WO2011009280A1 - 一种ofdma系统中提升边缘用户性能的方法与装置 - Google Patents

一种ofdma系统中提升边缘用户性能的方法与装置 Download PDF

Info

Publication number
WO2011009280A1
WO2011009280A1 PCT/CN2009/076367 CN2009076367W WO2011009280A1 WO 2011009280 A1 WO2011009280 A1 WO 2011009280A1 CN 2009076367 W CN2009076367 W CN 2009076367W WO 2011009280 A1 WO2011009280 A1 WO 2011009280A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
parameter
zone
gain
symbol
Prior art date
Application number
PCT/CN2009/076367
Other languages
English (en)
French (fr)
Inventor
胡明
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011009280A1 publication Critical patent/WO2011009280A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for improving edge user performance in an Orthogonal Frequency Division Multiple Access (OFDMA) system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • FIG. 1 (a) shows the interference situation of the uplink.
  • base station 1 (BS1) and base station 2 (BS2) are the serving base stations of terminal 1 (MS1) and terminal 2 (MS2), respectively, assuming BS1 allocation.
  • the set of subcarriers used for uplink transmission by MS1 is SCI (sub-carrier), the set of subcarriers allocated by BS2 to MS2 for uplink transmission is SC2, and the intersection of SC1 and SC2 is SC.
  • the SC is not an empty set
  • the subcarriers in the set SC will simultaneously receive the wireless signal sent by the MS1.
  • these signals from MS1 are interference. If the distance between MS1 and MS2 is small (assuming both MS1 and MS2 are in the overlapping part of the coverage area of the two serving cells), the interference between the cells will be strong, which may cause BS2 to fail to correctly demodulate the MS2 transmission.
  • the uplink signal which in turn leads to a decline in system service performance.
  • the downlink shown in Figure 1 (b) also encounters interference problems similar to the uplink.
  • inter-cell interference is severe, the quality of service of the system will be greatly reduced, especially the coverage of the cell and the transmission capacity of the edge users. Therefore, reducing inter-cell interference is an important goal in the design of cellular mobile communication systems.
  • the interference randomization technique randomizes inter-cell interference. Although the interference energy cannot be reduced, the interference can be randomized into "white noise", thereby suppressing the harm of inter-cell interference. However, in the final analysis, the interference randomization technique does not eliminate the total amount of interference in the cell, and thus it is difficult to obtain a satisfactory performance improvement.
  • the interference cancellation technique may demodulate and decode the signal of the interfering cell, and then copy and subtract the interference from the cell.
  • the advantages of this technology are: There are no restrictions on the frequency resources at the edge of the cell. That is to say, the same frequency resources can be used even at the edges of adjacent cells, so that higher cell edge spectral efficiency and total spectral efficiency can be obtained. At the same time, however, the signaling overhead and implementation complexity of the technology are greatly increased.
  • the interference coordination technique mainly coordinates spatial, temporal, and frequency channel resources and power among multiple cells, thereby reducing interference between adjacent cells.
  • This technology is a base station-based interference cancellation technology, which can be divided into static, semi-static and dynamic.
  • semi-static and dynamic need to exchange information between cells, the complexity and overhead of the system are increased. Therefore, the current widely used application is static interference coordination technology.
  • the static interference coordination technology can allocate the time-frequency domain channel resources reasonably through the network planning between the cells in advance, and the device is convenient, when the number of user terminals and the service characteristics between the cells change, the flexible coordination cannot be performed. Resources to reduce mutual interference between cells to meet different needs between cells. Summary of the invention
  • the method for improving edge user performance in an OFDMA system of the present invention includes the following steps:
  • Step A setting and storing configuration parameters of the local cell according to the number of user terminal loads in the cell;
  • the configuration parameters include a domain ZONE number parameter ⁇ 1, a symbol parameter of all ZONEs, and a subchannelization gain parameter;
  • Step B Obtain a sequence to be processed by the gain and perform decomposition processing, and multiply the result of the processing of the sequence to be processed by the sub-channelization gain parameter of the current ZONE to obtain a sequence of peak gain results.
  • performing the decomposition processing on the gain processing sequence in the step B includes the following steps: decomposing the to-be-gain processing sequence data (i), e [1, N] into a first sequence R(i), IG [1, N] and a second sequence I (i), e[l, N], where N represents the length of one OFDMA symbol; i represents the number of samples.
  • the first sequence R (i) and the second sequence I (i) are respectively multiplied with the sub-channelization gain parameter of the current ZONE to obtain a first product sequence R_0 (i), e[l, N] and The second product sequence l_0 (i), iG [l, N]; and the first product sequence and the second product sequence are truncated and added to obtain a peak gain result sequence data_out (i), e[l, N].
  • the method further includes the following steps: counting and gain processing according to the peak gain result sequence data_out (i); when the number of samples i of the peak gain result sequence data_out (i) is equal to N, the ZONE symbol is used
  • the counter s_cnt is incremented by 1, otherwise, the first sequence and the second sequence decomposition operation are continued in step B; when the ZONE symbol counter s_cnt is equal to the current ZONE symbol parameter S, the ZONE counter m_cnt is incremented by 1, otherwise, the process returns to step B to continue.
  • the ZONE counter m_cnt is equal to the ZONE number parameter
  • the gain processing ends. Otherwise, the symbol parameter and the sub-channelization gain parameter of the current domain ZONE are updated, and the updated ZONE symbol parameter and the sub-channelization gain parameter are used to perform step B.
  • the present invention provides an apparatus for improving edge user performance in an OFDMA system, including: a parameter configuration module and a peak gain module; wherein the parameter configuration module is configured to set and store the number according to the load of the user terminal of the cell. a configuration parameter of the cell; the configuration parameter includes a domain ZONE number parameter ⁇ 1, a symbol parameter of all ZONEs, and a subchannelization gain parameter; the peak gain module is configured to acquire a sequence to be processed by the gain and perform decomposition processing, which is to be The decomposition processing result of the gain processing sequence is multiplied by the current ZONE subchannelization gain parameter to obtain a peak gain result sequence.
