WO2011007643A1 - Fuel-efficient engine oil composition - Google Patents

Fuel-efficient engine oil composition Download PDF

Info

Publication number
WO2011007643A1
WO2011007643A1 PCT/JP2010/060504 JP2010060504W WO2011007643A1 WO 2011007643 A1 WO2011007643 A1 WO 2011007643A1 JP 2010060504 W JP2010060504 W JP 2010060504W WO 2011007643 A1 WO2011007643 A1 WO 2011007643A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
zndtp
engine oil
mass
oil composition
Prior art date
Application number
PCT/JP2010/060504
Other languages
French (fr)
Japanese (ja)
Inventor
悟 吉田
正希 丸山
康司 内藤
Original Assignee
株式会社ジャパンエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンエナジー filed Critical 株式会社ジャパンエナジー
Priority to JP2011522767A priority Critical patent/JP5600677B2/en
Publication of WO2011007643A1 publication Critical patent/WO2011007643A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil for an internal combustion engine containing a specific diol compound, and relates to a fuel-saving engine oil composition having excellent low friction characteristics and good wear resistance.
  • Patent Document 1 As a method of improving fuel economy performance in engine oil, low viscosity oil for the purpose of reducing friction under fluid lubrication conditions, and addition of friction modifiers for the purpose of friction reduction under mixed lubrication and boundary lubrication conditions (Patent Document 1). Recently, with higher engine output and higher performance, lubrication conditions have become increasingly severe, and the addition of friction modifiers has become increasingly important.
  • an object of the present invention is to provide a fuel-saving engine oil composition that is excellent in low friction characteristics and that is suitable for use in an internal combustion engine, in particular, has good wear resistance.
  • the present inventor has formulated a specific diol compound in a lubricating base oil and combined a certain amount of zinc dialkyldithiophosphate (ZnDTP) with a specific amount. It has been found that the lubricating oil composition obtained by blending at a ratio is excellent in low friction properties and good in wear resistance, and is useful as an engine oil.
  • the present invention has been made based on such findings.
  • a diol compound represented by the following general formula (1) and zinc dialkyldithiophosphate (ZnDTP) as phosphorus (P) are added to a lubricating base oil.
  • ZnDTP zinc dialkyldithiophosphate
  • P phosphorus
  • R represents hydrogen, an alkyl group or an alkenyl group.
  • the lubricating base oil used in the fuel-saving engine oil composition of the present invention preferably has a kinematic viscosity at 100 ° C. of 4.5 mm 2 / s or less and a viscosity index of 120 or more.
  • the molecular weight of the diol compound represented by the general formula (1) used in the fuel-saving engine oil composition of the present invention is preferably 400 to 600.
  • the fuel-saving engine oil composition of the present invention has an excellent effect that it has excellent wear prevention properties and can significantly reduce the friction coefficient between metals. In other words, the fuel efficiency is improved by significantly reducing the friction coefficient between metals of the engine sliding portion.
  • any of mineral oil, synthetic oil, and mixtures thereof can be used.
  • a high viscosity index lubricating base oil having a viscosity index of 120 or more is desirable.
  • a high viscosity index lubricating base oil having a viscosity index of 120 or more can be obtained by solvent dewaxing or hydrodewaxing a product oil obtained by hydroisomerization of wax or hydrocracking of heavy oil. .
  • solvent dewaxing or hydrodewaxing a product oil obtained by hydroisomerization of wax or hydrocracking of heavy oil.
  • wax having a boiling range of 300 to 600 ° C. and a carbon number of 20 to 70 such as slack wax and hydrocarbon gas obtained in the solvent dewaxing process of mineral oil-based lubricating oil, is used.
  • a hydroisomerization catalyst such as a group 8 metal such as nickel or cobalt on an alumina or silica-alumina carrier and A catalyst carrying one or more of Group 6A metals such as molybdenum and tungsten, a catalyst carrying platinum or the like on a zeolite catalyst or a zeolite-containing carrier, and 300 to 450 ° C. in the presence of hydrogen at a hydrogen partial pressure of 5 to 14 MPa. It can be carried out by contacting at a temperature of LHSV (liquid space velocity) of 0.1 to 2 hr ⁇ 1 . At this time, it is preferable that the conversion rate of the linear paraffin is 80% or more and the conversion rate to the light fraction is 40% or less.
  • LHSV liquid space velocity
  • the lubricating base oil having a high viscosity index used in the present invention through hydrocracking of heavy oil can be obtained as follows. If necessary, hydrodesulfurization and denitrogenation, normal pressure distillate, vacuum distillate or bright stock having a boiling point in the range of 300 to 600 ° C., nickel, cobalt on hydrocracking catalyst such as silica-alumina support A catalyst carrying one or more group 8 metals such as molybdenum and tungsten, and a catalyst having a hydrogen partial pressure of 7 to 14 MPa, a temperature of 350 to 450 ° C., 0.1 to It can be carried out by contact at 2 hr ⁇ 1 LHSV (liquid space velocity), and the decomposition rate (decreasing mass% of the fraction of the product of 360 ° C. or higher in the product) should be 40 to 90%. preferable.
  • Lubricating oil fraction can be obtained by distilling off the light fraction from the hydroisomerized product oil or hydrocracked product oil obtained by the above method, but this fraction generally has a high pour point and viscosity. and the viscosity index is not high enough, perform dewaxing treatment, by removing the wax fraction, n-d-M ring analysis% C P is 80 or more, a viscosity index in pour point of -10 ° C. or less Can obtain a lubricating base oil of 120 or more.
  • the light fraction is distilled off using a precision distillation apparatus, and the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. by gas chromatography distillation is previously used. Is preferably 70% by mass or more in order to perform the solvent dewaxing process more efficiently.
  • methyl ethyl ketone / toluene volume ratio 1/1
  • the solvent / oil ratio is in the range of 2/1 to 4/1 at a temperature of ⁇ 15 to ⁇ 40 ° C. It is good to do.
  • distilling the light fractions should not hinder hydrodewaxing, and after hydrodewaxing, they are separated by distillation using a precision distillation apparatus. It is efficient and preferable that the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. is 70% by mass or higher by gas chromatography distillation.
  • This hydrodewaxing is performed by contacting the zeolite catalyst with LHSV (liquid space velocity) of 0.2 to 4 hr ⁇ 1 at a temperature of 320 to 430 ° C. in the presence of hydrogen at a hydrogen partial pressure of 3 to 15 MPa.
  • LHSV liquid space velocity
  • the pour point in the lubricating base oil should be ⁇ 10 ° C. or lower.
  • a lubricating base oil having a viscosity index of 120 or more can be obtained by the method as described above, but further solvent purification or hydrogenation purification can be performed as desired.
  • Synthetic oils include ⁇ -olefin oligomers, diesters synthesized from dibasic acids such as adipic acid and monohydric alcohols, polyhydric alcohols such as neopentyl glycol, trimethylolpropane, pentaerythritol, and monobasic acids. Polyol esters synthesized from the above, and mixtures thereof.
  • the lubricating base oil used in the fuel-saving engine oil composition of the present invention has a kinematic viscosity at 100 ° C. of 4.5 mm 2 / s or less and a viscosity index of 120.
  • the kinematic viscosity at 100 ° C. is 3.0 to 4.5 mm 2 / s and the viscosity index is 120 to 170.
  • a diol compound represented by the following general formula (1) is used.
  • R represents hydrogen, an alkyl group, or an alkenyl group.
  • a mixture of compounds having different alkyl groups or alkenyl groups for R may also be used.
  • the alkyl group or alkenyl group may be either straight chain or branched, and preferably has 26 to 34 carbon atoms.
  • the molecular weight of the diol compound is preferably 400 to 600. When the molecular weight of the diol compound is less than 400, a sufficient friction reducing effect cannot be obtained, and when the molecular weight is more than 600, storage stability at low temperatures cannot be maintained.
  • diol compound examples include nonaicosyl-1,2-diol, hentrianchotyl-1,2-diol, tritriancotyl-1,2-diol, and the like. it can.
  • the amount of the diol compound added is 0.1 to 2.0% by mass, preferably 0.2 to 1.0% by mass.
  • Examples of the zinc dialkyldithiophosphate (ZnDTP) used in the fuel-saving engine oil composition of the present invention include compounds represented by the following general formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrocarbon group having 1 to 24 carbon atoms.
  • These hydrocarbon groups include a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkenyl group having 3 to 24 carbon atoms, or a linear or branched alkylcyclo group.
  • the alkyl group or alkenyl group may be any of primary, secondary, and tertiary.
  • ZnDTP having a secondary alkyl group is ZnDTP in which R 1 , R 2 , R 3 and R 4 are all secondary alkyl groups.
  • the content of ZnDTP is 0.03 to 0.12% by mass, preferably 0.05 to 0.08% by mass as the phosphorus (P) element contained in ZnDTP, based on the total mass of the engine oil composition.
  • the phosphorus content of the ZnDTP having a secondary alkyl group accounts for 30 mass% or more, preferably 50 mass% or more of the total phosphorus content derived from ZnDTP.
  • the phosphorus content of ZnDTP having a secondary alkyl group in ZnDTP is less than 30% by mass of the phosphorus content derived from all ZnDTP, it is not possible to achieve both fuel saving and wear prevention by the diol compound.
  • molybdenum dithiocarbamate MoDTC
  • metal sulfonates such as Ca, Mg, Ba, Na
  • detergents such as phenate and salicylate
  • ashless dispersants such as alkenyl succinimide
  • Additives such as phenol-based and amine-based antioxidants, other viscosity index improvers, pour point depressants, metal deactivators, rust inhibitors and antifoaming agents can be added.
  • hydrodewaxed oil obtained by hydrodewaxing hydrocracked oil obtained by hydrocracking heavy oil (kinematic viscosity: 17.9 mm 2 / s (40 ° C.), 4. 08 mm 2 / s (100 ° C.), viscosity index 131) was used.
  • a friction modifier, ZnDTP, a viscosity index improver and other additives described below as additives are blended in the base oil in the proportions shown in Table 1 to prepare the engine oils of Example 1 and Comparative Examples 1 to 4. did.
  • Table 1 shows the phosphorus content of ZnDTP having secondary alkyl groups in the phosphorus content derived from the added ZnDTP and the calcium (Ca) content and phosphorus (P) content in the prepared engine oil.
  • the other additive is an additive mixture composed of Ca sulfonate, Ca salicylate, alkenyl succinimide, pour point depressant and antifoaming agent.
  • the compositions were added so that the TBS viscosity at 150 ° C.
  • the TBS viscosity is a viscosity measured using a Tapered Bearing Simulator, and is a high temperature high shear viscosity used for evaluation of engine oil.
  • ASTM D4683 the rotor torque generated by the viscosity resistance of the engine oil at a temperature of 150 ° C. and a shear rate of 1 ⁇ 10 6 s ⁇ 1 is measured, and calculated by a calibration curve obtained from the standard oil.
  • Example 1 and Comparative Example 1 include 1,2-diol, in which R is a mixture of nonaicosyl group, hentriancotyl group, and tritriancotyl group as a diol compound represented by the general formula (1).
  • GMO glycerol monooleate
  • MoDTC molybdenum dithiophosphate
  • a motor test using a 1.5 L in-line four-cylinder engine was carried out for each of the engine oils in the examples and comparative examples in Table 1, and the shaft torque at an oil temperature of 110 ° C. and a shaft rotation speed of 1000 rpm was measured.
  • Table 2 shows the torque reduction rate relative to the reference oil.
  • Example 1 and Comparative Examples 1 and 2 were subjected to a KA24E valve train wear test in accordance with JASO M328 to measure the amount of cam nose wear. The results are shown in the lower part of Table 2.
  • the engine oil containing 0.5% by mass of the diol compound shown in Example 1 and Comparative Example 1 is better in the motoring test than Comparative Example 2 containing no diol compound. Excellent low-friction characteristics and high fuel efficiency.
  • Comparative Example 1 containing only ZnDTP having a primary alkyl group as ZnDTP the wear of the valve system was significantly increased as compared with Comparative Example 2 by containing 0.5% by mass of the diol compound.
  • Example 1 in which the phosphorus content of the secondary alkyl group-containing ZnDTP accounts for 60% of the phosphorus content in ZnDTP, a significant improvement in the amount of wear was observed, showing good valve system wear, reducing friction It is expected to maintain the efficacy for a long time.
  • the present invention has excellent wear prevention characteristics and can significantly reduce the coefficient of friction between metals of the engine sliding portion, so that it has excellent fuel economy, and is suitable for internal combustion engines such as gasoline engines, diesel engines, and gas engines. It can be used as engine oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Provided is a fuel-efficient engine oil composition that has excellent fuel efficiency and good abrasion resistance. Said fuel-efficient engine oil composition is characterized by containing, in a lubricant base oil: a diol compound represented by general formula (1), in the amount of 0.1–2.0% by mass; and phosphorus in the form of zinc dithiophosphate (ZnDTP), in the amount of 0.03–0.12% by mass. The fuel-efficient engine oil composition is further characterized in that the phosphorus content of ZnDTP that has secondary alkyl groups constitutes at least 50% by mass of the ZnDTP-derived phosphorus content. (1) (In the formula, R represents hydrogen, an alkyl group, or an alkenyl group.)

Description

省燃費型エンジン油組成物Fuel-saving engine oil composition
 本発明は、特定のジオール化合物を含有する内燃機関用潤滑油に関し、低摩擦特性に優れ、さらに耐摩耗性が良好な省燃費型エンジン油組成物に関するものである。 The present invention relates to a lubricating oil for an internal combustion engine containing a specific diol compound, and relates to a fuel-saving engine oil composition having excellent low friction characteristics and good wear resistance.
 近年、地球温暖化防止のために自動車の燃費を向上させ、COの排出を抑制することが必須の課題となっている。自動車の燃費を向上させるにはエンジンの効率化が重要であり、ガソリンエンジンにおいては可変バルブ機構、リーンバーン化や直噴化、さらにターボチャージャの装着等の技術が採用されている。一方、エンジンの摩擦を低減することも燃費向上(省エネルギー)に貢献できることから、摺動部品への低摩擦材料の使用や省燃費型エンジン油の採用が図られている。 In recent years, in order to prevent global warming, it has become an essential task to improve the fuel efficiency of automobiles and suppress CO 2 emissions. Engine efficiency is important for improving the fuel efficiency of automobiles, and gasoline engines employ technologies such as variable valve mechanisms, lean burn and direct injection, and turbocharger installation. On the other hand, reducing the friction of the engine can also contribute to the improvement of fuel efficiency (energy saving), so the use of low-friction materials for sliding parts and the adoption of fuel-saving engine oil are being attempted.
 エンジン油において省燃費性能を向上させる方法としては、流体潤滑条件下における摩擦低減を目的とした油の低粘度化、及び混合潤滑及び境界潤滑条件下における摩擦低減を目的とした摩擦調整剤の添加が挙げられる(特許文献1)。最近では、エンジンの高出力化、高性能化に伴い、潤滑条件はますます厳しくなっており、摩擦調整剤の添加の重要性が増してきている。 As a method of improving fuel economy performance in engine oil, low viscosity oil for the purpose of reducing friction under fluid lubrication conditions, and addition of friction modifiers for the purpose of friction reduction under mixed lubrication and boundary lubrication conditions (Patent Document 1). Recently, with higher engine output and higher performance, lubrication conditions have become increasingly severe, and the addition of friction modifiers has become increasingly important.
 これまで摩擦調整剤としては、有機モリブデン化合物の効果が大きいとして、主にエンジン油において各種検討されてきた。しかしながら、有機モリブデン化合物は初期の摩擦低減の効果に優れる一方で、これを長期間維持するには従来技術では限界があること、及び高温領域においてデポジットを増大させること、また潤滑油をリサイクルするうえで妨害元素となりうることから添加量の減量が求められている。一方、無灰系、例えばエステル系、アミン系、アミド系などの摩擦調整剤にはこうした障害がなく、環境対応面からその重要性が高まっているが、初期の摩擦低減性能はモリブデン系摩擦調整剤に比べはるかに小さく、その性能向上が重要な課題となっている。 So far, various friction modifiers have been studied mainly in engine oils because of the great effect of organic molybdenum compounds. However, while organic molybdenum compounds are excellent in the effect of reducing the initial friction, there is a limit in the prior art to maintain this for a long period of time, increasing the deposit in a high temperature region, and recycling the lubricating oil. Therefore, there is a need to reduce the amount added. On the other hand, ashless, such as ester, amine, and amide friction modifiers do not have these obstacles and are becoming increasingly important from the environmental standpoint. It is much smaller than the agent, and its performance improvement is an important issue.
特開2000-273481号公報JP 2000-234881 A
 上記状況に鑑み、本発明は、低摩擦特性に優れ、さらに内燃機関用として好適な、特には耐摩耗性が良好な省燃費型エンジン油組成物を提供することを課題とする。 In view of the above situation, an object of the present invention is to provide a fuel-saving engine oil composition that is excellent in low friction characteristics and that is suitable for use in an internal combustion engine, in particular, has good wear resistance.
 本発明者は、上記課題を解決すべく、鋭意研究を進めた結果、潤滑油基油に、特定のジオール化合物を配合し、かつ一定量以上のジアルキルジチオリン酸亜鉛(ZnDTP)を組み合わせて特定の割合で配合して得られた潤滑油組成物が、低摩擦特性に優れ、かつ耐摩耗性が良好であり、エンジン油として有用であることを見出した。本発明はかかる知見に基づきなされたものである。 As a result of diligent research to solve the above-mentioned problems, the present inventor has formulated a specific diol compound in a lubricating base oil and combined a certain amount of zinc dialkyldithiophosphate (ZnDTP) with a specific amount. It has been found that the lubricating oil composition obtained by blending at a ratio is excellent in low friction properties and good in wear resistance, and is useful as an engine oil. The present invention has been made based on such findings.
 すなわち、本発明は、潤滑油基油に、下記の一般式(1)で表されるジオール化合物を0.1~2.0質量%、及びジアルキルジチオリン酸亜鉛(ZnDTP)をリン(P)として0.03~0.12質量%含有し、かつ第2級アルキル基を有するZnDTPのリン分が全ZnDTP由来のリン分の30質量%以上であることを特徴とする省燃費型エンジン油組成物である。(式中、Rは、水素、アルキル基又はアルケニル基を表す。)
Figure JPOXMLDOC01-appb-C000002
That is, in the present invention, 0.1 to 2.0% by mass of a diol compound represented by the following general formula (1) and zinc dialkyldithiophosphate (ZnDTP) as phosphorus (P) are added to a lubricating base oil. A fuel-saving engine oil composition containing 0.03 to 0.12% by mass of a ZnDTP having a secondary alkyl group and having a phosphorus content of 30% by mass or more derived from the total ZnDTP It is. (In the formula, R represents hydrogen, an alkyl group or an alkenyl group.)
Figure JPOXMLDOC01-appb-C000002
 本発明の省燃費型エンジン油組成物に用いる潤滑油基油の100℃における動粘度は4.5mm2/s以下で、かつ粘度指数が120以上であることが好ましい。 The lubricating base oil used in the fuel-saving engine oil composition of the present invention preferably has a kinematic viscosity at 100 ° C. of 4.5 mm 2 / s or less and a viscosity index of 120 or more.
 さらに、本発明の省燃費型エンジン油組成物に用いる一般式(1)で表わされるジオール化合物の分子量は400から600であることが好ましい。 Furthermore, the molecular weight of the diol compound represented by the general formula (1) used in the fuel-saving engine oil composition of the present invention is preferably 400 to 600.
 本発明の省燃費型エンジン油組成物は、摩耗防止特性に優れ、さらに金属間の摩擦係数を著しく低下させることができるという格別な効果を奏する。すなわち、エンジンしゅう動部の金属間摩擦係数を著しく低下させることにより燃費が向上するという格別の効果を発揮する。 The fuel-saving engine oil composition of the present invention has an excellent effect that it has excellent wear prevention properties and can significantly reduce the friction coefficient between metals. In other words, the fuel efficiency is improved by significantly reducing the friction coefficient between metals of the engine sliding portion.
 本発明の省燃費型エンジン油組成物に用いる潤滑油基油としては、鉱油、合成油、及びその混合物のいずれも使用できる。鉱油では粘度指数が120以上の高粘度指数潤滑油基油が望ましい。粘度指数が120以上の高粘度指数潤滑油基油は、ワックスの水素異性化或いは重質油の水素化分解で得られた生成油を溶剤脱ロウ又は水素化脱ロウすることにより得ることができる。これらの製法の一例について、次により具体的に述べる。 As the lubricating base oil used in the fuel-saving engine oil composition of the present invention, any of mineral oil, synthetic oil, and mixtures thereof can be used. As the mineral oil, a high viscosity index lubricating base oil having a viscosity index of 120 or more is desirable. A high viscosity index lubricating base oil having a viscosity index of 120 or more can be obtained by solvent dewaxing or hydrodewaxing a product oil obtained by hydroisomerization of wax or hydrocracking of heavy oil. . One example of these production methods will be described more specifically below.
 ワックスの水素異性化は、沸点範囲が300~600℃、炭素数として20~70の範囲にあるワックス、例えば、鉱油系潤滑油の溶剤脱ロウ工程で得られるスラックワックスや炭化水素ガス等を一酸化炭素と水素に転化して液体燃料を合成するフィッシャー・トロプシュ合成で得られたワックス等を原料として、水素異性化触媒、例えばアルミナ又はシリカ‐アルミナ担体上にニッケル、コバルト等の8族金属及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒、さらにはゼオライト触媒又はゼオライト含有担体に白金等を担持した触媒と、水素分圧5~14MPaの水素存在下、300~450℃の温度、0.1~2hr-1のLHSV(液空間速度)で接触させることによって行うことができる。このとき、直鎖状のパラフィンの転化率が80%以上、軽質留分への転化率が40%以下となるようにすることが好ましい。 In the hydroisomerization of wax, wax having a boiling range of 300 to 600 ° C. and a carbon number of 20 to 70, such as slack wax and hydrocarbon gas obtained in the solvent dewaxing process of mineral oil-based lubricating oil, is used. Using a wax obtained by Fischer-Tropsch synthesis, which converts liquid oxide by converting to carbon oxide and hydrogen, as a raw material, a hydroisomerization catalyst such as a group 8 metal such as nickel or cobalt on an alumina or silica-alumina carrier and A catalyst carrying one or more of Group 6A metals such as molybdenum and tungsten, a catalyst carrying platinum or the like on a zeolite catalyst or a zeolite-containing carrier, and 300 to 450 ° C. in the presence of hydrogen at a hydrogen partial pressure of 5 to 14 MPa. It can be carried out by contacting at a temperature of LHSV (liquid space velocity) of 0.1 to 2 hr −1 . At this time, it is preferable that the conversion rate of the linear paraffin is 80% or more and the conversion rate to the light fraction is 40% or less.
 一方、重質油の水素化分解を経て本発明に用いる高粘度指数の潤滑油基油は、次のようにして得ることができる。必要により水素化脱硫及び脱窒素を行った沸点が300~600℃の範囲の常圧留出油、減圧留出油又はブライトストックを、水素化分解触媒、例えばシリカ‐アルミナ担体上にニッケル、コバルト等の8族金属の1種以上及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒と、水素分圧7~14MPaの水素存在下、350~450℃の温度、0.1~2hr-1のLHSV(液空間速度)で接触させて行うことができ、分解率(生成物に占める360℃以上の留分の減少した質量%)が40~90%となるようにすることが好ましい。 On the other hand, the lubricating base oil having a high viscosity index used in the present invention through hydrocracking of heavy oil can be obtained as follows. If necessary, hydrodesulfurization and denitrogenation, normal pressure distillate, vacuum distillate or bright stock having a boiling point in the range of 300 to 600 ° C., nickel, cobalt on hydrocracking catalyst such as silica-alumina support A catalyst carrying one or more group 8 metals such as molybdenum and tungsten, and a catalyst having a hydrogen partial pressure of 7 to 14 MPa, a temperature of 350 to 450 ° C., 0.1 to It can be carried out by contact at 2 hr −1 LHSV (liquid space velocity), and the decomposition rate (decreasing mass% of the fraction of the product of 360 ° C. or higher in the product) should be 40 to 90%. preferable.
 上記方法で得られる水素異性化生成油又は水素化分解生成油から軽質留分を留去して潤滑油留分を得ることができるが、この留分は、このままでは一般に流動点や粘度が高く、また粘度指数が十分に高くないため、脱ロウ処理を行い、ワックス分を除去することにより、n‐d‐M環分析による%Cが80以上、流動点が-10℃以下で粘度指数が120以上の潤滑油基油を得ることができる。 Lubricating oil fraction can be obtained by distilling off the light fraction from the hydroisomerized product oil or hydrocracked product oil obtained by the above method, but this fraction generally has a high pour point and viscosity. and the viscosity index is not high enough, perform dewaxing treatment, by removing the wax fraction, n-d-M ring analysis% C P is 80 or more, a viscosity index in pour point of -10 ° C. or less Can obtain a lubricating base oil of 120 or more.
 このワックス分の除去を溶剤脱ロウ処理で行う場合、上記の軽質留分の留去に際して精密蒸留装置を用いて蒸留分離し、あらかじめガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70質量%以上になるようにカットすることが、溶剤脱ロウ処理をより効率的に行うために好ましい。この溶剤脱ロウ処理は、脱ロウ溶剤として例えばメチルエチルケトン/トルエン(容量比1/1)を用い、溶剤/油比2/1~4/1の範囲で、-15~-40℃の温度下に行うとよい。 When removing the wax by solvent dewaxing, the light fraction is distilled off using a precision distillation apparatus, and the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. by gas chromatography distillation is previously used. Is preferably 70% by mass or more in order to perform the solvent dewaxing process more efficiently. In this solvent dewaxing treatment, for example, methyl ethyl ketone / toluene (volume ratio 1/1) is used as a dewaxing solvent, and the solvent / oil ratio is in the range of 2/1 to 4/1 at a temperature of −15 to −40 ° C. It is good to do.
 一方、ワックス分の除去を水素化脱ロウ法で行う場合は、軽質留分の留去は水素化脱ロウに支障とならない程度とし、水素化脱ロウ後に、精密蒸留装置を用いて蒸留分離してガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70質量%以上になるようにカットすることが、効率的で好ましい。この水素化脱ロウは、ゼオライト触媒と、水素分圧3~15MPaの水素存在下、320~430℃の温度、0.2~4hr-1のLHSV(液空間速度)で接触させ、最終的な潤滑油基油における流動点が-10℃以下となるようにするとよい。 On the other hand, when the wax content is removed by hydrodewaxing, distilling the light fractions should not hinder hydrodewaxing, and after hydrodewaxing, they are separated by distillation using a precision distillation apparatus. It is efficient and preferable that the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. is 70% by mass or higher by gas chromatography distillation. This hydrodewaxing is performed by contacting the zeolite catalyst with LHSV (liquid space velocity) of 0.2 to 4 hr −1 at a temperature of 320 to 430 ° C. in the presence of hydrogen at a hydrogen partial pressure of 3 to 15 MPa. The pour point in the lubricating base oil should be −10 ° C. or lower.
 以上のような方法で、粘度指数120以上の潤滑油基油を得ることができるが、所望により、さらに溶剤精製或いは水素化精製を行うことができる。 A lubricating base oil having a viscosity index of 120 or more can be obtained by the method as described above, but further solvent purification or hydrogenation purification can be performed as desired.
 また、合成油としては、α‐オレフィンのオリゴマー、アジピン酸等の二塩基酸と一価アルコールから合成されるジエステルやネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールと一塩基酸とから合成されるポリオールエステル、及びこれらの混合物等が挙げられる。 Synthetic oils include α-olefin oligomers, diesters synthesized from dibasic acids such as adipic acid and monohydric alcohols, polyhydric alcohols such as neopentyl glycol, trimethylolpropane, pentaerythritol, and monobasic acids. Polyol esters synthesized from the above, and mixtures thereof.
 さらに、適宜の鉱油と合成油を組み合わせた混合油も、本エンジン油の基油として用いることができる。
 鉱油、合成油又はこれらの混合油にしても、本発明の省燃費型エンジン油組成物に用いる潤滑油基油は、100℃における動粘度が4.5mm/s以下でかつ粘度指数が120以上であること、特には100℃における動粘度が3.0~4.5mm/sでかつ粘度指数が120~170であることが好ましい。
Furthermore, a mixed oil combining an appropriate mineral oil and a synthetic oil can also be used as the base oil of the engine oil.
Even if it is mineral oil, synthetic oil, or these mixed oils, the lubricating base oil used in the fuel-saving engine oil composition of the present invention has a kinematic viscosity at 100 ° C. of 4.5 mm 2 / s or less and a viscosity index of 120. In particular, it is preferable that the kinematic viscosity at 100 ° C. is 3.0 to 4.5 mm 2 / s and the viscosity index is 120 to 170.
 本発明の省燃費型エンジン油組成物には、下記の一般式(1)で表されるジオール化合物が使用される。
Figure JPOXMLDOC01-appb-C000003
In the fuel-saving engine oil composition of the present invention, a diol compound represented by the following general formula (1) is used.
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、Rは、水素、アルキル基又はアルケニル基を示す。Rが異なったアルキル基又はアルケニル基を有する化合物を混合したものを用いることもできる。このアルキル基又はアルケニル基は、直鎖、分岐のどちらでも用いることができ、炭素数26~34が好ましい。
 また、ジオール化合物の分子量は400~600が好ましい。ジオール化合物の分子量が400未満では十分な摩擦低減効果が得られず、分子量が600より大きい場合では低温での貯蔵安定性が保たれない。
 このようなジオール化合物の具体例としては、ノナイコシル‐1,2‐ジオール、ヘントリアンコチル‐1,2‐ジオール、トリトリアンコチル‐1,2‐ジオールなどが挙げられ、これらを好ましく用いることができる。
 ジオール化合物の添加量は、0.1から2.0質量%、好ましくは0.2から1.0質量%である。
In the general formula (1), R represents hydrogen, an alkyl group, or an alkenyl group. A mixture of compounds having different alkyl groups or alkenyl groups for R may also be used. The alkyl group or alkenyl group may be either straight chain or branched, and preferably has 26 to 34 carbon atoms.
The molecular weight of the diol compound is preferably 400 to 600. When the molecular weight of the diol compound is less than 400, a sufficient friction reducing effect cannot be obtained, and when the molecular weight is more than 600, storage stability at low temperatures cannot be maintained.
Specific examples of such a diol compound include nonaicosyl-1,2-diol, hentrianchotyl-1,2-diol, tritriancotyl-1,2-diol, and the like. it can.
The amount of the diol compound added is 0.1 to 2.0% by mass, preferably 0.2 to 1.0% by mass.
 本発明の省燃費型エンジン油組成物に使用されるジアルキルジチオリン酸亜鉛(ZnDTP)としては、下記の一般式(2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Examples of the zinc dialkyldithiophosphate (ZnDTP) used in the fuel-saving engine oil composition of the present invention include compounds represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)において、R、R、R及びRは、それぞれ独立して炭素数1~24の炭化水素基を示す。これら炭化水素基は、炭素数1~24の直鎖状若しくは分枝状のアルキル基、炭素数3~24の直鎖状若しくは分枝状のアルケニル基又は直鎖状若しくは分枝状のアルキルシクロアルキル基、炭素数6~18のアリール基又は直鎖状若しくは分枝状のアルキルアリール基である。また、アルキル基やアルケニル基は、第1級、第2級及び第3級のいずれであってもよい。なお、第2級アルキル基を有するZnDTPとは、R、R、R及びRが全て第2級アルキル基であるZnDTPのことである。 In the general formula (2), R 1 , R 2 , R 3 and R 4 each independently represent a hydrocarbon group having 1 to 24 carbon atoms. These hydrocarbon groups include a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkenyl group having 3 to 24 carbon atoms, or a linear or branched alkylcyclo group. An alkyl group, an aryl group having 6 to 18 carbon atoms, or a linear or branched alkylaryl group. The alkyl group or alkenyl group may be any of primary, secondary, and tertiary. In addition, ZnDTP having a secondary alkyl group is ZnDTP in which R 1 , R 2 , R 3 and R 4 are all secondary alkyl groups.
 ZnDTPの含有量は、エンジン油組成物の全質量に対して、ZnDTPに含まれるリン(P)元素として0.03~0.12質量%、好ましくは0.05~0.08質量%であり、かつ前記ZnDTPのうち、第2級アルキル基を有するZnDTPのリン分が全ZnDTP由来のリン分の30質量%以上、好ましくは50質量%以上を占める。エンジン油組成物の全質量に対するP系化合物に含まれるP元素の質量が0.03質量%未満では十分な摩耗防止性能を得ることができず、0.12質量%より大きい場合では自動車の排気触媒に与える被毒の影響が大きくなる。また、ZnDTPのうち、第2級アルキル基を有するZnDTPのリン分が全ZnDTP由来のリン分の30質量%未満では、ジオール化合物による省燃費性と摩耗防止性を両立することができない。 The content of ZnDTP is 0.03 to 0.12% by mass, preferably 0.05 to 0.08% by mass as the phosphorus (P) element contained in ZnDTP, based on the total mass of the engine oil composition. In addition, among the ZnDTP, the phosphorus content of the ZnDTP having a secondary alkyl group accounts for 30 mass% or more, preferably 50 mass% or more of the total phosphorus content derived from ZnDTP. When the mass of the P element contained in the P-based compound with respect to the total mass of the engine oil composition is less than 0.03 mass%, sufficient wear prevention performance cannot be obtained. The effect of poisoning on the catalyst increases. Moreover, if the phosphorus content of ZnDTP having a secondary alkyl group in ZnDTP is less than 30% by mass of the phosphorus content derived from all ZnDTP, it is not possible to achieve both fuel saving and wear prevention by the diol compound.
 本発明のエンジン油には、所望により、モリブデンジチオカーバメイト(MoDTC)、Ca、Mg、Ba、Na等の金属スルホネート、フェネート、サリシレート等の清浄剤、アルケニルコハク酸イミド等の無灰系分散剤、フェノール系、アミン系等の酸化防止剤、その他粘度指数向上剤、流動点降下剤、金属不活性化剤、防錆剤や消泡剤等の添加剤を添加することができる。 In the engine oil of the present invention, if desired, molybdenum dithiocarbamate (MoDTC), metal sulfonates such as Ca, Mg, Ba, Na, detergents such as phenate and salicylate, ashless dispersants such as alkenyl succinimide, Additives such as phenol-based and amine-based antioxidants, other viscosity index improvers, pour point depressants, metal deactivators, rust inhibitors and antifoaming agents can be added.
 次に、実施例により本発明を具体的に説明する。
 基油としては、重質油の水素化分解で得た水素化分解油を水素化脱ロウして得た水素化脱ロウ油(動粘度:17.9mm/s(40℃)、4.08mm/s(100℃)、粘度指数131)を用いた。
Next, the present invention will be described specifically by way of examples.
As the base oil, hydrodewaxed oil obtained by hydrodewaxing hydrocracked oil obtained by hydrocracking heavy oil (kinematic viscosity: 17.9 mm 2 / s (40 ° C.), 4. 08 mm 2 / s (100 ° C.), viscosity index 131) was used.
 前記基油に、添加剤として下記に説明する摩擦調整剤、ZnDTP、粘度指数向上剤及びその他添加剤を表1に示す割合で配合して実施例1及び比較例1~4のエンジン油に調製した。また、調製されたエンジン油中のカルシウム(Ca)含有量とリン(P)含有量、及び添加したZnDTP由来のリン分に占める第2級アルキル基を有するZnDTPのリン分の割合を表1に併せて示す。なお、その他添加剤はCaスルホネート、Caサリシレート、アルケニルコハク酸イミド、流動点降下剤及び消泡剤からなる添加剤混合物である。実施例1及び比較例1~4については、組成物の150℃におけるTBS粘度が2.6MPa・s(SAEエンジン油粘度分類の20に相当)になるように添加した。なお、TBS粘度は、Tapered Bearing Simulatorを用いて計測される粘度であり、エンジン油の評価に用いられる高温高せん断粘度である。ASTM D4683に準じて、温度150℃、せん断速度1×10s-1におけるエンジン油の粘度抵抗によって発生するロータートルクを測定し、標準油から求めた検量線により算出する。 A friction modifier, ZnDTP, a viscosity index improver and other additives described below as additives are blended in the base oil in the proportions shown in Table 1 to prepare the engine oils of Example 1 and Comparative Examples 1 to 4. did. Table 1 shows the phosphorus content of ZnDTP having secondary alkyl groups in the phosphorus content derived from the added ZnDTP and the calcium (Ca) content and phosphorus (P) content in the prepared engine oil. Also shown. The other additive is an additive mixture composed of Ca sulfonate, Ca salicylate, alkenyl succinimide, pour point depressant and antifoaming agent. In Example 1 and Comparative Examples 1 to 4, the compositions were added so that the TBS viscosity at 150 ° C. was 2.6 MPa · s (corresponding to SAE engine oil viscosity classification 20). The TBS viscosity is a viscosity measured using a Tapered Bearing Simulator, and is a high temperature high shear viscosity used for evaluation of engine oil. In accordance with ASTM D4683, the rotor torque generated by the viscosity resistance of the engine oil at a temperature of 150 ° C. and a shear rate of 1 × 10 6 s −1 is measured, and calculated by a calibration curve obtained from the standard oil.
 ZnDTPとしては、一般式(2)のR、R、R及びRが炭素数8の第1級アルキル基であるZnDTP1と、一般式(2)のR、R、R及びRが炭素数4~5の第2級アルキル基であるZnDTP2とを用いた。
 摩擦調整剤としては、実施例1及び比較例1には一般式(1)に示すジオール化合物としてRがノナイコシル基、ヘントリアンコチル基、トリトリアンコチル基の混合物である1,2‐ジオールを用い、比較例3には一般式(3)に示すグリセロールモノオレート(GMO)を用い、比較例4には一般式(4)に示すモリブデンジチオフォスフェート(MoDTC)を使用した。
The ZnDTP, R 1 of the general formula (2), R 2, R 3 and a R 4 is a primary alkyl group of 8 carbon atoms ZnDTP1, R 1 of the general formula (2), R 2, R 3 And ZnDTP2 in which R 4 is a secondary alkyl group having 4 to 5 carbon atoms.
As a friction modifier, Example 1 and Comparative Example 1 include 1,2-diol, in which R is a mixture of nonaicosyl group, hentriancotyl group, and tritriancotyl group as a diol compound represented by the general formula (1). In Comparative Example 3, glycerol monooleate (GMO) represented by the general formula (3) was used, and in Comparative Example 4, molybdenum dithiophosphate (MoDTC) represented by the general formula (4) was used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

 表1の実施例及び比較例のエンジン油それぞれについて、1.5L直列4気筒エンジンを用いたモータ試験を実施して、油温110℃、軸回転数1000rpmにおける軸トルクを測定した。基準油に対するトルク低減率を表2に示す。 A motor test using a 1.5 L in-line four-cylinder engine was carried out for each of the engine oils in the examples and comparative examples in Table 1, and the shaft torque at an oil temperature of 110 ° C. and a shaft rotation speed of 1000 rpm was measured. Table 2 shows the torque reduction rate relative to the reference oil.
 さらに、実施例1及び比較例1、2それぞれについて、JASO M328に準拠したKA24E動弁系摩耗試験を実施して、カムノーズ摩耗量を測定した。その結果を表2の下段に示す。 Further, each of Example 1 and Comparative Examples 1 and 2 was subjected to a KA24E valve train wear test in accordance with JASO M328 to measure the amount of cam nose wear. The results are shown in the lower part of Table 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の結果から明らかなように実施例1及び比較例1に示すジオール化合物を0.5質量%含有したエンジン油は、ジオール化合物を含有していない比較例2に比べて、モータリング試験において良好な低摩擦特性を示し、高い省燃費性能が見込まれる。また、ZnDTPとして第1級アルキル基を有するZnDTPのみを含有する比較例1は、ジオール化合物を0.5質量%含有することにより、比較例2に比べ著しく動弁系摩耗が増大した。一方で、第2級アルキル基を含有するZnDTPのりん分がZnDTPにおけるリン分の60%を占める実施例1では摩耗量の大幅な改善が認められ、良好な動弁系摩耗を示し、摩擦低減の効を長期間維持することが期待される。 As is clear from the above results, the engine oil containing 0.5% by mass of the diol compound shown in Example 1 and Comparative Example 1 is better in the motoring test than Comparative Example 2 containing no diol compound. Excellent low-friction characteristics and high fuel efficiency. In Comparative Example 1 containing only ZnDTP having a primary alkyl group as ZnDTP, the wear of the valve system was significantly increased as compared with Comparative Example 2 by containing 0.5% by mass of the diol compound. On the other hand, in Example 1 in which the phosphorus content of the secondary alkyl group-containing ZnDTP accounts for 60% of the phosphorus content in ZnDTP, a significant improvement in the amount of wear was observed, showing good valve system wear, reducing friction It is expected to maintain the efficacy for a long time.
 一方、摩擦調整剤としてGMOを添加した比較例3、MoDTCを添加した比較例4では、トルク低減率が実施例1に対し低く、省燃費性に劣っていることが分かる。 On the other hand, in Comparative Example 3 in which GMO was added as a friction modifier and Comparative Example 4 in which MoDTC was added, it was found that the torque reduction rate was lower than that in Example 1 and inferior in fuel efficiency.
 本発明は、摩耗防止特性に優れ、エンジンしゅう動部の金属間摩擦係数を著しく低下させることができるので、省燃費性に優れており、ガソリンエンジン、ディーゼルエンジン、ガスエンジンなどの内燃機関用のエンジン油として利用することができる。 The present invention has excellent wear prevention characteristics and can significantly reduce the coefficient of friction between metals of the engine sliding portion, so that it has excellent fuel economy, and is suitable for internal combustion engines such as gasoline engines, diesel engines, and gas engines. It can be used as engine oil.

Claims (3)


  1.  潤滑油基油に、下記の一般式(1)で表されるジオール化合物を0.1~2.0質量%、及びジアルキルジチオリン酸亜鉛(ZnDTP)をリン(P)として0.03~0.12質量%含有し、第2級アルキル基を有するZnDTPのリン分が全ZnDTP由来のリン分の30質量%以上を占めることを特徴とする省燃費型エンジン油組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素、アルキル基又はアルケニル基を表す。)

    In a lubricating base oil, 0.1 to 2.0% by mass of a diol compound represented by the following general formula (1) and 0.03 to 0.03 by adding zinc dialkyldithiophosphate (ZnDTP) as phosphorus (P). A fuel-saving engine oil composition comprising 12% by mass and having a phosphorus content of secondary alkyl groups of ZnDTP accounting for 30% by mass or more of the total phosphorus content derived from ZnDTP.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R represents hydrogen, an alkyl group or an alkenyl group.)
  2.  潤滑油基油の100℃における動粘度が4.5mm/s以下でかつ粘度指数が120以上である請求項1に記載の省燃費型エンジン油組成物。 The fuel-saving engine oil composition according to claim 1, wherein the lubricating base oil has a kinematic viscosity at 100 ° C. of 4.5 mm 2 / s or less and a viscosity index of 120 or more.
  3.  一般式(1)で表わされるジオール化合物の分子量が400~600である請求項1又は2に記載の省燃費型エンジン油組成物。 The fuel-saving engine oil composition according to claim 1 or 2, wherein the diol compound represented by the general formula (1) has a molecular weight of 400 to 600.
PCT/JP2010/060504 2009-07-14 2010-06-22 Fuel-efficient engine oil composition WO2011007643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011522767A JP5600677B2 (en) 2009-07-14 2010-06-22 Fuel-saving engine oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009165883 2009-07-14
JP2009-165883 2009-07-14

Publications (1)

Publication Number Publication Date
WO2011007643A1 true WO2011007643A1 (en) 2011-01-20

Family

ID=43449253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060504 WO2011007643A1 (en) 2009-07-14 2010-06-22 Fuel-efficient engine oil composition

Country Status (2)

Country Link
JP (1) JP5600677B2 (en)
WO (1) WO2011007643A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093410A1 (en) 2013-12-16 2015-06-25 富士フイルム株式会社 Lubricating oil composition for internal combustion engines of passenger and commercial four-wheeled vehicles
EP2933320A1 (en) * 2014-04-17 2015-10-21 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
US9982214B2 (en) 2014-02-14 2018-05-29 Chevron Oronite Company Llc Tractor hydraulic fluid compositions
JP2018135409A (en) * 2017-02-20 2018-08-30 日野自動車株式会社 A friction modifier for lubricant and lubricant composition
US10669507B2 (en) 2013-09-23 2020-06-02 Chevron Japan Ltd. Fuel economy engine oil composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100193A (en) * 1980-11-24 1982-06-22 Chevron Res Lubricating oil for improving fuel cost in internal combustion engine and method thereof
JPH09104888A (en) * 1995-10-11 1997-04-22 Tonen Corp Lubricating oil composition
JP2000017283A (en) * 1998-07-03 2000-01-18 Asahi Denka Kogyo Kk Lubricating oil additive and lubricating oil composition
JP2000273481A (en) * 1999-03-23 2000-10-03 New Japan Chem Co Ltd Lubricating oil composition
JP2008106199A (en) * 2006-10-27 2008-05-08 Idemitsu Kosan Co Ltd Lubricant composition
JP2008248213A (en) * 2007-03-30 2008-10-16 Nippon Oil Corp Lubricating oil composition brought into contact with silver-containing material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106199A (en) * 1998-07-31 2000-04-11 Mitsubishi Materials Corp Separator for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100193A (en) * 1980-11-24 1982-06-22 Chevron Res Lubricating oil for improving fuel cost in internal combustion engine and method thereof
JPH09104888A (en) * 1995-10-11 1997-04-22 Tonen Corp Lubricating oil composition
JP2000017283A (en) * 1998-07-03 2000-01-18 Asahi Denka Kogyo Kk Lubricating oil additive and lubricating oil composition
JP2000273481A (en) * 1999-03-23 2000-10-03 New Japan Chem Co Ltd Lubricating oil composition
JP2008106199A (en) * 2006-10-27 2008-05-08 Idemitsu Kosan Co Ltd Lubricant composition
JP2008248213A (en) * 2007-03-30 2008-10-16 Nippon Oil Corp Lubricating oil composition brought into contact with silver-containing material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669507B2 (en) 2013-09-23 2020-06-02 Chevron Japan Ltd. Fuel economy engine oil composition
WO2015093410A1 (en) 2013-12-16 2015-06-25 富士フイルム株式会社 Lubricating oil composition for internal combustion engines of passenger and commercial four-wheeled vehicles
US9834736B2 (en) 2013-12-16 2017-12-05 Fujifilm Corporation Lubricating oil composition for internal combustion engines of passenger and commercial four-wheeled vehicles
US9982214B2 (en) 2014-02-14 2018-05-29 Chevron Oronite Company Llc Tractor hydraulic fluid compositions
EP2933320A1 (en) * 2014-04-17 2015-10-21 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
JP2015206028A (en) * 2014-04-17 2015-11-19 アフトン・ケミカル・コーポレーションAfton Chemical Corporation Lubricant additive and lubricant composition having improved frictional characteristic
US9657252B2 (en) 2014-04-17 2017-05-23 Afton Chemical Corporation Lubricant additives and lubricant compositions having improved frictional characteristics
JP2018135409A (en) * 2017-02-20 2018-08-30 日野自動車株式会社 A friction modifier for lubricant and lubricant composition

Also Published As

Publication number Publication date
JPWO2011007643A1 (en) 2012-12-27
JP5600677B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP2693698B2 (en) Fuel-efficient lubricating oil
JP3927724B2 (en) Lubricating oil composition for internal combustion engines
JP6472262B2 (en) Lubricating oil composition for internal combustion engines
JP5767215B2 (en) Fuel-saving engine oil composition
RU2464302C2 (en) Combined packet of lubricant oil and fuel for use in internal combustion engine
US20090312205A1 (en) Lubricant composition for use the reduction of piston ring fouling in an internal combustion engine
JP5600677B2 (en) Fuel-saving engine oil composition
JP5271566B2 (en) Fuel-saving engine oil composition
JP2005171186A (en) Heat-resistant fuel cost-saving type engine oil
JP5170637B2 (en) Long-life fuel-saving engine oil composition
JP5214173B2 (en) Lubricating oil composition for internal combustion engines
JP5132384B2 (en) Lubricating oil composition for internal combustion engines
JP2010509422A (en) High sulfur paraffin lubricating oil composition with low sulfur, low sulfated ash and low phosphorus
JP5362228B2 (en) Low deposit fuel-saving engine oil composition
JP5078116B2 (en) Long-life fuel-saving engine oil composition
JP2011201962A (en) Fuel-saving engine oil composition
JP4613265B2 (en) Lubricating oil composition for roller follower type valve operating system engine
JP4204340B2 (en) Lubricating oil for ultra-low sulfur internal combustion engines
JP2912286B2 (en) Fuel-saving lubricating oil
JP2018184518A (en) Lubricating oil composition for internal-combustion engine
JP6993524B1 (en) Lubricating oil composition
JP5030502B2 (en) Engine oil composition
JP5507932B2 (en) Super fuel-saving engine oil composition
JP2001131570A (en) Engine oil
JP2023155763A (en) Lubricant composition for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522767

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799704

Country of ref document: EP

Kind code of ref document: A1