WO2011008043A2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2011008043A2
WO2011008043A2 PCT/KR2010/004635 KR2010004635W WO2011008043A2 WO 2011008043 A2 WO2011008043 A2 WO 2011008043A2 KR 2010004635 W KR2010004635 W KR 2010004635W WO 2011008043 A2 WO2011008043 A2 WO 2011008043A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gas sensor
carbon nanotube
sub
gas
Prior art date
Application number
PCT/KR2010/004635
Other languages
French (fr)
Korean (ko)
Other versions
WO2011008043A9 (en
WO2011008043A3 (en
Inventor
이상훈
황하룡
Original Assignee
(주)와이즈산전
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)와이즈산전 filed Critical (주)와이즈산전
Publication of WO2011008043A2 publication Critical patent/WO2011008043A2/en
Publication of WO2011008043A9 publication Critical patent/WO2011008043A9/en
Publication of WO2011008043A3 publication Critical patent/WO2011008043A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a gas sensor, and more particularly, to a gas sensor that can easily and accurately sense gas while increasing reaction rate and recovery rate by using carbon nanotube powder dispersed between electrodes.
  • the gas sensor operates on a principle of measuring the amount of harmful gas by using a characteristic that the electrical conductivity or electrical resistance changes depending on the degree of adsorption of gas molecules.
  • carbon nanotubes which are in the spotlight as new material devices, can operate at room temperature and have excellent sensitivity, and gas sensors for measuring changes in electrical resistance using carbon nanotubes have been widely developed. .
  • gas sensors using carbon nanotubes take a long time to return to their original electrical conductivity after sensing.
  • gas sensors using carbon nanotubes must be heated to return to the original conductivity, which requires additional elements such as heaters and the like.
  • the heater or the like is mounted on the gas sensor, the power consumption is high, so that it cannot be used in a portable device, and the manufacturing process is complicated.
  • the technical problem to be achieved by the present invention is to provide a gas sensor that can operate easily and accurately while increasing the response speed and recovery speed.
  • a gas sensor comprising: a first electrode and a second electrode formed on a substrate, to which an AC power is applied, and spaced apart from each other; And carbon nanotube powder or nanowires dispersed in a region formed between the first electrode and the second electrode, and the impedance of the carbon nanotube powder is changed according to the concentration of the gas.
  • the substrate may be a flexible printed circuit board implemented with a polyimide film.
  • the first electrode is formed integrally with the first electrode and has first sub electrodes whose ends are directed toward the second electrode, and the second electrode is integrally formed with the second electrode.
  • An end is provided with second sub-electrodes facing the first electrode, and the first sub-electrodes and the second sub-electrodes are comb-shaped with the second sub-electrodes positioned between each other and the first sub-electrodes. It may be provided in the inter-digitated (inter-digitated) shape.
  • the first sub-electrode and the second sub-electrode may be spaced apart from each other by 10 micrometers or less.
  • the carbon nanotube powder or nanowire powder may be dispersed in a solvent by a surfactant and applied between the first electrode and the second electrode.
  • the solution in which the carbon nanotube powder or the nanowire powder is dispersed may be applied between the first electrode and the second electrode by a spray method.
  • the carbon nanotube powder or the nanowire powder may be dispersed in a stamping method by imposing a solution in which the carbon nanotube powder or the nanowire powder is dispersed in a region formed between the first electrode and the second electrode.
  • the heater may be further provided below the first electrode and the second electrode to maintain the temperature of the gas sensor.
  • a via penetrating the first electrode or the second electrode and the heater may be further provided, and a bias voltage having a voltage level according to the type of gas to be sensed may be applied to the via.
  • the AC power may be applied at a frequency according to the type of gas to be sensed.
  • the gas sensor according to the present invention has an advantage of improving sensitivity and reaction speed.
  • by varying the bias voltage to improve the selectivity for a particular gas, or by varying the frequency of the AC power source can be variously designed according to the needs of the user, such as adjusting the selectivity or recovery rate for a particular gas.
  • FIG. 1 is a view showing a gas sensor according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a difference between dropping and spraying a solution in which carbon nanotube powder is dissolved in the gas sensor of FIG. 1.
  • FIG. 3 is a view showing that the sensitivity of the gas sensor of FIG. 1 is improved when the carbon nanotube powder is dispersed in the gas sensor of FIG.
  • FIG. 4 is a view for explaining a case in which carbon nanotube powder is dispersed in a stamping method in the gas sensor of FIG.
  • FIG. 5 is a diagram illustrating an experimental example of a correlation between a gap between a first electrode and a second electrode of the gas sensor of FIG. 1 and a sensitivity of the gas sensor.
  • FIG. 6 is a diagram illustrating a relationship between a frequency of an AC power source applied to the gas sensor of FIG. 1 and a sensitivity of the gas sensor of FIG. 1 to nitrogen.
  • FIG. 7 is a diagram illustrating a correlation between a bias voltage applied to the gas sensor of FIG. 1 and an impedance of carbon nanotube powder.
  • FIG. 8 is a diagram for describing a chip including the gas sensor of FIG. 1.
  • FIG. 9 is a view illustrating a result of performing heat treatment or washing on the chip of FIG. 8.
  • FIG. 10 is a diagram illustrating a result of increasing sensitivity and recovery speed of a gas sensor when the chip of FIG. 8 is heat-treated at a high temperature.
  • FIG. 1 is a view showing a gas sensor according to an embodiment of the present invention.
  • the gas sensor 100 includes a substrate 110, an insulating layer 120, The first electrode 130 and the second electrode 140 are provided.
  • the substrate 110 may be a flexible printed circuit board implemented with a film such as polyimide.
  • the first electrode 130 and the second electrode 140 are formed on the substrate 110 and spaced apart from each other.
  • An insulating layer 120 may be formed between the first electrode 130, the second electrode 140, and the substrate 110.
  • the first electrode 130 and the second electrode 140 may be made of various materials such as Au, Ti, or an alloy thereof. Since the first electrode 130 and the second electrode 140 are formed on one substrate 110, the manufacturing process may be simplified.
  • AC power AC may be applied to the first electrode 130 and the second electrode 140.
  • the first electrode 130 and the second electrode 140 are each inter-digitated with each other. It may include a plurality of first sub-electrodes 132 and the second sub-electrodes 142 formed in a digitated form. That is, the plurality of first sub-electrodes 132 and the second sub-electrodes 142 face each other and are spaced apart from each other, such that the second sub-electrodes 142 are positioned between the first sub-electrodes 132.
  • the first sub electrodes 132 are positioned between the second sub electrodes 142.
  • the first sub-electrodes 132 may be formed in a comb-like shape integrally formed with the first electrode 130 and extending toward the second electrode 140.
  • the second sub-electrodes 142 may be formed integrally with the second electrode 140 and may have a comb-shaped shape extending toward the first electrode 130.
  • Carbon nanotube powder may be distributed between the first electrode 130 and the second electrode 140, that is, between the first sub-electrodes 132 and the second sub-electrodes 142.
  • the present invention is not limited thereto, and nanowire powder may be used instead of carbon nanotube powder (CNT).
  • the nanowire is a wire structure having a size in nanometers, and may be applied between the first electrode 130 and the second electrode 140 in the same manner as the carbon nanotube powder (CNT) described below.
  • the impedance can be changed accordingly. Therefore, for convenience of description, hereinafter, only carbon nanotube powder (CNT) will be described. However, those of ordinary skill in the art to which the present invention pertains may easily perform the gas sensor of the present invention using the nanowire powder from the description of the following carbon nanotube powder (CNT).
  • the carbon nanotube when used in a gas sensor, the carbon nanotube can be operated at room temperature, and the impedance change is large even when reacting with harmful gases such as NH 3 , NO 2, or volatile organic compounds (VOCs). Sensitivity is very good. In addition, there is an advantage that the reaction rate and response rate is fast.
  • harmful gases such as NH 3 , NO 2, or volatile organic compounds (VOCs).
  • Carbon nanotubes originally have hydrophobic properties because of the structure of carbon nanotubes.
  • surface defects of carbon nanotubes have a strong bonding force and thus easily bond with other molecules. Therefore, hydrophobic or hydrophilic properties of the carbon nanotubes can be controlled by surface defects of the carbon nanotubes.
  • the gas sensor using the carbon nanotubes can give a selectivity to a specific gas, it is possible to accurately measure the concentration of various gases.
  • the gas sensor using the carbon nanotube according to the prior art has a problem that it takes a long time to initialize the sensor after the sensing operation is finished or the sensing sensitivity is lowered.
  • the gas sensor 100 can reduce the recovery speed (time required for initialization) while increasing the sensitivity. This is described in more detail.
  • the carbon nanotube powder CNT dispersed between the first electrode 130 and the second electrode 140 may be applied to the type of gas when AC power is applied.
  • the impedance change amount of the carbon nanotube powder (CNT) dispersed between the first electrode 130 and the second electrode 140 is measured by a measuring device (not shown) such as an LCR (inductance, capacitance and resistance) meter. Since dispersed carbon nanotubes are in the form of very small tubes with diameters of several tens of nanometers, a strong electric field is applied to the ends. As a result, adsorption of gas molecules on the ends and surfaces of the carbon nanotubes causes large changes in capacitance. Will appear. Thus, by measuring the impedance to be changed, the concentration of the gas can be measured.
  • the carbon nanotube powder (CNT) is DCE (1,2-dichloroethane, [ClCH 2 CH 2 Cl]), SDS (Sodium Dodecyl Sulfate, [CH 3 (CH 2) 11 OSO 3 Na +]) and NaDDBS (Sodium Dodecylbenzene Sulfonate, [CH 3 (CH 2) 11C6H4SO3Na +]), and the like, may be dispersed in a solvent and applied to the first electrode 130 and the second electrode 140.
  • the carbon nanotube powder (CNT) may be evenly applied between the first electrode 130 and the second electrode 140. Therefore, the sensing sensitivity can be improved.
  • the gas sensor 100 may apply carbon nanotube powder (CNT) dispersed in a solvent by a surfactant in a spray method.
  • carbon nanotube powder (CNT) When carbon nanotube powder (CNT) is applied using a spray, it is as shown in (b) of FIG. 2 rather than dropping a solution in which the carbon nanotube powder is dissolved ((a) of FIG. 2).
  • carbon nanotube powder (CNT) may be uniformly applied.
  • the spray method has an advantage that the carbon nanotube formation conditions can be precisely adjusted than when the solution in which the carbon nanotube powder is dispersed is dropped.
  • the gas sensor 100 shows the carbon nanotube powder (CNT) dispersed by a surfactant in FIG.
  • the solution is formed in the shape of hemisphere by the surface tension of the solution in which the carbon nanotube powder is dispersed at the end of the tube by using a tube having an inner diameter similar to that of the electrode, and the solution is formed in the first electrode 130 It can be dispersed in a stamping (stamping) method in the space between the second electrode 140.
  • Carbon nanotube powder (CNT) dispersed in a stamping method as shown in Figure 4 (a), can be applied quickly, simply and uniformly.
  • the carbon nanotube powder (CNT) can solve the problem of dense to the edge of the drop of the solution have. That is, in the case of the stamping method, the carbon nanotube powder (CNT) is evenly distributed, so that the sensitivity of the gas sensor may be improved.
  • the gas sensor 100 may improve the sensitivity of the dispersion of the solution in which the carbon nanotube powder (CNT) is dissolved by spraying or stamping.
  • CNT carbon nanotube powder
  • sensitivity may increase.
  • FIG. 5 which shows an experimental example of the correlation between the interval between the first electrode 130 and the second electrode 140 and the sensitivity, it can be seen that the sensitivity is increased at about 5 micrometers or less.
  • the specific gas may be improved in sensitivity at a specific frequency.
  • Gas sensor according to an embodiment of the present invention by using a characteristic that the specific gas has a good sensitivity and recovery rate at a specific frequency, by checking the sensitivity to the gas at three or more different frequencies, respectively, selectivity to the gas Can have
  • the sensitivity or the recovery speed for the specific gas can be set.
  • the gas sensor 100 may further include a heater 150.
  • the heater 150 may be located between the substrate 110 and the electrodes 130 and 140. A current is supplied to the heater 150 to maintain the temperature of the gas sensor 100, thereby improving the sensitivity and reliability of the sensor.
  • the heater mainly uses platinum, which is stable at high temperatures, and may be implemented as a material having a moderate thermal expansion coefficient between the substrate and the heater material, such as titanium (Ti), to solve the problem of peeling off due to the difference in thermal expansion coefficient with the substrate. have.
  • the gas sensor 100 according to the embodiment of the present invention may further include vias 160 connecting the first electrode 130 or the second electrode 140.
  • the gas sensor 100 according to the exemplary embodiment of the present invention may set the gas to be sensed by applying the bias voltage DC to the via 160.
  • the type of gas sensed varies according to the magnitude of the bias voltage DC. That is, the sensitivity of a particular gas at a specific bias voltage can be improved. For example, in a section in which the bias voltage is about ⁇ 2V to 0V, sensitivity to nitrogen dioxide may be improved.
  • the gas sensor 100 may set the type of gas to be sensed by differently setting the bias voltage DC.
  • FIG. 8A illustrates an operating power supply (AC, AC) for supplying a voltage to the gas sensor 100 of FIG. 1 and the first electrode 130 and the second electrode 140 of the gas sensor 100 of FIG. 1.
  • the gas sensor 100 may be positioned in the middle of the voltage pads VPAD and the heater pads HPAD.
  • A, b, c, and d of FIG. 1B may be connected to a ', b', c ', and d' of FIG. 8A, respectively.
  • the heater is mainly composed of a platinum resistor that is stable at high temperature and generates heat when a current flows.
  • the heater is heated to generate heat, and when the heater power is controlled, the temperature of the heater can be controlled.
  • the sensor may have a selectivity to gas by applying a bias voltage between the heater pattern and the electrode using the same pad.
  • the chip CIP of FIG. 8A or the wafer of FIG. 8B may be heated or cleaned.
  • the surfactant is removed to increase the reaction and recovery rate of the gas sensor. Faster.
  • the chip CIP of FIG. 8A or the wafer of FIG. 9B is washed with alcohol or water and then thermally treated, as shown in FIG. 9B, the surfactant is removed to form a gas. The response and recovery rate of the sensor is faster.
  • the uniformity of the carbon nanotube powder (CNT) applied to the region between the first electrode 130 and the second electrode 140 can have a significant effect on the sensitivity of the sensor.
  • the chip CIP of FIG. 8A or the wafer of FIG. 8B can also be heat treated using a halogen lamp or the like. By the heat treatment at a high temperature, the sensitivity and reaction speed of the gas sensor as shown in FIG. 10 (a) can be improved as shown in FIG. 10 (b).
  • the gas sensor according to the present invention has an advantage of improving sensitivity and reaction speed.
  • by varying the bias voltage to improve the sensitivity to a specific gas, or by varying the frequency of the AC power source can be variously designed according to the needs of the user, such as adjusting the sensitivity or recovery rate.
  • the present invention can be used in the field of manufacturing gas sensors.

Abstract

Disclosed is a gas sensor. A gas sensor according to one example of the present invention comprises: a first electrode and a second electrode which are formed on a base plate, which have an alternating power source applied to them, and which are positioned apart from each other; and a carbon nanotube powder or nanowire powder coated in regions formed between the first electrode and the second electrode, and the impedance of the nanotube powder changes depending on the concentration of a gas.

Description

가스 센서Gas sensor
본 발명은 가스 센서에 관한 것으로, 특히, 전극 사이에 분산되는 탄소 나노 튜브 분말을 사용하여 반응 속도 및 회복 속도를 빠르게 하면서도 용이하고 정확하게 가스를 센싱할 수 있는 가스 센서에 관한 것이다. TECHNICAL FIELD The present invention relates to a gas sensor, and more particularly, to a gas sensor that can easily and accurately sense gas while increasing reaction rate and recovery rate by using carbon nanotube powder dispersed between electrodes.
일반적으로 가스 센서는 가스 분자의 흡착 정도에 따라 전기 전도도 또는 전기 저항이 변화하는 특성을 이용하여 유해 가스의 양을 측정하는 원리로 동작한다. In general, the gas sensor operates on a principle of measuring the amount of harmful gas by using a characteristic that the electrical conductivity or electrical resistance changes depending on the degree of adsorption of gas molecules.
최근 신소재 소자로 각광받고 있는 탄소 나노 튜브(Carbon NanoTube)는 상온에서 동작이 가능하고 감도가 매우 우수한 장점을 가지고 있어, 탄소 나노 튜브를 이용하여 전기 저항의 변화를 측정하는 가스 센서가 널리 개발되고 있다. Recently, carbon nanotubes, which are in the spotlight as new material devices, can operate at room temperature and have excellent sensitivity, and gas sensors for measuring changes in electrical resistance using carbon nanotubes have been widely developed. .
그런데, 탄소 나노 튜브를 이용하는 가스 센서는 센싱 후에 원래의 전기 전도도로 복귀하는데 장시간이 소요된다. 또한, 탄소 나노 튜브를 이용하는 가스 센서는 원래의 전기전도도로의 복귀하기 위해 가열되어야 하는데, 이를 위해 히터 등과 같은 부가적인 요소가 요구된다. 히터 등을 가스 센서에 장착하게 되면 소비 전력이 높아 휴대용 기기에 사용할 수 없고, 제조 공정이 복잡하게 되는 문제가 있다. However, gas sensors using carbon nanotubes take a long time to return to their original electrical conductivity after sensing. In addition, gas sensors using carbon nanotubes must be heated to return to the original conductivity, which requires additional elements such as heaters and the like. When the heater or the like is mounted on the gas sensor, the power consumption is high, so that it cannot be used in a portable device, and the manufacturing process is complicated.
본 발명이 이루고자 하는 기술적 과제는 응답 속도 및 회복 속도를 빠르게 하면서도 용이하고 정확하게 동작할 수 있는 가스 센서를 제공하는 것에 있다. The technical problem to be achieved by the present invention is to provide a gas sensor that can operate easily and accurately while increasing the response speed and recovery speed.
상기 기술적 과제를 달성하기 위한 본 발명의 실시예에 따른 가스 센서는, 기판 위에 형성되고, 교류 전원이 인가되며, 서로 이격하여 위치하는 제1 전극 및 제2 전극; 및 상기 제1 전극 및 상기 제2 전극 사이에 형성되는 영역에 분산되는 탄소나노튜브 분말 또는 나노와이어를 구비하고, 가스의 농도에 따라 상기 탄소나노튜브 분말의 임피던스가 변화된다. According to an aspect of the present invention, there is provided a gas sensor comprising: a first electrode and a second electrode formed on a substrate, to which an AC power is applied, and spaced apart from each other; And carbon nanotube powder or nanowires dispersed in a region formed between the first electrode and the second electrode, and the impedance of the carbon nanotube powder is changed according to the concentration of the gas.
바람직하게는, 상기 기판은, 폴리이미드 필름(Polyimide film)으로 구현되는 플렉시블 인쇄 회로 기판일 수 있다. Preferably, the substrate may be a flexible printed circuit board implemented with a polyimide film.
바람직하게는, 상기 제1 전극은, 상기 제1 전극과 일체로 형성되고 끝단이 상기 제2 전극을 향하는 제1 서브 전극들을 구비하고, 상기 제2 전극은, 상기 제2 전극과 일체로 형성되고 끝단이 상기 제1 전극을 향하는 제2 서브 전극들을 구비하며, 상기 제1 서브 전극들 및 상기 제2 서브 전극들은 서로, 상기 제1 서브 전극들 사이 사이에 상기 제2 서브 전극들이 위치하여 빗 모양의 인터-디지테이티드(inter-digitated) 형상으로 구비될 수 있다. Preferably, the first electrode is formed integrally with the first electrode and has first sub electrodes whose ends are directed toward the second electrode, and the second electrode is integrally formed with the second electrode. An end is provided with second sub-electrodes facing the first electrode, and the first sub-electrodes and the second sub-electrodes are comb-shaped with the second sub-electrodes positioned between each other and the first sub-electrodes. It may be provided in the inter-digitated (inter-digitated) shape.
바람직하게는, 상기 제1 서브 전극 및 상기 제2 서브 전극은 서로, 10 마이크로미터 이하로 이격하여 위치할 수 있다. Preferably, the first sub-electrode and the second sub-electrode may be spaced apart from each other by 10 micrometers or less.
바람직하게는, 상기 탄소나노튜브 분말 또는 나노와이어 분말은, 계면활성제에 의해 용매에 분산되어 상기 제1 전극 및 상기 제2 전극 사이에 도포될 수 있다. Preferably, the carbon nanotube powder or nanowire powder may be dispersed in a solvent by a surfactant and applied between the first electrode and the second electrode.
이때, 상기 탄소나노튜브 분말 또는 나노와이어 분말이 분산된 용액은, 스프레이(Spray) 방식으로 상기 제1 전극 및 상기 제2 전극 사이에 도포될 수 있다. 또는 미세 튜브를 이용하여 상기 탄소나노튜브 분말 또는 나노와이어 분말이 분산된 용액을 상기 제1 전극 및 상기 제2 전극 사이에 형성된 영역에 찍는 스탬핑(stamping) 방식으로 분산될 수 있다. In this case, the solution in which the carbon nanotube powder or the nanowire powder is dispersed may be applied between the first electrode and the second electrode by a spray method. Alternatively, the carbon nanotube powder or the nanowire powder may be dispersed in a stamping method by imposing a solution in which the carbon nanotube powder or the nanowire powder is dispersed in a region formed between the first electrode and the second electrode.
바람직하게는, 상기 제1 전극 및 상기 제2 전극의 하부에 위치하고, 상기 가스 센서의 온도를 유지시키는 히터를 더 구비할 수 있다. 이때, 상기 제1 전극 또는 상기 제2 전극과, 상기 히터를 관통하는 비아를 더 구비하고, 상기 비아에는 센싱하고자 하는 가스의 종류에 따른 전압 레벨을 갖는 바이어스 전압이 인가될 수 있다. Preferably, the heater may be further provided below the first electrode and the second electrode to maintain the temperature of the gas sensor. In this case, a via penetrating the first electrode or the second electrode and the heater may be further provided, and a bias voltage having a voltage level according to the type of gas to be sensed may be applied to the via.
바람직하게는, 상기 교류 전원은, 센싱하고자 하는 가스의 종류에 따른 주파수로 인가될 수 있다.Preferably, the AC power may be applied at a frequency according to the type of gas to be sensed.
본 발명에 따른 가스 센서는 감도 및 반응 속도를 향상시킬 수 있는 장점이 있다. 또한, 바이어스 전압을 달리하여 특정 가스에 대한 선택성을 향상시키거나, 교류 전원의 주파수를 달리하여 특정 가스에 대한 선택성 또는 회복 속도를 조절하는 등 사용자의 필요에 따라 다양하게 설계될 수 있다.The gas sensor according to the present invention has an advantage of improving sensitivity and reaction speed. In addition, by varying the bias voltage to improve the selectivity for a particular gas, or by varying the frequency of the AC power source can be variously designed according to the needs of the user, such as adjusting the selectivity or recovery rate for a particular gas.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다. BRIEF DESCRIPTION OF THE DRAWINGS In order to better understand the drawings cited in the detailed description of the invention, a brief description of each drawing is provided.
도 1은 본 발명의 실시예에 따른 가스 센서를 나타내는 도면이다. 1 is a view showing a gas sensor according to an embodiment of the present invention.
도 2는 도 1의 가스 센서에 탄소나노튜브 분말이 용해된 용액을 드롭(drop)시키는 경우와 스프레이(spray) 하는 경우의 차이를 설명하기 위한 도면이다.FIG. 2 is a view for explaining a difference between dropping and spraying a solution in which carbon nanotube powder is dissolved in the gas sensor of FIG. 1.
도 3은 도 1의 가스 센서에 탄소나노튜브 분말이 스프레이 방식으로 분산되는 경우, 도 1의 가스 센서의 감도가 향상되는 것을 나타내기 위한 도면이다. 3 is a view showing that the sensitivity of the gas sensor of FIG. 1 is improved when the carbon nanotube powder is dispersed in the gas sensor of FIG.
도 4는 도 1의 가스 센서에 탄소나노튜브 분말이 스탬핑 방식으로 분산되는 경우를 설명하기 위한 도면이다. 4 is a view for explaining a case in which carbon nanotube powder is dispersed in a stamping method in the gas sensor of FIG.
도 5는 도 1의 가스 센서의 제1 전극 및 제2 전극의 간격과, 가스 센서의 감도의 상관관계에 대한 실험예를 나타내는 도면이다. 5 is a diagram illustrating an experimental example of a correlation between a gap between a first electrode and a second electrode of the gas sensor of FIG. 1 and a sensitivity of the gas sensor.
도 6은 도 1의 가스 센서에 인가되는 교류 전원의 주파수와 질소에 대한 도 1의 가스 센서의 감도와의 관계를 나타내는 도면이다. 6 is a diagram illustrating a relationship between a frequency of an AC power source applied to the gas sensor of FIG. 1 and a sensitivity of the gas sensor of FIG. 1 to nitrogen.
도 7은 도 1의 가스 센서에 인가되는 바이어스 전압과, 탄소나노튜브 분말의 임피던스와의 상관관계를 나타내는 도면이다. FIG. 7 is a diagram illustrating a correlation between a bias voltage applied to the gas sensor of FIG. 1 and an impedance of carbon nanotube powder.
도 8은 도 1의 가스 센서를 포함하는 칩을 설명하기 위한 도면이다. FIG. 8 is a diagram for describing a chip including the gas sensor of FIG. 1.
도 9는 도 8의 칩에 열처리 또는 세척을 수행한 결과를 나타내는 도면이다. 9 is a view illustrating a result of performing heat treatment or washing on the chip of FIG. 8.
도 10은 도 8의 칩을 고온으로 열처리한 경우에 가스 센서의 감도 및 회복 속도가 증가하는 결과를 나타내는 도면이다.FIG. 10 is a diagram illustrating a result of increasing sensitivity and recovery speed of a gas sensor when the chip of FIG. 8 is heat-treated at a high temperature.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 도면에 기재된 내용을 참조하여야 한다. DETAILED DESCRIPTION In order to fully understand the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, reference should be made to the accompanying drawings which illustrate preferred embodiments of the present invention and the contents described in the drawings.
이하, 첨부한 도면을 참조하여 본 발명이 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like reference numerals in the drawings denote like elements.
도 1은 본 발명의 실시예에 따른 가스 센서를 나타내는 도면이다. 1 is a view showing a gas sensor according to an embodiment of the present invention.
본 발명의 실시예에 따른 가스 센서(100)의 단면도인 도 1의 (a)를 참조하면, 본 발명의 실시예에 따른 가스 센서(100)는 기판(110), 절연층(120), 제1 전극(130) 및 제2 전극(140)을 구비한다. Referring to FIG. 1A, which is a cross-sectional view of a gas sensor 100 according to an embodiment of the present invention, the gas sensor 100 according to the embodiment of the present invention includes a substrate 110, an insulating layer 120, The first electrode 130 and the second electrode 140 are provided.
기판(110)은 폴리이미드 (Polyimide) 등의 필름으로 구현되는 플렉시블 인쇄 회로 기판일 수 있다. The substrate 110 may be a flexible printed circuit board implemented with a film such as polyimide.
제1 전극(130) 및 제2 전극(140)은 기판(110) 상부에, 서로 이격하여 형성된다. 제1 전극(130) 및 제2 전극(140), 및 기판(110) 사이에는 절연층(120)이 형성될 수 있다. 제1 전극(130) 및 제2 전극(140)은 Au, Ti 또는 이들의 합금 등 다양한 재료로 반들 수 있다. 제1 전극(130) 및 제2 전극(140)은 하나의 기판(110) 상에 형성되기 때문에, 제작 과정이 단순화될 수 있다. The first electrode 130 and the second electrode 140 are formed on the substrate 110 and spaced apart from each other. An insulating layer 120 may be formed between the first electrode 130, the second electrode 140, and the substrate 110. The first electrode 130 and the second electrode 140 may be made of various materials such as Au, Ti, or an alloy thereof. Since the first electrode 130 and the second electrode 140 are formed on one substrate 110, the manufacturing process may be simplified.
제1 전극(130) 및 제2 전극(140)에는 교류 전원(AC)이 인가될 수 있다. AC power AC may be applied to the first electrode 130 and the second electrode 140.
본 발명의 실시예에 따른 가스 센서(100)의 단면도인 도 1의 (a)를 참조하면, 제1 전극(130) 및 제2 전극(140)은 각각, 서로 인터-디지테이티드(inter-digitated) 형태로 형성된 복수개의 제1 서브 전극들(132) 및 제2 서브 전극들(142)을 포함할 수 있다. 즉, 복수개의 제1 서브 전극들(132) 및 제2 서브 전극들(142)은 서로 마주하고 이격하여 위치하여, 제1 서브 전극들(132) 사이에 제2 서브 전극들(142)이 위치하고, 제2 서브 전극들(142) 사이에 제1 서브 전극들(132)이 위치한다. Referring to FIG. 1A, which is a cross-sectional view of a gas sensor 100 according to an embodiment of the present invention, the first electrode 130 and the second electrode 140 are each inter-digitated with each other. It may include a plurality of first sub-electrodes 132 and the second sub-electrodes 142 formed in a digitated form. That is, the plurality of first sub-electrodes 132 and the second sub-electrodes 142 face each other and are spaced apart from each other, such that the second sub-electrodes 142 are positioned between the first sub-electrodes 132. The first sub electrodes 132 are positioned between the second sub electrodes 142.
또한, 도 1에 도시되는 바와 같이, 제1 서브 전극들(132)은 제1 전극(130)과 일체로 형성되어 제2 전극(140)을 향해 뻗는 빗 모양의 형상으로 구비될 수 있다. 마찬가지로, 제2 서브 전극들(142)은 제2 전극(140)과 일체로 형성되어 제1 전극(130)을 향해 뻗는 빗 모양의 형상으로 구비될 수 있다. In addition, as shown in FIG. 1, the first sub-electrodes 132 may be formed in a comb-like shape integrally formed with the first electrode 130 and extending toward the second electrode 140. Similarly, the second sub-electrodes 142 may be formed integrally with the second electrode 140 and may have a comb-shaped shape extending toward the first electrode 130.
제1 전극(130) 및 제2 전극(140) 사이, 즉 제1 서브 전극들(132) 및 제2 서브 전극들(142) 사이에는 탄소나노튜브 분말(CNT)이 분포될 수 있다. 다만, 이에 한정되는 것은 아니고, 탄소나노튜브 분말(CNT) 대신에 나노와이어 분말이 사용될 수도 있다. 나노와이어는 나노미터 단위의 크기를 갖는 와이어 구조체로, 이하에서 설명되는 탄소나노튜브 분말(CNT)와 마찬가지로 제1 전극(130) 및 제2 전극(140) 사이 도포될 수 있고, 가스의 농도에 따라 임피던스를 변화시킬 수 있다. 따라서, 설명의 편의를 위하여, 이하에서는 탄소나노튜브 분말(CNT)에 한하여 설명한다. 그러나, 본 발명이 속하는 기술분야에 종사하는 자는 다음의 탄소나노튜브 분말(CNT)에 대한 설명으로부터 나노와이어 분말을 사용하는 본원발명의 가스센서도 용이하게 실시할 수 있을 것이다. Carbon nanotube powder (CNT) may be distributed between the first electrode 130 and the second electrode 140, that is, between the first sub-electrodes 132 and the second sub-electrodes 142. However, the present invention is not limited thereto, and nanowire powder may be used instead of carbon nanotube powder (CNT). The nanowire is a wire structure having a size in nanometers, and may be applied between the first electrode 130 and the second electrode 140 in the same manner as the carbon nanotube powder (CNT) described below. The impedance can be changed accordingly. Therefore, for convenience of description, hereinafter, only carbon nanotube powder (CNT) will be described. However, those of ordinary skill in the art to which the present invention pertains may easily perform the gas sensor of the present invention using the nanowire powder from the description of the following carbon nanotube powder (CNT).
탄소나노튜브는 전술한 바와 같이, 이를 가스 센서에 사용하는 경우, 상온에서 동작이 가능하고, NH3, NO2 또는 휘발성유기화합물(VOCs) 등의 유해 가스와의 반응 시에도 임피던스의 변화가 커서 감도가 매우 좋다. 또한, 반응속도 및 응답속도가 빠르다는 장점이 있다. As described above, when the carbon nanotube is used in a gas sensor, the carbon nanotube can be operated at room temperature, and the impedance change is large even when reacting with harmful gases such as NH 3 , NO 2, or volatile organic compounds (VOCs). Sensitivity is very good. In addition, there is an advantage that the reaction rate and response rate is fast.
탄소나노튜브는 원래 소수성 특성을 가지고 있는데, 이는 탄소나노튜브가 가지는 구조때문이다. 그런데, 탄소나노튜브가 가지는 표면 결함(defect)은 결합력이 강하여 다른 분자들과 쉽게 결합한다. 따라서, 탄소나노튜브의 소수성 또는 친수성 특성은 탄소나노튜브의 표면 결함에 의하여 조절될 수 있다. Carbon nanotubes originally have hydrophobic properties because of the structure of carbon nanotubes. However, surface defects of carbon nanotubes have a strong bonding force and thus easily bond with other molecules. Therefore, hydrophobic or hydrophilic properties of the carbon nanotubes can be controlled by surface defects of the carbon nanotubes.
탄소나노튜브의 소수성 또는 친수성 특성을 상기와 같이 조절함으로써, 탄소나노튜브를 사용하는 가스 센서는 특정 가스에 대한 선택성을 부여할 수 있어, 다양한 가스의 농도를 정확하게 측정할 수 있다. By adjusting the hydrophobic or hydrophilic properties of the carbon nanotubes as described above, the gas sensor using the carbon nanotubes can give a selectivity to a specific gas, it is possible to accurately measure the concentration of various gases.
그러나, 전술한 바와 같이, 종래 기술에 따른 탄소나노튜브를 사용하는 가스 센서는, 센싱 동작이 끝난 후 센서가 초기화되는데 오랜 시간이 걸리거나 센싱 감도가 떨어지는 문제가 있다.However, as described above, the gas sensor using the carbon nanotube according to the prior art has a problem that it takes a long time to initialize the sensor after the sensing operation is finished or the sensing sensitivity is lowered.
반면, 본 발명의 실시예에 따른 가스 센서(100)는 감도를 높이면서도 회복 속도(초기화에 걸리는 시간)을 감축할 수 있다. 이에 대하여 더 자세히 설명한다. On the other hand, the gas sensor 100 according to the embodiment of the present invention can reduce the recovery speed (time required for initialization) while increasing the sensitivity. This is described in more detail.
계속해서 도 1을 참조하면, 제1 전극(130) 및 제2 전극(140) 사이에 분산되는 탄소나노튜브 분말(CNT)은, 교류 전원(AC)이 인가되면, 가스(gas)의 종류에 따라 임피던스가 변화되게 된다. 제1 전극(130) 및 제2 전극(140) 사이에 분산되는 탄소나노튜브 분말(CNT)의 임피던스 변화량은 LCR(인덕턴스, 커패시턴스 및 레지스턴스) 미터 등과 같은 측정 장치(미도시)에 의하여 측정된다. 분산된 탄소나노튜브는 수십 나노미터의 직경을 갖는 매우 작은 튜브의 형태이기 때문에 끝 단에 강한 전기장이 걸리게 되며, 이로 인해 탄소나노튜브 끝 단 및 표면에 가스 분자가 흡착하면 큰 정전 용량의 변화가 나타나게 된다. 이렇게, 변화되는 임피던스를 측정하여, 가스의 농도가 측정될 수 있다. Subsequently, referring to FIG. 1, the carbon nanotube powder CNT dispersed between the first electrode 130 and the second electrode 140 may be applied to the type of gas when AC power is applied. As a result, impedance changes. The impedance change amount of the carbon nanotube powder (CNT) dispersed between the first electrode 130 and the second electrode 140 is measured by a measuring device (not shown) such as an LCR (inductance, capacitance and resistance) meter. Since dispersed carbon nanotubes are in the form of very small tubes with diameters of several tens of nanometers, a strong electric field is applied to the ends. As a result, adsorption of gas molecules on the ends and surfaces of the carbon nanotubes causes large changes in capacitance. Will appear. Thus, by measuring the impedance to be changed, the concentration of the gas can be measured.
바람직하게는, 탄소나노튜브 분말(CNT)은 DCE(1,2-dichloroethane, [ClCH2CH2Cl]), SDS(Sodium Dodecyl Sulfate, [CH3(CH2)11OSO3Na+]) 및 NaDDBS(Sodium Dodecylbenzene Sulfonate, [CH3(CH2)11C6H4SO3Na+]) 등과 같은 계면활성제에 의해 용매에 분산되어, 제1 전극(130) 및 제2 전극(140)에 도포될 수 있다. 탄소나노튜브 분말(CNT)이 계면활성제에 의해 용매에 분산되는 경우, 탄소나노튜브 분말(CNT)이 제1 전극(130) 및 제2 전극(140) 사이에 고루 도포될 수 있다. 따라서, 센싱 감도가 향상될 수 있다. Preferably, the carbon nanotube powder (CNT) is DCE (1,2-dichloroethane, [ClCH 2 CH 2 Cl]), SDS (Sodium Dodecyl Sulfate, [CH 3 (CH 2) 11 OSO 3 Na +]) and NaDDBS (Sodium Dodecylbenzene Sulfonate, [CH 3 (CH 2) 11C6H4SO3Na +]), and the like, may be dispersed in a solvent and applied to the first electrode 130 and the second electrode 140. When the carbon nanotube powder (CNT) is dispersed in the solvent by the surfactant, the carbon nanotube powder (CNT) may be evenly applied between the first electrode 130 and the second electrode 140. Therefore, the sensing sensitivity can be improved.
본 발명의 실시예에 따른 가스 센서(100)는 계면활성제에 의해 용매에 분산된 탄소나노튜브 분말(CNT)을 스프레이(spray) 방식으로 도포할 수 있다. 탄소나노튜브 분말(CNT)을 스프레이를 이용하여 도포하면, 탄소나노튜브 분말이 용해된 용액을 드롭(drop)시키는 경우(도 2의 (a))보다, 도 2의 (b)에 도시되는 바와 같이, 탄소나노튜브 분말(CNT)이 균일하게 도포될 수 있다. The gas sensor 100 according to the exemplary embodiment of the present invention may apply carbon nanotube powder (CNT) dispersed in a solvent by a surfactant in a spray method. When carbon nanotube powder (CNT) is applied using a spray, it is as shown in (b) of FIG. 2 rather than dropping a solution in which the carbon nanotube powder is dissolved ((a) of FIG. 2). Likewise, carbon nanotube powder (CNT) may be uniformly applied.
따라서, 탄소나노튜브 분말(CNT)이 스프레이 방식으로 분산되는 경우, 도 3의 (a)에 도시되는 바와 같이, 감도가 증가할 수 있으며, 도 3의 (b)에 도시되는 바와 같이, 회복 시간(t)이 감축될 수 있다. 또한, 스프레이 방식은, 탄소나노튜브 분말이 분산된 용액을 드롭시키는 경우보다 탄소나노튜브 형성 조건을 정밀하게 조정할 수 있는 장점이 있다. Therefore, when the carbon nanotube powder (CNT) is dispersed in a spray method, as shown in FIG. 3 (a), the sensitivity may increase, and as shown in FIG. 3 (b), a recovery time (t) can be reduced. In addition, the spray method has an advantage that the carbon nanotube formation conditions can be precisely adjusted than when the solution in which the carbon nanotube powder is dispersed is dropped.
탄소나노튜브 분말(CNT)을 스프레이 방식으로 분산시키는 외에, 본 발명의 실시예에 따른 가스 센서(100)는 계면활성제에 의해 분산된 탄소나노튜브 분말(CNT)을 도 4의 (a)에 도시되는 바와 같이, 전극의 면적과 유사한 내경을 갖는 튜브를 이용하여 튜브 끝에 탄소나노튜브 분말이 분산된 용액의 표면장력에 의해 용액이 반구의 형태로 형성되도록 하고, 이 용액을 제1 전극(130)과 제2 전극(140) 사이의 공간에 찍는 스탬핑(stamping) 방식으로 분산시킬 수 있다. 스탬핑 방식으로 분산되는 탄소나노튜브 분말(CNT)은, 도 4의 (a)에 도시되는 바와 같이, 빠르고 간편하면서도 균일하게 도포될 수 있다. 이는, 도 4의 (b)와 같이 용액 방울을 드롭시키는 경우에, 건조되는 과정에서 표면장력(화살표)에 의하여, 탄소나노튜브 분말(CNT)이 용액의 방울의 가장자리에 밀집되는 문제를 해결할 수 있다. 즉, 스탬핑 방식의 경우, 탄소나노튜브 분말(CNT)이 고루 분산되어, 가스 센서의 감도가 향상될 수 있다. In addition to dispersing the carbon nanotube powder (CNT) in a spray method, the gas sensor 100 according to an embodiment of the present invention shows the carbon nanotube powder (CNT) dispersed by a surfactant in FIG. As described above, the solution is formed in the shape of hemisphere by the surface tension of the solution in which the carbon nanotube powder is dispersed at the end of the tube by using a tube having an inner diameter similar to that of the electrode, and the solution is formed in the first electrode 130 It can be dispersed in a stamping (stamping) method in the space between the second electrode 140. Carbon nanotube powder (CNT) dispersed in a stamping method, as shown in Figure 4 (a), can be applied quickly, simply and uniformly. This, when dropping the solution drops as shown in Figure 4 (b), by the surface tension (arrow) during the drying process, the carbon nanotube powder (CNT) can solve the problem of dense to the edge of the drop of the solution have. That is, in the case of the stamping method, the carbon nanotube powder (CNT) is evenly distributed, so that the sensitivity of the gas sensor may be improved.
이렇게 본 발명의 실시예에 따른 가스 센서(100)는 탄소나노튜브 분말(CNT)이 용해된 용액의 분산을 스프레이 방식 또는 스탬핑 방식에 의하여 감도를 향상시킬 수 있다. Thus, the gas sensor 100 according to the embodiment of the present invention may improve the sensitivity of the dispersion of the solution in which the carbon nanotube powder (CNT) is dissolved by spraying or stamping.
다시 도 1을 참조하면, 제1 전극(130) 및 제2 전극, 즉 제1 서브 전극(132) 및 제2 서브 전극(142)의 간격이 좁아질수록, 감도가 증가할 수 있다. 제1 전극(130) 및 제2 전극(140)의 간격과 감도의 상관관계에 대한 실험예를 나타내는 도 5 그래프를 참조하면, 약 5 마이크로미터 이하에서 감도가 증가됨을 알 수 있다. Referring back to FIG. 1, as the distance between the first electrode 130 and the second electrode, that is, the first sub-electrode 132 and the second sub-electrode 142 is narrower, sensitivity may increase. Referring to FIG. 5, which shows an experimental example of the correlation between the interval between the first electrode 130 and the second electrode 140 and the sensitivity, it can be seen that the sensitivity is increased at about 5 micrometers or less.
또한, 도 1의 가스 센서에 인가되는 교류 전원의 주파수와 질소에 대한 도 1의 가스 센서의 감도와의 관계를 나타내는 도 6에 도시되는 바와 같이, 특정 가스는 특정 주파수에서 감도가 향상될 수 있다. 본 발명의 실시예에 따른 가스 센서는, 특정가스가 특정 주파수에서 우수한 감도 및 회복 속도를 갖는 특성을 이용하여, 각각 서로 다른 3개 이상의 주파수에서 가스에 대한 감도를 확인하여, 가스에 대한 선택성을 가질 수 있다. In addition, as shown in FIG. 6 showing the relationship between the frequency of the AC power applied to the gas sensor of FIG. 1 and the sensitivity of the gas sensor of FIG. 1 with respect to nitrogen, the specific gas may be improved in sensitivity at a specific frequency. . Gas sensor according to an embodiment of the present invention, by using a characteristic that the specific gas has a good sensitivity and recovery rate at a specific frequency, by checking the sensitivity to the gas at three or more different frequencies, respectively, selectivity to the gas Can have
이렇듯, 본 발명의 실시예에 따른 가스 센서에 인가되는 교류 전원의 주파수를 달리 설정함으로써, 특정 가스에 대한 감도 또는 회복 속도를 설정할 수 있다. As such, by differently setting the frequency of the AC power applied to the gas sensor according to the embodiment of the present invention, the sensitivity or the recovery speed for the specific gas can be set.
다시 도 1을 참조하면, 본 발명의 실시예에 따른 가스 센서(100)는 히터(150)를 더 구비할 수 있다. 히터(150)는 기판(110)과 전극들(130, 140) 사이에 위치할 수 있다. 히터(150)에는 전류가 공급되어, 가스 센서(100)의 온도를 유지시킴으로써, 센서의 감도 및 신뢰성을 향상시킬 수 있다. 히터는 주로 고온에서 안정한 백금 등을 이용하며, 기판과의 열팽창계수 차이에 의해 박리되는 문제를 해결하기 위해 티타늄(Ti)과 같이 기판과 히터 물질의 중간 정도의 열팽창계수를 갖는 물질로 구현될 수 있다. Referring back to FIG. 1, the gas sensor 100 according to the embodiment of the present invention may further include a heater 150. The heater 150 may be located between the substrate 110 and the electrodes 130 and 140. A current is supplied to the heater 150 to maintain the temperature of the gas sensor 100, thereby improving the sensitivity and reliability of the sensor. The heater mainly uses platinum, which is stable at high temperatures, and may be implemented as a material having a moderate thermal expansion coefficient between the substrate and the heater material, such as titanium (Ti), to solve the problem of peeling off due to the difference in thermal expansion coefficient with the substrate. have.
바람직하게는, 본 발명의 실시예에 따른 가스 센서(100)는 제1 전극(130) 또는 제2 전극(140)을 연결하는 비아(via, 160)를 더 구비할 수 있다. 본 발명의 실시예에 따른 가스 센서(100)는 비아(160)에 바이어스 전압(DC)이 인가됨으로써, 센싱하고자 하는 가스를 설정할 수 있다.Preferably, the gas sensor 100 according to the embodiment of the present invention may further include vias 160 connecting the first electrode 130 or the second electrode 140. The gas sensor 100 according to the exemplary embodiment of the present invention may set the gas to be sensed by applying the bias voltage DC to the via 160.
바이어스 전압(DC)과, 탄소나노튜브 분말(CNT)의 임피던스와의 상관관계를 나타내는 도 7을 참조하면, 바이어스 전압(DC)의 크기에 따라 센싱되는 가스의 종류가 달라지는 것을 알 수 있다. 즉, 특정 바이어스 전압에서 특정 가스의 감도가 향상될 수 있다. 예를 들어, 바이어스 전압이 약 -2V에서 0V인 구간에서, 이산화질소에 대한 감도가 향상될 수 있다. Referring to FIG. 7 showing the correlation between the bias voltage DC and the impedance of the carbon nanotube powder CNT, it can be seen that the type of gas sensed varies according to the magnitude of the bias voltage DC. That is, the sensitivity of a particular gas at a specific bias voltage can be improved. For example, in a section in which the bias voltage is about −2V to 0V, sensitivity to nitrogen dioxide may be improved.
따라서, 본 발명의 실시예에 따른 가스 센서(100)는 바이어스 전압(DC)을 달리 설정함으로써, 센싱하고자 하는 가스의 종류를 설정할 수 있다. Therefore, the gas sensor 100 according to the exemplary embodiment of the present invention may set the type of gas to be sensed by differently setting the bias voltage DC.
도 8의 (a)는 도 1의 가스 센서(100)와, 도 1의 가스 센서(100)의 제1 전극(130) 및 제2 전극(140)에 전압을 공급하는 동작 전원(교류, AC)을 공급하는 전압패드들(VPAD)과, 히터(150) 및 바이어스 전극에 히터 동작전원 또는 바이어스 전압(DC)을 공급하는 히터패드들(HPAD)이 구비되는 칩(CIP)을 도시한다. 가스 센서(100)는 전압패드들(VPAD) 및 히터패드들(HPAD)의 가운데 위치할 수 있다. 도 1의 (b)의 a, b, c 및 d는 각각, 도 8의 (a)의 a', b', c' 및 d'와 연결될 수 있다. 히터는 주로 고온에서 안정하면서 전류가 흐르면 발열하는 백금 저항체로 이루어져 있으며, 히터에 전원이 공급되어 전류가 흐르면 히터가 가열되어 열이 발생하고, 히터전원을 제어하면 히터의 온도를 제어할 수 있다. 또한 히터를 사용할 필요가 없는 경우에는 동일한 패드를 이용하여 히터 패턴과 전극 사이에 바이어스 전압을 인가함으로서 센서가 가스에 대한 선택성을 갖도록 할 수 있다.FIG. 8A illustrates an operating power supply (AC, AC) for supplying a voltage to the gas sensor 100 of FIG. 1 and the first electrode 130 and the second electrode 140 of the gas sensor 100 of FIG. 1. ) Shows a chip CIP provided with voltage pads VPAD for supplying the CPAD and heater pads HPAD for supplying the heater operating power or the bias voltage DC to the heater 150 and the bias electrode. The gas sensor 100 may be positioned in the middle of the voltage pads VPAD and the heater pads HPAD. A, b, c, and d of FIG. 1B may be connected to a ', b', c ', and d' of FIG. 8A, respectively. The heater is mainly composed of a platinum resistor that is stable at high temperature and generates heat when a current flows. When the current is supplied to the heater, the heater is heated to generate heat, and when the heater power is controlled, the temperature of the heater can be controlled. In addition, when the heater does not need to be used, the sensor may have a selectivity to gas by applying a bias voltage between the heater pattern and the electrode using the same pad.
도 8의 (a)의 칩(CIP) 또는 도 8의 (b)의 웨이퍼는 히팅(heating) 처리되거나, 세척될 수 있다. 도 8의 (a)의 칩(CIP) 또는 도 8의 (b)의 웨이퍼가 히팅처리되면, 도 9의 (a)에 도시되는 바와 같이, 계면활성제가 제거되어 가스 센서의 반응 및 회복 속도가 빨라진다. 마찬가지로, 도 8의 (a)의 칩(CIP) 또는 도 9의 (b)의 웨이퍼를 알코올 또는 물로 세척한 후 열처리하면, 도 9의 (b)에 도시되는 바와 같이, 계면활성제가 제거되어 가스 센서의 반응 및 회복 속도가 빨라진다. The chip CIP of FIG. 8A or the wafer of FIG. 8B may be heated or cleaned. When the chip CIP of FIG. 8A or the wafer of FIG. 8B is heated, as shown in FIG. 9A, the surfactant is removed to increase the reaction and recovery rate of the gas sensor. Faster. Similarly, when the chip CIP of FIG. 8A or the wafer of FIG. 9B is washed with alcohol or water and then thermally treated, as shown in FIG. 9B, the surfactant is removed to form a gas. The response and recovery rate of the sensor is faster.
전술한 바와 같이, 제1 전극(130) 및 제2 전극(140) 사이의 영역에 도포된 탄소나노튜브 분말(CNT)의 균일성은, 센서의 감도에 많은 영향을 미칠 수 있다.As described above, the uniformity of the carbon nanotube powder (CNT) applied to the region between the first electrode 130 and the second electrode 140 can have a significant effect on the sensitivity of the sensor.
도 8의 (a)의 칩(CIP) 또는 도 8의 (b)의 웨이퍼는 또한, 할로겐 램프 등을 이용하여 가열처리될 수 있다. 고온으로의 열 처리에 의하여, 도 10의 (a)와 같은 가스 센서의 감도 및 반응 속도가 도 10의 (b)와 같이 향상될 수 있다. The chip CIP of FIG. 8A or the wafer of FIG. 8B can also be heat treated using a halogen lamp or the like. By the heat treatment at a high temperature, the sensitivity and reaction speed of the gas sensor as shown in FIG. 10 (a) can be improved as shown in FIG. 10 (b).
본 발명에 따른 가스 센서는 감도 및 반응 속도를 향상시킬 수 있는 장점이 있다. 또한, 바이어스 전압을 달리하여 특정 가스에 대한 감도를 향상시키거나, 교류 전원의 주파수를 달리하여 감도 또는 회복 속도를 조절하는 등 사용자의 필요에 따라 다양하게 설계될 수 있다. The gas sensor according to the present invention has an advantage of improving sensitivity and reaction speed. In addition, by varying the bias voltage to improve the sensitivity to a specific gas, or by varying the frequency of the AC power source can be variously designed according to the needs of the user, such as adjusting the sensitivity or recovery rate.
이상에서와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, optimal embodiments have been disclosed in the drawings and the specification. Although specific terms have been used herein, these terms are only used for the purpose of describing the present invention and are not used to limit the scope of the present invention as defined in the meaning or claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명은 가스센서의 제조분야에 이용될 수 있다. The present invention can be used in the field of manufacturing gas sensors.

Claims (10)

  1. 기판 위에 형성되고, 교류 전원이 인가되며, 서로 이격하여 위치하는 제1 전극 및 제2 전극; 및A first electrode and a second electrode formed on the substrate, the AC power being applied, and spaced apart from each other; And
    상기 제1 전극 및 상기 제2 전극 사이에 형성되는 영역에 분산되는 탄소나노튜브 분말 또는 나노와이어를 구비하고, 가스의 농도에 따라 상기 탄소나노튜브 분말의 임피던스가 변화되는 것을 특징으로 하는 가스 센서.And a carbon nanotube powder or nanowire dispersed in a region formed between the first electrode and the second electrode, wherein the impedance of the carbon nanotube powder is changed according to the concentration of the gas.
  2. 제1 항에 있어서, 상기 기판은,The method of claim 1, wherein the substrate,
    폴리이미드 필름(Polyimide film)으로 구현되는 플렉시블 인쇄 회로 기판인 것을 특징으로 하는 가스 센서. Gas sensor, characterized in that the flexible printed circuit board implemented by a polyimide film (Polyimide film).
  3. 제1 항에 있어서, According to claim 1,
    상기 제1 전극은, 상기 제1 전극과 일체로 형성되고 끝단이 상기 제2 전극을 향하는 제1 서브 전극들을 구비하고, The first electrode has first sub-electrodes formed integrally with the first electrode and whose ends face the second electrode,
    상기 제2 전극은, 상기 제2 전극과 일체로 형성되고 끝단이 상기 제1 전극을 향하는 제2 서브 전극들을 구비하며, The second electrode has second sub electrodes formed integrally with the second electrode and whose ends face the first electrode.
    상기 제1 서브 전극들 및 상기 제2 서브 전극들은 서로, The first sub electrodes and the second sub electrodes are each other,
    상기 제1 서브 전극들 사이 사이에 상기 제2 서브 전극들이 위치하여 빗 모양의 인터-디지테이티드(inter-digitated) 형상으로 구비되는 것을 것을 특징으로 하는 가스 센서. And the second sub-electrodes are positioned between the first sub-electrodes to have a comb-shaped inter-digitated shape.
  4. 제3 항에 있어서, 상기 제1 서브 전극 및 상기 제2 서브 전극은 서로,The method of claim 3, wherein the first sub-electrode and the second sub-electrode are each other,
    10 마이크로미터 이하로 이격하여 위치하는 것을 특징으로 하는 가스 센서.A gas sensor, characterized in that it is spaced apart by less than 10 micrometers.
  5. 제1 항에 있어서, 상기 탄소나노튜브 분말 또는 나노와이어 분말은, The method of claim 1, wherein the carbon nanotube powder or nanowire powder,
    계면활성제에 의해 용매에 분산되어 상기 제1 전극 및 상기 제2 전극 사이에 도포되는 것을 특징으로 하는 가스 센서. A gas sensor, which is dispersed in a solvent by a surfactant and applied between the first electrode and the second electrode.
  6. 제5 항에 있어서, The method of claim 5,
    상기 탄소나노튜브 분말 또는 나노와이어 분말이 분산된 용액은, 스프레이(Spray) 방식으로 상기 제1 전극 및 상기 제2 전극 사이에 도포되는 것을 특징으로 하는 가스 센서. The carbon nanotube powder or the solution in which the nanowire powder is dispersed, the gas sensor, characterized in that the spray is applied between the first electrode and the second electrode (Spray) method.
  7. 제5 항에 있어서, The method of claim 5,
    미세 튜브를 이용하여 상기 탄소나노튜브 분말 또는 나노와이어 분말이 분산된 용액을 상기 제1 전극 및 상기 제2 전극 사이에 형성된 영역에 찍는 스탬핑(stamping) 방식으로 분산되는 것을 특징으로 하는 가스 센서. The gas sensor, characterized in that the dispersion of the carbon nanotube powder or nanowire powder is dispersed in a stamping (stamping) method to the area formed between the first electrode and the second electrode by using a fine tube.
  8. 제1 항에 있어서, According to claim 1,
    상기 제1 전극 및 상기 제2 전극의 하부에 위치하고, 상기 가스 센서의 온도를 유지시키는 히터를 더 구비하는 것을 특징으로 하는 가스 센서. And a heater positioned below the first electrode and the second electrode to maintain a temperature of the gas sensor.
  9. 제8 항에 있어서, The method of claim 8,
    상기 제1 전극 또는 상기 제2 전극과, 상기 히터를 관통하는 비아를 더 구비하고, And a via penetrating the first electrode or the second electrode and the heater,
    상기 비아에는 센싱하고자 하는 가스의 종류에 따른 전압 레벨을 갖는 바이어스 전압이 인가되는 것을 특징으로 하는 가스 센서. And a bias voltage having a voltage level corresponding to a type of gas to be sensed.
  10. 제1 항에 있어서, 상기 교류 전원은, The method of claim 1, wherein the AC power source,
    센싱하고자 하는 가스의 종류에 따른 주파수로 인가되는 것을 특징으로 하는 가스 센서.Gas sensor, characterized in that applied to the frequency according to the type of gas to be sensed.
PCT/KR2010/004635 2009-07-17 2010-07-16 Gas sensor WO2011008043A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0065227 2009-07-17
KR1020090065227A KR20110007676A (en) 2009-07-17 2009-07-17 Gas sensor