  • the parameter configuration module includes a parameter storage unit and a parameter update unit, where the parameter storage unit is configured to store all configured configuration parameters of the local cell according to the number of user terminal loads of the cell to a random Accessing the memory RAM; wherein, the configuration parameters include: a ZONE number parameter M; all ZONE symbol parameters S ( 1 ), S ( 2 ), ..., S (M); and, a sub-channelization gain parameter K (1), K (2), ⁇ , K (M); the parameter updating unit is configured to determine, according to the ZONE counter m_cnt, whether the symbol parameter and the sub-channelization gain parameter of the current ZONE need to be updated. .
  • the peak gain module includes a decomposition unit, a multiplication unit, a generation unit, and a count control unit, wherein the decomposition unit is configured to decompose the data to be gain processing sequence data (i), IG[1, N] into A sequence of R (i), '[ ⁇ and second sequence:!
  • the multiplication unit is configured to use the first sequence R(i) and the second sequence in the decomposition unit I(i) is respectively multiplied by the sub-channelization gain parameter of the current ZONE in the parameter updating unit to obtain a first product sequence R_0(i), e[l, N] and a second product sequence: LO (i) And [1, N];
  • the generating unit configured to add the first product sequence R_0 (i) and the second product sequence: LO (i) truncation in the multiplication unit to obtain a peak gain result sequence Data_out ( i ), e [l, N];
  • the counting control unit is configured to control whether the decomposition unit and the parameter update unit continue to execute according to the ZONE symbol counter s_cnt and the ZONE counter m_cnt.
  • the counting control unit includes: a symbol counting unit, a ZONE counting unit, wherein the symbol counting unit is configured to perform counting according to the peak gain result sequence data_out(i), where the number of samples i is equal to N, the ZONE symbol counter s_cnt is incremented by 1, and the accumulated value is notified to the ZONE counting unit; otherwise, the decomposing unit is notified to continue performing the above-described decomposition operation of the first sequence and the second sequence; the ZONE counting unit , when the value accumulated after the ZONE symbol counter s_cnt is equal to the current ZONE symbol parameter S, the ZONE counter 111_( ⁇ is incremented by 1, and when the accumulated ZONE counter m_cnt is not equal to the ZONE number parameter M, The accumulated ZONE counter m_cnt is fed back to the parameter updating unit, and the decomposition unit is notified to continue to perform the decomposition operation of the first sequence and the second sequence; when the accumulated ZONE counter m_
  • the invention has the following advantages: the method and the device for improving the edge user performance in the OFDMA system according to the present invention, according to the change of the user terminal load of the cell, different ZONEs can be set in the base station, and the sub-ZONE can be flexibly configured.
  • the signaling overhead and implementation complexity of the system are increased, and on the basis of eliminating inter-cell interference, the transmission capability of the edge users is improved, and the service quality of the cell is improved.
  • Figure 1 is a schematic diagram of uplink and downlink interference conditions
  • Figure 3 is a schematic structural view of the device of the present invention.
  • FIG. 4 is a schematic diagram showing the location of a base station in an OFDMA system according to the present invention. Detailed ways
  • FIG. 2 it is a flowchart of a method for improving edge user performance according to the present invention.
  • the method process includes the following steps:
  • Step 101 Set and store configuration parameters of the local cell according to the number of user terminal loads of the cell, and update the configuration parameter.
  • different multiple domains may be set inside the base station, and the subchannelization gain parameter in the ZONE may be flexibly configured.
  • all configuration parameters of the set local cell are stored in a random access memory (RAM) according to the number of user terminal loads in the cell.
  • the configuration parameters include: a domain ZONE number parameter M, all ZONE symbol parameters S(l), S(2), ⁇ , S(M); and, a sub-channelization gain parameter K ( l ), ⁇ (2), ⁇ ⁇ ,
  • this step also determines whether the symbol parameter S and the sub-channelization gain parameter K of the current ZONE need to be updated according to whether the ZONE counter m_cnt is updated. If the ZONE counter m_cnt is updated, the symbol parameter S and the sub-channelization gain parameter K of the current ZONE need to be updated; if the ZONE counter m_cnt is not updated, the symbol parameter S and the sub-channelization gain parameter of the current ZONE need not be updated.
  • the symbol parameters S (i'+l ) of the (i'+l) ZONE and the subchannelization gain parameter K (V +1 ) are read from the parameters of all ZONEs. Update the symbol parameter S of the current ZONE and the sub-channelization gain parameter K; otherwise, if 111_( ⁇ is not updated, the (i')th symbol parameter 8( ⁇ ) and the sub-channelization gain parameter K are still used. (i') As the symbol parameter S of the current ZONE and the sub-channelization gain parameter K, subsequent gain processing is performed.
  • Step 102 Obtain the symbol parameter S of the current ZONE and the sub-channelization gain parameter K;
  • Step 103 Acquire a sequence to be processed by a gain and perform decomposition processing, and divide the sequence to be processed into a first sequence and a second sequence;
  • the sequence to be processed by the gain is equivalent to an OFDMA symbol. After the sequence to be processed by the gain is obtained, the sequence to be processed by the gain is divided into a first sequence and a second sequence.
  • step 103 the gain processing sequence data (i), e [i, w] is 32 bits of bit width data, and the high 16 bits data of data (i) (i) [31:16] represents the real part, The first sequence R ( i ); and the lower 16 bits of data (i) data (i) [15:0] represents the imaginary part, which is the second sequence I (i); the first sequence R ( i ) and the second sequence I ( i ) are 16 bits of bit width data.
  • N represents the length of an OFDM A symbol and i represents the number of samples.
  • R(l) data(l)[3l:l6]
  • Step 104 Multiply the decomposition processing result of the sequence to be processed by the current channel by the subchannelization gain parameter of the current ZONE to obtain a sequence of peak gain results;
  • the decomposition processing result of the sequence to be processed such as the first sequence and the second sequence
  • the decomposition processing result such as the first sequence and the second sequence, respectively
  • the sub-channelization gain parameter of the current ZONE K is multiplied to obtain a first product sequence and a second product sequence, respectively, and the first product sequence and the second product sequence are truncated and added to generate a peak gain result sequence.
