WO2011007752A1 - Method for removing impurities from carbon dioxide gas - Google Patents

Method for removing impurities from carbon dioxide gas Download PDF

Info

Publication number
WO2011007752A1
WO2011007752A1 PCT/JP2010/061760 JP2010061760W WO2011007752A1 WO 2011007752 A1 WO2011007752 A1 WO 2011007752A1 JP 2010061760 W JP2010061760 W JP 2010061760W WO 2011007752 A1 WO2011007752 A1 WO 2011007752A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
dioxide gas
impurities
boiling
liquid
Prior art date
Application number
PCT/JP2010/061760
Other languages
French (fr)
Japanese (ja)
Inventor
康二 嘉納
正隆 山本
泰正 森田
渡 白水
大介 萩生
Original Assignee
財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人地球環境産業技術研究機構 filed Critical 財団法人地球環境産業技術研究機構
Publication of WO2011007752A1 publication Critical patent/WO2011007752A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/80Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/84Separating high boiling, i.e. less volatile components, e.g. NOx, SOx, H2S
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for removing impurities in carbon dioxide gas.
  • the crude carbon dioxide gas produced as a by-product in the purification process of natural gas and petroleum refinery gas is further processed into a carbon dioxide product for industrial, food and medical use through a purification process for removing impurities.
  • the quality of the product carbon dioxide purified in this way is regulated by JIS K 1106 for industrial use, by the Food Additives Official Code of the Food Sanitation Act, and by the Pharmaceutical Affairs Law for medical use.
  • impurities contained in the crude carbon dioxide gas for example, methane (boiling point ⁇ 161.5 ° C.), ethane (boiling point ⁇ 89.0 ° C.), propane (boiling point ⁇ 42.1 ° C.), carbon monoxide (boiling point) -192 ° C), hydrogen (boiling point -252.5 ° C), oxygen (boiling point -183.0 ° C), nitrogen (boiling point -195.8 ° C), hydrogen sulfide (boiling point -60.7 ° C), etc.
  • low-boiling impurities low-boiling substances that vaporize at extremely low temperatures
  • high-boiling substances mainly composed of benzene (boiling point 80 ° C.), toluene (boiling point 111 ° C.), para-xylene (boiling point 138 ° C.), etc.
  • high-boiling-point impurities also needs to be removed as impurities.
  • the boiling point of the above-mentioned substance is a boiling point under atmospheric pressure.
  • the amine When amines are used as an absorbing solution compared to hot potassium carbonate, the amine is an organic substance, so that the dissolution of hydrocarbons increases, and low-boiling impurities such as alkanes such as methane, ethane, and propane, alkenes, and alkynes.
  • low-boiling impurities such as alkanes such as methane, ethane, and propane, alkenes, and alkynes.
  • high-boiling hydrocarbons such as benzene, toluene, and xylene are included in the crude carbon dioxide gas obtained from the decarboxylation apparatus.
  • the purified liquid carbonic acid taken out from the bottom of the liquid carbonic acid rectification tower contains high boiling point impurities almost as it is. .
  • Patent Document 1 and Patent Document 2 the amount of carbon dioxide gas that is driven up to the top of a liquid carbonic acid rectification column and discarded outside the system is reduced.
  • a method of removing low boiling point impurities in advance from a raw raw carbon dioxide gas using a desulfurization catalyst, an oxidation catalyst or the like before liquefying the carbon dioxide gas is shown.
  • benzene and para-xylene are high-melting substances having melting points of 5.5 ° C. and 13 ° C., respectively, so that these substances are not removed and supplied to the liquid carbonic acid rectification column as raw carbon dioxide gas.
  • the solidification may occur in the liquid carbonic acid rectification column usually operated at ⁇ 14 to ⁇ 18 ° C., and the apparatus may be blocked.
  • an object of the present invention is to economically remove both low-boiling point impurities and high-boiling point impurities in the crude carbon dioxide gas.
  • An object of the present invention is to provide a method for removing impurities in carbon dioxide gas, which can obtain product carbon dioxide gas in a recovery rate.
  • a low-boiling point impurity which is an impurity having a higher boiling point than carbon dioxide gas and an impurity having a lower boiling point than carbon dioxide gas, contained in the crude carbon dioxide gas.
  • a method for removing boiling point impurities from the crude carbon dioxide gas comprising: removing the high boiling point impurities from the crude carbon dioxide gas; and removing the low boiling point impurities from the crude carbon dioxide gas.
  • the step of removing the high-boiling-point impurities includes the step of supplying the crude carbon dioxide gas containing the high-boiling-point impurities and the low-boiling-point impurities to a liquid carbonic acid rectification column; A step of introducing a predetermined amount of the supply amount of the crude carbon dioxide gas to the top of the column, and a step of discharging the liquid carbon dioxide containing the high-boiling impurities from the bottom of the liquid carbonic acid rectification column to the outside of the system.
  • the step of removing the low-boiling-point impurities comprises converting the carbon dioxide discharged from the top of the column into a first carbon dioxide gas stream having a relatively high flow rate and a second carbon dioxide gas stream having a relatively low flow rate.
  • the step of removing the high-boiling-point impurities further includes supplying the crude carbon dioxide gas containing the high-boiling-point impurities and the low-boiling-point impurities to any one of a plurality of rectification column pre-liquefiers.
  • the other rectification column pre-liquefaction device is operated instead of the rectification column pre-liquefaction device, and the carbon dioxide gas discharged from the rectification column top gas-liquid separator and heated to normal temperature is Supplied to the liquefier before the rectification column where high boiling point impurities are blocked,
  • the high boiling-based impurities melting point may be removed by evaporation, sublimation.
  • the carbon dioxide gas containing the low-boiling-point impurities that are driven up to the top of the liquid carbonic acid rectification column is 95% or more and 97% or less of the supply amount of the crude carbonic acid gas, excluding the reflux that returns to the liquid carbonic acid rectification column. It is preferable.
  • the first carbon dioxide gas flow is 90 to 99% of the flow rate of the carbon dioxide gas discharged from the tower top, and the second carbon dioxide gas flow is 1 of the flow rate of the carbon dioxide gas discharged from the tower top. It is preferably ⁇ 10%.
  • high-boiling impurities that are impurities having a higher boiling point than carbon dioxide gas and impurities having a lower boiling point than carbon dioxide gas are included in the crude carbon dioxide gas.
  • the low boiling point impurities by reflash Removal of impurities in carbon dioxide gas comprising a rectifying column top gas-liquid separator to be separated and removed, and a purge line for discharging the concentrated high boiling point impurities out of the system from the bottom of the liquid carbonic acid rectifying column
  • the crude carbon dioxide gas supplied to the liquid carbonic acid rectification tower is cooled, and the high-boiling impurities having a high melting point higher than the tower top temperature in the liquid carbonic acid rectification tower contained in the crude carbonic acid gas.
  • the crude carbon dioxide gas supplied to the rectification column pre-liquefier is further provided with a plurality of rectification column pre-liquefaction devices that solidify and partially remove the high-boiling-point high-boiling impurities from the crude carbon dioxide gas, At the time when the rectifying column pre-liquefier to which the crude carbon dioxide gas is supplied is blocked by the high-melting-point high-boiling-point impurities, the rectifying column pre-liquefaction device is supplied to the other rectifying column pre-liquefier,
  • the high-melting-point high-boiling impurities deposited in the vessel may be evaporated and sublimated by carbon dioxide gas discharged from the rectifying column top gas-liquid separator and heated to room temperature.
  • the carbon dioxide gas supplied to the rectification column top liquefier is 90 to 99% of the flow rate of the carbon dioxide gas discharged from the column top, and the carbon dioxide gas supplied to the rectification column top gas-liquid separator is The flow rate of carbon dioxide discharged from the top of the column is preferably 1 to 10%.
  • the low-boiling impurities are C1-C4 alkanes, C2-C4 alkenes, and C2-C4 alkynes, and the high-melting high-boiling impurities may be C6 or higher aromatic hydrocarbons.
  • the low boiling point impurities are impurities contained in the crude carbon dioxide gas and have a boiling point lower than that of the carbon dioxide gas
  • the high boiling point impurities are contained in the crude carbon dioxide gas, It is an impurity having a boiling point higher than that of carbon dioxide.
  • the temperature at which carbon dioxide gas liquefies varies depending on various environments in which impurity removal devices such as pressure applied to the system are installed, so the reference temperature when classifying low-boiling impurities and high-boiling impurities is also Depending on various environments in which the impurity removing device is installed, the temperature varies.
  • the low boiling point impurities are impurities contained in natural gas or petroleum refinery gas, or impurities generated in the purification process of these gases.
  • methane (boiling point ⁇ 161.5 ° C.)
  • ethane (Boiling point-89.0 ° C)
  • propane (boiling point-42.1 ° C)
  • butane (boiling point -0.5 ° C)
  • C1-C4 alkanes C2-C4 alkenes
  • C2-C4 alkynes etc.
  • the high-boiling impurities are impurities contained in natural gas or petroleum refinery gas, or impurities generated in the purification process of these gases.
  • benzene (boiling point 80 ° C.), toluene (boiling point 111 ° C.). ), C6 or higher aromatic hydrocarbons such as para-xylene (boiling point 138 ° C.).
  • boiling points of the illustrated low boiling point impurities and high boiling point impurities are those under atmospheric pressure, and are higher in the impurity removal apparatus according to each embodiment of the present invention depending on the pressure in the apparatus. Note that the temperature.
  • an impurity removing apparatus Prior to describing an apparatus for removing impurities in carbon dioxide gas (hereinafter simply referred to as an impurity removing apparatus) according to each embodiment of the present invention, a conventional apparatus for removing impurities in carbon dioxide gas will be described with reference to FIG. Briefly described, the object of the present invention will be clarified.
  • FIG. 5 is an explanatory diagram for explaining a conventional apparatus for removing impurities in carbon dioxide gas.
  • the conventional impurity removing apparatus 10 includes a liquid carbonate rectification column 11, a rectification column reboiler 13, a liquid carbonate supercooler 15, a rectification column top liquefier 17, A distillation column top gas-liquid separator 19, a column top purge gas heater 21, and a pressure control valve 23 are provided.
  • the impurity removing apparatus 10 is provided with a refrigeration apparatus 25.
  • Crude carbon dioxide gas is supplied to the liquid carbonic acid fractionator 11.
  • the liquid carbonic acid rectification column 11 guides low-boiling impurities to the top of the liquid carbonic acid rectification column 11 and discharges them out of the system to perform rectification of the supplied crude carbon dioxide gas.
  • a part of the rectified carbon dioxide gas is liquefied and present as liquid carbonic acid at the bottom of the liquid carbonic acid rectifying column 11.
  • This liquid carbonic acid is high-purity liquid carbonic acid that does not contain low-boiling-point impurities.
  • the rectifying tower reboiler 13 is provided in the liquid carbonic acid rectifying tower 11 and supplies heat necessary for the rectifying in the liquid carbonic acid rectifying tower 11. Specifically, the rectification tower reboiler 13 uses the sensible heat of the liquid refrigerant (more specifically, the pre-expansion liquid refrigerant) supplied from the refrigeration apparatus 25, and the amount of heat required for the liquid carbonic acid rectification tower 11. Supply.
  • the liquid refrigerant more specifically, the pre-expansion liquid refrigerant supplied from the refrigeration apparatus 25, and the amount of heat required for the liquid carbonic acid rectification tower 11. Supply.
  • the liquid carbonic acid supercooler 15 is supplied with liquid carbonic acid extracted from the bottom of the liquid carbonic acid rectification column 11.
  • the liquid carbonic acid supercooler 15 uses the liquid refrigerant supplied from the refrigeration apparatus 25 to bring the liquid carbonic acid into a supercooled state to produce product liquid carbonic acid.
  • the rectification tower top liquefier 17 liquefies carbon dioxide gas containing low-boiling-point impurities discharged from the top of the liquid carbonate rectification tower 11 using the liquid refrigerant discharged from the rectification tower reboiler 13, Carbonate.
  • the refrigerant that has become gas in the rectification tower top liquefier 17 is guided to the refrigeration apparatus 25. Further, liquid carbon dioxide, which is liquefied carbon dioxide gas, is guided to the rectification tower top gas-liquid separator 19 described later, and gas containing low-boiling point impurities that have not been liquefied is guided to the tower top purge gas heater 21. Is done.
  • the rectifying tower top gas-liquid separator 19 separates the liquid carbonic acid supplied from the rectifying tower top liquefier 17 into a gas and a liquid.
  • the liquid carbon dioxide from which the gas component has been separated is supplied again to the liquid carbonic acid fractionator 11 as reflux.
  • the tower top purge gas heater 21 heats the gas containing the low boiling point impurities discharged from the rectification tower top liquefier 17 to a predetermined temperature (for example, room temperature).
  • a predetermined temperature for example, room temperature.
  • the heated gas containing the low-boiling-point impurities is diffused into the atmosphere or flared and discharged outside the apparatus.
  • the pressure control valve 23 is provided on the downstream side of the tower top purge gas heater 21. By controlling the opening and closing of the pressure control valve 23, the pressure of the entire impurity removing device 10 can be adjusted. Thereby, the impurity removal apparatus 10 can adjust the boiling point etc. of a carbon dioxide gas to the temperature suitable for the environment etc. in which the own apparatus was installed.
  • the refrigeration apparatus 25 is an apparatus that realizes a temperature environment required in the impurity removal apparatus 10 using a predetermined refrigerant.
  • the low boiling point impurities contained in the crude carbon dioxide gas supplied to the liquid carbonic acid rectification column 11 are driven up to the top of the liquid carbonic acid rectification column 11. While discharging out of the system, high-purity liquid carbonic acid containing no low-boiling-point impurities is purified at the bottom of the liquid carbonic acid rectifying column 11. Further, the gas containing low-boiling-point impurities discharged from the top of the tower is flared or diffused into the atmosphere through processing by devices such as the rectifying tower top liquefier 17 and the tower top purge gas heater 21.
  • the conventional impurity removal apparatus 10 as shown in FIG. 5 is used to efficiently remove low-boiling impurities from the crude carbon dioxide gas. Is possible. However, in the case of handling crude carbon dioxide by-produced by a method in which not only low boiling point impurities but also high boiling point impurities are mixed in the crude carbon dioxide gas as in the amine absorption method used in recent years, The impurity removing apparatus 10 as shown in FIG. 5 is insufficient. That is, in the impurity removing apparatus 10 as shown in FIG. 5, all of the high-boiling impurities are mixed in the product liquid carbonic acid present at the bottom of the liquid carbonic acid distillation column 11, and the product liquid carbonic acid is not purified. It will be used as.
  • the present inventors have solved the above-mentioned problems, and simultaneously and economically removed the low boiling point impurities and the high boiling point impurities in the crude carbon dioxide gas, so that the product carbon dioxide gas can be removed at a high recovery rate.
  • an apparatus and a method for removing impurities in carbon dioxide gas according to each embodiment of the present invention described below have been conceived.
  • FIG. 1 is an explanatory diagram for explaining an impurity removing apparatus 100 according to the present embodiment
  • FIG. 2 is an explanatory diagram for explaining a refrigeration apparatus according to the present embodiment.
  • the impurity removing apparatus 100 includes a liquid carbonic acid rectifying column 101, a rectifying column reboiler 103, a rectifying column top liquefier 105, and a rectifying column top gas liquid.
  • the separator 107, the product liquid carbonate supercooler 109, the tower top purge gas heater 111, the pressure control valve 113, the purge line 115, the tower bottom purge liquid carbon dioxide evaporator 117, and the refrigeration apparatus 121 are mainly used. Prepare for.
  • the liquid carbonic acid rectification column 101 performs rectification of the supplied crude carbon dioxide gas, and guides low-boiling impurities contained in the crude carbon dioxide gas to the top of the column. In addition, a part of the rectified carbon dioxide gas is liquefied and present as liquid carbonic acid at the bottom of the liquid carbonic acid rectifying column 101. In this liquid carbonic acid, concentrated high boiling point impurities are present.
  • liquid carbonic acid distillation column 101 high boiling point impurities are concentrated at the bottom of the column.
  • the amount of heat required for rectification is supplied from the rectification tower reboiler 103.
  • the pressure at the top of the column is adjusted to an appropriate value, for example, 2.3 MPaG, by the pressure control valve 113, the temperature of each part of the liquid carbonic acid distillation column 101 is determined according to the pressure.
  • a predetermined amount of the supply amount of the crude carbon dioxide gas supplied to the liquid carbonic acid rectification column 101 is purged as liquid carbonic acid from the bottom of the liquid carbonic acid rectification column 101.
  • the amount of column bottom purge liquid carbonic acid is set to a value such that the concentration of high-boiling impurities such as benzene existing near the column top is 1 ppm or less.
  • concentration of high-boiling impurities such as benzene in the crude carbon dioxide is several thousand ppm
  • such a column bottom purge liquid carbonic acid amount is, for example, 3 mol% or more and 5 mol% or less of the number of feed moles. It is possible to set.
  • the concentration of high boiling impurities present near the top of the column can be reduced to 1 ppm or less.
  • the bottom purge liquid carbonic acid content is less than 3 mol%, it is difficult to make the concentration of high boiling impurities present near the top of the tower 1 ppm or less, which is not preferable.
  • the amount of carbon dioxide purged at the bottom of the column is more than 5 mol%, the yield of product liquid carbonic acid is deteriorated, which is not preferable.
  • the amount of carbon dioxide gas that is driven up to the top of the liquid carbonic acid rectifying column 101 is the amount of liquid carbon dioxide as reflux.
  • the amount returned to the distillation is subtracted, and is 95 volume% to 97 volume% of the supply amount of the crude carbon dioxide gas supplied to the liquid carbonic acid fractionator 101.
  • the first carbon dioxide gas flow accounts for 90 to 99% of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101, for example.
  • the second carbon dioxide gas flow occupies 1 to 10% of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101, for example.
  • the internal pressure can be kept at a substantially constant value.
  • the flow rate of the second carbon dioxide gas flow is less than 1%, it is not preferable because it is difficult to sufficiently remove the low boiling point impurities in the crude carbon dioxide gas.
  • the flow rate of the second carbon dioxide gas flow exceeds 10%, it is not economical and not preferable because it causes a decrease in the amount of liquid carbonic acid extracted as product liquid carbonic acid as will be described later.
  • the amount of liquid carbonic acid extracted from the bottom of the liquid carbonic acid rectifying column 101 is, for example, 3 mol% to 5 mol% of the amount of crude carbon dioxide supplied to the liquid carbonic acid rectifying column 101.
  • the liquid carbonic acid containing high-boiling impurities extracted from the bottom of the tower is guided to the tower bottom purging liquid carbonic acid evaporator 117 via the purge line 115.
  • Such a liquid carbonic acid fractionator 101 has, for example, a plurality of stages, and the number of stages of the fractionator can be set as appropriate.
  • the rectifying tower reboiler 103 is provided in the liquid carbonic acid rectifying column 101 and supplies a necessary amount of heat in the liquid carbonic acid rectifying tower 101.
  • the rectification tower reboiler 103 uses the sensible heat of the liquid refrigerant (more specifically, the pre-expansion liquid refrigerant) supplied from the refrigeration apparatus 121 described later to enter the liquid carbonate rectification tower 101. Supply the necessary amount of heat.
  • the first gas flow is supplied to the rectification tower top liquefier 105 out of carbon dioxide gas containing low-boiling-point impurities discharged from the top of the liquid carbonic acid rectification tower 101.
  • the rectifying tower top liquefier 105 heat exchange is performed between the supercooled liquid refrigerant discharged from the rectifying tower reboiler 103 and the first gas flow.
  • the first gas stream is totally condensed into liquid carbonic acid.
  • the liquid refrigerant becomes a gaseous state and is guided to the refrigeration apparatus 121.
  • the liquid carbonic acid obtained as a result of the condensation is guided to the rectification tower top gas-liquid separator 107 described later.
  • the rectifying column top gas-liquid separator 107 is a carbon dioxide gas containing liquid carbonic acid supplied from the rectifying column top liquefier 105 and low-boiling-point impurities discharged from the top of the liquid carbonic acid rectifying column 101.
  • a second gas stream is supplied.
  • the second gas flow is directly guided to the rectification column top gas-liquid separator 107 without passing through the rectification column top liquefier 105.
  • the second gas flow and the liquid carbonic acid supplied from the rectification column top liquefier 105 are mixed in the rectification column top gas-liquid separator 107. As a result, flushing and reliquefaction occur in the rectification column top gas-liquid separator 107.
  • the boiling point of carbon dioxide gas is ⁇ 13 ° C. at 2.3 MPaG, whereas the boiling point of low-boiling impurities is much lower than the boiling point of carbon dioxide gas.
  • Boiling point impurities can be sufficiently separated from liquid carbonic acid.
  • high-purity liquid carbon dioxide containing almost no high-boiling point impurities or low-boiling point impurities can be obtained.
  • a part of the liquid carbonic acid from which low-boiling point impurities have been removed by flashing and reliquefaction is supplied as a reflux liquid to the top of the liquid carbonic acid rectification tower 101, and the remainder is supplied to the liquid carbonic acid supercooler 109. Supplied.
