JP5170637B2 - Long-life fuel-saving engine oil composition - Google Patents

Long-life fuel-saving engine oil composition Download PDF

Info

Publication number
JP5170637B2
JP5170637B2 JP2007514586A JP2007514586A JP5170637B2 JP 5170637 B2 JP5170637 B2 JP 5170637B2 JP 2007514586 A JP2007514586 A JP 2007514586A JP 2007514586 A JP2007514586 A JP 2007514586A JP 5170637 B2 JP5170637 B2 JP 5170637B2
Authority
JP
Japan
Prior art keywords
oil
antioxidant
mass
engine oil
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007514586A
Other languages
Japanese (ja)
Other versions
JPWO2006115097A1 (en
Inventor
康司 内藤
実 山下
和浩 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Eneos Corp
Original Assignee
Toyota Motor Corp
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, JXTG Nippon Oil and Energy Corp filed Critical Toyota Motor Corp
Priority to JP2007514586A priority Critical patent/JP5170637B2/en
Publication of JPWO2006115097A1 publication Critical patent/JPWO2006115097A1/en
Application granted granted Critical
Publication of JP5170637B2 publication Critical patent/JP5170637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

本発明は、高温での酸化安定性が良好で、かつ低摩擦が長時間持続する、高温酸化安定性に優れた長寿命省燃費型エンジン油に関する。   The present invention relates to a long-life fuel-saving engine oil that has excellent oxidation stability at high temperatures and low friction for a long time and has excellent high-temperature oxidation stability.

近年、地球温暖化防止のために自動車の燃費を向上させ、COの排出を抑制する要求が非常に高まっている。自動車の燃費を向上させるにはエンジンの効率化が重要であり、ガソリンエンジンにおいてはリーンバーン化や直噴化の技術が採用されている。一方、エンジンの摩擦を低減することも燃費向上に貢献できることから、摺動部品への低摩擦材料の使用や省燃費型エンジン油の採用が図られている。In recent years, there has been a great demand for improving the fuel efficiency of automobiles and suppressing CO 2 emissions to prevent global warming. Engine efficiency is important for improving the fuel efficiency of automobiles, and lean burn and direct injection technologies are used in gasoline engines. On the other hand, reducing the friction of the engine can also contribute to the improvement of fuel efficiency, so the use of low-friction materials for sliding parts and the adoption of fuel-saving engine oil are being attempted.

省燃費型エンジン油を製造するには、SAE(米国自動車技術会)J300に規定されている粘度分類で5W−20や0W−20という低粘度化をはかると共に、摩擦を低下させる添加剤(摩擦調整剤、以下FMと称することもある)としてモリブデンジチオカーバメイト(MoDTC)などの有機モリブデン系FMを配合することが有効であることが知られている(非特許文献1参照)。   In order to produce fuel-saving engine oil, an additive (friction) that reduces friction and reduces the viscosity to 5W-20 or 0W-20 according to the viscosity classification stipulated in SAE (American Automobile Engineering Association) J300. It is known that it is effective to blend an organic molybdenum-based FM such as molybdenum dithiocarbamate (MoDTC) as a regulator (hereinafter also referred to as FM) (see Non-Patent Document 1).

リーンバーンや直噴エンジンは従来のエンジンに比較して高効率であるため燃焼温度も上昇する傾向にあり、ピストン等がより高温にさらされるため、エンジン油の高温酸化安定性も向上させる必要がある。すなわち、今後の省燃費型エンジン油には、従来に比較して高温酸化安定性により優れた省燃費型エンジン油が必要とされる。
一方、MoDTCは使用と共に劣化し、油中から消失していく。そのため、MoDTCによる省燃費効果も使用と共に悪化し、この省燃費効果の持続性向上も重要な課題となっている。
特開平10−17883号公報 K. Hoshino et al、FuelEfficiency of SAE 5W-20 Friction Modifired GasolineEngine Oil、SAE Technical Paper 982506(1998)
Because lean burn and direct injection engines are more efficient than conventional engines, the combustion temperature tends to rise, and pistons are exposed to higher temperatures, so it is necessary to improve the high-temperature oxidation stability of engine oil. is there. That is, future fuel-saving engine oils will require fuel-saving engine oils that are superior to conventional ones due to high-temperature oxidation stability.
On the other hand, MoDTC deteriorates with use and disappears from the oil. Therefore, the fuel saving effect by MoDTC deteriorates with use, and the improvement of the sustainability of this fuel saving effect is also an important issue.
Japanese Patent Laid-Open No. 10-17883 K. Hoshino et al, Fuel Efficiency of SAE 5W-20 Friction Modifired GasolineEngine Oil, SAE Technical Paper 982506 (1998)

上記状況に鑑み、本発明は、高温酸化安定性に優れ、さらに、省燃費持続性に優れたエンジン油を提供することを課題とする。   In view of the above situation, an object of the present invention is to provide an engine oil that is excellent in high-temperature oxidation stability and further excellent in fuel-saving sustainability.

本発明者は、上記課題を解決すべく、鋭意研究を進めた結果、鉱油及び/又は合成系基油に、特定の酸化防止剤を組み合わせて特定の割合で配合し、かつ一定量以上のMoDTCを配合して得られた組成物が、良好な高温酸化安定性を有する長寿命省燃費型エンジン油として有用であることを見出した。本発明はかかる知見に基づきなされたものである。   As a result of diligent research to solve the above-mentioned problems, the present inventors have formulated a specific ratio of a combination of a specific antioxidant and a mineral oil and / or a synthetic base oil, and a MoDTC of a certain amount or more. It has been found that the composition obtained by blending is useful as a long-life fuel-saving engine oil having good high-temperature oxidation stability. The present invention has been made based on such findings.