  • the to-be-gain processing sequence is multiplied with the current ZONE sub-channelization gain parameter K to generate a peak gain result sequence, thereby changing the transmission power of the internal user and the edge user of the current cell.
  • the process of generating the peak gain result sequence data_out (i) is as follows: First, multiplication calculation is performed, and the first sequence R (i) and the second sequence I (i) are respectively associated with the current ZONE subchannel.
  • the gain parameters K (j), 'e[l,8] are multiplied to obtain the first product sequence R_0 ( i ) [31:0] and the second product sequence: LO (i) [31:0], consider To the influence of the accuracy of the subchannelization gain parameter, it is necessary to discard the lowest 13bits data [12:0] and the highest 313 ⁇ data [31:29] of R_0 (i) and: LO (i), leaving only the middle 16bits data, ie 1_0 (0 [28:13] and 1_0 (i) [28:13], then add the data after the truncation, and finally get the peak gain result sequence data_out (i) [31: 0], e [i,w], where N represents the length of one OFDM A symbol, and
  • R_0 (i), I_0 (i), and data_out (i) are all 32-bit bit width data.
  • step 104 the precision range of the sub-channelization gain parameter may be adjusted according to actual requirements, so the intercept range of the first product sequence and the second product sequence may also be based on actual conditions. Demand adjustments.
  • Step 105 Count according to the peak gain result sequence data_out (i), and perform gain processing according to the obtained count.
  • the performing the gain processing according to the obtained count includes:
  • the ZONE symbol counter s_cnt is incremented by 1, otherwise, returning to step 103 to continue performing the decomposition operation of the first sequence and the second sequence;
  • the sub-channelization gain parameter of the ZONE is flexibly configured, and the sub-channelization gain parameter is multiplied with the sequence to be processed by the gain, thereby changing the internal of the cell.
  • the transmission power of users and edge users thereby reducing interference between cells.
  • the transmission capability of the edge user is improved, and the service quality of the cell is improved.
  • FIG. 3 it is a schematic structural diagram of an apparatus for improving edge user performance according to the present invention.
  • the device 1 is used in an OFDMA system, including:
  • the parameter configuration module 10 is configured to set and store the configuration parameters required by the cell according to the load of the user terminal in the cell, and update the current ZONE parameter;
  • the configuration parameters include: a ZONE number parameter, a symbol parameter of all ZONEs, and a subchannelization gain parameter.
  • the peak gain module 20 is configured to multiply the sequence to be gain processed by the subchannelization gain parameter of the current ZONE to obtain a sequence of peak gain results.
  • the parameter configuration module 10 further includes:
  • the parameter storage unit 11 is configured to store all the configuration parameters of the set local cell in the RAM according to the number of user terminal loads of the cell; wherein, the configuration parameters include: a ZONE number parameter M; and all ZONE symbol parameters S ( 1), S (2), ⁇ , S (M); and, sub-channelization gain parameters K (l), ⁇ (2), ⁇ , K (M);
  • the parameter updating unit 12 is configured to determine, according to the ZONE counter m_cnt, whether the symbol parameter and the sub-channelization gain parameter of the current ZONE need to be updated.
  • the peak gain module 20 further includes:
  • Decomposing unit 21 configured to decompose the data to be gain processing sequence data (i), ⁇ [ ⁇ , ⁇ into the first sequence R
  • N represents the length of an OFDM A symbol
  • a multiplication unit 22 configured to convert the first sequence R (i) and the second sequence I in the decomposition unit 21
  • I_0(i) I(i K(j),iG [l,N],je [1,8]
  • the generating unit 23 is configured to combine the first product sequence R_0(i) and the second product sequence: [_0(i) in the multiplication unit 22 to obtain a peak gain result sequence data_out(i), G [ ⁇ , ⁇ ], specifically:
  • R_0 (i), I_0 (i), and data_out (i) are both 32-bit bit width data, and the truncation ranges of the first product sequence and the second product sequence are adjustable according to the accuracy range of the sub-channelization gain parameter. of.
  • the counting control unit 24 is configured to control whether the decomposition unit 21 and the parameter updating unit 12 continue to perform corresponding operations according to the ZONE symbol counter s_cnt and the ZONE counter m_cnt.
  • the counting control unit 24 further includes:
  • the symbol counting unit 25 is configured to determine whether the ZONE symbol counter s_cnt is accumulated according to the number of samples i of the peak gain result sequence data_out (i) in the generating unit 23; when the number of samples i is equal to N, The ZONE symbol counter s_cnt is incremented by 1, and the accumulated value is notified to the ZONE counting unit. Otherwise, the returning decomposition unit 21 continues to perform the decomposition operation of the first sequence and the second sequence; if it is accumulated, it transfers to the ZONE counting unit 26 to further determine whether it is equal to the current ZONE symbol parameter S;
  • the ZONE counting unit 26 is configured to determine whether the ZONE counter m_cnt is accumulated according to the ZONE symbol counter 8_(;1« in the symbol counting unit 25, in the ZONE symbol counter s_cnt When the accumulated value is equal to the current ZONE symbol parameter S, the ZONE counter m_cnt is incremented by one; if it is accumulated, it is further determined whether it is equal to the ZONE number parameter M.
  • FIG. 4 it is a schematic diagram of a location in a base station of an OFDM A system according to the present invention.
  • the method and apparatus for improving the edge user performance in the OFDMA system can set different multiple ZONEs in the base station according to the change of the user terminal load of the cell, and flexibly configure the subchannelization in the ZONE.
  • Gain parameter and multiply the subchannelization gain parameter and the sequence to be processed by the gain, thereby changing the transmission power of the internal user and the edge user of the cell, and not only realizing the reallocation of the time-frequency domain channel resources between the cells It does not increase the signaling overhead and implementation complexity of the system, and on the basis of eliminating inter-cell interference, improves the transmission capability of edge users and improves the service quality of the cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种OFDMA系统中提升边缘用户性能的方法及装置,其中,该方法包括下列步骤:步骤A:获取并存储本小区设置的配置参数,所述配置参数包括域ZONE个数参数M、所有ZONE的符号参数及子信道化增益参数;步骤B:获取待增益处理序列并进行分解处理,将待增益处理序列 的分解处理结果与当前ZONE的子信道化增益参数相乘,得到峰值增益结果序列;其中,所述待增益处理序列相当于一个OFDMA符号。本发明不需要进行时频域信道资源的重新分配,就可以降低小区间相互干扰,提升边缘用户性能。