  • the amount of the reflux liquid supplied to the liquid carbonate rectification column 101 can be determined to an arbitrary value in consideration of the material balance in the impurity removal apparatus 100. For example, the rectification column top gas-liquid separator About 10 to 15% of the liquid carbonic acid discharged from 107 can be obtained.
  • low boiling point impurities are concentrated in the gas generated in the rectification column top gas-liquid separator 107 by flash reliquefaction. Therefore, the gas enriched with the low-boiling-point impurities is discharged from the rectifying column top gas-liquid separator 107 and guided to the tower top purge gas heater 111 described later.
  • the liquid carbonic acid supercooler 109 is supplied with the liquid carbonic acid extracted from the rectifying column top gas-liquid separator 107.
  • the liquid carbonate supercooler 109 exchanges heat between the liquid refrigerant supplied from the refrigeration apparatus 121 and the liquid carbonate, thereby bringing the liquid carbonate into a supercooled state to produce product liquid carbonate.
  • the tower top purge gas heater 111 heats the carbon dioxide gas, which is discharged from the rectification tower top gas-liquid separator 107 and concentrated with the low boiling point impurities, to room temperature. Carbon dioxide gas containing low-boiling-point impurities heated to room temperature is guided to a predetermined location through the pressure control valve 113 and is subjected to flare processing.
  • the pressure control valve 113 is provided in the gas line on the downstream side of the tower top purge gas heater 111. By controlling the opening / closing of the pressure control valve 113, the pressure of the entire impurity removing apparatus 100 can be adjusted. Thereby, the impurity removing apparatus 100 can maintain predetermined setting conditions (for example, 2.3 MPaG, ⁇ 14 ° C.).
  • liquid carbonic acid extracted from the bottom of the liquid carbonic acid fractionator 101 is guided to the tower bottom purge liquid carbonic acid evaporator 117 via the purge line 115.
  • concentrated high-boiling impurities are mixed in the liquid carbonic acid extracted from the bottom of the column.
  • the bottom purge liquid carbonic acid evaporator 117 vaporizes the high-boiling impurities extracted from the bottom of the liquid carbonic acid distillation column 101 to form carbon dioxide gas, and further heats to room temperature.
  • Carbon dioxide gas containing high-boiling-point impurities heated to room temperature is guided to a predetermined location and flare-treated.
  • the refrigeration apparatus 121 is an apparatus that supplies and recovers the refrigerant used in the impurity removal apparatus 100. More specifically, the refrigeration apparatus 121 collects the refrigerant that has become gas as a result of the heat exchange performed in the impurity removal apparatus 100, cools the collected refrigerant to a liquid state, and then removes the impurity removal apparatus 100. To supply.
  • the refrigeration apparatus 121 is not particularly limited, and can be used in a liquid carbonic acid production facility as long as the temperature required by the impurity removal apparatus 100 (for example, ⁇ 14 ° C. to ⁇ 18 ° C.) can be realized. Any refrigeration apparatus can be used.
  • the refrigerant supplied and recovered by the refrigeration apparatus 121 can be any refrigerant that can achieve the temperature required by the impurity removal apparatus 100 (for example, ⁇ 14 ° C. to ⁇ 18 ° C.). For example, those having an evaporation temperature of about ⁇ 30 ° C. and a condensation temperature of about 40 ° C. can be used.
  • the refrigerating apparatus 121 mainly includes a refrigerant compressor 123, a refrigerating machine oil separator 125, a refrigerant condenser 127, and a refrigerant liquid receiver 129, for example, as shown in FIG.
  • the refrigerant compressor 123 compresses the gaseous refrigerant recovered from the impurity removing device 100 and sends it to the refrigerator oil separator 125.
  • the refrigerating machine oil separator 125 separates the refrigerating machine oil component contained in the compressed refrigerant and the gaseous refrigerant, and sends the gaseous refrigerant to the refrigerant condenser 127.
  • the refrigerant condenser 127 condenses the gaseous refrigerant from which the refrigeration oil component has been separated into a liquid refrigerant.
  • the refrigerant condenser 127 sends out the liquid refrigerant to the refrigerant liquid receiver 129, and the refrigerant liquid receiver 129 sends out the liquid refrigerant to the impurity removing device 100.
  • both low-boiling impurities and high-boiling impurities in the crude carbon dioxide gas are economically removed, and the product carbon dioxide gas is recovered at a high recovery rate. Can be obtained.
  • the configuration of the impurity removal apparatus 100 according to the present embodiment has been described above. Subsequently, an impurity removal method performed by the impurity removal apparatus 100 according to the present embodiment will be described in detail.
  • the impurity removal method according to the present embodiment mainly includes a step of removing high boiling point impurities contained in the crude carbon dioxide gas and a step of removing low boiling point impurities from the carbon dioxide gas from which the high boiling point impurities have been removed. Prepare for.
  • Crude carbon dioxide produced as a by-product in the refining process of natural gas or petroleum refinery gas is first supplied to the liquid carbonic acid fractionator 101.
  • the liquid carbonic acid fractionator 101 is controlled so as to maintain a predetermined tower top temperature and pressure (for example, 2.3 MPaG, ⁇ 14 ° C.). Since the column top temperature in the liquid carbonic acid rectification column 101 is equal to or higher than the boiling point of the low-boiling impurities contained in the crude carbon dioxide gas, the carbon dioxide gas contained in the crude carbon dioxide gas and the low boiling point contained in the crude carbon dioxide gas System impurities are vaporized and driven up to the top of the tower.
  • a predetermined tower top temperature and pressure for example, 2.3 MPaG, ⁇ 14 ° C.
  • the high boiling impurities contained in the crude carbon dioxide gas are concentrated at the bottom of the liquid carbonic acid distillation column 101 because the bottom temperature in the liquid carbonic acid distillation column 101 does not reach the boiling point of the high boiling impurities.
  • the Rukoto the amount of carbon dioxide gas that is driven up to the top of the column is, for example, 95% by volume or more and 97% by volume or less by subtracting the reflux component from the amount of crude carbon dioxide supplied to the rectifying column 101. .
  • liquid carbonate mainly containing concentrated high-boiling-point impurities remaining in the liquid bottom at the bottom of the liquid carbonic acid rectifying column 101 is taken out of the system from the liquid carbonic acid rectifying column 101 and discharged, whereby crude carbonic acid is obtained. High boiling impurities contained in the gas can be removed.
  • Carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101 is divided into two flows, a first carbon dioxide gas flow having a relatively high flow rate and a second carbon dioxide gas flow having a relatively low flow rate.
  • the first carbon dioxide gas flow accounts for 90 to 99% of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid fractionator 101, for example.
  • the second carbon dioxide gas flow accounts for 1 to 10% (preferably 3 to 10%) of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101, for example. .
  • the first gas flow is guided to the rectification column top liquefier 105.
  • the rectification column top liquefier 105 fully condenses the first gas stream to form liquid carbonic acid, and sends the generated liquid carbonic acid to the rectification column top gas-liquid separator 107.
  • the second gas flow is directly guided to the rectification column top gas-liquid separator 107 without passing through the rectification column top liquefier 105.
  • the liquid carbon dioxide supplied from the rectification column top liquefier 105 is used. Re-flushing occurs and low boiling impurities are separated. The separated low boiling point impurities are concentrated and discharged from the rectifying tower top gas-liquid separator 107 as a gas. A gas containing low boiling point impurities is taken out of the system from the rectifying column top gas-liquid separator 107, so that the liquid carbon dioxide produced using the carbon dioxide gas from which the high boiling point impurities have been removed is further reduced. Boiling system impurities can be removed.
  • the liquid carbonic acid sent from the rectifying column top gas-liquid separator 107 contains almost no low-boiling-point impurities as described above, and hardly contains any high-boiling-point impurities.
  • Part of the liquid carbonic acid sent from the rectifying column top gas-liquid separator 107 (for example, 10 mol% to 15 mol% of the number of moles of crude carbon dioxide supplied to the liquid carbonic acid rectifying column 101) Is supplied to the top of the liquid carbonic acid distillation column 101 as a reflux liquid, and is then guided to the liquid carbonic acid supercooler 109.
  • the liquid carbonic acid supplied to the liquid carbonic supercooler 109 is taken out as product liquid carbonic acid after being brought into a supercooled state.
  • the gas enriched with low boiling point impurities discharged from the rectifying column top gas-liquid separator 107 is brought to room temperature by the tower top purge gas heater 111 and then subjected to flare treatment.
  • the column top purge gas heater 111 since a small amount of liquid carbonic acid extracted from the bottom of the liquid carbonic acid rectification column 101 contains high-boiling impurities, it was vaporized and brought to room temperature by the column bottom purging liquid carbonic acid evaporator 117. After that, flare processing is performed.
  • the impurity removal method according to the present embodiment is not a method of treating raw raw carbon dioxide gas in advance with a catalyst or activated carbon. Therefore, the impurity removal method according to the present embodiment does not require heat for preheating the crude carbon dioxide gas to a temperature necessary for the catalytic reaction or heat for regenerating the activated carbon. Therefore, by using the impurity removal method according to the present embodiment, it is possible to economically remove both low-boiling impurities and high-boiling impurities in the crude carbon dioxide gas, and to obtain a product carbon dioxide gas with a high recovery rate. it can.
  • high-boiling-point impurities having a high melting point such as benzene and paraxylene are mixed in the crude carbon dioxide gas produced as a by-product.
  • the crude carbon dioxide gas containing such a high-melting-point high-boiling-point impurity causes clogging of the apparatus due to precipitation of the high-melting-point high-boiling-point impurity as a solid in a low-temperature part such as a liquid carbonic acid rectification column, There is a possibility of causing a situation where continuous operation is not possible.
  • the present inventors have intensively studied a method capable of preventing the occurrence of such a situation and realizing the continuous operation of the impurity removal apparatus, and in the second embodiment of the present invention described below.
  • the inventors have come up with such an impurity removal apparatus and impurity removal method.
  • FIGS. 3 and 4 are explanatory views for explaining the impurity removing apparatus according to the present embodiment.
  • the impurity removal apparatus 100 includes a liquid carbonic acid rectification column 101, a rectification column reboiler 103, a rectification column top liquefier 105, and a rectification column top gas liquid.
  • the tower front liquefiers 151a and 151b are mainly provided.
  • the heater 111, the pressure control valve 113, the purge line 115, the bottom purge liquid carbon dioxide evaporator 117, and the refrigeration apparatus 121 have the same configurations as those in the first embodiment of the present invention, respectively. Detailed description will be omitted to achieve the above effect.
  • pre-rectification tower liquefiers 151 A plurality of pre-rectification tower liquefiers 151a and 151b (hereinafter simply referred to as pre-rectification tower liquefiers 151) are installed in the impurity removing apparatus 100 according to this embodiment.
  • pre-rectification tower liquefiers 151 A plurality of pre-rectification tower liquefiers 151a and 151b (hereinafter simply referred to as pre-rectification tower liquefiers 151) are installed in the impurity removing apparatus 100 according to this embodiment.
  • FIG. 3 only two rectification column pre-liquefiers 151 are shown, but the number of rectification column pre-liquefaction devices 151 according to this embodiment is limited to the case shown in FIG. However, three or more rectifying column pre-liquefiers 151 may be provided in the impurity removing apparatus 100.
  • the rectification tower pre-liquefaction device 151 is disposed on the upstream side of the liquid carbonate rectification tower 101.
  • the rectifying column pre-liquefier 151 cools the crude carbon dioxide gas supplied to the liquid carbonic acid fractionator 101, solidifies and precipitates the high-melting-point high-boiling-point impurities contained in the crude carbon dioxide gas, and from the crude carbon dioxide gas A part of high-boiling impurities having a high melting point is removed.
  • the high-boiling impurities having a high melting point mean high-boiling impurities having a melting point higher than the top temperature of the liquid carbonic acid distillation column 101. Examples of such impurities include benzene and paraxylene. Etc.
  • the rectification column pre-liquefier 151 is configured to remove crude carbon dioxide gas at a temperature lower than that of the top of the liquid carbonate rectification column 101 while maintaining the pressure (for example, 2.3 MPaG) in the impurity removal apparatus 100. (For example, about ⁇ 15 ° C., which is 1 to 2 ° C. lower than the top of the column).
  • Such temperature is a temperature at which high-boiling impurities having a high melting point are solidified but carbon dioxide gas is not solidified. Therefore, the carbon dioxide contained in the crude carbon dioxide gas passing through the pre-liquefaction tower 151 is completely condensed.
  • the fractionator pre-liquefaction device 151 can partially remove high-melting-point high-boiling impurities from the crude carbon dioxide gas supplied to the liquid carbonate fractionator 101.
  • the liquid carbonic acid from which a part of the high-boiling impurities having a high melting point has been removed in this way (the crude carbon dioxide liquefied) is sent to the liquid carbonic acid distillation column 101.
  • a continuous operation of the impurity removal apparatus 100 is realized by using a plurality of such rectification column pre-liquefiers 151.
  • FIG. 4 shows only some devices extracted from the impurity removal device 100 according to the present embodiment shown in FIG. In the description of FIG. 4, a case where there are two rectification column pre-liquefiers 151a and 151b will be described.
  • the crude carbon dioxide gas is supplied to the rectification tower pre-liquefier 151a, and the rectification tower pre-liquefaction liquidator 151a is supplied.
  • the refrigerant is supplied.
  • the gas discharged from the tower top purge gas heater 111 is supplied to the other rectification tower pre-liquefier 151b.
  • the rectification column pre-liquefier 151a to which the crude carbon dioxide gas is supplied is ⁇ 15 ° C. under a pressure of about 2.3 MPaG (a temperature lower by 1-2 ° C. than the top temperature of the liquid carbonic acid rectification column 101).
  • the carbon dioxide contained in the crude carbon dioxide is fully condensed to become a liquid (liquid carbonic acid), and this liquid carbonic acid is fed to the liquid carbonic acid fractionator 101.
  • the rectifying column pre-liquefier 151a is operated at ⁇ 15 ° C.
  • high-melting-point high-boiling impurities such as benzene and paraxylene are cooled in the rectifying column pre-liquefier 151a, Solidify and precipitate.
  • the liquid carbonic acid rectifying column 101 is supplied with liquid carbonic acid from which a part of the high-melting-point high boiling point impurities have been removed.
  • a few high-boiling impurities, high-boiling impurities, and low-boiling impurities are removed from the crude carbon dioxide gas by the method described in the impurity removing apparatus 100 according to the first embodiment of the present invention. .
  • the high-melting-point high-boiling-point impurities remain slightly in the liquid carbonate rectification column 101, but the top temperature of the liquid carbonate rectification column 101 is 1 to 2 ° C. from the rectification column pre-liquefaction device 151. Because it is expensive, there is no fear of solidifying again.
  • the rectifier pre-liquefier 151a If the rectifier pre-liquefier 151a is operated for a while, piping and valves are blocked by precipitation of high-melting-point high-boiling impurities such as benzene and para-xylene. Occurs and the operation of the rectifier pre-liquefier 151a becomes impossible. At this timing, as shown in FIG. 4 (state b), the flow of the crude carbon dioxide gas is switched to the other rectification tower pre-liquefier 151b in which the crude carbon dioxide gas has not flowed.
  • the gas discharged from the rectification column top gas-liquid separator 107 contains almost no high-boiling impurities such as benzene and paraxylene. Therefore, after this exhaust gas is returned to normal temperature by the tower top purge gas heater 111, it is supplied as a regeneration gas to the rectification tower pre-liquefier 151a on the side where the supply of the crude carbon dioxide gas is stopped due to blockage. As a result, the high-melting-point high-boiling impurities precipitated in the rectification column pre-liquefier 151a are heated by the regeneration gas at room temperature, and the solids of these high-melting-point high-boiling impurities are evaporated. ⁇ Sublimation will occur.
  • the high-melting-point high-boiling-point impurities present in the rectification column pre-liquefier 151a are removed from the rectification column pre-liquefaction device 151a, and the rectification column pre-liquefaction device 151a can be used again.
  • the impurity removal apparatus 100 can be continuously operated without clogging the high melting point high boiling point impurities. Become.
  • the impurity removal method according to the present embodiment is such that the crude carbon dioxide gas is totally condensed by the rectification tower pre-liquefaction device 151 provided on the upstream side of the liquid carbonic acid rectification tower 101, and the high melting point contained in the crude carbon dioxide gas.
  • the method is the same as the impurity removal method according to the first embodiment of the present invention, except that the rectification column pre-liquefaction device 151 on which high-boiling impurities are deposited is regenerated. Therefore, a detailed description of the impurity removal method according to this embodiment is omitted.
  • the chemical process simulator used simulates the chemical process using various chemical reaction equations, physical property data, and various equations of thermodynamics, and is capable of realizing simulation in accordance with actual operation. .
  • the impurity removal apparatus 100 according to the second embodiment of the present invention shown in FIG. 3 includes the configuration of the impurity removal apparatus 100 according to the first embodiment of the present invention shown in FIG. It is considered preferable as an embodiment.
  • Example 1 Carbon dioxide rich gas, which is a by-product gas obtained by treating natural gas by the chemical absorption method, was used as crude carbon dioxide, and the flow rate and composition of the crude carbon dioxide were set as follows. In the following, the flow rate of the crude carbon dioxide gas is indicated by both the molar flow rate (Table 1) and the mass flow rate (Table 2). This set value is based on the actual crude carbon dioxide composition. The temperature of the crude carbon dioxide gas was 20 ° C., and the pressure was 2.3 MPaG.
  • C2 represents a compound having 2 carbon atoms
  • C3 represents a compound having 3 carbon atoms
  • C4 + represents a compound having 4 or more carbon atoms. Represents.
  • the operating conditions of the liquid carbonic acid rectification column 101 were a rectification column having a tower diameter of 500 mm to which liquefied crude carbon dioxide gas was supplied to the bottom of the column, and the reflux liquid to the column top was 879 kg / h.
  • the amount of carbon dioxide introduced to the top of the column was about 97% by volume of the amount of gas supplied to the liquid carbonic acid rectification column 101 by subtracting the reflux.
  • Table 3 shows the gas flow rate and composition on the downstream side of the tower top purge gas heater 111
  • Table 4 shows the gas flow rate and composition on the downstream side of the tower bottom purge liquid carbon dioxide evaporator 117.
  • Table 5 shows the flow rate and composition of the product liquid carbonic acid.
  • Example 2 A simulation was performed in the same manner as in Example 1 except that the flow rate of the second gas flow was 8%. The results obtained for the flow rate and composition of the product liquid carbonic acid are shown in Table 6.
  • Example 3 A simulation was performed in the same manner as in Example 1 except that the flow rate of the second gas flow was 10%. Table 7 shows the obtained results for the flow rate and composition of the product liquid carbonic acid.
  • Example 1 where the amount of liquid carbon dioxide purge at the bottom of the liquid carbonic acid rectification column was 3% of the mole of feed, high boiling point impurities such as benzene, toluene and xylene were already on the order of less than 1 ppm. It can be seen that it has been removed. It can also be seen that as the flow rate ratio of the second gas flow is increased, the content of low-boiling impurities is also decreased.
  • the present invention can be used for the production of carbon dioxide for industrial, food and medical use, and can be used as carbon dioxide from which high-boiling impurities that affect the environment are removed even when carbon dioxide is injected into the ground. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Provided is a method for removing impurities from carbon dioxide gas, which comprises: a step in which crude carbon dioxide gas containing high-boiling-point impurities and low-boiling-point impurities is fed to a liquid carbon dioxide purification column, a predetermined amount of the fed crude carbon dioxide gas is introduced to the column top, and the liquid carbon dioxide containing the high-boiling-point impurities is discharged from the liquid carbon dioxide purification column base to outside the system, thereby removing the high-boiling-point impurities contained in the crude carbon dioxide gas; and a step in which the carbon dioxide gas discharged from the column top is split into a first and a second carbon dioxide gas current, the first carbon dioxide gas current is introduced to a liquefier at the purification column top in order to fully condense the current to liquid carbon dioxide, and the liquid carbon dioxide is introduced to a vapor-liquid separator at the purification column top while the second carbon dioxide gas current is mixed therewith in order to separate the low-boiling-point impurities contained in the liquid carbon dioxide by reflashing in the vapor-liquid separator at the purification column top.

Description

炭酸ガス中の不純物除去方法Method for removing impurities in carbon dioxide
 本発明は、炭酸ガス中の不純物除去方法に関する。
 本願は、2009年7月14日に、日本に出願された特願2009-165407号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for removing impurities in carbon dioxide gas.
This application claims priority based on Japanese Patent Application No. 2009-165407 filed in Japan on July 14, 2009, the contents of which are incorporated herein by reference.
 天然ガスや石油リファイナリーガスの精製工程において副生される粗炭酸ガスは、さらに不純物を除去する精製工程を経て、工業用、食品用、医療用の製品炭酸ガスとされる。このようにして精製された製品炭酸ガスの品質は、工業用はJIS K 1106によって、食品用は食品衛生法の食品添加物公定書によって、医療用は薬事法によってそれぞれ規定されている。 The crude carbon dioxide gas produced as a by-product in the purification process of natural gas and petroleum refinery gas is further processed into a carbon dioxide product for industrial, food and medical use through a purification process for removing impurities. The quality of the product carbon dioxide purified in this way is regulated by JIS K 1106 for industrial use, by the Food Additives Official Code of the Food Sanitation Act, and by the Pharmaceutical Affairs Law for medical use.
 ここで、粗炭酸ガスに含まれる不純物としては、例えば、メタン(沸点-161.5℃)、エタン(沸点-89.0℃)、プロパン(沸点-42.1℃)、一酸化炭素(沸点-192℃)、水素(沸点-252.5℃)、酸素(沸点-183.0℃)、窒素(沸点-195.8℃)、硫化水素(沸点-60.7℃)等を主とする極めて低い温度で気化する低沸点の物質(以後、低沸点系不純物という)がある。また、近年では、炭酸ガスの地下圧入の際における環境問題を考慮して、ベンゼン(沸点80℃)、トルエン(沸点111℃)、パラキシレン(沸点138℃)等を主とする高沸点の物質(以後「高沸点系不純物」という)も、不純物として除去する必要が生じてきている。なお、上述の物質の沸点は、大気圧下での沸点である。 Here, as impurities contained in the crude carbon dioxide gas, for example, methane (boiling point−161.5 ° C.), ethane (boiling point−89.0 ° C.), propane (boiling point−42.1 ° C.), carbon monoxide (boiling point) -192 ° C), hydrogen (boiling point -252.5 ° C), oxygen (boiling point -183.0 ° C), nitrogen (boiling point -195.8 ° C), hydrogen sulfide (boiling point -60.7 ° C), etc. There are low-boiling substances that vaporize at extremely low temperatures (hereinafter referred to as low-boiling impurities). In recent years, high-boiling substances mainly composed of benzene (boiling point 80 ° C.), toluene (boiling point 111 ° C.), para-xylene (boiling point 138 ° C.), etc., in consideration of environmental problems when carbon dioxide is injected underground. (Hereinafter referred to as “high-boiling-point impurities”) also needs to be removed as impurities. In addition, the boiling point of the above-mentioned substance is a boiling point under atmospheric pressure.
 通常の炭酸ガスの精製は、水分除去後、粗炭酸ガスを液体炭酸精留塔に供給して、低沸点系不純物を液体炭酸精留塔の塔頂に追い上げて系外に排出し、液体炭酸精留塔の塔底部に低沸点系不純物を含まない高純度の液体炭酸を得て、これを製品としている。また、近年では、炭酸ガスの分離回収において、従来の熱炭酸カリ吸収法から、熱経済性にすぐれているアミン類を使用するアミン吸収法に置き換えられている状況にある。 In normal carbon dioxide purification, after removing water, crude carbon dioxide gas is supplied to the liquid carbonic acid rectification tower, low-boiling impurities are driven up to the top of the liquid carbonic acid rectification tower, and discharged out of the system. A high-purity liquid carbonic acid containing no low-boiling-point impurities is obtained at the bottom of the rectifying column, and this is used as a product. In recent years, in the separation and recovery of carbon dioxide gas, the conventional hot potassium carbonate absorption method has been replaced with an amine absorption method using amines having excellent thermal economy.
 熱炭酸カリに較べてアミン類を吸収液とする場合は、アミンが有機物であるため、炭化水素の溶解が多くなり、低沸点系不純物であるメタン、エタン、プロパンなどのアルカン、アルケン、アルキンの他に、ベンゼン、トルエン、キシレン等の高沸点炭化水素まで、脱炭酸装置から得られる粗炭酸ガス中に含まれることとなる。従来の炭酸ガス精製方法においては、低沸点系不純物は除去されるが、液体炭酸精留搭塔底から取り出される精製液体炭酸には、高沸点系不純物がほとんどそのまま含まれているという状況である。 When amines are used as an absorbing solution compared to hot potassium carbonate, the amine is an organic substance, so that the dissolution of hydrocarbons increases, and low-boiling impurities such as alkanes such as methane, ethane, and propane, alkenes, and alkynes. In addition, even high-boiling hydrocarbons such as benzene, toluene, and xylene are included in the crude carbon dioxide gas obtained from the decarboxylation apparatus. In the conventional carbon dioxide purification method, low boiling point impurities are removed, but the purified liquid carbonic acid taken out from the bottom of the liquid carbonic acid rectification tower contains high boiling point impurities almost as it is. .
 このような状況に関連して、例えば、以下の特許文献1および特許文献2には、液体炭酸精留塔の塔頂に追い上げられて系外に捨てられる炭酸ガスの量を減らし、経済性を向上させるために、炭酸ガスを液化する前に、原料の粗炭酸ガスから、予め脱硫触媒、酸化触媒等を用いて低沸点不純物を除去する方法が示されている。 In relation to such a situation, for example, in Patent Document 1 and Patent Document 2 below, the amount of carbon dioxide gas that is driven up to the top of a liquid carbonic acid rectification column and discarded outside the system is reduced. In order to improve, a method of removing low boiling point impurities in advance from a raw raw carbon dioxide gas using a desulfurization catalyst, an oxidation catalyst or the like before liquefying the carbon dioxide gas is shown.
 また、高沸点不純物については、例えば活性炭等による吸着操作により除去する方法が知られている。 Also, a method for removing high boiling impurities by, for example, an adsorption operation using activated carbon or the like is known.
特開平10-130009号公報Japanese Patent Laid-Open No. 10-130009 特開平11-209117号公報Japanese Patent Laid-Open No. 11-209117
 しかしながら、従来の精製方法では、触媒による低沸点系不純物の転化・除去のため150℃~200℃の温度が必要であり、また、高沸点系不純物の活性炭吸着においても活性炭の再生のために200℃程度の温度が必要であって、経済的ではないという問題があった。 However, in the conventional purification method, a temperature of 150 ° C. to 200 ° C. is necessary for the conversion and removal of low boiling point impurities by the catalyst, and 200 ° There was a problem that a temperature of about 0 ° C. was necessary and it was not economical.
 また、ベンゼン、トルエン、キシレン等の高沸点炭化水素まで、脱炭酸装置から得られる粗炭酸ガス中に含まれる近年においては、従来の方法では、これらの高沸点系不純物は、すべて液体炭酸精留塔の塔底に存在する製品液体炭酸ガス中に混入して精製されないという問題があった。また、高沸点系不純物が液化される前に、これらの高沸点系不純物を活性炭吸着したとしても、活性炭の再生のために多大の熱が必要となるという問題があった。 In recent years, high-boiling hydrocarbons such as benzene, toluene, xylene and the like contained in the crude carbon dioxide gas obtained from the decarbonation apparatus have all been subjected to liquid carbonation rectification in the conventional method. There was a problem that the product liquid carbon dioxide present at the bottom of the tower was mixed and not purified. In addition, even if these high-boiling impurities are adsorbed on activated carbon before the high-boiling impurities are liquefied, there is a problem that a great deal of heat is required to regenerate the activated carbon.
 その上、ベンゼン、パラキシレンは、それぞれ融点が5.5℃、13℃である高融点物質であるため、これらの物質が除去されることなく原料の粗炭酸ガスとして液体炭酸精留搭に供給される場合には、通常-14~-18℃で操作される液体炭酸精留塔内で固化してしまい、装置が閉塞する可能性があった。 In addition, benzene and para-xylene are high-melting substances having melting points of 5.5 ° C. and 13 ° C., respectively, so that these substances are not removed and supplied to the liquid carbonic acid rectification column as raw carbon dioxide gas. In such a case, the solidification may occur in the liquid carbonic acid rectification column usually operated at −14 to −18 ° C., and the apparatus may be blocked.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、粗炭酸ガス中の低沸点系不純物および高沸点系不純物の双方を経済的に除去し、高回収率で製品炭酸ガスを得ることが可能な、炭酸ガス中の不純物の除去方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to economically remove both low-boiling point impurities and high-boiling point impurities in the crude carbon dioxide gas. An object of the present invention is to provide a method for removing impurities in carbon dioxide gas, which can obtain product carbon dioxide gas in a recovery rate.
 上記課題を解決するために、本発明のある観点によれば、粗炭酸ガスに含まれる、炭酸ガスよりも沸点が高い不純物である高沸点系不純物および炭酸ガスよりも沸点が低い不純物である低沸点系不純物を、前記粗炭酸ガスから除去する方法であって、前記粗炭酸ガスから前記高沸点系不純物を除去する工程と、前記粗炭酸ガスから前記低沸点系不純物を除去する工程とを含む。前記高沸点系不純物を除去する工程は、前記高沸点系不純物および前記低沸点系不純物を含む前記粗炭酸ガスを、液体炭酸精留塔に供給する工程と、前記液体炭酸精留塔中で前記粗炭酸ガスの供給量のうち所定量を塔頂に導く工程と、前記高沸点系不純物を含む液体炭酸を、前記液体炭酸精留塔底から系外に排出する工程とを含む。前記低沸点系不純物を除去する工程は、前記塔頂から排出された炭酸ガスを、相対的に流量の大きな第1の炭酸ガス流と、相対的に流量の小さな第2の炭酸ガス流とに分流する工程と、前記第1の炭酸ガス流を精留塔頂液化器に導いて全凝縮して液体炭酸とし、当該液体炭酸を精留塔頂気液分離器に導く工程と、前記第2の炭酸ガス流を混合して再フラッシュにより前記精留塔頂気液分離器で液体炭酸中の低沸点系不純物を分離する工程とを含む。 In order to solve the above-described problems, according to a certain aspect of the present invention, a low-boiling point impurity, which is an impurity having a higher boiling point than carbon dioxide gas and an impurity having a lower boiling point than carbon dioxide gas, contained in the crude carbon dioxide gas. A method for removing boiling point impurities from the crude carbon dioxide gas, the method comprising: removing the high boiling point impurities from the crude carbon dioxide gas; and removing the low boiling point impurities from the crude carbon dioxide gas. . The step of removing the high-boiling-point impurities includes the step of supplying the crude carbon dioxide gas containing the high-boiling-point impurities and the low-boiling-point impurities to a liquid carbonic acid rectification column; A step of introducing a predetermined amount of the supply amount of the crude carbon dioxide gas to the top of the column, and a step of discharging the liquid carbon dioxide containing the high-boiling impurities from the bottom of the liquid carbonic acid rectification column to the outside of the system. The step of removing the low-boiling-point impurities comprises converting the carbon dioxide discharged from the top of the column into a first carbon dioxide gas stream having a relatively high flow rate and a second carbon dioxide gas stream having a relatively low flow rate. A step of diverting, a step of introducing the first carbon dioxide gas stream to a rectifying column top liquefier to completely condense into liquid carbonic acid, and introducing the liquid carbonic acid to a rectifying column top gas-liquid separator; And mixing the low-boiling-point impurities in the liquid carbon dioxide with the rectifying column top gas-liquid separator by reflashing.
 前記高沸点系不純物を除去する工程は、さらに、前記高沸点系不純物および前記低沸点系不純物を含む前記粗炭酸ガスを、複数の精留塔前液化器の何れか一つに供給して前記塔頂の温度よりも低い温度まで冷却する工程と、前記粗炭酸ガスに含まれる前記液体炭酸精留塔における塔頂温度よりも融点が高い高融点の前記高沸点系不純物を固化させ、前記高融点の高沸点系不純物が一部除去された前記粗炭酸ガスを前記液体炭酸精留塔に供給する工程とを含み、前記高融点の高沸点系不純物が閉塞した時点で前記粗炭酸ガスが供給されている精留塔前液化器に換えて他の前記精留塔前液化器を稼働させ、前記精留塔頂気液分離器から排出され常温まで加熱された炭酸ガスを、前記高融点の高沸点系不純物が閉塞した精留塔前液化器に供給し、高融点の高沸点系不純物を蒸発・昇華させて除去してもよい。 The step of removing the high-boiling-point impurities further includes supplying the crude carbon dioxide gas containing the high-boiling-point impurities and the low-boiling-point impurities to any one of a plurality of rectification column pre-liquefiers. A step of cooling to a temperature lower than the temperature at the top of the column, solidifying the high-boiling impurities having a high melting point higher than the temperature at the top of the liquid carbonic acid fractionation column contained in the crude carbon dioxide gas, Supplying the crude carbon dioxide gas from which high melting point impurities having a melting point have been partially removed to the liquid carbonic acid distillation column, and supplying the crude carbon dioxide gas when the high boiling point impurities having a high melting point are blocked. The other rectification column pre-liquefaction device is operated instead of the rectification column pre-liquefaction device, and the carbon dioxide gas discharged from the rectification column top gas-liquid separator and heated to normal temperature is Supplied to the liquefier before the rectification column where high boiling point impurities are blocked, The high boiling-based impurities melting point may be removed by evaporation, sublimation.
 前記液体炭酸精留塔の塔頂に追い上げる前記低沸点系不純物を含む炭酸ガスは、液体炭酸精留塔へ戻る還流分を除き、前記粗炭酸ガスの供給量の95%以上97%以下であることが好ましい。 The carbon dioxide gas containing the low-boiling-point impurities that are driven up to the top of the liquid carbonic acid rectification column is 95% or more and 97% or less of the supply amount of the crude carbonic acid gas, excluding the reflux that returns to the liquid carbonic acid rectification column. It is preferable.
 前記第1の炭酸ガス流は、前記塔頂から排出された炭酸ガスの流量の90~99%であり、前記第2の炭酸ガス流は、前記塔頂から排出された炭酸ガスの流量の1~10%であることが好ましい。 The first carbon dioxide gas flow is 90 to 99% of the flow rate of the carbon dioxide gas discharged from the tower top, and the second carbon dioxide gas flow is 1 of the flow rate of the carbon dioxide gas discharged from the tower top. It is preferably ˜10%.
 また、上記課題を解決するために、本発明の別の観点によれば、粗炭酸ガスに含まれる、炭酸ガスよりも沸点が高い不純物である高沸点系不純物および炭酸ガスよりも沸点が低い不純物である低沸点系不純物を、前記粗炭酸ガスから除去する装置であって、前記粗炭酸ガスが供給され、前記粗炭酸ガスに含まれる前記低沸点系不純物を塔頂に導くとともに、前記高沸点系不純物を塔底に濃縮させる液体炭酸精留塔と、前記液体炭酸精留塔の塔頂から排出された前記低沸点系不純物を含む炭酸ガスの一部を全凝縮して液体炭酸にする精留塔頂液化器と、前記精留塔頂液化器により液化された液体炭酸と、前記液体炭酸精留塔の塔頂から排出された前記低沸点系不純物を含む炭酸ガスの残部とを混合し、再フラッシュにより前記低沸点系不純物を分離除去する精留塔頂気液分離器と、前記液体炭酸精留塔の底部から、濃縮された前記高沸点系不純物を系外に排出するパージラインと、を備える炭酸ガス中の不純物の除去装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, high-boiling impurities that are impurities having a higher boiling point than carbon dioxide gas and impurities having a lower boiling point than carbon dioxide gas are included in the crude carbon dioxide gas. Is a device for removing low boiling point impurities from the crude carbon dioxide gas, wherein the crude carbon dioxide gas is supplied, the low boiling point impurities contained in the crude carbon dioxide gas are led to the top of the tower, and the high boiling point impurities are A liquid carbonate rectification tower for concentrating the system impurities to the bottom of the tower, and a refinement of liquid carbonate by partially condensing a part of the carbon dioxide gas containing the low-boiling-point impurities discharged from the top of the liquid carbonate rectification tower. A rectifying tower top liquefier, liquid carbonate liquefied by the rectifying tower top liquefier, and the remainder of the carbon dioxide gas containing the low-boiling-point impurities discharged from the liquid carbonate rectifying tower top. The low boiling point impurities by reflash Removal of impurities in carbon dioxide gas comprising a rectifying column top gas-liquid separator to be separated and removed, and a purge line for discharging the concentrated high boiling point impurities out of the system from the bottom of the liquid carbonic acid rectifying column An apparatus is provided.
 前記液体炭酸精留塔に供給される前記粗炭酸ガスを冷却して、当該粗炭酸ガスに含まれる前記液体炭酸精留塔における塔頂温度よりも融点が高い高融点の前記高沸点系不純物を固化させ、前記粗炭酸ガスから前記高融点の高沸点系不純物を一部除去する複数の精留塔前液化器を更に備え、前記精留塔前液化器に供給される前記粗炭酸ガスは、当該粗炭酸ガスが供給されている前記精留塔前液化器が前記高融点の高沸点系不純物によって閉塞した時点で、他の前記精留塔前液化器に供給され、前記精留塔前液化器に析出した前記高融点の高沸点系不純物は、前記精留塔頂気液分離器から排出され常温まで加熱された炭酸ガスにより蒸発・昇華されるようにしてもよい。 The crude carbon dioxide gas supplied to the liquid carbonic acid rectification tower is cooled, and the high-boiling impurities having a high melting point higher than the tower top temperature in the liquid carbonic acid rectification tower contained in the crude carbonic acid gas. The crude carbon dioxide gas supplied to the rectification column pre-liquefier is further provided with a plurality of rectification column pre-liquefaction devices that solidify and partially remove the high-boiling-point high-boiling impurities from the crude carbon dioxide gas, At the time when the rectifying column pre-liquefier to which the crude carbon dioxide gas is supplied is blocked by the high-melting-point high-boiling-point impurities, the rectifying column pre-liquefaction device is supplied to the other rectifying column pre-liquefier, The high-melting-point high-boiling impurities deposited in the vessel may be evaporated and sublimated by carbon dioxide gas discharged from the rectifying column top gas-liquid separator and heated to room temperature.
 前記精留塔頂液化器に供給される炭酸ガスは、前記塔頂から排出された炭酸ガスの流量の90~99%であり、前記精留塔頂気液分離器に供給される炭酸ガスは、前記塔頂から排出された炭酸ガスの流量の1~10%であることが好ましい。 The carbon dioxide gas supplied to the rectification column top liquefier is 90 to 99% of the flow rate of the carbon dioxide gas discharged from the column top, and the carbon dioxide gas supplied to the rectification column top gas-liquid separator is The flow rate of carbon dioxide discharged from the top of the column is preferably 1 to 10%.
 前記低沸点系不純物は、C1~C4のアルカン、C2~C4のアルケンおよびC2~C4のアルキンであり、前記高融点の高沸点系不純物は、C6以上の芳香族炭化水素であってもよい。 The low-boiling impurities are C1-C4 alkanes, C2-C4 alkenes, and C2-C4 alkynes, and the high-melting high-boiling impurities may be C6 or higher aromatic hydrocarbons.
 以上説明したように本発明によれば、粗炭酸ガス中の低沸点系不純物および高沸点系不純物の双方を経済的に除去し、高回収率で製品炭酸ガスを得ることが可能である。 As described above, according to the present invention, it is possible to economically remove both low-boiling point impurities and high-boiling point impurities in the crude carbon dioxide gas and obtain a product carbon dioxide gas with a high recovery rate.
本発明の第1の実施形態に係る炭酸ガス中の不純物の除去装置を説明するための説明図である。It is explanatory drawing for demonstrating the removal apparatus of the impurity in the carbon dioxide gas which concerns on the 1st Embodiment of this invention. 同実施形態に係る冷凍装置を説明するための説明図である。It is explanatory drawing for demonstrating the freezing apparatus which concerns on the same embodiment. 本発明の第2の実施形態に係る炭酸ガス中の不純物の除去装置を説明するための説明図である。It is explanatory drawing for demonstrating the removal apparatus of the impurity in the carbon dioxide gas which concerns on the 2nd Embodiment of this invention. 同実施形態に係る精留塔前液化器について説明するための説明図である。It is explanatory drawing for demonstrating the rectification column pre-liquefaction device which concerns on the same embodiment. 従来の炭酸ガス中の不純物の除去装置を説明するための説明図である。It is explanatory drawing for demonstrating the removal apparatus of the impurity in the conventional carbon dioxide gas.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、以下の説明において、低沸点系不純物とは、粗炭酸ガスに含有されており、炭酸ガスよりも沸点が低い不純物であり、高沸点系不純物とは、粗炭酸ガスに含まれており、炭酸ガスよりも沸点が高い不純物である。炭酸ガスが液化する温度は、系に加えられた圧力等の不純物除去装置が設置された種々の環境によって変化するため、低沸点系不純物や高沸点系不純物を区分する際に基準となる温度も、不純物除去装置が設置された種々の環境に応じて変化する。 In the following description, the low boiling point impurities are impurities contained in the crude carbon dioxide gas and have a boiling point lower than that of the carbon dioxide gas, and the high boiling point impurities are contained in the crude carbon dioxide gas, It is an impurity having a boiling point higher than that of carbon dioxide. The temperature at which carbon dioxide gas liquefies varies depending on various environments in which impurity removal devices such as pressure applied to the system are installed, so the reference temperature when classifying low-boiling impurities and high-boiling impurities is also Depending on various environments in which the impurity removing device is installed, the temperature varies.
 ここで、上記低沸点系不純物は、天然ガスや石油リファイナリーガスに含有される不純物、または、これらのガスの精製工程で発生する不純物であり、例えば、メタン(沸点-161.5℃)、エタン(沸点-89.0℃)、プロパン(沸点-42.1℃)、ブタン(沸点-0.5℃)等のC1~C4のアルカンや、C2~C4のアルケンや、C2~C4のアルキン等の軽質炭化水素類、一酸化炭素(沸点-192℃)、水素(沸点-252.5℃)、酸素(沸点-183.0℃)、窒素(沸点-195.8℃)、硫化水素(沸点-60.7℃)等がある。 Here, the low boiling point impurities are impurities contained in natural gas or petroleum refinery gas, or impurities generated in the purification process of these gases. For example, methane (boiling point −161.5 ° C.), ethane (Boiling point-89.0 ° C), propane (boiling point-42.1 ° C), butane (boiling point -0.5 ° C), C1-C4 alkanes, C2-C4 alkenes, C2-C4 alkynes, etc. Light hydrocarbons, carbon monoxide (boiling point -192 ° C), hydrogen (boiling point -252.5 ° C), oxygen (boiling point -183.0 ° C), nitrogen (boiling point -195.8 ° C), hydrogen sulfide (boiling point) −60.7 ° C.).
 また、上記高沸点系不純物は、天然ガスや石油リファイナリーガスに含有される不純物、または、これらのガスの精製工程で発生する不純物であり、例えば、ベンゼン(沸点80℃)、トルエン(沸点111℃)、パラキシレン(沸点138℃)といったC6以上の芳香族炭化水素等がある。 The high-boiling impurities are impurities contained in natural gas or petroleum refinery gas, or impurities generated in the purification process of these gases. For example, benzene (boiling point 80 ° C.), toluene (boiling point 111 ° C.). ), C6 or higher aromatic hydrocarbons such as para-xylene (boiling point 138 ° C.).
 なお、例示した低沸点系不純物および高沸点系不純物の沸点は、大気圧下におけるものであり、本発明の各実施形態に係る不純物除去装置内では、装置内の圧力等に応じて、更に高い温度となる点に注意されたい。 Note that the boiling points of the illustrated low boiling point impurities and high boiling point impurities are those under atmospheric pressure, and are higher in the impurity removal apparatus according to each embodiment of the present invention depending on the pressure in the apparatus. Note that the temperature.
<従来の不純物除去装置について>
 本発明の各実施形態に係る炭酸ガス中の不純物の除去装置(以下、単に不純物除去装置と称する。)について説明するに先立ち、図5を参照しながら従来の炭酸ガス中の不純物の除去装置について簡単に説明し、本発明の目的とするところを明らかにする。
<Regarding conventional impurity removal apparatus>
Prior to describing an apparatus for removing impurities in carbon dioxide gas (hereinafter simply referred to as an impurity removing apparatus) according to each embodiment of the present invention, a conventional apparatus for removing impurities in carbon dioxide gas will be described with reference to FIG. Briefly described, the object of the present invention will be clarified.
 図5は、従来の炭酸ガス中の不純物の除去装置を説明するための説明図である。
 従来の不純物除去装置10は、例えば図5に示したように、液体炭酸精留塔11と、精留塔リボイラ13と、液体炭酸過冷却器15と、精留塔頂液化器17と、精留塔頂気液分離器19と、塔頂パージガス加熱器21と、圧力調節弁23と、を備える。また、不純物除去装置10には、冷凍装置25が設けられている。
FIG. 5 is an explanatory diagram for explaining a conventional apparatus for removing impurities in carbon dioxide gas.
For example, as shown in FIG. 5, the conventional impurity removing apparatus 10 includes a liquid carbonate rectification column 11, a rectification column reboiler 13, a liquid carbonate supercooler 15, a rectification column top liquefier 17, A distillation column top gas-liquid separator 19, a column top purge gas heater 21, and a pressure control valve 23 are provided. In addition, the impurity removing apparatus 10 is provided with a refrigeration apparatus 25.
 液体炭酸精留塔11には、粗炭酸ガスが供給される。液体炭酸精留塔11は、低沸点系不純物を液体炭酸精留塔11の塔頂に導いて系外に排出し、供給された粗炭酸ガスの精留を行う。また、液体炭酸精留塔11の塔底部には、精留された炭酸ガスの一部が液化されて、液体炭酸として存在している。この液体炭酸は、低沸点系不純物を含まない高純度の液体炭酸である。 Crude carbon dioxide gas is supplied to the liquid carbonic acid fractionator 11. The liquid carbonic acid rectification column 11 guides low-boiling impurities to the top of the liquid carbonic acid rectification column 11 and discharges them out of the system to perform rectification of the supplied crude carbon dioxide gas. A part of the rectified carbon dioxide gas is liquefied and present as liquid carbonic acid at the bottom of the liquid carbonic acid rectifying column 11. This liquid carbonic acid is high-purity liquid carbonic acid that does not contain low-boiling-point impurities.
 精留塔リボイラ13は、液体炭酸精留塔11に設けられており、液体炭酸精留塔11における精留に必要な熱を供給する。具体的には、精留塔リボイラ13は、冷凍装置25から供給される液体冷媒(より詳細には、膨張前液体冷媒)の顕熱を利用して、液体炭酸精留塔11に必要な熱量を供給する。 The rectifying tower reboiler 13 is provided in the liquid carbonic acid rectifying tower 11 and supplies heat necessary for the rectifying in the liquid carbonic acid rectifying tower 11. Specifically, the rectification tower reboiler 13 uses the sensible heat of the liquid refrigerant (more specifically, the pre-expansion liquid refrigerant) supplied from the refrigeration apparatus 25, and the amount of heat required for the liquid carbonic acid rectification tower 11. Supply.
 液体炭酸過冷却器15には、液体炭酸精留塔11の塔底部から抜き出された液体炭酸が供給される。液体炭酸過冷却器15は、冷凍装置25から供給される液体冷媒を利用して液体炭酸を過冷却状態にし、製品液体炭酸とする。 The liquid carbonic acid supercooler 15 is supplied with liquid carbonic acid extracted from the bottom of the liquid carbonic acid rectification column 11. The liquid carbonic acid supercooler 15 uses the liquid refrigerant supplied from the refrigeration apparatus 25 to bring the liquid carbonic acid into a supercooled state to produce product liquid carbonic acid.
 精留塔頂液化器17は、液体炭酸精留塔11の塔頂から排出された低沸点系不純物を含む炭酸ガスを、精留塔リボイラ13から排出された液体冷媒を用いて液化し、液体炭酸とする。精留塔頂液化器17において気体となった冷媒は、冷凍装置25へと誘導される。また、液化した炭酸ガスである液体炭酸は、後述する精留塔頂気液分離器19へと誘導され、液化しなかった低沸点系不純物を含むガスは、塔頂パージガス加熱器21へと誘導される。 The rectification tower top liquefier 17 liquefies carbon dioxide gas containing low-boiling-point impurities discharged from the top of the liquid carbonate rectification tower 11 using the liquid refrigerant discharged from the rectification tower reboiler 13, Carbonate. The refrigerant that has become gas in the rectification tower top liquefier 17 is guided to the refrigeration apparatus 25. Further, liquid carbon dioxide, which is liquefied carbon dioxide gas, is guided to the rectification tower top gas-liquid separator 19 described later, and gas containing low-boiling point impurities that have not been liquefied is guided to the tower top purge gas heater 21. Is done.
 精留塔頂気液分離器19は、精留塔頂液化器17から供給された液体炭酸を気体と液体とに分離する。気体成分が分離された液体炭酸は、還流として再び液体炭酸精留塔11に供給される。 The rectifying tower top gas-liquid separator 19 separates the liquid carbonic acid supplied from the rectifying tower top liquefier 17 into a gas and a liquid. The liquid carbon dioxide from which the gas component has been separated is supplied again to the liquid carbonic acid fractionator 11 as reflux.
 塔頂パージガス加熱器21は、精留塔頂液化器17から排出された低沸点系不純物を含むガスを、所定の温度(例えば、常温)まで加熱する。加熱された低沸点系不純物を含むガスは、大気放散またはフレア処理され、装置外に排出される。 The tower top purge gas heater 21 heats the gas containing the low boiling point impurities discharged from the rectification tower top liquefier 17 to a predetermined temperature (for example, room temperature). The heated gas containing the low-boiling-point impurities is diffused into the atmosphere or flared and discharged outside the apparatus.
 圧力調節弁23は、塔頂パージガス加熱器21の下流側に設けられている。圧力調節弁23の開閉を制御することで、不純物除去装置10全体の圧力を調節することが可能である。これにより、不純物除去装置10は、炭酸ガスの沸点等を、自装置が設置された環境等に適した温度に調節することができる。 The pressure control valve 23 is provided on the downstream side of the tower top purge gas heater 21. By controlling the opening and closing of the pressure control valve 23, the pressure of the entire impurity removing device 10 can be adjusted. Thereby, the impurity removal apparatus 10 can adjust the boiling point etc. of a carbon dioxide gas to the temperature suitable for the environment etc. in which the own apparatus was installed.
 冷凍装置25は、所定の冷媒を利用して、不純物除去装置10内で必要となる温度環境を実現する装置である。 The refrigeration apparatus 25 is an apparatus that realizes a temperature environment required in the impurity removal apparatus 10 using a predetermined refrigerant.
 上述のような装置群からなる従来の不純物除去装置10では、液体炭酸精留塔11に供給された粗炭酸ガスに含まれる低沸点系不純物を、液体炭酸精留塔11の塔頂まで追い上げて系外に排出するとともに、液体炭酸精留塔11の塔底部に、低沸点系不純物を含まない高純度の液体炭酸を精製する。また、塔頂から排出された低沸点系不純物を含むガスは、精留塔頂液化器17、塔頂パージガス加熱器21等の装置による処理を経て、フレア処理されたり、大気放散されたりする。 In the conventional impurity removing apparatus 10 composed of the apparatus group as described above, the low boiling point impurities contained in the crude carbon dioxide gas supplied to the liquid carbonic acid rectification column 11 are driven up to the top of the liquid carbonic acid rectification column 11. While discharging out of the system, high-purity liquid carbonic acid containing no low-boiling-point impurities is purified at the bottom of the liquid carbonic acid rectifying column 11. Further, the gas containing low-boiling-point impurities discharged from the top of the tower is flared or diffused into the atmosphere through processing by devices such as the rectifying tower top liquefier 17 and the tower top purge gas heater 21.
 従来の高沸点系不純物を考慮しなくともよい状況下では、図5に示したような従来の不純物除去装置10を用いることで、効率よく低沸点系不純物を粗炭酸ガスの中から除去することが可能となる。しかしながら、近年用いられているアミン吸収法のように、粗炭酸ガス中に低沸点系不純物のみならず高沸点系不純物が混入してしまう方法によって副生された粗炭酸ガスを扱う場合には、図5に示したような不純物除去装置10では不十分である。すなわち、図5に示したような不純物除去装置10では、高沸点系不純物は、すべて液体炭酸精留塔11の塔底に存在する製品液体炭酸中に混入してしまい、精製されないまま製品液体炭酸として利用されてしまう。 Under circumstances where conventional high-boiling impurities need not be taken into account, the conventional impurity removal apparatus 10 as shown in FIG. 5 is used to efficiently remove low-boiling impurities from the crude carbon dioxide gas. Is possible. However, in the case of handling crude carbon dioxide by-produced by a method in which not only low boiling point impurities but also high boiling point impurities are mixed in the crude carbon dioxide gas as in the amine absorption method used in recent years, The impurity removing apparatus 10 as shown in FIG. 5 is insufficient. That is, in the impurity removing apparatus 10 as shown in FIG. 5, all of the high-boiling impurities are mixed in the product liquid carbonic acid present at the bottom of the liquid carbonic acid distillation column 11, and the product liquid carbonic acid is not purified. It will be used as.
 また、高沸点系不純物を除去する方法として、活性炭を利用する方法等が知られているが、このような方法を図5に示した不純物除去装置10に適用したとしても、ppmのオーダーで混入している高沸点系不純物を除去することは容易ではなく、また、経済的ではないという問題がある。 Further, as a method for removing high-boiling impurities, a method using activated carbon is known, but even if such a method is applied to the impurity removal apparatus 10 shown in FIG. However, there is a problem that it is not easy to remove the high-boiling-point impurities, and it is not economical.
 そこで、本発明者らは、上述のような問題を解決し、粗炭酸ガス中の低沸点系不純物および高沸点系不純物を同時に、かつ、経済的に除去し、高回収率で製品炭酸ガスを得ることが可能な方法を実現するために鋭意研究を行った結果、以下で説明するような本発明の各実施形態に係る炭酸ガス中の不純物の除去装置および除去方法に想到した。 Therefore, the present inventors have solved the above-mentioned problems, and simultaneously and economically removed the low boiling point impurities and the high boiling point impurities in the crude carbon dioxide gas, so that the product carbon dioxide gas can be removed at a high recovery rate. As a result of diligent research to realize a method that can be obtained, an apparatus and a method for removing impurities in carbon dioxide gas according to each embodiment of the present invention described below have been conceived.
 以下、図1~図4を参照しながら、本発明の各実施形態に係る炭酸ガス中の不純物の除去装置および除去方法について、詳細に説明する。 Hereinafter, an apparatus and a method for removing impurities in carbon dioxide gas according to each embodiment of the present invention will be described in detail with reference to FIGS.
(第1の実施形態)
<不純物除去装置について>
 続いて、図1および図2を参照しながら、本発明の第1の実施形態に係る不純物除去装置について、詳細に説明する。図1は、本実施形態に係る不純物除去装置100を説明するための説明図であり、図2は、本実施形態に係る冷凍装置について説明するための説明図である。
(First embodiment)
<About impurity removal equipment>
Subsequently, the impurity removing apparatus according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is an explanatory diagram for explaining an impurity removing apparatus 100 according to the present embodiment, and FIG. 2 is an explanatory diagram for explaining a refrigeration apparatus according to the present embodiment.
 本発明者らは、上述の問題を解決するために鋭意研究を行った結果、液体炭酸精留塔の底部に存在し、高沸点系不純物が濃縮されて含まれるごく少量の液体炭酸を系外に排出することによって、高沸点系不純物を除去することが可能であることに想到した。従って、液体炭酸精留塔の塔頂に供給された炭酸ガスの大部分を追い上げ、これを精留塔頂液化器で凝縮液化すれば、高沸点系不純物をほとんど含まない製品液体炭酸を得ることが可能となる。しかしながら、この際、液体炭酸精留塔の塔頂には、低沸点系不純物が濃縮されているという問題が残る。そこで、本発明者らは、更なる検討を行った結果、以下に示すような本発明の第1の実施形態に係る不純物除去装置および不純物の除去方法に想到した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a very small amount of liquid carbonic acid that exists at the bottom of the liquid carbonic acid rectification column and contains high-boiling-point impurities is contained outside the system. It was conceived that it is possible to remove high boiling point impurities by discharging to a low temperature. Therefore, if most of the carbon dioxide gas supplied to the top of the liquid carbonic acid rectification tower is chased and condensed with the rectification tower top liquefier, a product liquid carbonic acid containing almost no high-boiling-point impurities can be obtained. Is possible. However, at this time, there remains a problem that low-boiling impurities are concentrated at the top of the liquid carbonic acid rectification column. As a result of further studies, the present inventors have come up with an impurity removal apparatus and an impurity removal method according to the first embodiment of the present invention as described below.
 本実施形態に係る不純物除去装置100は、例えば図1に示したように、液体炭酸精留塔101と、精留塔リボイラ103と、精留塔頂液化器105と、精留塔頂気液分離器107と、製品液体炭酸過冷却器109と、塔頂パージガス加熱器111と、圧力調節弁113と、パージライン115と、塔底パージ液体炭酸蒸発器117と、冷凍装置121と、を主に備える。 For example, as shown in FIG. 1, the impurity removing apparatus 100 according to the present embodiment includes a liquid carbonic acid rectifying column 101, a rectifying column reboiler 103, a rectifying column top liquefier 105, and a rectifying column top gas liquid. The separator 107, the product liquid carbonate supercooler 109, the tower top purge gas heater 111, the pressure control valve 113, the purge line 115, the tower bottom purge liquid carbon dioxide evaporator 117, and the refrigeration apparatus 121 are mainly used. Prepare for.
 液体炭酸精留塔101は、供給された粗炭酸ガスの精留を行って、粗炭酸ガスに含まれる低沸点系不純物を塔頂に導く。また、液体炭酸精留塔101の塔底部には、精留された炭酸ガスの一部が液化されて、液体炭酸として存在している。この液体炭酸中には、濃縮された高沸点系不純物が存在している。 The liquid carbonic acid rectification column 101 performs rectification of the supplied crude carbon dioxide gas, and guides low-boiling impurities contained in the crude carbon dioxide gas to the top of the column. In addition, a part of the rectified carbon dioxide gas is liquefied and present as liquid carbonic acid at the bottom of the liquid carbonic acid rectifying column 101. In this liquid carbonic acid, concentrated high boiling point impurities are present.
 この液体炭酸精留塔101において高沸点系不純物は塔底部に濃縮される。精留に必要な熱量は精留塔リボイラ103より供給される。塔頂圧力を適当な値、例えば2.3MPaGに圧力調節弁113で調節すると、液体炭酸精留塔101各部の温度は、その圧力に応じて決定される。 In this liquid carbonic acid distillation column 101, high boiling point impurities are concentrated at the bottom of the column. The amount of heat required for rectification is supplied from the rectification tower reboiler 103. When the pressure at the top of the column is adjusted to an appropriate value, for example, 2.3 MPaG, by the pressure control valve 113, the temperature of each part of the liquid carbonic acid distillation column 101 is determined according to the pressure.
 この液体炭酸精留塔101では、液体炭酸精留塔101に供給された粗炭酸ガスの供給量のうち所定量が、液体炭酸精留塔底部から、液体炭酸としてパージされる。塔底パージ液体炭酸の量は、塔頂近傍に存在するベンゼン等の高沸点系不純物の濃度が1ppm以下となるような値に設定される。例えば粗炭酸ガス中のベンゼン等の高沸点系不純物の濃度が数千ppmの場合には、このような塔底パージ液体炭酸量として、例えば、フィードモル数の3モル%以上5モル%以下と設定することが可能である。このような値を塔底パージ液体炭酸量として設定することで、塔頂付近に存在する高沸点系不純物の濃度を1ppm以下とすることができる。なお、塔底パージ液体炭酸量が3モル%未満の場合には、塔頂付近に存在する高沸点系不純物の濃度を1ppm以下とすることが困難となるため好ましくない。また、塔底パージ液体炭酸量が5モル%超過の場合には、製品液体炭酸の歩留まりが悪くなるため好ましくない。また、塔底パージ液体炭酸量が3モル%~5モル%であることからも明らかなように、液体炭酸精留塔101の塔頂へと追い上げられる炭酸ガスの量は、還流として液体炭酸精留に戻る分を差し引き、液体炭酸精留塔101に供給された粗炭酸ガスの供給量のうち95体積%~97体積%である。 In this liquid carbonic acid rectification column 101, a predetermined amount of the supply amount of the crude carbon dioxide gas supplied to the liquid carbonic acid rectification column 101 is purged as liquid carbonic acid from the bottom of the liquid carbonic acid rectification column 101. The amount of column bottom purge liquid carbonic acid is set to a value such that the concentration of high-boiling impurities such as benzene existing near the column top is 1 ppm or less. For example, when the concentration of high-boiling impurities such as benzene in the crude carbon dioxide is several thousand ppm, such a column bottom purge liquid carbonic acid amount is, for example, 3 mol% or more and 5 mol% or less of the number of feed moles. It is possible to set. By setting such a value as the amount of carbon dioxide purge liquid at the bottom of the column, the concentration of high boiling impurities present near the top of the column can be reduced to 1 ppm or less. When the bottom purge liquid carbonic acid content is less than 3 mol%, it is difficult to make the concentration of high boiling impurities present near the top of the tower 1 ppm or less, which is not preferable. Further, when the amount of carbon dioxide purged at the bottom of the column is more than 5 mol%, the yield of product liquid carbonic acid is deteriorated, which is not preferable. Further, as apparent from the fact that the amount of carbon dioxide purged at the bottom of the column is 3 mol% to 5 mol%, the amount of carbon dioxide gas that is driven up to the top of the liquid carbonic acid rectifying column 101 is the amount of liquid carbon dioxide as reflux. The amount returned to the distillation is subtracted, and is 95 volume% to 97 volume% of the supply amount of the crude carbon dioxide gas supplied to the liquid carbonic acid fractionator 101.
 液体炭酸精留塔101の塔頂から排出された低沸点系不純物を含む炭酸ガスは、後述する精留塔頂液化器105または精留塔頂気液分離器107へと誘導される際に、2つの流れに分流される。この2つの流れとは、相対的に流量の大きな第1の炭酸ガス流と、相対的に流量の小さな第2の炭酸ガス流である。 When the carbon dioxide gas containing the low-boiling-point impurities discharged from the top of the liquid carbonic acid rectifying column 101 is guided to the rectifying column top liquefier 105 or the rectifying column top gas-liquid separator 107 described later, Divided into two streams. The two flows are a first carbon dioxide gas flow having a relatively high flow rate and a second carbon dioxide gas flow having a relatively low flow rate.
 第1の炭酸ガス流は、例えば、液体炭酸精留塔101の塔頂から排出された炭酸ガスの流量のうち、流量比で90~99%を占める。また、第2の炭酸ガス流は、例えば、液体炭酸精留塔101の塔頂から排出された炭酸ガスの流量のうち、流量比で1~10%を占める。第2の炭酸ガス流の流量を1~10%とすることで、不純物除去装置100は、粗炭酸ガスに含まれる低沸点系不純物を効率良く除去することが可能となり、かつ、不純物除去装置100内の圧力をほぼ一定の値に保つことが可能となる。第2の炭酸ガス流の流量が1%未満である場合には、粗炭酸ガス中の低沸点系不純物を十分除去することが困難となって好ましくない。また、第2の炭酸ガス流の流量が10%超過である場合には、後述するように製品液体炭酸として抽出される液体炭酸の量の減少を招くため経済的ではなく、好ましくない。 The first carbon dioxide gas flow accounts for 90 to 99% of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101, for example. Further, the second carbon dioxide gas flow occupies 1 to 10% of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101, for example. By setting the flow rate of the second carbon dioxide gas flow to 1 to 10%, the impurity removing apparatus 100 can efficiently remove low-boiling impurities contained in the crude carbon dioxide gas, and the impurity removing apparatus 100. The internal pressure can be kept at a substantially constant value. When the flow rate of the second carbon dioxide gas flow is less than 1%, it is not preferable because it is difficult to sufficiently remove the low boiling point impurities in the crude carbon dioxide gas. Further, if the flow rate of the second carbon dioxide gas flow exceeds 10%, it is not economical and not preferable because it causes a decrease in the amount of liquid carbonic acid extracted as product liquid carbonic acid as will be described later.
 液体炭酸精留塔101の塔底部から抜き出される液体炭酸の量は、液体炭酸精留塔101に供給された粗炭酸ガスの供給量のうち、例えば、3モル%~5モル%とする。このような量を塔底部から抜き出すことにより、液体炭酸精留塔101に供給される粗炭酸ガスに含まれる高沸点系不純物を効率良く分離することが可能となる。その結果、供給される粗炭酸ガスの中から、効率良く高沸点系不純物を除去することができる。 The amount of liquid carbonic acid extracted from the bottom of the liquid carbonic acid rectifying column 101 is, for example, 3 mol% to 5 mol% of the amount of crude carbon dioxide supplied to the liquid carbonic acid rectifying column 101. By extracting such an amount from the bottom of the column, it becomes possible to efficiently separate high-boiling impurities contained in the crude carbon dioxide gas supplied to the liquid carbonic acid rectification column 101. As a result, high boiling impurities can be efficiently removed from the supplied crude carbon dioxide gas.
 塔底部から引き抜かれた高沸点系不純物を含む液体炭酸は、パージライン115を介して、塔底パージ液体炭酸蒸発器117へと誘導される。 The liquid carbonic acid containing high-boiling impurities extracted from the bottom of the tower is guided to the tower bottom purging liquid carbonic acid evaporator 117 via the purge line 115.
 このような液体炭酸精留塔101は、例えば、複数の段を有しており、精留塔の段数は、適宜設定可能である。 Such a liquid carbonic acid fractionator 101 has, for example, a plurality of stages, and the number of stages of the fractionator can be set as appropriate.
 精留塔リボイラ103は、液体炭酸精留塔101に設けられており、液体炭酸精留塔101における必要熱量を供給する。具体的には、精留塔リボイラ103は、後述する冷凍装置121から供給される液体冷媒(より詳細には、膨張前液体冷媒)の顕熱を利用して、液体炭酸精留塔101内に必要な熱量を供給する。 The rectifying tower reboiler 103 is provided in the liquid carbonic acid rectifying column 101 and supplies a necessary amount of heat in the liquid carbonic acid rectifying tower 101. Specifically, the rectification tower reboiler 103 uses the sensible heat of the liquid refrigerant (more specifically, the pre-expansion liquid refrigerant) supplied from the refrigeration apparatus 121 described later to enter the liquid carbonate rectification tower 101. Supply the necessary amount of heat.
 精留塔頂液化器105には、液体炭酸精留塔101の塔頂から排出された低沸点系不純物を含む炭酸ガスのうち、第1のガス流が供給される。精留塔頂液化器105では、精留塔リボイラ103から排出された過冷却の液体冷媒と、第1のガス流との熱交換が行われる。その結果、精留塔頂液化器105では、第1のガス流が全凝縮され、液体炭酸となる。また、熱交換の結果、液体冷媒は気体状態となり、冷凍装置121へと誘導される。また、凝縮の結果得られた液体炭酸は、後述する精留塔頂気液分離器107へと誘導される。 The first gas flow is supplied to the rectification tower top liquefier 105 out of carbon dioxide gas containing low-boiling-point impurities discharged from the top of the liquid carbonic acid rectification tower 101. In the rectifying tower top liquefier 105, heat exchange is performed between the supercooled liquid refrigerant discharged from the rectifying tower reboiler 103 and the first gas flow. As a result, in the rectification column top liquefier 105, the first gas stream is totally condensed into liquid carbonic acid. Further, as a result of the heat exchange, the liquid refrigerant becomes a gaseous state and is guided to the refrigeration apparatus 121. Further, the liquid carbonic acid obtained as a result of the condensation is guided to the rectification tower top gas-liquid separator 107 described later.
 精留塔頂気液分離器107には、精留塔頂液化器105から供給された液体炭酸と、液体炭酸精留塔101の塔頂から排出された低沸点系不純物を含む炭酸ガスである第2のガス流とが供給される。ここで、図1から明らかなように、上記第2のガス流は、精留塔頂液化器105を経由することなく、直接精留塔頂気液分離器107に誘導される。第2のガス流と、精留塔頂液化器105から供給された液体炭酸とは、精留塔頂気液分離器107内で混合される。その結果、精留塔頂気液分離器107内では、フラッシュおよび再液化が発生する。 The rectifying column top gas-liquid separator 107 is a carbon dioxide gas containing liquid carbonic acid supplied from the rectifying column top liquefier 105 and low-boiling-point impurities discharged from the top of the liquid carbonic acid rectifying column 101. A second gas stream is supplied. Here, as is apparent from FIG. 1, the second gas flow is directly guided to the rectification column top gas-liquid separator 107 without passing through the rectification column top liquefier 105. The second gas flow and the liquid carbonic acid supplied from the rectification column top liquefier 105 are mixed in the rectification column top gas-liquid separator 107. As a result, flushing and reliquefaction occur in the rectification column top gas-liquid separator 107.
 ここで、炭酸ガスの沸点が2.3MPaGにおいて-13℃であるのに対し、低沸点系不純物の沸点は、炭酸ガスの沸点よりもはるかに低い温度であるため、1段のフラッシュで、低沸点系不純物を液体炭酸から十分に分離することができる。その結果、精留塔頂気液分離器107内の液相側では、高沸点系不純物および低沸点系不純物をほとんど含有しない、純度の高い液体炭酸を得ることができる。 Here, the boiling point of carbon dioxide gas is −13 ° C. at 2.3 MPaG, whereas the boiling point of low-boiling impurities is much lower than the boiling point of carbon dioxide gas. Boiling point impurities can be sufficiently separated from liquid carbonic acid. As a result, on the liquid phase side in the rectifying column top gas-liquid separator 107, high-purity liquid carbon dioxide containing almost no high-boiling point impurities or low-boiling point impurities can be obtained.
 フラッシュおよび再液化により低沸点系不純物が除去された液体炭酸は、その一部が還流液として、液体炭酸精留塔101の塔頂部分に供給され、残部は、液体炭酸過冷却器109へと供給される。液体炭酸精留塔101に供給される還流液の量は、不純物除去装置100における物質収支を考慮して任意の値に決定することが可能であるが、例えば、精留塔頂気液分離器107から排出された液体炭酸の10~15%程度とすることができる。 A part of the liquid carbonic acid from which low-boiling point impurities have been removed by flashing and reliquefaction is supplied as a reflux liquid to the top of the liquid carbonic acid rectification tower 101, and the remainder is supplied to the liquid carbonic acid supercooler 109. Supplied. The amount of the reflux liquid supplied to the liquid carbonate rectification column 101 can be determined to an arbitrary value in consideration of the material balance in the impurity removal apparatus 100. For example, the rectification column top gas-liquid separator About 10 to 15% of the liquid carbonic acid discharged from 107 can be obtained.
 また、フラッシュ再液化により精留塔頂気液分離器107内で発生したガスには、低沸点系不純物が濃縮されている。そのため、この低沸点系不純物が濃縮されたガスは、精留塔頂気液分離器107から排出され、後述する塔頂パージガス加熱器111に誘導される。 Also, low boiling point impurities are concentrated in the gas generated in the rectification column top gas-liquid separator 107 by flash reliquefaction. Therefore, the gas enriched with the low-boiling-point impurities is discharged from the rectifying column top gas-liquid separator 107 and guided to the tower top purge gas heater 111 described later.
 液体炭酸過冷却器109には、精留塔頂気液分離器107から取り出された液体炭酸が供給される。液体炭酸過冷却器109は、冷凍装置121から供給される液体冷媒と液体炭酸とを熱交換させ、液体炭酸を過冷却状態にして製品液体炭酸とする。 The liquid carbonic acid supercooler 109 is supplied with the liquid carbonic acid extracted from the rectifying column top gas-liquid separator 107. The liquid carbonate supercooler 109 exchanges heat between the liquid refrigerant supplied from the refrigeration apparatus 121 and the liquid carbonate, thereby bringing the liquid carbonate into a supercooled state to produce product liquid carbonate.
 塔頂パージガス加熱器111は、精留塔頂気液分離器107から排出された、低沸点系不純物が濃縮されて混入している炭酸ガスを常温まで加熱する。常温まで加熱された低沸点系不純物を含む炭酸ガスは、圧力調節弁113を経て所定の箇所まで誘導され、フレア処理される。 The tower top purge gas heater 111 heats the carbon dioxide gas, which is discharged from the rectification tower top gas-liquid separator 107 and concentrated with the low boiling point impurities, to room temperature. Carbon dioxide gas containing low-boiling-point impurities heated to room temperature is guided to a predetermined location through the pressure control valve 113 and is subjected to flare processing.
 圧力調節弁113は、塔頂パージガス加熱器111の下流側のガスラインに設けられている。この圧力調節弁113の開閉を制御することで、不純物除去装置100全体の圧力を調節することが可能である。これにより、不純物除去装置100は、所定の設定条件(例えば、2.3MPaG、-14℃)を保持することが可能となる。 The pressure control valve 113 is provided in the gas line on the downstream side of the tower top purge gas heater 111. By controlling the opening / closing of the pressure control valve 113, the pressure of the entire impurity removing apparatus 100 can be adjusted. Thereby, the impurity removing apparatus 100 can maintain predetermined setting conditions (for example, 2.3 MPaG, −14 ° C.).
 また、液体炭酸精留塔101の塔底部から抜き出された液体炭酸は、パージライン115を経て、塔底パージ液体炭酸蒸発器117に誘導される。塔底部から抜き出された液体炭酸には、上述のように、濃縮された高沸点系不純物が混入している。
 塔底パージ液体炭酸蒸発器117は、液体炭酸精留塔101の塔底部から抜き出された高沸点系不純物を気化させて炭酸ガスとし、さらに常温まで加熱する。常温まで加熱された高沸点系不純物を含む炭酸ガスは、所定の箇所まで誘導され、フレア処理される。
Further, the liquid carbonic acid extracted from the bottom of the liquid carbonic acid fractionator 101 is guided to the tower bottom purge liquid carbonic acid evaporator 117 via the purge line 115. As described above, concentrated high-boiling impurities are mixed in the liquid carbonic acid extracted from the bottom of the column.
The bottom purge liquid carbonic acid evaporator 117 vaporizes the high-boiling impurities extracted from the bottom of the liquid carbonic acid distillation column 101 to form carbon dioxide gas, and further heats to room temperature. Carbon dioxide gas containing high-boiling-point impurities heated to room temperature is guided to a predetermined location and flare-treated.
 冷凍装置121は、不純物除去装置100で利用される冷媒の供給および回収を行う装置である。より詳細には、冷凍装置121は、不純物除去装置100内で行われた熱交換の結果気体となった冷媒を回収し、回収した冷媒を冷却して液体状態にしたうえで、不純物除去装置100へと供給する。この冷凍装置121は、特に限定されるものではなく、不純物除去装置100で必要とする温度(例えば、-14℃~-18℃)を実現可能なものであれば、液体炭酸製造設備で用いられる何れの冷凍装置であっても利用可能である。また、冷凍装置121によって供給および回収される冷媒は、不純物除去装置100で必要とする温度(例えば、-14℃~-18℃)を実現可能なものであれば、何れの冷媒でも利用可能であるが、例えば、蒸発温度-30℃程度、かつ、凝縮温度40℃程度のものを利用できる。 The refrigeration apparatus 121 is an apparatus that supplies and recovers the refrigerant used in the impurity removal apparatus 100. More specifically, the refrigeration apparatus 121 collects the refrigerant that has become gas as a result of the heat exchange performed in the impurity removal apparatus 100, cools the collected refrigerant to a liquid state, and then removes the impurity removal apparatus 100. To supply. The refrigeration apparatus 121 is not particularly limited, and can be used in a liquid carbonic acid production facility as long as the temperature required by the impurity removal apparatus 100 (for example, −14 ° C. to −18 ° C.) can be realized. Any refrigeration apparatus can be used. The refrigerant supplied and recovered by the refrigeration apparatus 121 can be any refrigerant that can achieve the temperature required by the impurity removal apparatus 100 (for example, −14 ° C. to −18 ° C.). For example, those having an evaporation temperature of about −30 ° C. and a condensation temperature of about 40 ° C. can be used.
 この冷凍装置121は、例えば図2に示したように、冷媒圧縮機123と、冷凍機油分離器125と、冷媒凝縮機127と、冷媒液受液器129と、を主に備える。 The refrigerating apparatus 121 mainly includes a refrigerant compressor 123, a refrigerating machine oil separator 125, a refrigerant condenser 127, and a refrigerant liquid receiver 129, for example, as shown in FIG.
 冷媒圧縮機123は、不純物除去装置100から回収した気体状態の冷媒を圧縮し、冷凍機油分離器125へと送出する。冷凍機油分離器125は、圧縮された冷媒に含まれる冷凍機油分と気体状態の冷媒とを分離して、気体状態の冷媒を冷媒凝縮機127に送出する。冷媒凝縮機127は、冷凍機油分が分離された気体状態の冷媒を凝縮し、液体状態の冷媒とする。冷媒凝縮機127は、液体状態となった冷媒を冷媒液受液器129へと送出し、冷媒液受液器129は、液体状態の冷媒を不純物除去装置100へと送出する。 The refrigerant compressor 123 compresses the gaseous refrigerant recovered from the impurity removing device 100 and sends it to the refrigerator oil separator 125. The refrigerating machine oil separator 125 separates the refrigerating machine oil component contained in the compressed refrigerant and the gaseous refrigerant, and sends the gaseous refrigerant to the refrigerant condenser 127. The refrigerant condenser 127 condenses the gaseous refrigerant from which the refrigeration oil component has been separated into a liquid refrigerant. The refrigerant condenser 127 sends out the liquid refrigerant to the refrigerant liquid receiver 129, and the refrigerant liquid receiver 129 sends out the liquid refrigerant to the impurity removing device 100.
 以上説明したような本実施形態に係る不純物除去装置100を用いることで、粗炭酸ガス中の低沸点系不純物および高沸点系不純物の双方を経済的に除去し、高回収率で製品炭酸ガスを得ることが可能となる。 By using the impurity removal apparatus 100 according to the present embodiment as described above, both low-boiling impurities and high-boiling impurities in the crude carbon dioxide gas are economically removed, and the product carbon dioxide gas is recovered at a high recovery rate. Can be obtained.
 以上、本実施形態に係る不純物除去装置100の構成について説明した。
 続いて、本実施形態に係る不純物除去装置100が実施する不純物の除去方法について、詳細に説明する。
The configuration of the impurity removal apparatus 100 according to the present embodiment has been described above.
Subsequently, an impurity removal method performed by the impurity removal apparatus 100 according to the present embodiment will be described in detail.
<不純物の除去方法について>
 以下、本実施形態に係る不純物除去装置100が実施する不純物の除去方法について、詳細に説明する。本実施形態に係る不純物の除去方法は、粗炭酸ガスに含まれる高沸点系不純物を除去する工程と、高沸点系不純物の除去された炭酸ガスから低沸点系不純物を除去する工程と、を主に備える。
<About the removal method of impurities>
Hereinafter, the impurity removal method performed by the impurity removal apparatus 100 according to the present embodiment will be described in detail. The impurity removal method according to the present embodiment mainly includes a step of removing high boiling point impurities contained in the crude carbon dioxide gas and a step of removing low boiling point impurities from the carbon dioxide gas from which the high boiling point impurities have been removed. Prepare for.
 まず、粗炭酸ガスに含まれる高沸点系不純物を除去する工程について説明する。 First, a process for removing high boiling point impurities contained in the crude carbon dioxide gas will be described.
 天然ガスや石油リファイナリーガスの精製工程において副生された粗炭酸ガスは、まず、液体炭酸精留塔101へと供給される。この液体炭酸精留塔101は、所定の塔頂温度および圧力(例えば、2.3MPaG、-14℃)を維持するように、制御されている。液体炭酸精留塔101内の塔頂温度は、粗炭酸ガスに含まれる低沸点系不純物の沸点以上となっているため、粗炭酸ガスに含まれる炭酸ガスと、粗炭酸ガスに含まれる低沸点系不純物とが気化して、塔頂へと追い上げられる。また、粗炭酸ガスに含まれる高沸点系不純物は、液体炭酸精留塔101内の塔底温度が高沸点系不純物の沸点に達していないため、液体炭酸精留塔101の塔底部に濃縮されることとなる。ここで、塔頂へと追い上げられる炭酸ガスの量は、精留塔101に供給された粗炭酸ガスの供給量のうち、還流分を差し引いて、例えば、95体積%以上97体積%以下とする。 Crude carbon dioxide produced as a by-product in the refining process of natural gas or petroleum refinery gas is first supplied to the liquid carbonic acid fractionator 101. The liquid carbonic acid fractionator 101 is controlled so as to maintain a predetermined tower top temperature and pressure (for example, 2.3 MPaG, −14 ° C.). Since the column top temperature in the liquid carbonic acid rectification column 101 is equal to or higher than the boiling point of the low-boiling impurities contained in the crude carbon dioxide gas, the carbon dioxide gas contained in the crude carbon dioxide gas and the low boiling point contained in the crude carbon dioxide gas System impurities are vaporized and driven up to the top of the tower. Further, the high boiling impurities contained in the crude carbon dioxide gas are concentrated at the bottom of the liquid carbonic acid distillation column 101 because the bottom temperature in the liquid carbonic acid distillation column 101 does not reach the boiling point of the high boiling impurities. The Rukoto. Here, the amount of carbon dioxide gas that is driven up to the top of the column is, for example, 95% by volume or more and 97% by volume or less by subtracting the reflux component from the amount of crude carbon dioxide supplied to the rectifying column 101. .
 ここで、液体炭酸精留塔101の塔底部に液体のまま残存する濃縮された高沸点系不純物を主として含む液体炭酸を、液体炭酸精留塔101から系外に取り出し排出することで、粗炭酸ガスに含まれる高沸点不純物を除去することができる。 Here, liquid carbonate mainly containing concentrated high-boiling-point impurities remaining in the liquid bottom at the bottom of the liquid carbonic acid rectifying column 101 is taken out of the system from the liquid carbonic acid rectifying column 101 and discharged, whereby crude carbonic acid is obtained. High boiling impurities contained in the gas can be removed.
 続いて、高沸点系不純物の除去された炭酸ガスから低沸点系不純物を除去する工程について説明する。 Subsequently, a process of removing low boiling point impurities from carbon dioxide gas from which high boiling point impurities have been removed will be described.
 液体炭酸精留塔101の塔頂から排出された炭酸ガスは、相対的に流量の大きな第1の炭酸ガス流と、相対的に流量の小さな第2の炭酸ガス流という2つの流れに分流される。第1の炭酸ガス流は、例えば、液体炭酸精留塔101の塔頂から排出された炭酸ガスの流量のうち、流量比で90~99%を占める。また、第2の炭酸ガス流は、例えば、液体炭酸精留塔101の塔頂から排出された炭酸ガスの流量のうち、流量比で1~10%(好ましくは、3~10%)を占める。 Carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101 is divided into two flows, a first carbon dioxide gas flow having a relatively high flow rate and a second carbon dioxide gas flow having a relatively low flow rate. The The first carbon dioxide gas flow accounts for 90 to 99% of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid fractionator 101, for example. The second carbon dioxide gas flow accounts for 1 to 10% (preferably 3 to 10%) of the flow rate of the carbon dioxide gas discharged from the top of the liquid carbonic acid distillation column 101, for example. .
 第1のガス流は、精留塔頂液化器105へと誘導される。精留塔頂液化器105は、第1のガス流を全凝縮して液体炭酸とし、生成された液体炭酸を、精留塔頂気液分離器107へと送出する。また、第2のガス流は、精留塔頂液化器105を経ずに、直接精留塔頂気液分離器107へと誘導される。 The first gas flow is guided to the rectification column top liquefier 105. The rectification column top liquefier 105 fully condenses the first gas stream to form liquid carbonic acid, and sends the generated liquid carbonic acid to the rectification column top gas-liquid separator 107. Further, the second gas flow is directly guided to the rectification column top gas-liquid separator 107 without passing through the rectification column top liquefier 105.
 第1のガス流が全凝縮した結果生じた液体炭酸と、第2のガス流とが供給される精留塔頂気液分離器107では、精留塔頂液化器105から供給された液体炭酸の再フラッシュが起こり、低沸点系不純物が分離される。分離された低沸点系不純物は濃縮され、ガスとして精留塔頂気液分離器107から排出される。精留塔頂気液分離器107から低沸点系不純物を含むガスを系外に取り出すことで、高沸点系不純物の除去された炭酸ガスを用いて生成された液体炭酸の中から、更に、低沸点系不純物を除去することができる。 In the rectification column top gas-liquid separator 107 to which the liquid carbon dioxide generated as a result of the total condensation of the first gas stream and the second gas stream is supplied, the liquid carbon dioxide supplied from the rectification column top liquefier 105 is used. Re-flushing occurs and low boiling impurities are separated. The separated low boiling point impurities are concentrated and discharged from the rectifying tower top gas-liquid separator 107 as a gas. A gas containing low boiling point impurities is taken out of the system from the rectifying column top gas-liquid separator 107, so that the liquid carbon dioxide produced using the carbon dioxide gas from which the high boiling point impurities have been removed is further reduced. Boiling system impurities can be removed.
 精留塔頂気液分離器107から送出された液体炭酸は、上述のように低沸点系不純物がほとんど含まれず、また、高沸点系不純物もほとんど含まないものである。精留塔頂気液分離器107から送出された液体炭酸は、その一部(例えば、液体炭酸精留塔101に供給された粗炭酸ガスのモル数のうち、10モル%~15モル%)が液体炭酸精留塔101の頂部に還流液として供給された後に、液体炭酸過冷却器109へと誘導される。液体炭酸過冷却器109に供給された液体炭酸は、過冷却状態にされた後、製品液体炭酸として取り出される。 The liquid carbonic acid sent from the rectifying column top gas-liquid separator 107 contains almost no low-boiling-point impurities as described above, and hardly contains any high-boiling-point impurities. Part of the liquid carbonic acid sent from the rectifying column top gas-liquid separator 107 (for example, 10 mol% to 15 mol% of the number of moles of crude carbon dioxide supplied to the liquid carbonic acid rectifying column 101) Is supplied to the top of the liquid carbonic acid distillation column 101 as a reflux liquid, and is then guided to the liquid carbonic acid supercooler 109. The liquid carbonic acid supplied to the liquid carbonic supercooler 109 is taken out as product liquid carbonic acid after being brought into a supercooled state.
 他方、精留塔頂気液分離器107から排出された、低沸点系不純物の濃縮されたガスは、塔頂パージガス加熱器111で常温化された後、フレア処理される。また、液体炭酸精留塔101の塔底部から抜き出される少量の液体炭酸は、高沸点系不純物が濃縮されて含まれているため、塔底パージ液体炭酸蒸発器117により気化・常温化された後、フレア処理される。 On the other hand, the gas enriched with low boiling point impurities discharged from the rectifying column top gas-liquid separator 107 is brought to room temperature by the tower top purge gas heater 111 and then subjected to flare treatment. In addition, since a small amount of liquid carbonic acid extracted from the bottom of the liquid carbonic acid rectification column 101 contains high-boiling impurities, it was vaporized and brought to room temperature by the column bottom purging liquid carbonic acid evaporator 117. After that, flare processing is performed.
 以上説明したように、本実施形態に係る不純物の除去方法は、触媒あるいは活性炭によって、あらかじめ、原料粗炭酸ガスを処理する方法ではない。そのため、本実施形態にかかる不純物の除去方法は、触媒反応に必要な温度まで粗炭酸ガスを予熱する熱や、活性炭を再生するための熱は必要がない。そのため、本実施形態に係る不純物の除去方法を用いることで、粗炭酸ガス中の低沸点系不純物および高沸点系不純物の双方を経済的に除去し、高回収率で製品炭酸ガスを得ることができる。 As described above, the impurity removal method according to the present embodiment is not a method of treating raw raw carbon dioxide gas in advance with a catalyst or activated carbon. Therefore, the impurity removal method according to the present embodiment does not require heat for preheating the crude carbon dioxide gas to a temperature necessary for the catalytic reaction or heat for regenerating the activated carbon. Therefore, by using the impurity removal method according to the present embodiment, it is possible to economically remove both low-boiling impurities and high-boiling impurities in the crude carbon dioxide gas, and to obtain a product carbon dioxide gas with a high recovery rate. it can.
 以上、本実施形態に係る不純物の除去方法について説明した。
 以下では、本発明の第2の実施形態に係る不純物除去装置および不純物の除去方法について、詳細に説明する。
The impurity removal method according to this embodiment has been described above.
Hereinafter, the impurity removal apparatus and the impurity removal method according to the second embodiment of the present invention will be described in detail.
(第2の実施形態)
 続いて、本発明の第2の実施形態に係る不純物除去装置および不純物の除去方法について、詳細に説明する。
(Second Embodiment)
Subsequently, an impurity removing apparatus and an impurity removing method according to the second embodiment of the present invention will be described in detail.
 原料ガスが、天然ガス、石油リファイナリーガスである場合、副生される粗炭酸ガスには、ベンゼン、パラキシレン等の高融点の高沸点系不純物が混入している。このような高融点の高沸点系不純物を含む粗炭酸ガスは、液体炭酸精留塔等の低温部で、高融点の高沸点系不純物が固体となって析出することで装置の閉塞を引き起こし、連続操業ができなくなるという事態を発生させる可能性がある。 When the raw material gas is natural gas or petroleum refinery gas, high-boiling-point impurities having a high melting point such as benzene and paraxylene are mixed in the crude carbon dioxide gas produced as a by-product. The crude carbon dioxide gas containing such a high-melting-point high-boiling-point impurity causes clogging of the apparatus due to precipitation of the high-melting-point high-boiling-point impurity as a solid in a low-temperature part such as a liquid carbonic acid rectification column, There is a possibility of causing a situation where continuous operation is not possible.
 そこで、本発明者らは、このような事態の発生を防止し、不純物除去装置の連続運転を実現可能な方法について鋭意検討を行い、以下で説明するような本発明の第2の実施形態に係る不純物除去装置および不純物の除去方法に想到した。 Therefore, the present inventors have intensively studied a method capable of preventing the occurrence of such a situation and realizing the continuous operation of the impurity removal apparatus, and in the second embodiment of the present invention described below. The inventors have come up with such an impurity removal apparatus and impurity removal method.
<不純物除去装置について>
 まず、図3および図4を参照しながら、本発明の第2の実施形態に係る不純物除去装置について、詳細に説明する。図3および図4は、本実施形態に係る不純物除去装置を説明するための説明図である。
<About impurity removal equipment>
First, an impurity removing apparatus according to the second embodiment of the present invention will be described in detail with reference to FIGS. 3 and 4. 3 and 4 are explanatory views for explaining the impurity removing apparatus according to the present embodiment.
 本実施形態に係る不純物除去装置100は、例えば図3に示したように、液体炭酸精留塔101と、精留塔リボイラ103と、精留塔頂液化器105と、精留塔頂気液分離器107と、製品液体炭酸過冷却器109と、塔頂パージガス加熱器111と、圧力調節弁113と、パージライン115と、塔底パージ液体炭酸蒸発器117と、冷凍装置121と、精留塔前液化器151a,151bと、を主に備える。 For example, as shown in FIG. 3, the impurity removal apparatus 100 according to this embodiment includes a liquid carbonic acid rectification column 101, a rectification column reboiler 103, a rectification column top liquefier 105, and a rectification column top gas liquid. Separator 107, product liquid carbonate supercooler 109, tower top purge gas heater 111, pressure control valve 113, purge line 115, tower bottom purge liquid carbon dioxide evaporator 117, refrigeration apparatus 121, rectification The tower front liquefiers 151a and 151b are mainly provided.
 ここで、本実施形態に係る液体炭酸精留塔101、精留塔リボイラ103、精留塔頂液化器105、精留塔頂気液分離器107、製品液体炭酸過冷却器109、塔頂パージガス加熱器111、圧力調節弁113、パージライン115、塔底パージ液体炭酸蒸発器117と、冷凍装置121は、それぞれ、本発明の第1の実施形態における各装置と同様の構成を有し、同様の効果を奏するため、詳細な説明は省略する。 Here, the liquid carbonate rectification tower 101, the rectification tower reboiler 103, the rectification tower top liquefier 105, the rectification tower top gas-liquid separator 107, the product liquid carbonate supercooler 109, the top purge gas according to the present embodiment. The heater 111, the pressure control valve 113, the purge line 115, the bottom purge liquid carbon dioxide evaporator 117, and the refrigeration apparatus 121 have the same configurations as those in the first embodiment of the present invention, respectively. Detailed description will be omitted to achieve the above effect.