すなわち、本発明は、鉱油及び/又は合成系基油に、アミン系酸化防止剤とフェノール系酸化防止剤を総和で1.2質量%以上含有し、かつ、アミン系酸化防止剤の窒素分(N)とフェノール系酸化防止剤の酸素分(O)との比率(質量:N/O)が0.20〜0.50であり、さらにモリブデンジチオカーバメイト(MoDTC)をモリブデン(Mo)で0.055質量%以上含有するエンジン油組成物である。
特には、アミン系酸化防止剤とフェノール系酸化防止剤を総和で1.5質量%以上含有し、かつ、アミン系酸化防止剤の窒素分(N)とフェノール系酸化防止剤の酸素分(O)との比率(質量:N/O)が0.20〜0.35であり、さらにモリブデンジチオカーバメイト(MoDTC)をモリブデン(Mo)で0.055質量%以上含有することが好ましい。
That is, the present invention contains a mineral oil and / or synthetic base oil containing 1.2 mass% or more of an amine antioxidant and a phenolic antioxidant in total, and the nitrogen content of the amine antioxidant ( N) to the oxygen content (O) of the phenolic antioxidant (mass: N / O) is 0.20 to 0.50, and molybdenum dithiocarbamate (MoDTC) is 0.5% molybdenum (Mo). It is an engine oil composition containing 055% by mass or more.
In particular, the total amount of amine antioxidant and phenolic antioxidant is 1.5% by mass or more, and the nitrogen content of amine antioxidant (N) and the oxygen content of phenolic antioxidant (O ) (Mass: N / O) is 0.20 to 0.35, and molybdenum dithiocarbamate (MoDTC) is preferably contained in molybdenum (Mo) at 0.055% by mass or more.

本発明の長寿命省燃費型エンジン油組成物は、前記のような構成としたことから、高温酸化安定性に優れ、長い期間使用しても粘度増加が少なく、長期間低摩擦を持続させるといった格別な効果を奏する長寿命省燃費型エンジン油である。したがって、内燃機関、特にリーンバーンや直噴といったガソリンエンジン機関に好適に用いることができ、燃費が向上し、しかもそれが長時間持続するという格別の効果を発揮する。   Since the long-life fuel-saving engine oil composition of the present invention has the above-described configuration, it is excellent in high-temperature oxidation stability, has little viscosity increase even when used for a long period of time, and maintains low friction for a long period of time. It is a long-life, fuel-saving engine oil that exhibits exceptional effects. Therefore, it can be suitably used for an internal combustion engine, particularly a gasoline engine engine such as lean burn or direct injection, and exhibits a special effect that fuel efficiency is improved and that it lasts for a long time.

本発明のエンジン油組成物に用いる基油は、鉱油、合成系基油、及びその混合物のいずれも使用できる。100℃での動粘度は、3.5〜5.0mm/s、特には4.0〜4.5mm/sが好ましい。粘度指数としては、110〜160、特には120〜140が好ましい。鉱油では粘度指数が120以上の高粘度指数潤滑油基油が望ましい。粘度指数が120以上の高粘度指数潤滑油基油は、ワックスの水素異性化或いは重質油の水素化分解で得られた生成油を溶剤脱ロウ又は水素化脱ロウすることにより得ることができる。これらの製法の一例について、次により具体的に述べる。As the base oil used in the engine oil composition of the present invention, any of mineral oil, synthetic base oil, and mixtures thereof can be used. The kinematic viscosity at 100 ° C. is preferably 3.5 to 5.0 mm 2 / s, particularly 4.0 to 4.5 mm 2 / s. As a viscosity index, 110-160, especially 120-140 are preferable. As the mineral oil, a high viscosity index lubricating base oil having a viscosity index of 120 or more is desirable. A high viscosity index lubricating base oil having a viscosity index of 120 or more can be obtained by solvent dewaxing or hydrodewaxing a product oil obtained by hydroisomerization of wax or hydrocracking of heavy oil. . One example of these production methods will be described more specifically below.

ワックスの水素異性化は、沸点範囲が300〜600℃、炭素数として20〜70の範囲にあるワックス、例えば、鉱油系潤滑油の溶剤脱ロウ工程で得られるスラックワックスや、炭化水素ガス等から液体燃料を合成するフィッシャー・トロプシュ合成で得られたワックス等を原料として、水素異性化触媒、例えばアルミナ、或いはシリカ−アルミナ担体上にニッケル、コバルト等の8族金属、及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒や、ゼオライト触媒、もしくはゼオライト含有担体に白金等を担持した触媒と、水素分圧5〜14MPaの水素存在下、300〜450℃の温度、0.1〜2hr−1のLHSV(液空間速度)で接触させることによって行うことができる。このとき、直鎖状のパラフィンの転化率が80%以上、軽質留分への転化率が40%以下となるようにすることが好ましい。The hydroisomerization of wax is from wax having a boiling range of 300 to 600 ° C. and a carbon number of 20 to 70, such as slack wax obtained in a solvent dewaxing step of mineral oil-based lubricating oil, hydrocarbon gas, etc. Using a wax obtained by Fischer-Tropsch synthesis for synthesizing a liquid fuel as a raw material, a hydroisomerization catalyst, for example, a group 8 metal such as nickel and cobalt on an alumina or silica-alumina carrier, and 6A such as molybdenum and tungsten. A catalyst supporting one or more of group metals, a zeolite catalyst, or a catalyst supporting platinum or the like on a zeolite-containing carrier, a temperature of 300 to 450 ° C. in the presence of hydrogen at a hydrogen partial pressure of 5 to 14 MPa, 0.1 to 0.1 It can be performed by contacting at 2 hr −1 LHSV (liquid space velocity). At this time, it is preferable that the conversion rate of the linear paraffin is 80% or more and the conversion rate to the light fraction is 40% or less.