Description

一种 OFDMA系统中提升边缘用户性能的方法与装置 技术领域
本发明涉及通信技术领域, 特别涉及一种正交频分多址 ( OFDMA, Orthogonal Frequency Division Multiple Access ) 系统中提升边缘用户性能的 方法与装置。 背景技术
小区间干扰是蜂窝移动通信系统的一个固有问题, 严重地影响着系统 中用户的传输能力, 主要原因就是各小区间使用相同频率资源的用户会相 互干扰。 图 1 ( a )为上行链路的干扰情况, 如图 1所示, 基站 1 ( BS1 )和 基站 2 ( BS2 )分别为终端 1 ( MS1 )和终端 2 ( MS2 ) 的服务基站, 假设 BS1分配给 MS1用于上行传输的子载波集合为 SCI ( sub-carrier ), BS2分 配给 MS2用于上行传输的子载波集合为 SC2, SC1和 SC2的交集为 SC。 如果 SC不是空集, 则 BS2在接收到 MS2发送的上行信号时, 在集合 SC 内的子载波将会同时收到 MS1发送的无线信号。 对于 MS2和 BS2来说, 这些来自 MS1的信号就是干扰。 如果 MS1和 MS2之间的距离很小 (假设 MS1和 MS2都处于两个服务小区覆盖区域的重叠部分), 那么小区间的干 扰将会很强烈, 可能会导致 BS2无法正确解调出 MS2发送的上行信号, 进 而导致系统服务性能的下降。 如图 1 ( b )所示的下行链路也会遇到和上行 链路类似的干扰问题。
如果小区间干扰严重, 将会极大地降低系统的服务质量, 特别是小区 的覆盖范围和边缘用户的传输能力。 因此, 降低小区间干扰是蜂窝移动通 信系统设计的一个重要目标。
针对上述问题, 现有技术中已经提出了一些处理方法, 例如: 干扰随 机化技术 ( Inter-cell-interference randomization )、 干扰抵消技术 ( Inter-cell-interference cancellation )、 干扰十办调技术 ( Inter-cell-interference co-ordination/avoidance )等多种处理方法。
其中, 所述干扰随机化技术将小区间干扰随机化, 虽然不能降低干扰 能量, 但能将干扰随机化为 "白噪声", 从而抑制小区间干扰的危害。 但归 根到底, 所述干扰随机化技术并没有消除小区中的干扰总量, 因而很难取 得令人满意的性能提高。
另外, 所述干扰抵消技术可以将干扰小区的信号解调、 解码, 然后复 制、 再减去来自该小区的干扰。 该技术的优势在于: 对小区边缘的频率资 源没有限制。 也就是说, 即使在相邻小区的边缘也可以使用相同的频率资 源, 因此可以获得较高的小区边缘频谱效率和总频谱效率。 但与此同时, 也大大地增加了该技术的信令开销和实现复杂度。
此外, 所述干扰协调技术主要是在多个小区间对空间、 时间和频率信 道资源以及功率进行协调, 从而降低相邻小区间的干扰。 该技术是一种基 于基站的干扰消除技术, 可以分为静态、 半静态和动态三种。 但是, 由于 半静态和动态都需要在小区间进行信息交互, 增加了系统的复杂度和开销。 因此, 目前应用比较广泛的是静态的干扰协调技术。
尽管静态的干扰协调技术可以事先通过小区之间的网络规划来合理的 分配时频域信道资源, 且筒单方便, 但是当小区间的用户终端负载数和业 务特点发生变化时, 不能灵活的协调资源来降低小区间的相互干扰, 以满 足小区间的不同需求。 发明内容
本发明的目的在于, 提供一种 OFDMA系统中提升边缘用户性能的方 法, 通过改变小区的内部用户和边缘用户的发送功率, 来降低小区间相互 干扰, 提升边缘用户性能。 本发明的另一目的在于,提供一种 OFDMA系统中提升边缘用户性能的 装置, 通过改变小区的内部用户和边缘用户的发送功率, 来降低小区间相 互干扰, 提升边缘用户性能。
本发明的 OFDMA系统中提升边缘用户性能的方法, 其中, 包括下列步 骤:
步骤 A: 根据本小区用户终端负载数, 设置并存储本小区的配置参数; 所述配置参数包括域 ZONE个数参数^1、 所有 ZONE的符号参数及子信道化 增益参数;
步骤 B: 获取待增益处理序列并进行分解处理, 将待增益处理序列的分 解处理结果与当前 ZONE的子信道化增益参数相乘, 得到峰值增益结果序 列。
上述方法中,在所述步骤 B中对待增益处理序列进行分解处理包括下列 步骤:将所述待增益处理序列 data (i), e [1,N]分解为第一序列 R( i ), IG [1,N] 和第二序列 I (i), e[l,N] , 其中, N表示一个 OFDMA符号的长度; i表示样 点数。
其中, 将所述第一序列 R (i)和第二序列 I (i)分别与当前 ZONE的子 信道化增益参数相乘, 得到第一乘积序列 R_0 (i), e[l,N]和第二乘积序列 l_0 (i), iG [l,N]; 并将第一乘积序列和第二乘积序列进行截位相加, 得到 峰值增益结果序列 data_out (i), e[l,N]。
上述方法中, 在执行步骤 B之后, 进一步包括下列步骤: 根据峰值增益 结果序列 data_out (i)进行计数及增益处理; 当峰值增益结果序列 data_out (i) 的样点数 i等于 N时, 将 ZONE符号计数器 s_cnt加 1, 否则, 返回步骤 B 中继续执行第一序列和第二序列分解操作;当 ZONE符号计数器 s_cnt等于当 前 ZONE符号参数 S时, 将 ZONE计数器 m_cnt加 1, 否则, 返回步骤 B中继续 执行第一序列和第二序列分解操作;当 ZONE计数器 m_cnt等于 ZONE个数参 数 M时, 增益处理结束, 否则, 对当前域 ZONE的符号参数及子信道化增益 参数进行更新,并采用更新后的 ZONE的符号参数及子信道化增益参数来执 行步骤 B。
相应地, 本发明提供一种 OFDMA系统中提升边缘用户性能的装置, 包 括: 参数配置模块、 峰值增益模块; 其中, 所述参数配置模块, 用于根据 本小区用户终端负载数, 设置并存储本小区的配置参数; 所述配置参数包 括域 ZONE个数参数^1、 所有 ZONE的符号参数及子信道化增益参数; 所述 峰值增益模块, 用于获取待增益处理序列并进行分解处理, 将待增益处理 序列的分解处理结果与当前 ZONE的子信道化增益参数相乘,得到峰值增益 结果序列。
上述装置中, 所述参数配置模块, 包括参数存储单元和参数更新单元, 其中, 所述参数存储单元, 用于将根据本小区用户终端负载数, 将设置的 本小区的所有配置参数存储到随机存取存储器 RAM中; 其中, 所述配置参 数包括: ZONE个数参数 M; 所有 ZONE的符号参数 S ( 1 ), S ( 2 ), ……, S (M); 以及, 子信道化增益参数 K ( 1 ), K (2), ······ , K (M); 所述参 数更新单元, 用于根据 ZONE计数器 m_cnt来判断是否需要更新当前 ZONE 的符号参数及子信道化增益参数。
其中, 所述峰值增益模块, 包括分解单元、 乘法单元、 生成单元和计 数控制单元,其中,所述分解单元,用于将待增益处理序列 data (i), IG[1,N] 分解为第一序列 R (i), ' [^^和第二序列:! ^), ie[l,N]; 其中, N表示一 个 OFDMA符号的长度, i表示样点数; 所述乘法单元, 用于将所述分解单元 中的第一序列 R( i )和第二序列 I( i )分别与所述参数更新单元中的当前 ZONE 的子信道化增益参数相乘, 得到第一乘积序列 R_0 (i), e[l,N]和第二乘积 序列: LO (i), is[l,N]; 所述生成单元, 用于将所述乘法单元中的第一乘积 序列 R_0 (i)和第二乘积序列: LO (i)截位相加, 得到峰值增益结果序列 data_out ( i ), e [l,N] ;所述计数控制单元,用于根据 ZONE符号计数器 s_cnt、 ZONE计数器 m_cnt控制所述分解单元和参数更新单元是否继续执行。
上述装置中,所述计数控制单元包括:符号计数单元、 ZONE计数单元, 其中, 所述符号计数单元, 用于根据所述峰值增益结果序列 data_out ( i )进 行计数, 在所述样点数 i等于 N时, 将所述 ZONE符号计数器 s_cnt加 1 , 并将 累加后的数值通知 ZONE计数单元; 否则, 通知所述分解单元继续执行上述 第一序列和第二序列的分解操作; 所述 ZONE计数单元, 用于在所述 ZONE 符号计数器 s_cnt累加后的数值等于当前 ZONE符号参数 S时, 将 ZONE计数 器111_(^加 1 , 并在累加后的 ZONE计数器 m_cnt不等于 ZONE个数参数 M时, 将所述累加后的 ZONE计数器 m_cnt反馈给所述参数更新单元, 并通知所述 分解单元继续执行所述第一序列和第二序列的分解操作;在累加后的 ZONE 计数器 m_cnt等于 ZONE个数参数 M时, 增益处理结束。
本发明的有益效果是:依照本发明的 OFDMA系统中提升边缘用户性能 的方法与装置, 根据本小区用户终端负载的变化, 可以在基站内部设置不 同的多个 ZONE, 灵活地配置 ZONE内的子信道化增益参数, 并将该参数与 待增益处理序列进行乘法计算, 从而改变本小区的内部用户和边缘用户的 发送功率, 不仅不需要对小区间的时频域信道资源进行重新分配, 不会增 加系统的信令开销和实现复杂度, 而且在消除小区间干扰的基础上, 提升 了边缘用户的传输能力, 提高了小区的服务质量。 附图说明
图 1为上行链路和下行链路干扰情况的示意图;
图 2为本发明的方法流程图;
图 3为本发明的装置结构示意图;
图 4为本发明在 OFDMA系统基站中的位置示意图。 具体实施方式
以下, 参考附图 1 ~图 4详细描述本发明的 OFDMA系统中提升边缘用户 性能的方法与装置。
如图 2所示, 为本发明提升边缘用户性能的方法流程图, 该方法流程具 体包括如下步骤:
步骤 101:根据本小区用户终端负载数,设置并存储本小区的配置参数, 以及更新所述配置参数;
本实施例中, 根据所述小区用户终端负载的变化, 可在基站内部设置 不同的多个域(ZONE), 灵活配置 ZONE内的子信道化增益参数。 并且, 本 实施例根据本小区用户终端负载数, 将设置的本小区的所有配置参数存储 到随机存取存储器( RAM ) 中。
其中, 所述配置参数包括: 域 ZONE个数参数 M, 所有 ZONE的符号参 数 S( l ), S(2), ··· ··· , S(M); 以及,子信道化增益参数 K( l ), Κ(2), ··· ··· ,
K(M);其中, M为 4bits位宽数据,其范围为 1~8,初始值为 0; S(i, ), 'e [1,8] 为 6bits位宽数据, 其范围为 1~34, 初始值为 0; K ( i, ), ,"e [1,8]为 16bits位 宽数据, 其范围为 2906~21796, 初始值为 0。 需要指出的是, M和 K ( ) 的取值范围是可以根据实际需求进行调整的。
这里, 本步骤还根据 ZONE计数器 m_cnt是否更新, 来判断是否需要更 新当前 ZONE的符号参数 S及子信道化增益参数 K。 其中, 如果 ZONE计数器 m_cnt更新, 则需要更新当前 ZONE的符号参数 S及子信道化增益参数 K; 如 果 ZONE计数器 m_cnt没有更新, 则不需要更新当前 ZONE的符号参数 S及子 信道化增益参数^
在步據 101中, m_c"te [Ι,Μ] , 殳设此时 m_cnt = V , [Ι,Μ] , 如果 m_cnt 更新, 即111_(^更新为 i'+l, 则从步骤 101存储的所有 ZONE的参数中读取第 (i'+l )个 ZONE的符号参数 S (i'+l )及子信道化增益参数 K ( V +1 ), 来 更新当前 ZONE的符号参数 S及子信道化增益参数 K; 否则, 若111_(^没有更 新,则仍使用第(i' )个 €^6的符号参数8(^ )及子信道化增益参数 K(i' ) 作为当前 ZONE的符号参数 S及子信道化增益参数 K, 进行后续的增益处理。
具体地: if :
m_cnt― I m_ cnt― ' + [Ι, ]
do:
S{if + \)→S,
Figure imgf000009_0001
else:
→ s,
K(i')→K,i'G [1,M] 步骤 102: 获取当前 ZONE的符号参数 S及子信道化增益参数 K;
步骤 103: 获取待增益处理序列并进行分解处理, 将待增益处理序列分 成第一序列和第二序列;
其中, 所述待增益处理序列相当于一个 OFDMA符号, 在获取待增益处 理序列后, 将待增益处理序列分成第一序列和第二序列。
例如: 在步骤 103中, 待增益处理序列 data (i), e[i,w], 为 32bits位宽 数据, data (i) 的高 16bits data (i) [31:16]表示实部, 为第一序列 R ( i ); 而 data (i) 的低 16bits data (i) [15:0]表示虚部, 为第二序列 I (i); 第一序 列 R ( i )和第二序列 I ( i ) 均为 16bits位宽数据。 其中, N表示一个 OFDM A 符号的长度, i表示样点数。 当 i大于 0且小于 N时, 需要进行不断的累加, 即 重复执行步骤 103直到样点数 i等于 N。
具体地: R(l) = data(l)[3l:l6],
7(l) = rfato(l)[15:0]
R(i) = data(i)[3l :16],
I(i) = data(i)[l5:0],ie [l,N]
:
R(N) = data(N)[3l: 16],
I(N) = data(N)[l5:0] 步骤 104: 将待增益处理序列的分解处理结果与当前 ZONE的子信道化 增益参数相乘, 得到峰值增益结果序列;
这里, 根据待增益处理序列的分解处理结果如所述第一序列和第二序 列,再将所述的分解处理结果如所述第一序列和第二序列分别与当前 ZONE 的子信道化增益参数 K相乘, 分别得到第一乘积序列和第二乘积序列, 第一 乘积序列和第二乘积序列进行截位相加, 进而生成峰值增益结果序列。 需 要说明的是, 将所述待增益处理序列与当前 ZONE的子信道化增益参数 K进 行乘法计算, 进而生成峰值增益结果序列, 从而改变本小区的内部用户和 边缘用户的发送功率。
其中, 所述生成峰值增益结果序列 data_out (i) 的过程如下例所示: 首先进行乘法计算, 将所述第一序列 R (i)和第二序列 I (i)分别与当 前 ZONE的子信道化增益参数 K (j), 'e[l,8]相乘, 分别得到第一乘积序列 R_0 ( i ) [31:0]和第二乘积序列: LO (i) [31:0], 考虑到子信道化增益参数的 精度的影响, 因此需要将 R_0 (i)和: LO (i)的最低 13bits数据 [12:0]和最高 313^数据[31:29]丟弃, 仅保留中间的 16bits数据, 即1_0 (0 [28:13]和 1_0 (i) [28:13], 然后再将二者截位后的数据进行相加, 最后得到峰值增益结 果序列 data_out (i) [31:0], e[i,w]。 其中, N表示一个 OFDM A符号的长度, i表示样点数, 当 i大于 0且小于 N时, 需要进行不断的累加, 即重复执行步骤 104直到样点数 i等于 N。 具体地:
