WO2011010706A1 - Fgf21シスエレメント結合物質 - Google Patents

Fgf21シスエレメント結合物質 Download PDF

Info

Publication number
WO2011010706A1
WO2011010706A1 PCT/JP2010/062383 JP2010062383W WO2011010706A1 WO 2011010706 A1 WO2011010706 A1 WO 2011010706A1 JP 2010062383 W JP2010062383 W JP 2010062383W WO 2011010706 A1 WO2011010706 A1 WO 2011010706A1
Authority
WO
WIPO (PCT)
Prior art keywords
tup
mrna
cis element
fgf21
seq
Prior art date
Application number
PCT/JP2010/062383
Other languages
English (en)
French (fr)
Inventor
俊吾 足達
一紀 西
忠士 梅本
真宏 野上
勝一 中尾
Original Assignee
武田薬品工業株式会社
株式会社Galaxy Pharma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武田薬品工業株式会社, 株式会社Galaxy Pharma filed Critical 武田薬品工業株式会社
Priority to EP10802326A priority Critical patent/EP2458005A1/en
Publication of WO2011010706A1 publication Critical patent/WO2011010706A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/13Decoys

Definitions

  • the present invention relates to a substance capable of binding to at least a part of the cis element of mRNA of FGF21 and inhibiting the binding of a cis element binding factor to the cis element, and a preventive / therapeutic agent for lifestyle-related diseases comprising the substance About.
  • Intracellular gene expression is controlled by controlling the amount of mRNA transcribed, the stability of the transcribed mRNA, the amount of translation into the protein, and the stability of the protein itself at each stage of mRNA transcription and translation.
  • various gene expression control methods antisense method, RNA interference, etc.
  • targeting these control stages have been developed.
  • much attention has recently been focused on the importance of expression regulation mechanisms through the stability of mRNA and the amount of translation into protein.
  • the stability and translation amount of mRNA are controlled by a specific sequence called “cis-element” of mRNA and “cis-element binding factor” that binds to this specific sequence.
  • the cis element is defined as a region that exists in the 5 'and 3' untranslated regions of DNA or RNA and is involved in the expression control of a gene encoded by the DNA strand or RNA strand.
  • a “cis element binding factor” functions as a trans-acting factor that binds to a cis element of a gene and promotes or suppresses the expression of the gene.
  • the cis element present in mRNA is involved in the control of mRNA stability and the amount of translation into protein, and is an important factor for determining the expression level of the gene product (protein) encoded by mRNA.
  • ARE is a base sequence of about 10 to 150 bases rich in adenosine and uridine, which are abundant in the 3 'untranslated region (3'-UTR) of mRNA. ARE was initially found as a region where the nucleotide sequence of “AUUUA” frequently overlaps in the 3′-UTR of cytokines and lymphokines. It is estimated that ARE is present in 5 to 8% of all genes at present, and it is considered that ARE is present in many genes involved in the maintenance of homeostasis (Non-patent Document 1).
  • ARE binding protein is bound to ARE as a trans-acting factor, which promotes or suppresses mRNA stability and translation amount (Non-patent Documents 2 and 3). Furthermore, ARE also binds to microRNA (miRNA), and the same control is performed (Non-patent Documents 4 and 5).
  • Patent Document 1 discloses an antisense oligonucleotide (2′-O- (C1-C3) alkyl-oligonucleotides or 2′-O complementary to a part of the ARE in the 3 ′ untranslated region of Bcl-2 mRNA. -methyl / deoxy-gapmers) is useful for the treatment and prevention of apoptosis-related diseases. Specifically, mRNA is unstable by binding a mixture of four oligonucleotides to the sequence around ARE. Is inhibiting.
  • fibroblast growth factor 21 (sometimes abbreviated as FGF21 in the present specification) is known as a potent metabolic regulator (Non-Patent Documents 6 to 8). This factor is selectively expressed in the liver and regulates adipocyte glucose uptake.
  • Administration of FGF21 to obese and type 2 diabetes model animals may reduce plasma glucose and triglyceride levels and improve cardiovascular risk factors such as LDL-cholesterol and HDL-cholesterol It has been reported.
  • FGF21 unlike other FGF families, has no mitogenic activity and does not cause hypoglycemia or weight gain, and thus has attracted much attention as a novel lifestyle-related disease treatment with few side effects. However, no attempt has been made to improve the action of endogenous FGF21 by stabilizing the mRNA of FGF21 or controlling the translation level.
  • An object of the present invention is to provide a preventive / therapeutic agent for lifestyle-related diseases.
  • the present inventors have found a substance that binds to the cis element of FGF21 mRNA and inhibits the binding between the cis element and the cis element binding factor, thereby preventing FGF21.
  • the inventors have found that the expression of protein can be increased and have completed the present invention.
  • the present invention provides the following.
  • SEQ ID NO: 3 SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24
  • the substance according to (1) above which is an oligonucleotide or a salt thereof containing a nucleotide sequence substantially identical to the nucleotide sequence.
  • oligonucleotide according to any one of (4) to (7) above, which is an oligonucleotide or a salt thereof comprising the nucleotide sequence represented by SEQ ID NO: 19 or a nucleotide sequence substantially identical to the nucleotide sequence material.
  • a medicament comprising the substance described in (1) above.
  • the medicament according to (12) above which is a preventive / therapeutic agent for lifestyle-related diseases.
  • a method for preventing or treating lifestyle-related diseases in a mammal comprising administering an effective amount of the substance described in (1) above to the mammal.
  • a substance is complementary to a base sequence complementary to at least a part of the cis element of mRNA encoding each target protein and a part of the 5 ′ side and / or 3 ′ side untranslated region of the cis element.
  • the medicament according to (17) above which is an oligonucleotide or a salt thereof capable of inhibiting the binding of an element binding factor.
  • the medicament according to (20) above wherein the substance is an oligonucleotide containing LNA or a salt thereof.
  • a preventive / therapeutic agent for lifestyle-related diseases comprising a substance that inhibits the function of ZFP36L1 or ZFP36L2.
  • a method for preventing or treating a lifestyle-related disease in a mammal comprising administering an effective amount of the substance described in (23) to the mammal.
  • the binding of the cis element and the cis element binding factor is inhibited, thereby increasing the expression of FGF21 protein and preventing lifestyle-related diseases. ⁇ Can be treated.
  • FIG. 3 is a diagram showing the positional relationship between TUP # 003 to TUP # 033 and FGF21 mRNA and the position of LNA modified bases in TUP # 003 to TUP # 033.
  • FGF21 mRNA in the figure describes a part of the 3′UTR of the mRNA (partial nucleotide sequence 826 to 843 from the 5 ′ end of the mRNA; SEQ ID NO: 25) in the 3 ′ ⁇ 5 ′ direction. It is a thing.
  • the present invention is a substance that binds to at least part of the cis element of mRNA of FGF21 (fibroblast growth factor 21) and can inhibit the binding of the cis element binding factor to the cis element (hereinafter, (Sometimes abbreviated as “substance of the present invention”).
  • mRNA encoding FGF21 mRNA that is, mRNA encoding FGF21 protein
  • FGF21 cDNA base sequence represented by SEQ ID NO: 1, GenBank Accession No. NM_019113
  • Human FGF21 mRNA represented by the replaced base sequence in this specification, it may be referred to as “FGF21 ⁇ mRNA represented by SEQ ID NO: 1”
  • a mammal other than human eg, mouse, “T” of mouse FGF21 cDNA (GenBank Accession No.
  • NM_020013 consisting of the base sequence represented by SEQ ID NO: 9 in rat, rabbit, sheep, pig, cow, cat, dog, monkey) mouse FGF21 mRNA represented by the base sequence read as “u”), and natural allelic variants thereof.
  • trans element is a gene product that is present on the same mRNA (that is, upstream or downstream of the translation region), is involved in the control of mRNA stability and the amount of translation into protein, and is encoded by mRNA. This is an important area that determines the expression level of (protein).
  • cis elements include AU-rich elements, Histone mRNA 3'-UTR stem loop element, Internal ribosome entry site (IRES), A2RE element, ZIPCODE element, Iron response element (IRE), Cytoplasmic polyadenylation (CPE), Nanos translational control, Amyloid precursor protein element (APP), Translational regulation element (TGE) / direct repeat element (DRE), Bruno element (BRE), 15-lipoxygenase differentiation control element (15-LOX-DICE), G-quartet element, Adh mRNA down-regulation element, Barley yellow dwarf virus element, GLUT1 mRNA-stability control element, Msl-2 3'-UTR control element, Msl-2 5'-UTR control element, Ribosomal S12 mRNA translational control element, Selenocysteine insertion sequence type 1 (SECIS-1), Selenocysteine insertion sequence type 2 (SECIS-2), TNF-mRNA stability control element, Terminal oligopyrimidine tract (TOP , And
  • AU-rich element is a base sequence of about 10 to 150 bases rich in adenosine and uridine, which is abundant in 3'-UTR (untranslated region) of mRNA, and is stable in mRNA. It is a sequence involved in the control of sex and translation level. ARE is currently tentatively (1) an area containing several copies of “AUUUA pentamer” in a uridine-rich sequence (ARE I), (2) at least two or more overlapping “UUAUUUA (U / A) (U (A) Nonamer ”(ARE II), (3)“ AUUUA pentamer ”not included, but uridine-rich region (ARE III).
  • the AU rich element in the present invention includes at least these three groups of AREs.
  • the AU-rich element include the 814 to 821 base sequence from the 5 ′ end of the FGF21 mRNA base sequence represented by SEQ ID NO: 1 (may be referred to as ARE-A), SEQ ID NO: : 835-842 base sequence from the 5 ′ end of the FGF21m mRNA base sequence represented by 1 (sometimes referred to as ARE-B).
  • ARE-A 814 to 821 base sequence from the 5 ′ end of the FGF21 mRNA base sequence represented by SEQ ID NO: 1
  • SEQ ID NO: : 835-842 base sequence from the 5 ′ end of the FGF21m mRNA base sequence represented by 1 sometimes referred to as ARE-B.
  • a preferred example of the AU rich element is ARE-B.
  • cis element binding factor refers to binding to a cis element, improving or decreasing the stability of mRNA containing the cis element, and promoting expression of a protein encoded by the mRNA containing the cis element, or It means a factor having a function to suppress.
  • cis elements in the above “cis element binding factor” include the cis elements described above.
  • a preferred example of the cis element is an AU rich element.
  • a binding factor in the “cis element binding factor” of the present specification a protein that binds to the cis element, improves or decreases the stability of mRNA containing the cis element, and is encoded by the mRNA containing the cis element And proteins having a function of promoting or suppressing the expression of miRNA (microRNA).
  • Preferred examples of the binding factor include proteins and miRNAs that bind to the cis element, reduce the stability of the mRNA containing the cis element, and suppress the expression of the protein encoded by the mRNA containing the cis element. Is mentioned.
  • binding factor a protein having a function of binding to the cis element, reducing the stability of the mRNA containing the cis element, and suppressing the expression of the protein encoded by the mRNA containing the cis element.
  • a preferable example of the “cis element binding factor” includes an AU rich element binding factor.
  • the AU rich element binding factor is a function that binds to an AU rich element, improves or decreases the stability of mRNA containing the AU rich element, and promotes or suppresses expression of a protein encoded by the mRNA containing the cis element.
  • proteins include AUF1, HuR, Hel-N1, Hud, TTP, BRF1, TIA-1, KSRP, GUG-BP2, Nucleotin, TIO, PAIP2, ZFP36L1, and ZFP36L2.
  • miRNA include miR16.
  • an AU-rich element binding factor it has a function of binding to the AU-rich element, reducing the stability of the mRNA containing the AU-rich element, and suppressing the expression of the protein encoded by the mRNA containing the cis element.
  • Examples include proteins and miRNAs.
  • As a further preferred example of the above binding factor it has a function of binding to the AU-rich element, reducing the stability of the mRNA containing the AU-rich element, and suppressing the expression of the protein encoded by the mRNA containing the cis element. Examples include proteins.
  • AU-rich element binding factors that have a function of reducing the stability of mRNA containing an AU-rich element and suppressing the expression of a protein encoded by the mRNA containing the cis-element include ZFP36L1 and ZFP36L2.
  • ZFP36L1 GenBank Accession No. NM_004926 .2
  • human ZFP36L2 GenBank Accession No. NM_006887.4
  • the substance of the present invention selectively stabilizes the mRNA of FGF21 by inhibiting the binding of the cis element binding factor to the cis element of the mRNA of FGF21, thereby expressing the FGF21 protein encoded by the mRNA of FGF21, That is, it promotes translation of FGF21.
  • nucleic acid analogs eg, oligonucleotides (natural oligonucleotides and artificial analogs thereof), miRNAs and mimetics thereof
  • the oligonucleotides of the present invention Or a salt thereof, a low molecular compound (eg, non-peptidic compound, peptide) or a salt thereof.
  • nucleic acid analog examples include a base sequence complementary to at least a part of the cis element of mRNA of FGF21 and a part of the untranslated region on the 5 ′ side and / or 3 ′ side of the cis element.
  • examples include nucleic acid analogs that can inhibit binding of a binding factor.
  • Preferred examples of the nucleic acid analog include oligonucleotides or salts thereof.
  • the “partially complementary base sequence” means a base length sufficient to stabilize the target mRNA and promote translation significantly when hybridized with the target cis element sequence.
  • the cis element is an AU rich element that is “UUAUUUA (U / A) (U / A) nonamer”, as an example of “partially complementary base sequence”, at least one consecutive base in the nonamer
  • Complementary base sequences can be mentioned, and preferred examples include complementary base sequences at 5 or more consecutive bases in the nonamer, and more preferred examples include complementation at 6 or more consecutive bases in the nonamer.
  • Basic nucleotide sequence Basic nucleotide sequence.
  • Base sequence complementary to a part of the untranslated region on the 5 ′ side and / or 3 ′ side of the cis element gives the nucleic acid analogue the ability to specifically bind to the cis element of a specific mRNA. It is sufficient if the base length is sufficient to achieve this, and it is complementary to a part of the untranslated region on the 5 ′ side and / or 3 ′ side of the target cis element.
  • the cis element is an AU-rich element (ARE) of human FGF21 mRNA
  • ARE AU-rich element
  • a base sequence complementary to one or more bases in total on the 'side and 3' side can be mentioned, and a preferable example is a base sequence complementary to 3 to 9 bases in total on the 5 'side and 3' side of the ARE. Is mentioned.
  • the base sequence complementary to a part of the untranslated region on the 5 ′ side and / or 3 ′ side of the cis element 3 to 9 bases in total on the 5 ′ side and 3 ′ side of ARE-B A complementary base sequence is mentioned.
  • the base sequence complementary to a part of the untranslated region on the 5 ′ side and / or 3 ′ side of the cis element the 5 ′ end side of the mRNA base sequence of FGF21 represented by SEQ ID NO: 1
  • Base sequence complementary to the 828-834th base sequence, base sequence complementary to the 826-834th base sequence, base sequence complementary to the 832-834th base sequence, base sequence 830-834 Complementary base sequences are mentioned.
  • the 828th to 834th bases from the 5 ′ end side of the mRNA base sequence of human FGF21 examples include a base sequence complementary to the sequence and a base sequence complementary to the 826th to 834th base sequences.
  • the 826 to 834th from the 5 ′ end side of the mRNA base sequence of human FGF21 A base sequence complementary to the base sequence can be mentioned.
  • the “oligonucleotide” of the present invention is complementary to a base sequence complementary to at least part of the cis element of mRNA of FGF21 and part of the untranslated region on the 5 ′ side and / or 3 ′ side of the cis element.
  • a single-stranded nucleic acid that can specifically bind to and stabilize the mRNA of FGF21 by increasing the translation level of the FGF21 protein from the mRNA of FGF21. it can.
  • Oligonucleotides of the present invention include polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, and other types of purine or pyrimidine base N-glycosides. Polynucleotides, other polymers with non-nucleotide backbones (eg, commercially available protein nucleic acids and synthetic sequence specific nucleic acid polymers) or other polymers containing special linkages, provided that the polymer is found in DNA or RNA And a nucleotide having a configuration allowing base attachment).
  • polymers with non-nucleotide backbones eg, commercially available protein nucleic acids and synthetic sequence specific nucleic acid polymers
  • other polymers containing special linkages provided that the polymer is found in DNA or RNA And a nucleotide having a configuration allowing base attachment.
  • nucleoside may include not only purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles. Modified nucleosides and modified nucleotides may also be modified at the sugar moiety, eg, one or more hydroxyl groups are substituted with halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may be converted to.
  • the length of the oligonucleotide of the present invention is such that the oligonucleotide can specifically hybridize to a sequence comprising at least part of the cis element of the mRNA of FGF21, thereby promoting translation into FGF21 protein.
  • the base is not particularly limited as long as it is short, about 8 bases short, about 40 bases long, preferably about 12 to about 20 bases, particularly preferably 12 to 18 bases.
  • the target ARE element region by narrowing the target ARE element region to a narrower range and synthesizing the oligonucleotide with LNA, BNA, etc., for example, a very short antisense oligonucleotide of about 12 mer (12 to 18 mer) ( This base length has a great feature in that the expression of FGF21 can be controlled by maintaining high affinity and selectivity for the target mRNA).
  • the nucleotide molecule constituting the oligonucleotide of the present invention may be a natural DNA or RNA, but in order to improve stability (chemical and / or enzyme) and specific activity (affinity with RNA), various It may be a nucleotide molecule that has been chemically modified, or a nucleic acid analogue.
  • the phosphate residue (phosphate) of each nucleotide constituting the oligonucleotide is replaced with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, phosphorodithionate, boranophosphate, etc. Modification to be mentioned.
  • Another example of the chemical modification is a modification in which the 2′-position hydroxyl group of each nucleotide sugar is substituted with another functional group.
  • a halogen atom eg, fluorine atom
  • a C 1-6 alkyl group eg, methyl group
  • a C 1-6 alkyl group eg, methyl group
  • Good amino group; -OR (R is for example CH 3 (2'-O-Me), CH 2 CH 2 OCH 3 (2'-O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 and CH 2 CH 2 CN are shown).
  • the base moiety (pyrimidine, purine) may be chemically modified.
  • chemical modifications applied to the base moiety include modifications in which a methyl group or a cationic functional group is introduced at the 5-position of the pyrimidine base, or modifications in which the carbonyl group at the 2-position is substituted with a thiocarbonyl group.
  • the nucleic acid analog include UNA (unlocked nucleic acid), HNA, morpholino oligo, and PNA (peptide nucleic acid).
  • the hydroxyl group of the hexopyranose part may be deoxylated.
  • the hydroxyl group of the hexopyranose part may be substituted with a fluorine atom.
  • RNA derivatives BNA, LNA Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, JS et al., Oligonucleotides, 14, 130-46, 2004
  • ENA ENA
  • cEt cMOE (Seth et al., Journal of Medicinal Chemistry, 51, 10-13, 2009) and the like can also be preferably used as the nucleotide molecule constituting the oligonucleotide.
  • BNA and LNA specifically, those described in International Publication No. 2005/021570, International Publication No. 03/068695, International Publication No. 2001/007455 can be used, and the oligonucleotide of the present invention is These BNA and / or LNA may be contained.
  • an oligonucleotide eg, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: : 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24
  • SEQ ID NO: 2 SEQ ID NO: 3
  • SEQ ID NO: 18 SEQ ID NO: 19
  • SEQ ID NO: 20 SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24
  • part or all of the constituent nucleotides are disclosed in International Publication No.
  • the constituent nucleotides of the oligonucleotide may be compound 5 (BNA NC -adenosine monomer) described in Example 1 or compound 9 (BNA NC -guanosine monomer) described in Example 2.
  • BNA NC -adenosine monomer described in Example 1
  • BNA NC -guanosine monomer described in Example 2.
  • an oligonucleotide synthesized using a BNA NC -pyrimidine monomer that can be synthesized in the same manner can be mentioned.
  • the oligonucleotide in which the phosphate residue between each nucleotide constituting the oligonucleotide is substituted with a phosphorothioate chemically modified phosphate residue means that the phosphate residue between each nucleotide constituting the oligonucleotide is The oligonucleotide which received chemical modification shown in FIG.
  • the oligonucleotide of the present invention is preferably one that can bind to at least a part of the AU-rich element (ARE-A or ARE-B, preferably ARE-B) of human FGF21 mRNA.
  • ARE-A the 814th to 821st base sequences from the 5 ′ end of the human FGF21 mRNA base sequence
  • 816 to 816 from the 5 ′ end of the human FGF21 mRNA base sequence examples include the 821st nucleotide sequence.
  • ARE-B the 835th to 842th base sequence from the 5 'end of the human FGF21 mRNA base sequence
  • the 835th to 839th base sequence from the 5' end of the human FGF21 mRNA base sequence 835 to 841 base sequences, 835 to 837 base sequences, and the like.
  • Preferred examples of part of ARE-B include the 835th to 839th base sequences and the 835th to 841th base sequences.
  • a more preferred example of a part of ARE-B is the base sequence 835 to 841.
  • the length of the oligonucleotide that can bind to at least a part of ARE-A is not particularly limited.
  • the nucleotide sequence from the 5 ′ end of the human FGF21 mRNA base sequence to the 816 to 827th base sequence An oligonucleotide (SEQ ID NO: 2) having a complementary base sequence is used.
  • the length of the oligonucleotide that can bind to at least a part of ARE-B is not particularly limited.
  • nucleotide sequence from 828 to 839 from the 5 ′ end of the mRNA base sequence of human FGF21 Oligonucleotide complementary to the nucleotide sequence (SEQ ID NO: 3), oligonucleotide complementary to the nucleotide sequence 826 to 843 (SEQ ID NO: 18), complementary to the nucleotide sequence 826 to 841
  • Oligonucleotide having a basic nucleotide sequence SEQ ID NO: 19
  • oligonucleotide having a nucleotide sequence complementary to nucleotides 828 to 841 SEQ ID NO: 20
  • complementary to nucleotides 826 to 839 Oligonucleotide having a base sequence (SEQ ID NO: 21), oligonucleotide having a base sequence complementary to the 832st to 843rd base sequences (SEQ ID NO: 22), and 830 to 841st base sequences
  • Examples thereof include an oligonucleot
  • the base sequence represented by SEQ ID NO: 3, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24 The oligonucleotide having a base sequence represented by SEQ ID NO: 3 or SEQ ID NO: 19 is more preferable.
  • oligonucleotide of the present invention include TUP # 001 to TUP # 033 shown in Table 1 below (of these, TUP # 001 is ⁇ -F21-B (BNA), TUP # 002 is ⁇ - F21-B (LNA) may be mentioned), and more preferable examples include TUP # 001, TUP # 002, TUP # 003, TUP # 004, TUP # 005, TUP # 006, TUP # 007, Examples include TUP # 008, TUP # 011, TUP # 015, TUP # 016, TUP # 019, TUP # 023, and TUP # 030.
  • oligonucleotide of the present invention examples include TUP # 003, TUP # 004, TUP # 007, TUP # 015, and TUP # 019.
  • a particularly preferred example of the oligonucleotide of the present invention is TUP # 007.
  • the oligonucleotide of the present invention comprises SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: It may be an oligonucleotide having a nucleotide sequence substantially identical to the nucleotide sequence represented by 24.
  • the “oligonucleotide having substantially the same base sequence” specifically hybridizes to ARE-A or a part of ARE-B of FGF21 mRNA under physiological conditions in the cell, and
  • An oligonucleotide that can promote translation of FGF21 protein from the mRNA specifically, a base sequence having 80% or more, preferably 90% or more identity with the base sequence represented by each of the above SEQ ID NOs.
  • the oligonucleotide of the present invention includes the oligonucleotides containing the various modifications described above, all of which are described in International Publication No. 2005/021570, International Publication No. 03/068695, International Publication No. 2001/007455. It can be chemically synthesized by a known method or a method analogous thereto. In addition, the desired modified oligonucleotide is available by commissioned synthesis (eg, Gene Design Co., Ltd.).
  • the oligonucleotide of the present invention can be provided in a special form such as a liposome or microsphere, or in a form to which a modifying group is added.
  • These special forms and addition forms may be used as polycationic substances such as polylysine, which acts to neutralize the charge of the phosphate group skeleton, to enhance the interaction with cell membranes, or to increase the uptake of nucleic acids.
  • hydrophobic ones such as phospholipids (eg, phospholipids, cholesterol).
  • Preferred lipids for addition include cholesterol and its derivatives (eg, cholesteryl chloroformate, cholic acid).
  • Such can be attached to the 3 ′ end or 5 ′ end of the nucleic acid and can be attached via a base, sugar, intramolecular nucleoside bond.
  • the other group include a cap group specifically arranged at the 3 ′ end or 5 ′ end of a nucleic acid, which prevents degradation by nucleases such as exonuclease and RNase.
  • capping groups include, but are not limited to, hydroxyl protecting groups known in the art, including glycols such as polyethylene glycol and tetraethylene glycol.
  • the oligonucleotide of the present invention may form a salt with an inorganic base, organic base, inorganic acid, organic acid or the like.
  • the salt with the inorganic base include, for example, alkali metal salts of sodium salts and potassium salts; alkaline earth metal salts such as calcium salts and magnesium salts; and aluminum salts and ammonium salts.
  • the salt with the organic base include salts with trimethylamine, triethylamine, pyridine, picoline, ethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, and N, N′-dibenzylethylenediamine.
  • Examples of the salt with the inorganic acid include salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, and phosphoric acid.
  • Examples of the salts with organic acids include formic acid, acetic acid, trifluoroacetic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, p- And a salt with toluenesulfonic acid.
  • a pharmacologically acceptable salt is preferable, and a sodium salt is more preferable.
  • the oligonucleotide of the present invention may form a complex with an oligonucleotide having a sequence complementary to the nucleotide.
  • the substance of the present invention is not limited to a nucleic acid analogue containing a base sequence complementary to at least a part of the cis element of the FGF21 mRNA as described above, and the production of FGF21 protein is caused by binding to the cis element. As long as it promotes through stabilization of mRNA, it may be a low molecular weight compound or a salt thereof.
  • a low molecular weight compound that binds to the cis element of mRNA of FGF21 and promotes translation of FGF21 protein from the mRNA has, for example, the binding ability between a nucleic acid having the same base sequence as the cis element and a test compound.
  • test compound it is assayed by labeling any of the test compounds, and further the stabilization of FGF21 mRNA or the increase in the production amount of FGF21 protein in the presence of the test compound, for example, using RT-PCR or various immunological analyses.
  • any other screening method known per se can be used.
  • the FGF21 protein expression promoting activity possessed by the substance of the present invention can be examined using a transformant introduced with the FGF21 gene, an in vivo or in vitro FGF21 gene expression system, or an in vivo or in vitro FGF21 protein expression system. it can.
  • the salt of the low molecular weight compound may be any salt as long as it is a non-toxic salt.
  • a pharmacologically acceptable acid eg, inorganic acid, organic acid
  • base eg, alkali
  • acid addition salts are particularly preferable.
  • examples of such salts include salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid).
  • the present invention also relates to a medicament containing the substance of the present invention (also referred to as “medicament of the present invention” in the present specification).
  • the medicament of the present invention can be used as a preventive / therapeutic agent for lifestyle-related diseases. .
  • Examples of lifestyle-related diseases that can be prevented / treated by the medicament of the present invention include diabetes, stroke, cerebral hemorrhage, cerebral infarction, heart disease (eg, myocardial infarction, angina), hyperlipidemia, hypertension, Examples include obesity, metabolic syndrome, chronic bronchitis, COPD (chronic obstructive pulmonary disease), emphysema, lung squamous cell carcinoma, colon cancer, alcoholic hepatitis, gout and the like. Of these, diabetes and obesity are preferable.
  • the oligonucleotide of the present invention can be bound to and encapsulated in a carrier and contained in a medicine.
  • Examples of the carrier for binding and encapsulating the oligonucleotide of the present invention include liposomes and lipoplexes.
  • liposomes are preferred in order to facilitate transport of the substance of the present invention into cells.
  • Preferred liposomes include positively-charged liposomes, positively-charged cholesterol, and membrane-permeable peptide-bound liposomes (Nakanishi Mamoru et al., Protein Nucleic Acid Enzyme, 44: -151590-1596 (1999), Futaki Shiro, Chemistry and Biology, 43: 649 -653 (2005), Clinical Research 59: 4325-4333 (1999)).
  • the oligonucleotide of the present invention which can complementarily bind to the transcript of the FGF21 gene and increase the translation level of the transcript, promotes the function and action of the FGF21 protein in vivo and prevents / treats lifestyle-related diseases It can be used as an agent.
  • the substance of the present invention or the medicament of the present invention has low toxicity, and can be used as it is or as a pharmaceutical composition of an appropriate dosage form for mammals (eg, mouse, rat, rabbit, sheep, pig, cow, cat, dog, monkey). , Human) orally or parenterally (eg, intravascular administration, subcutaneous administration, rectal administration, transurethral administration, intraperitoneal administration).
  • mammals eg, mouse, rat, rabbit, sheep, pig, cow, cat, dog, monkey.
  • parenterally eg, intravascular administration, subcutaneous administration, rectal administration, transurethral administration, intraperitoneal administration.
  • the oligonucleotide of the present invention When used as a prophylactic / therapeutic agent for the above lifestyle-related diseases, it can be formulated and administered according to a method known per se.
  • the oligonucleotide can be administered as it is or together with an auxiliary agent for promoting intake by a gene gun or a catheter such as a hydrogel catheter. Alternatively, it can be aerosolized and locally administered into the trachea as an inhalant.
  • the oligonucleotide may be formulated (injection) alone or with a carrier such as a liposome and administered intravenously, subcutaneously, etc. Good.
  • the medicament of the present invention may contain a pharmacologically acceptable carrier, diluent or excipient.
  • the medicament of the present invention is provided as a dosage form suitable for oral or parenteral administration.
  • the pharmaceutical of the present invention When the pharmaceutical of the present invention is administered parenterally, for example, it is administered as an injection or a suppository.
  • the injections include dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, infusions and the like.
  • Such an injection can be prepared according to a known method.
  • a method for preparing an injection it can be prepared, for example, by dissolving, suspending or emulsifying the substance of the present invention in a sterile aqueous liquid or oily liquid usually used for injection.
  • an aqueous solution for injection for example, an isotonic solution containing physiological saline, glucose and other adjuvants is used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, propylene) are used. Glycol, polyethylene glycol) and nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)) may be used in combination.
  • the oily liquid for example, sesame oil and soybean oil are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent.
  • the prepared injection solution is preferably filled in a suitable ampoule.
  • the suppository can be prepared according to a known method, for example, by mixing the nucleic acid with an ordinary suppository base.
  • solid or liquid dosage forms specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (soft capsules) Including), syrup, emulsion, suspension and the like.
  • the medicament of the present invention is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field.
  • the tablet may contain a tablet carrier and excipient (for example, lactose, starch, sucrose, magnesium stearate).
  • the medicament of the present invention is conveniently prepared in a dosage unit suitable for the dose of the active ingredient.
  • Examples of the dosage form prepared in a dosage unit suitable for the dosage of the active ingredient include tablets, pills, capsules, injections (ampoules) and suppositories.
  • the substance of the present invention is preferably contained, for example, usually in an amount of 5 to 500 mg per dosage unit form, particularly 5 to 100 mg for injections and 10 to 250 mg for other dosage forms.
  • the dosage of the medicament of the present invention varies depending on the administration subject, target disease, symptom, administration route, etc., but for example, when used for the treatment / prevention of diabetes or obesity in adults, the nucleic acid of the present invention is used.
  • a single dose usually about 0.01 to 20 mg / kg body weight, preferably about 0.1 to 10 mg / kg body weight, more preferably about 0.1 to 5 mg / kg body weight, about 1 to 5 times a day, preferably 1 to 1 day a day. It is convenient to administer about 3 times by intravenous injection. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
  • the medicament of the present invention may contain other active ingredients as long as undesirable interactions are not caused by blending with the substance of the present invention.
  • the medicament of the present invention may be prepared by using other drugs such as insulin resistance improving drugs (eg, thiazolidine derivatives such as rosiglitazone and pioglitazone), hypoglycemic drugs (eg, glibenclamide, glimepiride, tolbutamide, glycopyramide, acetohexamide).
  • insulin resistance improving drugs eg, thiazolidine derivatives such as rosiglitazone and pioglitazone
  • hypoglycemic drugs eg, glibenclamide, glimepiride, tolbutamide, glycopyramide, acetohexamide.
  • Sulfonamides such as grimidine and glybazole, biguanides such as metformin and buformin), aldose reductase inhibitors (eg, epalrestat), ⁇ -glucosidase inhibitors (eg, voglibose, acarbose), somatomedin C preparations
  • Anti-diabetic drugs eg, mecasermin
  • central anti-obesity drugs eg, dexfenfluramine, fenfluramine, phentermine
  • MCH receptor antagonists eg, SB-568849, SNAP-7941
  • neuro Peptide Y antagonists eg, CP-422935
  • potassium Nabinoido receptor antagonists e.g., SR-141716, SR-147778), ghrelin antagonists, leptin may be used in combination with anti-obesity drugs such as ⁇ 3 agonists.
  • the dosage of these drugs
  • it can bind to at least a part of the cis element of each mRNA encoding two or more different target proteins and inhibit the binding of the cis element binding factor to the cis element 2
  • a pharmaceutical comprising a combination of more than one kind of substances is mentioned.
  • the two or more different target proteins are, for example, FGF21 and two types selected from the group consisting of genes in which mRNA is destabilized by cis-element binding factors in the same way as FGF21, or translation from mRNA is suppressed It refers to the above protein.
  • the substance binds to at least a part of the cis element of mRNA encoding each target protein, and a cis element binding factor (preferably AU rich element) to the cis element (preferably AU rich element).
  • a cis element binding factor preferably AU rich element
  • a substance capable of inhibiting the binding of a rich element binding factor capable of inhibiting the binding of a rich element binding factor).
  • examples of the cis element and the cis element binding factor include the cis element and the cis element binding factor described above.
  • the substance includes a base sequence complementary to at least a part of the cis element of mRNA encoding each target protein, and one untranslated region on the 5 ′ side and / or 3 ′ side of the cis element.
  • the nucleotide molecule constituting the oligonucleotide may be a nucleotide molecule subjected to the chemical modification.
  • the oligonucleotide preferably contains LNA or BNA, more preferably BNA.
  • the oligonucleotide may be an S-oligosylated oligonucleotide (an oligonucleotide in which a phosphate residue between each nucleotide constituting the oligonucleotide is replaced with a phosphorothioate chemically modified phosphate residue).
  • Examples of substances that can bind to at least part of the cis element of mRNA encoding one target protein and inhibit the binding of the cis element binding factor to the cis element include oligonucleotides, oligonucleotides containing LNA, BNA And other nucleic acid analogues or salts thereof.
  • Preferred examples include oligonucleotides containing LNA or salts thereof, and oligonucleotides containing BNA or salts thereof.
  • Examples of substances that can bind to at least part of the cis element of mRNA encoding other target proteins and inhibit the binding of the cis element binding factor include oligonucleotides, oligonucleotides containing LNA, and oligos containing BNA. Nucleotides and other nucleic acid analogs or salts thereof can be mentioned, and preferred examples include oligonucleotides containing LNA or salts thereof, and oligonucleotides containing BNA or salts thereof.
  • One or more of the substances may be a low molecular compound or a salt thereof.
  • a low molecular weight compound can be obtained by the same technique as the low molecular weight compound that binds to the cis element of the FGF21 mRNA.
  • the salt of the low molecular weight compound are the same as the salt of the low molecular weight compound that binds to the cis element of the FGF21 mRNA.
  • Another embodiment of the present invention includes a preventive / therapeutic agent for lifestyle-related diseases comprising a substance that inhibits the function of ZFP36L2 or ZFP36L1.
  • ZFP36L2 and ZFP36L1 are examples of “cis-element binding factor” in the present specification.
  • a substance that inhibits the functions of ZFP36L2 and ZFP36L1 suppresses the expression of the protein or binds to the protein, thereby inhibiting the binding of a target mRNA such as FGF21 to a cis element. Exhibits the same effect as other substances.
  • examples of such inhibitors include antisense nucleic acid against ZFP36L2 (SEQ ID NO: 6, 8) or ZFP36L1 (SEQ ID NO: 5, 7) mRNA, siRNA, shRNA, miRNA or ribozyme nucleic acid, medium against ZFP36L2 or ZFP36L1 protein.
  • Japanese antibody, aptamer or antagonist compound may be mentioned.
  • the above-mentioned substances may be used as they are, but they may be used together with the same additive as the medicament of the present invention.
  • the prophylactic / therapeutic agent can be used in the aforementioned administration method / dose with respect to the medicament of the present invention.
  • DNA deoxyribonucleic acid
  • cDNA complementary deoxyribonucleic acid
  • A adenine T: thymine
  • G guanine
  • C cytosine RNA: ribonucleic acid
  • mRNA messenger ribonucleic acid
  • dATP deoxyadenosine triphosphate
  • dTTP deoxythymidine triphosphate
  • dGTP deoxyguanosine tri
  • Phosphate dCTP Deoxycytidine triphosphate ATP: Adenosine triphosphate
  • EDTA Ethylenediaminetetraacetic acid
  • SDS Sodium dodecyl sulfate
  • Gly Glycine Ala: Alanine Val: Valine Leu: Leucine Ile: Isoleucine Ser: Serine Thr: Threonine Cys: Cysteine Met : Methionine Glu: Glutamic acid Asp: Aspartic acid Lys: Lysine
  • sequence numbers in the sequence listing in the present specification indicate the following sequences.
  • SEQ ID NO: 1 The nucleotide sequence of human FGF21 cDNA is shown (GenBank Accession No. NM_019113.2).
  • SEQ ID NO: 2 The nucleotide sequence of an oligonucleotide complementary to a part of ARE-A is shown.
  • SEQ ID NO: 3 The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • SEQ ID NO: 4 The nucleotide sequence of an oligonucleotide that has no complementarity to FGF21 mRNA is shown.
  • [SEQ ID NO: 5] The nucleotide sequence of cDNA encoding human ZFP36L1 is shown (GenBank Accession No. NM_004926.2).
  • [SEQ ID NO: 6] The nucleotide sequence of cDNA encoding human ZFP36L2 is shown (GenBank Accession No. NM_006887.4).
  • [SEQ ID NO: 7] The nucleotide sequence of cDNA encoding mouse ZFP36L1 is shown (GenBank Accession No. NM_007564.3).
  • [SEQ ID NO: 8] The nucleotide sequence of cDNA encoding mouse ZFP36L2 is shown (GenBank Accession No. NM_001001806.2).
  • [SEQ ID NO: 9] The nucleotide sequence of cDNA encoding mouse FGF21 is shown (GenBank Accession No. NM_020013.4).
  • [SEQ ID NO: 10] The base sequence of a primer for amplifying human ⁇ -actin mRNA is shown.
  • [SEQ ID NO: 11] The base sequence of a primer for amplifying human ⁇ -actin mRNA is shown.
  • [SEQ ID NO: 12] The base sequence of the primer for human FGF21 mRNA amplification is shown.
  • [SEQ ID NO: 13] The base sequence of the primer for human FGF21 mRNA amplification is shown.
  • [SEQ ID NO: 14] The base sequence of the mouse ⁇ -actin mRNA amplification primer is shown.
  • [SEQ ID NO: 15] The base sequence of the mouse ⁇ -actin mRNA amplification primer is shown. (GenBank Accession No. NM_004926.2).
  • [SEQ ID NO: 16] The base sequence of the mouse FGF21 mRNA amplification primer is shown. (GenBank Accession No. NM_006887.4).
  • [SEQ ID NO: 17] The base sequence of the mouse FGF21 mRNA amplification primer is shown.
  • [SEQ ID NO: 18] The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • [SEQ ID NO: 19] The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • [SEQ ID NO: 20] The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • [SEQ ID NO: 21] The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • [SEQ ID NO: 22] The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • [SEQ ID NO: 23] The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • [SEQ ID NO: 24] The nucleotide sequence of an oligonucleotide complementary to a part of ARE-B is shown.
  • [SEQ ID NO: 25] The partial base sequence of the 826th to 843rd positions from the 5 ′ end of human FGF21 mRNA is shown.
  • [SEQ ID NO: 26] This shows the 791-860th nucleotide sequence from the 5 'end of human FGF21 mRNA.
  • [SEQ ID NO: 27] The base sequence of a primer for amplifying human ⁇ -actin mRNA is shown.
  • [SEQ ID NO: 28] The base sequence of a primer for amplifying human ⁇ -actin mRNA is shown.
  • [SEQ ID NO: 29] The base sequence of the probe for human ⁇ -actin is shown.
  • [SEQ ID NO: 30] The base sequence of the primer for human FGF21 mRNA amplification is shown.
  • SEQ ID NO: 32 The base sequence of the probe for human FGF21 is shown.
  • SEQ ID NO: 33 The base sequence of the mouse ⁇ -actin mRNA amplification primer is shown.
  • SEQ ID NO: 34 The base sequence of the mouse ⁇ -actin mRNA amplification primer is shown.
  • SEQ ID NO: 35 The base sequence of the mouse ⁇ -actin probe is shown.
  • [SEQ ID NO: 36] The base sequence of the mouse FGF21 mRNA amplification primer is shown.
  • SEQ ID NO: 37 The base sequence of the mouse FGF21 mRNA amplification primer is shown.
  • SEQ ID NO: 38 The base sequence of the probe for mouse FGF21 is shown.
  • Example 1 Synthesis of BNA NC -Adenosine Monomer Unit
  • Raw material 1 (680 mg, 1.17 mmol) and 6-N-benzoyladenine (1.4 g, 5.9 mmol) were suspended in toluene (11 mL).
  • N, O-bis-trimethylsilylacetamide (BSA) was added to the suspension and the mixture was heated to 100 ° C. and then stirred for 1 hour.
  • Trimethylsilyl trifluoromethanesulfonate (TMSOTf) was added to the reaction solution, and the mixture was further stirred for 30 minutes.
  • the reaction solution was cooled and diluted with ethyl acetate (200 mL), and then washed with a saturated aqueous sodium hydrogen carbonate solution, water, and saturated brine (100 mL each).
  • the obtained organic layer was dried with sodium sulfate and then concentrated.
  • the mixture was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain the desired protected BNA NC -adenosine nucleoside (Compound 2: 533 mg, 0.81 mmol).
  • the organic layer was further washed with a saturated aqueous sodium hydrogen carbonate solution (10 mL), dried over anhydrous sodium sulfate and concentrated. Purification was performed using silica gel column chromatography (Diol-silica gel (manufactured by Fuji Silysia, Hexane-Acetone) to obtain the target BNA NC -adenosine monomer.
  • the reaction mixture was cooled and diluted with ethyl acetate (50 mL), and then washed with a saturated aqueous sodium hydrogen carbonate solution, water, and saturated brine (50 mL each).
  • the obtained organic layer was dried with sodium sulfate, and then insoluble matters were removed by filtration, followed by concentration.
  • the mixture was purified by silica gel column chromatography (hexane-ethyl acetate) to obtain the desired protected BNA NC -guanosine nucleoside (Compound 6: 325 mg, 0.4 mmol).
  • FIG. 1D shows an oligonucleotide complementary to a part of ARE-B, one of the AREs present in the 3′UTR of FGF21 mRNA (“ ⁇ -F21- B (BNA) "or” TUP # 001 ").
  • ⁇ -F21-B (BNA) consists of a base sequence complementary to a part of ARE-B and a base sequence complementary to a part of 3 ′ UTR continuous on the 5 ′ side of ARE-B ( SEQ ID NO: 3).
  • BNA NC oligonucleotide ⁇ -F21-B (TUP # 001) consisting of the base sequence shown in SEQ ID NO: 3 is an automatic nucleic acid synthesizer (Nippon Techno Service, MODEL: NTS H-8-SE) Was synthesized on a 0.2 micromolar scale. Reagents used in the synthesis were the following commercially available products: 10% dichloroacetic acid toluene solution, dry acetonitrile (Wako Pure Chemicals), 0.35M benzylthiotetrazole acetonitrile solution, CapA, CapB, oxidizing agent (Glen Research) ).
  • BNA NC thymidine and 5-methylcytidine phosphoramidites purchased from BNA Inc. were used.
  • the phosphoramidite of BNA NC adenosine and guanosine used the compound 5 of Example 1 and the compound 9 of Example 2.
  • As the solid support Unysupport manufactured by Glen Research was used.
  • the condensation reaction was carried out using 50 equivalents of amidite for a reaction time of 15 minutes to synthesize the title compound.
  • the synthesis reaction of the full-length oligonucleotide was improved by performing the condensation reaction of the first base and the second base twice on the solid phase carrier.
  • the oligomer was excised from the solid phase carrier, and the phosphorus atom and the nucleobase site were deprotected. After removing the solid support by filtration, the remaining solvent was distilled off.
  • the mass of the compound obtained by MALDI-TOF mass spectrometry was identified (calculated value: 4379.1 (M-1), measured value: 4387.20).
  • ARE-A corresponds to the region of the 814th to 821th bases from the 5 ′ end in the human FGF21 mRNA (GenBank Accession No. NM — 019113) shown in SEQ ID NO: 1.
  • FIG. 1 shows the partial base sequence of FGF21 mRNA 3′-UTR around ARE-A and ARE-B and the base sequence of the designed oligonucleotide.
  • FIG. 1 (A) shows the base sequence (sequence from 791 to 860th base from the 5 ′ end) of FGF21 mRNA (refer to SEQ ID NO: 1) including ARE-A and ARE-B out of 940 bases in total length. Number: 26). The underlined portion in the base sequence indicates “AUUUA pentamer”.
  • FIG. 1 shows the partial base sequence of FGF21 mRNA 3′-UTR around ARE-A and ARE-B and the base sequence of the designed oligonucleotide.
  • FIG. 1 (A) shows the base sequence (sequence from 791 to 860th base from the 5 ′ end) of FGF21 mRNA (refer to SEQ ID NO: 1) including ARE-A and ARE-B out of 940 bases in total length. Number
  • FIG. 1B shows the base sequence of an oligonucleotide complementary to a part of ARE-A (denoted as “ ⁇ -F21-A (LNA)”).
  • ⁇ -F21-A (LNA) consists of a base sequence complementary to a part of ARE-A (cARE) and a base sequence complementary to a part of 3 'UTR continuous on the 3' side of ARE-A ( cUTR) (see SEQ ID NO: 2).
  • the length of ⁇ -F21-A (LNA) is 12mer.
  • FIG. 1C shows the base sequence of an oligonucleotide complementary to a part of ARE-B (denoted as “ ⁇ -F21-B (LNA)” or (TUP # 002)).
  • ⁇ -F21-B (TUP # 002) is a base sequence complementary to a part of ARE-B and a base complementary to a part of 3'UTR continuous on the 5 'side of ARE-B. (See SEQ ID NO: 3).
  • the length of ⁇ -F21-B (LNA) is 12mer.
  • ⁇ -F21-A (LNA) and ⁇ -F21-B (LNA) are synthetic oligonucleotides composed of LNA.
  • ⁇ -F21-A (LNA) and ⁇ -F21-B (LNA) were obtained by consignment synthesis (Gen Design Co., Ltd.).
  • ⁇ -F21-A (LNA) and ⁇ -F21-B (LNA) were synthesized according to a method known per se. That is, after performing solid phase synthesis by a general phosphoramidite method (eg, the method described in Tetrahedron Letters, vol. 22 (1981) 1859-1862 and Chemical Reviews, vol. 90 (1990) 543-584). This was synthesized by deprotection using ammonia.
  • the resulting oligonucleotide was purified using reverse phase HPLC or ion exchange HPLC. After the purification, the obtained oligonucleotide was subjected to reverse phase HPLC to measure purity, and subjected to MALDI-TOF mass spectrometer to measure molecular weight.
  • the molecular weight of ⁇ -F21-B (LNA) was 4029.6 (calculated value 4031.7 (M + 1)).
  • oligonucleotide Human hepatocytes HepG2 cells were seeded on a 12-well plate at 2.0 ⁇ 10 5 cells / well and cultured in DMEM medium containing 10% FBS. After 24 hours of culture, oligonucleotides ( ⁇ -F21-B (LNA) or control oligonucleotides) were introduced into the cells by lipofection (DharmaFECT 4, Thermo Fisher Scientific). As a control, an oligonucleotide composed of LNA having a base sequence (5′-AGATGAATAAA-3 ′; SEQ ID NO: 4) having no complementarity to FGF21 mRNA was used.
  • Oligonucleotide was used by diluting 40 pmol with 50 ⁇ L of Opti-MEM (Life Technologies Japan). In addition, 1.6 ⁇ L of DharmaFECT 4 was diluted with 50 ⁇ L of Opti-MEM. After dilution, the mixture was allowed to stand at room temperature for 5 minutes, and the oligonucleotide diluted solution and DharmaFECT 4 diluted solution were mixed. After further standing for 20 minutes, the entire amount was added to each well of a 12-well plate.
  • FIG. 2 shows the results of real-time PCR in human hepatocytes HepG2 cells.
  • the amount of FGF21 mRNA is shown as a value obtained by normalization with the amount of ⁇ -actin mRNA.
  • An increase in the amount of FGF21 mRNA was confirmed in cells transfected with ⁇ -F21-B (LNA), compared to cells in which no oligonucleotide was introduced and cells in which a control oligonucleotide was introduced.
  • FIG. 3 shows the results of a similar experiment using mouse hepatocytes H2.35 cells.
  • Test Example 2 Fluctuation of FGF21 Expression by BNA NC Oligonucleotide
  • the oligonucleotide ⁇ -F21-B (BNA) obtained in Example 3 has the base sequence represented by SEQ ID NO: 3 and is a constituent monomer. Are all substituted with BNA NC monomers.
  • ⁇ -F21-B (LNA) having the base sequence represented by SEQ ID NO: 3 and having all the constituent monomers substituted with LNA monomers was evaluated.
  • the effect of the oligonucleotide on the amount of FGF21 mRNA was examined.
  • ⁇ -F21-B (BNA) was introduced into the cells according to the method of Test Example 1 (final concentration 40 nM, ⁇ -F21-B as a control substance). (LNA)), total mRNA was extracted from cells 24 hours after introduction, and FGF21 mRNA contained was quantified by real-time PCR according to a conventional method.
  • the method of Test Example 1 was modified as follows.
  • WY-14643 was dissolved in DMSO and used at a final concentration of 200 ⁇ M. As shown in FIG. 4, with the increase in the amount of FGF21 mRNA in H2.35 cells by WY-14643, in the presence of actinomycin D (Calbiochem), an RNA synthesis inhibitor (5 ⁇ g / ml, 0 min, 45 It was confirmed that the amount of mRNA was attenuated under the condition that transcription was blocked in 3 groups of 90 minutes. Actinomycin D was dissolved in DMSO and used at a final concentration of 5 ⁇ g / ml. This strongly suggested that the FGF21 mRNA amplified by the PPAR- ⁇ agonist is unstable in the cells under the control of transcription and degradation.
  • FIGS. 5 and 6 show the results of examining the effect of introducing an oligonucleotide on the amount of each FGF21FGF mRNA in HepG2 (in the absence of WY-14643) and H2.35 (in the presence of WY-14643), respectively.
  • ⁇ -F21-B (BNA) increases the amount of each FGF21 mRNA in both human (HepG2) and mouse (H2.35) cells, and the effect is stronger than ⁇ -F21-B (LNA) at the same concentration. It was.
  • H2.35 the culture supernatant was collected 48 hours after the introduction of the oligonucleotide, centrifuged at 1000 xg for 10 minutes, and the supernatant was collected.
  • the FGF21 protein was quantified.
  • BNA Human FGF-21 ELISA Kit
  • LNA ⁇ -F21-B
  • the LNA oligonucleotide (Control) represented by SEQ ID NO: 4 that was non-complementary to FGF21FGF mRNA used as a control substance had no effect on H2.35 in both the amount of FGF21 mRNA and the amount of protein.
  • ⁇ -F21-B which is a BNA NC oligonucleotide, promotes the expression of FGF21 in both humans and mice, as is ⁇ -F21-B (LNA), and its activity is ⁇ -F21. It became clear that -B (BNA) was dominant.
  • Test Example 3 Identification of ARE binding factor Based on the results of Test Examples 1 and 2, ⁇ -F21-B (LNA) and ⁇ -F21-B (BNA) bind to ARE-B of the FGF21 gene and bind to ARE. It was suggested that the expression level of FGF21 mRNA was selectively enhanced by inhibiting the binding of the factor to ARE-B and inhibiting the negative expression control function of the ARE-binding factor. Then, next, we tried to identify an ARE-binding factor that inhibits binding to ARE-B by ⁇ -F21-B (LNA) and ⁇ -F21-B (BNA) and to analyze its function.
  • LNA ⁇ -F21-B
  • BNA ⁇ -F21-B
  • FGF21 mRNA ARE-B was analyzed by immunoprecipitation using FGF21 mRNA as bait and proteomic analysis using a mass spectrometer. The cis-element binding protein that binds to was analyzed.
  • FGF21 mRNA bait FGF21 mRNA was synthesized by in vitro translation. Amplify the nucleotide sequence 778-876 from the 5 'end of FGF21 mRNA (SEQ ID NO: 1) by PCR using a primer with a T7 promoter sequence at the 5' end, and use the MEGAscript T7 kit (Ambion) RNA was synthesized according to the protocol. A method of covalently binding Flag-hydrazide to the 3 ′ end of the synthesized FGF21 mRNA, and the known method (“Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation.” Methods , 2005, Vol, 36, No. 3, p.239-244). The labeled mRNA was purified using RNeasy Mini Kit from Qiagen.
  • the eluate sample was treated with lysyl endopeptidase, and the LC-MS / MS method (“A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics.” Analytical Chemistry, 2002, Vol.74) , No.18, p.4725-4733).
  • QSTAR XL (Applied Biosystem) was used for the mass spectrometer.
  • ZFP36L1 results LC-MS / MS identified “ZFP36L1” and “ZFP36L2” as proteins that bind to the 3 ′ end region of FGF21 mRNA
  • FIG. 8 shows MS spectrum data (one peptide for ZFP36L1).
  • ZFP36L2 and ZFP36L2 form a family of ARE binding factors (hereinafter referred to as “ZFP36 family”) together with ZFP36 (also known as TTP), which binds ARE to mRNA.
  • ARE-binding factors that inhibit the binding to ARE-B by ⁇ -F21-B (LNA) and ⁇ -F21-B (BNA) may be ZFP36L1 and ZFP36L2.
  • FGF21 3′UTR-Flag Flag-labeled human FGF21 3′UTR-RNA
  • Cell extract protein (5 mg / 500 ⁇ l) was added, and ⁇ -F21-A (LNA), ⁇ -F21-B (LNA) or the above control oligonucleotide was added to a final concentration of 100 ⁇ M and mixed, After immunoprecipitation using Flag M2 antibody beads, samples eluted with Flag peptide were subjected to Western blotting using anti-ZFP36L1 antibody (Cell signaling).
  • ZFP36L1 was detected in a sample (lane 1) obtained by mixing cell extract protein with FGF21 3′UTR-Flag and immunoprecipitating with anti-ZFP36L1 antibody. This indicates that ZFP36L1 can bind to FGF21 3′UTR-Flag, and that ZFP36L1 has the ability to bind FGF21 to 3′UTR. Similar results were obtained for ZFP36L2 (hereinafter the same for Test Example 4).
  • RNAi # 1 (Cat. No. HSS101104, HSS101101)
  • ZFP36L1 / L2 RNAi # 2 Cat. No. HSS101105, HSS101102
  • RNAi Negative Control (Cat. No. 12935-100) was used as a control siRNA (Cont. RNAi # 1, # 2). Cells were collected 48 hours after oligonucleotide introduction, and real-time PCR was performed using the extracted mRNA to evaluate the expression level of FGF21.
  • the results of real-time PCR are shown in FIG.
  • the amount of FGF21 mRNA is shown as a value obtained by normalization with the amount of ⁇ -actin mRNA.
  • An increase in the amount of FGF21 mRNA was confirmed in cells transfected with ZFP36L1 / L2 RNAi # 1 and # 2, compared to cells transfected with Cont.RNAi # 1 and # 2.
  • the introduction of siRNA that inhibits the expression of ZFP36L1 and ZFP36L2 markedly enhanced the expression level of FGF21.
  • ZFP36L1 and ZFP36L2 function to destabilize and promote degradation of FGF21 mRNA, and negatively express FGF21 expression. This indicates that control is being performed.
  • BNA NC- modified ribonucleotides represented by A ′, T ′, and G ′ mean ribonucleotides represented by Chemical Formula 4.
  • TUP # 003 to # 033 was performed according to the method used in the synthesis of ⁇ -F21-A (LNA) and ⁇ -F21-B (LNA).
  • Table 2 shows the mass measurement results of TUP # 003 to # 033.
  • DharmaFECT 1 was diluted 100-fold with Opti-MEM (Life Technologies Japan) and allowed to stand for 5 minutes, and each oligonucleotide (TUP # 003 to TUP # 033) was diluted with Opti-MEM. .
  • a mixed solution containing equal amounts of each diluted solution of DharmaFECT 1 and oligonucleotide was prepared and allowed to stand for 20 minutes.
  • the Hep3B culture was introduced by adding 1/10 volume of the above mixture to the medium A.
  • the oligonucleotide used for introduction was adjusted to 30 nM after the addition.
  • RNA was extracted from the cells using Cells-to-Ct (Life Technologies Japan). CDNA was synthesized using the extracted RNA, and the expression level of FGF21 mRNA was quantified by quantitative real-time PCR.
  • the results of real-time PCR are shown in FIG.
  • the amount of FGF21 mRNA is shown as a value obtained by standardization with the amount of ⁇ -actin mRNA (mean + standard error). This study revealed that each oligonucleotide used in the study increased FGF21 mRNA in Hep3B cells.
  • Obtained mouse liver primary cultured cells in medium B (Williams'Medium E (Life Technologies Japan), 1% penicillin-streptomycin (Life Technologies Japan), 1% L-glutamine (Life Technologies Japan), 10nM insulin (Sigma) ), 10 nM dexamethasone (Wako), a solution containing 10% FBS (Life Technologies Japan)), and seeded on Biocoat Collagen I Cellware 24 well plate (Becton Dickinson) at a density of 6.25 ⁇ 10 4 cells / well. Cultured for 24 hours. After culturing, oligonucleotides were introduced into the cells using DharmaFECT 1.
  • DharmaFECT 1 was diluted 50-fold with Opti-MEM (Life Technologies Japan) and allowed to stand for 5 minutes, and the oligonucleotide was diluted with Opti-MEM.
  • a mixed solution containing equal amounts of each diluted solution of DharmaFECT 1 and oligonucleotide was prepared and allowed to stand for 20 minutes.
  • the mixture was introduced into the culture medium of mouse liver primary cultured cells by adding 1/10 volume of the above mixture to medium B.
  • the oligonucleotide used for introduction was adjusted to 3, 10, or 30 nM after addition.
  • the introduced mouse liver primary cultured cells were cultured for 48 hours, and then RNA was extracted using SV96 total RNA isolation system (Promega).
  • CDNA was synthesized using the extracted RNA, and the expression level of FGF21 mRNA was quantified by quantitative real-time PCR.
  • mice ⁇ -actin Forward: 5'-CACTATTGGCAACGAGCGG-3 '(SEQ ID NO: 33) Reverse: 5'-TCCATACCCAAGAAGGAAGGC-3 '(SEQ ID NO: 34)
  • Mouse ⁇ -actin probe 5'-Fam-TCCGATGCCCTGAGGCTCTTTTCC-3 '(SEQ ID NO: 35)
  • mouse FGF21 Forward: 5'-GTTTCTTTGCCAACAGCCAGAT-3 '(SEQ ID NO: 36) Reverse: 5'-CCAGCAGCAGTTCTCTGAAGCT-3 '(SEQ ID NO: 37)
  • the results of quantitative real-time PCR are shown in FIG.
  • the amount of FGF21 mRNA is shown as a value obtained by standardization with the amount of ⁇ -actin mRNA (mean + standard error). This study revealed that each of the oligonucleotides used for the study increased FGF21 mRNA in mouse liver primary cultured cells.
  • Test Example 8 Evaluation of FGF21 protein secretion promoting activity in human liver-derived cell line Hep3B As in Test Example 6, Hep3B cells were seeded on a 96-well plate plate at a density of 3 ⁇ 10 3 cells / well. After culturing for 24 hours, oligonucleotides were introduced using DharmaFECT 1 in the same manner as in Test Example 6. Oligonucleotide concentration was adjusted to 10 or 30 nM after addition. The introduced Hep3B cells were cultured for 48 hours, and then the culture supernatant was collected. The amount of FGF21 protein contained in the collected culture supernatant was measured using a Human FGF21 ELISA Kit (Millipore). The results are shown in FIG. 15 (mean + standard error). This study revealed that each of the oligonucleotides used for the study increased FGF21 protein secretion in Hep3B cells.
  • mice liver primary culture cells were prepared in the same manner as in Test Example 7, and the resulting liver primary culture cells were treated with Williams'Medium E (Life Technologies Japan). And then seeded on a Biocoat Collagen I Cellware 24 well plate (Becton Dickinson) at a density of 6.25 ⁇ 10 4 cells / well and cultured for 24 hours. Oligonucleotides were introduced by the same method as in Test Example 7. The oligonucleotide used for introduction was adjusted to 30 nM after the addition. The introduced mouse liver primary cultured cells were cultured for 48 hours, and then the culture supernatant was collected.
  • the amount of FGF21 mRNA is shown as a value obtained by standardization with the amount of ⁇ -actin mRNA (average + standard error).
  • * indicates that as a result of the Shirley-Williams test, the expression level of FGF21 mRNA was significantly increased (p ⁇ 0.05) in the TUP # 007-administered group compared to the non-oligonucleotide group.
  • the substance of the present invention that binds to the cis element of FGF21 mRNA and inhibits the binding of the cis element binding factor to the cis element can enhance the translation level of the FGF21 protein by stabilizing the mRNA.
  • the present invention is based on a Japanese patent application filed on July 23, 2009, Japanese Patent Application No. 2009-172584, the entire contents of which are included in this specification.