一方、水素化分解は、必要により水素化脱硫及び脱窒素を行った沸点が300〜600℃の範囲の常圧留出油、減圧留出油又はブライトストックを、水素化分解触媒、例えばシリカ−アルミナ担体上にニッケル、コバルト等の8族金属の1種以上、及びモリブデン、タングステン等の6A族金属の1種以上を担持した触媒と、水素分圧7〜14MPaの水素存在下、350〜450℃の温度、0.1〜2hr−1のLHSV(液空間速度)で接触させて行うことができ、分解率(生成物に占める360℃以上の留分の減少した質量%)が40〜90%となるようにすることが好ましい。On the other hand, in the hydrocracking, if necessary, hydrodesulfurization and denitrogenation are performed at a normal pressure distillate, a vacuum distillate or bright stock having a boiling point in the range of 300 to 600 ° C. 350 to 450 in the presence of hydrogen having a hydrogen partial pressure of 7 to 14 MPa, a catalyst supporting one or more of group 8 metals such as nickel and cobalt and one or more of group 6A metals such as molybdenum and tungsten on an alumina support. At a temperature of 0.1 ° C. and an LHSV (liquid hourly space velocity) of 0.1 to 2 hr −1 , and the decomposition rate (mass% reduced in the fraction of 360 ° C. or higher in the product) is 40 to 90 % Is preferable.

上記方法で得られる水素異性化生成油又は水素化分解生成油から軽質留分を留去して潤滑油留分を得ることができるが、この留分は、このままでは一般に流動点や粘度が高く、また粘度指数が十分に高くないため、脱ロウ処理を行い、ワックス分を除去して、n−d−M環分析による%Cが80以上、流動点が−10℃以下で粘度指数が120以上の潤滑油基油を得ることができる。Lubricating oil fraction can be obtained by distilling off the light fraction from the hydroisomerized product oil or hydrocracked product oil obtained by the above method, but this fraction generally has a high pour point and viscosity. and the viscosity index is not high enough, perform dewaxing treatment, to remove the wax fraction, n-d-M ring analysis% C P is 80 or more, a pour point viscosity index at -10 ° C. or less More than 120 lubricating base oils can be obtained.

このワックス分の除去を溶剤脱ロウ処理で行う場合、上記の軽質留分の留去に際して精密蒸留装置を用いて蒸留分離し、あらかじめガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70質量%以上になるようにカットすることが、溶剤脱ロウ処理をより効率的に行うために好ましい。この溶剤脱ロウ処理は、脱ロウ溶剤として例えばメチルエチルケトン/トルエン(容量比1/1)を用い、溶剤/油比2/1〜4/1の範囲で、−15〜−40℃の温度下に行うとよい。   When removing the wax by solvent dewaxing, the light fraction is distilled off using a precision distillation apparatus, and the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. by gas chromatography distillation is previously used. Is preferably 70% by mass or more in order to perform the solvent dewaxing process more efficiently. In this solvent dewaxing treatment, for example, methyl ethyl ketone / toluene (volume ratio 1/1) is used as a dewaxing solvent, and the solvent / oil ratio is in the range of 2/1 to 4/1. It is good to do.

一方、ワックス分の除去を水素化脱ロウ法で行う場合は、軽質留分の留去は水素化脱ロウに支障とならない程度とし、水素化脱ロウ後に、精密蒸留装置を用いて蒸留分離してガスクロマトグラフィー蒸留法による沸点371℃以上491℃未満の留分が70質量%以上になるようにカットすることが、効率的で好ましい。この水素化脱ロウは、ゼオライト触媒と、水素分圧3〜15MPaの水素存在下、320〜430℃の温度、0.2〜4hr−1のLHSV(液空間速度)で接触させ、最終的な潤滑油基油における流動点が−10℃以下となるようにするとよい。On the other hand, when the wax content is removed by hydrodewaxing, distilling the light fractions should not hinder hydrodewaxing, and after hydrodewaxing, they are separated by distillation using a precision distillation apparatus. It is efficient and preferable that the fraction having a boiling point of 371 ° C. or higher and lower than 491 ° C. is 70% by mass or higher by gas chromatography distillation. This hydrodewaxing is carried out by contacting the zeolite catalyst with hydrogen at a partial pressure of 3 to 15 MPa at a temperature of 320 to 430 ° C. and a LHSV (liquid space velocity) of 0.2 to 4 hr −1. The pour point in the lubricating base oil should be −10 ° C. or lower.

以上のような方法で、粘度指数120以上の潤滑油基油を得ることができるが、所望により、さらに溶剤精製或いは水素化精製を行うことができる。   A lubricating base oil having a viscosity index of 120 or more can be obtained by the method as described above, but solvent purification or hydrorefining can be further performed as desired.

また、合成油としては、α−オレフィンのオリゴマー、アジピン酸等の二塩基酸と一価アルコールから合成されるジエステルやネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール等の多価アルコールと一塩基酸とから合成されるポリオールエステル、及びこれらの混合物等が挙げられる。
さらに、適宜の鉱油と合成油を組み合わせた混合油も、本エンジン油の基油として用いることができる。
Synthetic oils include α-olefin oligomers, diesters synthesized from dibasic acids such as adipic acid and monohydric alcohols, polyhydric alcohols such as neopentyl glycol, trimethylolpropane, pentaerythritol, and monobasic acids. Polyol esters synthesized from the above, and mixtures thereof.
Furthermore, a mixed oil combining an appropriate mineral oil and a synthetic oil can also be used as the base oil of the engine oil.

本発明のエンジン油に使用されるMoDTCは、下記の一般式(1)で表される。

Figure 0005170637
式中、R〜Rは、炭素数4〜18個を有する直鎖及び/又は分岐のアルキル基及び/又はアルケニル基を表し、Xは酸素原子又は硫黄原子を表し、その酸素原子と硫黄原子との比は1/3〜3/1である。R〜Rは、好ましくはアルキル基であり、特に好ましくは炭素数8〜14の分岐のアルキル基であり、具体的にはブチル基、2−エチルヘキシル基、イソトリデシル基、ステアリル基等が挙げられる。1分子中に存在する4個のR〜Rは、同一であってもよく、異なっていてもよい。また、R〜Rの異なるMoDTCを2種以上混合して用いることもできる。
MoDTCの含有量は、エンジン油全重量に対して、MoDTCに含まれるモリブデン(Mo)金属元素重量で0.055質量%以上であり、特には0.055〜0.12質量%、さらには0.06〜0.10質量%が好ましい。MoDTC used for the engine oil of the present invention is represented by the following general formula (1).
Figure 0005170637
In the formula, R 1 to R 4 represent a linear and / or branched alkyl group and / or alkenyl group having 4 to 18 carbon atoms, X represents an oxygen atom or a sulfur atom, and the oxygen atom and sulfur The ratio with the atoms is 1/3 to 3/1. R 1 to R 4 are preferably alkyl groups, particularly preferably branched alkyl groups having 8 to 14 carbon atoms, and specific examples include a butyl group, a 2-ethylhexyl group, an isotridecyl group, and a stearyl group. It is done. Four R < 1 > -R < 4 > which exists in 1 molecule may be the same, and may differ. Also, two or more kinds of MoDTCs having different R 1 to R 4 can be mixed and used.
The content of MoDTC is 0.055% by mass or more in terms of the weight of molybdenum (Mo) metal element contained in MoDTC with respect to the total weight of engine oil. 0.06 to 0.10% by mass is preferable.

本発明のエンジン油に使用される酸化防止剤としては、フェノール系酸化防止剤及びアミン系酸化防止剤の両方が用いられる。
本発明のエンジン油に好適に使用されるフェノール系酸化防止剤としては、酸化防止能を有し、エステル結合を含んだ置換基を有するフェノール化合物を用いることができ、具体的には、次の一般式(2)及び(3)で表される化合物が挙げられる。

Figure 0005170637
式(2)において、Rは、炭素数が3以上20以下の炭化水素基が好ましく、特に好ましい炭化水素基としてはオクチル基、ステアリル基が挙げられる。As the antioxidant used in the engine oil of the present invention, both a phenolic antioxidant and an amine antioxidant are used.
As a phenolic antioxidant suitably used for the engine oil of the present invention, a phenolic compound having an antioxidant ability and having a substituent containing an ester bond can be used. Examples include compounds represented by the general formulas (2) and (3).
Figure 0005170637
In Formula (2), R 5 is preferably a hydrocarbon group having 3 to 20 carbon atoms, and particularly preferred hydrocarbon groups include octyl and stearyl groups.

Figure 0005170637
Figure 0005170637

本発明のエンジン油に好適に使用されるアミン系酸化防止剤としては、酸化防止能を有するジフェニルアミン及び/またはフェニルナフチルアミンが好ましく、具体的には、下記の一般式(4)及び(5)で表される化合物が挙げられる。

Figure 0005170637
式(4)の化合物は、一般的には、N−フェニルベンゼンアミンとアルケンとを反応させて得られる化合物である。式(4)において、R、Rは、炭化水素基であり、各ベンゼン環で5個ずつ、合計10個置換しえるが、少なくとも1個以上置換しているものが好ましい。炭化水素基の炭素数は3以上20以下が好ましく、RとRの合計が複数の場合、それぞれは同じ炭化水素基であっても異なっていてもよい。より好ましくは、ブチル基からノニル基までの直鎖又は分枝鎖のアルキル基が挙げられる。The amine-based antioxidant suitably used in the engine oil of the present invention is preferably diphenylamine and / or phenylnaphthylamine having antioxidant ability. Specifically, in the following general formulas (4) and (5) And the compounds represented.
Figure 0005170637
The compound of the formula (4) is generally a compound obtained by reacting N-phenylbenzenamine with an alkene. In the formula (4), R 6 and R 7 are hydrocarbon groups, and each benzene ring can be substituted by five, for a total of ten, but at least one is preferably substituted. The number of carbon atoms of the hydrocarbon group is preferably 3 or more and 20 or less. When the sum of R 6 and R 7 is plural, each may be the same hydrocarbon group or different. More preferred is a linear or branched alkyl group from a butyl group to a nonyl group.

Figure 0005170637
式(5)において、R〜Rは、炭素数が3以上20以下の炭化水素基であり、式(5)にはナフチル基及びフェニル基の両方に置換されているように記しているが、少なくともどちらか一方の基に1個以上置換されているものでも、両方の基にそれぞれ1個ずつ以上置換されているものでもよい。R〜Rがそれぞれ複数個の場合、それぞれは同一であっても、異なっていてもよい。なお、R〜Rは炭素数が6以上12以下のアルキル基が好ましく、直鎖又は分枝鎖のオクチル基ないしノニル基で、ナフチル基又はフェニル基のどちらか一方に1個置換されているものが特に好ましい。
また、アミン系酸化防止剤としては、一般式(4)及び(5)で表される化合物を混合して用いることができる。
Figure 0005170637
In the formula (5), R 8 to R 9 are hydrocarbon groups having 3 to 20 carbon atoms, and the formula (5) is described as being substituted with both a naphthyl group and a phenyl group. However, at least one group may be substituted by one or more, or both groups may be substituted by one or more. When there are a plurality of R 8 to R 9 , each may be the same or different. R 8 to R 9 are preferably an alkyl group having 6 or more and 12 or less carbon atoms, and is a linear or branched octyl group or nonyl group, one of which is substituted on either the naphthyl group or the phenyl group. It is particularly preferable.
Moreover, as an amine antioxidant, the compound represented by General formula (4) and (5) can be mixed and used.

フェノール系酸化防止剤とアミン系酸化防剤は、含有量の総和が1.5質量%以上、かつ、アミン系酸化防止剤の窒素分(N)とフェノール系酸化防止剤の酸素分(O)の質量比率(N/O)が0.20〜0.35、特には0.25〜0.30となるように配合されることが好ましい。前記酸化防止剤の含有量の総和は、1.5質量%以上、特には1.5〜3質量%が好ましい。この総和が1.5質量%未満では、目標とする高温酸化安定性が、例えば、Sequence III G試験の粘度増加率150%以下、特には0〜100%といった高温酸化安定性が得られない。また、アミン系酸化防止剤の窒素質量分とフェノール系酸化防止剤の酸素質量分の比率が0.20未満では、目標とする高温酸化安定性が得られない。一方、アミン系酸化防止剤の窒素質量分とフェノール系酸化防止剤の酸素質量分との比率が0.35を越えると目標とするMoDTCによる低摩擦寿命が得られない。   The total content of phenolic antioxidants and amine antioxidants is 1.5% by mass or more, and the nitrogen content (N) of the amine antioxidant and the oxygen content (O) of the phenolic antioxidant The mass ratio (N / O) is preferably from 0.20 to 0.35, particularly preferably from 0.25 to 0.30. The total content of the antioxidants is preferably 1.5% by mass or more, particularly preferably 1.5 to 3% by mass. If the total is less than 1.5% by mass, the target high-temperature oxidation stability cannot be obtained, for example, high-temperature oxidation stability of, for example, a viscosity increase rate of 150% or less, particularly 0 to 100% in the Sequence III G test. Further, if the ratio of the nitrogen mass of the amine antioxidant and the oxygen mass of the phenol antioxidant is less than 0.20, the target high-temperature oxidation stability cannot be obtained. On the other hand, if the ratio of the nitrogen mass of the amine-based antioxidant and the oxygen mass of the phenol-based antioxidant exceeds 0.35, the low friction life by the target MoDTC cannot be obtained.

本発明のエンジン油には、所望により、アルキルジチオリン酸亜鉛(ZnDTP)、Ca、Mg、Ba、Na等の金属スルホネート、フェネート、サリシレート等の清浄剤、アルケニルコハク酸イミド等の無灰系分散剤、その他粘度指数向上剤、流動点降下剤、金属不活性化剤、防錆剤や消泡剤等の添加剤を添加することができる。   In the engine oil of the present invention, if desired, detergents such as zinc alkyldithiophosphate (ZnDTP), Ca, Mg, Ba and Na, sulfonates, phenates and salicylates, and ashless dispersants such as alkenyl succinimides In addition, additives such as viscosity index improvers, pour point depressants, metal deactivators, rust inhibitors and antifoaming agents can be added.

次に、実施例により本発明を具体的に説明する。
基油としては、重質油の水素化分解で得られた生成油を水素化脱ロウすることで得られた鉱油系基油(動粘度:20.3mm/s(40℃)、4.34mm/s(100℃)、粘度指数124)を用いた。
Next, the present invention will be described specifically by way of examples.
As the base oil, a mineral oil base oil (kinematic viscosity: 20.3 mm 2 / s (40 ° C.)) obtained by hydrodewaxing a product oil obtained by hydrocracking heavy oil, and 4. 34 mm 2 / s (100 ° C.), viscosity index 124) was used.

前記基油に、添加剤として下記に説明するフェノール系酸化防剤A、アミン系酸化防止剤B、MoDTC及びその他添加剤を表1に示す割合で配合して実施例1、及び比較例1〜3のエンジン油を調製した。また、添加したアミン系酸化防止剤の窒素分(N)とフェノール系酸化防止剤の酸素分(O)との比率(質量:N/O)及びMo含有量を表1に併せて示す。なお、その他添加剤は、アルキルジチオリン酸亜鉛(ZnDTP)、Caスルホネート、アルケニルコハク酸イミド、粘度指数向上剤、流動点降下剤及び消泡剤からなる添加剤混合物であり、実施例及び比較例全部に共通して同じ添加量で添加した。   Example 1 and Comparative Examples 1 to 1 were blended with the base oil in the proportions shown in Table 1 with phenolic antioxidant A, amine antioxidant B, MoDTC and other additives described below as additives. Three engine oils were prepared. Table 1 also shows the ratio (mass: N / O) of the nitrogen content (N) of the added amine antioxidant and the oxygen content (O) of the phenolic antioxidant and the Mo content. The other additive is an additive mixture consisting of zinc alkyldithiophosphate (ZnDTP), Ca sulfonate, alkenyl succinimide, viscosity index improver, pour point depressant and antifoaming agent, and all examples and comparative examples. The same amount was added in common.

フェノール系酸化防剤A:一般式(2)で表され、置換基Rがオクチル基であるフェノール系酸化防止剤(酸素含有量12.3質量%)を使用した。
アミン系酸化剤B:N−フェニルベンゼンアミンと2,4,4−トリメチルペンテンとの反応生成物であるアミン系酸化防止剤(窒素含有量4.5質量%)を使用した。
MoDTC:一般式(1)で表される化合物で、R〜Rが2エチルヘキシル基とイソトリデシル基との混合物で、酸素原子と硫黄原子との比が1/1のものを使用した。
Phenol-based antioxidant A: A phenol-based antioxidant (oxygen content 12.3 mass%) represented by the general formula (2) and having the substituent R 5 as an octyl group was used.
Amine-based oxidizing agent B: An amine-based antioxidant (nitrogen content 4.5% by mass), which is a reaction product of N-phenylbenzeneamine and 2,4,4-trimethylpentene, was used.
MoDTC: A compound represented by the general formula (1), in which R 1 to R 4 are a mixture of a 2-ethylhexyl group and an isotridecyl group and the ratio of oxygen atom to sulfur atom is 1/1.

Figure 0005170637
Figure 0005170637

表1の実施例及び比較例のエンジン油それぞれについて、Sequence III G試験を実施して、エンジン油性能を評価した。その中に高温酸化安定性を粘度増加率で評価する項目があり、合格基準として粘度増加率150%以下が規定されている(鈴木、ガソリンエンジン油規格の最新動向、月刊トライボロジー、2003.5、17頁参照)。上記それぞれの供試エンジン油について、Sequence III G試験に従ってエンジン試験100時間後のエンジン油をエンジン試験開始時(0時間)のエンジン油と比較して粘度増加率を求めた。その結果を表2に示す   About each of the engine oil of the Example of Table 1, and the comparative example, the Sequence III G test was implemented and engine oil performance was evaluated. Among them, there is an item for evaluating the high-temperature oxidation stability by the viscosity increase rate, and the viscosity increase rate of 150% or less is specified as an acceptance criterion (Suzuki, latest trend of gasoline engine oil standards, monthly tribology, 2003.5, Page 17). For each of the above test engine oils, the rate of increase in viscosity was determined by comparing the engine oil 100 hours after the engine test with the engine oil at the start of the engine test (0 hour) according to the Sequence III G test. The results are shown in Table 2.

さらに、表1の供試エンジン油それぞれについて、台上耐久試験であるエンジン試験と摩擦を測定するSRV摩擦試験を下記の条件で実施して、エンジン油の摩擦係数が0.070になる試験時間を求め、標準油(摩擦係数が0.070になる試験時間165時間、この時間に相当する走行距離10,000km)と比較して省燃費の持続性を評価した。その結果を低摩擦持続性寿命(km)として表2の下段に示す。   Further, for each of the test engine oils shown in Table 1, an engine test, which is a bench durability test, and an SRV friction test for measuring friction are performed under the following conditions, and the test time at which the friction coefficient of the engine oil becomes 0.070 And the sustainability of fuel consumption was evaluated by comparing with standard oil (test time of 165 hours when the friction coefficient becomes 0.070, travel distance corresponding to this time of 10,000 km). The results are shown in the lower part of Table 2 as the low friction durability life (km).

エンジン試験条件
・エンジン:排気量 2L 直列6気筒ガソリンエンジン
・オイルパン容量:3.4Lを2Lに縮小(試験の過酷度を加速した)
・オイルパン油温:100℃
・試験モード:AMA走行モード(繰り返し)
・オイルサンプリング:24時間毎(SRV摩擦試験用サンプル)
Engine test conditions -Engine: Displacement 2L Inline 6-cylinder gasoline engine-Oil pan capacity: 3.4L reduced to 2L (test severity was accelerated)
・ Oil pan oil temperature: 100 ℃
・ Test mode: AMA running mode (repeated)
・ Oil sampling: Every 24 hours (sample for SRV friction test)

SRV摩擦試験条件
・接触条件:シリンダ オン ブロック
・摺動条件:荷重400N、振動数50Hz、振幅1.5mm、温度120℃
なお、エンジン油の摩擦係数が0.070になるまで試験時間は、24時間毎にサンプリングしたサンプル(使用エンジン油)の摩擦係数が0.070を挟む2つのサンプルの採取時間を内挿して求めた。得られた摩擦係数が0.070になるまで試験時間を、標準油の摩擦係数が0.070になるまで試験時間(165時間)と走行距離10,000kmに基づいて、低摩擦持続性寿命(走行距離、km)を求めた。
SRV friction test conditions / contact conditions: cylinder on block ・ Sliding conditions: load 400N, frequency 50 Hz, amplitude 1.5 mm, temperature 120 ° C.
The test time until the friction coefficient of engine oil reaches 0.070 is obtained by interpolating the sampling times of two samples with a friction coefficient of 0.070 between samples sampled every 24 hours (used engine oil). It was. Based on the test time until the friction coefficient of 0.070 obtained is 0.070 and the standard oil friction coefficient of 0.070 (165 hours) and the running distance of 10,000 km, the low friction durability life ( Traveling distance, km) was determined.

Figure 0005170637
Figure 0005170637

以上の結果から明らかなように、実施例に示す鉱油及び/又は合成系基油に、アミン系酸化防止剤とフェノール系酸化防止剤の添加量総和が1.5質量%以上、かつ、アミン系酸化防止剤の窒素質量分(N)とフェノール系酸化防止剤の酸素質量分(O)の比率(N/O)が0.20〜0.35であり、さらにMoDTCをMo含有量で0.055質量%以上配合してなるエンジン油組成物は、Sequence III G試験の粘度増加率が83%と少なく、良好な高温酸化安定性が見込まれる。さらに、エンジン耐久試験の使用油のSRV摩擦試験から算出したMoDTC低摩擦持続性寿命が9000km以上と長いことから、省燃費持続性にも優れていることが分かる。   As is clear from the above results, the total amount of amine-based antioxidant and phenol-based antioxidant added to the mineral oil and / or synthetic base oil shown in the examples is 1.5% by mass or more, and the amine-based The ratio (N / O) of the nitrogen mass (N) of the antioxidant and the oxygen mass (O) of the phenolic antioxidant is 0.20 to 0.35, and further MoDTC is 0.3 by Mo content. An engine oil composition containing 055% by mass or more has a low viscosity increase rate of 83% in the Sequence III G test and is expected to have good high-temperature oxidation stability. Furthermore, since the MoDTC low friction sustaining life calculated from the SRV friction test of the oil used in the engine durability test is as long as 9000 km or more, it can be seen that the fuel saving sustainability is also excellent.

一方、フェノール系酸化防止剤のみを添加した比較例1のエンジン油組成物は、低摩擦寿命は長いものの、粘度増加率が非常に大きく高温酸化安定性に劣る。また、アミン系酸化防剤の窒素分とフェノール系酸化防止剤の酸素分の比率の高い比較例2は、酸化安定性に優れるものの低摩擦寿命に劣る。さらに、MoDTCの配合量を減じた比較例3は、実施例1と比較して、粘度増加率大きく高温酸化安定性に劣り、低摩擦寿命に劣っていることが分かる。   On the other hand, the engine oil composition of Comparative Example 1 to which only the phenolic antioxidant is added has a long low friction life, but has a very large viscosity increase rate and is inferior in high-temperature oxidation stability. Further, Comparative Example 2 having a high ratio of nitrogen content of amine-based antioxidant and oxygen content of phenol-based antioxidant is excellent in oxidation stability but inferior in low friction life. Furthermore, it can be seen that Comparative Example 3 in which the blending amount of MoDTC is reduced is larger in viscosity increase rate and inferior in high-temperature oxidation stability than in Example 1, and inferior in low friction life.

Claims (1)

鉱油及び/又は合成系基油に、アミン系酸化防止剤と下記一般式(2)または(3)で表わされるフェノール系酸化防止剤を総和で1.5質量%以上含有し、かつ、アミン系酸化防止剤の窒素分(N)と前記フェノール系酸化防止剤の酸素分(O)との比率(質量:N/O)が0.20〜0.35であり、さらにモリブデンジチオカーパメイト(MoDTC)をモリブデン(Mo)で0.055質量%以上含有することを特徴とする長寿命省燃費型エンジン油組成物。
Figure 0005170637
〔式(2)において、R 5 は、炭素数が3以上20以下の炭化水素基〕
Figure 0005170637
Mineral oil and / or synthetic base oil contains an amine antioxidant and a phenolic antioxidant represented by the following general formula (2) or (3) in a total amount of 1.5 % by mass or more, and is amine-based ratio of the oxygen content of the nitrogen content of the antioxidant (N) and the phenolic antioxidant (O) (weight: N / O) is from 0.20 to 0.35, further molybdenum dithiocarbamate car Pas mate ( A long-life fuel-saving engine oil composition characterized by containing 0.055% by mass or more of MoDTC) in molybdenum (Mo).
Figure 0005170637
[In the formula (2), R 5 is a hydrocarbon group having 3 to 20 carbon atoms]
Figure 0005170637
JP2007514586A 2005-04-20 2006-04-17 Long-life fuel-saving engine oil composition Active JP5170637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514586A JP5170637B2 (en) 2005-04-20 2006-04-17 Long-life fuel-saving engine oil composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005122372 2005-04-20
JP2005122372 2005-04-20
JP2007514586A JP5170637B2 (en) 2005-04-20 2006-04-17 Long-life fuel-saving engine oil composition
PCT/JP2006/308058 WO2006115097A1 (en) 2005-04-20 2006-04-17 Long-life fuel-saving engine oil composition

Publications (2)

Publication Number Publication Date
JPWO2006115097A1 JPWO2006115097A1 (en) 2008-12-18
JP5170637B2 true JP5170637B2 (en) 2013-03-27

Family

ID=37214719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514586A Active JP5170637B2 (en) 2005-04-20 2006-04-17 Long-life fuel-saving engine oil composition

Country Status (6)

Country Link
EP (1) EP1878784B1 (en)
JP (1) JP5170637B2 (en)
CN (1) CN101218330B (en)
ES (1) ES2402946T3 (en)
PL (1) PL1878784T3 (en)
WO (1) WO2006115097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10729628B2 (en) 2015-12-24 2020-08-04 Conopco, Inc. Tyrosinase inhibitors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362228B2 (en) * 2008-01-31 2013-12-11 Jx日鉱日石エネルギー株式会社 Low deposit fuel-saving engine oil composition
EP2280057B2 (en) * 2008-02-20 2016-11-23 Idemitsu Kosan Co., Ltd. Lubricating oil composition for internal combustion engine
US8748357B2 (en) 2008-07-15 2014-06-10 Exxonmobil Research And Engineering Company Method for stabilizing diesel engine lubricating oil against degradation by biodiesel fuel
WO2015089784A1 (en) * 2013-12-19 2015-06-25 龚金凤 Lubricating oil composition having improved friction property

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269094A (en) * 1990-03-16 1991-11-29 Nippon Oil Co Ltd Engine oil composition
JPH08176579A (en) * 1994-12-27 1996-07-09 Asahi Denka Kogyo Kk Lubricating oil composition
JPH09506119A (en) * 1993-09-13 1997-06-17 エクソン リサーチ アンド エンジニアリング カンパニー Lubricating oil composition containing a combination of antiwear additives and antioxidant additives
WO1997023587A1 (en) * 1995-12-22 1997-07-03 Japan Energy Corporation Lubricating oil for internal combustion engines
JP2000192066A (en) * 1998-12-24 2000-07-11 Asahi Denka Kogyo Kk Lubricating composition
JP2000192068A (en) * 1998-12-24 2000-07-11 Asahi Denka Kogyo Kk Lubricating composition
JP2002053888A (en) * 2000-06-02 2002-02-19 Chevron Oronite Ltd Lubricant composition
JP2003336089A (en) * 2002-05-22 2003-11-28 Chevron Texaco Japan Ltd Lubricating oil composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269094A (en) * 1990-03-16 1991-11-29 Nippon Oil Co Ltd Engine oil composition
JPH09506119A (en) * 1993-09-13 1997-06-17 エクソン リサーチ アンド エンジニアリング カンパニー Lubricating oil composition containing a combination of antiwear additives and antioxidant additives
JPH08176579A (en) * 1994-12-27 1996-07-09 Asahi Denka Kogyo Kk Lubricating oil composition
WO1997023587A1 (en) * 1995-12-22 1997-07-03 Japan Energy Corporation Lubricating oil for internal combustion engines
JP2000192066A (en) * 1998-12-24 2000-07-11 Asahi Denka Kogyo Kk Lubricating composition
JP2000192068A (en) * 1998-12-24 2000-07-11 Asahi Denka Kogyo Kk Lubricating composition
JP2002053888A (en) * 2000-06-02 2002-02-19 Chevron Oronite Ltd Lubricant composition
JP2003336089A (en) * 2002-05-22 2003-11-28 Chevron Texaco Japan Ltd Lubricating oil composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10729628B2 (en) 2015-12-24 2020-08-04 Conopco, Inc. Tyrosinase inhibitors

Also Published As

Publication number Publication date
EP1878784A1 (en) 2008-01-16
CN101218330B (en) 2011-03-30
WO2006115097A1 (en) 2006-11-02
EP1878784A4 (en) 2010-04-28
CN101218330A (en) 2008-07-09
JPWO2006115097A1 (en) 2008-12-18
PL1878784T3 (en) 2013-07-31
EP1878784B1 (en) 2012-12-19
ES2402946T3 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
JP2693698B2 (en) Fuel-efficient lubricating oil
JP5767215B2 (en) Fuel-saving engine oil composition
JP5291862B2 (en) Lubricating base oil composition and method for improving fuel consumption of internal combustion engine using the same
US8546312B2 (en) Lubricant oil composition for internal combustion engine
JP5839767B2 (en) Lubricating oil composition
JP5041885B2 (en) Internal combustion engine friction loss reduction method
JP5170637B2 (en) Long-life fuel-saving engine oil composition
JP5271566B2 (en) Fuel-saving engine oil composition
JP5600677B2 (en) Fuel-saving engine oil composition
JP2005171186A (en) Heat-resistant fuel cost-saving type engine oil
JP5214173B2 (en) Lubricating oil composition for internal combustion engines
JP5078116B2 (en) Long-life fuel-saving engine oil composition
JP5362228B2 (en) Low deposit fuel-saving engine oil composition
JP2011201962A (en) Fuel-saving engine oil composition
JP4723056B2 (en) Lubricating base oil and method for producing the same
JP2010235851A (en) Lubricating oil composition
JP4613265B2 (en) Lubricating oil composition for roller follower type valve operating system engine
JPH09328694A (en) Lubricating oil composition for internal combustion engine
JP5030502B2 (en) Engine oil composition
JP2912286B2 (en) Fuel-saving lubricating oil
JP2004137317A (en) Lubricating oil for fuel consumption saving type internal combustion engine
JPH1017883A (en) Lubricant for internal combustion engine
JP2001131570A (en) Engine oil
JP5806796B2 (en) Lubricating oil composition for internal combustion engine and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121220

R150 Certificate of patent or registration of utility model

Ref document number: 5170637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250