R_O(l)[31:0] = R(l)*iT,
/_0(1)[31:0] = /(1)*^,
data _ oMt(l)[31: 0] = {R_ O(l)[28: 13], I _ O(l)[28: 13]}
R_O( [31:0] = R( *^,
7_O( [31:0] = /( *^,
data _ out(i)[3l: 0] = {R_ 0(i)[2S: 13], I _ 0(i)[2S: 13]}, ie (1, N)
R_O(N)[3l:0] = R(N)*K,
I_O(N)[3l:0] = I(N)*K,
data _ out(N)[3l: 0] = {R_ O(N)[28: 13], I _ O(N)[28: 13]}
其中, R_0 (i)、 I_0 (i)、 data_out (i) 均为 32bits位宽数据。
需要指出的是, 在步骤 104中, 所述子信道化增益参数的精度范围可以 根据实际需求进行调整, 因此对于所述第一乘积序列和第二乘积序列的截 位范围也同样是可以根据实际需求进行调整的。
步骤 105: 根据峰值增益结果序列 data_out (i)进行计数, 根据所得到 的计数进行增益处理。
其中, 所述根据所得到的计数进行增益处理包括:
当峰值增益结果序列 data_out (i) 中, 样点数 i等于 Ν时, 将 ZONE符号 计数器 s_cnt加 1, 否则, 返回步骤 103继续执行所述第一序列和第二序列的 分解操作;
当 ZONE符号计数器 s_cnt等于当前 ZONE符号参数 S时,将 ZONE计数器 m_cnt加 1 , 否则, 返回步骤 103继续执行所述第一序列和第二序列的分解操 作;
当 ZONE计数器 m_cnt等于 ZONE个数参数 M时, 增益处理结束, 否贝' J, 返回步骤 102继续执行。
可见, 本实施例通过灵活配置 ZONE的子信道化增益参数, 并将所述子 信道化增益参数与待增益处理序列进行乘法计算, 从而改变本小区的内部 用户和边缘用户的发送功率, 进而降低小区间的干扰。 本实施例在消除小 区间干扰的基础上, 提升了边缘用户的传输能力, 提高了小区的服务质量。
以上所述为本发明方法实施例, 下面结合图 3来说明一下本发明的是装 置实施例。
如图 3所示, 为本发明提升边缘用户性能装置的结构示意图。 该装置 1 用于 OFDMA系统, 包括:
参数配置模块 10, 用于根据本小区用户终端负载数, 设置并存储本小 区所需的配置参数, 并更新当前 ZONE的参数;
其中, 所述配置参数包括: ZONE个数参数、 所有 ZONE的符号参数及 子信道化增益参数。
峰值增益模块 20,用于将待增益处理序列与当前 ZONE的子信道化增益 参数相乘, 得到峰值增益结果序列。
上述装置中, 所述参数配置模块 10进一步包括:
参数存储单元 11, 用于根据本小区用户终端负载数, 将设置的本小区 的所有配置参数存储到 RAM中; 其中, 所述配置参数包括: ZONE个数参 数 M; 所有 ZONE的符号参数 S ( 1 ), S (2), ······ , S (M); 以及, 子信道 化增益参数 K (l), Κ (2), ······ , K (M);
参数更新单元 12, 用于根据 ZONE计数器 m_cnt来判断是否需要更新当 前 ZONE的符号参数及子信道化增益参数。
其中, 所述峰值增益模块 20进一步包括:
分解单元 21, 用于将待增益处理序列 data (i), ε[ι,ΛΠ分解为第一序列 R
(i), 和第二序列 I (i), 其中, 待增益处理序列表示一个
OFDM A符号, N表示一个 OFDM A符号的长度, 而 data (i) 的高 16bits data (i) [31:16]表示实部, 为第一序列; data (i) 的低 16bitsdata (i) [15:0]表 示虚部, 为第二序列; 具体地: R{i) = data{i)[ \:\6\,
I(i) = data(i)[l5:0],ie [1,N]
乘法单元 22, 用于将所述分解单元 21中的第一序列 R (i)和第二序列 I
(i)分别与所述参数更新单元 12中当前 ZONE的子信道化增益参数 K (j ), e [1,8]相乘, 得到第一乘积序列 R_0 (i), e[l,N]和第二乘积序列: [_0 ( i ), iG [l,N], 具体地:
Figure imgf000013_0001
I_0(i) = I(i K(j),iG [l,N],je [1,8]
生成单元 23, 用于将所述乘法单元 22中的第一乘积序列 R_0 (i)和第 二乘积序列: [_0( i )截位再合并,得到峰值增益结果序列 data_out( i ), G [Ι,Ν] , 具体地:
data_out(i) = {R_O( [28: 13], /_ O( [28: 13]}, ie [1,N]
其中, R_0 (i)、 I_0 (i), data_out (i) 均为 32bits位宽数据, 且第一 乘积序列和第二乘积序列的截位范围是可以根据子信道化增益参数的精度 范围进行调整的。
计数控制单元 24,用于根据 ZONE符号计数器 s_cnt、 ZONE计数器 m_cnt 控制所述分解单元 21和参数更新单元 12是否继续执行对应的操作。
其中, 所述计数控制单元 24又进一步包括:
符号计数单元 25, 用于根据所述生成单元 23中的峰值增益结果序列 data_out (i)的样点数 i, 来判断 ZONE符号计数器 s_cnt是否进行累加; 在所 述样点数 i等于 N时, 将所述 ZONE符号计数器 s_cnt加 1, 并将累加后的数值 通知 ZONE计数单元。 否则, 返回所述分解单元 21继续执行所述第一序列和 第二序列的分解操作; 如果累加, 则转入 ZONE计数单元 26进一步判断其是 否和当前 ZONE符号参数 S相等;
ZONE计数单元 26, 用于根据所述符号计数单元 25中的 ZONE符号计数 器8_(;1«来判断 ZONE计数器 m_cnt是否累加, 在所述 ZONE符号计数器 s_cnt 累加后的数值等于当前 ZONE符号参数 S时,将 ZONE计数器 m_cnt加 1 ;如果 累加, 则进一步判断其是否和 ZONE个数参数 M相等, 如果不相等即在累加 后的 ZONE计数器 m_cnt不等于 ZONE个数参数 M时, 就将更新后的 ZONE计 数器 m_cnt反馈给参数更新单元 12, 并返回所述分解单元 21继续执行所述第 一序列和第二序列的分解操作; 否则, 增益处理结束。 如图 4所示, 为本发 明在 OFDM A系统基站中的位置示意图。
综上所述,依照本发明的 OFDMA系统中提升边缘用户性能的方法与装 置, 根据本小区用户终端负载的变化, 可以在基站内部设置不同的多个 ZONE, 灵活地配置 ZONE内的子信道化增益参数, 并将该子信道化增益参 数与待增益处理序列进行乘法计算, 从而改变了本小区的内部用户和边缘 用户的发送功率, 不仅不需要对小区间的时频域信道资源进行重新分配, 不会增加系统的信令开销和实现复杂度, 而且在消除小区间干扰的基础上, 提升了边缘用户的传输能力, 提高了小区的服务质量。
以上是为了使本领域普通技术人员理解本发明, 而对本发明所进行的 详细描述, 但可以想到, 在不脱离本发明的权利要求所涵盖的范围内还可 以做出其它的变化和修改, 这些变化和修改均在本发明的保护范围内。