 精留塔前液化器151a,151b(以下、単に精留塔前液化器151とも称する。)は、本実施形態に係る不純物除去装置100に複数設置される装置である。なお、図3において、精留塔前液化器151は、2つしか図示していないが、本実施形態に係る精留塔前液化器151の台数は、図3に示した場合のみに限定されるわけではなく、3台以上の精留塔前液化器151を不純物除去装置100に設けても良い。 A plurality of pre-rectification tower liquefiers 151a and 151b (hereinafter simply referred to as pre-rectification tower liquefiers 151) are installed in the impurity removing apparatus 100 according to this embodiment. In FIG. 3, only two rectification column pre-liquefiers 151 are shown, but the number of rectification column pre-liquefaction devices 151 according to this embodiment is limited to the case shown in FIG. However, three or more rectifying column pre-liquefiers 151 may be provided in the impurity removing apparatus 100.
 精留塔前液化器151は、液体炭酸精留塔101の上流側に配置される。精留塔前液化器151は、液体炭酸精留塔101に供給される粗炭酸ガスを冷却して、粗炭酸ガスに含まれる高融点の高沸点系不純物を固化・析出させ、粗炭酸ガスから高融点の高沸点系不純物を一部除去する。ここで、高融点の高沸点系不純物とは、液体炭酸精留塔101における塔頂温度よりも融点が高い高沸点系不純物を意味し、このような不純物の例として、例えば、ベンゼン、パラキシレン等を挙げることができる。 The rectification tower pre-liquefaction device 151 is disposed on the upstream side of the liquid carbonate rectification tower 101. The rectifying column pre-liquefier 151 cools the crude carbon dioxide gas supplied to the liquid carbonic acid fractionator 101, solidifies and precipitates the high-melting-point high-boiling-point impurities contained in the crude carbon dioxide gas, and from the crude carbon dioxide gas A part of high-boiling impurities having a high melting point is removed. Here, the high-boiling impurities having a high melting point mean high-boiling impurities having a melting point higher than the top temperature of the liquid carbonic acid distillation column 101. Examples of such impurities include benzene and paraxylene. Etc.
 より詳細には、精留塔前液化器151は、不純物除去装置100内の圧力(例えば、2.3MPaG)を維持したまま、粗炭酸ガスを液体炭酸精留塔101の塔頂よりも低い温度(例えば、塔頂よりも1~2℃低い温度である-15℃程度)まで冷却する。このような温度は、高融点の高沸点系不純物は固化するものの炭酸ガスは固化しない温度であるため、精留塔前液化器151を通過する粗炭酸ガスに含まれる炭酸ガスは全凝縮して液体炭酸となり、粗炭酸ガスに含まれる高融点の高沸点系不純物は、精留塔前液化器151内で固化して析出することとなる。これにより、精留塔前液化器151は、液体炭酸精留塔101に供給される粗炭酸ガスの中から、高融点の高沸点系不純物を一部除去することができる。 More specifically, the rectification column pre-liquefier 151 is configured to remove crude carbon dioxide gas at a temperature lower than that of the top of the liquid carbonate rectification column 101 while maintaining the pressure (for example, 2.3 MPaG) in the impurity removal apparatus 100. (For example, about −15 ° C., which is 1 to 2 ° C. lower than the top of the column). Such temperature is a temperature at which high-boiling impurities having a high melting point are solidified but carbon dioxide gas is not solidified. Therefore, the carbon dioxide contained in the crude carbon dioxide gas passing through the pre-liquefaction tower 151 is completely condensed. It becomes liquid carbonic acid, and the high-melting-point high-boiling-point impurity contained in the crude carbon dioxide solidifies in the rectification column pre-liquefier 151 and precipitates. Thereby, the fractionator pre-liquefaction device 151 can partially remove high-melting-point high-boiling impurities from the crude carbon dioxide gas supplied to the liquid carbonate fractionator 101.
 このようにして高融点の高沸点系不純物が一部除去された液体炭酸(粗炭酸ガスが液化したもの)は、液体炭酸精留塔101に送出される。 The liquid carbonic acid from which a part of the high-boiling impurities having a high melting point has been removed in this way (the crude carbon dioxide liquefied) is sent to the liquid carbonic acid distillation column 101.
 本実施形態に係る不純物除去装置100では、このような精留塔前液化器151を複数利用することで、不純物除去装置100の連続運転を実現する。以下に、連続運転を実現する方法の詳細について、図4を参照しながら説明する。 In the impurity removal apparatus 100 according to the present embodiment, a continuous operation of the impurity removal apparatus 100 is realized by using a plurality of such rectification column pre-liquefiers 151. Below, the detail of the method of implement | achieving a continuous driving | operation is demonstrated, referring FIG.
 図4は、図3に示した本実施形態に係る不純物除去装置100の中から一部の装置のみを抜き出して図示したものである。図4における説明では、2つの精留塔前液化器151a,151bが存在する場合について説明する。 FIG. 4 shows only some devices extracted from the impurity removal device 100 according to the present embodiment shown in FIG. In the description of FIG. 4, a case where there are two rectification column pre-liquefiers 151a and 151b will be described.
 本実施形態に係る不純物除去装置100では、例えば図4の(状態a)に示したように、粗炭酸ガスを、精留塔前液化器151aに供給し、この精留塔前液化器151aに冷媒が供給されるようにする。また、もう一方の精留塔前液化器151bには、塔頂パージガス加熱器111から排出されたガスが供給されるようにする。 In the impurity removal apparatus 100 according to the present embodiment, for example, as shown in FIG. 4 (state a), the crude carbon dioxide gas is supplied to the rectification tower pre-liquefier 151a, and the rectification tower pre-liquefaction liquidator 151a is supplied. The refrigerant is supplied. In addition, the gas discharged from the tower top purge gas heater 111 is supplied to the other rectification tower pre-liquefier 151b.
 ここで、粗炭酸ガスが供給されている精留塔前液化器151aを、2.3MPaG程度の圧力下で-15℃(液体炭酸精留塔101の塔頂温度より1~2℃低い温度)程度に冷却することにより、粗炭酸ガスに含まれる炭酸ガスは全凝縮して液体(液体炭酸)となり、この液体炭酸は、液体炭酸精留塔101にフィードされる。また、精留塔前液化器151aは、上述のように-15℃で操作されるため、ベンゼン、パラキシレンといった高融点の高沸点系不純物は、精留塔前液化器151a内で冷却され、固化析出する。これにより、液体炭酸精留塔101には、高融点の高沸点系不純物が一部除去された液体炭酸が供給されることとなり、液体炭酸精留塔101を含む不純物除去装置100は、残りのわずかの高融点の高沸点系不純物と高沸点系不純物と低沸点系不純物とを、本発明の第1の実施形態に係る不純物除去装置100で説明したような方法で、粗炭酸ガスから除去する。この場合、高融点の高沸点系不純物は、液体炭酸精留塔101内に、わずかに残存するが、液体炭酸精留塔101の塔頂温度は精留塔前液化器151より1~2℃高いので、再び固化する恐れはない。 Here, the rectification column pre-liquefier 151a to which the crude carbon dioxide gas is supplied is −15 ° C. under a pressure of about 2.3 MPaG (a temperature lower by 1-2 ° C. than the top temperature of the liquid carbonic acid rectification column 101). By cooling to the extent, the carbon dioxide contained in the crude carbon dioxide is fully condensed to become a liquid (liquid carbonic acid), and this liquid carbonic acid is fed to the liquid carbonic acid fractionator 101. Further, since the rectifying column pre-liquefier 151a is operated at −15 ° C. as described above, high-melting-point high-boiling impurities such as benzene and paraxylene are cooled in the rectifying column pre-liquefier 151a, Solidify and precipitate. As a result, the liquid carbonic acid rectifying column 101 is supplied with liquid carbonic acid from which a part of the high-melting-point high boiling point impurities have been removed. A few high-boiling impurities, high-boiling impurities, and low-boiling impurities are removed from the crude carbon dioxide gas by the method described in the impurity removing apparatus 100 according to the first embodiment of the present invention. . In this case, the high-melting-point high-boiling-point impurities remain slightly in the liquid carbonate rectification column 101, but the top temperature of the liquid carbonate rectification column 101 is 1 to 2 ° C. from the rectification column pre-liquefaction device 151. Because it is expensive, there is no fear of solidifying again.
 精留塔前液化器151aをしばらく運転すると、ベンゼン、パラキシレン等の高融点の高沸点系不純物析出による配管や弁の閉塞のため、圧力損失の増大、伝熱係数の低下による伝熱不良が発生し、精留塔前液化器151aの操作が不可能となる。このタイミングで、図4の(状態b)に示したように、粗炭酸ガスを流していなかったもう一方の精留塔前液化器151bに、粗炭酸ガスの流れを切りかえる。 If the rectifier pre-liquefier 151a is operated for a while, piping and valves are blocked by precipitation of high-melting-point high-boiling impurities such as benzene and para-xylene. Occurs and the operation of the rectifier pre-liquefier 151a becomes impossible. At this timing, as shown in FIG. 4 (state b), the flow of the crude carbon dioxide gas is switched to the other rectification tower pre-liquefier 151b in which the crude carbon dioxide gas has not flowed.
 精留塔頂気液分離器107から排出されるガスは、上述のように、ベンゼン、パラキシレンといった高融点の高沸点系不純物をほとんど含まない。そのため、この排出ガスを塔頂パージガス加熱器111で常温に戻した後、閉塞のため粗炭酸ガスの供給を停止した側の精留塔前液化器151aに再生ガスとして供給する。その結果、精留塔前液化器151a内に析出している高融点の高沸点系不純物は、常温の再生ガスによって加熱されることとなり、これらの高融点の高沸点系不純物の固体は、蒸発・昇華することとなる。その結果、精留塔前液化器151a内に存在していた高融点の高沸点系不純物は、精留塔前液化器151aから除去され、精留塔前液化器151aは再び使用可能となる。 As described above, the gas discharged from the rectification column top gas-liquid separator 107 contains almost no high-boiling impurities such as benzene and paraxylene. Therefore, after this exhaust gas is returned to normal temperature by the tower top purge gas heater 111, it is supplied as a regeneration gas to the rectification tower pre-liquefier 151a on the side where the supply of the crude carbon dioxide gas is stopped due to blockage. As a result, the high-melting-point high-boiling impurities precipitated in the rectification column pre-liquefier 151a are heated by the regeneration gas at room temperature, and the solids of these high-melting-point high-boiling impurities are evaporated.・ Sublimation will occur. As a result, the high-melting-point high-boiling-point impurities present in the rectification column pre-liquefier 151a are removed from the rectification column pre-liquefaction device 151a, and the rectification column pre-liquefaction device 151a can be used again.
 以後、精留塔前液化器151a,151bを利用して、このサイクルを交互に繰り返すことにより、不純物除去装置100は、高融点の高沸点系不純物の閉塞が生じることなく、連続運転が可能となる。 Thereafter, by alternately repeating this cycle using the rectification column pre-liquefiers 151a and 151b, the impurity removal apparatus 100 can be continuously operated without clogging the high melting point high boiling point impurities. Become.
 なお、この再生ガスとして、精留塔頂気液分離器107から排出された低沸点系不純物を極少量含むほぼ純粋な炭酸ガスを利用することで、高融点の高沸点系不純物の閉塞から回復した精留塔前液化器151aの内部は、ほぼ純粋な炭酸ガスで満たされた状態となっている。そのため、高融点の高沸点系不純物の閉塞から回復した精留塔前液化器151aが再び液化操作に移る際に、系内をパージするためのパージガスを利用することなく、液化操作を再開することができる。このようなパージガスが不要となることで、製品炭酸ガスの損失を抑制することができる。 As this regeneration gas, almost pure carbon dioxide gas containing a very small amount of low boiling point impurities discharged from the rectifying column top gas-liquid separator 107 is used to recover from clogging of high melting point high boiling point impurities. The inside of the rectifying column pre-liquefier 151a is filled with substantially pure carbon dioxide gas. Therefore, when the pre-rectification tower liquefier 151a recovered from the blockage of the high-melting-point high-boiling-point impurities moves to the liquefaction operation again, the liquefaction operation is resumed without using the purge gas for purging the inside of the system. Can do. By eliminating the need for such a purge gas, loss of product carbon dioxide gas can be suppressed.
 以上、本実施形態に係る不純物除去装置100の構成について説明した。
 なお、本実施形態に係る不純物の除去方法は、液体炭酸精留塔101の上流側に設けた精留塔前液化器151により粗炭酸ガスを全凝縮し、粗炭酸ガスに含まれる高融点の高沸点系不純物を一部除去した液体炭酸を液体炭酸精留塔101に供給する点、ならびに、精留塔頂気液分離器107から排出されたほぼ純粋な炭酸ガスを用いて、高融点の高沸点系不純物が析出した精留塔前液化器151を再生する点以外は、本発明の第1の実施形態に係る不純物の除去方法と同様である。よって、本実施形態に係る不純物の除去方法に関する詳細な説明は省略する。
The configuration of the impurity removal apparatus 100 according to the present embodiment has been described above.
In addition, the impurity removal method according to the present embodiment is such that the crude carbon dioxide gas is totally condensed by the rectification tower pre-liquefaction device 151 provided on the upstream side of the liquid carbonic acid rectification tower 101, and the high melting point contained in the crude carbon dioxide gas. Using a point where liquid carbon dioxide from which high-boiling impurities have been partially removed is supplied to the liquid carbonic acid rectification column 101 and almost pure carbon dioxide gas discharged from the rectification column top gas-liquid separator 107, The method is the same as the impurity removal method according to the first embodiment of the present invention, except that the rectification column pre-liquefaction device 151 on which high-boiling impurities are deposited is regenerated. Therefore, a detailed description of the impurity removal method according to this embodiment is omitted.
 以下では、実施例を示しながら、本発明の実施形態に係る不純物除去装置および不純物の除去方法について説明する。しかしながら、本発明が以下に示す実施例に限定されるわけではない。 Hereinafter, an impurity removal apparatus and an impurity removal method according to an embodiment of the present invention will be described with reference to examples. However, the present invention is not limited to the following examples.
 以下では、図3に示した本発明の第2の実施形態に係る不純物除去装置100を想定した化学プロセスシミュレータによるシミュレーション結果について、詳細に説明する。用いた化学プロセスシミュレータは、各種の化学反応式や、物性データや、熱力学の諸方程式を用いて化学プロセスをシミュレートするものであり、実際の操業に則したシミュレーションが実現可能なものである。 Hereinafter, the simulation result by the chemical process simulator assuming the impurity removal apparatus 100 according to the second embodiment of the present invention shown in FIG. 3 will be described in detail. The chemical process simulator used simulates the chemical process using various chemical reaction equations, physical property data, and various equations of thermodynamics, and is capable of realizing simulation in accordance with actual operation. .
 なお、図3に示した本発明の第2の実施形態に係る不純物除去装置100は、図1に示した本発明の第1の実施形態に係る不純物除去装置100の構成を含むものであり、実施例としては好適であると考える。 The impurity removal apparatus 100 according to the second embodiment of the present invention shown in FIG. 3 includes the configuration of the impurity removal apparatus 100 according to the first embodiment of the present invention shown in FIG. It is considered preferable as an embodiment.
(実施例1)
[粗炭酸ガスについて]
 天然ガスを化学吸収法で処理して得られた副生ガスである炭酸ガスリッチガスを、粗炭酸ガスとし、この粗炭酸ガスの流量および組成を以下のように設定した。以下では、粗炭酸ガスの流量を、モル流量(表1)と質量流量(表2)の双方で示している。この設定値は、実際の粗炭酸ガスの組成に基づくものである。なお、粗炭酸ガスの温度は20℃とし、圧力は2.3MPaGとした。
Example 1
[About crude carbon dioxide]
Carbon dioxide rich gas, which is a by-product gas obtained by treating natural gas by the chemical absorption method, was used as crude carbon dioxide, and the flow rate and composition of the crude carbon dioxide were set as follows. In the following, the flow rate of the crude carbon dioxide gas is indicated by both the molar flow rate (Table 1) and the mass flow rate (Table 2). This set value is based on the actual crude carbon dioxide composition. The temperature of the crude carbon dioxide gas was 20 ° C., and the pressure was 2.3 MPaG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、上記表1および表2において、「C2」は、炭素数が2の化合物を表し、「C3」は、炭素数が3の化合物を表し、「C4+」は、炭素数が4以上の化合物を表している。 In Tables 1 and 2, “C2” represents a compound having 2 carbon atoms, “C3” represents a compound having 3 carbon atoms, and “C4 +” represents a compound having 4 or more carbon atoms. Represents.
[操作条件について]
 精留塔前液化器151の操作条件として、精留塔前液化器151の出側において、-15℃、2.3MPaGであるとし、精留塔前液化器151内で全凝縮されるとした。
[Operation conditions]
As operating conditions of the rectification column pre-liquefier 151, it is assumed that the outlet side of the rectification column pre-liquefaction device 151 is −15 ° C. and 2.3 MPaG, and is completely condensed in the rectification column pre-liquefaction device 151. .
 液体炭酸精留塔101の操作条件として、塔底部に液化した粗炭酸ガスが供給される塔径500mmの精留塔とし、塔頂への還流液は879kg/hとした。また、塔頂へ導かれる炭酸ガスの量は、還流分を差し引いて液体炭酸精留塔101に供給されるガスの供給量の約97体積%とした。 The operating conditions of the liquid carbonic acid rectification column 101 were a rectification column having a tower diameter of 500 mm to which liquefied crude carbon dioxide gas was supplied to the bottom of the column, and the reflux liquid to the column top was 879 kg / h. The amount of carbon dioxide introduced to the top of the column was about 97% by volume of the amount of gas supplied to the liquid carbonic acid rectification column 101 by subtracting the reflux.
 また、液体炭酸精留塔101の塔頂から排出されたガスのうち、流量比で97%が第1のガス流として精留塔頂液化器105へと誘導され、流量比で3%が第2のガス流として精留塔頂気液分離器107へ直接誘導されるものと設定した。なお、塔頂から排出されたガスの温度は-13.7℃であり、圧力は2.3MPaGとした。 Of the gas discharged from the top of the liquid carbonic acid rectification column 101, 97% in the flow rate ratio is guided to the rectification column top liquefier 105 as the first gas flow, and 3% in the flow rate ratio is 3%. The gas flow was set to be directly guided to the rectification column top gas-liquid separator 107 as a gas flow of 2. The temperature of the gas discharged from the top of the tower was -13.7 ° C., and the pressure was 2.3 MPaG.
[シミュレーション結果について]
 このようなシミュレーションの結果、以下の表3~表5で示すような値が得られた。表3は、塔頂パージガス加熱器111の下流側におけるガスの流量および組成であり、表4は、塔底パージ液体炭酸蒸発器117の下流側におけるガスの流量および組成である。また、表5は、製品液体炭酸の流量および組成である。
[About simulation results]
As a result of such simulation, values as shown in Tables 3 to 5 below were obtained. Table 3 shows the gas flow rate and composition on the downstream side of the tower top purge gas heater 111, and Table 4 shows the gas flow rate and composition on the downstream side of the tower bottom purge liquid carbon dioxide evaporator 117. Table 5 shows the flow rate and composition of the product liquid carbonic acid.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、本シミュレーションにおける炭酸ガスの回収率は、94.9%であった。 Note that the recovery rate of carbon dioxide in this simulation was 94.9%.
(実施例2)
 第2のガス流を、流量比で8%とした以外は実施例1と同様にして、シミュレーションを行った。製品液体炭酸の流量・組成について、得られた結果を表6に示す。
(Example 2)
A simulation was performed in the same manner as in Example 1 except that the flow rate of the second gas flow was 8%. The results obtained for the flow rate and composition of the product liquid carbonic acid are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、本シミュレーションにおける炭酸ガスの回収率は、87.7%であった。 Note that the recovery rate of carbon dioxide in this simulation was 87.7%.
(実施例3)
 第2のガス流を、流量比で10%とした以外は実施例1と同様にして、シミュレーションを行った。製品液体炭酸の流量・組成について、得られた結果を表7に示す。
(Example 3)
A simulation was performed in the same manner as in Example 1 except that the flow rate of the second gas flow was 10%. Table 7 shows the obtained results for the flow rate and composition of the product liquid carbonic acid.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 なお、本シミュレーションにおける炭酸ガスの回収率は、86.3%であった。 Note that the carbon dioxide recovery rate in this simulation was 86.3%.
(比較例1)
 図5に示した従来の不純物除去装置10について、実施例1と同様にしてシミュレーションを行った。製品液体炭酸の流量・組成について、得られた結果を表8に示す。
(Comparative Example 1)
A simulation was performed in the same manner as in Example 1 for the conventional impurity removal apparatus 10 shown in FIG. Table 8 shows the results obtained for the flow rate and composition of the product liquid carbonic acid.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 なお、本シミュレーションにおける炭酸ガスの回収率は、94.0%であった。 Note that the recovery rate of carbon dioxide gas in this simulation was 94.0%.
 以上の結果から明らかなように、液体炭酸精留塔底の液体炭酸パージ量をフィードのモルの3%とした実施例1において既に、ベンゼン、トルエン、キシレンといった高沸点系不純物は1ppm未満のオーダーまで除去されていることがわかる。また、第2のガス流の流量比を増加させていくと、低沸点系不純物の含有量も減少していくことがわかる。このように、本発明の各実施形態に係る不純物の除去方法によれば、粗炭酸ガスに含まれる高沸点系不純物および低沸点系不純物の双方を効率よく除去することが可能であり、また、製品液体炭酸を85%以上の高回収率で得ることができる。 As is clear from the above results, in Example 1 where the amount of liquid carbon dioxide purge at the bottom of the liquid carbonic acid rectification column was 3% of the mole of feed, high boiling point impurities such as benzene, toluene and xylene were already on the order of less than 1 ppm. It can be seen that it has been removed. It can also be seen that as the flow rate ratio of the second gas flow is increased, the content of low-boiling impurities is also decreased. Thus, according to the impurity removal method according to each embodiment of the present invention, it is possible to efficiently remove both high-boiling impurities and low-boiling impurities contained in the crude carbon dioxide gas, Product liquid carbonic acid can be obtained with a high recovery rate of 85% or more.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 本発明は、工業用、食品用、医療用の炭酸ガスの製造に利用できるほか、炭酸ガスを地中に圧入する場合においても環境に影響を与える高沸点系不純物を除去した炭酸ガスとして利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for the production of carbon dioxide for industrial, food and medical use, and can be used as carbon dioxide from which high-boiling impurities that affect the environment are removed even when carbon dioxide is injected into the ground. .
 100  不純物除去装置
 101  液体炭酸精留塔
 103  精留塔リボイラ
 105  精留塔頂液化器
 107  精留塔頂気液分離器
 109  液体炭酸過冷却器
 111  塔頂パージガス加熱器
 113  圧力調節弁
 115  パージライン
 117  塔底パージ液体炭酸蒸発器
 121  冷凍装置
 123  冷媒圧縮機
 125  冷凍機油分離器
 127  冷媒凝縮機
 129  冷媒液受液器
 151  精留塔前液化器
DESCRIPTION OF SYMBOLS 100 Impurity removal apparatus 101 Liquid carbonate rectification tower 103 Rectification tower reboiler 105 Rectification tower top liquefier 107 Rectification tower top gas-liquid separator 109 Liquid carbon dioxide supercooler 111 Tower top purge gas heater 113 Pressure control valve 115 Purge line 117 Column bottom purge liquid carbon dioxide evaporator 121 Refrigeration apparatus 123 Refrigeration compressor 125 Refrigeration machine oil separator 127 Refrigeration condenser 129 Refrigerant liquid receiver 151 Fractionator pre-liquefaction unit