Publications (3)

Publication Number Publication Date
WO2011008043A2 true WO2011008043A2 (en) 2011-01-20
WO2011008043A9 WO2011008043A9 (en) 2011-03-31
WO2011008043A3 WO2011008043A3 (en) 2011-05-12

Family

ID=43449987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004635 WO2011008043A2 (en) 2009-07-17 2010-07-16 Gas sensor

Country Status (2)

Country Link
KR (1) KR20110007676A (en)
WO (1) WO2011008043A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346806B2 (en) 2017-11-20 2022-05-31 Honeywell International Inc. Low profile ionization detector

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492389B1 (en) * 2013-10-18 2015-02-12 공주대학교 산학협력단 Electrostatic gas sensor
KR102651194B1 (en) * 2019-05-21 2024-03-27 울산과학기술원 GASS SENSOR BASED ON THE 3ω-METHOD USING A SUSPENDED CARBON NANOWIRE AND METHOD FOR MANUFACTURING GASS SENSOR
KR102435557B1 (en) * 2020-04-10 2022-08-24 포항공과대학교 산학협력단 Flexible gas sensor and method of manufacturing the same
KR102608526B1 (en) * 2021-10-05 2023-12-04 한국과학기술원 Suspended nanowire structure capable of high-speed operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082082A (en) * 2000-09-07 2002-03-22 Matsushita Refrig Co Ltd Odor sensor and its manufacturing method
KR20070096121A (en) * 2006-01-05 2007-10-02 삼성전자주식회사 Gas sensor using carbon nanotube and method of measuring using the same
KR100809421B1 (en) * 2006-09-29 2008-03-05 한국전자통신연구원 Gas sensor having nano size sensing material and method of sensing using the same
JP2009098121A (en) * 2007-09-26 2009-05-07 Institute Of National Colleges Of Technology Japan Gas sensor and method for manufacturing the gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082082A (en) * 2000-09-07 2002-03-22 Matsushita Refrig Co Ltd Odor sensor and its manufacturing method
KR20070096121A (en) * 2006-01-05 2007-10-02 삼성전자주식회사 Gas sensor using carbon nanotube and method of measuring using the same
KR100809421B1 (en) * 2006-09-29 2008-03-05 한국전자통신연구원 Gas sensor having nano size sensing material and method of sensing using the same
JP2009098121A (en) * 2007-09-26 2009-05-07 Institute Of National Colleges Of Technology Japan Gas sensor and method for manufacturing the gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346806B2 (en) 2017-11-20 2022-05-31 Honeywell International Inc. Low profile ionization detector

Also Published As

Publication number Publication date
KR20110007676A (en) 2011-01-25
WO2011008043A9 (en) 2011-03-31
WO2011008043A3 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
WO2011008043A2 (en) Gas sensor
Nassar et al. Paper skin multisensory platform for simultaneous environmental monitoring
US8901913B2 (en) Microelectrode arrays
CN109100075B (en) Flexible pressure sensor for electronic skin and preparation method
CN106716152A (en) Thin-film resistive-based sensor
WO2010056049A9 (en) Humidity sensor of capacitance type and method of fabricating same
EP1360478A1 (en) Microsensor and single chip integrated microsensor system
JP2008536124A5 (en)
US9964508B2 (en) Sensing water vapour
Vasiljević et al. Performance analysis of flexible ink-jet printed humidity sensors based on graphene oxide
CN108414603A (en) A kind of humidity sensor and preparation method thereof based on electric double layer thin film transistor (TFT)
KR100856577B1 (en) Carbon nanotube sensor and method for manufacturing the same
KR20020060694A (en) Gas sensor and fabrication method thereof
CN109459469A (en) A kind of virtual sensors array and preparation method thereof
CN109211459A (en) A kind of flexible carbon nano tube thermosensitive film shear stress microsensor and its manufacturing method
KR100529233B1 (en) Sensor and method for manufacturing the same
KR20110123559A (en) Carbon nano tube gas sensor
JP4041063B2 (en) Nanowire filament
CN111157039A (en) Multifunctional gas sensor capable of detecting humidity, temperature and flow simultaneously and preparation method thereof
CN110320263A (en) Analytical equipment
CN110228283A (en) Transfer device and its manufacturing method
Hsu et al. Carbon nanotube‐based hot‐film and temperature sensor assembled by optically‐induced dielectrophoresis
Stankova et al. Sputtered and screen-printed metal oxide-based integrated micro-sensor arrays for the quantitative analysis of gas mixtures
KR20150111246A (en) Bio Sensor
JP2008519435A (en) In situ wafer and probe desorption using closed-loop heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10800054

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10800054

Country of ref document: EP

Kind code of ref document: A2