Claims

权利要求书
1、 一种正交频分多址 OFDMA系统中提升边缘用户性能的方法, 其特 征在于, 包括:
步骤 A: 根据本小区用户终端负载数, 设置并存储本小区配置参数; 所 述配置参数包括域 ZONE个数参数^1、 ZONE的符号参数及子信道化增益参 数;
步骤 B: 获取待增益处理序列并进行分解处理, 将待增益处理序列的分 解处理结果与当前 ZONE的子信道化增益参数相乘, 得到峰值增益结果序 列。
2、 如权利要求 1所述的 OFDMA系统中提升边缘用户性能的方法, 其特 征在于, 步骤 B中所述待增益处理序列进行分解处理包括下列步骤:
将所述待增益处理序列 data (i), e [1,N]分解为第一序列 R ( i ), is[l,N] 和第二序列 I (i), e[l,N]; 其中, N表示一个 OFDMA符号的长度, i表示样 点数。
3、 如权利要求 2所述的 OFDMA系统中提升边缘用户性能的方法, 其特 征在于,所述将待增益处理序列的分解处理结果与当前 ZONE的子信道化增 益参数相乘, 得到峰值增益结果序列, 具体包括:
将所述第一序列 R (i)和第二序列 I (i)分别与当前 ZONE的子信道化 增益参数相乘,得到第一乘积序列 R_0(i), e[l,N]和第二乘积序列: l_0(i), is[l,N]; 并将第一乘积序列和第二乘积序列进行截位相加, 得到峰值增益 结果序歹l data—out ( i ) , e [1, N]。
4、 如权利要求 2或 3所述的 OFDMA系统中提升边缘用户性能的方法, 其特征在于, 在执行步骤 B之后, 该方法进一步包括:
根据所述峰值增益结果序列 data_out (i)进行计数及增益处理; 当峰值增益结果序列 data_out (i) 的样点数 i等于 N时, 将 ZONE符号计 数器 s_cnt加 1 ; 否则,返回步骤 B中继续执行第一序列和第二序列分解操作; 当 ZONE符号计数器 s_cnt等于当前 ZONE符号参数 S时,将 ZONE计数器 m_cnt加 1 ; 否则, 返回步骤 B中继续执行第一序列和第二序列的分解操作。
5、 如权利要求 4所述的 OFDMA系统中提升边缘用户性能的方法, 其特 征在于, 在执行步骤 B之后, 该方法进一步包括:
当 ZONE计数器 m_cnt等于 ZONE个数参数 M时, 所述增益处理结束; 否 则, 对当前域 ZONE的符号参数及子信道化增益参数进行更新, 并采用更新 后的 ZONE的符号参数及子信道化增益参数执行步骤 B。
6、 一种 OFDMA系统中提升边缘用户性能的装置, 其特征在于, 包括 参数配置模块、 峰值增益模块; 其中,
所述参数配置模块, 用于根据本小区用户终端负载数, 设置并存储本 小区的配置参数; 所述配置参数包括域 ZONE个数参 ¾M、 ZONE的符号参 数及子信道化增益参数;
所述峰值增益模块, 用于获取待增益处理序列并进行分解处理, 将待 增益处理序列的分解处理结果与当前 ZONE的子信道化增益参数相乘,得到 峰值增益结果序列。
7、 如权利要求 6所述的 OFDMA系统中提升边缘用户性能的装置, 其特 征在于, 所述参数配置模块包括: 参数存储单元和参数更新单元; 其中, 所述参数存储单元, 用于根据本小区用户终端负载数, 将设置的本小 区的配置参数存储到随机存取存储器 RAM中; 其中, 所述配置参数包括 ZONE个数参数 M, 所有 ZONE的符号参数 S ( 1 ), S ( 2 ), ··· ··· , S ( M )及 子信道化增益参数 K ( 1 ), K ( 2 ), ··· ··· , K ( M );
所述参数更新单元, 用于根据 ZONE计数器 m_cnt来判断是否需要更新 当前 ZONE的符号参数及子信道化增益参数。
8、 如权利要求 6或 7所述的 OFDMA系统中提升边缘用户性能的装置, 其特征在于, 所述峰值增益模块包括分解单元、 乘法单元和生成单元; 其 中,
所述分解单元, 用于将待增益处理序列 data (i), e[l,N]分解为第一序 列 R (i), e[l,N]和第二序列 I (i), e[l,N]; 其中, N表示一个 OFDMA符 号的长度, i表示样点数;
所述乘法单元, 用于将所述分解单元中的第一序列 R (i)和第二序列 I ( i )分别与所述参数更新单元中的当前 ZONE的子信道化增益参数相乘, 得到第一乘积序列 R_0 ( i ) , e [1, N]和第二乘积序列 I_0 ( i ) , iG [1, N]; 所述生成单元, 用于将所述乘法单元中的第一乘积序列 R_0 (i)和第 二乘积序列: l_0(i)截位相加,得到峰值增益结果序列 data_out(i), e[l,N]。
9、 如权利要求 8所述的 OFDMA系统中提升边缘用户性能的装置, 其特 征在于, 所述峰值增益模块还包括:
计数控制单元, 用于根据 ZONE符号计数器 s_cnt、 ZONE计数器 m_cnt, 控制所述分解单元和参数更新单元是否继续执行对应的操作。
10、 如权利要求 9所述的 OFDMA系统中提升边缘用户性能的装置, 其 特征在于, 所述计数控制单元包括: 符号计数单元、 ZONE计数单元; 其中, 所述符号计数单元, 用于根据所述峰值增益结果序列 data_out (i)进行 计数, 在所述样点数 i等于 N时, 将所述 ZONE符号计数器 s_cnt加 1, 并将累 加后的数值通知 ZONE计数单元; 否则, 通知所述分解单元继续执行所述第 一序列和第二序列的分解操作;
所述 ZONE计数单元, 用于在所述 ZONE符号计数器 s_cnt累加后的数值 等于当前 ZONE符号参数 S时, 将 ZONE计数器 m_cnt加 1; 并在累加后的 ZONE计数器 m_cnt不等于 ZONE个数参数 M时, 将所述累加后的 ZONE计数 器111_(^反馈给所述参数更新单元, 并通知所述分解单元继续执行所述第一 序列和第二序列的分解操作。
PCT/CN2009/076367 2009-07-22 2009-12-31 一种ofdma系统中提升边缘用户性能的方法与装置 WO2011009280A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910157644.0 2009-07-22
CN200910157644.0A CN101965020B (zh) 2009-07-22 2009-07-22 一种ofdma系统中配合调度提升边缘用户性能的方法与装置

Publications (1)

Publication Number Publication Date
WO2011009280A1 true WO2011009280A1 (zh) 2011-01-27

Family

ID=43498726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076367 WO2011009280A1 (zh) 2009-07-22 2009-12-31 一种ofdma系统中提升边缘用户性能的方法与装置

Country Status (2)

Country Link
CN (1) CN101965020B (zh)
WO (1) WO2011009280A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819690A (zh) * 2006-03-31 2006-08-16 北京邮电大学 一种应用于fdd/ofdm系统的下行干扰抑制方法
KR20060096644A (ko) * 2005-03-02 2006-09-13 한국과학기술원 이동통신시스템에서 직교주파수분할다중 기술을 이용한 상하향링크 자원 할당 및 듀플렉싱 방법
CN101064703A (zh) * 2006-04-25 2007-10-31 北京三星通信技术研究有限公司 Ofdm接入基站中基站发射信号的正交化方法及系统
CN101350648A (zh) * 2007-07-20 2009-01-21 大唐移动通信设备有限公司 一种实现发射的方法、系统及发射机
CN101404800A (zh) * 2008-03-12 2009-04-08 北京邮电大学 Ofdma蜂窝系统中基于虚小区的半静态干扰协调方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060096644A (ko) * 2005-03-02 2006-09-13 한국과학기술원 이동통신시스템에서 직교주파수분할다중 기술을 이용한 상하향링크 자원 할당 및 듀플렉싱 방법
CN1819690A (zh) * 2006-03-31 2006-08-16 北京邮电大学 一种应用于fdd/ofdm系统的下行干扰抑制方法
CN101064703A (zh) * 2006-04-25 2007-10-31 北京三星通信技术研究有限公司 Ofdm接入基站中基站发射信号的正交化方法及系统
CN101350648A (zh) * 2007-07-20 2009-01-21 大唐移动通信设备有限公司 一种实现发射的方法、系统及发射机
CN101404800A (zh) * 2008-03-12 2009-04-08 北京邮电大学 Ofdma蜂窝系统中基于虚小区的半静态干扰协调方法

Also Published As

Publication number Publication date
CN101965020A (zh) 2011-02-02
CN101965020B (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum aggregation
US11075722B2 (en) Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
KR20210116699A (ko) gNB, 전자 장치 및 판독 가능한 저장 매체에 있어서 원격 간섭 관리 방법.
CN107078873A (zh) 用于在无线通信系统的用户之间分配音调的系统和方法
EP3920434A1 (en) Communication method and device
CN113923787B (zh) 实现大规模urllc的用户自适应接入方法及装置
TW201818751A (zh) 傳輸信號的方法、終端設備和網路設備
Al-Saadeh et al. A performance comparison of in-band full duplex and dynamic TDD for 5G indoor wireless networks
US11943631B2 (en) Spectrum device, wireless communication system, wireless communication method and storage medium
Lim et al. Waveform multiplexing for new radio: Numerology management and 3D evaluation
Kai et al. Resource allocation for multiple-pair D2D communications in cellular networks
KR101974016B1 (ko) Ofdm 및 noma을 결합한 통신 방법을 이용한 데이터 전송 방법
CN106576023A (zh) 一种信息传输方法、设备及系统
CN102026384B (zh) 一种干扰消除的资源分配方法和装置
CN104378785A (zh) 一种微小区的上下行子帧重配置方法和装置
Lim et al. Non-Orthogonal Multiple Access (NOMA) to Enhance Capacity in 5G.
Kang et al. Performance analysis of FBMC-CR through optimization: tradeoff between various performance parameters in the cognitive radio environment
Medjahdi et al. On the impact of the prototype filter on fbmc sensitivity to time asynchronism
Yang et al. Optimal spectrum access and power control of secondary users in cognitive radio networks
WO2011009280A1 (zh) 一种ofdma系统中提升边缘用户性能的方法与装置
CN113037422B (zh) 小区参考信号发送方法、装置、存储介质和计算机设备
Rhee et al. Hidden terminal aware clustering for large-scale D2D networks
Lim et al. Waveform multiplexing for 5G: A concept and 3D evaluation
Altay et al. Fractional frequency reuse in non-orthogonal multiple access heterogeneous networks
Kim et al. Cell-free mMIMO systems with dynamic TDD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847514

Country of ref document: EP

Kind code of ref document: A1