Abstract

 本発明は、FGF21のmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る物質、特にAUリッチエレメントの少なくとも一部に相補的な塩基配列を含むオリゴヌクレオチド、並びに、該物質、特に該オリゴヌクレオチドを含有してなる医薬、特に抗肥満剤などの生活習慣病予防・治療剤を提供する。

Description

FGF21シスエレメント結合物質
 本発明は、FGF21のmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る物質及びその物質を含有してなる生活習慣病の予防・治療剤に関する。
(発明の背景)
 細胞内の遺伝子発現の制御は、mRNAの転写及び翻訳のそれぞれの段階において、mRNAの転写量や、転写されたmRNAの安定性及びタンパク質への翻訳量、タンパク質そのものの安定性を制御することにより行われている。現在までに、これら各制御段階をターゲットとした様々な遺伝子発現制御方法(アンチセンス法やRNA干渉など)が開発されている。これらの方法の開発に伴い、近年mRNAの安定性やタンパク質への翻訳量を介した発現制御機構の重要性に大きな注目が集まっている。
 mRNAの安定性や翻訳量は、mRNAの「シスエレメント(cis-element)」と呼ばれる特定配列とこれに結合する「シスエレメント結合因子」により制御されている。
 シスエレメントは、DNA又はRNAの5’及び3’非翻訳領域に存在し、そのDNA鎖又はRNA鎖にコードされる遺伝子の発現制御に関与する領域として定義される。「シスエレメント結合因子」は、遺伝子のシスエレメントに結合してその遺伝子の発現を促進又は抑制するtrans-acting factorとして機能する。
 mRNAに存在するシスエレメントは、mRNAの安定性やタンパク質への翻訳量の制御に関与し、mRNAにコードされた遺伝子産物(タンパク質)の発現量を決定する重要な要素となっている。
 代表的なシスエレメントの一つに、「AUリッチエレメント(本明細書中、AREと略記することがある)」がある。AREは、mRNAの3’非翻訳領域(3’-UTR)に多く存在するアデノシンとウリジンに富む10~150塩基程度の塩基配列である。AREは、当初、サイトカインやリンフォカインの3’-UTRにおいて「AUUUA」の塩基配列が頻繁に重複して存在する領域として見つかった。AREは、現在では全遺伝子の5~8%に存在すると推定されており、ホメオスタシスの維持に関与する多くの遺伝子にAREが存在しているものと考えられている(非特許文献1)。
 AREには、trans-acting factorとしてARE結合タンパク質が結合し、mRNAの安定性や翻訳量を促進又は抑制している(非特許文献2及び3)。さらに、AREには、micro RNA(miRNA)も結合し、同様の制御を行っている(非特許文献4及び5)。
 特許文献1には、Bcl-2 mRNAの3’側の非翻訳領域のAREの一部に相補的なアンチセンスオリゴヌクレオチド(2’-O-(C1-C3)alkyl-oligonucleotides又は2’-O-methyl/deoxy-gapmers)がアポトーシス関連疾患の治療・予防に有用であることが記載されており、具体的には、ARE周辺の配列に4つのオリゴヌクレオチドの混合物を結合させてmRNAの不安定化を阻害している。
 ところで、線維芽細胞増殖因子21(本明細書中、FGF21と略記することがある)は強力な代謝調節剤として知られている(非特許文献6~8)。この因子は肝臓で選択的に発現し、脂肪細胞のグルコース取り込みを調節している。肥満及び2型糖尿病モデル動物へのFGF21投与により、血漿中のグルコースやトリグリセリドレベルが低下し、LDL-コレステロールの低下及びHDL-コレステロールの増加等、心血管系リスクファクターのレベルが改善されることが報告されている。さらに、FGF21は他のFGFファミリーとは異なり、分裂促進活性がなく、低血糖や体重増加を引き起こさないことから、副作用の少ない新規な生活習慣病治療薬として大いに注目されている。
 しかしながら、FGF21のmRNAを安定化したり、翻訳レベルを制御することにより、内在性FGF21の作用を向上させるといった試みは未だなされていない。
国際公開第03/040182号パンフレット
Nucleic Acids Research, 2001, Vol.29, No. 1, p. 246-254 Nucleic Acids Research, 2005, Vol.33, No. 22, p. 7138-7150 Biochemical Society Transactions, 2002, Vol. 30, part 6, p. 952-958 Cell, 2005, Vol.120, No. 5, p. 623-634 Seminars in Cell and Developmental Biology, 2005, Vol. 16, No.1, p.49-58 Physiological Research, 2009, Vol.58, p. 1-7 Cellular and Molecular Life Science, 2009, Vol.66, p.2067-2073 BioDrugs, 2008, Vol.22, No. 1, p. 37-44
 本発明は、生活習慣病の予防・治療剤を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、FGF21のmRNAのシスエレメントに結合する物質を見出すとともに、該シスエレメントとシスエレメント結合因子との結合を阻害することにより、FGF21タンパク質の発現を増加させ得ることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下を提供するものである。
(1)FGF21のmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る物質。
(2)FGF21のmRNAのシスエレメントの少なくとも一部に結合し、AUリッチエレメントへのAUリッチエレメント結合因子の結合を阻害し得る上記(1)記載の物質。
(3)FGF21のmRNAのシスエレメントが、配列番号:1で表されるFGF21のmRNA塩基配列の5’末端側から835~842番目の塩基配列である上記(1)記載の物質。
(4)FGF21のmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る核酸類縁物質又はその塩である上記(1)記載の物質。
(5)FGF21のmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得るオリゴヌクレオチド又はその塩である上記(1)記載の物質。
(6)LNA(locked nucleic acid)を含むことを特徴とする上記(5)記載の物質。
(7)BNA(bridged nucleic acid)を含むことを特徴とする上記(5)記載の物質。
(8)配列番号:3、配列番号:18、配列番号:19、配列番号:20、配列番号:21、配列番号:22、配列番号:23若しくは配列番号:24で表される塩基配列又は該塩基配列と実質的に同一の塩基配列を含むオリゴヌクレオチド又はその塩である上記(1)記載の物質。
(9)配列番号:3で表される塩基配列又は該塩基配列と実質的に同一の塩基配列を含むオリゴヌクレオチド又はその塩である上記(4)~(7)のいずれか1項に記載の物質。
(10)配列番号:19で表される塩基配列若しくは該塩基配列と実質的に同一の塩基配列を含むオリゴヌクレオチド又はその塩である上記(4)~(7)のいずれか1項に記載の物質。
(11)TUP#001、TUP#002、TUP#003、TUP#004、TUP#005、TUP#006、TUP#007、TUP#008、TUP#009、TUP#010、TUP#011、TUP#012、TUP#013、TUP#014、TUP#015、TUP#016、TUP#017、TUP#018、TUP#019、TUP#020、TUP#021、TUP#022、TUP#023、TUP#024、TUP#025、TUP#026、TUP#027、TUP#028、TUP#029、TUP#030、TUP#031、TUP#032若しくはTUP#033で表されるオリゴヌクレオチド又はその塩である上記(1)記載の物質。
(12)上記(1)記載の物質を含有してなる医薬。
(13)生活習慣病の予防・治療剤である上記(12)記載の医薬。
(14)哺乳動物に対し上記(1)記載の物質の有効量を投与することを含む、該哺乳動物における生活習慣病の予防又は治療方法。
(15)生活習慣病の予防又は治療剤を製造するための上記(1)記載の物質の使用。
(16)上記(5)、(8)、(9)、(10)、又は(11)記載の物質を含有する担体。
(17)異なる2種以上の標的タンパク質をコードするそれぞれのmRNAのシスエレメントの少なくとも一部にそれぞれ結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る2種以上の物質を組み合わせてなる医薬。
(18)物質が、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に結合し、AUリッチエレメントへのAUリッチエレメント結合因子の結合を阻害し得る物質である上記(17)記載の医薬。
(19)物質が、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る核酸類縁物質又はその塩である上記(17)記載の医薬。
(20)物質が、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得るオリゴヌクレオチド又はその塩である上記(17)記載の医薬。
(21)物質がLNAを含むオリゴヌクレオチド又はその塩である上記(20)記載の医薬。
(22)物質がBNAを含むオリゴヌクレオチド又はその塩である上記(20)記載の医薬。
(23)ZFP36L1又はZFP36L2の機能を阻害する物質を含有してなる生活習慣病の予防・治療剤。
(24)哺乳動物に対し上記(23)記載の物質の有効量を投与することを含む、該哺乳動物における生活習慣病の予防又は治療方法。
(25)生活習慣病の予防又は治療剤を製造するための上記(23)記載の物質の使用。
 本発明によれば、FGF21のmRNAのシスエレメントに結合する物質を用いて、該シスエレメントとシスエレメント結合因子との結合を阻害することにより、FGF21タンパク質の発現を増加させ、生活習慣病を予防・治療することができる。
ヒトFGF21 mRNA 3’-UTRの部分塩基配列と、ARE-A,ARE-Bをターゲットシスエレメントとして設計したオリゴヌクレオチドα-F21-A,α-F21-Bの塩基配列を示す図である(試験例1)。 オリゴヌクレオチドを導入したヒト肝臓由来細胞株(HepG2)中のFGF21 mRNA量をリアルタイムPCR法により測定した結果を示す図である(試験例1)。 オリゴヌクレオチドを導入したマウス肝臓由来細胞株(H2.35)中のFGF21 mRNA量をリアルタイムPCR法により測定した結果を示す図である(試験例1)。 マウス肝細胞(H2.35)において、WY-14643によるFGF21 mRNAの細胞内転写量増幅効果とアクチノマイシンD処理による転写阻害時のFGF21 mRNAの細胞内不安定性を示す図である(試験例2)。 WY-14643非共存下におけるFGF21 mRNA量に及ぼすオリゴヌクレオチドの導入効果をHepG2細胞で検討した結果を示す図である(試験例2)。 WY-14643共存下におけるFGF21 mRNA量に及ぼすオリゴヌクレオチドの導入効果をH2.35細胞で検討した結果を示す図である(試験例2)。 H2.35細胞におけるFGF21タンパク質分泌量をELISA法で測定した結果を示す図である(試験例2)。 FGF21-3’UTRをベイト(おとり)として同定されたZFP36L1(A)及びZFP36L2(B)のMSスペクトルデータを示す図である(試験例3)。 ZFP36L1のFGF21 mRNA 3’UTRへの結合能と、α-F21-A(LNA)、α-F21-B(LNA)による結合阻害を、ウェスタンブロット解析により評価した結果を示す図である(試験例4)。 RNAi(RNA干渉)を用いてZFP36L1及びZFP36L2の発現を抑制した場合のFGF21 mRNA量をリアルタイムPCR法により測定した結果を示す図である(試験例5)。 本発明に係るオリゴヌクレオチドによるFGF21の発現増強メカニズムを説明する模式図である。 TUP#003~TUP#033とFGF21 mRNAとの位置関係及びTUP#003~TUP#033におけるLNA修飾塩基の位置を示す図である。図中の「FGF21 mRNA」は、該mRNAの3’UTRの一部(該mRNAの5’末端から826~843番目の部分塩基配列;配列番号:25)を、3’→5’方向に記載したものである。 オリゴヌクレオチドを導入したヒト肝臓由来細胞株Hep3BのFGF21 mRNA量をリアルタイムPCR法により測定した結果を示す図である(試験例6)。 オリゴヌクレオチドを導入したマウス肝臓初代培養細胞中のFGF21 mRNA量をリアルタイムPCR法により測定した結果を示す図である(試験例7)。 オリゴヌクレオチドを導入したヒト肝臓由来細胞株Hep3BからのFGF21タンパク質分泌量をELISAにより測定した結果を示す図である(試験例8)。 オリゴヌクレオチドを導入したマウス肝臓初代培養細胞からのFGF21タンパク質分泌量をELISAにより測定した結果を示す図である(試験例9)。 オリゴヌクレオチド(TUP#007)投与後のマウス肝臓中のFGF21 mRNA量をリアルタイムPCR法により測定した結果を示す図である(試験例10)。
(発明の詳細な説明)
 本発明は、FGF21(fibroblast growth factor 21:線維芽細胞増殖因子21)のmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る物質(以下、「本発明の物質」と略記することがある)に関する。
 FGF21のmRNA、すなわちFGF21のタンパク質をコードするmRNAの好ましい例としては、例えば、ヒトFGF21 cDNA(配列番号:1で表される塩基配列、GenBank Accession No. NM_019113)の「t」を「u」と読み替えた塩基配列で表されるヒトFGF21のmRNA(本明細書中、「配列番号:1で表されるFGF21 のmRNA」と称することがある。)、あるいはヒト以外の哺乳動物(例、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル)におけるそのホモログ(例えば、配列番号:9で表される塩基配列からなるマウスFGF21 cDNA(GenBank Accession No. NM_020013)の「t」を「u」と読み替えた塩基配列で表されるマウスFGF21のmRNA)、さらにはそれらの天然のアレル変異体などがあげられる。
 本明細書において「シスエレメント」とは、同一mRNA上(即ち翻訳領域の上流又は下流)に存在し、mRNAの安定性やタンパク質への翻訳量の制御に関与し、mRNAにコードされた遺伝子産物(タンパク質)の発現量を決定する重要な要素となっている領域である。シスエレメントの具体例として、AUリッチエレメント、Histone mRNA 3’-UTR stem loop element、Internal ribosome entry site(IRES)、A2RE element、ZIPCODE element、Iron response element(IRE)、Cytoplasmic polyadenylation(CPE)、Nanos translational control、Amyloid precursor protein element(APP)、Translational regulation element(TGE)/direct repeat element(DRE)、Bruno element(BRE)、15-lipoxygenase differentiation control element(15-LOX-DICE)、G-quartet element、Adh mRNA down-regulation element、Barley yellow dwarf virus element、GLUT1 mRNA-stability control element、Msl-2 3’-UTR control element、Msl-2 5’-UTR control element、Ribosomal S12 mRNA translational control element、Selenocysteine insertion sequence type 1(SECIS-1)、Selenocysteine insertion sequence type 2(SECIS-2)、TNF-mRNA stability control element、Terminal oligopyrimidine tract(TOP)、Vimentin mRNA 3’-UTR control elementなどが挙げられる。上記シスエレメントの特に好ましい例としてAUリッチエレメントが挙げられる。
 AUリッチエレメント(AU-rich element:ARE)は、mRNAの3’-UTR(untranslated region:非翻訳領域)に多く存在するアデノシンとウリジンに富む10~150塩基程度の塩基配列であり、mRNAの安定性や翻訳レベルの制御に関与する配列である。AREは、現在、暫定的に(1)ウリジンに富む配列中に数コピーの「AUUUAペンタマー」を含む領域(ARE I)、(2)少なくとも2以上の重複する「UUAUUUA(U/A)(U/A)ノナマー」を含む領域(ARE II)、(3)「AUUUAペンタマー」を含まないがウリジンに富む領域(ARE III)に分類されている。本発明におけるAUリッチエレメントにはこれら3グループのAREが少なくとも含まれるものとする。
 前記AUリッチエレメントの具体例としては、配列番号:1で表されるFGF21 のmRNA塩基配列の5’末端側から814~821番目の塩基配列(ARE-Aと表記する場合がある)、配列番号:1で表されるFGF21 のmRNA塩基配列の5’末端側から835~842番目の塩基配列(ARE-Bと表記する場合がある)が挙げられる。AUリッチエレメントの好ましい例としては、ARE-Bが挙げられる。
 本明細書において「シスエレメント結合因子」とは、シスエレメントに結合し、該シスエレメントを含むmRNAの安定性を向上又は低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を促進又は抑制する機能を有する因子を意味する。
 上記「シスエレメント結合因子」におけるシスエレメントの例としては、前記したシスエレメントが挙げられる。上記シスエレメントの好ましい例として、AUリッチエレメントが挙げられる。
 本明細書の「シスエレメント結合因子」における結合因子の例として、前記シスエレメントに結合し、該シスエレメントを含むmRNAの安定性を向上又は低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を促進又は抑制する機能を有するタンパク質及びmiRNA(micro RNA)が挙げられる。上記結合因子の好ましい例として、前記シスエレメントに結合し、該シスエレメントを含むmRNAの安定性を低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を抑制する機能を有するタンパク質及びmiRNAが挙げられる。
 上記結合因子のさらに好ましい例として、前記シスエレメントに結合し、該シスエレメントを含むmRNAの安定性を低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を抑制する機能を有するタンパク質が挙げられる。
 前記「シスエレメント結合因子」の好ましい例として、AUリッチエレメント結合因子が挙げられる。AUリッチエレメント結合因子とは、AUリッチエレメントに結合し、該AUリッチエレメントを含むmRNAの安定性を向上又は低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を促進又は抑制する機能を有する因子を意味する。AUリッチエレメントに結合し、該AUリッチエレメントを含むmRNAの安定性を向上又は低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を促進又は抑制する機能を有するAUリッチエレメント結合因子であるタンパク質の具体例として、AUF1、HuR、Hel-N1、Hud、TTP、BRF1、TIA-1、KSRP、GUG-BP2、Nucleotin、TINO、PAIP2、ZFP36L1及びZFP36L2が挙げられ、miRNAの具体例として、miR16が挙げられる。
 AUリッチエレメント結合因子の好ましい例として、前記AUリッチエレメントに結合し、該AUリッチエレメントを含むmRNAの安定性を低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を抑制する機能を有するタンパク質及びmiRNAが挙げられる。上記結合因子のさらに好ましい例として、前記AUリッチエレメントに結合し、該AUリッチエレメントを含むmRNAの安定性を低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を抑制する機能を有するタンパク質が挙げられる。AUリッチエレメントを含むmRNAの安定性を低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を抑制する機能を有するAUリッチエレメント結合因子の具体例としては、ZFP36L1及びZFP36L2が挙げられる。AUリッチエレメントを含むmRNAの安定性を低下し、該シスエレメントを含むmRNAにコードされるタンパク質の発現を抑制する機能を有するAUリッチエレメント結合因子の好ましい例として、ヒトZFP36L1(GenBank Accession No. NM_004926.2)及びヒトZFP36L2(GenBank Accession No. NM_006887.4)が挙げられる。
 本発明の物質は、FGF21のmRNAのシスエレメントへのシスエレメント結合因子の結合を阻害することにより、FGF21のmRNAを選択的に安定化して、該FGF21のmRNAにコードされたFGF21タンパク質の発現、すなわちFGF21の翻訳を促進する。
 本発明の物質としては、核酸類縁物質(例、オリゴヌクレオチド(天然オリゴヌクレオチド及びその人工類縁体)、miRNA及びその模倣物)(本明細書中、「本発明のオリゴヌクレオチド」と称されることがある)又はその塩、低分子化合物(例、非ペプチド性化合物、ペプチド)又はその塩などを挙げることができる。
 前記核酸類縁物質の具体例として、FGF21のmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る核酸類縁物質が挙げられる。前記核酸類縁物質の好ましい例としてオリゴヌクレオチド又はその塩が挙げられる。
 本発明において、「一部に相補的な塩基配列」とは、対象シスエレメント配列とハイブリダイズした場合に、有意に標的mRNAを安定化し、翻訳を促進し得るのに十分な塩基長で、相補的な塩基配列をいう。シスエレメントが「UUAUUUA(U/A)(U/A)ノナマー」であるAUリッチエレメントである場合、「一部に相補的な塩基配列」の例として、該ノナマー中の連続する1塩基以上で相補的な塩基配列を挙げることができ、好ましい例として、該ノナマー中の連続する5塩基以上で相補的な塩基配列が挙げられ、さらに好ましい例として、該ノナマー中の連続する6塩基以上で相補的な塩基配列が挙げられる。
 「シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列」は、前記核酸類縁物質に、特定のmRNAのシスエレメントに特異的に結合する能力を付与するのに十分な塩基長で、標的シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的であればよい。シスエレメントがヒトFGF21のmRNAのAUリッチエレメント(ARE)の場合、シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列の例として、該AREの5’側及び3’側の合計で1塩基以上相補的な塩基配列を挙げることができ、好ましい例として、該AREの5’側及び3’側の合計で3~9塩基で相補的な塩基配列が挙げられる。シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列のさらに好ましい例として、ARE-Bの5’側及び3’側の合計で3~9塩基で相補的な塩基配列が挙げられる。
 上記シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列の具体例としては、配列番号:1で表されるFGF21のmRNA塩基配列の5’末端側から828~834番目の塩基配列に相補的な塩基配列、826~834番目の塩基配列に相補的な塩基配列、832~834番目の塩基配列に相補的な塩基配列、830~834番目の塩基配列に相補的な塩基配列が挙げられる。
 上記シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列の好ましい例としては、ヒトFGF21のmRNA塩基配列の5’末端側から828~834番目の塩基配列に相補的な塩基配列、826~834番目の塩基配列に相補的な塩基配列が挙げられる。上記シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列のより好ましい例としては、ヒトFGF21のmRNA塩基配列の5’末端側から826~834番目の塩基配列に相補的な塩基配列が挙げられる。
 本発明の「オリゴヌクレオチド」は、FGF21のmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有することで、FGF21のmRNAに特異的に結合して該mRNAを安定化し得る一本鎖核酸であり、該安定化によりFGF21のmRNAからのFGF21タンパク質の翻訳レベルを高めることができる。
 本発明のオリゴヌクレオチドとしては、2-デオキシ-D-リボースを含有しているポリデオキシリボヌクレオチド、D-リボースを含有しているポリリボヌクレオチド、プリン又はピリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、非ヌクレオチド骨格を有するその他のポリマー(例えば、市販のタンパク質核酸及び合成配列特異的な核酸ポリマー)又は特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。それらは公知の修飾(例えば、当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメート)を持つもの、電荷を有する結合又は硫黄含有結合(例、ホスホロチオエート、ホスホロジチオエート)を持つもの、例えばタンパク質(例、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ-L-リジン)や糖(例、モノサッカライド)などの側鎖基を有しているもの、インターカレント化合物(例、アクリジン、ソラレン)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、αアノマー型の核酸))が付加されたものであってもよい。ここで「ヌクレオシド」、「ヌクレオチド」及び「オリゴヌクレオチド」とは、プリン及びピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいても良い。このような修飾物は、メチル化されたプリン及びピリミジン、アシル化されたプリン及びピリミジン、あるいはその他の複素環を含むものであってもよい。修飾されたヌクレオシド及び修飾されたヌクレオチドはまた糖部分が修飾されていてもよく、例えば、1個以上の水酸基がハロゲンや、脂肪族基などで置換されていたり、又はエーテル、アミンなどの官能基に変換されていてもよい。
 本発明のオリゴヌクレオチドの長さは、該オリゴヌクレオチドがFGF21のmRNAのシスエレメントの少なくとも一部を含む配列に特異的にハイブリダイズすることができ、それによって、結果としてFGF21タンパク質への翻訳が促進されるものであれば特に制限されず、短いもので約8塩基程度、長いもので約40塩基であり、好ましくは約12~約20塩基、特に好ましくは12~18塩基である。
 本発明においては、ターゲットとするAREエレメントの領域をより狭い範囲に絞り込み、かつオリゴヌクレオチドをLNA、BNA等で合成することによって、例えば約12mer(12~18mer)という非常に短いアンチセンスオリゴヌクレオチド(この塩基長でも標的mRNAに対する高い親和性と選択性が保持される)でFGF21の発現を制御できる点に大きな特徴がある。
 本発明のオリゴヌクレオチドを構成するヌクレオチド分子は、天然型のDNAもしくはRNAでもよいが、安定性(化学的及び/又は対酵素)や比活性(RNAとの親和性)を向上させるために、種々の化学修飾が施されたヌクレオチド分子であってもよく、また、核酸類縁物質であってもよい。上記化学修飾の例として、オリゴヌクレオチドを構成する各ヌクレオチドのリン酸残基(ホスフェート)を、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネート、ボラノホスフェートなどの化学修飾リン酸残基に置換する修飾が挙げられる。
 また、上記化学修飾の別の例として、各ヌクレオチドの糖の2'位水酸基を別の官能基に置換する修飾が挙げられる。ここで、別の官能基としては、ハロゲン原子(例、フッ素原子);C1-6アルキル基(例、メチル基);C1-6アルキル基(例、メチル基)で置換されていてもよいアミノ基;-OR(Rは、例えばCH3(2'-O-Me)、CH2CH2OCH3(2'-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CNを示す)に置換する修飾が挙げられる。上記化学修飾のさらにまた別の修飾として、塩基部分(ピリミジン、プリン)に化学修飾を施してもよい。塩基部分に施す化学修飾の例として、ピリミジン塩基の5位へメチル基やカチオン性官能基の導入する修飾、あるいは2位のカルボニル基をチオカルボニル基に置換する修飾が挙げられる。
 また、前記核酸類縁物質の例としては、UNA(unlocked nucleic acid)、HNA、モルフォリーノオリゴ(morpholino oligo)、PNA(peptide nucleic acid)が挙げられる。上記HNAは、そのヘキソピラノース部分の水酸基がデオキシ化されていてもよい。また、上記HNAは、そのヘキソピラノース部分の水酸基がフッ素原子に置換されていてもよい。
 RNAの糖部のコンフォーメーションはC2'-endo(S型)とC3'-endo(N型)の2つが支配的であり、一本鎖RNAではこの両者の平衡として存在するが、二本鎖を形成するとN型に固定される。したがって、標的RNAに対して強い結合能を付与するために、2'酸素と4’炭素を架橋することにより、糖部のコンフォーメーションをN型に固定したRNA誘導体であるBNA、LNA(Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, J.S. et al., Oligonucleotides, 14, 130-46, 2004)やENA(Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003)、cEt、cMOE (Seth et al., Journal of Medicinal Chemistry, 51, 10-13, 2009)などもオリゴヌクレオチドを構成するヌクレオチド分子として、好ましく用いられ得る。
 BNA、LNAとしては、具体的には、国際公開第2005/021570号、国際公開第03/068695号、国際公開第2001/007455号に記載のものを用いることができ、本発明のオリゴヌクレオチドは、これらBNA及び/又はLNAを含有していてもよい。
 本発明のオリゴヌクレオチドを構成するヌクレオチド分子が化学修飾を施されたヌクレオチド分子である場合の本発明のオリゴヌクレオチドの具体例として、オリゴヌクレオチド(例、配列番号:2、配列番号:3、配列番号:18、配列番号:19、配列番号:20、配列番号:21、配列番号:22、配列番号:23、配列番号:24)の一部又は全ての構成ヌクレオチドが、国際公開第2005/021570号パンフレット、国際公開第03/068695号パンフレット、国際公開第2001/007455号パンフレットに記載のBNA(例、2’,4’-BNANC、2’,4’-BNACOC)やLNA(2’,4’-BNA)で置換されたオリゴヌクレオチド、あるいはSオリゴ化されたオリゴヌクレオチド(オリゴヌクレオチドを構成する各ヌクレオチド間のリン酸残基が、ホスホロチオエートの化学修飾リン酸残基に置換されたオリゴヌクレオチド)が挙げられる。より具体的には、オリゴヌクレオチドの一部又は全ての構成ヌクレオチドが、実施例1に記載の化合物5(BNANC-アデノシンモノマー)や実施例2に記載の化合物9(BNANC-グアノシンモノマー)、さらに同様にして合成され得るBNANC-ピリミジンモノマーを用いて合成されたオリゴヌクレオチドが挙げられる。
 前記、オリゴヌクレオチドを構成する各ヌクレオチド間のリン酸残基が、ホスホロチオエートの化学修飾リン酸残基に置換されたオリゴヌクレオチドとは、オリゴヌクレオチドを構成する各ヌクレオチド間のリン酸残基が化1に示す化学修飾を受けたオリゴヌクレオチドを指す。
Figure JPOXMLDOC01-appb-C000001
 本発明のオリゴヌクレオチドとしては、ヒトFGF21のmRNAのAUリッチエレメント(ARE-A又はARE-B、好ましくはARE-B)の少なくとも一部に結合し得るものが好ましい。
 図1に示す通り、ARE-A(ヒトFGF21のmRNA塩基配列の5’末端側から814~821番目の塩基配列)の一部としては、ヒトFGF21のmRNA塩基配列の5’末端側から816~821番目の塩基配列などが挙げられる。
 ARE-B(ヒトFGF21のmRNA塩基配列の5’末端側から835~842番目の塩基配列)の一部の例として、ヒトFGF21のmRNA塩基配列の5’末端側から835~839番目の塩基配列、835~841番目の塩基配列、835~837番目の塩基配列などが挙げられる。ARE-B(ヒトFGF21のmRNA塩基配列の5’末端側から835~842番目の塩基配列)の一部の好ましい例として、835~839番目の塩基配列、835~841番目の塩基配列が挙げられる。ARE-B(ヒトFGF21のmRNA塩基配列の5’末端側から835~842番目の塩基配列)の一部のさらに好ましい例として、835~841番目の塩基配列が挙げられる。
 ARE-Aの少なくとも一部に結合し得るオリゴヌクレオチドとしては、上記した通り、特に長さは限定されないが、例えば、ヒトFGF21のmRNA塩基配列の5’末端側から816~827番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:2)などが用いられる。
 ARE-Bの少なくとも一部に結合し得るオリゴヌクレオチドとしては、上記した通り、特に長さは限定されないが、例えば、ヒトFGF21のmRNA塩基配列の5’末端側から、828~839番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:3)、826~843番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:18)、826~841番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:19)、828~841番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:20)、826~839番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:21)、832~843番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:22)、830~841番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:23)、826~837番目の塩基配列に相補的な塩基配列を有するオリゴヌクレオチド(配列番号:24)が挙げられる。
 上記した中でも、配列番号:3、配列番号:18、配列番号:19、配列番号:20、配列番号:21、配列番号:22、配列番号:23又は配列番号:24で表される塩基配列を有するオリゴヌクレオチドが好ましく、配列番号:3又は配列番号:19で表される塩基配列を有するオリゴヌクレオチドがさらに好ましい。
 本発明のオリゴヌクレオチドの好ましい具体例としては、後述の表1に示されるTUP#001~TUP#033(これらのうち、TUP#001はα-F21-B(BNA)、TUP#002はα-F21-B(LNA)と表記する場合もある)が挙げられ、より好ましい例として、TUP#001、TUP#002、TUP#003、TUP#004、TUP#005、TUP#006、TUP#007、TUP#008、TUP#011、TUP#015、TUP#016、TUP#019、TUP#023、TUP#030が挙げられる。本発明のオリゴヌクレオチドのさらに好ましい例として、TUP#003、TUP#004、TUP#007、TUP#015、TUP#019が挙げられる。本発明のオリゴヌクレオチドの特に好ましい例として、TUP#007が挙げられる。
 本発明のオリゴヌクレオチドは、配列番号:2、配列番号:3、配列番号:18、配列番号:19、配列番号:20、配列番号:21、配列番号:22、配列番号:23又は配列番号:24で表される塩基配列と実質的に同一の塩基配列を有するオリゴヌクレオチドであってもよい。
 ここで「実質的に同一の塩基配列を有するオリゴヌクレオチド」とは、細胞内の生理的条件下で、FGF21のmRNAのARE-A又はARE-Bの一部に特異的にハイブリダイズし、かつ該mRNAからのFGF21タンパク質の翻訳を促進し得るオリゴヌクレオチドを意味し、具体的には、上記各配列番号で表される塩基配列と80%以上、好ましくは90%以上の同一性を有する塩基配列を有するオリゴヌクレオチド、あるいは、上記各配列番号で表される塩基配列において1もしく2個の塩基が他の塩基で置換された塩基配列を有するオリゴヌクレオチドが挙げられる。
 本発明のオリゴヌクレオチドは、上記した各種修飾を含むオリゴヌクレオチドを含め、いずれも国際公開第2005/021570号パンフレット、国際公開第03/068695号パンフレット、国際公開第2001/007455号パンフレットに記載の自体公知の手法あるいはそれに準じる方法により、化学的に合成することができる。また、所望の修飾オリゴヌクレオチドが委託合成により入手可能である(例、株式会社ジーンデザイン)。
 本発明のオリゴヌクレオチドは、リポソーム、ミクロスフェアのような特殊な形態で供与されたり、修飾基を付加された形態で供与されうる。こうした特殊形態、付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例、ホスホリピド、コレステロール)などの疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例、コレステリルクロロホルメート、コール酸)が挙げられる。こうしたものは、核酸の3'端又は5'端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3'端又は5'端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。
 本発明のオリゴヌクレオチドは、無機塩基、有機塩基、無機酸、有機酸等と塩を形成してもよい。上記無機塩基との塩の例としては、例えばナトリウム塩、カリウム塩のアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;ならびにアルミニウム塩、アンモニウム塩などが挙げられる。上記有機塩基との塩の例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミンとの塩が挙げられる。上記無機酸との塩の例としては、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸との塩が挙げられる。上記有機酸との塩の例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸との塩が挙げられる。これらの塩のなかでも、薬理学的に許容される塩が好ましく、ナトリウム塩がより好ましい。
 本発明のオリゴヌクレオチドは、該ヌクレオチドと相補的な配列を有するオリゴヌクレオチドと複合体を形成していてもよい。
 本発明の物質は、上記のようなFGF21のmRNAのシスエレメントの少なくとも一部に相補的な塩基配列を含む核酸類縁物質に限定されず、FGF21タンパク質の産生を、該シスエレメントへの結合による該mRNAの安定化を介して促進する限り、低分子化合物又はその塩などであってもよい。FGF21のmRNAのシスエレメントに結合して該mRNAからのFGF21タンパク質の翻訳を促進する低分子化合物は、例えば、該シスエレメントと同一の塩基配列を有する核酸と試験化合物との結合能を、該核酸もしくは試験化合物のいずれかを標識することにより検定し、さらに該試験化合物の存在下におけるFGF21のmRNAの安定化又はFGF21タンパク質の産生量の増加を、例えばRT-PCRや各種免疫学的分析を用いて評価することにより取得することができるが、自体公知の他のいかなるスクリーニング法も利用することができる。
 本発明の物質が有するFGF21タンパク質発現促進活性は、FGF21遺伝子を導入した形質転換体、生体内や生体外のFGF21遺伝子発現系、又は生体内や生体外のFGF21タンパク質発現系を用いて調べることができる。
 該低分子化合物の塩としては、無毒性の塩であれば如何なるものであってもよいが、例えば、薬理学的に許容される酸(例、無機酸、有機酸)や塩基(例、アルカリ金属、アルカリ土類金属)などとの塩が用いられ、とりわけ薬理学的に許容される酸付加塩が好ましい。このような塩としては、例えば、無機酸(例、塩酸、リン酸、臭化水素酸、硫酸)との塩、あるいは有機酸(例、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸)との塩を挙げることができる。
 また、本発明は、前記本発明の物質を含有してなる医薬(本明細書中、「本発明の医薬」ともいう)に関する。
 上述の通り、FGF21は糖尿病や肥満症などをはじめとする生活習慣病に対する予防・治療効果が報告されているので、本発明の医薬は、生活習慣病の予防・治療剤として使用することができる。
 本発明の医薬により予防・治療され得る生活習慣病としては、具体的には、糖尿病、脳卒中、脳出血、脳梗塞、心臓病(例、心筋梗塞、狭心症)、高脂血症、高血圧、肥満、メタボリックシンドローム、慢性気管支炎、COPD(慢性閉塞性肺疾患)、肺気腫、肺扁平上皮癌、大腸癌、アルコール性肝炎、痛風などが挙げられる。なかでも、糖尿病、肥満が好ましい。
 本発明のオリゴヌクレオチドは、担体に結合、封入して医薬に含有させることができる。
 本発明のオリゴヌクレオチドを結合、封入させる担体の例としては、リポソーム、リポプレックスが挙げられる。特に、本発明の物質を細胞内に運搬しやすくするためにはリポソームが好ましい。好ましいリポソームとしては、正電荷リポソーム、正電荷コレステロール、膜透過性ペプチド結合リポソームが挙げられる(中西守ら、タンパク質核酸酵素、44: 1590-1596 (1999)、二木史朗、化学と生物、43: 649-653 (2005)、Clinical Cancer Research 59: 4325-4333 (1999) など)。
 FGF21遺伝子の転写産物に相補的に結合し、該転写産物の翻訳レベルを高めることができる本発明のオリゴヌクレオチドは、生体内におけるFGF21タンパク質の機能や作用を促進し、生活習慣病の予防・治療剤として使用することができる。
 本発明の物質または本発明の医薬は低毒性であり、そのまま、又は適当な剤型の医薬組成物として、哺乳動物(例、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル、ヒト)に対して経口的又は非経口的に投与(例、血管内投与、皮下投与、直腸投与、経尿道投与、腹腔内投与)することができる。
 本発明のオリゴヌクレオチドを上記の生活習慣病の予防・治療剤として使用する場合、自体公知の方法に従って製剤化し、投与することができる。該オリゴヌクレオチドは、そのままで、あるいは摂取促進のための補助剤とともに、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与することができる。あるいは、エアロゾル化して吸入剤として気管内に局所投与することもできる。
 さらに、体内動態の改良、半減期の長期化、細胞内取り込み効率の改善を目的に、前記オリゴヌクレオチドを単独又はリポソームなどの担体とともに製剤(注射剤)化し、静脈、皮下等に投与してもよい。
 本発明の医薬は、薬理学的に許容され得る担体、希釈剤もしくは賦形剤などを含むものであってよい。本発明の医薬は、経口又は非経口投与に適する剤形として提供される。
 本発明の医薬を非経口的に投与する場合には、例えば、注射剤、坐剤として投与される。上記注射剤には静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤等の剤形が包含される。このような注射剤は、公知の方法に従って調製できる。注射剤の調製方法としては、例えば、上記本発明の物質を通常注射剤に用いられる無菌の水性液、又は油性液に溶解、懸濁又は乳化することによって調製できる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液が用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤〔例、ポリソルベート80、HCO-50(polyoxyethylene(50mol)adduct of hydrogenated castor oil)〕を併用してもよい。上記油性液としては、例えば、ゴマ油、大豆油が用いられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコール等を併用してもよい。調製された注射液は、適当なアンプルに充填されることが好ましい。上記坐剤は、公知の方法に従って調製することができ、例えば、上記核酸を通常の坐薬用基剤に混合することによって調製できる。
 本発明の医薬を経口的に投与する場合には、固体又は液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等として投与される。本発明の医薬は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有していても良い。本発明の医薬が錠剤である場合、該錠剤は錠剤用の担体、賦形剤(例えば、乳糖、でんぷん、蔗糖、ステアリン酸マグネシウム)を含有していてもよい。
 本発明の医薬は、活性成分の投与量に適合するような投薬単位に調製されることが好都合である。活性成分の投与量に適合するような投薬単位に調製される剤形としては、例えば、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤が挙げられる。本発明の物質は、例えば、投薬単位剤形当たり通常5~500mg、とりわけ注射剤では5~100mg、その他の剤形では10~250mg含有されていることが好ましい。
 本発明の医薬の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、成人の糖尿病または肥満の治療・予防のために使用する場合には、本発明の核酸を1回量として、通常0.01~20mg/kg体重程度、好ましくは0.1~10mg/kg体重程度、さらに好ましくは0.1~5mg/kg体重程度を、1日1~5回程度、好ましくは1日1~3回程度、静脈注射により投与するのが好都合である。他の非経口投与及び経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増量してもよい。
 本発明の医薬は、本発明の物質との配合により好ましくない相互作用を生じない限り他の活性成分を含有してもよい。
 さらに、本発明の医薬は、他の薬剤、例えば、インスリン抵抗性改善薬(例、ロシグリタゾン、ピオグリタゾン等のチアゾリジン誘導体)、血糖降下薬(例、グリベンクラミド、グリメピリド、トルブタミド、グリコピラミド、アセトヘキサミド等のスルホニルウレア薬、グリミジン、グリブゾール等のスルホンアミド薬、メトフォルミン、ブフォルミン等のビグアナイド薬)、アルドース還元酵素阻害薬(例、エパルレスタット)、α-グルコシダーゼ阻害薬(例、ボグリボース、アカルボース)、ソマトメジンC製剤(例、メカセルミン)などの抗糖尿病薬;中枢性抗肥満薬(例、デキスフェンフルラミン、フェンフルラミン、フェンテルミン)、MCH受容体拮抗薬(例、SB-568849、SNAP-7941)、ニューロペプチドY拮抗薬(例、CP-422935)、カンナビノイド受容体拮抗薬(例、SR-141716、SR-147778)、グレリン拮抗薬、レプチン、β3アゴニストなどの抗肥満薬と併用してもよい。これら薬剤の投与量は、その臨床用量を参照して、適宜選択すればよい。本発明の医薬及び上記薬剤は、同時又は異なった時間に患者に投与すればよい。
 本発明の別の実施態様としては、異なる2種以上の標的タンパク質をコードするそれぞれのmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る2種以上の物質を組み合わせてなる医薬が挙げられる。
 異なる2種以上の標的タンパク質とは、例えば、FGF21や、mRNAがシスエレメント結合因子によってFGF21と同じく不安定化していたり、mRNAからの翻訳が抑制されている遺伝子からなる群より選択された2種以上のタンパク質をいう。
 上記物質としては、具体的には、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメント(好ましくは、AUリッチエレメント)へのシスエレメント結合因子(好ましくは、AUリッチエレメント結合因子)の結合を阻害し得る物質が挙げられる。
 ここで、シスエレメント及びシスエレメント結合因子の例としては、前述したシスエレメント及びシスエレメント結合因子が挙げられる。
 より詳細には、該物質は、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る核酸類縁物質であり、好ましくはオリゴヌクレオチドまたはその塩である。
 該オリゴヌクレオチドを構成するヌクレオチド分子は、前記化学修飾を施されたヌクレオチド分子であってもよい。該オリゴヌクレオチドはLNA又はBNAを含むことが好ましく、BNAを含むことがさらに好ましい。上記オリゴヌクレオチドは、Sオリゴ化されたオリゴヌクレオチド(オリゴヌクレオチドを構成する各ヌクレオチド間のリン酸残基が、ホスホロチオエートの化学修飾リン酸残基に置換されたオリゴヌクレオチド)であってもよい。
 1つの標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る物質の例としては、オリゴヌクレオチド、LNAを含むオリゴヌクレオチド、BNAを含むオリゴヌクレオチド、及びその他の核酸類縁物質、又はそれらの塩が挙げられ、好ましい例としてLNAを含むオリゴヌクレオチド又はその塩、及びBNAを含むオリゴヌクレオチド又はその塩が挙げられる。
 また、他の標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメント結合因子の結合を阻害し得る物質の例として、オリゴヌクレオチド、LNAを含むオリゴヌクレオチド、BNAを含むオリゴヌクレオチド、及びその他の核酸類縁物質、又はそれらの塩が挙げられ、好ましい例としてLNAを含むオリゴヌクレオチド又はその塩、及びBNAを含むオリゴヌクレオチド又はその塩が挙げられる。
 該物質の1種以上は、低分子化合物又はその塩であってもよい。このような低分子化合物は、上記FGF21のmRNAのシスエレメントに結合する低分子化合物と同様の手法により取得することができる。また、該低分子化合物の塩としては、上記FGF21のmRNAのシスエレメントに結合する低分子化合物の塩と同様のものが例示される。
 本発明の他の実施態様としては、ZFP36L2又はZFP36L1の機能を阻害する物質を含有してなる生活習慣病の予防・治療剤を挙げることができる。
 ここでZFP36L2、ZFP36L1は本明細書における「シスエレメント結合因子」の一例である。
 ZFP36L2、ZFP36L1の機能を阻害する物質は、該タンパク質の発現を抑制したり、該タンパク質に結合して、FGF21等のターゲットmRNAのシスエレメントへの結合を阻害することにより、結果的に上記本発明の物質と同等の効果を発揮する。このような阻害物質としては、例えば、ZFP36L2(配列番号:6、8)もしくはZFP36L1(配列番号:5、7)mRNAに対するアンチセンス核酸、siRNA、shRNA、miRNA又はリボザイム核酸、ZFP36L2もしくはZFP36L1タンパク質に対する中和抗体、アプタマー又はアンタゴニスト化合物が挙げられる。これらの阻害物質は、ZFP36L2及びZFP36L1の塩基配列及びアミノ酸配列情報に基づいて、例えば国際公開第2008/102777号公報に記載される方法を適用することにより、当業者であれば容易に取得可能である。
 生活習慣病の具体例は前述の通りである。
 予防・治療剤としては、前記物質をそのまま用いても良いが、本発明の医薬と同様の添加物と共に使用しても良い。
 また、該予防・治療剤は、本発明の医薬に関して前述の投与方法・投与量で使用することができる。
 本明細書において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。
 DNA         :デオキシリボ核酸
 cDNA        :相補的デオキシリボ核酸
   A         :アデニン
   T         :チミン
   G         :グアニン
   C         :シトシン
 RNA         :リボ核酸
 mRNA        :メッセンジャーリボ核酸
 dATP        :デオキシアデノシン三リン酸
 dTTP        :デオキシチミジン三リン酸
 dGTP        :デオキシグアノシン三リン酸
 dCTP        :デオキシシチジン三リン酸
 ATP         :アデノシン三リン酸
 EDTA        :エチレンジアミン四酢酸
 SDS         :ドデシル硫酸ナトリウム
 Gly         :グリシン
 Ala         :アラニン
 Val         :バリン
 Leu         :ロイシン
 Ile         :イソロイシン
 Ser         :セリン
 Thr         :スレオニン
 Cys         :システイン
 Met         :メチオニン
 Glu         :グルタミン酸
 Asp         :アスパラギン酸
 Lys         :リジン
 Arg         :アルギニン
 His         :ヒスチジン
 Phe         :フェニルアラニン
 Tyr         :チロシン
 Trp         :トリプトファン
 Pro         :プロリン
 Asn         :アスパラギン
 Gln         :グルタミン
 pGlu        :ピログルタミン酸
 Sec         :セレノシステイン(selenocysteine)
 THF         :テトラヒドロフラン
 HPLC        :高速液体クロマトグラフィー
 DMSO        :ジメチルスルホキシド
 PCR         :ポリメラーゼ連鎖反応(Polymerase Chain Reaction)
 RT-PCR      :逆転写ポリメラーゼ連鎖反応(Reverse Transcription-
              Polymerase Chain Reaction)
 FBS         :ウシ胎仔血清
 DMEM        :ダルベッコ改変イーグル培地(Dulbecco’s Modified Eagl
        e Medium)
 MEM         :最小必須培地(Minimal Essential Medium)
 本明細書の配列表の配列番号は、以下の配列を示す。
〔配列番号:1〕
 ヒトFGF21 cDNAの塩基配列を示す(GenBank Accession No. NM_019113.2)。
〔配列番号:2〕
 ARE-Aの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:3〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:4〕
 FGF21 mRNAに対して相補性を有しないオリゴヌクレオチドの塩基配列を示す。
〔配列番号:5〕
 ヒトZFP36L1をコードするcDNAの塩基配列を示す(GenBank Accession No. NM_004926.2)。
〔配列番号:6〕
 ヒトZFP36L2をコードするcDNAの塩基配列を示す(GenBank Accession No. NM_006887.4)。
〔配列番号:7〕
 マウスZFP36L1をコードするcDNAの塩基配列を示す(GenBank Accession No. NM_007564.3)。
〔配列番号:8〕
 マウスZFP36L2をコードするcDNAの塩基配列を示す(GenBank Accession No. NM_001001806.2)。
〔配列番号:9〕
 マウスFGF21をコードするcDNAの塩基配列を示す(GenBank Accession No. NM_020013.4)。
〔配列番号:10〕
 ヒトβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:11〕
 ヒトβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:12〕
 ヒトFGF21 mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:13〕
 ヒトFGF21 mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:14〕
 マウスβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:15〕
 マウスβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
(GenBank Accession No. NM_004926.2)。
〔配列番号:16〕
 マウスFGF21 mRNA増幅用プライマーの塩基配列を示す。
(GenBank Accession No. NM_006887.4)。
〔配列番号:17〕
 マウスFGF21 mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:18〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:19〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:20〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:21〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:22〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:23〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:24〕
 ARE-Bの一部に相補的なオリゴヌクレオチドの塩基配列を示す。
〔配列番号:25〕
 ヒトFGF21 mRNAの5’側末端から826~843番目の部分塩基配列を示す。
〔配列番号:26〕
 ヒトFGF21 mRNAの5’側末端から791~860番目の塩基配列を示す。
〔配列番号:27〕
 ヒトβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:28〕
 ヒトβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:29〕
 ヒトβ-アクチン用プローブの塩基配列を示す。
〔配列番号:30〕
 ヒトFGF21 mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:31〕
 ヒトFGF21 mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:32〕
 ヒトFGF21用プローブの塩基配列を示す。
〔配列番号:33〕
 マウスβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:34〕
 マウスβ-アクチン mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:35〕
 マウスβ-アクチン用プローブの塩基配列を示す。
〔配列番号:36〕
 マウスFGF21 mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:37〕
 マウスFGF21 mRNA増幅用プライマーの塩基配列を示す。
〔配列番号:38〕
 マウスFGF21用プローブの塩基配列を示す。
 以下に実施例および試験例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。
(実施例1)BNANC-アデノシンモノマーユニットの合成
 原材料1(680mg、1.17mmol)及び6-N-ベンゾイルアデニン(1.4g、5.9mmol)をトルエン(11mL)中に懸濁させた。懸濁液にN,O-ビス-トリメチルシリルアセトアミド(BSA)を加え100℃に加温した後、1時間攪拌を行なった。反応液に対して、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)を加えさらに30分間攪拌を行なった。反応液を冷却し酢酸エチル(200mL)で希釈を行なった後、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水(各100mL)で洗浄を行なった。得られた有機層は硫酸ナトリウムによって乾燥を行なった後、濃縮を行なった。混合物は、シリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)によって精製を行ない目的とする保護されたBNANC-アデノシンヌクレオシド(化合物2:533mg、0.81mmol)を得た。
1H NMR (600MHz, CHLOROFORM-d) δ 0.91-1.20 (m, 28H), 2.68 (d,J=11.00, 1H),2.81 (s, 3H), 3.01(d,J=11.00, 1H), 3.73 (d,J=12.84, 1H), 4.04 (d,J=12.84, 1H), 4.50 (d,J=2.93, 1H), 4.77 (d,J=2.57, 1H), 6.79 (s, 1H), 7.52 (t,J=7.70, 2H), 7.61 (t,J=7.30, 1H), 8.03 (d,J=7.70, 2H), 8.35 (s, 1H), 8.81 (s, 1H), 9.17 (s, 1H).
 化合物2(530mg、0.81mmol)をTHF 10mLに溶解させ、トリエチルアミン(200μL、1.42mmol)、トリエチルアミン三フッ化水素酸塩(460μL、2.84mmol)を加え室温で1時間30分攪拌した。反応液を濃縮し、酢酸エチル(10mL)で希釈した後、シリカゲルカラムクロマトグラフィー(酢酸エチル-メタノール)で精製を行なった。(化合物3:330mg、0.81mmol)
1H NMR (300MHz, DMSO-d6) δ 2.72 (s, 3H), 2.86 (s, 2H), 3.62 (m, 2H), 4.18 (dd,J=5.5, 3.2, 1H), 4.52 (d,J=3.0, 1H), 5.12 (t,J=5.9, 1H), 5.47 (d,J=5.5, 1H), 6.67 (s, 1H), 7.48-7.72 (m, 3H), 8.01-8.09 (m, 2H), 8.60 (s, 1H), 8.75 (s, 1H), 11.22 (br. s, 1H).
 化合物3(300mg、0.72mmol)を乾燥ピリジンで共沸乾燥を行ない、ピリジン(4mL)に溶解させた。4,4’-ジメトキシトリチルクロリド(271mg、0.8mmol)を加え、室温で12時間攪拌を行なった。反応液に、飽和炭酸水素ナトリウム水溶液(10mL)を加えた後、水層を酢酸エチル(25mL)で抽出を行なった。得られた有機層は、飽和炭酸水素ナトリウム水溶液(10mL)で洗浄した。無水硫酸ナトリウムを用いて有機層を乾燥させた後、濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)によって精製を行ない、化合物4を得た。(化合物4:416mg、0.58mmol)
1H NMR (300MHz, CHLOROFORM-d) δ 2.78 (s, 3H), 2.82-3.11 (m, 3H), 3.38 (s, 2H), 3.77 (s, 6H), 4.39 (br. s, 1H), 4.67 (d,J=2.8, 1H), 6.75-6.89 (m, 5H), 7.15-7.64 (m, 12H), 8.00 (d, 2H), 8.33 (s, 1H), 8.79 (s, 1H), 9.17(br. s, 1H).
 化合物4(410mg、0.57mmol)を無水アセトニトリルで2度共沸乾燥を行ない、無水アセトニトリル(2.5mL)に溶解させた。N,N,N’,N’-テトライソプロピル-2-シアノエチルホスホロジアミダイト(200μL、0.63mmol)及び、4,5-ジシアノイミダゾール(71mg、0.6mmol)を順次加えた。室温で2時間の攪拌の後、反応液を酢酸エチル(20mL)で希釈し、飽和炭酸水素ナトリウム水溶液(10mL)を加えて反応を停止させた。有機層はさらに飽和炭酸水素ナトリウム水溶液(10mL)で洗浄した後、無水硫酸ナトリウムを用いて乾燥させ濃縮した。シリカゲルカラムクロマトグラフィー(Diol-シリカゲル(富士シリシア社製、ヘキサン-アセトン)を用いて精製を行ない目的物とするBNANC-アデノシンモノマーを得た。(化合物5:480mg、0.52mmol)
1H NMR (300MHz, CHLOROFORM-d) δ 0.92-1.22 (m, 12H), 2.26-2.48 (m, 2H), 2.76, 2.78 (2s, 3H), 2.82-2.95 (m, 2H), 3.27-3.64 (m,4H), 3.78-3.79 (m, 6H), 4.44-4.59 (2m,1H), 4.81-4.89 (m, 1H), 6.75-6.89 (m, 5H), 7.16-7.66 (m, 12H), 7.99-8.07 (m, 2H), 8.35, 8.42 (2s, 1H), 8.84 (s, 1H), 9.05 (br. s, 1H).
31P NMR (121MHz) δ 149.08, 149.36
(実施例2)BNANC-グアノシンモノマーユニットの合成
 原材料1(1.0g、1.7mmol)及び6-O-ジフェニルカルバモイル-2-N-アセチルグアニン(3.6g、8.6mmol)をトルエン(10mL)中に懸濁させた。懸濁液にN,O-ビス-トリメチルシリルアセトアミド(BSA)を加え100℃で、30分間攪拌を行なった。反応液に対し、トリフルオロメタンスルホン酸トリメチルシリル(TMSOTf)を加えさらに30分間攪拌を行なった。反応液を冷却し酢酸エチル(50mL)で希釈を行なった後、飽和炭酸水素ナトリウム水溶液、水、飽和食塩水(各50mL)で洗浄を行なった。得られた有機層は硫酸ナトリウムによって乾燥を行なった後、ろ過によって不溶物を除去した後、濃縮を行なった。混合物は、シリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)によって精製を行ない目的とする保護されたBNANC-グアノシンヌクレオシド(化合物6:325mg、0.4mmol)を得た。
1H NMR (600MHz, CHLOROFORM-d) δ ppm 0.77-1.19 (m, 28H), 2.60 (s, 3H), 2.67 (d,J=11.00Hz, 1H), 2.79 (s, 3H), 2.98 (d,J=11.00Hz, 1H), 3.72 (d,J=12.84Hz, 1H), 4.06 (d,J=12.84Hz, 1H), 4.22 (d,J=2.93Hz, 1H), 4.53 (d,J=2.93Hz, 1H), 6.63 (s, 1H), 7.12-7.56 (m, 10H), 8.02 (s, 1H), 8.29 (s, 1H).
 化合物6(320mg、0.4mmol)をTHF 5mlに溶解させ、トリエチルアミン(98μL、0.7mmol)、トリエチルアミン三フッ化水素酸塩(228μL、1.4mmol)を加え室温で1時間30分攪拌した。反応液を濃縮し、酢酸エチル(10mL)で希釈した後、シリカゲルカラムクロマトグラフィー(酢酸エチル-メタノール)で精製を行ない、化合物7を得た。(化合物7:180mg、0.32mmol)
1H NMR (300MHz, CHLOROFORM-d) δ 2.38 (s, 3H), 2.59-2.92 (m, 4H), 3.68 (s, 2H), 3.91 (br. s, 1H), 4.21 (br. s, 1H), 4.48 (d,J=2.64Hz, 1H), 4.58 (br. s, 1H), 6.57 (s, 1H), 7.11-7.54 (m, 10H), 8.25 (s, 1H), 8.92 (s, 1H).
 化合物7(160mg、0.28mmol)を乾燥ピリジンで共沸乾燥を行ない、ピリジン(1.5mL)に溶解させた。4,4’-ジメトキシトリチルクロリド(108mg、0.32mmol)を加え、室温で12時間攪拌を行なった。反応液に、飽和炭酸水素ナトリウム水溶液(10mL)を加えた後、水層を酢酸エチル(20mL)で抽出を行なった。得られた有機層は、飽和炭酸水素ナトリウム水溶液(10mL)で洗浄した。無水硫酸ナトリウムを用いて有機層を乾燥させた後、濃縮した。シリカゲルカラムクロマトグラフィー(ヘキサン-酢酸エチル)によって精製を行ない、化合物8を得た。(化合物8:176mg、0.20mmol)
1H NMR (300MHz, CHLOROFORM-d) δ 2.49 (s, 3H), 2.72 (d,J=8.50Hz, 1H), 2.78 (s, 3H), 2.85 (d,J=11.90Hz, 1H), 3.04 (d,J=11.90Hz, 1H), 3.35 (s, 2H), 3.75 (m, 6H), 4.47 (br, 1H), 4.70 (d,J=2.83Hz, 1H), 6.67 (s, 1H), 6.80 (d,J=8.69Hz, 4H), 7.14-7.52 (m, 19H), 8.15 (s, 1H), 8.22 (s, 1H).
 化合物8(140mg、0.16mmol)を無水アセトニトリルで2度共沸乾燥を行ない、無水アセトニトリル(1mL)に溶解させた。N,N,N’,N’-テトライソプロピル-2-シアノエチルホスホロジアミダイト(76μL、0.24mmol)及び、4,5-ジシアノイミダゾール(21mg、0.18mmol)を順次加えた。室温で2時間の攪拌の後、さらにN,N,N’,N’-テトライソプロピル-2-シアノエチルホスホロジアミダイト(38μL、0.12mmol)及び、4,5-ジシアノイミダゾール(10mg、0.09mmol)を順次加えた。さらに室温で1時間の攪拌の後、反応液を酢酸エチル(10mL)で希釈し、飽和炭酸水素ナトリウム水溶液(5mL)を加えて反応を停止させた。有機層はさらに飽和炭酸水素ナトリウム水溶液(10mL)で洗浄した後、無水硫酸ナトリウムを用いて乾燥させ濃縮した。シリカゲルカラムクロマトグラフィー(Diol-シリカゲル(富士シリシア社製、ヘキサン-アセトン)を用いて精製を行ない目的とするBNANC-グアノシンモノマーを得た。(化合物9:153mg、0.14mmol)
1H NMR (300MHz, CHLOROFORM-d) δ 0.92-1.19 (m, 12H), 2.27-2.49 (m, 2H), 2.58 (s, 3H), 2.74, 2.77 (2s, 3H), 2.82-3.06 (m, 2H), 3.27-3.73 (m, 4H), 3.77-3.78 (m, 6H), 4.20-4.45 (m, 1H), 4.73 (m, 1H), 6.68 (2s, 1H), 6.77-6.87 (m, 4H), 7.20-7.51 (m, 19H), 7.98 (s, 1H), 8.27, 8.31 (2s, 1H).
31P NMR (121MHz) TM148.72, 149.41
 実施例1及び2のBNA合成スキームを化2に示す。
Figure JPOXMLDOC01-appb-C000002
(実施例3)BNANCオリゴヌクレオチドの合成
 図1(D)は、FGF21 mRNAの3’UTRに存在するAREの1つ、ARE-Bの一部に相補的なオリゴヌクレオチド(「α-F21-B(BNA)」又は「TUP#001」と表記する)の塩基配列を示す。α-F21-B(BNA)は、ARE-Bの一部に相補的な塩基配列と、ARE-Bの5’側に連続する3’UTRの一部に相補的な塩基配列とからなる(配列番号:3参照)。
 配列番号:3で示される塩基配列からなるBNANCオリゴヌクレオチドα-F21-B(BNA)(TUP#001)は、核酸自動合成機(日本テクノサービス社製、MODEL:NTS H-8-SE)を用い、0.2マイクロモルスケールで合成を行なった。合成に用いられる試薬類は、以下に示す市販のものを用いた:10% ジクロロ酢酸トルエン溶液、乾燥アセトニトリル(和光純薬)、0.35M ベンジルチオテトラゾール アセトニトリル溶液、CapA、CapB、酸化剤(グレンリサーチ)。BNANCチミジン及び5-メチルシチジンのホスホロアミダイトは株式会社BNAより購入したものを用いた。BNANCアデノシン及びグアノシンのホスホロアミダイトは、実施例1の化合物5と実施例2の化合物9を用いた。固相担体は、グレンリサーチ社製Unysupportを用いた。縮合反応は、50等量のアミダイトを用いて15分間の反応時間で行ない、標記の化合物を合成した。また、固相担体に対して1塩基目及び2塩基目の縮合反応は、2度行なうことによって、全長のオリゴヌクレオチドの合成収率を向上させた。
 目的配列を有する保護されたオリゴヌクレオチド類縁体を25% アンモニア水、55℃で処理することによって、オリゴマーを固相担体からの切り出し及び、リン原子上と核酸塩基部位の脱保護を行なった。固相担体を濾去したのち残った溶媒を留去した。残渣をイオン交換HPLC(GEヘルスケア社製 AKTA explore 10s、カラム:SOURCE15Q 4.6/100PE、溶離液A:10mM NaClO4 1mM Tris,溶離液B:1M NaClO4 1mM Trisグラジエント:B=0%-100%(17min linear gradient)、室温、流速1.5mL/min)で精製し、合成オリゴヌクレオチドの5’-末端にジメトキシトリチル基を有するピークを集めた。目的物の画分は集めて濃縮を行ない、残渣に対して80% 酢酸水溶液(300μL)を加え20分間静置することによって、ジメトキシトリチル基を除去した。反応混合液に水(300μL)、3M 酢酸ナトリウム水溶液(120μL)を加え濃縮した。濃縮後の残渣を水で1mLにメスアップを行なった後、GEヘルスケア社製NAP-10カラムで2度脱塩を行ない、目的のオリゴヌクレオチドを得た。得られた化合物はイオン交換HPLC(GEヘルスケア社製 AKTA explore 10s、カラム:SOURCE15Q 4.6/100PE、溶離液A:10mM NaClO4 1mM Tris,溶離液B:1M NaClO4 1mM Trisグラジエント:B=0%-100%(17min linear gradient)、室温、流速1.5mL/min)で分析すると保持時間6.5分で溶出された。MALDI-TOF質量分析によって得られた化合物の質量を同定した(計算値:4379.1(M-1)、測定値:4379.20)。
(試験例1)FGF21の発現制御実験
 FGF21を標的遺伝子として、本発明に係るオリゴヌクレオチドを用い、遺伝子発現量の制御を行った。
(1-1)ポリヌクレオチド類似体の設計
 NCBIデータベースに登録されたFGF21 mRNAの塩基配列を参照し、mRNAの3’UTRに存在する2つのAREを同定した。これら2つのARE(「ARE-A」及び「ARE-B」と表記する)は、ヒト、アカゲザル、マウス、ラット、イヌ、ウマ等の生物種間で保存されたコンセンサス配列「UAUUUAUU」として同定された。
 ARE-Aは、配列番号:1に示すヒトFGF21 mRNA(GenBank Accession No. NM_019113)のうち、5’末端から814~821番目の塩基の領域に対応する。また、ARE-Bは、5’末端から835~842番目の塩基の領域に対応する。
 ARE-A及びARE-Bの一部に相補的なオリゴヌクレオチドを設計した。図1に、ARE-A及びARE-B周辺のFGF21 mRNA 3’-UTRの部分塩基配列と、設計したオリゴヌクレオチドの塩基配列を示す。
 図1(A)は、FGF21 mRNA(配列番号:1参照)の全長940塩基うち、ARE-A及びARE-Bを含む部分(5’側末端から791~860番目の塩基)の塩基配列(配列番号:26)を示す。塩基配列中の下線部は「AUUUAペンタマー」を示す。
 図1(B)は、ARE-Aの一部に相補的なオリゴヌクレオチド(「α-F21-A(LNA)」と表記する)の塩基配列を示す。α-F21-A(LNA)は、ARE-Aの一部に相補的な塩基配列(cARE)と、ARE-Aの3’側に連続する3’UTRの一部に相補的な塩基配列(cUTR)とからなる(配列番号:2参照)。α-F21-A(LNA)の長さは12merである。
 図1(C)は、ARE-Bの一部に相補的なオリゴヌクレオチド(「α-F21-B(LNA)」又は(TUP#002)と表記する)の塩基配列を示す。α-F21-B(LNA)(TUP#002)は、ARE-Bの一部に相補的な塩基配列と、ARE-Bの5’側に連続する3’UTRの一部に相補的な塩基配列とからなる(配列番号:3参照)。
 α-F21-B(LNA)の長さは12merである。α-F21-A(LNA)及びα-F21-B(LNA)は、LNAからなる合成オリゴヌクレオチドである。α-F21-A(LNA)及びα-F21-B(LNA)は、委託合成(株式会社ジーンデザイン)により得た。
 α-F21-A(LNA)及びα-F21-B(LNA)の合成は自体公知の方法に準じて行なった。すなわち、一般的なホスホロアミダイト法(例、Tetrahedron Letters, vol.22(1981)1859-1862やChmical Reviews, vol.90(1990)543-584に記載の方法)による固相合成を行なった後に、アンモニアを用いた脱保護を行なうことにより合成した。得られたオリゴヌクレオチドは、逆相HPLCもしくは、イオン交換HPLCを用いて精製した。上記精製後、得られたオリゴヌクレオチドを逆相HPLCに供し純度を測定するとともに、MALDI-TOF質量分析計に供することにより分子量の測定を行なった。
 α-F21-B(LNA)の分子量は4029.6であった(計算値 4031.7(M+1))。
(1-2)オリゴヌクレオチドの導入
 ヒト肝細胞HepG2細胞を、12-wellプレートに2.0×105cells/wellで播種し、10% FBS含有DMEM培地を用いて培養した。培養24時間後、オリゴヌクレオチド(α-F21-B(LNA)又はコントロールオリゴヌクレオチド)をリポフェクション(DharmaFECT 4, Thermo Fisher Scientific)によって細胞に導入した。コントロールには、FGF21 mRNAに対して相補性を有しない塩基配列(5’-AGATGAATAAA-3’; 配列番号:4)のLNAからなるオリゴヌクレオチドを使用した。
 オリゴヌクレオチドは40pmolを50μLのOpti-MEM(ライフテクノロジーズジャパン)で希釈して用いた。また、DharmaFECT 4は1.6μLを50μLのOpti-MEMで希釈した。希釈後室温にて5分間静置し、オリゴヌクレオチド希釈液とDharmaFECT 4希釈液を混合し、さらに20分静置後、全量を12-wellプレートの各ウェルに加えた。
(1-3)FGF21発現量の評価
 オリゴヌクレオチド導入24時間後の細胞を回収し、以下によりmRNA抽出を行い、抽出したmRNAを用いてリアルタイムPCR法により、FGF21 mRNAの定量を行った。
 精製した1μgのTotal RNAについて、High Capacity cDNA Reverse Transcription Kit with RNase Inhibitor(Applied biosystems)を用いてcDNAを合成し、ミリQを用いて計100μlに希釈、β-アクチンに関しては上記cDNAを 1μl/reaction (15μl)、FGF21に関しては3μl/reaction (15μl)用い、n=3以上でFast SYBRR Green Master Mix(Applied biosystems)、Applied Biosystems StepOnePlusによる定量を行った。定量値はコントロールにおけるFGF21 mRNA量/β-アクチン mRNA量の平均を1として計算した。上記の量以外については Applied biosystems社のプロトコル (下記参照) に従った。また用いたプライマーの配列を以下に示した。
High Capacity cDNA Reverse Transcription Kit with RNase Inhibitorプロトコル:
http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_042557.pdf
 
Fast SYBRR Green Master Mixプロトコル:
http://www.appliedbiosystems.co.jp/website/PDFOUT/127225
 
ヒトβ-アクチン用プライマー: 
Forward:5’-TGGATCAGCAAGCAGGAGTATG-3’(配列番号:10)
Reverse:5’-GCATTTGCGGTGGACGAT-3’(配列番号:11)
 
ヒトFGF21用プライマー:       
Forward:5’-TGAAGCCGGGAGTTATTCAAA-3’(配列番号:12)
Reverse:5’-GCCGCTGGCACAGGAA-3’(配列番号:13)
 
マウスβ-アクチン用プライマー:  
Forward:5’-CCAGTTCGCCATGGATGAC-3’(配列番号:14)
Reverse:5’-ATGCCGGAGCCGTTGTC-3’(配列番号:15)
 
マウスFGF21用プライマー:       
Forward:5’-GTACCTCTACACAGATGACGACCAA-3’(配列番号:16)
Reverse:5’-CGCCTACCACTGTTCCATCCT-3’(配列番号:17)
(1-4)結果
 ヒト肝細胞HepG2細胞におけるリアルタイムPCRの結果を図2に示す。FGF21 mRNA量は、β-アクチン mRNA量で標準化を行った値として示す。オリゴヌクレオチドの導入を行わなかった細胞及びコントロールオリゴヌクレオチドを導入した細胞に比べ、α-F21-B(LNA)をトランスフェクトした細胞では、FGF21 mRNA量の増加が確認された。
 図3には、マウス肝細胞H2.35細胞を用いて同様の実験を行った結果を示す。ヒト細胞(HepG2)と同様に、オリゴヌクレオチドの導入を行わなかった細胞及びコントロールオリゴヌクレオチドを導入した細胞に比べ、α-F21-B(LNA)を導入した細胞では、FGF21 mRNA量の増加が確認された。
 この結果から、α-F21-B(LNA)によって、標的遺伝子としたFGF21の発現量をヒト、マウス由来の各肝細胞において特異的に増強し得ることが示された。
(試験例2)BNANCオリゴヌクレオチドによるFGF21の発現変動
 実施例3で得られたオリゴヌクレオチドα-F21-B(BNA)は、配列番号:3で表される塩基配列を有し、かつ構成モノマーがすべてBNANCモノマーに置換されたものである。そこで、配列番号:3で表される塩基配列を有し、かつ構成モノマーがすべてLNAモノマーに置換されたα-F21-B(LNA)を評価した試験例1と同様に、培養肝細胞株において該オリゴヌクレオチドがFGF21 mRNA量へ与える効果について調べた。
 使用した培養細胞のうち、ヒト肝細胞株HepG2については、試験例1の方法に準拠してα-F21-B(BNA)を細胞に導入し(最終濃度40nM、対照物質としてα-F21-B(LNA))、導入24時間後の細胞から全mRNAを抽出、定法に従いリアルタイムPCRにより含有FGF21 mRNAを定量した。
 また、マウス肝細胞株H2.35については、試験例1の方法を以下のように改変した。即ち、公知文献上Peroxisome proliferator-activated receptor(PPAR)-αアゴニストが肝細胞でのFGF21 mRNAの発現亢進を誘導することが知られている(Cell Metab 2007 5(6): 415-425、Cell Metab 2007 5(6): 426-437、Biochem Biophys Res Commun 2007 360(2): 437-440)ので、PPAR-αアゴニストの1つであるWY-14643(Sigma社製)(200μM) をオリゴヌクレオチド導入と同時に培地に共存させ、FGF21 mRNAの細胞内転写量が増幅した状態で該オリゴヌクレオチドの効果を調べた。WY-14643についてはDMSOに溶かし、終濃度200μMで用いた。図4で示すように、WY-14643によるH2.35細胞中のFGF21 mRNA量の増大と共に、RNA合成阻害薬であるアクチノマイシンD (Calbiochem社製)の共存下(5μg/ml、0分、45分、90分の3群)で転写が遮断された条件で該mRNA量が減弱することが確認された。アクチノマイシンDはDMSOに溶かし、終濃度5μg/mlで用いた。このことからPPAR-αアゴニストにより増幅されたFGF21 mRNAが、細胞内で転写と分解の制御下で不安定に存在していることが強く示唆された。
 図5、図6には、それぞれHepG2(WY-14643非共存下)、H2.35(WY-14643共存下)における各FGF21 mRNA量に及ぼすオリゴヌクレオチド導入効果を調べた結果を示した。α-F21-B(BNA)はヒト(HepG2)、マウス(H2.35)何れの細胞においても各FGF21 mRNA量を増大させ、その効果は同濃度のα-F21-B(LNA)よりも強かった。また、H2.35については、オリゴヌクレオチド導入48時間後に培養上清を回収、1000×gで10分間遠心した後、上清を回収し、そのうちの50μl(/well)を用い、FGF21 タンパク質の定量をHuman FGF-21 ELISA Kit(millipore EZHFGF21-19K)を用いてELISA法で行った。操作はキット添付のプロトコルに従った。その結果、α-F21-B(BNA)やα-F21-B(LNA)を導入された細胞の培養上清ではFGF21タンパク質量の増大が認められ、その増加量はα-F21-B(LNA)よりもα-F21-B(BNA)の方がより高かった(図7)。試験例1でも対照物質として使用したFGF21 mRNAに非相補的な配列番号:4で表されるLNAオリゴヌクレオチド(Control)は、H2.35に対してFGF21 mRNA量、タンパク質量ともに影響しなかった。
 以上の結果から、BNANCオリゴヌクレオチドであるα-F21-B(BNA)は、α-F21-B(LNA)と同じく、ヒト、マウス双方においてFGF21の発現を亢進させ、その活性はα-F21-B(BNA)が優位であることが明らかとなった。
(試験例3)ARE結合因子の同定
 試験例1、2の結果により、α-F21-B(LNA)、α-F21-B(BNA)が、FGF21遺伝子のARE-Bに結合してARE結合因子のARE-Bへの結合を阻害し、ARE結合因子の負の発現制御機能を阻害することで、FGF21 mRNAの発現量を選択的に増強していることが示唆された。そこで、次に、α-F21-B(LNA)、α-F21-B(BNA)によってARE-Bへの結合を阻害されるARE結合因子を同定し、その機能を解析することを試みた。初めに、ARE-Bに結合するARE結合因子を同定することを目的として、FGF21 mRNAをベイト(bait、おとり)とした免疫沈降とマススペクトロメーターを用いたプロテオーム解析により、FGF21 mRNAのARE-Bに結合するシスエレメント結合タンパク質について解析を行った。
(3-1)FGF21 mRNAベイトの合成
 FGF21 mRNAをin vitro translationにより合成した。5’末端にT7プロモーター配列を持つプライマーを用いてPCRによりFGF21 mRNA(配列番号:1)の5’側末端から778-876番目の塩基配列を増幅し、MEGAscript T7 キット(Ambion)を用い、添付プロトコルに従ってRNAの合成を行った。合成されたFGF21 mRNAの3’末端にFlag-hydrazideを共有結合させる反応を行い、FGF21 mRNAの3’末端を公知の手法(“Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation.” Methods, 2005, Vol,36, No.3, p.239-244参照)に従ってFlag標識した。該標識mRNAはQiagen社のRNeasy Mini Kitを用いて精製した。
(3-2)免疫沈降・タンパク同定
 精製後のFlag標識FGF21 mRNA 10pmolを抗Flag抗体ビーズ(Sigma)と混合、4℃で1時間反応を行った。その後、10% FBS含有DMEM培地で培養した293T細胞から抽出した細胞抽出タンパク3mgを加え、さらに4℃で1時間反応を行った。非結合タンパク質を洗い流した後、RNA及びRNA結合タンパクをFlagペプチドで溶出させた。溶出させて得た試料を、リジルエンドペプチダーゼ処理し、公知の手法であるLC-MS/MS法(“A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics.” Analytical Chemistry, 2002, Vol.74, No.18, p.4725-4733参照)を用いて、解析を行った。マススペクトロメーターには、QSTAR XL(アプライドバイオシステム)を用いた。
(3-3)結果
 LC-MS/MSにより、FGF21 mRNAの3’末端領域に結合するタンパク質として「ZFP36L1」及び「ZFP36L2」が同定された(図8にMSスペクトルデータを示す(ZFP36L1について1ペプチド、ZFP36L2について3ペプチド)。ZFP36L1及びZFP36L2は、ZFP36(別名TTP)とともにARE結合因子の1ファミリー(以下、「ZFP36ファミリー」という)を形成している。ZFP36ファミリーは、AREに結合してmRNAを不安定化し、分解促進に機能していることが報告されている(“Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease.” Molecular Cell Biology, 2003, Vol.23, No.11, p.3798-812参照)。
 この結果から、α-F21-B(LNA)、α-F21-B(BNA)によってARE-Bへの結合を阻害されるARE結合因子がZFP36L1及びZFP36L2である可能性が強く示唆された。
(試験例4)ZFP36L1及びZFP36L2のFGF21 mRNAへの結合能及びα-F21-B(LNA)による結合阻害能評価
 ZFP36L1及びZFP36L2がFGF21 mRNAのARE-Bに結合し得るか、またα-F21-B(LNA)がZFPファミリーのARE-Bへの結合を阻害し得るかについて検討を行った。
 試験例3中「(3-1)FGF21 mRNAベイトの合成」で説明した方法に従い、ARE-A、-Bを含むFGF21 mRNAの3’UTRをin vitro translationにより合成し、Flagペプチドによる標識を行った。3’UTRには、FGF21 mRNA(配列番号:1参照)の5’側末端から778-876番目の塩基の領域を用いた。
 試験例3中「(3-2)免疫沈降」で説明した方法に従い、精製後のFlag標識ヒトFGF21 3’UTR-RNA(以下「FGF21 3’UTR-Flag」という)10pmolに、293T細胞から抽出した細胞抽出タンパク質(5mg/500μl)を加え、さらに、α-F21-A(LNA)、α-F21-B(LNA)又は上記コントロールオリゴヌクレオチドを、終濃度100μMになるように加えて混合し、Flag M2抗体ビーズを用い免疫沈降後、Flagペプチドを用い溶出させた試料について、抗ZFP36L1抗体(Cell signaling)を用いてウェスタンブロッティングを行った。
 ウェスタンブロットの結果を図9に示す。細胞抽出タンパク質をFGF21 3’UTR-Flagと混合し、抗ZFP36L1抗体で免疫沈降させて得た試料(レーン1)では、ZFP36L1が検出された。これは、ZFP36L1がFGF21 3’UTR-Flagに結合し得ることを示すものであり、ZFP36L1がFGF21の3’UTRに対する結合能を有することを示すものである。なお、ZFP36L2についても同様の結果が得られた(以下、試験例4について同じ)。
 FGF21 mRNAのARE-Bに相補的な塩基配列を含むα-F21-B(LNA)の存在下で、細胞抽出タンパクとFGF21 3’UTR-Flagとを反応させたレーン4では、ZFP36L1の検出シグナルは顕著に低下した。一方、α-F21-A(LNA)及びコントロールオリゴヌクレオチドを加えて反応を行ったレーン2,3では、ZFP36L1の検出シグナルの低下は認められなかった。
 この結果から、ZFP36L1及びZFP36L2がFGF21 mRNA 3’UTRのARE-Bに結合すること、そしてα-F21-B(LNA)がZFP36L1及びZFP36L2のARE-Bへの結合を顕著に阻害し得ることが明らかになった。
(試験例5)ZFP36L1及びZFP36L2の機能解析
 ZFP36L1及びZFP36L2のFGF21発現制御における機能を明らかにするため、RNAiを用いてZFP36L1及びZFP36L2の発現を抑制した場合のFGF21発現量の変化について検討を行った。
 細胞を、12-wellプレートに2.0×105cells/wellで播種し、10% FBS含有DMEM培地を用いて培養した。培養24時間後、siRNAをリポフェクション(DharmaFECT 2,Thermo Scientific)によって細胞にトランスフェクトした。オリゴヌクレオチドは16pmolを50μLのOpti-MEM(ライフテクノロジーズジャパン)で希釈して用いた。また、DharmaFECT 2は1.6μLを50μLのOpti-MEMで希釈した。希釈後、室温にて5分間静置し、オリゴヌクレオチド希釈液とDharmaFECT 2希釈液を混合し、さらに20分静置後、全量を12-wellプレートの各ウェルに加えた。
 使用したsiRNAはInvitrogen社から購入した。ZFP36L1及びZFP36L2に対するsiRNAには、ZFP36L1/L2 RNAi #1(Cat. No. HSS101104, HSS101101)とZFP36L1/L2 RNAi #2(Cat. No. HSS101105, HSS101102)を用いた。また、コントロールのsiRNA(Cont. RNAi #1, #2)には、Stealth RNAi Negative Control(Cat. No. 12935-100)を使用した。
 オリゴヌクレオチド導入48時間後の細胞を回収し、抽出したmRNAを用いてリアルタイムPCRを行い、FGF21の発現量を評価した。
 リアルタイムPCRの結果を図10に示す。FGF21 mRNA量は、β-アクチン mRNA量で標準化を行った値として示す。Cont.RNAi #1、#2をトランスフェクトした細胞に比べ、ZFP36L1/L2 RNAi #1、#2をトランスフェクトした細胞では、FGF21 mRNA量の増加が確認された。
 以上のように、ZFP36L1及びZFP36L2の発現を阻害するsiRNAの導入によってFGF21発現量が顕著に増強されたことは、ZFP36L1及びZFP36L2がFGF21 mRNAの不安定化、分解促進に機能し、FGF21発現を負に制御していることを示すものである。
 以上、試験例1~5の結果から、α-F21-B(BNA)(TUP#001)、α-F21-B(LNA)(TUP#002)が、FGF21 mRNAのARE-Bに結合してZFP36L1及びZFP36L2のARE-Bへの結合を阻害すること、そしてこの結合阻害によりZFP36L1及びZFP36L2の負の遺伝子発現制御機能を抑制し、FGF21 mRNAを安定化して翻訳を促進することで、FGF21 mRNAの発現を選択的に増強させることが示された(図11参照)。
(実施例4)FGF21 mRNAのARE-B近傍配列に相補的なオリゴヌクレオチドの設計・合成
 α-F21-B(BNA)(TUP#001)、α-F21-B(LNA)(TUP#002)を用いた試験例1~4の結果を受け、これらが結合する標的配列の周辺配列に対しても、相補的なオリゴヌクレオチドを設計した(TUP#003~TUP#033)。具体的には
(1)(i) TUP#001及びTUP#002が結合するシスエレメント(ARE-B)周辺の配列であること、および
(ii)ヒト、アカゲザル、ラット、マウスの4種で保存された塩基配列であること、
の2つを基準に塩基配列を選択し、
(2)上記(1)にて選択した塩基配列に相補的なオリゴヌクレオチドとして、TUP#003~TUP#033を設計した。
 TUP#003~TUP#033とFGF21 mRNAとの関係を図12に示す。これらのオリゴヌクレオチドは、12mer~18merであり、モノマーの全部もしくは一部がLNAであり、全てリン酸結合部がホスホロチオエート修飾を有している。TUP#001~TUP#033の塩基配列を表1に示す。
Figure JPOXMLDOC01-appb-T000003
1)表1において塩基配列に用いる略号の意味は以下の通りである。
 a,  t,  g : 天然型デオキシリボヌクレオチド
 A,  T,  G : LNA修飾リボヌクレオチド
 A’, T’, G’: BNANC修飾リボヌクレオチド
表1においてA,T,Gで表されるLNA修飾リボヌクレオチドとは、化3で表されるリボヌクレオチドを意味する。
Figure JPOXMLDOC01-appb-C000004
[式中、B’は核酸塩基を示す。] 
また、表1においてA’、T’、G’で表されるBNANC修飾リボヌクレオチドとは、化4で表されるリボヌクレオチドを意味する。
Figure JPOXMLDOC01-appb-C000005
[式中、B’は前記と同意義を示す。]
 上記の通り設計したオリゴヌクレオチドTUP#003~#033の合成は、株式会社ジーンデザイン(大阪)に委託して行った。
 TUP#003~#033の合成は前記α-F21-A(LNA)及びα-F21-B(LNA)の合成で用いた方法に準じて行なった。TUP#003~#033の質量測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
(試験例6)ヒト肝臓由来細胞株Hep3BにおけるFGF21 mRNA発現上昇活性評価
 ヒト肝臓由来細胞株Hep3B(ATCCより購入)を培地A(1% ペニシリン-ストレプトマイシン(ライフテクノロジーズジャパン)、非必須アミノ酸(ライフテクノロジーズジャパン)、10% FBS(ライフテクノロジーズジャパン)をMEM(ライフテクノロジーズジャパン)に溶解した培地)に懸濁し、3×103 cells/wellの密度にて、96 well plate(ベクトンディッキンソン)に播種し、37℃にて培養した。
 24時間培養したHep3B細胞に、DharmaFECT 1(Thermo Fisher Scientific)を用いてオリゴヌクレオチドを導入した。具体的には、DharmaFECT 1をOpti-MEM(ライフテクノロジーズジャパン)にて100倍に希釈して5分間静置し、各オリゴヌクレオチド(TUP#003~TUP#033)はOpti-MEMにて希釈した。DharmaFECT 1とオリゴヌクレオチドの各希釈液を等量含む混合液を作製し、20分間静置した。Hep3Bの培養液に、培地Aに対し1/10量の上記混合液を添加することにより導入した。導入に用いるオリゴヌクレオチドは、添加後に30nMになるよう調整した。
 導入したHep3Bを48時間培養した後、Cells-to-Ct(ライフテクノロジーズジャパン)を用いて細胞からRNAを抽出した。抽出したRNAを用いてcDNAを合成し、定量的リアルタイムPCRによってFGF21 mRNAの発現量を定量した。
 本検討に使用した、プローブおよびプライマー配列を以下に記す。
ヒトβ-アクチン用プライマー: 
Forward:5’-CCTGGCACCCAGCACAAT-3’(配列番号:27)
Reverse:5’-GCCGATCCACACGGAGTACT-3’(配列番号:28)
ヒトβ-アクチン用プローブ: 
5'-Fam-ATCAAGATCATTGCTCCTCCTGAGCGC-3'(配列番号:29)
ヒトFGF21用プライマー:       
Forward:5’-CAGCGGTACCTCTACACAGATGA-3’(配列番号:30)
Reverse:5’-CGTCCCATCCTCCCTGATC-3’(配列番号:31)
ヒトFGF21用プローブ:
5'-Fam-CCCAGCAGACAGAAG-3'(配列番号:32)
 リアルタイムPCRの結果を図13に示す。FGF21 mRNA量は、β-アクチン mRNA量で標準化を行った値として示す(平均+標準誤差)。本試験により、検討に供した各オリゴヌクレオチドがHep3B細胞においてFGF21 mRNAを増加させることが明らかとなった。
(試験例7)マウス肝臓初代培養細胞におけるFGF21 mRNA発現上昇活性の評価
 C57BL/6Jマウス(雄性、日本クレア)の肝臓をLiver Perfusion Medium (ライフテクノロジーズジャパン)および0.04% コラゲナーゼ溶液(0.06g コラゲナーゼ(Sigma)及び0.11g CaCl2・2H2O(Wako)を150ml Hank’s solution(ライフテクノロジーズジャパン)に溶解した溶液)にて酵素消化した。上記酵素消化により分散した細胞を、Hepatocyte Wash Medium(ライフテクノロジーズジャパン)にて洗浄した。得られたマウス肝臓初代培養細胞を培地B(Williams’Medium E(ライフテクノロジーズジャパン)中に、1% ペニシリン-ストレプトマイシン(ライフテクノロジーズジャパン)、1% L-グルタミン(ライフテクノロジーズジャパン)、10nM インスリン(Sigma)、10nM デキサメタゾン(Wako)、10% FBS(ライフテクノロジーズジャパン)を含む溶液)に懸濁し、6.25×104cells/wellの密度にてBiocoat Collagen I Cellware 24 well plate(ベクトンディッキンソン)に播種し、24時間培養した。
 培養後、DharmaFECT 1を用いてオリゴヌクレオチドを細胞に導入した。具体的には、DharmaFECT 1をOpti-MEM(ライフテクノロジーズジャパン)にて50倍に希釈し5分間静置し、オリゴヌクレオチドはOpti-MEMで希釈した。DharmaFECT 1とオリゴヌクレオチドの各希釈液を等量含む混合液を作成し、20分間静置した。マウス肝臓初代培養細胞の培養液に、培地Bに対し1/10量の上記混合液を添加することにより導入した。導入に用いるオリゴヌクレオチドは、添加後に3、10、又は30nMになるよう調整した。
 導入したマウス肝臓初代培養細胞を48時間培養した後、SV96 total RNA isolation system(プロメガ)を用いてRNAを抽出した。抽出したRNAを用いてcDNAを合成し、定量的リアルタイムPCRによってFGF21 mRNAの発現量を定量した。
 本検討に使用した、プローブおよびプライマー配列を以下に記す。
マウスβ-アクチン用プライマー: 
Forward:5’-CACTATTGGCAACGAGCGG-3’(配列番号:33)
Reverse:5’-TCCATACCCAAGAAGGAAGGC-3’(配列番号:34)
マウスβ-アクチン用プローブ: 
5'-Fam-TCCGATGCCCTGAGGCTCTTTTCC-3'(配列番号:35)
マウスFGF21用プライマー:       
Forward:5’-GTTTCTTTGCCAACAGCCAGAT-3’(配列番号:36)
Reverse:5’-CCAGCAGCAGTTCTCTGAAGCT-3’(配列番号:37)
マウスFGF21用プローブ:
5'-Fam-ACTTTGATCCTGAGGCCT-3'(配列番号:38)
 定量的リアルタイムPCRの結果を図14に示す。FGF21 mRNA量は、β-アクチン mRNA量で標準化を行った値として示す(平均+標準誤差)。本試験により、検討に供した各オリゴヌクレオチドがマウス肝臓初代培養細胞においてFGF21 mRNAを増加させることが明らかとなった。
(試験例8)ヒト肝臓由来細胞株Hep3BにおけるFGF21タンパク質分泌促進活性評価
 試験例6と同様に、Hep3B細胞を3×103cells/wellの密度にて、96-wellプレートplateに播種した。24時間培養後、DharmaFECT 1を用いてオリゴヌクレオチドを試験例6と同様の方法にて導入した。オリゴヌクレオチド濃度は、添加後に10又は30nMになるよう調整した。導入したHep3B細胞を48時間培養した後、培養上清を回収した。回収した培養上清に含まれるFGF21タンパク質量をHuman FGF21 ELISA Kit(Millipore)によって測定した。
 結果を図15に示す(平均+標準誤差)。本試験により、検討に供した各オリゴヌクレオチドがHep3B細胞においてFGF21タンパク質分泌量を増加させることが明らかとなった。
(試験例9)マウス肝臓初代培養細胞におけるFGF21タンパク質分泌促進活性評価
 試験例7と同様の方法によりマウス肝臓初代培養細胞を調製し、得られた肝臓初代培養細胞をWilliams’Medium E(ライフテクノロジーズジャパン)に懸濁し、6.25×104 cells/wellの密度にてBiocoat Collagen I Cellware 24 well plate(ベクトンディッキンソン)に播種し、24時間培養した。試験例7と同様の方法によりオリゴヌクレオチドを導入した。導入に用いるオリゴヌクレオチドは、添加後に30nMになるよう調整した。導入したマウス肝臓初代培養細胞を48時間培養した後、培養上清を回収した。
 培養上清中のFGF21タンパク質量を、Rat/Mouse FGF21 ELISA Kit(Millipore)によって測定した。
 結果を図16に示す(平均+標準誤差)。本試験により、検討に供した各オリゴヌクレオチドがマウス肝臓初代培養細胞においてFGF21タンパク質分泌量を増加することが明らかとなった。
(試験例10)マウス肝臓におけるFGF21 mRNA発現上昇活性の評価
 C57BL/6Jマウス(雄性、8週齢、日本クレア)に生理食塩水、又はTUP#007を30mg/kgもしくは100mg/kgにて腹腔内投与し、48時間後、肝臓を採取した(各群n=9)。採取した肝臓から、TRIzol(ライフテクノロジーズジャパン)を用いてRNAを抽出した。得られたRNAを用いてcDNA合成し、定量的リアルタイムPCRによりFGF21 mRNA発現量を定量した。
 本検討には、前記試験例7に記載したプライマーおよびプローブを使用した。
 その結果を図17に示す。FGF21 mRNA量は、β-アクチン mRNA量で標準化を行った値(平均+標準誤差)として示す。図中の*は、Shirley-Williams検定の結果、オリゴヌクレオチド非投与群に比べ、TUP#007投与群ではFGF21 mRNA発現量が有意(p<0.05)に増加したことを示す。
 本結果により、FGF21 mRNAシスエレメントに結合して、該シスエレメントへのシスエレメント結合因子の結合を阻害する物質を取得することにより、培養細胞レベルおよび個体レベルでFGF21 mRNAの発現量およびFGF21タンパク質の分泌量を制御できることが証明された。
 本発明の、FGF21 mRNAのシスエレメントに結合して該シスエレメントへのシスエレメント結合因子の結合を阻害する物質は、該mRNAを安定化することによりFGF21タンパク質の翻訳レベルを増強しうるので、FGF21が予防・治療効果を示す種々の生活習慣病の予防・治療薬として有用である。
 ここで述べられた特許及び特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 本発明は、2009年7月23日出願の日本国特許出願、特願2009-172584を基礎としており、その内容は全て本明細書に包含される。

Claims (25)

  1.  FGF21のmRNAのシスエレメントの少なくとも一部に結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る物質。
  2.  FGF21のmRNAのシスエレメントの少なくとも一部に結合し、AUリッチエレメントへのAUリッチエレメント結合因子の結合を阻害し得る、請求項1記載の物質。
  3.  FGF21のmRNAのシスエレメントが、ヒトFGF21のmRNA塩基配列の5’末端側から835~842番目の塩基配列である、請求項1記載の物質。
  4.  FGF21のmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る核酸類縁物質又はその塩である、請求項1記載の物質。
  5.  FGF21のmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得るオリゴヌクレオチド又はその塩である、請求項1記載の物質。
  6.  LNA(locked nucleic acid)を含むことを特徴とする、請求項5記載の物質。
  7.  BNA(bridged nucleic acid)を含むことを特徴とする、請求項5記載の物質。
  8.  配列番号:3、配列番号:18、配列番号:19、配列番号:20、配列番号:21、配列番号:22、配列番号:23若しくは配列番号:24で表される塩基配列又は該塩基配列と実質的に同一の塩基配列を含むオリゴヌクレオチド又はその塩である、請求項1記載の物質。
  9.  配列番号:3で表される塩基配列又は該塩基配列と実質的に同一の塩基配列を含むオリゴヌクレオチド又はその塩である、請求項4~7のいずれか1項に記載の物質。
  10.  配列番号:19で表される塩基配列若しくは該塩基配列と実質的に同一の塩基配列を含むオリゴヌクレオチド又はその塩である、請求項4~7のいずれか1項に記載の物質。
  11.  TUP#001、TUP#002、TUP#003、TUP#004、TUP#005、TUP#006、TUP#007、TUP#008、TUP#009、TUP#010、TUP#011、TUP#012、TUP#013、TUP#014、TUP#015、TUP#016、TUP#017、TUP#018、TUP#019、TUP#020、TUP#021、TUP#022、TUP#023、TUP#024、TUP#025、TUP#026、TUP#027、TUP#028、TUP#029、TUP#030、TUP#031、TUP#032若しくはTUP#033で表されるオリゴヌクレオチド又はその塩である、請求項1記載の物質。
  12.  請求項1記載の物質を含有してなる医薬。
  13.  生活習慣病の予防・治療剤である、請求項12記載の医薬。
  14.  哺乳動物に対し請求項1記載の物質の有効量を投与することを含む、該哺乳動物における生活習慣病の予防又は治療方法。
  15.  生活習慣病の予防又は治療剤を製造するための請求項1記載の物質の使用。
  16.  請求項5、8、9、10、又は11記載の物質を含有する担体。
  17.  異なる2種以上の標的タンパク質をコードするそれぞれのmRNAのシスエレメントの少なくとも一部にそれぞれ結合し、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る2以上の物質を組み合わせてなる医薬。
  18.  物質が、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に結合し、AUリッチエレメントへのAUリッチエレメント結合因子の結合を阻害し得る物質である、請求項17記載の医薬。
  19.  物質が、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得る核酸類縁物質又はその塩である、請求項17記載の医薬。
  20.  物質が、各標的タンパク質をコードするmRNAのシスエレメントの少なくとも一部に相補的な塩基配列と、該シスエレメントの5’側及び/又は3’側の非翻訳領域の一部に相補的な塩基配列とを有し、前記非翻訳領域に相補的な塩基配列が有する配列特異性に基づいて、前記シスエレメントの少なくとも一部に特異的に結合することにより、該シスエレメントへのシスエレメント結合因子の結合を阻害し得るオリゴヌクレオチド又はその塩である、請求項17記載の医薬。
  21.  物質がLNAを含むオリゴヌクレオチド又はその塩である、請求項20記載の医薬。
  22.  物質がBNAを含むオリゴヌクレオチド又はその塩である請求項20記載の医薬。
  23.  ZFP36L1又はZFP36L2の機能を阻害する物質を含有してなる生活習慣病の予防・治療剤。
  24.  哺乳動物に対し請求項23記載の物質の有効量を投与することを含む、該哺乳動物における生活習慣病の予防又は治療方法。
  25.  生活習慣病の予防又は治療剤を製造するための請求項23記載の物質の使用。
PCT/JP2010/062383 2009-07-23 2010-07-22 Fgf21シスエレメント結合物質 WO2011010706A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10802326A EP2458005A1 (en) 2009-07-23 2010-07-22 Fgf21 cis-element binding substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009172584 2009-07-23
JP2009-172584 2009-07-23

Publications (1)

Publication Number Publication Date
WO2011010706A1 true WO2011010706A1 (ja) 2011-01-27

Family

ID=43499178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062383 WO2011010706A1 (ja) 2009-07-23 2010-07-22 Fgf21シスエレメント結合物質

Country Status (2)

Country Link
EP (1) EP2458005A1 (ja)
WO (1) WO2011010706A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523164A (ja) * 2010-04-09 2013-06-17 カッパーアールエヌエー,インコーポレイテッド Fgf21に対する天然アンチセンス転写物の阻害による線維芽細胞増殖因子(fgf21)線維芽細胞増殖因子fgf21)関連疾患の治療
WO2014112463A1 (ja) * 2013-01-15 2014-07-24 国立大学法人大阪大学 スルホンアミド構造を有するヌクレオシドおよびヌクレオチド
JP2015519057A (ja) * 2012-05-16 2015-07-09 ラナ セラピューティクス インコーポレイテッド Pten発現を調節するための組成物及び方法
US10058623B2 (en) 2012-05-16 2018-08-28 Translate Bio Ma, Inc. Compositions and methods for modulating UTRN expression
US10059941B2 (en) 2012-05-16 2018-08-28 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design
US10167309B2 (en) 2012-07-13 2019-01-01 Wave Life Sciences Ltd. Asymmetric auxiliary group
US10174315B2 (en) 2012-05-16 2019-01-08 The General Hospital Corporation Compositions and methods for modulating hemoglobin gene family expression
US10174323B2 (en) 2012-05-16 2019-01-08 The General Hospital Corporation Compositions and methods for modulating ATP2A2 expression
US10280192B2 (en) 2011-07-19 2019-05-07 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US10307434B2 (en) 2009-07-06 2019-06-04 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
US10329318B2 (en) 2008-12-02 2019-06-25 Wave Life Sciences Ltd. Method for the synthesis of phosphorus atom modified nucleic acids
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US10655128B2 (en) 2012-05-16 2020-05-19 Translate Bio Ma, Inc. Compositions and methods for modulating MECP2 expression
US10837014B2 (en) 2012-05-16 2020-11-17 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010150789A1 (ja) * 2009-06-23 2012-12-10 武田薬品工業株式会社 核酸の合成法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007455A1 (fr) 1999-07-22 2001-02-01 Sankyo Company, Limited Analogues de bicyclonucléosides
WO2003040182A1 (en) 2001-11-09 2003-05-15 Visufarma S.R.L. Antisense oligonucleotides modulating bcl-2 expression
WO2003068695A1 (fr) 2002-02-15 2003-08-21 Kubota Corporation Epaississant de type a gravite, procede d'epaississement de type a gravite, dispositif d'addition de floculant et procede d'addition de floculant
WO2005021570A1 (ja) 2003-08-28 2005-03-10 Gene Design, Inc. N−0結合性架橋構造型新規人工核酸
WO2008102777A1 (ja) 2007-02-20 2008-08-28 Takeda Pharmaceutical Company Limited インスリン抵抗性改善剤
JP2009073807A (ja) * 2007-04-06 2009-04-09 National Institute Of Advanced Industrial & Technology 補助因子による受容体の活性化方法並びにリガンド活性の利用方法
JP2009172584A (ja) 2007-12-26 2009-08-06 Nippon Soda Co Ltd 薬剤溶解器および薬液供給装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007455A1 (fr) 1999-07-22 2001-02-01 Sankyo Company, Limited Analogues de bicyclonucléosides
WO2003040182A1 (en) 2001-11-09 2003-05-15 Visufarma S.R.L. Antisense oligonucleotides modulating bcl-2 expression
WO2003068695A1 (fr) 2002-02-15 2003-08-21 Kubota Corporation Epaississant de type a gravite, procede d'epaississement de type a gravite, dispositif d'addition de floculant et procede d'addition de floculant
WO2005021570A1 (ja) 2003-08-28 2005-03-10 Gene Design, Inc. N−0結合性架橋構造型新規人工核酸
WO2008102777A1 (ja) 2007-02-20 2008-08-28 Takeda Pharmaceutical Company Limited インスリン抵抗性改善剤
JP2009073807A (ja) * 2007-04-06 2009-04-09 National Institute Of Advanced Industrial & Technology 補助因子による受容体の活性化方法並びにリガンド活性の利用方法
JP2009172584A (ja) 2007-12-26 2009-08-06 Nippon Soda Co Ltd 薬剤溶解器および薬液供給装置

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
"A direct nanoflow liquid chromatography-tandem mass spectrometry system for interaction proteomics", ANALYTICAL CHEMISTRY, vol. 74, no. 18, 2002, pages 4725 - 4733
"Programmable ribozymes for mischarging tRNA with nonnatural amino acids and their applications to translation", METHODS, vol. 36, no. 3, 2005, pages 239 - 244
"Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease", MOLECULAR CELL BIOLOGY, vol. 23, no. 11, 2003, pages 3798 - 812
BELL SE ET AL.: "The RNA binding protein Zfp3611 is required for normal vascularisation and post-transcriptionally regulates VEGF expression", DEV DYN, vol. 235, no. LL, 2006, pages 3144 - 3155, XP008151039 *
BIOCHEM BIOPHYS RES COMMUN, vol. 360, no. 2, 2007
BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 30, 2002, pages 952 - 958
BIODRUGS, vol. 22, no. 1, 2008, pages 37 - 44
CELL METAB, vol. 5, no. 6, 2007, pages 415 - 425
CELL METAB, vol. 5, no. 6, 2007, pages 426 - 437
CELL, vol. 120, no. 5, 2005, pages 623 - 634
CELLULAR AND MOLECULAR LIFE SCIENCE, vol. 66, 2009, pages 2067 - 2073
CHEMICAL REVIEWS, vol. 90, 1990, pages 543 - 584
CLINICAL CANCER RESEARCH, vol. 59, 1999, pages 4325 - 4333
DATABASE GENBANK 12 July 2009 (2009-07-12), XP008151052, Database accession no. NM_019113 *
IMANISHI, T. ET AL., CHEM. COMMUN., 2002, pages 1653 - 9
JEPSEN, J.S. ET AL., OLIGONUCLEOTIDES, vol. 14, 2004, pages 130 - 46
MAMORU NAKANISHI ET AL., PROTEIN, NUCLEIC ACID AND ENZYME, vol. 44, 1999, pages 1590 - 1596
MORITA, K. ET AL., NUCLEOSIDES NUCLEOTIDES NUCLEIC-ACIDS, vol. 22, 2003, pages 1619 - 21
NUCLEIC ACIDS RESEARCH, vol. 29, no. 1, 2001, pages 246 - 254
NUCLEIC ACIDS RESEARCH, vol. 33, no. 22, 2005, pages 7138 - 7150
PAPUCCHI L ET AL.: "Impact of targeting the adenine- and uracil-rich element of bcl-2 mRNA with oligoribonucleotides on apoptosis, cell cycle, and neuronal differentiation in SHSY-5Y cells", MOL PHARMACOL, vol. 73, no. 2, 2008, pages 498 - 508, XP008151048 *
PHYSIOLOGICAL RESEARCH, vol. 58, 2009, pages 1 - 7
SEMINARS IN CELL AND DEVELOPMENTAL BIOLOGY, vol. 16, no. 1, 2005, pages 49 - 58
SETH ET AL., JOURNAL OF MEDICINAL CHEMISTRY, vol. 51, 2009, pages 10 - 13
SHIROH FUTAKI, KAGAKU TO SEIBUTSU, vol. 43, 2005, pages 649 - 653
TETRAHEDRON LETTERS, vol. 22, 1981, pages 1859 - 1862
TOURIOL C ET AL.: "Expression of human fibroblast growth factor 2 mRNA is post- transcriptionally controlled by a unique destabilizing element present in the 3'- untranslated region between alternative polyadenylation sites", J BIOL CHEM, vol. 274, no. 30, 1999, pages 21402 - 8, XP008151042 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10329318B2 (en) 2008-12-02 2019-06-25 Wave Life Sciences Ltd. Method for the synthesis of phosphorus atom modified nucleic acids
US10307434B2 (en) 2009-07-06 2019-06-04 Wave Life Sciences Ltd. Nucleic acid prodrugs and methods of use thereof
JP2013523164A (ja) * 2010-04-09 2013-06-17 カッパーアールエヌエー,インコーポレイテッド Fgf21に対する天然アンチセンス転写物の阻害による線維芽細胞増殖因子(fgf21)線維芽細胞増殖因子fgf21)関連疾患の治療
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US10280192B2 (en) 2011-07-19 2019-05-07 Wave Life Sciences Ltd. Methods for the synthesis of functionalized nucleic acids
US10058623B2 (en) 2012-05-16 2018-08-28 Translate Bio Ma, Inc. Compositions and methods for modulating UTRN expression
US10174315B2 (en) 2012-05-16 2019-01-08 The General Hospital Corporation Compositions and methods for modulating hemoglobin gene family expression
US10174323B2 (en) 2012-05-16 2019-01-08 The General Hospital Corporation Compositions and methods for modulating ATP2A2 expression
US10059941B2 (en) 2012-05-16 2018-08-28 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
JP2015519057A (ja) * 2012-05-16 2015-07-09 ラナ セラピューティクス インコーポレイテッド Pten発現を調節するための組成物及び方法
US10655128B2 (en) 2012-05-16 2020-05-19 Translate Bio Ma, Inc. Compositions and methods for modulating MECP2 expression
US10837014B2 (en) 2012-05-16 2020-11-17 Translate Bio Ma, Inc. Compositions and methods for modulating SMN gene family expression
US11788089B2 (en) 2012-05-16 2023-10-17 The General Hospital Corporation Compositions and methods for modulating MECP2 expression
US10167309B2 (en) 2012-07-13 2019-01-01 Wave Life Sciences Ltd. Asymmetric auxiliary group
JPWO2014112463A1 (ja) * 2013-01-15 2017-01-19 国立大学法人大阪大学 スルホンアミド構造を有するヌクレオシドおよびヌクレオチド
WO2014112463A1 (ja) * 2013-01-15 2014-07-24 国立大学法人大阪大学 スルホンアミド構造を有するヌクレオシドおよびヌクレオチド
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design

Also Published As

Publication number Publication date
EP2458005A1 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2011010706A1 (ja) Fgf21シスエレメント結合物質
Stanton et al. Chemical modification study of antisense gapmers
CN112274647B (zh) 寡聚物和寡聚物缀合物
EP2821085B1 (en) Rna interference for the treatment of gain-of-function disorders
KR101605932B1 (ko) Hsf1-관련 질환을 치료하기 위한 유기 조성물
US20180223280A1 (en) Nucleic acid complex
WO2019182037A1 (ja) 毒性が低減されたアンチセンスオリゴヌクレオチド
CN113905744A (zh) 经修饰的间隙子寡核苷酸及其使用方法
JP7169995B2 (ja) Htra1発現を調節するためのアンチセンスオリゴヌクレオチド
JP2014050389A (ja) マイクロ−rnaおよびその前駆体にハイブリダイズしうる核酸を用いるエリスロポエチンの増加
US20230118138A1 (en) Use of scamp3 inhibitors for treating hepatitis b virus infection
JP6029147B2 (ja) miRNA機能抑制用オリゴヌクレオチド誘導体
CN114901821A (zh) Sept9抑制剂用于治疗乙型肝炎病毒感染的用途
CN114729363A (zh) Il-34反义剂及其使用方法
JP2022541212A (ja) 治療的使用のための、ヒト遺伝子JAK1又はJAK3の発現を標的とするSiRNA配列
US20230383296A1 (en) Modified gapmer oligomers and methods of use thereof
US20220056451A1 (en) Hbv binding oligonucleotides and methods of use
WO2021039598A1 (ja) Rna作用抑制剤及びその利用
JP2010263917A (ja) オステオポンチンsiRNA
WO2012153854A1 (ja) サイトカイン・ケモカインモジュレーター
JP2005323591A (ja) オステオポンチンsiRNA
TW202346586A (zh) 用於抑制前激肽釋放酶(pkk)蛋白表達的組合物和方法
TW202329987A (zh) 用於抑制乙型肝炎病毒(hbv)蛋白表達的組合物和方法
KR100992239B1 (ko) Mig12 유전자의 신규한 용도
EP4077671A1 (en) Use of saraf inhibitors for treating hepatitis b virus infection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010802326

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP