. Sci. USA, 105, 12885-12890 (2008)]。そこで、miR-19aおよびmiR-181aに対するガイド核酸を設計して、細胞に導入して増殖に与える影響を調べた。
 日本バイオサービス社で合成された、配列番号4で表されるsgR19a-14、および配列番号14で表されるsgR181-14を、それぞれmiR-19aおよびmiR-181aに対するガイド核酸として用いた。前者はmiR-19aの5’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAであり、後者はmiR-181aの5’末端から14塩基連続した塩基配列に対して相補的な塩基配列からなる一本鎖RNAである。両者ともすべての塩基が2’-O-メチル化しており、3’末端はリン酸化してある。
 KMM-1細胞およびOda細胞を播種したプレートにガイド核酸を終濃度0.5 μMとなるように添加し、3日後にTetraColor ONE(生化学工業社製)を用いて細胞数を測定した。測定は製品に添付された説明書に記載された方法に従った。
 その結果、図5に示されるとおり、sgR19a-14あるいはsgR181-14を導入した細胞では、コントロール細胞に比べて細胞数が減少した。
Proliferation Assay of Guided Nucleic Acid-Introduced Cells It is known that miR-19a and miR-181a suppress their proliferation when their expression is suppressed by introduction of antisense in cancer cells [Proc. Natl. Acad. Sci. USA, 105, 12885-12890 (2008)]. Therefore, we designed guide nucleic acids for miR-19a and miR-181a and examined their effects on proliferation by introduction into cells.
SgR19a-14 represented by SEQ ID NO: 4 and sgR181-14 represented by SEQ ID NO: 14 synthesized by Nippon Bioservice Co., Ltd. were used as guide nucleic acids for miR-19a and miR-181a, respectively. The former is a single-stranded RNA consisting of a base sequence complementary to the base sequence that is 14 bases continuous from the 5 'end of miR-19a, and the latter is a base sequence that is 14 bases continuous from the 5' end of miR-181a. It is a single-stranded RNA consisting of a complementary base sequence. In both cases, all bases are 2'-O-methylated and the 3 'end is phosphorylated.
Guide nucleic acid was added to a plate seeded with KMM-1 cells and Oda cells to a final concentration of 0.5 μM, and 3 days later, the number of cells was measured using TetraColor ONE (Seikagaku Corporation). The measurement followed the method described in the instructions attached to the product.
As a result, as shown in FIG. 5, the number of cells decreased in cells into which sgR19a-14 or sgR181-14 was introduced, compared to control cells.
 本発明により、マイクロRNAの切断を引き起こすガイド核酸が提供される。本発明のガイド核酸を用いることにより、マイクロRNAの過剰発現に起因する疾患の治療をすることができる。 The present invention provides a guide nucleic acid that causes microRNA cleavage. By using the guide nucleic acid of the present invention, it is possible to treat a disease caused by overexpression of microRNA.

Claims (10)

  1.  切断対象のマイクロRNAの5’末端から1~4番目のいずれかの塩基から連続する塩基配列と相補的な塩基配列または該相補的な塩基配列と90%以上の同一性をもつ塩基配列を有し、かつ11~15塩基長の一本鎖核酸からなる、マイクロRNA切断用のガイド核酸。 It has a base sequence complementary to the base sequence continuous from any of the 1st to 4th bases from the 5 ′ end of the microRNA to be cleaved or a base sequence having 90% or more identity to the complementary base sequence And a guide nucleic acid for cleaving microRNA, comprising a single-stranded nucleic acid having a length of 11 to 15 bases.
  2.  切断対象のマイクロRNAが、癌、アレルギー疾患、神経変性疾患、心血管疾患または肝炎で過剰発現するマイクロRNAである、請求項1に記載のガイド核酸。 The guide nucleic acid according to claim 1, wherein the microRNA to be cleaved is a microRNA that is overexpressed in cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
  3.  切断対象のマイクロRNAが、hsa-miR-16、17、18a、19a、19b、20a、21、92a、103、122、125b、142-3p、155、181a、208a、221、222、372または373である、請求項1または2に記載のガイド核酸。 The microRNA to be cleaved is hsa-miR-16, 17, 18a, 19a, 19b, 20a, 21, 92a, 103, 122, 125b, 142-3p, 155, 181a, 208a, 221, 222, 372 or 373. The guide nucleic acid according to claim 1 or 2, wherein
  4.  相補的な塩基配列が配列番号1~19のいずれかで表される塩基配列である、請求項1または2に記載のガイド核酸。 The guide nucleic acid according to claim 1 or 2, wherein the complementary base sequence is a base sequence represented by any one of SEQ ID NOs: 1 to 19.
  5.  請求項1~4のいずれか1項に記載のガイド核酸を用いて、マイクロRNAを切断する方法。 A method for cleaving microRNA using the guide nucleic acid according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載のガイド核酸を用いて、マイクロRNAの機能を決定する方法。 A method for determining the function of a microRNA using the guide nucleic acid according to any one of claims 1 to 4.
  7.  請求項1~4のいずれか1項に記載のガイド核酸を有効成分として含有する、マイクロRNAの過剰発現に起因する疾患の治療薬。 A therapeutic agent for a disease caused by overexpression of microRNA, comprising the guide nucleic acid according to any one of claims 1 to 4 as an active ingredient.
  8.  マイクロRNAの過剰発現に起因する疾患が、癌、アレルギー疾患、神経変性疾患、心血管疾患または肝炎である、請求項7に記載の治療薬。 The therapeutic agent according to claim 7, wherein the disease caused by overexpression of microRNA is cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
  9.  対象に、有効量の請求項1~4のいずれかのガイド核酸を投与することを含む、該対象におけるマイクロRNAの過剰発現に起因する疾患の治療方法。 A method for treating a disease caused by overexpression of microRNA in a subject, comprising administering an effective amount of the guide nucleic acid according to any one of claims 1 to 4 to the subject.
  10.  マイクロRNAの過剰発現に起因する疾患が、癌、アレルギー疾患、神経変性疾患、心血管疾患または肝炎である、請求項9に記載の治療方法。 The treatment method according to claim 9, wherein the disease caused by overexpression of microRNA is cancer, allergic disease, neurodegenerative disease, cardiovascular disease or hepatitis.
PCT/JP2010/062470 2009-07-24 2010-07-23 Guide nucleic acid for cleavage of micro-rna WO2011010737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-173736 2009-07-24
JP2009173736 2009-07-24

Publications (1)

Publication Number Publication Date
WO2011010737A1 true WO2011010737A1 (en) 2011-01-27

Family

ID=43499209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062470 WO2011010737A1 (en) 2009-07-24 2010-07-23 Guide nucleic acid for cleavage of micro-rna

Country Status (1)

Country Link
WO (1) WO2011010737A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007874A1 (en) 2011-07-12 2013-01-17 Mart Saarma A transgenic animal comprising a deletion or functional deletion of the 3'utr of an endogenous gene.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026576A1 (en) * 2007-08-23 2009-02-26 Keren Pharmaceuticals Targeting rna with external guide sequences

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026576A1 (en) * 2007-08-23 2009-02-26 Keren Pharmaceuticals Targeting rna with external guide sequences

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AMBROS, V.: "The functions of animal microRNAs", NATURE, vol. 431, 2004, pages 350 - 355, XP003009908, DOI: doi:10.1038/nature02871 *
BARTEL, D.P. ET AL.: "MicroRNAs: genomics, biogenesis, mechanism, and function", CELL, vol. 116, 2004, pages 281 - 297, XP002359089, DOI: doi:10.1016/S0092-8674(04)00045-5 *
GERMAN, M.A. ET AL.: "Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends", NAT. BIOTECHNOL., vol. 26, 2008, pages 941 - 946 *
LIM, L.P. ET AL.: "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs", NATURE, vol. 433, 2005, pages 769 - 773, XP002994329, DOI: doi:10.1038/nature03315 *
LU, J. ET AL.: "MicroRNA expression profiles classify human cancers", NATURE, vol. 435, 2005, pages 834 - 838 *
NICOLAS, F.E. ET AL.: "Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140", RNA, vol. 14, 2008, pages 2513 - 2520, XP055022059, DOI: doi:10.1261/rna.1221108 *
SONTHEIMER, E.J. ET AL.: "Assembly and function of RNA silencing complexes", NAT. REV. MOL. CELL. BIOL., vol. 6, 2005, pages 127 - 138 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007874A1 (en) 2011-07-12 2013-01-17 Mart Saarma A transgenic animal comprising a deletion or functional deletion of the 3'utr of an endogenous gene.
EP2731422A1 (en) * 2011-07-12 2014-05-21 Mart Saarma A transgenic animal comprising a deletion or functional deletion of the 3'utr of an endogenous gene.
EP2731422A4 (en) * 2011-07-12 2015-04-15 Mart Saarma A transgenic animal comprising a deletion or functional deletion of the 3'utr of an endogenous gene.

Similar Documents

Publication Publication Date Title
US10435689B2 (en) MicroRNA inhibition for the treatment of inflammation and myeloproliferative disorders
EP2208499A1 (en) Nucleic acid capable of regulating the proliferation of cell
WO2009148137A1 (en) Nucleic acid capable of controlling degranulation of mast cell
EP2374884A2 (en) Human miRNAs isolated from mesenchymal stem cells
JP2010512747A (en) Compositions and methods for treating muscular diseases and cardiovascular disorders
US10612020B2 (en) Artificial mimic miRNA for controlling gene expression, and use of same
JPWO2008084319A1 (en) New nucleic acid
US20090136957A1 (en) Methods and compositions for regulating cell cycle progression via the miR-106B family
WO2011019074A1 (en) Nucleic acid that controls fibrosis of cells or organs
US20170015999A1 (en) Compositions and methods for treatment of ovarian cancer
JP2011093892A (en) Tumor proliferation inhibitor containing cancer-inhibitive micro-rna
WO2011111715A1 (en) Nucleic acid capable of regulating cell cycle
JP7453921B2 (en) Compositions and methods for inhibiting GYS2 expression
WO2011010737A1 (en) Guide nucleic acid for cleavage of micro-rna
JPWO2007126150A1 (en) Novel therapeutic composition for cancer
JP5995849B2 (en) Heptamer-type small guide nucleic acid induces apoptosis of human leukemia cells
JP5959522B2 (en) Heptamer-type small guide nucleic acid that induces apoptosis of human hematological cancer cells
KR101993894B1 (en) Double Stranded Oligo RNA Structure Comprising miRNA
KR101861738B1 (en) Double Stranded Oligo RNA Structure Comprising miRNA
CN102199603B (en) Multi-target interfering RNA (Ribonucleic Acid) molecule and application thereof
JP2023506547A (en) Use of COPS3 inhibitors to treat hepatitis B virus infection
JP2011190176A (en) Degranulation inhibitor for mast cell
JP2012217421A (en) Lna modified heptamer-type small guide nucleic acid
CHOUDHURY Expression and Editing of MicroRNA-376 Cluster in Human Glioblastomas: Role in Tumor Growth and Invasion
JP2012217420A (en) Composition containing two kinds of heptamer-type small guide nucleic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10802357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP