WO2011007500A1 - Pressure-sensitive input device - Google Patents

Pressure-sensitive input device Download PDF

Info

Publication number
WO2011007500A1
WO2011007500A1 PCT/JP2010/004086 JP2010004086W WO2011007500A1 WO 2011007500 A1 WO2011007500 A1 WO 2011007500A1 JP 2010004086 W JP2010004086 W JP 2010004086W WO 2011007500 A1 WO2011007500 A1 WO 2011007500A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
elastic body
conductive elastic
contact electrode
pressure
Prior art date
Application number
PCT/JP2010/004086
Other languages
French (fr)
Japanese (ja)
Inventor
安藤均
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Publication of WO2011007500A1 publication Critical patent/WO2011007500A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/78Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/78Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
    • H01H13/803Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites characterised by the switching function thereof, e.g. normally closed contacts or consecutive operation of contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/022Material
    • H01H2201/032Conductive polymer; Rubber
    • H01H2201/036Variable resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/02Interspersed fingers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2215/00Tactile feedback
    • H01H2215/004Collapsible dome or bubble
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2225/00Switch site location
    • H01H2225/018Consecutive operations

Definitions

  • the present invention relates to a pressure-sensitive input device.
  • a pressure-sensitive input device capable of recognizing an input by pressing the button in the operation panel.
  • a pressure-sensitive input device includes, for example, a button that can be pressed in the operation panel, and is provided with a rubber dome that can be bent and deformed below the button.
  • a printed circuit is provided on the back of the top of the dome.
  • the contact portion is fixed so as to face the contact electrode on the substrate (see, for example, Patent Document 1).
  • the pressure-sensitive input device having such a structure when the button is pressed, the dome is deformed downward, the contact portion on the back side of the dome is electrically connected to the contact electrode on the printed circuit board, and the switch is turned on.
  • the contact portion is a conductor made of hemispherical conductive rubber, and the conductor is disposed on the back side of the dome so that the curved bottom of the conductor faces the contact electrode on the printed circuit board. It is known (see, for example, Patent Document 2).
  • a contact portion using conductive rubber is used, unlike the pressure-sensitive input device disclosed in Patent Document 1, the contact area between the conductor and the contact electrode can be increased according to the force of pressing the button. it can. That is, the magnitude of the electrical resistance between the contact electrodes can be made to depend on the force with which the button is pressed. If such a variable resistance function is used, for example, the magnitude of the applied external force can be detected.
  • the pressure increases between the pressure applied to the contact portion made of conductive rubber and the electrical resistance between the contact electrodes on the printed circuit board.
  • the electrical resistance is linearly reduced.
  • the contact portion made of conductive rubber is crushed and the contact area with the contact electrode is increased, the electrical resistance between the contact electrodes is reduced and the contact portion is excessively deformed.
  • the effect of increasing the electrical resistance of the conductive rubber itself begins to occur.
  • the contact portion made of conductive rubber is pushed toward the contact electrode, after a certain pushing amount, the electric resistance does not decrease but starts to be saturated or slightly increased.
  • FIG. 16 shows a structural example of a conventional pressure-sensitive input device using conductive rubber as a contact portion.
  • (16A) is a sectional view of a conventional pressure-sensitive input device and its vicinity
  • (16B) is a plan view of a contact electrode on a printed circuit board.
  • a contact rubber 320 made of an elastic member is fixed on a printed circuit board 310, and a key top 330 is fixed on the contact rubber 320.
  • the pressure-sensitive input device 300 shown in FIG. On the surface of the printed circuit board 310, a contact electrode 313 including a pair of comb-like electrodes 311 and 312 is provided by, for example, copper foil.
  • the contact rubber 320 is made of, for example, silicone rubber, and can be bent in the vertical direction having a fixed portion 321 fixed to the printed circuit board 310 and a shape that narrows the opening area from the fixed portion 321 toward the key top 330. Dome 322 and a top surface portion 323 above the dome 322.
  • the hemispherical contact portion 324 made of conductive rubber is fixed on the back surface of the top surface portion 323 and above the contact electrode 313 so that the spherical bottom faces the contact electrode 313.
  • the key top 330 includes a pressing portion 331 that contacts an operator's finger when pushed from above, and a flange portion 332 that is connected to the lower side of the key top 330 and has a larger bottom area than the pressing portion 331, and the top surface portion of the contact rubber 320. It is fixed on H.323. Further, the housing 340 is formed with a hole 341, and only the pressing portion 331 of the key top 330 is exposed outward from the hole 341.
  • the gap t between the flange portion 332 and the housing 340 is caused by, for example, variation in dimensional accuracy of the key top 330 or variation in assembly accuracy between the housing 340 and the key top 330. May be larger.
  • the gap t is increased, dust and dirt easily enter the pressure-sensitive input device 300, and contact / non-contact between the housing 340 and the flange portion 332 is repeatedly caused by vibration of the device including the pressure-sensitive input device 300.
  • the noise is likely to occur.
  • the pressure-sensitive input device 300 is used in a vibration-prone environment (for example, an in-car device), abnormal noise becomes intense, and the quality of the device (or the vehicle on which the device is mounted) is increased. It will decline.
  • the gap t between the flange portion 332 and the housing 340 can be designed to be extremely small or zero.
  • the rubber switch 320 has already been pushed downward in a state where the key top 330 is not pushed, and the contact portion 324 is There is a possibility of being pressed against the contact electrode 313.
  • the pressure range in which the conductive rubber can be used is limited, when pressure is applied to the contact portion 324 even when the key top 330 is not pressed, the key top 330 is pressed.
  • the detectable range is narrowed. As a result, there arises a problem that a change in electrical resistance before and after pressing cannot be detected correctly.
  • the present invention has been made to solve such a problem, and an object thereof is to reduce the gap between the pressure-sensitive input device and the housing and realize accurate pressure detection.
  • the present inventor even when the hemispherical contact portion made of conductive rubber is pressed against the contact electrode when the key top is not pressed, By relieving the load applied to the contact portion due to the pressing of the pressure so that excessive pressure is not applied to the contact portion, the inventors have obtained the knowledge that a range for detecting the press can be secured, and the present invention has been achieved.
  • a printed circuit board having at least a first contact electrode composed of a plurality of first electrodes spaced apart from each other, and the printed circuit board disposed above the printed circuit board.
  • a pressure-sensitive input device comprising: a contact rubber that can be elastically driven toward the surface of the substrate; and a detection device that detects a pressure from the contact rubber toward the printed circuit board.
  • a conductive elastic body that protrudes toward the first contact electrode above the electrode for use and has a shape that reduces the horizontal cross section toward the tip, and a deformable member that supports the conductive elastic body. Then, after the conductive elastic body contacts the first contact electrode, the conductive elastic body is moved away from the printed circuit board to load the conductive elastic body.
  • the first contact electrode has a function of reducing the electrical resistance between the first electrodes depending on the contact area with the conductive elastic body, and the detection device changes the electrical resistance.
  • a pressure-sensitive input device that detects whether or not a predetermined threshold is exceeded, detects a pressure when it is determined that the threshold is exceeded, and does not detect a pressure when it is determined that the threshold is not exceeded.
  • the conductive elastic body has a space between the conductive rubber and the printed circuit board when the contact rubber is not pushed down toward the printed circuit board. It is in a non-contact state with the electrode.
  • the printed circuit board further includes a second contact electrode composed of a plurality of second electrodes spaced apart from each other in addition to the first contact electrode.
  • the detector is provided above the second contact electrode with a distance greater than the distance between the conductive elastic body and the first contact electrode, and the detection device is in contact with the conductive elastic body and the first contact electrode.
  • the conductive elastic body is provided inside the conductor, and in the printed circuit board, the first contact electrode is more than the second contact electrode. Is also provided inside.
  • the printed circuit board is a conductive elastic body.
  • an analog circuit including a variable resistor formed between the first contact electrode and the digital circuit, and the detection device is configured by a single output voltage obtained from the composite circuit. The first and second presses are detected.
  • the present invention it is possible to reduce the gap between the pressure-sensitive input device and the housing, and to realize accurate pressure detection.
  • FIG. 1 is a plan view (1A) showing an example of a pressure-sensitive input device and a housing around it according to the first embodiment of the present invention, and a partially exploded perspective view (1B) of the pressure-sensitive input device.
  • 2 is a cross-sectional view (2A) of the pressure-sensitive input device shown in FIG. 1 taken along the line AA in FIG. 1 (1A), and the first contact electrode and the second contact on the printed circuit board. It is a top view (2B) of the electrode for operation.
  • FIG. 3 is a cross-sectional view showing a state when the key top of the pressure-sensitive input device shown in FIG. 2 is pressed, and (3A) shows a state when the conductive elastic body contacts the first contact electrode.
  • FIG. 4 is a graph showing a simulation of the load curve from when the pressure-sensitive input device shown in FIG. 2 is pressed to the key top until the second stage switch is turned on.
  • (4B) shows a load curve combining both the conductive elastic body and the contact point, respectively.
  • FIG. 5 is an electric circuit diagram exemplarily showing a portion of the two-stage switch detection circuit on the PCB shown in FIG. 2, and FIG. 5A shows that the first-stage switch detection circuit and the second-stage switch detection circuit are separately provided.
  • (5B) shows a circuit configured by combining the first-stage switch detection circuit and the second-stage switch detection circuit.
  • FIG. 6 is a diagram illustrating an example of a multiplex circuit including a plurality of composite circuits illustrated in FIG.
  • FIG. 7 is a flowchart (7A) showing a flow of processing for detecting the input of the first-stage switch and a hardware configuration (7B) for performing the processing.
  • FIG. 8 shows the pressure-sensitive input device shown in FIG. 1, in which the conductive elastic body is incorporated in the housing while being in contact with the first contact electrode, cut along line AA in FIG. Sectional view (8A) of the conductive elastic body from the start of pressing until the second-stage switch is turned on when the contact rubber is already pushed in by 0.30 mm at the time of assembly.
  • the graph (8D) showing the simulation of the load curve of the conductive elastic body from the start of pressing until the second-stage switch is turned on, and the conductivity in the same state It is a graph showing a simulation of a sum of the load curve of the elastic body and the contact (8E).
  • 9 is a cross-sectional view (9A) of the pressure-sensitive input device according to the second embodiment taken along the line AA in FIG. 1 and the first contact on the printed circuit board.
  • FIG. 10 is a cross-sectional view showing a state when the key top of the pressure-sensitive input device according to the second embodiment is pressed, and (10A) shows that the conductive elastic body is in contact with the first contact electrode. (10B) shows the state when the contact is further advanced and the contact is in contact with the second contact electrode.
  • 11 is a cross-sectional view (11A) when the pressure-sensitive input device according to the third embodiment is cut along a line similar to the AA line in FIG. 1, and for the first contact on the printed circuit board. It is a top view (11B) of an electrode.
  • 12 is a diagram showing a state when the key top of the pressure-sensitive input device shown in FIG.
  • FIG. 13 is pressed, and is a cross-sectional view showing a state when the conductive elastic body contacts the first contact electrode.
  • FIG. 13 is a diagram showing a plurality of types of conductive elastic bodies prepared in the examples.
  • FIG. 14 is a graph showing changes in electrical resistance when the load applied to the plurality of types of conductive elastic bodies shown in FIG. 13 is changed.
  • FIG. 15 is a graph showing changes in electrical resistance when the load applied to various conductive elastic bodies having three types of outer diameters prepared in the example is changed.
  • FIG. 16 is a view showing an example of the structure of a conventional pressure-sensitive input device using conductive rubber as a contact portion. (16A) is a sectional view of the conventional pressure-sensitive input device and its vicinity, and (16B) is a print. Plan views of contact electrodes on the circuit board are respectively shown.
  • the pressure-sensitive input device described below is an input device provided in an in-vehicle device, but this is only an example, and the pressure-sensitive input device is an in-vehicle or home audio device, a power window of an automobile, a camera, etc. It can be widely applied to input devices provided in fixed telephones, remote controllers of various devices, and the like.
  • a first embodiment of a pressure-sensitive input device is a two-stage switch including a switch that is turned on first on the inside and a switch that is turned on second on the outside. is there.
  • FIG. 1 is a plan view (1A) showing an example of a pressure-sensitive input device 1 and a housing 4 around it, and a partially exploded perspective view (1B) of the pressure-sensitive input device 1.
  • 2 is a cross-sectional view (2A) of the pressure-sensitive input device 1 shown in FIG. 1 taken along line AA of FIG. 1 (1A), and the first contact electrode 50 on the printed circuit board 5 and It is a top view (2B) of the electrode 51 for 2nd contacts.
  • the pressure-sensitive input device 1 includes a key top 2, a contact rubber 3 and A printed circuit board (Printed Circuit Board: PCB, hereinafter referred to as “PCB”) 5 is provided.
  • the key top 2 is not essential for the pressure-sensitive input device 1, and the upper portion of the contact rubber 3 can be exposed outside the housing 4, and the upper portion can be replaced with the key top 2.
  • the key top 2 includes a protruding portion 21 that protrudes upward from a hole provided in the housing 4, and a flange portion 22 that is directly below the protruding portion 21 and below the housing 4.
  • the flange portion 22 has a size that cannot pass through the hole of the housing 4.
  • the key top 2 can be made of a resin such as a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin, a metal such as aluminum or stainless steel, glass, or ceramics.
  • the contact rubber 3 is a member that is disposed above the PCB 5 and can be elastically driven toward the surface of the PCB 5.
  • the contact rubber 3 is made of an elastic material such as urethane resin, thermoplastic elastomer, silicone rubber, or natural rubber so that it can move in the vertical direction according to the presence or absence of pressure from the key top 2 or the size. .
  • silicone rubber or urethane thermoplastic elastomer is preferable.
  • the contact rubber 3 may be composed of one kind of material, or may be composed of two or more kinds of materials.
  • any fixing method such as adhesion, thermal fusion, chemical welding, and fitting can be employed.
  • the contact rubber 3 includes, in order from the PCB 5 toward the key top 2, a fixed portion 31 fixed to the PCB 5, a dome 32 connected to the upper portion of the fixed portion 31, and a key top placement portion 33 connected to the upper portion of the dome 32.
  • the fixed part 31 has a substantially flat plate shape, and a central part thereof is hollow.
  • the dome 32 is a thin-walled member having a shape that decreases in diameter from the inside of the fixed portion 31 toward the key top placement portion 33 located on the inside upper side.
  • the dome 32 is designed to be able to bend toward the cavity of the fixed portion 31 under pressure from the key top 2.
  • the key top placement portion 33 is a portion that has a substantially annular shape as viewed from above and that fixes the key top 2 on the upper surface thereof.
  • the shape of the key top mounting portion 33 may not be a complete ring, but may be an arc shape lacking a part of a circle. Furthermore, it may be a square shape instead of a ring.
  • a movable portion 34 is formed that protrudes toward the PCB 5 and can move downward upon receiving a pressure from the key top 2.
  • the shape of the movable portion 34 may also be an annular shape, an arc shape lacking a part of a circle, or a square shape when viewed from the plane.
  • a contact 41 made of a conductive material is fixed to the lower end of the movable portion 34.
  • the contact 41 can be formed by a plate or a thin film made of, for example, metal or carbon.
  • a thin support member 36 extending downward from the key top placement portion 33 and a disk-like floating portion 37 connected to the lower end of the support member 36 are formed further inside the movable portion 34. .
  • the support member 36 and the floating portion 37 are formed in a state of being suspended from the keytop placement portion 33.
  • a space 35 is formed that is surrounded by the keytop placement portion 33 so as to surround the entire outer periphery or a part of the outer periphery.
  • the space 35 has a shape that opens on the key top 2 side, but may be a closed space in which the key top 2 side is closed.
  • a conductive elastic body 40 that protrudes toward the first contact electrode 50 and has a shape that reduces the horizontal cross section toward the tip is fixed.
  • the conductive elastic body 40 is substantially hemispherical, and is fixed with its spherical bottom facing downward.
  • One end of the conductive elastic body 40 is not limited to a substantially hemispherical shape, and may be a substantially cone or pyramid shape, or a trapezoidal shape in which only the tip of the substantially cone or pyramid is flattened.
  • the conductive elastic body 40 is made of a material rich in elasticity so that it can be deformed after receiving pressure from the key top 2 side and contacting the PCB 5.
  • a conductive material is dispersed in the conductive elastic body 40 in order to impart conductivity.
  • the conductive material include carbon, metal, and the like, but carbon having a small particle diameter (nano-level particles) can be easily produced, and carbon that can be easily handled is more preferable.
  • a base material (matrix) of the electroconductive elastic body 40 silicone rubber, urethane resin, thermoplastic elastomer, and natural rubber can be used, and among these, silicone rubber is preferable.
  • the mixing amount of the conductive material is preferably 15 to 40% by weight based on the total weight of the insulating matrix and the conductive material from the viewpoint of enhancing the conductivity and maintaining the elasticity of the silicone rubber. Is more preferably 15 to 35% by weight.
  • the inner diameter of the fixing portion 31 is L (mm)
  • the height from the upper surface of the PCB 5 when the key top 2 is not pressed to the upper surface of the key top mounting portion 33 is H1 (mm)
  • the distance to the upper end of the dome 32 is H2 (mm)
  • the distance from the lower surface of the contact 41 to the second contact electrode 51 of the PCB 5 in the same state is D (mm)
  • the lower surface of the conductive elastic body 40 in the same state to the PCB 5 If the distance to the first contact electrode 50 is d (mm), the inner member from the lower end of the dome 32 is in the range of L (mm), and H1 (mm)> H2 (mm)> D (Mm)> d (mm).
  • d (mm) may be zero when the key top 2 is not pressed, but in this embodiment, d (mm) is an example.
  • the conductive elastic body 40 is not in contact with the first contact electrode 50 on the PCB 5 in a state where the key top 2 is not pressed.
  • the support member 36 is a deformable member that supports the conductive elastic body 40, and moves the conductive elastic body 40 away from the PCB 5 after the conductive elastic body 40 contacts the first contact electrode 50.
  • This is a member having a function of relaxing the load on the conductive elastic body 40.
  • the thickness (W) of the support member 36 is 0.05 to 0.25 mm. It is preferably 0.12 to 0.18 mm. Note that the object of the present invention can be achieved even if the support member 36 is a non-curved dome similar to the dome 32 and the dome 32 is curved so as to protrude upward.
  • the PCB 5 is a plate-like substrate having conductive wiring, contact electrodes and the like on its surface.
  • a material for the PCB 5 for example, a highly insulating resin such as glass or polyimide resin, a ceramic such as AlN, or a composite material such as glass epoxy can be preferably used, but is not limited thereto.
  • a highly conductive substrate such as a metal can be used for the PCB 5, but in that case, it is necessary to perform a surface treatment to ensure insulation at least around the wiring and contact electrodes.
  • the first contact electrode 50 is composed of two first electrodes (in this embodiment, comb-shaped comb-shaped electrodes) 50a and 50b, and one comb tooth is arranged in a gap between the other comb teeth.
  • the first electrodes 50a and 50b are arranged in a non-contact state.
  • the first contact electrode 50 has a function of reducing the electrical resistance between the first electrodes 50 a and 50 b depending on the contact area with the conductive elastic body 40.
  • the second contact electrode 51 is composed of two second electrodes (concentric electrodes in this embodiment) 51a and 51b, respectively, and one is placed in the other and arranged in a non-contact state. It is configured as follows. However, as for the first contact electrode 50 and the second contact electrode 51, the first electrodes 50a and 50b and the second electrodes 51a and 51b constituting the first contact electrode 50 and the second contact electrodes 51a and 51b are formed in different shapes or different arrangements, or three or more You may make it comprise from this electrode.
  • the position where the first contact electrode 50 is disposed is preferably a position where the bottom of the conductive elastic body 40 is in contact with the center thereof.
  • the second contact electrode 51 is disposed at a position where the contact 41 connects the gap between the second electrodes 51a and 51b.
  • the material of the first contact electrode 50 and the second contact electrode 51 is not limited to a specific material as long as it is a highly conductive material. However, copper, tungsten, Gold, aluminum and the like are particularly preferable.
  • the first contact electrode 50 and the second contact electrode 51 can be formed by attaching a foil, forming a thin film such as CVD or PVD, or any other known method.
  • FIG. 3 is a cross-sectional view illustrating a state when the key top 2 of the pressure-sensitive input device 1 is pressed.
  • FIG. 3A illustrates a state when the conductive elastic body 40 contacts the first contact electrode 50.
  • (3B) respectively show the state when the contact 41 contacts the second contact electrode 51.
  • the conductive elastic body 40 When the conductive elastic body 40 is in contact with the first contact electrode 50, the key top 2 and the contact rubber 3 are moved downward from the state where the key top 2 is not pressed (the state indicated by the one-dot chain line of 3A). It is sinking and the dome 32 is partially buckled inside. When the key top 2 is further pressed from this state, the conductive elastic body 40 is crushed and the contact area with the first contact electrode 50 is increased. Thereby, the resistance between the first electrodes 50a and 50b becomes smaller. When the conductive elastic body 40 is deformed excessively, the distance between the conductive particles (preferably, carbon particles here) is locally increased with the deformation, and the electric resistance of the conductive elastic body 40 is increased. . For this reason, before the excessive pressure is applied, the thin support member 36 is deformed. Thereby, a part (F) of the force applied to the conductive elastic body 40 can be released upward.
  • the conductive elastic body 40 When the conductive elastic body 40 is in contact with the first contact electrode 50, the key top
  • the state (3A) (the state indicated by the two-dot chain line in 3B)
  • the contact 41 that sinks further downward and is disposed on the outer peripheral side of the conductive elastic body 40 contacts the second contact electrode 51.
  • the second-stage switch is turned on from off. From this state, the force pressed from the key top 2 can be received by the contact point 41, so that the support member 36 is hardly or not deformed thereafter.
  • FIG. 4 is a graph showing a simulation of a load curve from the start of pressing on the key top 2 until the second-stage switch is turned on.
  • (4A) is a load curve of only the conductive elastic body 40.
  • (4B) shows load curves obtained by combining both the conductive elastic body 40 and the contact point 41, respectively.
  • the load on the conductive elastic body 40 becomes gentle after the pushing amount of 0.5 mm and is suppressed to about 150 g even when the pushing amount exceeds 1.25 mm. This is because the support member 36 is deformed and the load applied to the conductive elastic body 40 is relaxed.
  • the combined load of both the conductive elastic body 40 and the contact point 41 increases from the start of the pressing on the key top 2 (point P0).
  • the conductive elastic body 40 increases after contact with the contact electrode 50 at a position (amount: 0.25 mm), the dome 32 is greatly buckled and reduced at a displacement of 0.45 mm (point P1). Thereafter, the contact 41 contacts the second contact electrode 51 at a displacement of 1.10 mm (point P2), and the load increases rapidly.
  • FIG. 5 is an electric circuit diagram exemplarily showing a part of the two-stage switch detection circuit on the PCB 5, and FIG. 5A shows that the first-stage switch detection circuit and the second-stage switch detection circuit are configured separately.
  • the circuit (5B) shows a circuit configured by combining the first-stage switch detection circuit and the second-stage switch detection circuit.
  • the resistance between the first electrodes 50a and 50b gradually decreases as the contact area between the conductive elastic body 40 and the first contact electrode 50 increases.
  • This is a so-called analog circuit 60.
  • the switch detection circuit in the second stage is a so-called digital circuit 70 in which the resistance between the second electrodes 51 a and 51 b is rapidly reduced by the contact between the contact 41 and the second contact electrode 51.
  • the analog circuit 60 includes a portion in which a variable resistor 61 formed by a contact portion of the conductive elastic body 40 to the first electrodes 50a and 50b and a reference resistor 62 are connected in series.
  • the value of the variable resistor 61 can be easily obtained from the measurement of the output voltage (VOut).
  • VOut the output voltage
  • the digital circuit 70 includes a portion in which a resistor 71 and an on / off switch 72 configured between the contact 41 and the second contact electrode 51 are connected in series. Only when the contact 41 short-circuits the second contact electrode 51, the input of the switch can be detected.
  • the composite circuit 80 is a circuit combining a first-stage switch detection circuit and a second-stage switch detection circuit.
  • the composite circuit 80 is an on / off type constituted by a variable resistor 81 formed by a contact portion of the conductive elastic body 40 to the first electrodes 50a and 50b, and the contact 41 and the second contact electrode 51.
  • the switch 82 is arranged in parallel, and the parallel circuit includes a portion in which a reference resistor 83 is connected in series.
  • the composite circuit 80 is advantageous in that it can detect a two-stage switch with a simple configuration as compared with the separate circuit shown in (5A). By measuring a single output voltage (VOut), the input of each switch can be determined.
  • the detection of the first-stage switch can be accurately obtained for the same reason as described above. Further, when the switch 82 is turned on, the output voltage (VOut) rapidly decreases, so that the input of the second-stage switch can be detected.
  • FIG. 6 is a diagram illustrating an example of the multiplexing circuit 90 including a plurality of composite circuits.
  • the multiplex circuit 90 includes a switch switching unit 93 before supplying a voltage to the parallel circuits 91a to 91e, and includes a reference resistor 92 as a common resistor for the parallel circuits 91a to 91e.
  • the multiplexing circuit 90 detects one output voltage (VOut) at the intersection of the reference resistor 92 and the parallel circuits 91a to 91e. The detection of the output voltage is synchronized with the switch switching unit 93, and it is possible to recognize which parallel circuit 91a to 91e is supplied with the voltage.
  • VOut output voltage
  • the detection of the output voltage is synchronized with the switch switching unit 93, and it is possible to recognize which parallel circuit 91a to 91e is supplied with the voltage.
  • FIG. 7 is a flowchart (7A) showing a flow of processing for detecting the input of the first-stage switch and a hardware configuration (7B) for performing the processing.
  • a microcomputer 95 and a memory (Random Access Memory: RAM, Read Only Memory: ROM, etc.) 96 electrically connected to the analog circuit 60 and the digital circuit 70 described in FIG. 5 are arranged on the PCB 5. .
  • the composite circuit 80 and the multiplexing circuit 90 described with reference to FIGS. 5 and 6 may be connected to the microcomputer 95 and the memory 96, respectively.
  • the microcomputer 95 has a function of performing various arithmetic processes.
  • the memory 96 stores various computer programs, and also stores computer programs for executing the processes shown in FIG. 7 (7A).
  • the microcomputer 95 is a detection device that detects a pressing in the direction from the contact rubber 3 to the PCB 5.
  • the microcomputer 95 reads the computer program stored in the memory 96 and switches the switch based on the electrical signal from the analog circuit 60. Can be detected.
  • the microcomputer 95 determines whether or not the change in the electrical resistance of the analog circuit 60 exceeds a predetermined threshold, detects a press when determining that the change exceeds the threshold, and determines that the change does not exceed the threshold. Does not detect pressing. Specifically, the following processing is performed.
  • the microcomputer 95 monitors the output voltage from the analog circuit 60 and determines whether or not a change has occurred in the output voltage (step ST1). When there is a change in the output voltage, the microcomputer 95 calculates the ratio of the output voltage before and after touching the key top 2 or the ratio of the variable resistance value calculated from the ratio (step ST2). Next, the microcomputer 95 determines whether or not the above ratio exceeds a threshold value stored in advance in the memory 96 (step ST3). If the ratio exceeds the threshold value as a result of the determination in step ST3, the microcomputer 95 determines that the first-stage switch has been pressed, and outputs a pressing signal (step ST4).
  • the microcomputer 95 determines that the first-stage switch has not been pressed, and proceeds to step ST1 without proceeding to step ST4.
  • the microcomputer 95 may be referred to as a central processing unit (CPU).
  • the ratio of the output voltages in step ST2 or the ratio of the variable resistance values calculated therefrom may be the difference of the output voltages or the difference of the variable resistance values calculated therefrom.
  • the contact is made with the pressure-sensitive input device 1 incorporated in the housing 4.
  • the rubber 3 can be in a slightly pressed state. In this case, the conductive elastic body 40 is often in contact with the first contact electrode 50.
  • the switch input is detected based on the output voltage or the absolute value of the variable resistance
  • the minimum resistance value in a state where the conductive elastic body 40 and the first contact electrode 50 are in contact with each other. Must be the threshold. Otherwise, it may be determined that the switch is input even though the key top 2 is not pressed.
  • the key top 2 can be used regardless of the resistance value when the pressure-sensitive input device 1 is incorporated in the housing 4. Since the resistance value when pressed is always lower, malfunctions can be reduced.
  • FIG. 8 shows the pressure-sensitive input device 1 shown in FIG. 1, in which the conductive elastic body 40 is incorporated in the housing 4 in a state where it is in contact with the first contact electrode 50, as shown in FIG. Sectional view when cut by line (8A) and when the contact rubber 3 is already pushed in at 0.30 mm at the time of assembly until the second switch is turned on
  • the graph (8B) showing the simulation of the load curve of the conductive elastic body 40
  • the graph (8C) showing the simulation of the total load curve of the conductive elastic body 40 and the contact 41 in the same state, and the contact rubber 3 already in the assembly. Shows a simulation of the load curve of the conductive elastic body 40 from the start of pressing until the second switch is turned on.
  • a graph (8E) showing simulation of a sum of the load curve of the conductive elastic body 40 and the contact 41 in the same state.
  • the conductive elastic body 40 is already on the PCB 5 due to the dimensional tolerance or assembly state of the constituent members such as the key top 2.
  • the contact electrode 50 is in contact.
  • the conductive elastic body 40 is already crushed.
  • the support member 36 is deformed by pressing the key top 2 and an excessive load is not applied to the conductive elastic body 40, it is effective that the electric resistance between the first electrodes 50a and 50b is saturated. Therefore, it is possible to accurately detect the input of the switch.
  • the contact 41 contacts the second contact electrode 51 at a displacement of 1.10 mm (point P2), and the load increases rapidly.
  • the load on the conductive elastic body 40 is as follows. Even if the push-in amount exceeds 1.25 mm, the pressure is reduced to about 150 g.
  • a second embodiment of the pressure-sensitive input device is a two-stage switch similar to the first embodiment, except that the first input to the outside is the second switch inside. It is a form provided with the switch inputted into.
  • 9 is a cross-sectional view (9A) of the pressure-sensitive input device 1 taken along the line AA in FIG. 1, and the first contact electrode 50 and the second contact on the printed circuit board 5. It is a top view (9B) of the electrode 52 for an object.
  • the pressure-sensitive input device 1 As shown in FIG. 9 (9A), the pressure-sensitive input device 1 according to the second embodiment has a configuration in which the key top 2, the contact rubber 100, and the PCB 5 are stacked in order from the top to the inside of the housing 4. Prepare. Since the key top 2 has a form common to the first embodiment, a duplicate description is omitted here.
  • the contact rubber 100 is connected to the fixed part 101 fixed to the PCB 5, the dome 102 connected to the upper inner side of the fixed part 101, the movable part 103 connected to the upper inner side of the dome 102, and the upper part from the movable part 103.
  • a key top placement unit 105 is provided. The key top placement portion 105 is disposed substantially at the center on the plane of the contact rubber 100.
  • the fixing part 101 has a substantially flat plate shape, and its central part is hollow.
  • the dome 102 is a thin-walled member having a shape that decreases in diameter toward the movable portion 103 from the inside of the cavity of the fixed portion 101 toward the movable portion 103, and can be bent inward when receiving a load from the key top 2.
  • the movable portion 103 has a substantially cylindrical shape and has a shape that decreases in diameter toward the lower side, and is movable downward when the key top 2 is pushed in.
  • the movable portion 103 has a substantially cylindrical shape, and is arranged in a suspended state while being connected to the dome 102 and the dome 104.
  • a substantially hemispherical conductive elastic body 111 is fixed at a position above each first contact electrode 50 at the lower end of the movable portion 103 so that the spherical bottom portion faces downward.
  • the constituent material of the conductive elastic body 111 and the conductive material kneaded therewith are the same as those of the conductive elastic body 40 described in the first embodiment, and therefore redundant description is omitted here.
  • the dome 104 is a thin-walled member having a shape that decreases in diameter from the inside of the movable portion 103 toward the keytop placement portion 105 toward the inside of the keytop, and presses the keytop 2 to form a conductive elastic body. It is designed such that 111 can be bent inward after contacting the first contact electrode 50 on the PCB 5. The dome 104 needs to be designed to bend without resisting the pressing on the key top 2 after the conductive elastic body 111 contacts the first contact electrode 50. On the other hand, the dome 102 needs to be designed to facilitate the lowering of the movable portion 103 after the key top 2 starts to be pressed. Accordingly, the dome 102 is designed to bend more easily than the dome 104.
  • the dome 104 is preferably designed to be thicker than the dome 102 or configured to have a larger angle from the horizontal plane. Further, the domes 102 and 104 are deformed upward so that an excessive load is not applied to the conductive elastic body 111 after the conductive elastic body 111 contacts the first contact electrode 50 on the PCB 5. It is a member having a function of releasing That is, the domes 102 and 104 are deformable members that support the conductive elastic body 111, and after the conductive elastic body 111 contacts the first contact electrode 50, the conductive elastic body 111 is separated from the PCB 5. It corresponds to a support member that moves in the direction to relieve the load on the conductive elastic body 111. In order to sufficiently exhibit the function as the support member, after the conductive elastic body 111 comes into contact with the first contact electrode 50, the thickness or the material is easily deformed in response to the pressing from the key top 2. It is preferable to comprise.
  • the key top mounting part 105 is substantially cylindrical and has a small diameter slightly downward.
  • a contact 110 is fixed to the lower end of the key top placement portion 105.
  • the contact 110 can be formed of, for example, a metal or carbon plate or a thin film.
  • the distance from the lower surface of the contact 110 to the second contact electrode 52 of the PCB 5 when the key top 2 is not pressed is D (mm), and the first contact electrode of the PCB 5 from the lower surface of the conductive elastic body 110 in the same state.
  • the distance up to 50 is d (mm)
  • the relationship is D (mm)> d (mm).
  • d (mm) may not exist in a state where the key top 2 is not pressed, but exists in this embodiment. That is, the conductive elastic body 110 is not in contact with the first contact electrode 50 on the PCB 5 when the key top 2 is not pressed.
  • the PCB 5 is a plate-like substrate having conductive wiring, contact electrodes and the like on its surface. Since the material of the PCB 5 is the same as that of the first embodiment, a duplicate description is omitted here.
  • One is the first contact electrode 50 disposed below the conductive elastic body 111 in the contact rubber 100, and the other is the second contact electrode 52 disposed below the contact 110.
  • the first contact electrode 50 includes comb-shaped first electrodes 50a and 50b similar to those in the first embodiment.
  • the second contact electrode 52 includes a circular second electrode 52a and a point-shaped second electrode 52b disposed therein.
  • the second electrodes 52a and 52b are disposed on the PCB 5 in a non-contact state.
  • the first contact electrode 50 and the second contact electrode 52 may have shapes and arrangements other than those described above.
  • the second contact electrode 52 may be composed of two half-moon shaped electrodes arranged in a non-contact state.
  • the position where the first contact electrode 50 is disposed is preferably a position where the bottom of the conductive elastic body 111 is in contact with the center thereof.
  • the second contact electrode 52 is disposed at a position where the contact 110 connects the gap between the second electrodes 52a and 52b.
  • the material for the first contact electrode 50 and the second contact electrode 52 is not limited to a specific material as long as it is a highly conductive material.
  • the first contact electrode 50 and the second contact electrode 52 can be formed by attaching a foil, forming a thin film such as CVD or PVD, or any other known method.
  • FIG. 10 is a cross-sectional view illustrating a state when the key top 2 of the pressure-sensitive input device 1 according to the second embodiment is pressed, and FIG. 10A illustrates the conductive elastic body 111 as the first contact electrode. (10B) shows the state when the contact 110 is in contact with the second contact electrode 52 by further proceeding.
  • the conductive elastic body 111 When the conductive elastic body 111 is in contact with the first contact electrode 50, the key top 2 and the contact rubber 100 are entirely downward from a state where the key top 2 is not pressed (a state indicated by a one-dot chain line in 10A). It is sinking and the dome 102 is partially buckled inside. When the key top 2 is further pressed from this state, the conductive elastic body 111 is crushed and the contact area with the first contact electrode 50 is increased. Thereby, the resistance between the first electrodes 50a and 50b becomes smaller. Thereafter, the dome 102 and the dome 104 are deformed so that an excessive load is not applied to the conductive elastic body 111, and thereby a part (F) of the force applied to the conductive elastic body 111 can be released upward. .
  • the key top 2 When the key top 2 is continuously pressed after the conductive elastic body 111 contacts the first contact electrode 50, as shown in (10B), the key top 2 and the contact rubber 100 are in the state (10B) (10B). It sinks further downward from the state indicated by the two-dot chain line. And the contact 110 arrange
  • the third embodiment of the pressure-sensitive input device is a one-stage switch, unlike the first and second embodiments.
  • 11 is a cross-sectional view (11A) of the pressure-sensitive input device 1 taken along the line AA in FIG. 1 and a plan view of the first contact electrode 50 on the printed circuit board 5 (FIG. 11). 11B).
  • the pressure-sensitive input device 1 according to this embodiment excludes the structure related to the second-stage switch from the pressure-sensitive input device 1 according to the first embodiment. It is what. Specifically, the pressure-sensitive input device 1 according to this embodiment includes a movable part 34, a contact 41 just below it, and a second on the PCB 5 provided in the pressure-sensitive input device 1 according to the first embodiment. The two-contact electrode 51 is not provided.
  • the contact rubber 200 includes a fixing part 201 fixed to the PCB 5, a dome 202 connected to the upper inner side of the fixing part 201, a key top mounting part 203 connected to the upper inner side of the dome 202, and a key top mounting part 203.
  • a thin-walled support member 206 extending downward from the inside of the disk and a disk-shaped floating portion 207 connected to the lower end of the support member 206.
  • a space 205 is formed above the support member 206 and the floating portion 207 so as to be surrounded by the key top placement portion 203 around the entire outer periphery or a part of the outer periphery.
  • a substantially hemispherical conductive elastic body 40 is fixed with its spherical bottom facing downward.
  • the conductive elastic body 40 is disposed above the first contact electrode 50.
  • the fixed portion 201, the dome 202, the key top placement portion 203, the support member 206, the floating portion 207, and the conductive elastic body 40 are the fixed portion 31, the dome 32, and the key top placement portion described in the first embodiment.
  • the PCB 5 is provided with a first contact electrode 50 as shown in FIG. 11 (11B). Since this first contact electrode 50 is also common to the first contact electrode 50 described in the first embodiment, a duplicate description thereof is omitted.
  • FIG. 12 is a view showing a state when the key top 2 of the pressure-sensitive input device 1 is pressed, and is a cross-sectional view showing a state when the conductive elastic body 40 contacts the first contact electrode 50. .
  • the key top 2 and the contact rubber 200 are generally lowered from the state where the key top 2 is not pressed (the state indicated by the one-dot chain line in FIG. 12).
  • the dome 202 is partially buckled inside.
  • the conductive elastic body 40 is crushed and the contact area with the first contact electrode 50 is increased. Thereby, the resistance between the first electrodes 50a and 50b becomes smaller.
  • the conductive elastic body 40 is deformed excessively, the distance between the conductive particles (preferably, carbon particles here) is locally increased with the deformation, and the electric resistance of the conductive elastic body 40 is increased. . Therefore, the thin support member 206 is deformed before an excessive load is applied to the conductive elastic body 40. Thereby, a part (F) of the force applied to the conductive elastic body 40 can be released upward.
  • the shape of the conductive elastic body 40 is preferably investigated. Specifically, the difference in displacement of the electric resistance can be sufficiently detected within a range where the load does not exceed 10 N (preferably up to 6 N), and the electric resistance rapidly decreases as the load increases. The shape of the conductive elastic body 40 that satisfies the condition of “not present” was examined.
  • L 13.5 mm
  • H1 3.0 mm
  • H2 2.5 mm
  • D 1.1 mm
  • d 0.25 mm.
  • the initial pressing amount when the key top 2 was not pressed was 0 mm.
  • the conductive elastic body 40 was produced by the following method. Conductivity with a specific volume resistivity of about 5 ohms by blending 60 parts by weight of silicone rubber compound (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KE 951-U) with 40 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) A rubber master batch (manufactured by Shin-Etsu Polymer Co., Ltd., product name: 87C40P-1) was prepared.
  • FIG. 13 is a diagram showing a plurality of shapes of the conductive elastic body 40.
  • FIG. 14 is a graph showing changes in electrical resistance when the load applied to the plurality of types of conductive elastic bodies 40 shown in FIG. 13 is changed.
  • the horizontal axis of the graph is the load, and the vertical axis is the electrical resistance.
  • the electrode with which the conductive elastic body 40 was brought into contact was the first contact electrode 50.
  • the load and electric resistance were measured by a method of displacing the conductive elastic body 40 at a speed of 1.0 mm / sec using a load measuring machine.
  • conductive elastic bodies 40 having the same overall height and one end having a spherical shape, a substantially planar shape, a conical shape, and a trapezoidal shape were prepared.
  • “A1” is a conductive elastic body having an overall height of 0.50 mm, a diameter of 2.50 mm, a cylindrical portion height of 0.15 mm, and a spherical portion height of 0.35 mm.
  • A2 is a conductive elastic body having a total height of 0.50 mm, a diameter of 3.50 mm, a cylindrical portion height of 0.15 mm, and a spherical portion height of 0.35 mm.
  • A3 is a conductive elastic body having an overall height of 0.30 mm, a diameter of 2.50 mm, a cylindrical portion height of 0.15 mm, and a spherical portion height of 0.15 mm.
  • B1 is a conductive elastic body having an overall height of 0.50 mm, a diameter of 2.50 mm, a cylindrical portion height of 0.40 mm, and a spherical portion height of 0.10 mm.
  • B2 is a conductive elastic body having an overall height of 0.50 mm, a diameter of 3.50 mm, a cylindrical portion height of 0.40 mm, and a spherical portion height of 0.10 mm.
  • C1 is a conductive elastic body having a total height of 0.50 mm, a diameter of 2.50 mm, a height of the cylindrical portion of 0.15 mm, and a height of the conical portion of 0.35 mm.
  • C2 is a conductive elastic body having a total height of 0.50 mm, a diameter of 3.50 mm, a cylindrical portion height of 0.15 mm, and a conical portion height of 0.35 mm.
  • D1 is a conductive elastic body having a total height of 0.50 mm, a diameter of 2.50 mm, a height of the cylindrical portion of 0.10 mm, and a height of the conical portion of 0.40 mm.
  • D2 is a conductive elastic body having an overall height of 0.50 mm, a diameter of 3.50 mm, a height of the cylindrical portion of 0.10 mm, and a height of the conical portion of 0.40 mm.
  • the conductive elastic body 40 having a trapezoidal tip is only “E”.
  • E is a conductive elastic body having a total height of 0.50 mm, a diameter of 2.50 mm, a height of the cylindrical portion of 0.10 mm, a height of the conical portion of 0.40 mm, and a diameter of the flat portion of the tip of 0.50 mm.
  • the conductive elastic body 40 more preferable for realizing the variable resistance function has a tip portion having a spherical surface or a spire shape, and there is a position (displacement amount) where the resistance decrease greatly changes when the tip becomes a flat surface. It has been found that the parts tend to be relatively inferior to those of spherical or steeple shapes.
  • Example 2 Examination of outer diameter of conductive elastic body
  • the outer diameter was changed to three types of 5.0 mm, 3.0 mm, and 2.5 mm in the same form as the conductive elastic body “A1” having one spherical surface.
  • the conductive elastic body 40 was produced, and the change in electrical resistance when the load applied to the various conductive elastic bodies 40 was changed was examined.
  • the preferred outer shape of the conductive elastic body 40 As the preferred outer shape of the conductive elastic body 40, as in Experiment 1, it is possible to sufficiently detect the difference in displacement of the electric resistance within the range where the load does not exceed 10N (preferably up to 6N), and the load
  • the outer shape of the conductive elastic body 40 that satisfies the condition that there is no sudden decrease in electrical resistance with respect to the increase was adopted.
  • the method for changing the load is the same as in Experiment 1.
  • FIG. 15 is a graph showing changes in electrical resistance when the load applied to various conductive elastic bodies 40 having three types of outer diameters of 5.0 mm, 3.0 mm, and 2.5 mm is changed. is there.
  • the horizontal axis of the graph is the load, and the vertical axis is the electrical resistance.
  • the conductive elastic body 40 having an outer diameter of 5.0 mm and an outer diameter of 3.0 mm has a larger electric resistance than the conductive elastic body 40 having an outer diameter of 2.5 mm even in a small load region (100 to 200 grams). It was found that the electric resistance difference with respect to the load increase can be clearly detected in this region.
  • the conductive elastic body 40 having an outer diameter of 3.0 mm has a larger electric resistance in a region where the load is smaller than the conductive elastic body 40 having an outer diameter of 5.0 mm, and confirms a relatively good change in the electric resistance. I was able to.
  • Example 3 Examination of thickness of support member
  • a plurality of types of contact rubbers 3 with different thicknesses (W) of the support members 36 are prepared by molding, and conductive elastic bodies 40 having a spherical shape at one end and an outer diameter of 3 mm are provided on the floating portions 37 of the various contact rubbers 3. Attached.
  • the contact rubber 3 is pressed from above at a speed of 1 mm / sec and is driven from 0 to 1.5 mm, the load applied to the conductive elastic body 40 is changed, and the driving is performed from 1.5 to 2.0 mm.
  • the change in the load applied to the conductive elastic body 40 was examined.
  • the results are shown in Table 1.
  • the evaluation results in the table have three levels.
  • the level that can be used but the electrical resistance may become unstable with respect to the load is “1”.
  • the level that was stable or slightly difficult to transmit the load was set to “2”, and the level that could be used satisfactorily without any problem was set to “3”. And the level which cannot be used was set as no evaluation.
  • the best thickness (W) for use of the support member 36 was 0.15 mm.
  • the change in the electric resistance with respect to the load was slow, and even when it was movable 2 mm, the displacement of the electric resistance could be detected sufficiently.
  • the favorable thickness (W) was 0.10 mm and 0.20 mm.
  • the thickness (W) was 0.10 mm, the electric resistance was slightly unstable at the initial stage of movement, but the change in electric resistance with respect to the load was stably reduced in the subsequent movable range.
  • the thickness (W) is 0.20 mm, the difference in displacement of the electric resistance can be sufficiently detected, but there is a load region in which the electric resistance slightly decreases.
  • the thickness (W) at level 1 is 0.05 mm and 0.25 mm, the load is not easily transmitted to the contacts to some extent, or a sudden change in electrical resistance is observed. Although it was a little inferior to the thing of 2, it turned out that it is the level which can be used.
  • the present invention can be used for switches of various devices including in-vehicle devices.

Landscapes

  • Push-Button Switches (AREA)

Abstract

Provided is a switch structure which can normally detect a pressure without depending on the dimensional accuracy of a switch and the assembly accuracy of a housing. A pressure-sensitive input device is comprised of a printed circuit board having an electrode for a first contact point, a contact rubber, and a detection device for detecting a pressure. In the pressure-sensitive input device, the contact rubber is comprised of a conductive elastic body, and a support member for supporting the conductive elastic body, which can change shape and which moves the conductive elastic body in a direction away from the printed circuit board after the conductive elastic body is brought into contact with the electrode for the first contact point, to alleviate the load applied to the conductive elastic body. The electrode for the first contact point has a function to reduce the electric resistance between the electrodes depending on the area which is in contact with the conductive elastic body. The detection device decides whether or not the variation of the electric resistance exceeds a predetermined threshold value. The detection device detects a pressure when deciding that the electric resistance exceeds the threshold value, and does not detect a pressure when the electric resistance does not exceed the threshold value.

Description

感圧式入力装置Pressure-sensitive input device
 本発明は、感圧式入力装置に関する。 The present invention relates to a pressure-sensitive input device.
 従来から、車載用機器、多機能固定電話機、携帯電話機等において、その操作パネル内のボタンを押した際にその押圧を感知して入力を認識可能な感圧式入力装置が搭載されている。このような感圧式入力装置は、例えば、操作パネル内に押圧可能なボタンを組み込み、そのボタンの下方に屈曲変形自在なゴム製のドームが備えられ、そのドームの天頂部裏側には、プリント回路基板上の接点用電極と対向するように接点部が固定された構造を有する(例えば、特許文献1を参照)。かかる構造の感圧式入力装置では、ボタンを押すと、ドームが下方に向かって変形し、ドーム裏側の接点部がプリント回路基板上の接点用電極と電気的に接続してスイッチがオンになる。 2. Description of the Related Art Conventionally, in-vehicle devices, multi-function fixed telephones, mobile phones, and the like are equipped with a pressure-sensitive input device capable of recognizing an input by pressing the button in the operation panel. Such a pressure-sensitive input device includes, for example, a button that can be pressed in the operation panel, and is provided with a rubber dome that can be bent and deformed below the button. A printed circuit is provided on the back of the top of the dome. The contact portion is fixed so as to face the contact electrode on the substrate (see, for example, Patent Document 1). In the pressure-sensitive input device having such a structure, when the button is pressed, the dome is deformed downward, the contact portion on the back side of the dome is electrically connected to the contact electrode on the printed circuit board, and the switch is turned on.
 また、上記接点部を半球状の導電ゴムから成る導電体とし、当該導電体の曲面底部がプリント回路基板上の接点用電極と対向するように、その導電体をドームの裏側に配置したものも知られている(例えば、特許文献2を参照)。導電ゴムを用いた接点部を用いると、特許文献1に開示される感圧式入力装置とは異なり、ボタンを押す力に応じて、その導電体と接触用電極との接触面積を大きくすることができる。すなわち、接触用電極間の電気抵抗の大きさを、ボタンを押す力に依存させることができる。このような可変抵抗の機能を利用すると、例えば、作用した外力の大きさを検出することができる。 Also, the contact portion is a conductor made of hemispherical conductive rubber, and the conductor is disposed on the back side of the dome so that the curved bottom of the conductor faces the contact electrode on the printed circuit board. It is known (see, for example, Patent Document 2). When a contact portion using conductive rubber is used, unlike the pressure-sensitive input device disclosed in Patent Document 1, the contact area between the conductor and the contact electrode can be increased according to the force of pressing the button. it can. That is, the magnitude of the electrical resistance between the contact electrodes can be made to depend on the force with which the button is pressed. If such a variable resistance function is used, for example, the magnitude of the applied external force can be detected.
実開平5-38735号公報Japanese Utility Model Publication No. 5-38735 特開2003-083819号公報Japanese Patent Laid-Open No. 2003-083819
 上記可変抵抗の機能を利用した感圧機構を実現する上では、導電ゴム製の接点部に加えられる圧力とプリント回路基板上の接点用電極間の電気抵抗との間に、圧力の増加に伴い電気抵抗が直線的に減少する関係にあるのが理想的である。しかし、実際には、導電ゴム製の接点部がつぶれて接点用電極への接触面積が大きくなると、接点用電極間の電気抵抗が小さくなる作用の他に、接点部の過度の変形に起因して導電ゴム自身の電気抵抗が大きくなる作用も生じ始める。その結果、導電ゴム製の接点部を接点用電極に向けて押し込んでいくと、ある押し込み量以後、電気抵抗は小さくならずに飽和若しくは若干大きくなり始める。これは、導電ゴム自身がある程度変形していくと、その変形に伴ってゴムに混練されているカーボン粒子同士の距離が局所的に拡がり、カーボン粒子のネットワークがくずれるためであると考えられる。このため、導電ゴムを接点部に使用する場合、高精度の感圧式入力装置を実現するためには、接点部がプリント回路基板上の接点用電極に接触してから電気抵抗がほぼ飽和するまでの限られた圧力範囲を利用するのが好ましい。 In realizing a pressure-sensitive mechanism using the function of the variable resistance, the pressure increases between the pressure applied to the contact portion made of conductive rubber and the electrical resistance between the contact electrodes on the printed circuit board. Ideally, the electrical resistance is linearly reduced. However, in reality, when the contact portion made of conductive rubber is crushed and the contact area with the contact electrode is increased, the electrical resistance between the contact electrodes is reduced and the contact portion is excessively deformed. Thus, the effect of increasing the electrical resistance of the conductive rubber itself begins to occur. As a result, when the contact portion made of conductive rubber is pushed toward the contact electrode, after a certain pushing amount, the electric resistance does not decrease but starts to be saturated or slightly increased. This is considered to be because when the conductive rubber itself is deformed to some extent, the distance between the carbon particles kneaded in the rubber is locally expanded along with the deformation, and the network of carbon particles is broken. For this reason, when conductive rubber is used for the contact portion, in order to realize a highly accurate pressure-sensitive input device, the electrical resistance is almost saturated after the contact portion contacts the contact electrode on the printed circuit board. Preferably, a limited pressure range is utilized.
 図16は、導電ゴムを接点部に用いた従来の感圧式入力装置の構造例を示す。(16A)は従来の感圧式入力装置およびその近傍の断面図を、(16B)はプリント回路基板上の接点用電極の平面図を、それぞれ示す。 FIG. 16 shows a structural example of a conventional pressure-sensitive input device using conductive rubber as a contact portion. (16A) is a sectional view of a conventional pressure-sensitive input device and its vicinity, and (16B) is a plan view of a contact electrode on a printed circuit board.
 図16に示す感圧式入力装置300は、プリント回路基板310の上に弾性部材から成るコンタクトラバー320を固定し、当該コンタクトラバー320上にキートップ330を固定した構造を備える。プリント回路基板310の表面には、例えば銅箔により、一対の櫛歯状の電極311,312から構成される接点用電極313が備えられている。コンタクトラバー320は、例えば、シリコーンゴムで構成され、プリント回路基板310に固定される固定部321と、その固定部321からキートップ330の方向に開口面積を狭くする形状を有する上下方向に屈曲自在のドーム322と、そのドーム322の上方にある天面部323とを備える。導電ゴムから成る半球状の接点部324は、その球面底部を接点用電極313と対向するように、天面部323の裏面であって接点用電極313の上方に固定されている。キートップ330は、その上方から押し込む際に操作者の指を接触させる押圧部331と、その下方に連接されると共に押圧部331より底面積の大きなフランジ部332を備え、コンタクトラバー320の天面部323上に固定されている。また、ハウジング340には、穴341が形成されており、キートップ330の押圧部331のみが当該穴341から外方向に露出している。 16 has a structure in which a contact rubber 320 made of an elastic member is fixed on a printed circuit board 310, and a key top 330 is fixed on the contact rubber 320. The pressure-sensitive input device 300 shown in FIG. On the surface of the printed circuit board 310, a contact electrode 313 including a pair of comb- like electrodes 311 and 312 is provided by, for example, copper foil. The contact rubber 320 is made of, for example, silicone rubber, and can be bent in the vertical direction having a fixed portion 321 fixed to the printed circuit board 310 and a shape that narrows the opening area from the fixed portion 321 toward the key top 330. Dome 322 and a top surface portion 323 above the dome 322. The hemispherical contact portion 324 made of conductive rubber is fixed on the back surface of the top surface portion 323 and above the contact electrode 313 so that the spherical bottom faces the contact electrode 313. The key top 330 includes a pressing portion 331 that contacts an operator's finger when pushed from above, and a flange portion 332 that is connected to the lower side of the key top 330 and has a larger bottom area than the pressing portion 331, and the top surface portion of the contact rubber 320. It is fixed on H.323. Further, the housing 340 is formed with a hole 341, and only the pressing portion 331 of the key top 330 is exposed outward from the hole 341.
 図16に示す感圧式入力装置300の場合、例えば、キートップ330の寸法精度のバラツキあるいはハウジング340とキートップ330との組み付け精度のバラツキにより、フランジ部332とハウジング340との間の隙間tが大きくなる場合がある。隙間tが大きくなると、感圧式入力装置300の内部に塵や埃が侵入しやすくなると共に、感圧式入力装置300を備える機器の振動に伴いハウジング340とフランジ部332との接触/非接触の繰り返しにより異音が生じやすい。特に振動の大きな環境下(例えば、自動車の車内用機器)にて感圧式入力装置300を用いる場合には、異音が激しくなり、機器(あるいはその機器を搭載している自動車等)の品質が低下してしまう。かかる不具合を避けるために、フランジ部332とハウジング340との隙間tを極めて小さくあるいはゼロにするように設計することもできる。 In the case of the pressure-sensitive input device 300 shown in FIG. 16, the gap t between the flange portion 332 and the housing 340 is caused by, for example, variation in dimensional accuracy of the key top 330 or variation in assembly accuracy between the housing 340 and the key top 330. May be larger. When the gap t is increased, dust and dirt easily enter the pressure-sensitive input device 300, and contact / non-contact between the housing 340 and the flange portion 332 is repeatedly caused by vibration of the device including the pressure-sensitive input device 300. The noise is likely to occur. In particular, when the pressure-sensitive input device 300 is used in a vibration-prone environment (for example, an in-car device), abnormal noise becomes intense, and the quality of the device (or the vehicle on which the device is mounted) is increased. It will decline. In order to avoid such a problem, the gap t between the flange portion 332 and the housing 340 can be designed to be extremely small or zero.
 しかし、隙間tをほぼゼロにする設計を行うと、図16(16A)の一点鎖線で示すように、キートップ330を押していない状態において、既にラバースイッチ320が下方に押され、接点部324が接点用電極313に押しつけられた状態になる可能性がある。先に述べたように、導電ゴムの利用できる圧力範囲は限られているので、キートップ330を押していないにもかかわらず接点部324に圧力が加わっている場合には、キートップ330の押圧を検知できる範囲が狭くなる。その結果、押圧前後の電気抵抗の変化を正しく検出できなくなるという問題が生じる。 However, if the design is made so that the gap t is almost zero, as indicated by the one-dot chain line in FIG. 16 (16A), the rubber switch 320 has already been pushed downward in a state where the key top 330 is not pushed, and the contact portion 324 is There is a possibility of being pressed against the contact electrode 313. As described above, since the pressure range in which the conductive rubber can be used is limited, when pressure is applied to the contact portion 324 even when the key top 330 is not pressed, the key top 330 is pressed. The detectable range is narrowed. As a result, there arises a problem that a change in electrical resistance before and after pressing cannot be detected correctly.
 本発明は、かかる問題を解消すべくなされたものであって、感圧式入力装置とハウジングとの隙間を低減すると共に正確な押圧検知を実現することを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to reduce the gap between the pressure-sensitive input device and the housing and realize accurate pressure detection.
 本発明者は、上記問題の解消に鋭意努力を行ってきた結果、キートップを押していないときに、導電ゴムから成る半球状の接点部が接点用電極に押しつけられた状態にあっても、その後の押圧による接点部にかかる荷重を緩和させて接点部に過剰な圧力が加わらないようにすることにより、押圧を検知する範囲を確保することができるという知見を得て、本発明に至った。 As a result of diligent efforts to solve the above problems, the present inventor, even when the hemispherical contact portion made of conductive rubber is pressed against the contact electrode when the key top is not pressed, By relieving the load applied to the contact portion due to the pressing of the pressure so that excessive pressure is not applied to the contact portion, the inventors have obtained the knowledge that a range for detecting the press can be secured, and the present invention has been achieved.
 具体的には、本発明の一実施形態は、互いに離間する複数の第一電極から成る第一接点用電極を少なくとも有するプリント回路基板と、そのプリント回路基板の上方に配置され、当該プリント回路基板の表面に向かって弾性的に駆動可能なコンタクトラバーと、そのコンタクトラバーからプリント回路基板の方向への押圧を検知する検知装置とを備える感圧式入力装置であって、コンタクトラバーは、第一接点用電極の上方において上記第一接点用電極に向かって突出して備えられ、その先端に向かって水平断面を小さくする形状を有する導電性弾性体と、導電性弾性体を支持する変形自在な部材であって、導電性弾性体が第一接点用電極に接触した後に、導電性弾性体をプリント回路基板から離れる方向に移動させて導電性弾性体への荷重を緩和させる支持部材とを備え、第一接点用電極は、導電性弾性体との接触面積に依存して第一電極間の電気抵抗を低下させる機能を持ち、検知装置は、電気抵抗の変化が所定の閾値を超えたかどうかを判断し、当該閾値を超えたと判断した際に押圧を検知し、当該閾値を超えていないと判断した際に押圧を検知しない感圧式入力装置である。 Specifically, in one embodiment of the present invention, a printed circuit board having at least a first contact electrode composed of a plurality of first electrodes spaced apart from each other, and the printed circuit board disposed above the printed circuit board. A pressure-sensitive input device comprising: a contact rubber that can be elastically driven toward the surface of the substrate; and a detection device that detects a pressure from the contact rubber toward the printed circuit board. A conductive elastic body that protrudes toward the first contact electrode above the electrode for use and has a shape that reduces the horizontal cross section toward the tip, and a deformable member that supports the conductive elastic body. Then, after the conductive elastic body contacts the first contact electrode, the conductive elastic body is moved away from the printed circuit board to load the conductive elastic body. The first contact electrode has a function of reducing the electrical resistance between the first electrodes depending on the contact area with the conductive elastic body, and the detection device changes the electrical resistance. Is a pressure-sensitive input device that detects whether or not a predetermined threshold is exceeded, detects a pressure when it is determined that the threshold is exceeded, and does not detect a pressure when it is determined that the threshold is not exceeded.
 また、本発明の別の実施形態では、前記導電性弾性体は、コンタクトラバーをプリント回路基板の方向へ向けて押し下げていない状態では、プリント回路基板との間に空間を有し、第一接点用電極と非接触状態にある。 In another embodiment of the present invention, the conductive elastic body has a space between the conductive rubber and the printed circuit board when the contact rubber is not pushed down toward the printed circuit board. It is in a non-contact state with the electrode.
 また、本発明のさらなる別の実施形態では、前記プリント回路基板は、第一接点用電極以外に、互いに離間する複数の第二電極から成る第二接点用電極をさらに備え、コンタクトラバーは、その第二接点用電極の上方に、導電性弾性体と第一接点用電極との距離より大きな距離を離して導電体を備え、検知装置は、導電性弾性体と第一接点用電極との接触後のさらなる押し下げにより、導電体と第二接点用電極とが接触した際に、次の押圧を検知する。 In still another embodiment of the present invention, the printed circuit board further includes a second contact electrode composed of a plurality of second electrodes spaced apart from each other in addition to the first contact electrode. The detector is provided above the second contact electrode with a distance greater than the distance between the conductive elastic body and the first contact electrode, and the detection device is in contact with the conductive elastic body and the first contact electrode. When the conductor and the second contact electrode come into contact with each other by further pressing later, the next pressing is detected.
 また、本発明のさらなる別の実施形態では、前記コンタクトラバーにおいて、導電性弾性体は、導電体よりも内側に設けられ、プリント回路基板において、第一接点用電極は、第二接点用電極よりも内側に設けられている。 In still another embodiment of the present invention, in the contact rubber, the conductive elastic body is provided inside the conductor, and in the printed circuit board, the first contact electrode is more than the second contact electrode. Is also provided inside.
 また、本発明のさらなる別の実施形態では、前記導電体と前記第二接点用電極との間でデジタル回路のオン/オフ式のスイッチを構成する場合において、プリント回路基板は、導電性弾性体と第一接点用電極との間で構成される可変抵抗を備えるアナログ回路と上記デジタル回路を電気的に組み合わせた複合回路を備え、検知装置は、その複合回路から得られる単一の出力電圧により、第一段および第二段の各押圧を検知する。 In still another embodiment of the present invention, in the case where an on / off switch of a digital circuit is configured between the conductor and the second contact electrode, the printed circuit board is a conductive elastic body. And an analog circuit including a variable resistor formed between the first contact electrode and the digital circuit, and the detection device is configured by a single output voltage obtained from the composite circuit. The first and second presses are detected.
 本発明によれば、感圧式入力装置とハウジングとの隙間を低減すると共に正確な押圧検知を実現することができる。 According to the present invention, it is possible to reduce the gap between the pressure-sensitive input device and the housing, and to realize accurate pressure detection.
図1は、本発明の第一の実施の形態に係る感圧式入力装置およびその周囲のハウジングの一例を示す平面図(1A)および当該感圧式入力装置の一部分解斜視図(1B)である。FIG. 1 is a plan view (1A) showing an example of a pressure-sensitive input device and a housing around it according to the first embodiment of the present invention, and a partially exploded perspective view (1B) of the pressure-sensitive input device. 図2は、図1に示す感圧式入力装置を図1(1A)のA-A線にて切断したときの断面図(2A)、およびプリント回路基板上の第一接点用電極と第二接点用電極の平面図(2B)である。2 is a cross-sectional view (2A) of the pressure-sensitive input device shown in FIG. 1 taken along the line AA in FIG. 1 (1A), and the first contact electrode and the second contact on the printed circuit board. It is a top view (2B) of the electrode for operation. 図3は、図2に示す感圧式入力装置のキートップを押圧したときの状態を示す断面図であって、(3A)は導電性弾性体が第一接点用電極に接触したときの状態を、(3B)はさらに進んで接点が第二接点用電極に接触したときの状態を、それぞれ示す。FIG. 3 is a cross-sectional view showing a state when the key top of the pressure-sensitive input device shown in FIG. 2 is pressed, and (3A) shows a state when the conductive elastic body contacts the first contact electrode. , (3B) respectively show the state when the contact further contacts the second contact electrode. 図4は、図2に示す感圧式入力装置のキートップへの押圧を開始してから二段目のスイッチがオンになるまでの荷重曲線のシミュレーションを示すグラフであり、(4A)は、導電性弾性体のみの荷重曲線を、(4B)は、導電性弾性体と接点の両方を合わせた荷重曲線を、それぞれ示す。FIG. 4 is a graph showing a simulation of the load curve from when the pressure-sensitive input device shown in FIG. 2 is pressed to the key top until the second stage switch is turned on. (4B) shows a load curve combining both the conductive elastic body and the contact point, respectively. 図5は、図2に示すPCB上のニ段スイッチ検出回路の部分を例示的に示す電気回路図であり、(5A)は一段目のスイッチ検出回路と二段目のスイッチ検出回路とが別々に構成される回路を、(5B)は一段目のスイッチ検出回路と二段目のスイッチ検出回路とを複合して構成される回路を、それぞれ示す。FIG. 5 is an electric circuit diagram exemplarily showing a portion of the two-stage switch detection circuit on the PCB shown in FIG. 2, and FIG. 5A shows that the first-stage switch detection circuit and the second-stage switch detection circuit are separately provided. (5B) shows a circuit configured by combining the first-stage switch detection circuit and the second-stage switch detection circuit. 図6は、図5に示す複合回路を複数備えた多重回路の例を示す図である。FIG. 6 is a diagram illustrating an example of a multiplex circuit including a plurality of composite circuits illustrated in FIG. 図7は、一段目のスイッチの入力を検出するための処理の流れを示すフローチャート(7A)およびその処理を行うハードウェアの構成(7B)をそれぞれ示す図である。FIG. 7 is a flowchart (7A) showing a flow of processing for detecting the input of the first-stage switch and a hardware configuration (7B) for performing the processing. 図8は、図1に示す感圧式入力装置であって、導電性弾性体が第一接点用電極に接している状態でハウジング内に組み込まれた状態を図1のA-A線にて切断したときの断面図(8A)と、組み込み時にすでにコンタクトラバーが0.30mm押し込まれた状態にある場合に、押圧を開始してから二段目のスイッチがオンになるまでの導電性弾性体の荷重曲線のシミュレーションを示すグラフ(8B)と、同状態における導電性弾性体と接点の合計の荷重曲線のシミュレーションを示すグラフ(8C)と、組み込み時にすでにコンタクトラバーが0.57mm押し込まれた状態にある場合に、押圧を開始してから二段目のスイッチがオンになるまでの導電性弾性体の荷重曲線のシミュレーションを示すグラフ(8D)と、同状態における導電性弾性体と接点の合計の荷重曲線のシミュレーションを示すグラフ(8E)である。FIG. 8 shows the pressure-sensitive input device shown in FIG. 1, in which the conductive elastic body is incorporated in the housing while being in contact with the first contact electrode, cut along line AA in FIG. Sectional view (8A) of the conductive elastic body from the start of pressing until the second-stage switch is turned on when the contact rubber is already pushed in by 0.30 mm at the time of assembly. A graph (8B) showing a simulation of the load curve, a graph (8C) showing a simulation of the total load curve of the conductive elastic body and the contact in the same state, and a state where the contact rubber is already pushed in by 0.57 mm at the time of assembly In some cases, the graph (8D) showing the simulation of the load curve of the conductive elastic body from the start of pressing until the second-stage switch is turned on, and the conductivity in the same state It is a graph showing a simulation of a sum of the load curve of the elastic body and the contact (8E). 図9は、第2の実施の形態に係る感圧式入力装置を、図1のA-A線と同様の線にて切断したときの断面図(9A)およびプリント回路基板上の第一接点用電極と第二接点用電極の平面図(9B)である。9 is a cross-sectional view (9A) of the pressure-sensitive input device according to the second embodiment taken along the line AA in FIG. 1 and the first contact on the printed circuit board. It is a top view (9B) of an electrode and the electrode for 2nd contacts. 図10は、第2の実施の形態に係る感圧式入力装置のキートップを押圧したときの状態を示す断面図であって、(10A)は導電性弾性体が第一接点用電極に接触したときの状態を、(10B)はさらに進んで接点が第二接点用電極に接触したときの状態を、それぞれ示す。FIG. 10 is a cross-sectional view showing a state when the key top of the pressure-sensitive input device according to the second embodiment is pressed, and (10A) shows that the conductive elastic body is in contact with the first contact electrode. (10B) shows the state when the contact is further advanced and the contact is in contact with the second contact electrode. 図11は、第3の実施の形態に係る感圧式入力装置を、図1のA-A線と同様の線にて切断したときの断面図(11A)およびプリント回路基板上の第一接点用電極の平面図(11B)である。11 is a cross-sectional view (11A) when the pressure-sensitive input device according to the third embodiment is cut along a line similar to the AA line in FIG. 1, and for the first contact on the printed circuit board. It is a top view (11B) of an electrode. 図12は、図13に示す感圧式入力装置のキートップを押圧したときの状態を示す図であって、導電性弾性体が第一接点用電極に接触したときの状態を示す断面図である。12 is a diagram showing a state when the key top of the pressure-sensitive input device shown in FIG. 13 is pressed, and is a cross-sectional view showing a state when the conductive elastic body contacts the first contact electrode. . 図13は、実施例において用意した導電性弾性体の複数種の形状を示す図である。FIG. 13 is a diagram showing a plurality of types of conductive elastic bodies prepared in the examples. 図14は、図13に示す複数種の導電性弾性体に印加する荷重を変えたときの電気抵抗の変化を示すグラフである。FIG. 14 is a graph showing changes in electrical resistance when the load applied to the plurality of types of conductive elastic bodies shown in FIG. 13 is changed. 図15は、実施例において用意した3種類の外径を有する各種の導電性弾性体に印加する荷重を変えたときの電気抵抗の変化を示すグラフである。FIG. 15 is a graph showing changes in electrical resistance when the load applied to various conductive elastic bodies having three types of outer diameters prepared in the example is changed. 図16は、導電ゴムを接点部に用いた従来の感圧式入力装置の構造例を示す図であり、(16A)は従来の感圧式入力装置およびその近傍の断面図を、(16B)はプリント回路基板上の接点用電極の平面図を、それぞれ示す。FIG. 16 is a view showing an example of the structure of a conventional pressure-sensitive input device using conductive rubber as a contact portion. (16A) is a sectional view of the conventional pressure-sensitive input device and its vicinity, and (16B) is a print. Plan views of contact electrodes on the circuit board are respectively shown.
 次に、本発明の感圧式入力装置の各実施の形態について、図面を参照しながら説明する。以下に説明する感圧式入力装置は、車載用機器に設けられる入力装置であるが、これは一例に過ぎず、感圧式入力装置は、車載用若しくは家庭用のオーディオ機器、自動車のパワーウィンドウ、カメラ、固定電話、各種機器のリモートコントローラなどに備える入力装置に広く適用できる。 Next, embodiments of the pressure-sensitive input device of the present invention will be described with reference to the drawings. The pressure-sensitive input device described below is an input device provided in an in-vehicle device, but this is only an example, and the pressure-sensitive input device is an in-vehicle or home audio device, a power window of an automobile, a camera, etc. It can be widely applied to input devices provided in fixed telephones, remote controllers of various devices, and the like.
1.第1の実施の形態
 感圧式入力装置の第1の実施の形態は、2段スイッチであって、内側に最初にオンとなるスイッチを、その外側に2番目にオンとなるスイッチを備える形態である。
1. First Embodiment A first embodiment of a pressure-sensitive input device is a two-stage switch including a switch that is turned on first on the inside and a switch that is turned on second on the outside. is there.
 図1は、感圧式入力装置1およびその周囲のハウジング4の一例を示す平面図(1A)および感圧式入力装置1の一部分解斜視図(1B)である。図2は、図1に示す感圧式入力装置1を図1(1A)のA-A線にて切断したときの断面図(2A)、およびプリント回路基板5上の第一接点用電極50と第二接点用電極51の平面図(2B)である。 FIG. 1 is a plan view (1A) showing an example of a pressure-sensitive input device 1 and a housing 4 around it, and a partially exploded perspective view (1B) of the pressure-sensitive input device 1. 2 is a cross-sectional view (2A) of the pressure-sensitive input device 1 shown in FIG. 1 taken along line AA of FIG. 1 (1A), and the first contact electrode 50 on the printed circuit board 5 and It is a top view (2B) of the electrode 51 for 2nd contacts.
 図1(1B)および図2(2A)に示すように、第1の実施の形態に係る感圧式入力装置1は、ハウジング4の上方から内部に向かって順に、キートップ2、コンタクトラバー3およびプリント回路基板(Printed Circuit Board: PCB、以後、「PCB」という)5とを重ねた構成を備える。ここで、キートップ2は、感圧式入力装置1に必須の構成ではなく、コンタクトラバー3の上部をハウジング4の外に露出させて、当該上部をキートップ2に代替させることもできる。 As shown in FIG. 1 (1B) and FIG. 2 (2A), the pressure-sensitive input device 1 according to the first embodiment includes a key top 2, a contact rubber 3 and A printed circuit board (Printed Circuit Board: PCB, hereinafter referred to as “PCB”) 5 is provided. Here, the key top 2 is not essential for the pressure-sensitive input device 1, and the upper portion of the contact rubber 3 can be exposed outside the housing 4, and the upper portion can be replaced with the key top 2.
(1)キートップ
 キートップ2は、ハウジング4に設けられた穴から上方に突出する突出部21と、当該突出部21の直下にあってハウジング4の下方にあるフランジ部22とを備える。フランジ部22は、ハウジング4の穴を通過できない大きさである。キートップ2は、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂等に代表される樹脂の他、アルミニウム、ステンレススチール等の金属、ガラスあるいはセラミックスなどで構成することができる。
(1) Key Top The key top 2 includes a protruding portion 21 that protrudes upward from a hole provided in the housing 4, and a flange portion 22 that is directly below the protruding portion 21 and below the housing 4. The flange portion 22 has a size that cannot pass through the hole of the housing 4. The key top 2 can be made of a resin such as a thermoplastic resin, a thermosetting resin, or an ultraviolet curable resin, a metal such as aluminum or stainless steel, glass, or ceramics.
(2)コンタクトラバー
 コンタクトラバー3は、PCB5の上方に配置され、PCB5の表面に向かって弾性的に駆動可能な部材である。コンタクトラバー3は、キートップ2からの加圧の有無若しくは大小に応じて上下方向可動となるように、弾性に富む材料、例えば、ウレタン樹脂、熱可塑性エラストマー、シリコーンゴム、天然ゴムで構成される。これらの材料の中でも、シリコーンゴムあるいはウレタン系の熱可塑性エラストマーが好ましい。また、コンタクトラバー3を一種類の材料で構成しても良く、あるいは2種以上の材料で構成しても良い。キートップ2とコンタクトラバー3の固定あるいはコンタクトラバー3とPCB5との固定には、接着、熱融着、化学溶着、はめ込み等の如何なる固定方法をも採用できる。
(2) Contact Rubber The contact rubber 3 is a member that is disposed above the PCB 5 and can be elastically driven toward the surface of the PCB 5. The contact rubber 3 is made of an elastic material such as urethane resin, thermoplastic elastomer, silicone rubber, or natural rubber so that it can move in the vertical direction according to the presence or absence of pressure from the key top 2 or the size. . Among these materials, silicone rubber or urethane thermoplastic elastomer is preferable. Further, the contact rubber 3 may be composed of one kind of material, or may be composed of two or more kinds of materials. For fixing the key top 2 and the contact rubber 3 or fixing the contact rubber 3 and the PCB 5, any fixing method such as adhesion, thermal fusion, chemical welding, and fitting can be employed.
 コンタクトラバー3は、PCB5からキートップ2に向かって順に、PCB5に固定される固定部31、その固定部31の上方に連接するドーム32、そのドーム32の上方に連接するキートップ載置部33を備える。固定部31は略平板形状を有し、その中央部分が空洞になっている。ドーム32は、固定部31の内側から内側上方のキートップ載置部33に向かってその径を小さくする形状を有する薄肉部材である。ドーム32は、キートップ2からの加圧を受けて、固定部の31の空洞に向かって屈曲可能に設計されている。キートップ載置部33は、平面からみて略円環形状を有すると共に、その上面にキートップ2を固定する部分である。ただし、キートップ載置部33の形状は、完全な円環ではなく、円の一部を欠いた弧状であっても良い。さらには、円環ではなく角型の形状であっても良い。ドーム32の内側であってキートップ載置部33の下方には、PCB5に向けて突出し、キートップ2からの押圧を受けて下方に動くことのできる可動部34が形成されている。可動部34の形状もまた、平面から見て円環形状若しくは円の一部を欠いた弧状、あるいは角形状であっても良い。可動部34の下端には、導電性材料から成る接点41が固定されている。接点41は、例えば、金属、カーボン等の板若しくは薄膜にて形成可能である。 The contact rubber 3 includes, in order from the PCB 5 toward the key top 2, a fixed portion 31 fixed to the PCB 5, a dome 32 connected to the upper portion of the fixed portion 31, and a key top placement portion 33 connected to the upper portion of the dome 32. Is provided. The fixed part 31 has a substantially flat plate shape, and a central part thereof is hollow. The dome 32 is a thin-walled member having a shape that decreases in diameter from the inside of the fixed portion 31 toward the key top placement portion 33 located on the inside upper side. The dome 32 is designed to be able to bend toward the cavity of the fixed portion 31 under pressure from the key top 2. The key top placement portion 33 is a portion that has a substantially annular shape as viewed from above and that fixes the key top 2 on the upper surface thereof. However, the shape of the key top mounting portion 33 may not be a complete ring, but may be an arc shape lacking a part of a circle. Furthermore, it may be a square shape instead of a ring. Inside the dome 32 and below the key top placement portion 33, a movable portion 34 is formed that protrudes toward the PCB 5 and can move downward upon receiving a pressure from the key top 2. The shape of the movable portion 34 may also be an annular shape, an arc shape lacking a part of a circle, or a square shape when viewed from the plane. A contact 41 made of a conductive material is fixed to the lower end of the movable portion 34. The contact 41 can be formed by a plate or a thin film made of, for example, metal or carbon.
 可動部34よりさらに内側には、キートップ載置部33から下方に向かって延出する薄肉の支持部材36およびその支持部材36の下端に連接する円板状の浮動部37が形成されている。支持部材36および浮動部37は、キートップ載置部33から吊り下げられている状態で形成されている。支持部材36および浮動部37の上方には、キートップ載置部33によって全外周若しくは一部外周を囲まれる空間35が形成されている。空間35は、キートップ2側が開口する形状であるが、キートップ2側を閉じた閉空間であっても良い。浮動部37の直下には、第一接点用電極50に向かって突出して備えられ、その先端に向かって水平断面を小さくする形状を有する導電性弾性体40が固定されている。具体的には、導電性弾性体40は、略半球状であって、その球面底部を下向きにして固定されている。導電性弾性体40の一端は、略半球形状に限定されず、略円錐若しくは角錐形状、あるいはその略円錐若しくは角錐の先端のみを平らにした台形の形状であっても良い。導電性弾性体40は、キートップ2側からの加圧を受けてPCB5に接触後に変形できるように、弾性に富む材料で構成されている。また、導電性弾性体40には、導電性を付与するために導電性材料が分散されている。導電性材料としては、カーボン、金属等を例示できるが、粒子径が小さいもの(ナノレベルの粒子)を容易に製造でき、かつその取り扱いが容易なカーボンがより好ましい。また、導電性弾性体40の母材(マトリックス)としては、シリコーンゴム、ウレタン樹脂、熱可塑性エラストマー、天然ゴムを用いることができ、それらの中でも、シリコーンゴムが好ましい。導電性材料の混合量は、導電性を高めかつシリコーンゴムの弾性を維持する観点から、絶縁性のマトリックスと当該導電性材料の総重量に対して15~40重量%であるのが好ましく、さらには、15~35重量%がより好ましい。 A thin support member 36 extending downward from the key top placement portion 33 and a disk-like floating portion 37 connected to the lower end of the support member 36 are formed further inside the movable portion 34. . The support member 36 and the floating portion 37 are formed in a state of being suspended from the keytop placement portion 33. Above the support member 36 and the floating portion 37, a space 35 is formed that is surrounded by the keytop placement portion 33 so as to surround the entire outer periphery or a part of the outer periphery. The space 35 has a shape that opens on the key top 2 side, but may be a closed space in which the key top 2 side is closed. Immediately below the floating portion 37, a conductive elastic body 40 that protrudes toward the first contact electrode 50 and has a shape that reduces the horizontal cross section toward the tip is fixed. Specifically, the conductive elastic body 40 is substantially hemispherical, and is fixed with its spherical bottom facing downward. One end of the conductive elastic body 40 is not limited to a substantially hemispherical shape, and may be a substantially cone or pyramid shape, or a trapezoidal shape in which only the tip of the substantially cone or pyramid is flattened. The conductive elastic body 40 is made of a material rich in elasticity so that it can be deformed after receiving pressure from the key top 2 side and contacting the PCB 5. In addition, a conductive material is dispersed in the conductive elastic body 40 in order to impart conductivity. Examples of the conductive material include carbon, metal, and the like, but carbon having a small particle diameter (nano-level particles) can be easily produced, and carbon that can be easily handled is more preferable. Moreover, as a base material (matrix) of the electroconductive elastic body 40, silicone rubber, urethane resin, thermoplastic elastomer, and natural rubber can be used, and among these, silicone rubber is preferable. The mixing amount of the conductive material is preferably 15 to 40% by weight based on the total weight of the insulating matrix and the conductive material from the viewpoint of enhancing the conductivity and maintaining the elasticity of the silicone rubber. Is more preferably 15 to 35% by weight.
 固定部31の内径をL(mm)、キートップ2を押圧していない状態におけるPCB5の上面からキートップ載置部33の上面までの高さをH1(mm)、同状態におけるPCB5の上面からドーム32の上端までの距離をH2(mm)、同状態における接点41の下面からPCB5の第二接点用電極51までの距離をD(mm)、同状態における導電性弾性体40の下面からPCB5の第一接点用電極50までの距離をd(mm)とすると、ドーム32の下端より内方の部材は、L(mm)の範囲内にあり、H1(mm)>H2(mm)>D(mm)>d(mm)の関係にある。コンタクトラバー3あるいはキートップ2の寸法公差によっては、キートップ2を押圧していない状態でd(mm)はゼロであても良いが、この実施の形態では、d(mm)が存在する例で説明する。すなわち、導電性弾性体40は、キートップ2を押圧していない状態において、PCB5上の第一接点用電極50に接触していない。ここで、コンタクトラバー3の好適な寸法を例示すると、L=13.5mm、H1=3.0mm、H2=2.5mm、D=1.1mm、d=0.25mmである。 The inner diameter of the fixing portion 31 is L (mm), the height from the upper surface of the PCB 5 when the key top 2 is not pressed to the upper surface of the key top mounting portion 33 is H1 (mm), and from the upper surface of the PCB 5 in the same state. The distance to the upper end of the dome 32 is H2 (mm), the distance from the lower surface of the contact 41 to the second contact electrode 51 of the PCB 5 in the same state is D (mm), and the lower surface of the conductive elastic body 40 in the same state to the PCB 5 If the distance to the first contact electrode 50 is d (mm), the inner member from the lower end of the dome 32 is in the range of L (mm), and H1 (mm)> H2 (mm)> D (Mm)> d (mm). Depending on the dimensional tolerance of the contact rubber 3 or the key top 2, d (mm) may be zero when the key top 2 is not pressed, but in this embodiment, d (mm) is an example. explain. That is, the conductive elastic body 40 is not in contact with the first contact electrode 50 on the PCB 5 in a state where the key top 2 is not pressed. Here, when the suitable dimension of the contact rubber 3 is illustrated, they are L = 13.5 mm, H1 = 3.0 mm, H2 = 2.5 mm, D = 1.1 mm, and d = 0.25 mm.
 支持部材36は、導電性弾性体40を支持する変形自在な部材であって、導電性弾性体40が第一接点用電極50に接触した後に、導電性弾性体40をPCB5から離れる方向に移動させて導電性弾性体40への荷重を緩和させる機能を有する部材である。かかる機能を十分に発揮できるようにするには、上記の例示的な各種寸法を有するスイッチ駆動部3の場合には、支持部材36の厚さ(W)は、0.05~0.25mmが好ましく、さらに好ましくは0.12~0.18mmである。なお、支持部材36をドーム32と同様の非湾曲形のドームとし、ドーム32を上方隆起するように湾曲する形状のドームとしても、本発明の目的を達成可能である。 The support member 36 is a deformable member that supports the conductive elastic body 40, and moves the conductive elastic body 40 away from the PCB 5 after the conductive elastic body 40 contacts the first contact electrode 50. This is a member having a function of relaxing the load on the conductive elastic body 40. In order to sufficiently exhibit such a function, in the case of the switch driving unit 3 having various exemplary dimensions described above, the thickness (W) of the support member 36 is 0.05 to 0.25 mm. It is preferably 0.12 to 0.18 mm. Note that the object of the present invention can be achieved even if the support member 36 is a non-curved dome similar to the dome 32 and the dome 32 is curved so as to protrude upward.
(3)PCB
 PCB5は、その表面に、導電性を有する配線、接点用電極等を備えた板状の基板である。PCB5の材料としては、例えば、ガラス、ポリイミド樹脂等の絶縁性の高い樹脂、AlN等のセラミックス、ガラスエポキシ等の複合材を好適に用いることができるが、これらに限定されるものではない。金属等の導電性の高い基板をPCB5に用いることもできるが、その場合には、少なくとも配線、接点用電極の周囲には絶縁性を確保するような表面処理を行う必要がある。
(3) PCB
The PCB 5 is a plate-like substrate having conductive wiring, contact electrodes and the like on its surface. As a material for the PCB 5, for example, a highly insulating resin such as glass or polyimide resin, a ceramic such as AlN, or a composite material such as glass epoxy can be preferably used, but is not limited thereto. A highly conductive substrate such as a metal can be used for the PCB 5, but in that case, it is necessary to perform a surface treatment to ensure insulation at least around the wiring and contact electrodes.
 PCB5の表面には、図2(2B)に示すように、2種類の接点用電極が設けられている。一つは、コンタクトラバー3に固定された導電性弾性体40の下方に配置される第一接点用電極50であり、もう一つは、接点41の下方に配置される第二接点用電極51である。第一接点用電極50は、2つの第一電極(この実施の形態では、櫛歯形状の櫛歯電極)50a,50bから構成され、一方の櫛歯を他方の櫛歯同士の隙間に配置して第一電極50a,50bを非接触状態で配置するように構成されている。第一接点用電極50は、導電性弾性体40との接触面積に依存して第一電極50a,50b間の電気抵抗を低下させる機能を持つ。また、第二接点用電極51は、2つの第二電極(この実施の形態では、それぞれ同心円状の電極)51a,51bから構成され、一方を他方の内部に入れて互いに非接触状態で配置するように構成されている。ただし、第一接点用電極50および第二接点用電極51は、それを構成する第一電極50a,50bおよび第二電極51a,51bを、それぞれ別の形状若しくは別の配置にし、あるいは3つ以上の電極から構成するようにしても良い。第一接点用電極50を配置する位置は、その中心に導電性弾性体40の底部が接する位置とするのが好ましい。また、第二接点用電極51は、接点41が第二電極51a,51bの隙間をつなぐ位置に配置される。第一接点用電極50および第二接点用電極51の材料としては、導電性の高い材料であれば特定の材料に限定されないが、導電率が高く、かつ電極形成が容易である銅、タングステン、金、アルミニウム等が特に好ましい。また、第一接点用電極50、第二接点用電極51の形成には、箔の貼り付け、CVDあるいはPVD等の薄膜形成法、その他公知の如何なる方法でも利用できる。 2 types of contact electrodes are provided on the surface of the PCB 5, as shown in FIG. 2 (2B). One is a first contact electrode 50 disposed below the conductive elastic body 40 fixed to the contact rubber 3, and the other is a second contact electrode 51 disposed below the contact 41. It is. The first contact electrode 50 is composed of two first electrodes (in this embodiment, comb-shaped comb-shaped electrodes) 50a and 50b, and one comb tooth is arranged in a gap between the other comb teeth. The first electrodes 50a and 50b are arranged in a non-contact state. The first contact electrode 50 has a function of reducing the electrical resistance between the first electrodes 50 a and 50 b depending on the contact area with the conductive elastic body 40. The second contact electrode 51 is composed of two second electrodes (concentric electrodes in this embodiment) 51a and 51b, respectively, and one is placed in the other and arranged in a non-contact state. It is configured as follows. However, as for the first contact electrode 50 and the second contact electrode 51, the first electrodes 50a and 50b and the second electrodes 51a and 51b constituting the first contact electrode 50 and the second contact electrodes 51a and 51b are formed in different shapes or different arrangements, or three or more You may make it comprise from this electrode. The position where the first contact electrode 50 is disposed is preferably a position where the bottom of the conductive elastic body 40 is in contact with the center thereof. Further, the second contact electrode 51 is disposed at a position where the contact 41 connects the gap between the second electrodes 51a and 51b. The material of the first contact electrode 50 and the second contact electrode 51 is not limited to a specific material as long as it is a highly conductive material. However, copper, tungsten, Gold, aluminum and the like are particularly preferable. The first contact electrode 50 and the second contact electrode 51 can be formed by attaching a foil, forming a thin film such as CVD or PVD, or any other known method.
 図3は、感圧式入力装置1のキートップ2を押圧したときの状態を示す断面図であって、(3A)は導電性弾性体40が第一接点用電極50に接触したときの状態を、(3B)はさらに進んで接点41が第二接点用電極51に接触したときの状態を、それぞれ示す。 FIG. 3 is a cross-sectional view illustrating a state when the key top 2 of the pressure-sensitive input device 1 is pressed. FIG. 3A illustrates a state when the conductive elastic body 40 contacts the first contact electrode 50. , (3B) respectively show the state when the contact 41 contacts the second contact electrode 51.
 導電性弾性体40が第一接点用電極50に接触しているときには、キートップ2およびコンタクトラバー3は、キートップ2を押していない状態(3Aの一点鎖線で示す状態)から全体的に下方に沈んでおり、ドーム32がその内側に部分的に坐屈している。この状態からさらにキートップ2を押圧していくと、導電性弾性体40がつぶれていき、第一接点用電極50との接触面積が大きくなっていく。これにより、第一電極50a,50b間の抵抗が小さくなっていく。導電性弾性体40は、過度に変形すると、その変形に伴って導電性粒子(ここでは、好適にはカーボン粒子)同士の距離が局所的に拡がり、導電性弾性体40の電気抵抗が大きくなる。このため、過度の圧力が加わる前に、薄肉状の支持部材36が変形する。これによって、導電性弾性体40に加わった力の一部(F)を上方に逃がすことができる。 When the conductive elastic body 40 is in contact with the first contact electrode 50, the key top 2 and the contact rubber 3 are moved downward from the state where the key top 2 is not pressed (the state indicated by the one-dot chain line of 3A). It is sinking and the dome 32 is partially buckled inside. When the key top 2 is further pressed from this state, the conductive elastic body 40 is crushed and the contact area with the first contact electrode 50 is increased. Thereby, the resistance between the first electrodes 50a and 50b becomes smaller. When the conductive elastic body 40 is deformed excessively, the distance between the conductive particles (preferably, carbon particles here) is locally increased with the deformation, and the electric resistance of the conductive elastic body 40 is increased. . For this reason, before the excessive pressure is applied, the thin support member 36 is deformed. Thereby, a part (F) of the force applied to the conductive elastic body 40 can be released upward.
 導電性弾性体40が第一接点用電極50に接触した後に、キートップ2をさらに押圧し続けると、(3B)に示すように、(3A)の状態(3Bの二点鎖線で示す状態)からさらに下方に沈み、導電性弾性体40の外周側に配置されている接点41が第二接点用電極51に接触する。この結果、二段目のスイッチがオフからオンとなる。この状態からは、キートップ2から押圧した力は、接点41でも受けることができるので、支持部材36は、それ以後、ほとんどあるいは全く変形しない。 When the key top 2 is further pressed after the conductive elastic body 40 comes into contact with the first contact electrode 50, as shown in (3B), the state (3A) (the state indicated by the two-dot chain line in 3B) Then, the contact 41 that sinks further downward and is disposed on the outer peripheral side of the conductive elastic body 40 contacts the second contact electrode 51. As a result, the second-stage switch is turned on from off. From this state, the force pressed from the key top 2 can be received by the contact point 41, so that the support member 36 is hardly or not deformed thereafter.
 図4は、キートップ2への押圧を開始してから二段目のスイッチがオンになるまでの荷重曲線のシミュレーションを示すグラフであり、(4A)は、導電性弾性体40のみの荷重曲線を、(4B)は、導電性弾性体40と接点41の両方を合わせた荷重曲線を、それぞれ示す。感圧式入力装置1は、図2(2A)において、L=13.5mm、H1=3.0mm、H2=2.5mm、D=1.1mm、d=0.25mmの各寸法を有する。d=0.25mmが存在することから、キートップ2を押圧していない初期の押し込み量は0mmである。 FIG. 4 is a graph showing a simulation of a load curve from the start of pressing on the key top 2 until the second-stage switch is turned on. (4A) is a load curve of only the conductive elastic body 40. (4B) shows load curves obtained by combining both the conductive elastic body 40 and the contact point 41, respectively. In FIG. 2 (2A), the pressure-sensitive input device 1 has dimensions of L = 13.5 mm, H1 = 3.0 mm, H2 = 2.5 mm, D = 1.1 mm, and d = 0.25 mm. Since d = 0.25 mm exists, the initial pressing amount when the key top 2 is not pressed is 0 mm.
 図4(4A)に示すように、導電性弾性体40への荷重は、押し込み量0.5mm以後は、緩やかになり、押し込み量1.25mmを超えても150g程度に抑えられている。これは、支持部材36が変形し、導電性弾性体40にかかる荷重を緩和しているためである。一方、導電性弾性体40と接点41の両方を合わせた荷重は、図4(4B)に示すように、キートップ2への押圧の開始(点P0)から増加していき、その途中(変位量:0.25mmの位置)で導電性弾性体40が接点用電極50に接触後も増加していくが、変位量0.45mm(点P1)で、ドーム32が大きく坐屈して小さくなる。その後、変位量1.10mm(点P2)で接点41が第二接点用電極51に接触し、急激に荷重が増加する。 As shown in FIG. 4 (4A), the load on the conductive elastic body 40 becomes gentle after the pushing amount of 0.5 mm and is suppressed to about 150 g even when the pushing amount exceeds 1.25 mm. This is because the support member 36 is deformed and the load applied to the conductive elastic body 40 is relaxed. On the other hand, as shown in FIG. 4 (4B), the combined load of both the conductive elastic body 40 and the contact point 41 increases from the start of the pressing on the key top 2 (point P0). Although the conductive elastic body 40 increases after contact with the contact electrode 50 at a position (amount: 0.25 mm), the dome 32 is greatly buckled and reduced at a displacement of 0.45 mm (point P1). Thereafter, the contact 41 contacts the second contact electrode 51 at a displacement of 1.10 mm (point P2), and the load increases rapidly.
 図5は、PCB5上のニ段スイッチ検出回路の部分を例示的に示す電気回路図であり、(5A)は一段目のスイッチ検出回路と二段目のスイッチ検出回路とが別々に構成される回路を、(5B)は一段目のスイッチ検出回路と二段目のスイッチ検出回路とを複合して構成される回路を、それぞれ示す。 FIG. 5 is an electric circuit diagram exemplarily showing a part of the two-stage switch detection circuit on the PCB 5, and FIG. 5A shows that the first-stage switch detection circuit and the second-stage switch detection circuit are configured separately. The circuit (5B) shows a circuit configured by combining the first-stage switch detection circuit and the second-stage switch detection circuit.
 (5A)に示すように、一段目のスイッチ検出回路は、導電性弾性体40と第一接点用電極50との接触面積が大きくなるに従い第一電極50a,50b間の抵抗が少しずつ小さくなる、いわゆるアナログ回路60である。一方、二段目のスイッチ検出回路は、接点41と第二接点用電極51との接触によって第二電極51a,51b間の抵抗が急激に低下する、いわゆるデジタル回路70である。アナログ回路60は、第一電極50a,50bへの導電性弾性体40の接触部分によって形成される可変抵抗61と、基準抵抗62とを直列接続した部分を備える。アナログ回路60に基準抵抗62を備えることにより、出力電圧(VOut)の計測から可変抵抗61の値を容易に求めることができる。キートップ2へのタッチにより一段目のスイッチの入力を検出する場合、タッチ前後における上記出力電圧の比(若しくは差)が予め設定しておいた閾値を越えた場合に、一段目のスイッチの入力を検知するようにできる。一方、デジタル回路70は、抵抗71と、接点41と第二接点用電極51との間で構成されるオン/オフ式のスイッチ72とを直列接続した部分を備える。接点41が第二接点用電極51を短絡させたときのみ、スイッチの入力を検知できる。 As shown in (5A), in the first-stage switch detection circuit, the resistance between the first electrodes 50a and 50b gradually decreases as the contact area between the conductive elastic body 40 and the first contact electrode 50 increases. This is a so-called analog circuit 60. On the other hand, the switch detection circuit in the second stage is a so-called digital circuit 70 in which the resistance between the second electrodes 51 a and 51 b is rapidly reduced by the contact between the contact 41 and the second contact electrode 51. The analog circuit 60 includes a portion in which a variable resistor 61 formed by a contact portion of the conductive elastic body 40 to the first electrodes 50a and 50b and a reference resistor 62 are connected in series. By providing the analog circuit 60 with the reference resistor 62, the value of the variable resistor 61 can be easily obtained from the measurement of the output voltage (VOut). When detecting the input of the first-stage switch by touching the key top 2, when the ratio (or difference) of the output voltages before and after the touch exceeds a preset threshold, the input of the first-stage switch Can be detected. On the other hand, the digital circuit 70 includes a portion in which a resistor 71 and an on / off switch 72 configured between the contact 41 and the second contact electrode 51 are connected in series. Only when the contact 41 short-circuits the second contact electrode 51, the input of the switch can be detected.
 (5B)に示すように、複合回路80は、一段目のスイッチ検出回路と二段目のスイッチ検出回路とを組み合わせた回路である。複合回路80は、第一電極50a,50bへの導電性弾性体40の接触部分によって形成される可変抵抗81と、接点41と第二接点用電極51との間で構成されるオン/オフ式のスイッチ82とを並列に配置し、その並列回路に基準抵抗83が直列接続した部分を備える。複合回路80は、(5A)に示す別々の回路に比べて、簡単な構成にてニ段スイッチの検出を可能にする点で有利である。単一の出力電圧(VOut)を計測することにより、各スイッチの入力を判断できる。複合回路80においても、基準抵抗83を備えることにより、上述と同様の理由から、一段目のスイッチの検出を正確に求めることができる。また、スイッチ82がオンになると、出力電圧(VOut)が急激に低下するので、二段目のスイッチの入力を検知することができる。 As shown in (5B), the composite circuit 80 is a circuit combining a first-stage switch detection circuit and a second-stage switch detection circuit. The composite circuit 80 is an on / off type constituted by a variable resistor 81 formed by a contact portion of the conductive elastic body 40 to the first electrodes 50a and 50b, and the contact 41 and the second contact electrode 51. The switch 82 is arranged in parallel, and the parallel circuit includes a portion in which a reference resistor 83 is connected in series. The composite circuit 80 is advantageous in that it can detect a two-stage switch with a simple configuration as compared with the separate circuit shown in (5A). By measuring a single output voltage (VOut), the input of each switch can be determined. Also in the composite circuit 80, by providing the reference resistor 83, the detection of the first-stage switch can be accurately obtained for the same reason as described above. Further, when the switch 82 is turned on, the output voltage (VOut) rapidly decreases, so that the input of the second-stage switch can be detected.
 図6は、複数の複合回路を備えた多重回路90の例を示す図である。 FIG. 6 is a diagram illustrating an example of the multiplexing circuit 90 including a plurality of composite circuits.
 感圧式入力装置1が複数存在する場合には、図6に示す多重回路90を形成することもできる。多重回路90は、並列回路91a~91eに電圧を供給する前にスイッチ切換部93を備え、基準抵抗92を各並列回路91a~91eに共通の抵抗として備えている。多重回路90は、基準抵抗92と並列回路91a~91eとの交差点で1つの出力電圧(VOut)を検出する。その出力電圧の検出は、スイッチ切換部93と同期しており、どの並列回路91a~91eに電圧が供給されているかが認識可能となっている。このような多重回路90を構成すると、多くのニ段スイッチが存在している場合でも、省資源、かつ省スペースにて複数の感圧式入力装置1のニ段スイッチの入力を検出することができる。 When there are a plurality of pressure-sensitive input devices 1, a multiplexing circuit 90 shown in FIG. 6 can be formed. The multiplex circuit 90 includes a switch switching unit 93 before supplying a voltage to the parallel circuits 91a to 91e, and includes a reference resistor 92 as a common resistor for the parallel circuits 91a to 91e. The multiplexing circuit 90 detects one output voltage (VOut) at the intersection of the reference resistor 92 and the parallel circuits 91a to 91e. The detection of the output voltage is synchronized with the switch switching unit 93, and it is possible to recognize which parallel circuit 91a to 91e is supplied with the voltage. When such a multiplex circuit 90 is configured, even when there are many two-stage switches, it is possible to detect inputs of the two-stage switches of the plurality of pressure-sensitive input devices 1 in a resource-saving and space-saving manner. .
 図7は、一段目のスイッチの入力を検出するための処理の流れを示すフローチャート(7A)およびその処理を行うハードウェアの構成(7B)をそれぞれ示す図である。 FIG. 7 is a flowchart (7A) showing a flow of processing for detecting the input of the first-stage switch and a hardware configuration (7B) for performing the processing.
 PCB5上には、図5にて説明したアナログ回路60およびデジタル回路70に電気的に接続されるマイクロコンピュータ95およびメモリ(Random Access Memory: RAM, Read Only Memory: ROM等)96が配置されている。ただし、マイクロコンピュータ95およびメモリ96に、図5および図6にてそれぞれ説明した複合回路80および多重回路90が接続されていても良い。マイクロコンピュータ95は、各種演算処理を行う機能を有する。また、メモリ96には、各種コンピュータ・プログラムが格納されており、図7(7A)に示す各処理を実行するためのコンピュータ・プログラムも格納されている。マイクロコンピュータ95は、コンタクトラバー3からPCB5の方向への押圧を検知する検知装置であって、メモリ96内に格納されているコンピュータ・プログラムを読み出しながら、アナログ回路60からの電気信号に基づき、スイッチの入力を検出することができる。マイクロコンピュータ95は、アナログ回路60の電気抵抗の変化が所定の閾値を超えたかどうかを判断し、当該閾値を超えたと判断した際に押圧を検知し、当該閾値を超えていないと判断した際には、押圧を検知しない。具体的には、以下の処理が行われる。 A microcomputer 95 and a memory (Random Access Memory: RAM, Read Only Memory: ROM, etc.) 96 electrically connected to the analog circuit 60 and the digital circuit 70 described in FIG. 5 are arranged on the PCB 5. . However, the composite circuit 80 and the multiplexing circuit 90 described with reference to FIGS. 5 and 6 may be connected to the microcomputer 95 and the memory 96, respectively. The microcomputer 95 has a function of performing various arithmetic processes. The memory 96 stores various computer programs, and also stores computer programs for executing the processes shown in FIG. 7 (7A). The microcomputer 95 is a detection device that detects a pressing in the direction from the contact rubber 3 to the PCB 5. The microcomputer 95 reads the computer program stored in the memory 96 and switches the switch based on the electrical signal from the analog circuit 60. Can be detected. The microcomputer 95 determines whether or not the change in the electrical resistance of the analog circuit 60 exceeds a predetermined threshold, detects a press when determining that the change exceeds the threshold, and determines that the change does not exceed the threshold. Does not detect pressing. Specifically, the following processing is performed.
 まず、マイクロコンピュータ95は、アナログ回路60からの出力電圧を監視し、出力電圧に変化が生じたか否かを判断する(ステップST1)。出力電圧に変化があると、マイクロコンピュータ95は、キートップ2へのタッチ前後の出力電圧の比又はそこから計算される可変抵抗値の比を演算する(ステップST2)。次に、マイクロコンピュータ95は、上記の比がメモリ96内に予め格納されている閾値を超えたかどうかを判断する(ステップST3)。ステップST3の判断の結果、上記の比が閾値を超えた場合には、マイクロコンピュータ95は、一段目のスイッチが押されたものと判断し、押圧信号を出力する(ステップST4)。一方、ステップST3の判断の結果、上記の比が閾値を超えていない場合には、マイクロコンピュータ95は、一段目のスイッチが押されていないものと判断し、ステップST4に進まずにステップST1に戻る。なお、上記のマイクロコンピュータ95は、中央演算装置(Central Processing Unit: CPU)と称しても良い。また、ステップST2の出力電圧の比又はそこから計算される可変抵抗値の比は、出力電圧の差又はそこから計算される可変抵抗値の差であっても良い。 First, the microcomputer 95 monitors the output voltage from the analog circuit 60 and determines whether or not a change has occurred in the output voltage (step ST1). When there is a change in the output voltage, the microcomputer 95 calculates the ratio of the output voltage before and after touching the key top 2 or the ratio of the variable resistance value calculated from the ratio (step ST2). Next, the microcomputer 95 determines whether or not the above ratio exceeds a threshold value stored in advance in the memory 96 (step ST3). If the ratio exceeds the threshold value as a result of the determination in step ST3, the microcomputer 95 determines that the first-stage switch has been pressed, and outputs a pressing signal (step ST4). On the other hand, if the above ratio does not exceed the threshold value as a result of the determination in step ST3, the microcomputer 95 determines that the first-stage switch has not been pressed, and proceeds to step ST1 without proceeding to step ST4. Return. The microcomputer 95 may be referred to as a central processing unit (CPU). Further, the ratio of the output voltages in step ST2 or the ratio of the variable resistance values calculated therefrom may be the difference of the output voltages or the difference of the variable resistance values calculated therefrom.
 上記のように、キートップ2へのタッチ前後の相対値に基づいてアナログ回路60におけるスイッチの入力の有無を判断する処理を行うことにより、入力検知の誤動作を効果的に防止することができる。キートップ2とハウジング4との間の隙間をゼロあるいは極めて小さくするようなキートップ2あるいはコンタクトラバー3の各寸法公差を考慮すると、感圧式入力装置1をハウジング4内に組み込んだ状態にてコンタクトラバー3が少し押された状態となり得る。この場合、導電性弾性体40が第一接点用電極50と接触している場合も少なくない。このような状況において、例えば、出力電圧若しくは可変抵抗の絶対値に基づいてスイッチの入力を検知しようとすると、導電性弾性体40と第一接点用電極50が接触している状態の最小抵抗値を閾値とせざるを得ない。さもないと、キートップ2を押していないにもかかわらず、スイッチが入力されたものと判断される場合もあるからである。しかし、タッチ前後の相対値に基づいてスイッチの入力の有無を判断すれば、感圧式入力装置1をハウジング4内に組み込んだ状態における抵抗値がどのような値であっても、キートップ2を押したときの抵抗値の方が必ず低くなるため、誤動作を低減することができる。 As described above, by performing the process of determining whether or not there is an input to the switch in the analog circuit 60 based on the relative value before and after touching the key top 2, it is possible to effectively prevent an input detection malfunction. Considering each dimensional tolerance of the key top 2 or the contact rubber 3 that makes the gap between the key top 2 and the housing 4 zero or extremely small, the contact is made with the pressure-sensitive input device 1 incorporated in the housing 4. The rubber 3 can be in a slightly pressed state. In this case, the conductive elastic body 40 is often in contact with the first contact electrode 50. In such a situation, for example, if the switch input is detected based on the output voltage or the absolute value of the variable resistance, the minimum resistance value in a state where the conductive elastic body 40 and the first contact electrode 50 are in contact with each other. Must be the threshold. Otherwise, it may be determined that the switch is input even though the key top 2 is not pressed. However, if the presence or absence of switch input is determined based on the relative values before and after the touch, the key top 2 can be used regardless of the resistance value when the pressure-sensitive input device 1 is incorporated in the housing 4. Since the resistance value when pressed is always lower, malfunctions can be reduced.
 図8は、図1に示す感圧式入力装置1であって、導電性弾性体40が第一接点用電極50に接している状態でハウジング4内に組み込まれた状態を図1のA-A線にて切断したときの断面図(8A)と、組み込み時にすでにコンタクトラバー3が0.30mm押し込まれた状態にある場合に、押圧を開始してから二段目のスイッチがオンになるまでの導電性弾性体40の荷重曲線のシミュレーションを示すグラフ(8B)と、同状態における導電性弾性体40と接点41の合計の荷重曲線のシミュレーションを示すグラフ(8C)と、組み込み時にすでにコンタクトラバー3が0.57mm押し込まれた状態にある場合に、押圧を開始してから二段目のスイッチがオンになるまでの導電性弾性体40の荷重曲線のシミュレーションを示すグラフ(8D)と、同状態における導電性弾性体40と接点41の合計の荷重曲線のシミュレーションを示すグラフ(8E)である。 FIG. 8 shows the pressure-sensitive input device 1 shown in FIG. 1, in which the conductive elastic body 40 is incorporated in the housing 4 in a state where it is in contact with the first contact electrode 50, as shown in FIG. Sectional view when cut by line (8A) and when the contact rubber 3 is already pushed in at 0.30 mm at the time of assembly until the second switch is turned on The graph (8B) showing the simulation of the load curve of the conductive elastic body 40, the graph (8C) showing the simulation of the total load curve of the conductive elastic body 40 and the contact 41 in the same state, and the contact rubber 3 already in the assembly. Shows a simulation of the load curve of the conductive elastic body 40 from the start of pressing until the second switch is turned on. Off and (8D), a graph (8E) showing simulation of a sum of the load curve of the conductive elastic body 40 and the contact 41 in the same state.
 図8(8A)に示すように、感圧式入力装置1をハウジング4に組み込んだときに、キートップ2等の構成部材の寸法公差あるいは組み付け状態により、すでに導電性弾性体40がPCB5上の第一接点用電極50に接触している場合がある。このような場合、導電性弾性体40はすでにつぶれている。しかし、キートップ2の押し込みにより、支持部材36が変形し、導電性弾性体40に過度の荷重が加わらないようにしているので、第一電極50a,50b間の電気抵抗が飽和するのを有効に防止でき、もって、スイッチの入力を正確に検知することができる。 As shown in FIG. 8 (8 A), when the pressure-sensitive input device 1 is assembled in the housing 4, the conductive elastic body 40 is already on the PCB 5 due to the dimensional tolerance or assembly state of the constituent members such as the key top 2. There is a case where the contact electrode 50 is in contact. In such a case, the conductive elastic body 40 is already crushed. However, since the support member 36 is deformed by pressing the key top 2 and an excessive load is not applied to the conductive elastic body 40, it is effective that the electric resistance between the first electrodes 50a and 50b is saturated. Therefore, it is possible to accurately detect the input of the switch.
 感圧式入力装置1は、(8B)、(8C)、(8D)および(8E)において、L=13.5mm、H1=3.0mm、H2=2.5mm、D=1.1mm、d=0mmの各寸法を有する。すなわち、導電性弾性体40と第一接点用電極50との隙間(d)は存在しない。 In the pressure-sensitive input device 1, in (8B), (8C), (8D), and (8E), L = 13.5 mm, H1 = 3.0 mm, H2 = 2.5 mm, D = 1.1 mm, d = Each dimension is 0 mm. That is, there is no gap (d) between the conductive elastic body 40 and the first contact electrode 50.
 組み込み時にすでにコンタクトラバー3が0.30mm押し込まれた状態にある場合には、図8(8B)に示すように、導電性弾性体40への荷重は、押し込み量0.5mm以後は、緩やかになり、押し込み量1.25mmを超えても150g程度に抑えられている。これは、支持部材36が変形し、導電性弾性体40にかかる荷重を緩和しているためである。一方、図8(8C)に示す導電性弾性体40と接点41の両方を合わせた荷重は、キートップ2への押圧の開始(点P0)から急激に増加していき、変位量0.45mm(点P1)で、ドーム32が大きく坐屈して小さくなる。その後、変位量1.10mm(点P2)で接点41が第二接点用電極51に接触し、急激に荷重が増加する。また、組み込み時にすでにコンタクトラバー3が0.57mm押し込まれた状態にある場合には、図8(8D)に示すように、導電性弾性体40への荷重は、押し込み量0.5mm以後は、緩やかになり、押し込み量1.25mmを超えても150g程度に抑えられている。一方、図8(8E)に示す導電性弾性体40と接点41の両方を合わせた荷重は、キートップ2への押圧の開始時(点P0=0.57mm)直後に上昇するが(点P1)、すでにドーム32が坐屈しているため、その後、荷重が小さくなっていく。その後、変位量1.10mm(点P2)で接点41が第二接点用電極51に接触し、急激に荷重が増加する。 When the contact rubber 3 is already pushed in by 0.30 mm at the time of assembling, as shown in FIG. 8 (8B), the load on the conductive elastic body 40 gradually decreases after the pushing amount of 0.5 mm. Therefore, even if the push-in amount exceeds 1.25 mm, it is suppressed to about 150 g. This is because the support member 36 is deformed and the load applied to the conductive elastic body 40 is relaxed. On the other hand, the combined load of both the conductive elastic body 40 and the contact 41 shown in FIG. 8 (8C) increases rapidly from the start of pressing the key top 2 (point P0), and the displacement is 0.45 mm. At (point P1), the dome 32 is greatly buckled and becomes smaller. Thereafter, the contact 41 contacts the second contact electrode 51 at a displacement of 1.10 mm (point P2), and the load increases rapidly. Further, when the contact rubber 3 is already pushed in by 0.57 mm at the time of assembling, as shown in FIG. 8 (8D), the load on the conductive elastic body 40 is as follows. Even if the push-in amount exceeds 1.25 mm, the pressure is reduced to about 150 g. On the other hand, the combined load of both the conductive elastic body 40 and the contact 41 shown in FIG. 8 (8E) rises immediately after the start of pressing on the key top 2 (point P0 = 0.57 mm) (point P1). ) Since the dome 32 is already buckled, the load decreases thereafter. Thereafter, the contact 41 contacts the second contact electrode 51 at a displacement of 1.10 mm (point P2), and the load increases rapidly.
2.第2の実施の形態
 感圧式入力装置の第2の実施の形態は、第1の実施の形態と同様の2段スイッチであるが、外側に最初に入力されるスイッチを、その内側に2番目に入力されるスイッチを備える形態である。
2. Second Embodiment A second embodiment of the pressure-sensitive input device is a two-stage switch similar to the first embodiment, except that the first input to the outside is the second switch inside. It is a form provided with the switch inputted into.
 図9は、感圧式入力装置1を、図1のA-A線と同様の線にて切断したときの断面図(9A)およびプリント回路基板5上の第一接点用電極50と第二接点用電極52の平面図(9B)である。 9 is a cross-sectional view (9A) of the pressure-sensitive input device 1 taken along the line AA in FIG. 1, and the first contact electrode 50 and the second contact on the printed circuit board 5. It is a top view (9B) of the electrode 52 for an object.
 図9(9A)に示すように、第2の実施の形態に係る感圧式入力装置1は、ハウジング4の上方から内部に向かって順に、キートップ2、コンタクトラバー100およびPCB5を重ねた構成を備える。キートップ2は、第一の実施の形態と共通の形態を有するので、ここでは重複した説明を省略する。 As shown in FIG. 9 (9A), the pressure-sensitive input device 1 according to the second embodiment has a configuration in which the key top 2, the contact rubber 100, and the PCB 5 are stacked in order from the top to the inside of the housing 4. Prepare. Since the key top 2 has a form common to the first embodiment, a duplicate description is omitted here.
(1)コンタクトラバー
 コンタクトラバー100とキートップ2あるいはPCB5との各固定方法、コンタクトラバー100の構成材料については、第一の実施の形態と同様である。コンタクトラバー100は、PCB5に固定される固定部101と、固定部101の上方内側に連接するドーム102と、ドーム102の上方内側に連接する可動部103と、可動部103から上方内側に連接するキートップ載置部105を備える。キートップ載置部105は、コンタクトラバー100の平面上ほぼ中央に配置されている。
(1) Contact Rubber Each fixing method of the contact rubber 100 and the key top 2 or the PCB 5 and the constituent material of the contact rubber 100 are the same as those in the first embodiment. The contact rubber 100 is connected to the fixed part 101 fixed to the PCB 5, the dome 102 connected to the upper inner side of the fixed part 101, the movable part 103 connected to the upper inner side of the dome 102, and the upper part from the movable part 103. A key top placement unit 105 is provided. The key top placement portion 105 is disposed substantially at the center on the plane of the contact rubber 100.
 固定部101は、略平板形状を有し、その中央部分が空洞になっている。ドーム102は、固定部101の空洞内側から可動部103に向かって内側斜め上方に向かってその径を小さくする形状を有する薄肉部材であり、キートップ2からの荷重を受けると内側に屈曲可能に設計されている。可動部103は、略円柱形状であって下方に向かって径を小さくする形状を有しており、キートップ2を押し込むと下方に移動可能となっている。可動部103は、略円柱形状を有しており、ドーム102とドーム104に接続された状態で宙吊りの状態に配置されている。可動部103の下端における各第一接点用電極50の上方の位置には、その球面底部を下向きにするように略半球状の導電性弾性体111が固定されている。導電性弾性体111の構成材料およびこれに混練されている導電性材料については、第一の実施の形態にて説明した導電性弾性体40と共通するので、ここでは重複した説明を省略する。 The fixing part 101 has a substantially flat plate shape, and its central part is hollow. The dome 102 is a thin-walled member having a shape that decreases in diameter toward the movable portion 103 from the inside of the cavity of the fixed portion 101 toward the movable portion 103, and can be bent inward when receiving a load from the key top 2. Designed. The movable portion 103 has a substantially cylindrical shape and has a shape that decreases in diameter toward the lower side, and is movable downward when the key top 2 is pushed in. The movable portion 103 has a substantially cylindrical shape, and is arranged in a suspended state while being connected to the dome 102 and the dome 104. A substantially hemispherical conductive elastic body 111 is fixed at a position above each first contact electrode 50 at the lower end of the movable portion 103 so that the spherical bottom portion faces downward. The constituent material of the conductive elastic body 111 and the conductive material kneaded therewith are the same as those of the conductive elastic body 40 described in the first embodiment, and therefore redundant description is omitted here.
 ドーム104は、可動部103の内側からキートップ載置部105に向かって内側斜め上方に向かってその径を小さくする形状を有する薄肉部材であり、キートップ2を押圧していき導電性弾性体111がPCB5上の第一接点用電極50に接触後に、内側に屈曲可能となるように設計されている。ドーム104は、導電性弾性体111が第一接点用電極50に接触した後にキートップ2への押圧に抗しきれずに屈曲するように設計する必要がある。一方、ドーム102は、キートップ2の押圧開始後、可動部103の下降を容易にするように設計する必要がある。したがって、ドーム102は、ドーム104と比べて屈曲しやすいように設計される。そのためには、例えば、ドーム104は、ドーム102に比べて、より肉厚に設計しあるいは水平面からの角度をより大きく構成するのが好ましい。また、ドーム102,104は、導電性弾性体111がPCB5上の第一接点用電極50に接触後、導電性弾性体111に対して過度に荷重が加わらないように、上方に変形して力を逃がす機能を有する部材である。すなわち、ドーム102,104は、導電性弾性体111を支持する変形自在な部材であって、導電性弾性体111が第一接点用電極50に接触した後に、導電性弾性体111をPCB5から離れる方向に移動させて導電性弾性体111への荷重を緩和させる支持部材に相当する。かかる支持部材としての機能を十分に発揮できるようにするには、導電性弾性体111が第一接点用電極50に接触した後、キートップ2からの押圧に応じて変形しやすい厚さあるいは材料で構成するのが好ましい。 The dome 104 is a thin-walled member having a shape that decreases in diameter from the inside of the movable portion 103 toward the keytop placement portion 105 toward the inside of the keytop, and presses the keytop 2 to form a conductive elastic body. It is designed such that 111 can be bent inward after contacting the first contact electrode 50 on the PCB 5. The dome 104 needs to be designed to bend without resisting the pressing on the key top 2 after the conductive elastic body 111 contacts the first contact electrode 50. On the other hand, the dome 102 needs to be designed to facilitate the lowering of the movable portion 103 after the key top 2 starts to be pressed. Accordingly, the dome 102 is designed to bend more easily than the dome 104. For this purpose, for example, the dome 104 is preferably designed to be thicker than the dome 102 or configured to have a larger angle from the horizontal plane. Further, the domes 102 and 104 are deformed upward so that an excessive load is not applied to the conductive elastic body 111 after the conductive elastic body 111 contacts the first contact electrode 50 on the PCB 5. It is a member having a function of releasing That is, the domes 102 and 104 are deformable members that support the conductive elastic body 111, and after the conductive elastic body 111 contacts the first contact electrode 50, the conductive elastic body 111 is separated from the PCB 5. It corresponds to a support member that moves in the direction to relieve the load on the conductive elastic body 111. In order to sufficiently exhibit the function as the support member, after the conductive elastic body 111 comes into contact with the first contact electrode 50, the thickness or the material is easily deformed in response to the pressing from the key top 2. It is preferable to comprise.
 キートップ載置部105は、略円柱形状でやや下方に向かって小径に構成されている。キートップ載置部105の下端には、接点110が固定されている。接点110は、例えば、金属、カーボン等の板若しくは薄膜にて形成可能である。キートップ2を押圧していない状態における接点110の下面からPCB5の第二接点用電極52までの距離をD(mm)、同状態における導電性弾性体110の下面からPCB5の第一接点用電極50までの距離をd(mm)とすると、D(mm)>d(mm)の関係にある。d(mm)は、キートップ2を押圧していない状態において存在していなくても良いが、この実施の形態では存在する。すなわち、導電性弾性体110は、キートップ2を押圧していない状態において、PCB5上の第一接点用電極50に接していない。 The key top mounting part 105 is substantially cylindrical and has a small diameter slightly downward. A contact 110 is fixed to the lower end of the key top placement portion 105. The contact 110 can be formed of, for example, a metal or carbon plate or a thin film. The distance from the lower surface of the contact 110 to the second contact electrode 52 of the PCB 5 when the key top 2 is not pressed is D (mm), and the first contact electrode of the PCB 5 from the lower surface of the conductive elastic body 110 in the same state. When the distance up to 50 is d (mm), the relationship is D (mm)> d (mm). d (mm) may not exist in a state where the key top 2 is not pressed, but exists in this embodiment. That is, the conductive elastic body 110 is not in contact with the first contact electrode 50 on the PCB 5 when the key top 2 is not pressed.
(2)PCB
 PCB5は、その表面に、導電性を有する配線、接点用電極等を備えた板状の基板である。PCB5の材料に関しては、第一の実施の形態と共通するので、ここでは重複した説明を省略する。PCB5の表面には、図9(9B)に示すように、2種類の接点用電極が設けられている。一つは、コンタクトラバー100における導電性弾性体111の下方に配置される第一接点用電極50であり、もう一つは、接点110の下方に配置される第二接点用電極52である。第一接点用電極50は、第一の実施の形態と同様の櫛歯状の第一電極50a,50bから構成される。第二接点用電極52は、円形状の第二電極52aと、その内部に配置される点形状の第二電極52bとから構成される。第二電極52a,52bは、互いに非接触状態でPCB5上に配置されている。ただし、第一接点用電極50、第二接点用電極52は、その形状および配置を上記以外にしても良い。例えば、第二接点用電極52は、互いに非接触状態で配置される半月状の2つの電極から構成しても良い。第一接点用電極50の配置される位置は、その中心に導電性弾性体111の底部が接する位置とするのが好ましい。第二接点用電極52は、接点110が第二電極52a,52bの隙間をつなぐ位置に配置される。第一接点用電極50および第二接点用電極52の材料としては、導電性の高い材料であれば特定の材料に限定されないが、電極形成の容易さから、銅、タングステン、金、アルミニウム等が特に好ましい。また、第一接点用電極50、第二接点用電極52の形成には、箔の貼り付け、CVDあるいはPVD等の薄膜形成法、その他公知の如何なる方法でも利用できる。
(2) PCB
The PCB 5 is a plate-like substrate having conductive wiring, contact electrodes and the like on its surface. Since the material of the PCB 5 is the same as that of the first embodiment, a duplicate description is omitted here. On the surface of the PCB 5, as shown in FIG. 9 (9B), two types of contact electrodes are provided. One is the first contact electrode 50 disposed below the conductive elastic body 111 in the contact rubber 100, and the other is the second contact electrode 52 disposed below the contact 110. The first contact electrode 50 includes comb-shaped first electrodes 50a and 50b similar to those in the first embodiment. The second contact electrode 52 includes a circular second electrode 52a and a point-shaped second electrode 52b disposed therein. The second electrodes 52a and 52b are disposed on the PCB 5 in a non-contact state. However, the first contact electrode 50 and the second contact electrode 52 may have shapes and arrangements other than those described above. For example, the second contact electrode 52 may be composed of two half-moon shaped electrodes arranged in a non-contact state. The position where the first contact electrode 50 is disposed is preferably a position where the bottom of the conductive elastic body 111 is in contact with the center thereof. The second contact electrode 52 is disposed at a position where the contact 110 connects the gap between the second electrodes 52a and 52b. The material for the first contact electrode 50 and the second contact electrode 52 is not limited to a specific material as long as it is a highly conductive material. However, copper, tungsten, gold, aluminum, etc. may be used because of the ease of electrode formation. Particularly preferred. The first contact electrode 50 and the second contact electrode 52 can be formed by attaching a foil, forming a thin film such as CVD or PVD, or any other known method.
 図10は、第2の実施の形態に係る感圧式入力装置1のキートップ2を押圧したときの状態を示す断面図であって、(10A)は導電性弾性体111が第一接点用電極50に接触したときの状態を、(10B)はさらに進んで接点110が第二接点用電極52に接触したときの状態を、それぞれ示す。 FIG. 10 is a cross-sectional view illustrating a state when the key top 2 of the pressure-sensitive input device 1 according to the second embodiment is pressed, and FIG. 10A illustrates the conductive elastic body 111 as the first contact electrode. (10B) shows the state when the contact 110 is in contact with the second contact electrode 52 by further proceeding.
 導電性弾性体111が第一接点用電極50に接触しているときには、キートップ2およびコンタクトラバー100は、キートップ2を押していない状態(10Aの一点鎖線で示す状態)から全体的に下方に沈んでおり、ドーム102がその内側に部分的に坐屈している。この状態からさらにキートップ2を押圧していくと、導電性弾性体111がつぶれていき、第一接点用電極50との接触面積が大きくなっていく。これにより、第一電極50a,50b間の抵抗が小さくなっていく。その後、導電性弾性体111に過度の荷重が加わらないようにドーム102およびドーム104が変形し、これによって、導電性弾性体111に加わった力の一部(F)を上方に逃がすことができる。 When the conductive elastic body 111 is in contact with the first contact electrode 50, the key top 2 and the contact rubber 100 are entirely downward from a state where the key top 2 is not pressed (a state indicated by a one-dot chain line in 10A). It is sinking and the dome 102 is partially buckled inside. When the key top 2 is further pressed from this state, the conductive elastic body 111 is crushed and the contact area with the first contact electrode 50 is increased. Thereby, the resistance between the first electrodes 50a and 50b becomes smaller. Thereafter, the dome 102 and the dome 104 are deformed so that an excessive load is not applied to the conductive elastic body 111, and thereby a part (F) of the force applied to the conductive elastic body 111 can be released upward. .
 導電性弾性体111が第一接点用電極50に接触した後に、キートップ2を押圧し続けると、(10B)に示すように、キートップ2およびコンタクトラバー100は、(10A)の状態(10Bの二点鎖線で示す状態)からさらに下方に沈む。そして、導電性弾性体111の内側に配置されている接点110が第二電極52a,52bに接触する。この結果、二段目のスイッチがオフからオンとなる。この状態からは、キートップ2から押圧した力は、接点110でも受けることができるので、ドーム102,104は、その後、ほとんど若しくは全く変形しない。 When the key top 2 is continuously pressed after the conductive elastic body 111 contacts the first contact electrode 50, as shown in (10B), the key top 2 and the contact rubber 100 are in the state (10B) (10B). It sinks further downward from the state indicated by the two-dot chain line. And the contact 110 arrange | positioned inside the electroconductive elastic body 111 contacts 2nd electrode 52a, 52b. As a result, the second-stage switch is turned on from off. From this state, the force pressed from the key top 2 can be received by the contact 110, so that the domes 102 and 104 are hardly or not deformed thereafter.
3.第3の実施の形態
 感圧式入力装置の第3の実施の形態は、第1の実施の形態および第2の実施の形態と異なり、1段スイッチである。
3. Third Embodiment The third embodiment of the pressure-sensitive input device is a one-stage switch, unlike the first and second embodiments.
 図11は、感圧式入力装置1を、図1のA-A線と同様の線にて切断したときの断面図(11A)およびプリント回路基板5上の第一接点用電極50の平面図(11B)である。 11 is a cross-sectional view (11A) of the pressure-sensitive input device 1 taken along the line AA in FIG. 1 and a plan view of the first contact electrode 50 on the printed circuit board 5 (FIG. 11). 11B).
 図11と図2を比較すると明らかなように、この実施の形態に係る感圧式入力装置1は、第1の実施の形態に係る感圧式入力装置1から二段目のスイッチに関わる構造を除外したものである。具体的には、この実施の形態に係る感圧式入力装置1は、第1の実施の形態に係る感圧式入力装置1に備えられている可動部34、その直下の接点41およびPCB5上の第二接点用電極51を備えていない。 As is clear from comparison between FIG. 11 and FIG. 2, the pressure-sensitive input device 1 according to this embodiment excludes the structure related to the second-stage switch from the pressure-sensitive input device 1 according to the first embodiment. It is what. Specifically, the pressure-sensitive input device 1 according to this embodiment includes a movable part 34, a contact 41 just below it, and a second on the PCB 5 provided in the pressure-sensitive input device 1 according to the first embodiment. The two-contact electrode 51 is not provided.
 キートップ2は、第一の実施の形態と共通の形態を有するので、ここでは重複した説明を省略する。コンタクトラバー200とキートップ2あるいはPCB5との各固定方法、コンタクトラバー200の構成材料については、第一の実施の形態と同様である。コンタクトラバー200は、PCB5に固定される固定部201と、固定部201の上方内側に連接するドーム202と、ドーム202の上方内側に連接するキートップ載置部203と、キートップ載置部203の内側から下方に向かって延出する薄肉の支持部材206と、その支持部材206の下端に連接する円板状の浮動部207を備える。支持部材206および浮動部207の上方には、キートップ載置部203によって全外周若しくは一部外周を囲まれる空間205が形成されている。浮動部207の直下には、略半球状の導電性弾性体40がその球面底部を下向きにして固定されている。導電性弾性体40は、第一接点用電極50の上方に配置されている。固定部201、ドーム202、キートップ載置部203、支持部材206、浮動部207および導電性弾性体40は、第一の実施の形態で説明した固定部31、ドーム32、キートップ載置部33、支持部材36、浮動部37および導電性弾性体40とそれぞれ共通するため、これらについての重複した説明を省略する。また、PCB5には、図11(11B)に示すように、第一接点用電極50が設けられている。この第一接点用電極50についても、第一の実施の形態にて説明した第一接点用電極50と共通するので、その重複した説明を省略する。 Since the key top 2 has a form common to the first embodiment, a duplicate description is omitted here. Each fixing method of the contact rubber 200 and the key top 2 or the PCB 5 and the constituent material of the contact rubber 200 are the same as in the first embodiment. The contact rubber 200 includes a fixing part 201 fixed to the PCB 5, a dome 202 connected to the upper inner side of the fixing part 201, a key top mounting part 203 connected to the upper inner side of the dome 202, and a key top mounting part 203. A thin-walled support member 206 extending downward from the inside of the disk and a disk-shaped floating portion 207 connected to the lower end of the support member 206. A space 205 is formed above the support member 206 and the floating portion 207 so as to be surrounded by the key top placement portion 203 around the entire outer periphery or a part of the outer periphery. Immediately below the floating portion 207, a substantially hemispherical conductive elastic body 40 is fixed with its spherical bottom facing downward. The conductive elastic body 40 is disposed above the first contact electrode 50. The fixed portion 201, the dome 202, the key top placement portion 203, the support member 206, the floating portion 207, and the conductive elastic body 40 are the fixed portion 31, the dome 32, and the key top placement portion described in the first embodiment. 33, the support member 36, the floating portion 37, and the conductive elastic body 40 are common to each other, and a duplicate description thereof will be omitted. The PCB 5 is provided with a first contact electrode 50 as shown in FIG. 11 (11B). Since this first contact electrode 50 is also common to the first contact electrode 50 described in the first embodiment, a duplicate description thereof is omitted.
 図12は、感圧式入力装置1のキートップ2を押圧したときの状態を示す図であって、導電性弾性体40が第一接点用電極50に接触したときの状態を示す断面図である。 FIG. 12 is a view showing a state when the key top 2 of the pressure-sensitive input device 1 is pressed, and is a cross-sectional view showing a state when the conductive elastic body 40 contacts the first contact electrode 50. .
 導電性弾性体40が第一接点用電極50に接触しているときには、キートップ2およびコンタクトラバー200は、キートップ2を押していない状態(図12の一点鎖線で示す状態)から全体的に下方に沈んでおり、ドーム202がその内側に部分的に坐屈している。この状態からさらにキートップ2を押圧していくと、導電性弾性体40がつぶれていき、第一接点用電極50との接触面積が大きくなっていく。これにより、第一電極50a,50b間の抵抗が小さくなっていく。導電性弾性体40は、過度に変形すると、その変形に伴って導電性粒子(ここでは、好適にはカーボン粒子)同士の距離が局所的に拡がり、導電性弾性体40の電気抵抗が大きくなる。このため、導電性弾性体40に過度の荷重が加わる前に、薄肉状の支持部材206が変形する。これによって、導電性弾性体40に加わった力の一部(F)を上方に逃がすことができる。 When the conductive elastic body 40 is in contact with the first contact electrode 50, the key top 2 and the contact rubber 200 are generally lowered from the state where the key top 2 is not pressed (the state indicated by the one-dot chain line in FIG. 12). The dome 202 is partially buckled inside. When the key top 2 is further pressed from this state, the conductive elastic body 40 is crushed and the contact area with the first contact electrode 50 is increased. Thereby, the resistance between the first electrodes 50a and 50b becomes smaller. When the conductive elastic body 40 is deformed excessively, the distance between the conductive particles (preferably, carbon particles here) is locally increased with the deformation, and the electric resistance of the conductive elastic body 40 is increased. . Therefore, the thin support member 206 is deformed before an excessive load is applied to the conductive elastic body 40. Thereby, a part (F) of the force applied to the conductive elastic body 40 can be released upward.
 以下、本発明の実施例について説明する。ただし、本発明は、以下に説明する実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described. However, the present invention is not limited to the examples described below.
(実験1:導電性弾性体の形状の検討)
 第一の実施の形態に係る感圧式入力装置1(図1,2参照)において、導電性弾性体40をどのような形状にするのが好ましいかを調べた。具体的には、荷重が10Nを超えない範囲(好ましくは6Nまでの範囲)で電気抵抗の変位の差を十分に検知可能であって、かつ荷重の増大に対して急激な電気抵抗の低下がないという条件を満たす導電性弾性体40の形状を調べた。変位図2(2A)において、L=13.5mm、H1=3.0mm、H2=2.5mm、D=1.1mm、d=0.25mmとした。また、キートップ2を押圧していない初期の押し込み量は0mmであった。
(Experiment 1: Examination of shape of conductive elastic body)
In the pressure-sensitive input device 1 according to the first embodiment (see FIGS. 1 and 2), the shape of the conductive elastic body 40 is preferably investigated. Specifically, the difference in displacement of the electric resistance can be sufficiently detected within a range where the load does not exceed 10 N (preferably up to 6 N), and the electric resistance rapidly decreases as the load increases. The shape of the conductive elastic body 40 that satisfies the condition of “not present” was examined. In FIG. 2 (2A), L = 13.5 mm, H1 = 3.0 mm, H2 = 2.5 mm, D = 1.1 mm, and d = 0.25 mm. Further, the initial pressing amount when the key top 2 was not pressed was 0 mm.
 導電性弾性体40は、次の方法にて作製した。シリコーンゴムコンパウンド(信越化学工業株式会社製、製品名:KE 951-U)60重量部に、アセチレンブラック(電気化学工業株式会社製)40重量部を配合し、体積固有抵抗5オーム程度とした導電ゴムマスターバッチ(信越ポリマー株式会社製、製品名:87C40P-1)を用意した。この導電ゴムマスターバッチ50重量部と、絶縁性のシリコーンゴムコンパウンド(信越化学工業株式会社製、製品名:KE 961-U)50重量部とを混練し、カーボンブラック20重量%の導電ゴムを作製した。次に、一端が球面、平面、円錐、台形の各形状となるように種々の金型を用意して上記導電ゴムの成形を行い、各種先端形状を有する導電性弾性体40を作製した。 The conductive elastic body 40 was produced by the following method. Conductivity with a specific volume resistivity of about 5 ohms by blending 60 parts by weight of silicone rubber compound (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KE 951-U) with 40 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) A rubber master batch (manufactured by Shin-Etsu Polymer Co., Ltd., product name: 87C40P-1) was prepared. 50 parts by weight of this conductive rubber masterbatch and 50 parts by weight of an insulating silicone rubber compound (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KE 961-U) are kneaded to produce a conductive rubber of 20% by weight of carbon black. did. Next, various molds were prepared so that one end had a spherical shape, a flat surface, a conical shape, and a trapezoidal shape, and the conductive rubber was molded to produce conductive elastic bodies 40 having various tip shapes.
 図13は、導電性弾性体40の複数種の形状を示す図である。図14は、図13に示す複数種の導電性弾性体40に印加する荷重を変えたときの電気抵抗の変化を示すグラフである。グラフの横軸は荷重、縦軸は電気抵抗である。導電性弾性体40を接触させる電極は第一接点用電極50とした。荷重と電気抵抗は、荷重測定機を用いて、1.0mm/secの速度で導電性弾性体40を変位させる方法にて測定した。 FIG. 13 is a diagram showing a plurality of shapes of the conductive elastic body 40. FIG. 14 is a graph showing changes in electrical resistance when the load applied to the plurality of types of conductive elastic bodies 40 shown in FIG. 13 is changed. The horizontal axis of the graph is the load, and the vertical axis is the electrical resistance. The electrode with which the conductive elastic body 40 was brought into contact was the first contact electrode 50. The load and electric resistance were measured by a method of displacing the conductive elastic body 40 at a speed of 1.0 mm / sec using a load measuring machine.
 「A3」を除き、全高を統一して、一端が、球面形状、略平面形状、円錐形状および台形形状の各種導電性弾性体40を用意した。一端が球面形状の導電性弾性体40は、「A1」、「A2」および「A3」の3種類である。「A1」は、全高0.50mm、直径2.50mm、円柱部分の高さ0.15mm、球面部分の高さ0.35mmの導電性弾性体である。「A2」は、全高0.50mm、直径3.50mm、円柱部分の高さ0.15mm、球面部分の高さ0.35mmの導電性弾性体である。「A3」は、全高0.30mm、直径2.50mm、円柱部分の高さ0.15mm、球面部分の高さ0.15mmの導電性弾性体である。一端が略平面形状の導電性弾性体40は、「B1」および「B2」の2種類である。「B1」は、全高0.50mm、直径2.50mm、円柱部分の高さ0.40mm、球面部分の高さ0.10mmの導電性弾性体である。「B2」は、全高0.50mm、直径3.50mm、円柱部分の高さ0.40mm、球面部分の高さ0.10mmの導電性弾性体である。一端が円錐形状の導電性弾性体40は、「C1」、「C2」、「D1」および「D2」の4種類である。「C1」は、全高0.50mm、直径2.50mm、円柱部分の高さ0.15mm、円錐部分の高さ0.35mmの導電性弾性体である。「C2」は、全高0.50mm、直径3.50mm、円柱部分の高さ0.15mm、円錐部分の高さ0.35mmの導電性弾性体である。「D1」は、全高0.50mm、直径2.50mm、円柱部分の高さ0.10mm、円錐部分の高さ0.40mmの導電性弾性体である。「D2」は、全高0.50mm、直径3.50mm、円柱部分の高さ0.10mm、円錐部分の高さ0.40mmの導電性弾性体である。先端が台形形状の導電性弾性体40は、「E」のみである。「E」は、全高0.50mm、直径2.50mm、円柱部分の高さ0.10mm、円錐部分の高さ0.40mm、先端の平面部分の直径0.50mmの導電性弾性体である。 Except for “A3”, various heights of the conductive elastic bodies 40 having the same overall height and one end having a spherical shape, a substantially planar shape, a conical shape, and a trapezoidal shape were prepared. There are three types of conductive elastic bodies 40 having a spherical shape at one end: “A1”, “A2”, and “A3”. “A1” is a conductive elastic body having an overall height of 0.50 mm, a diameter of 2.50 mm, a cylindrical portion height of 0.15 mm, and a spherical portion height of 0.35 mm. “A2” is a conductive elastic body having a total height of 0.50 mm, a diameter of 3.50 mm, a cylindrical portion height of 0.15 mm, and a spherical portion height of 0.35 mm. “A3” is a conductive elastic body having an overall height of 0.30 mm, a diameter of 2.50 mm, a cylindrical portion height of 0.15 mm, and a spherical portion height of 0.15 mm. There are two types of conductive elastic bodies 40 whose one ends are substantially planar, “B1” and “B2”. “B1” is a conductive elastic body having an overall height of 0.50 mm, a diameter of 2.50 mm, a cylindrical portion height of 0.40 mm, and a spherical portion height of 0.10 mm. “B2” is a conductive elastic body having an overall height of 0.50 mm, a diameter of 3.50 mm, a cylindrical portion height of 0.40 mm, and a spherical portion height of 0.10 mm. There are four types of conductive elastic bodies 40 having a conical shape at one end: “C1”, “C2”, “D1”, and “D2”. “C1” is a conductive elastic body having a total height of 0.50 mm, a diameter of 2.50 mm, a height of the cylindrical portion of 0.15 mm, and a height of the conical portion of 0.35 mm. “C2” is a conductive elastic body having a total height of 0.50 mm, a diameter of 3.50 mm, a cylindrical portion height of 0.15 mm, and a conical portion height of 0.35 mm. “D1” is a conductive elastic body having a total height of 0.50 mm, a diameter of 2.50 mm, a height of the cylindrical portion of 0.10 mm, and a height of the conical portion of 0.40 mm. “D2” is a conductive elastic body having an overall height of 0.50 mm, a diameter of 3.50 mm, a height of the cylindrical portion of 0.10 mm, and a height of the conical portion of 0.40 mm. The conductive elastic body 40 having a trapezoidal tip is only “E”. “E” is a conductive elastic body having a total height of 0.50 mm, a diameter of 2.50 mm, a height of the cylindrical portion of 0.10 mm, a height of the conical portion of 0.40 mm, and a diameter of the flat portion of the tip of 0.50 mm.
 10種類の導電性弾性体40の荷重-抵抗曲線を比較すると、荷重の増加に対して抵抗が緩やかに減少する理想的な曲線に近いものは、図14(14A)に示す「A1」、「A2」および「A3」であった。次に、理想的なものは、図14(14C)に示す「C1」、「C2」、「D1」および「D2」であった。その次は、図14(14B)に示す「B1」および「B2」と、図14(14D)に示す「E」であった。この結果より、可変抵抗機能を実現するためにより好ましい導電性弾性体40は、先端部分が球面若しくは尖塔形状であり、先端が平面になると抵抗減少が大きく変わる位置(変位量)が存在し、先端部分が球面若しくは尖塔形状のものよりも比較的劣る傾向があることがわかった。 Comparing the load-resistance curves of the ten types of conductive elastic bodies 40, the ones close to the ideal curves in which the resistance gradually decreases with increasing load are shown as “A1” and “A1” shown in FIG. A2 "and" A3 ". Next, “C1”, “C2”, “D1”, and “D2” shown in FIG. 14 (14C) are ideal. Next was “B1” and “B2” shown in FIG. 14 (14B) and “E” shown in FIG. 14 (14D). As a result, the conductive elastic body 40 more preferable for realizing the variable resistance function has a tip portion having a spherical surface or a spire shape, and there is a position (displacement amount) where the resistance decrease greatly changes when the tip becomes a flat surface. It has been found that the parts tend to be relatively inferior to those of spherical or steeple shapes.
(実験2:導電性弾性体の外径の検討)
 実験1で作製した導電ゴムを用いて、一端が球面の導電性弾性体「A1」と同一の形態で、外径のみを5.0mm、3.0mmおよび2.5mmの3種類に変化させた導電性弾性体40を作製し、各種の導電性弾性体40に印加する荷重を変えたときの電気抵抗の変化を調べた。好ましい導電性弾性体40の外形としては、実験1と同様、荷重が10Nを超えない範囲(好ましくは6Nまでの範囲)で電気抵抗の変位の差を十分に検知可能であって、かつ荷重の増大に対して急激な電気抵抗の低下がないという条件を満たす導電性弾性体40の外形とした。荷重の変更方法は、実験1と同様である。
(Experiment 2: Examination of outer diameter of conductive elastic body)
Using the conductive rubber produced in Experiment 1, the outer diameter was changed to three types of 5.0 mm, 3.0 mm, and 2.5 mm in the same form as the conductive elastic body “A1” having one spherical surface. The conductive elastic body 40 was produced, and the change in electrical resistance when the load applied to the various conductive elastic bodies 40 was changed was examined. As the preferred outer shape of the conductive elastic body 40, as in Experiment 1, it is possible to sufficiently detect the difference in displacement of the electric resistance within the range where the load does not exceed 10N (preferably up to 6N), and the load The outer shape of the conductive elastic body 40 that satisfies the condition that there is no sudden decrease in electrical resistance with respect to the increase was adopted. The method for changing the load is the same as in Experiment 1.
 図15は、外径を5.0mm、3.0mmおよび2.5mmの3種類の外径を有する各種の導電性弾性体40に印加する荷重を変えたときの電気抵抗の変化を示すグラフである。グラフの横軸は荷重、縦軸は電気抵抗である。 FIG. 15 is a graph showing changes in electrical resistance when the load applied to various conductive elastic bodies 40 having three types of outer diameters of 5.0 mm, 3.0 mm, and 2.5 mm is changed. is there. The horizontal axis of the graph is the load, and the vertical axis is the electrical resistance.
 図15に示すように、いずれの外径でも、荷重の上昇に対する急激な電気抵抗の低下はみられなかった。外径5.0mmおよび外径3.0mmの導電性弾性体40は、外径2.5mmの導電性弾性体40と比べて、荷重の小さい領域(100~200グラム)でも電気抵抗が大きく、当該領域において荷重の上昇に対する電気抵抗差を明確に検出可能であることがわかった。特に、外径3.0mmの導電性弾性体40は、外径5.0mmの導電性弾性体40よりも荷重の小さい領域における電気抵抗が大きく、比較的良好な電気抵抗の変化を確認することができた。 As shown in FIG. 15, at any outer diameter, there was no sudden decrease in electrical resistance with respect to the increase in load. The conductive elastic body 40 having an outer diameter of 5.0 mm and an outer diameter of 3.0 mm has a larger electric resistance than the conductive elastic body 40 having an outer diameter of 2.5 mm even in a small load region (100 to 200 grams). It was found that the electric resistance difference with respect to the load increase can be clearly detected in this region. In particular, the conductive elastic body 40 having an outer diameter of 3.0 mm has a larger electric resistance in a region where the load is smaller than the conductive elastic body 40 having an outer diameter of 5.0 mm, and confirms a relatively good change in the electric resistance. I was able to.
(実験3:支持部材の厚さの検討)
 支持部材36の厚さ(W)が異なる複数種のコンタクトラバー3を金型成形にて用意し、各種コンタクトラバー3の浮動部37に、一端が球面形状で外径3mmの導電性弾性体40を取り付けた。次に、コンタクトラバー3の上方から1mm/secの速度で押圧し、0~1.5mmまで駆動したときの導電性弾性体40に加わる荷重の変化および1.5~2.0mmまで駆動したときの導電性弾性体40に加わる荷重の変化を調べた。その結果を、表1に示す。表中の評価結果は、3段階とし、使用できるが荷重に対して電気抵抗が不安定になる可能性があるレベルを「1」、十分に使用できるレベルであるが電気抵抗の変化が若干不安定、あるいは若干、荷重が伝わりにくいレベルを「2」、全く問題なく十分に使用できるレベルを「3」とした。そして、使用できないレベルは、評価なしとした。
(Experiment 3: Examination of thickness of support member)
A plurality of types of contact rubbers 3 with different thicknesses (W) of the support members 36 are prepared by molding, and conductive elastic bodies 40 having a spherical shape at one end and an outer diameter of 3 mm are provided on the floating portions 37 of the various contact rubbers 3. Attached. Next, when the contact rubber 3 is pressed from above at a speed of 1 mm / sec and is driven from 0 to 1.5 mm, the load applied to the conductive elastic body 40 is changed, and the driving is performed from 1.5 to 2.0 mm. The change in the load applied to the conductive elastic body 40 was examined. The results are shown in Table 1. The evaluation results in the table have three levels. The level that can be used but the electrical resistance may become unstable with respect to the load is “1”. The level that was stable or slightly difficult to transmit the load was set to “2”, and the level that could be used satisfactorily without any problem was set to “3”. And the level which cannot be used was set as no evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、支持部材36の使用上最も良好な厚さ(W)は0.15mmであることがわかった。荷重に対する電気抵抗の変化は緩慢であって2mm可動のときにも十分に電気抵抗の変位を検出できた。次に、良好な厚さ(W)は、0.10mmおよび0.20mmであった。厚さ(W)が0.10mmの場合、可動初期には電気抵抗が少し不安定であるものの、それ以降の可動域では荷重に対する電気抵抗の変化は安定して低下した。また、厚さ(W)が0.20mmの場合、十分に電気抵抗の変位の差を検出できるが、電気抵抗の若干急な低下を生じる荷重域があった。最後に、レベル1とした厚さ(W)が0.05mmおよび0.25mmでは、荷重が一定に接点に若干伝わりにくい、あるいは急激な電気抵抗の変化が見られ、先に述べたレベル3,2のものに比べて若干劣っていたが、使用できるレベルであることがわかった。 As shown in Table 1, it was found that the best thickness (W) for use of the support member 36 was 0.15 mm. The change in the electric resistance with respect to the load was slow, and even when it was movable 2 mm, the displacement of the electric resistance could be detected sufficiently. Next, the favorable thickness (W) was 0.10 mm and 0.20 mm. When the thickness (W) was 0.10 mm, the electric resistance was slightly unstable at the initial stage of movement, but the change in electric resistance with respect to the load was stably reduced in the subsequent movable range. Further, when the thickness (W) is 0.20 mm, the difference in displacement of the electric resistance can be sufficiently detected, but there is a load region in which the electric resistance slightly decreases. Finally, when the thickness (W) at level 1 is 0.05 mm and 0.25 mm, the load is not easily transmitted to the contacts to some extent, or a sudden change in electrical resistance is observed. Although it was a little inferior to the thing of 2, it turned out that it is the level which can be used.
 本発明は、車載用機器をはじめ各種機器のスイッチに利用することができる。 The present invention can be used for switches of various devices including in-vehicle devices.
1   感圧式入力装置
3   コンタクトラバー
5   PCB(プリント回路基板)
36  支持部材
40  導電性弾性体
41  接点(導電体)
50  第一接点用電極
50a 第一電極
50b 第一電極
51  第二接点用電極
51a 第二電極
51b 第二電極
52  第二接点用電極
52a 第二電極
52b 第二電極
60  アナログ回路
70  デジタル回路
72  オン/オフ式のスイッチ
80  複合回路
95  マイクロコンピュータ(検知装置)
100 コンタクトラバー
102 ドーム(支持部材)
104 ドーム(支持部材)
111 導電性弾性体
110 接点(導電体)
200 コンタクトラバー
206 支持部材
1 Pressure-sensitive input device 3 Contact rubber 5 PCB (printed circuit board)
36 support member 40 conductive elastic body 41 contact point (conductor)
50 First contact electrode 50a First electrode 50b First electrode 51 Second contact electrode 51a Second electrode 51b Second electrode 52 Second contact electrode 52a Second electrode 52b Second electrode 60 Analog circuit 70 Digital circuit 72 ON / Off-type switch 80 composite circuit 95 microcomputer (detection device)
100 Contact rubber 102 Dome (support member)
104 Dome (support member)
111 Conductive elastic body 110 Contact point (conductor)
200 Contact rubber 206 Support member

Claims (5)

  1.  互いに離間する複数の第一電極から成る第一接点用電極を少なくとも有するプリント回路基板と、
     そのプリント回路基板の上方に配置され、当該プリント回路基板の表面に向かって弾性的に駆動可能なコンタクトラバーと、
     上記コンタクトラバーから上記プリント回路基板の方向への押圧を検知する検知装置と、
    を備える感圧式入力装置であって、
     上記コンタクトラバーは、
     上記第一接点用電極の上方において上記第一接点用電極に向かって突出して備えられ、その先端に向かって水平断面を小さくする形状を有する導電性弾性体と、
     上記導電性弾性体を支持する変形自在な部材であって、上記導電性弾性体が上記第一接点用電極に接触した後に、上記導電性弾性体を上記プリント回路基板から離れる方向に移動させて上記導電性弾性体への荷重を緩和させる支持部材と、
    を備え、
     上記第一接点用電極は、上記導電性弾性体との接触面積に依存して上記第一電極間の電気抵抗を低下させる機能を持ち、
     上記検知装置は、上記電気抵抗の変化が所定の閾値を超えたかどうかを判断し、当該閾値を超えたと判断した際に押圧を検知し、当該閾値を超えていないと判断した際に上記押圧を検知しないことを特徴とする感圧式入力装置。
    A printed circuit board having at least a first contact electrode composed of a plurality of first electrodes spaced apart from each other;
    A contact rubber disposed above the printed circuit board and elastically driven toward the surface of the printed circuit board;
    A detection device for detecting a pressure in the direction of the printed circuit board from the contact rubber;
    A pressure-sensitive input device comprising:
    The contact rubber is
    A conductive elastic body provided above the first contact electrode and projecting toward the first contact electrode and having a shape that reduces the horizontal cross section toward the tip;
    A deformable member that supports the conductive elastic body, and after the conductive elastic body contacts the first contact electrode, the conductive elastic body is moved away from the printed circuit board. A support member that relaxes the load on the conductive elastic body;
    With
    The first contact electrode has a function of reducing the electrical resistance between the first electrodes depending on the contact area with the conductive elastic body,
    The detection device determines whether or not the change in the electrical resistance exceeds a predetermined threshold, detects a press when it is determined that the threshold is exceeded, and detects the press when it is determined that the threshold is not exceeded. A pressure-sensitive input device that is not detected.
  2.  前記導電性弾性体は、前記コンタクトラバーを前記プリント回路基板の方向へ向けて押し下げていない状態では、前記プリント回路基板との間に空間を有し、前記第一接点用電極と非接触状態にあることを特徴とする請求項1に記載の感圧式入力装置。 The conductive elastic body has a space between the contact rubber and the first contact electrode in a non-contact state when the contact rubber is not pushed down toward the printed circuit board. The pressure-sensitive input device according to claim 1, wherein the pressure-sensitive input device is provided.
  3.  前記プリント回路基板は、前記第一接点用電極以外に、互いに離間する複数の第二電極から成る第二接点用電極をさらに備え、
     前記コンタクトラバーは、上記第二接点用電極の上方に、前記導電性弾性体と前記第一接点用電極との距離より大きな距離を離して導電体を備え、
     前記検知装置は、前記導電性弾性体と前記第一接点用電極との接触後のさらなる押し下げにより、上記導電体と上記第二接点用電極とが接触した際に、次の押圧を検知することを特徴とする請求項1または請求項2に記載の感圧式入力装置。
    In addition to the first contact electrode, the printed circuit board further includes a second contact electrode composed of a plurality of second electrodes spaced apart from each other,
    The contact rubber includes a conductor above the second contact electrode, the conductor being separated by a distance larger than the distance between the conductive elastic body and the first contact electrode,
    The detection device detects the next press when the conductor and the second contact electrode come into contact with each other by further pressing after the contact between the conductive elastic body and the first contact electrode. The pressure-sensitive input device according to claim 1 or 2, wherein
  4.  前記コンタクトラバーにおいて、前記導電性弾性体は、前記導電体よりも内側に設けられ、
     前記プリント回路基板において、前記第一接点用電極は、前記第二接点用電極よりも内側に設けられていることを特徴とする請求項3に記載の感圧式入力装置。
    In the contact rubber, the conductive elastic body is provided inside the conductor,
    The pressure-sensitive input device according to claim 3, wherein the first contact electrode is provided inside the second contact electrode in the printed circuit board.
  5.  前記導電体と前記第二接点用電極との間でデジタル回路のオン/オフ式のスイッチを構成する場合において、
     前記プリント回路基板は、前記導電性弾性体と前記第一接点用電極との間で構成される可変抵抗を備えるアナログ回路と上記デジタル回路を電気的に組み合わせた複合回路を備え、
     前記検知装置は、上記複合回路から得られる単一の出力電圧により、第一段および第二段の各押圧を検知することを特徴とする請求項3または請求項4に記載の感圧式入力装置。
    In the case of configuring an on / off switch of a digital circuit between the conductor and the second contact electrode,
    The printed circuit board includes a composite circuit obtained by electrically combining an analog circuit having a variable resistor configured between the conductive elastic body and the first contact electrode and the digital circuit.
    5. The pressure-sensitive input device according to claim 3, wherein the detection device detects each pressing of the first stage and the second stage based on a single output voltage obtained from the composite circuit. .
PCT/JP2010/004086 2009-07-13 2010-06-18 Pressure-sensitive input device WO2011007500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-164377 2009-07-13
JP2009164377A JP2011023114A (en) 2009-07-13 2009-07-13 Pressure-sensitive input device

Publications (1)

Publication Number Publication Date
WO2011007500A1 true WO2011007500A1 (en) 2011-01-20

Family

ID=43449112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004086 WO2011007500A1 (en) 2009-07-13 2010-06-18 Pressure-sensitive input device

Country Status (2)

Country Link
JP (1) JP2011023114A (en)
WO (1) WO2011007500A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016096087A1 (en) * 2014-12-19 2016-06-23 Audi Ag Operator control device for a vehicle, in particular a passenger car
WO2019048909A1 (en) * 2017-09-08 2019-03-14 Sateco Ag A button assembly
CN111712894A (en) * 2017-12-18 2020-09-25 阿尔卑斯阿尔派株式会社 Detection device
JP2021057299A (en) * 2019-10-01 2021-04-08 Tdk株式会社 Driving method and driving circuit for piezoelectric switch
EP4099353A3 (en) * 2021-05-20 2023-03-08 Black & Decker, Inc. Variable-speed trigger switch having a conductive elastomer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045577A (en) * 2011-08-23 2013-03-04 Shin Etsu Polymer Co Ltd Multidirectional switch member and electronic equipment comprising the same
KR102081726B1 (en) * 2013-09-26 2020-04-14 삼성메디슨 주식회사 Switch apparatus
CN107507722A (en) * 2017-07-25 2017-12-22 苏州达方电子有限公司 Press-key structure and elastic dome
KR101949335B1 (en) * 2018-11-16 2019-05-21 가톨릭대학교 산학협력단 Hybrid switch having function of preview

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042605A (en) * 2000-07-28 2002-02-08 Asahi Optical Co Ltd Push-push button switch
JP2003090773A (en) * 2001-09-19 2003-03-28 Polymatech Co Ltd Pressure-sensitive sensor and method of detecting pressing force of pressure-sensitive sensor
JP2005257556A (en) * 2004-03-12 2005-09-22 Aisin Seiki Co Ltd Seating detection device and manufacturing method therefor
JP2008146679A (en) * 2008-02-18 2008-06-26 Alps Electric Co Ltd Input device and electronic device equipped therewith
JP2009016330A (en) * 2007-06-04 2009-01-22 Panasonic Corp Movable contact body and switch using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628612B2 (en) * 2001-09-10 2011-02-09 株式会社ワコー Force detection device using variable resistance element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042605A (en) * 2000-07-28 2002-02-08 Asahi Optical Co Ltd Push-push button switch
JP2003090773A (en) * 2001-09-19 2003-03-28 Polymatech Co Ltd Pressure-sensitive sensor and method of detecting pressing force of pressure-sensitive sensor
JP2005257556A (en) * 2004-03-12 2005-09-22 Aisin Seiki Co Ltd Seating detection device and manufacturing method therefor
JP2009016330A (en) * 2007-06-04 2009-01-22 Panasonic Corp Movable contact body and switch using the same
JP2008146679A (en) * 2008-02-18 2008-06-26 Alps Electric Co Ltd Input device and electronic device equipped therewith

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016096087A1 (en) * 2014-12-19 2016-06-23 Audi Ag Operator control device for a vehicle, in particular a passenger car
US9812272B1 (en) 2014-12-19 2017-11-07 Audi Ag Operator control device for a vehicle, in particular a passenger motor vehicle
WO2019048909A1 (en) * 2017-09-08 2019-03-14 Sateco Ag A button assembly
CN111052286A (en) * 2017-09-08 2020-04-21 萨德高股份有限公司 Push button assembly
US11127543B2 (en) 2017-09-08 2021-09-21 Sateco Ag Button assembly governed by a restrictor member
CN111052286B (en) * 2017-09-08 2022-08-02 萨德高股份有限公司 Push button assembly
CN111712894A (en) * 2017-12-18 2020-09-25 阿尔卑斯阿尔派株式会社 Detection device
CN111712894B (en) * 2017-12-18 2022-11-01 阿尔卑斯阿尔派株式会社 Detection device
JP2021057299A (en) * 2019-10-01 2021-04-08 Tdk株式会社 Driving method and driving circuit for piezoelectric switch
JP7259687B2 (en) 2019-10-01 2023-04-18 Tdk株式会社 Piezoelectric switch drive method and drive circuit
EP4099353A3 (en) * 2021-05-20 2023-03-08 Black & Decker, Inc. Variable-speed trigger switch having a conductive elastomer

Also Published As

Publication number Publication date
JP2011023114A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
WO2011007500A1 (en) Pressure-sensitive input device
US7301113B2 (en) Diaphragm for use in switch, method for manufacturing thereof, membrane switch, and input device
JP5541800B2 (en) Two-stage switch device
US7960667B2 (en) Movable contact element and switch using the same
JP6267699B2 (en) Pushbutton switch with deformable curved contact element
JP2004045173A (en) Capacitance type sensor
WO2007057943A1 (en) Strain-inducing body, capacitance-type force sensor, and capacitance-type acceleration sensor
JP6246111B2 (en) Capacitive input device
EP1310967A2 (en) Input device which varies output value in accordance with pressing force
EP3916747A1 (en) Movable member and input device
US9627161B2 (en) Operating switch
US20160104587A1 (en) Push switch
US6552288B2 (en) Input device for game controller
JP2007035334A (en) Capacitive touch switch
WO2004025677A1 (en) Membrane for key switch and the key switch
WO2015133135A1 (en) Switch apparatus
JP2010272480A (en) Dome switch
JPS6153841B2 (en)
JP4192169B2 (en) Thin keyboard keycap structure
CN101063916B (en) Input device
WO2017204341A1 (en) Push-button switch
JP7294959B2 (en) switch device
WO2023204065A1 (en) Input device
WO2023171259A1 (en) Multidirectional input device
US20210142963A1 (en) Trigger device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799564

Country of ref document: EP

Kind code of ref document: A1