Claims (9)

  1.  粗炭酸ガスに含まれる、炭酸ガスよりも沸点が高い不純物である高沸点系不純物および炭酸ガスよりも沸点が低い不純物である低沸点系不純物を、前記粗炭酸ガスから除去する方法であって、
     前記粗炭酸ガスから前記高沸点系不純物を除去する工程と、
     前記粗炭酸ガスから前記低沸点系不純物を除去する工程と、
    を含み、
     前記高沸点系不純物を除去する工程は、
     前記高沸点系不純物および前記低沸点系不純物を含む前記粗炭酸ガスを、液体炭酸精留塔に供給する工程と、
     前記液体炭酸精留塔中で前記粗炭酸ガスの供給量のうち所定量を塔頂に導く工程と、
     前記高沸点系不純物を含む液体炭酸を、前記液体炭酸精留塔底から系外に排出する工程とを含み、
     前記低沸点系不純物を除去する工程は、
     前記塔頂から排出された炭酸ガスを、相対的に流量の大きな第1の炭酸ガス流と、相対的に流量の小さな第2の炭酸ガス流とに分流する工程と、
     前記第1の炭酸ガス流を精留塔頂液化器に導いて全凝縮して液体炭酸とし、当該液体炭酸を精留塔頂気液分離器に導く工程と、
     前記第2の炭酸ガス流を混合して再フラッシュにより前記精留塔頂気液分離器で液体炭酸中の低沸点系不純物を分離する工程とを含む、炭酸ガス中の不純物の除去方法。
    A method of removing from a crude carbon dioxide gas a high-boiling-point impurity that is an impurity having a higher boiling point than carbon dioxide gas and a low-boiling-point impurity that is an impurity having a lower boiling point than carbon dioxide gas, contained in the crude carbon dioxide gas,
    Removing the high-boiling impurities from the crude carbon dioxide gas;
    Removing the low boiling impurities from the crude carbon dioxide gas;
    Including
    The step of removing the high-boiling impurities is
    Supplying the crude carbon dioxide gas containing the high-boiling impurities and the low-boiling impurities to a liquid carbonic acid fractionator;
    A step of leading a predetermined amount of the supply amount of the crude carbon dioxide gas to the top of the column in the liquid carbonate rectification column;
    Discharging the liquid carbon dioxide containing the high-boiling impurities from the bottom of the liquid carbonic acid rectification column to the outside of the system,
    The step of removing the low boiling point impurities includes
    Splitting the carbon dioxide gas discharged from the top of the tower into a first carbon dioxide gas stream having a relatively high flow rate and a second carbon dioxide gas stream having a relatively low flow rate;
    Directing the first carbon dioxide gas stream to a rectifying column top liquefier to condense into liquid carbonic acid, and leading the liquid carbonic acid to a rectifying column top gas-liquid separator;
    Mixing the second carbon dioxide gas stream and re-flushing to separate low boiling point impurities in the liquid carbon dioxide with the rectifying column top gas-liquid separator.
  2.  前記高沸点系不純物を除去する工程は、さらに、
     前記高沸点系不純物および前記低沸点系不純物を含む前記粗炭酸ガスを、複数の精留塔前液化器の何れか一つに供給して前記塔頂の温度よりも低い温度まで冷却し前記粗炭酸ガスに含まれる前記液体炭酸精留塔における塔頂温度よりも融点が高い高融点の前記高沸点系不純物を固化させる工程と、
     前記高融点の高沸点系不純物が一部除去された前記粗炭酸ガスを前記液体炭酸精留塔に供給する工程とを含み、
     前記高融点の高沸点系不純物が閉塞した時点で前記粗炭酸ガスが供給されている精留塔前液化器に換えて他の前記精留塔前液化器を稼働させ、前記精留塔頂気液分離器から排出され常温まで加熱された炭酸ガスを、前記高融点の高沸点系不純物が閉塞した精留塔前液化器に供給し、高融点の高沸点系不純物を蒸発・昇華させて除去する、請求項1に記載の炭酸ガス中の不純物の除去方法。
    The step of removing the high boiling point impurities further includes:
    The crude carbon dioxide gas containing the high-boiling-point impurities and the low-boiling-point impurities is supplied to any one of a plurality of rectifying column pre-liquefiers and cooled to a temperature lower than the top temperature of the column, Solidifying the high-boiling impurities having a high melting point that is higher than the top temperature of the liquid carbonic fractionator contained in carbon dioxide gas; and
    Supplying the crude carbon dioxide gas from which a part of the high-melting-point high-boiling-point impurities have been removed to the liquid carbonic acid rectification column,
    When the high-melting-point high-boiling-point impurities are blocked, the rectification column pre-liquefaction device is operated instead of the rectification column pre-liquefaction device to which the crude carbon dioxide gas is supplied, Carbon dioxide gas discharged from the liquid separator and heated to room temperature is supplied to the liquefaction column pre-liquefaction unit closed with the high melting point high boiling point impurities, and the high melting point high boiling point impurities are removed by evaporation and sublimation. The method for removing impurities in carbon dioxide gas according to claim 1.
  3.  前記液体炭酸精留塔の塔頂に追い上げる前記高沸点系不純物を含む液体炭酸のガスは、還流として液体炭酸精留塔頂部に戻す分を差し引いて前記粗炭酸ガスの供給量の95%以上97%以下である
    、請求項1または2に記載の炭酸ガス中の不純物の除去方法。
    The liquid carbon dioxide gas containing the high-boiling-point impurities to be raised to the top of the liquid carbonic acid rectification column is 95% or more of the supply amount of the crude carbonic acid gas by subtracting the amount returned to the liquid carbonic acid rectification column top as reflux 97 The removal method of the impurity in the carbon dioxide gas of Claim 1 or 2 which is% or less.
  4.  前記第1の炭酸ガス流は、前記塔頂から排出された炭酸ガスの流量の90~99%であり、
     前記第2の炭酸ガス流は、前記塔頂から排出された炭酸ガスの流量の1~10%である
    、請求項1~3の何れか一項に記載の炭酸ガス中の不純物の除去方法。
    The first carbon dioxide gas flow is 90 to 99% of the flow rate of the carbon dioxide gas discharged from the top of the tower;
    The method for removing impurities in carbon dioxide gas according to any one of claims 1 to 3, wherein the second carbon dioxide gas flow is 1 to 10% of a flow rate of carbon dioxide gas discharged from the tower top.
  5.  前記低沸点系不純物は、C1~C4のアルカン、C2~C4のアルケンおよびC2~C4のアルキンであり、
     前記高融点の高沸点系不純物は、C6以上の芳香族炭化水素である
    、請求項2に記載の炭酸ガス中の不純物の除去方法。
    The low-boiling impurities are C1-C4 alkanes, C2-C4 alkenes and C2-C4 alkynes,
    The method for removing impurities in carbon dioxide gas according to claim 2, wherein the high-boiling impurities having a high melting point are C6 or higher aromatic hydrocarbons.
  6.  粗炭酸ガスに含まれる、炭酸ガスよりも沸点が高い不純物である高沸点系不純物および炭酸ガスよりも沸点が低い不純物である低沸点系不純物を、前記粗炭酸ガスから除去する装置であって、
     前記粗炭酸ガスが供給され、前記粗炭酸ガスに含まれる前記低沸点系不純物を塔頂に導くとともに、前記高沸点系不純物を塔底に濃縮させる液体炭酸精留塔と、
     前記液体炭酸精留塔の塔頂から排出された前記低沸点系不純物を含む炭酸ガスの一部を全凝縮して液体炭酸にする精留塔頂液化器と、
     前記精留塔頂液化器により液化された液体炭酸と、前記液体炭酸精留塔の塔頂から排出された前記低沸点系不純物を含む炭酸ガスの残部とを混合し、再フラッシュにより前記低沸点系不純物を分離除去する精留塔頂気液分離器と、
     前記液体炭酸精留塔の底部から、濃縮された前記高沸点系不純物を系外に排出するパージラインと、
    を備える、炭酸ガス中の不純物の除去装置。
    An apparatus for removing high-boiling impurities, which are impurities having a higher boiling point than carbon dioxide gas, and low-boiling impurities, which are impurities having a lower boiling point than carbon dioxide gas, contained in the crude carbon dioxide gas from the crude carbon dioxide gas,
    The crude carbon dioxide gas is supplied, and the low-boiling point impurities contained in the crude carbon dioxide gas are led to the top of the column, and the high-boiling point impurities are concentrated to the bottom of the column,
    A rectification tower top liquefier that fully condenses a portion of the carbon dioxide gas containing the low-boiling-point impurities discharged from the top of the liquid carbonate rectification tower to form liquid carbon dioxide;
    The liquid carbonic acid liquefied by the rectification tower top liquefier and the remainder of the carbon dioxide gas containing the low-boiling impurities discharged from the top of the liquid carbonic acid rectification tower are mixed, and the low boiling point is obtained by reflashing. A rectifying column top gas-liquid separator for separating and removing system impurities;
    A purge line for discharging the concentrated high boiling point impurities out of the system from the bottom of the liquid carbonate rectification column;
    An apparatus for removing impurities in carbon dioxide gas.
  7.  前記液体炭酸精留塔に供給される前記粗炭酸ガスを冷却して、当該粗炭酸ガスに含まれる前記液体炭酸精留塔における塔頂温度よりも融点が高い高融点の前記高沸点系不純物を固化させ、前記粗炭酸ガスから前記高融点の高沸点系不純物を一部除去する複数の精留塔前液化器を更に備え、
     前記精留塔前液化器に供給される前記粗炭酸ガスは、当該粗炭酸ガスが供給されている前記精留塔前液化器が前記高融点の高沸点系不純物によって閉塞した時点で、他の前記精留塔前液化器に供給され、
     前記精留塔前液化器に析出した前記高融点の高沸点系不純物は、前記精留塔頂気液分離器から排出され常温まで加熱された炭酸ガスにより蒸発・昇華される
    、請求項6に記載の炭酸ガス中の不純物の除去装置。
    The crude carbon dioxide gas supplied to the liquid carbonic acid rectification tower is cooled, and the high-boiling impurities having a high melting point higher than the tower top temperature in the liquid carbonic acid rectification tower contained in the crude carbonic acid gas. Further comprising a plurality of fractionator pre-liquefaction units that solidify and partially remove the high-boiling impurities having the high melting point from the crude carbon dioxide gas;
    The crude carbon dioxide gas supplied to the rectification column pre-liquefier is different from the other when the rectification column pre-liquefaction device to which the crude carbon dioxide gas is supplied is blocked by the high-melting-point high-boiling-point impurities. Is supplied to the rectification tower pre-liquefier,
    The high-melting-point high-boiling impurities deposited on the rectification column pre-liquefaction device are evaporated and sublimated by carbon dioxide gas discharged from the rectification column top gas-liquid separator and heated to room temperature. The apparatus for removing impurities in the carbon dioxide gas described.
  8.  前記精留塔頂液化器に供給される炭酸ガスは、前記塔頂から排出された炭酸ガスの流量の90~99%であり、
     前記精留塔頂気液分離器に供給される炭酸ガスは、前記塔頂から排出された炭酸ガスの流量の1~10%である
    、請求項6または7に記載の炭酸ガス中の不純物の除去装置。
    The carbon dioxide gas supplied to the rectification column top liquefier is 90 to 99% of the flow rate of the carbon dioxide gas discharged from the column top,
    The carbon dioxide gas supplied to the rectifying column top gas-liquid separator is 1 to 10% of the flow rate of the carbon dioxide gas discharged from the column top, and the impurities in the carbon dioxide gas according to claim 6 or 7. Removal device.
  9.  前記低沸点系不純物は、C1~C4のアルカン、C2~C4のアルケンおよびC2~C4のアルキンであり、
     前記高融点の高沸点系不純物は、C6以上の芳香族炭化水素である
    、請求項7に記載の炭酸ガス中の不純物の除去装置。
    The low-boiling impurities are C1-C4 alkanes, C2-C4 alkenes and C2-C4 alkynes,
    The apparatus for removing impurities in carbon dioxide gas according to claim 7, wherein the high-boiling impurities having a high melting point are C6 or higher aromatic hydrocarbons.
PCT/JP2010/061760 2009-07-14 2010-07-12 Method for removing impurities from carbon dioxide gas WO2011007752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009165407A JP5059063B2 (en) 2009-07-14 2009-07-14 Method for removing impurities in carbon dioxide
JP2009-165407 2009-07-14

Publications (1)

Publication Number Publication Date
WO2011007752A1 true WO2011007752A1 (en) 2011-01-20

Family

ID=43449360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061760 WO2011007752A1 (en) 2009-07-14 2010-07-12 Method for removing impurities from carbon dioxide gas

Country Status (3)

Country Link
JP (1) JP5059063B2 (en)
MY (1) MY160368A (en)
WO (1) WO2011007752A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656898A3 (en) * 2012-04-26 2014-07-09 Air Products And Chemicals, Inc. Purification of carbon dioxide using cryogenic distillation
WO2015060878A1 (en) * 2013-10-25 2015-04-30 Air Products And Chemicals, Inc. Purification of carbon dioxide
CN111675220A (en) * 2020-05-08 2020-09-18 江西江氨科技有限公司 CO is contained in tail gas generated in carbonate production2Extraction and refining system
CN114459204A (en) * 2022-01-28 2022-05-10 联碳(杭州)能源环保有限公司 System and method for low-temperature capture, purification, liquefaction and separation of carbon dioxide tail gas in coal chemical industry
CN116832468A (en) * 2023-08-31 2023-10-03 德仕能源科技集团股份有限公司 Rectifying device for preparing high-purity carbon dioxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101799380B1 (en) 2016-04-05 2017-11-22 (주)원익머트리얼즈 Apparatus and method for purifying diborane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347843A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing method for ultrahigh purity liquefied carbon dioxide
JP2007022906A (en) * 2005-06-16 2007-02-01 Taiyo Nippon Sanso Corp Refining method of carbon dioxide
JP2009513465A (en) * 2005-08-08 2009-04-02 リンデ・インコーポレーテッド Method and apparatus for purifying gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022906A (en) * 2005-06-16 2007-02-01 Taiyo Nippon Sanso Corp Refining method of carbon dioxide
JP2006347843A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing method for ultrahigh purity liquefied carbon dioxide
JP2009513465A (en) * 2005-08-08 2009-04-02 リンデ・インコーポレーテッド Method and apparatus for purifying gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656898A3 (en) * 2012-04-26 2014-07-09 Air Products And Chemicals, Inc. Purification of carbon dioxide using cryogenic distillation
US10655912B2 (en) 2012-04-26 2020-05-19 Air Products And Chemicals, Inc. Purification of carbon dioxide
WO2015060878A1 (en) * 2013-10-25 2015-04-30 Air Products And Chemicals, Inc. Purification of carbon dioxide
CN111675220A (en) * 2020-05-08 2020-09-18 江西江氨科技有限公司 CO is contained in tail gas generated in carbonate production2Extraction and refining system
CN111675220B (en) * 2020-05-08 2023-06-27 江西江氨科技有限公司 CO-containing in tail gas from carbonate production 2 Extraction and refining system
CN114459204A (en) * 2022-01-28 2022-05-10 联碳(杭州)能源环保有限公司 System and method for low-temperature capture, purification, liquefaction and separation of carbon dioxide tail gas in coal chemical industry
CN114459204B (en) * 2022-01-28 2024-05-17 联碳(杭州)能源环保有限公司 System and method for low-temperature trapping, purifying, liquefying and separating of carbon dioxide tail gas in coal chemical industry
CN116832468A (en) * 2023-08-31 2023-10-03 德仕能源科技集团股份有限公司 Rectifying device for preparing high-purity carbon dioxide

Also Published As

Publication number Publication date
JP5059063B2 (en) 2012-10-24
JP2011020871A (en) 2011-02-03
MY160368A (en) 2017-03-15

Similar Documents

Publication Publication Date Title
AU2007345353B2 (en) Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery
CA2764846C (en) Systems and methods for removing heavy hydrocarbons and acid gases from a hydrocarbon gas stream
AU2008213739B2 (en) Process and apparatus for depleting carbon dioxide content in a natural gas feedstream containing ethane and C3+ hydrocarbons
JP5059063B2 (en) Method for removing impurities in carbon dioxide
RU2599582C2 (en) Removal of heavy hydrocarbons from natural gas flow
WO2014021900A1 (en) Heavy hydrocarbon removal from a natural gas stream
AU2015272028B2 (en) Method for separating a feed gas in a column
US20080256977A1 (en) Hydrocarbon recovery and light product purity when processing gases with physical solvents
EP2917666A2 (en) Process for the removal of co2 from acid gas
AU2018208374B2 (en) Carbon dioxide and hydrogen sulfide recovery system using a combination of membranes and low temperature cryogenic separation processes
US10415879B2 (en) Process for purifying natural gas and liquefying carbon dioxide
CA3085236A1 (en) Procede de distillation d&#39;un courant gazeux contenant de l&#39;oxygene
AU2018306365A1 (en) Method for purifying a natural gas stream
AU2016296356A1 (en) Method for purifying a gas rich in hydrocarbons
AU2010276661B2 (en) Systems and methods for removing heavy hydrocarbons and acid gases from a hydrocarbon gas stream
CN116761664A (en) CO removal from methane-containing gas 2 Is a method of (2)
AU2018307442A1 (en) Method for purifying natural gas using an economizer
AU2018306364A1 (en) Method for separating a natural gas stream into a methane-enriched fraction and a fraction enriched in C2 and higher hydrocarbons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799810

Country of ref document: EP

Kind code of ref document: A1