WO2011007499A1 - ポーラ変調送信機及びそれを用いた通信装置 - Google Patents

ポーラ変調送信機及びそれを用いた通信装置 Download PDF

Info

Publication number
WO2011007499A1
WO2011007499A1 PCT/JP2010/004045 JP2010004045W WO2011007499A1 WO 2011007499 A1 WO2011007499 A1 WO 2011007499A1 JP 2010004045 W JP2010004045 W JP 2010004045W WO 2011007499 A1 WO2011007499 A1 WO 2011007499A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
amplitude
power
output
amplitude modulator
Prior art date
Application number
PCT/JP2010/004045
Other languages
English (en)
French (fr)
Inventor
森本滋
石田薫
中村真木
松浦徹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011007499A1 publication Critical patent/WO2011007499A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages

Definitions

  • the present invention relates to a polar modulation transmitter that amplitude-modulates a phase modulation signal with an amplitude signal, and a communication device including the polar modulation transmitter.
  • FIG. 9 is a block diagram showing a configuration of a conventional polar modulation transmitter 140 described in Patent Document 1.
  • the conventional polar modulation transmitter 140 shown in FIG. 9 includes a signal generation unit 141, a regulator 142, a phase modulator (PM) 143, an amplitude modulator (PA) 144, and a DA converter (DAC) 146.
  • the input signal input to the signal generation unit 141 is decomposed into an amplitude signal M and a phase signal P. Of these two signals, the amplitude signal M is input to the regulator 142 via the DA converter 146, and the phase signal P is input to the phase modulator 143.
  • the regulator 142 converts the amplitude signal M converted into an analog signal by the DA converter 146 into an amplitude drive signal V, and supplies it to the amplitude modulator 144.
  • the phase signal P output from the signal generation unit 141 is phase-modulated by the phase modulator 143 and input to the amplitude modulator 144 as a phase modulation signal.
  • the amplitude modulator 144 performs amplitude modulation on the phase modulation signal with the amplitude drive signal V and outputs an output signal.
  • FIG. 10A is a diagram illustrating the relationship between the output power (output signal) and the input power (phase modulation signal) of the amplitude modulator 144 in the conventional polar modulation transmitter 140.
  • FIG. 10B is a diagram illustrating the relationship between the output power (output signal) of the amplitude modulator 144 and the effective value Vrms of the amplitude drive signal V.
  • the amplitude drive signal V is assumed to be a voltage signal, but may be a current signal.
  • the amplitude modulator 144 is operated in a saturated state. Specifically, the input power of the amplitude modulator 144, that is, the output power of the phase modulator 143 is fixed to 0 dBm (see FIG.
  • the effective value Vrms of the amplitude drive signal V is between 0.3V and 3V.
  • power amplification is performed in a high output region (the output power of the amplitude modulator 144 is in the range of 10 to 24 dBm).
  • the output power of the amplitude modulator 144 is in the range of ⁇ 50 to 10 dBm.
  • the input power and output power of the amplitude modulator 144 are changed due to temperature fluctuations. Or the relationship between the effective value Vrms of the amplitude drive signal V of the amplitude modulator 144 and the output power changes, resulting in a discontinuous region in the output power.
  • an object of the present invention is to provide a polar modulation transmitter capable of ensuring a wide transmission output range of the amplitude modulator while maintaining the continuity of the output power of the amplitude modulator, and operating with lower power consumption than before, and A communication apparatus using a polar modulation transmitter is provided.
  • one aspect of the present invention is a polar modulation transmitter including an amplitude modulator, an amplitude driving unit, a variable gain adjusting unit, and a control unit.
  • the amplitude modulator amplitude-modulates the phase modulation signal with the amplitude signal.
  • the amplitude driver drives the amplitude modulator with an amplitude signal.
  • the variable gain adjustment unit adjusts the power level of the phase modulation signal.
  • the control unit continuously changes the power level to continuously shift the amplitude modulator from the saturated operation state to the linear operation state.
  • seamless output power control at an interval of approximately 1 dB can be realized in a wide transmission output range of 80 dB in UMTS.
  • the polar modulation transmitter can be operated with low power consumption as compared with the conventional case where the input power level to the amplitude modulator is fixed in the high output region.
  • a power detector for detecting the power level of the output signal of the amplitude modulator.
  • the control unit generates a first control signal corresponding to the detection value of the power detector, and controls the variable gain adjustment unit using the first control signal, thereby changing the power level of the phase modulation signal.
  • a conventional polar modulation transmitter in which the power level of the phase modulation signal is kept constant by generating the first control signal and using it for control so that the power of the output signal becomes a set predetermined power level. Compared to the power consumption, it is possible to reduce power consumption.
  • a current detector for detecting a current flowing from the amplitude driver to the amplitude modulator.
  • the control unit generates a second control signal corresponding to the detection value of the current detector, and controls the variable gain adjustment unit using the second control signal, thereby changing the power level of the phase modulation signal.
  • the power level of the phase modulation signal is constant by generating the second control signal and using it for control so that the current flowing from the amplitude driver to the amplitude modulator becomes a set predetermined current level. Therefore, it is possible to reduce power consumption as compared with the conventional polar modulation transmitter held in the above.
  • one aspect of the present invention is a communication device that includes the polar modulation transmitter and includes a transmission circuit that generates a transmission signal and an antenna that outputs the transmission signal generated by the transmission circuit.
  • a reception circuit that processes a reception signal received by an antenna, an antenna sharing unit that outputs a transmission signal generated by the transmission circuit to the antenna, and outputs a reception signal received by the antenna to the reception circuit; Is provided.
  • the polar modulation transmitter since the input power to the amplitude modulator continuously changes, it is possible to widen the transmission output range of the amplitude modulator while maintaining the continuity of the output of the amplitude modulator.
  • the polar modulation transmitter since the power level of the phase modulation signal is appropriately changed according to the state of the amplitude modulator, the polar modulation transmitter is lower than the conventional polar modulation transmitter in which the power level of the phase modulation signal is fixed. It can be operated with power consumption.
  • FIG. 1 is a block diagram showing a configuration of a polar modulation transmitter 10 according to the first embodiment of the present invention.
  • FIG. 2A is a diagram illustrating the relationship between the output power of the amplitude modulator 13 and the output power of the variable gain adjustment unit 114.
  • FIG. 2B is a diagram illustrating the relationship between the output power of the amplitude modulator 13 and the effective value Vrms of the control voltage Vcc.
  • FIG. 3 is a block diagram showing the configuration of the polar modulation transmitter 20 according to the second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the relationship between the output of the variable gain adjusting unit 114 and the output monitor value of the amplitude modulator 13.
  • FIG. 1 is a block diagram showing a configuration of a polar modulation transmitter 10 according to the first embodiment of the present invention.
  • FIG. 2A is a diagram illustrating the relationship between the output power of the amplitude modulator 13 and the output power of the variable gain adjustment unit 114.
  • FIG. 5 is a block diagram showing a configuration of a polar modulation transmitter 30 according to the third embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the output power of the amplitude modulator 13 and the current flowing from the amplitude driver 22 to the amplitude modulator 13.
  • FIG. 7 is a diagram showing the relationship between the output power of the amplitude modulator 13 and the current monitor value by the current detection unit 221.
  • FIG. 8 is a block diagram illustrating a configuration example of the communication device 80.
  • FIG. 9 is a block diagram showing a configuration of a conventional polar modulation transmitter 140.
  • FIG. 10A is a diagram illustrating the relationship between the output power and the input power of the amplitude modulator 144 in the conventional polar modulation transmitter 140.
  • FIG. 10B is a diagram illustrating the relationship between the output power of the amplitude modulator 144 and the amplitude modulation voltage effective value Vrms in the conventional polar modulation transmitter 140.
  • FIG. 1 is a block diagram showing a configuration of a polar modulation transmitter 10 according to the first embodiment of the present invention.
  • the polar modulation transmitter 10 is a device that amplifies an input signal and outputs an output signal. First, the outline of each component of the polar modulation transmitter 10 will be described.
  • the polar modulation transmitter 10 includes a high-frequency integrated processing circuit (hereinafter referred to as “RFIC”) 11, an amplitude driver 12, and an amplitude modulator (PA) 13.
  • RFIC high-frequency integrated processing circuit
  • PA amplitude modulator
  • the RFIC 11 generates an amplitude signal and a phase modulation signal from an input signal.
  • the RFIC 11 includes a signal generation unit 111, a DA converter (DAC) 112, a phase modulator (PM) 113, and a variable gain adjustment unit (VGA) 114.
  • DAC DA converter
  • PM phase modulator
  • VGA variable gain adjustment unit
  • the signal generator 111 decomposes, for example, a baseband signal input as an input signal into an amplitude component and a phase component, and generates an amplitude signal M and a phase signal P.
  • the amplitude signal M is a signal indicating the amplitude component of the input signal.
  • the phase signal P is a signal indicating the phase component of the input signal.
  • the generated amplitude signal M is output to the DA converter 112, and the generated phase signal P is output to the phase modulator 113.
  • the DA converter 112 converts the amplitude signal M output from the signal generation unit 111 into an analog signal and outputs the analog signal to the amplitude driving unit 12.
  • the phase modulator 113 modulates the phase signal P output from the signal generation unit 111 and outputs it to the variable gain adjustment unit 114 as a phase modulation signal.
  • the variable gain adjustment unit 114 adjusts the power level of the phase modulation signal by amplifying or attenuating the phase modulation signal output from the phase modulator 113.
  • the phase modulation signal whose power level is adjusted by the variable gain adjustment unit 114 is output from the variable gain adjustment unit 114 to the amplitude modulator 13 as a power signal.
  • the operation of the amplitude modulator 13 is changed from the saturated operation state to the linear operation by continuously changing the power level of the power signal and the effective value Vrms of the control voltage Vcc over the low output region and the high output region. It is possible to transition continuously to a state. As a result, the transmission output range of the amplitude modulator 13 can be widened while maintaining the continuity of the output of the amplitude modulator 13 (signal level of the output signal). Also, as shown in FIG. 2A, the power level of the power signal is appropriately changed according to the state of the amplitude modulator 13, so that the conventional polar modulation transmitter 140 in which the power level of the power signal is fixed is used. As compared with the above, the polar modulation transmitter 10 can be operated with low power consumption.
  • the RFIC 21 has the same configuration as the RFIC 11 except that the RFIC 21 further includes a control unit 115.
  • the control unit 115 functions as the control unit of the present invention in the second embodiment.
  • the control unit 115 includes a table in which the power level of the output signal is associated with the power value (power level) of the power signal. The control unit 115 reads a power value corresponding to the detection value (power level of the output signal) of the power detector 14 from the table, generates a first control signal for outputting the power signal of the power value, Output to the variable gain adjustment unit 114.
  • control unit 115 controls the operation of the variable gain adjustment unit 114 by generating the first control signal corresponding to the detection value of the power detector 14 and outputting the first control signal to the variable gain adjustment unit 114.
  • the power level of the power signal output from the variable gain adjusting unit 114 to the amplitude modulator 13 changes.
  • the control unit 115 generates a first control signal corresponding to the detection result of the power detector 14.
  • the first control signal for changing the signal level of the power signal from ⁇ 20 dBm to, for example, ⁇ 19 dBm so that the detection value detected by the power detector 14 becomes 10 dBm, which is the set power, Is generated using a table.
  • the control unit 115 controls the power level of the power signal output from the variable gain adjustment unit 114 until the output monitor value of the amplitude modulator 13 reaches a desired power value.
  • variable gain adjustment part 114 may have the function of this control part 115. That is, the variable gain adjustment unit 114 reads a necessary power value from the table so that the power level of the output signal output from the amplitude modulator 13 becomes a desired value, and converts the power signal having the power value into the amplitude modulator. 13 may be output.
  • FIG. 5 is a block diagram showing a configuration of a polar modulation transmitter 30 according to the third embodiment of the present invention.
  • the polar modulation transmitter 30 has the same configuration as the polar modulation transmitter 10 according to the first embodiment except that the polar modulation transmitter 30 further includes a current detector 221 and a control unit 116.
  • the description is abbreviate
  • a current detector 221 is provided in the amplitude driver 22 of the polar modulation transmitter 30.
  • the amplitude drive unit 22 is the same as the amplitude drive unit 12 except that it includes a current detector 221.
  • the current detector 221 detects a current flowing from the amplitude driver 22 to the amplitude modulator 13. The detection value of the current detector 221 is output to the control unit 116.
  • FIG. 6 is a diagram showing the relationship between the output power of the amplitude modulator 13 and the current flowing from the amplitude driver 22 to the amplitude modulator 13.
  • the value of the current flowing from the amplitude driver 22 to the amplitude modulator 13 may be set to 100 mA.
  • the current value flowing from the amplitude driver 22 to the amplitude modulator 13 may be set to 250 mA.
  • the output of the amplitude modulator 13 can be set to a desired value.
  • the control unit 116 reads a power value corresponding to the detection value of the current detector 221 from the table, generates a second control signal for outputting a power signal of the power value, and outputs the second control signal to the variable gain adjustment unit 114. To do. As described above, the control unit 116 controls the operation of the variable gain adjustment unit 114 by generating the second control signal corresponding to the detection value of the current detector 221 and outputting the second control signal to the variable gain adjustment unit 114. By this control, the power level of the power signal output from the variable gain adjusting unit 114 to the amplitude modulator 13 changes.
  • the output power value of the variable gain adjustment unit 114 is controlled based on the detection result of the current detector 221.
  • the output power of the amplitude modulator 13 is set to a desired value.
  • the polar modulation transmitter 30 by generating and outputting the second control signal so that the current flowing from the amplitude driver 22 to the amplitude modulator 13 becomes a predetermined current level, The power consumption can be reduced compared to the conventional polar modulation transmitter 140 in which the power level of the power signal is kept constant.
  • the amplitude modulator is controlled by controlling the output power of the variable gain adjusting unit 114 until the current value monitored by the current detector 221 reaches a predetermined current value.
  • the output power of 13 may be set to a desired value.
  • the antenna sharing unit 83 transmits the reception signal received by the antenna 84 to the reception circuit 82 and prevents the reception signal from leaking to the transmission circuit 81.
  • the reception signal transmitted to the reception circuit 82 is processed by the reception circuit 82.
  • the present invention is applicable to a polar modulation transmitter that modulates the amplitude of a phase modulation signal with an amplitude signal, a communication device that includes a polar modulation transmitter, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

 振幅変調器(13)は、位相変調信号を振幅駆動部(12)からの振幅信号で振幅変調する。振幅変調器(13)に入力される位相変調信号の電力レベルは、可変利得調整部(114)によって調整される。この位相変調信号の電力レベルは、連続的に変化するように制御される。その結果、振幅変調器(13)が飽和動作状態から線形動作状態へと連続的に遷移する。

Description

ポーラ変調送信機及びそれを用いた通信装置
 本発明は、位相変調信号を振幅信号で振幅変調するポーラ変調送信機、及びポーラ変調送信機を備える通信装置に関する。
 携帯電話や無線LAN等の通信装置は、出力電力の大きさに関係なく、送信信号の精度を確保しつつ低消費電力で動作することが望ましい。このため、通信装置には、小型で高効率に動作し、線形性の高い送信信号を出力するポーラ変調送信機が用いられる(例えば特許文献1を参照)。
 図9は、特許文献1に記載の従来のポーラ変調送信機140の構成を示すブロック図である。図9に示されている従来のポーラ変調送信機140は、信号生成部141、レギュレータ142、位相変調器(PM)143、振幅変調器(PA)144、及びDAコンバータ(DAC)146を備える。信号生成部141に入力された入力信号は、振幅信号M及び位相信号Pに分解される。これら2つの信号のうち、振幅信号MはDAコンバータ146を介してレギュレータ142に入力され、位相信号Pは位相変調器143に入力される。レギュレータ142は、DAコンバータ146によってアナログ信号に変換された振幅信号Mを振幅駆動信号Vに変換し、振幅変調器144へ供給する。信号生成部141から出力された位相信号Pは、位相変調器143によって位相変調され、位相変調信号として振幅変調器144に入力される。振幅変調器144は、位相変調信号を振幅駆動信号Vで振幅変調し、出力信号を出力する。
 図10Aは、従来のポーラ変調送信機140における振幅変調器144の出力電力(出力信号)と入力電力(位相変調信号)との関係を例示する図である。図10Bは、振幅変調器144の出力電力(出力信号)と振幅駆動信号Vの実効値Vrmsとの関係を例示する図である。ここでは、振幅駆動信号Vは電圧信号を想定しているが電流信号の場合もある。従来のポーラ変調送信機140では、振幅変調器144を飽和状態で動作させている。具体的には、振幅変調器144の入力電力、すなわち位相変調器143の出力電力を0dBmに固定し(図10Aを参照)、振幅駆動信号Vの実効値Vrmsを0.3Vから3Vの間で変化させて(図10Bを参照)、高出力領域(振幅変調器144の出力電力が10~24dBmの範囲)で電力増幅を行っている。
特表2002-527921号公報(図2)
 ところで、例えばUMTS(Universal Mobile Telephone System)では、約80dBもの送信電力の可変レンジが求められている。それには、高出力領域と低出力領域と(振幅変調器144の出力電力が-50~10dBmの範囲)を共用して、振幅変調器144のダイナミックレンジを広くする必要がある。しかしながら、低出力領域と高出力領域とが切り替わる領域(図10A及び図10Bにおける一点鎖線の円で囲まれた領域を参照)においては、温度変動によって、振幅変調器144の入力電力と出力電力との関係、又は振幅変調器144の振幅駆動信号Vの実効値Vrmsと出力電力との関係が変化して、出力電力に不連続な領域が生じてしまうという問題があった。
 また、従来のポーラ変調送信機140では、振幅変調器144の入力、すなわち位相変調器143の出力が一定の電力値(図10Aに示される例では0dBm)に固定されていたため、高出力領域において位相変調器143及び振幅変調器144の消費電力が常に大きい状態にあるという問題があった。
 それ故に、本発明の目的は、振幅変調器の出力電力の連続性を維持したまま振幅変調器の送信出力レンジを広く確保でき、且つ従来よりも低い消費電力で動作するポーラ変調送信機、及びポーラ変調送信機を用いた通信装置を提供することである。
 上記課題を解決するために、本発明の一局面は、振幅変調器と、振幅駆動部と、可変利得調整部と、制御部とを備えるポーラ変調送信機である。振幅変調器は、位相変調信号を振幅信号で振幅変調する。振幅駆動部は、振幅変調器を振幅信号で駆動する。可変利得調整部は、位相変調信号の電力レベルを調整する。制御部は、電力レベルを連続的に変化させて振幅変調器を飽和動作状態から線形動作状態へと連続的に遷移させる。
 上記構成では、例えばUMTSで80dBもの広い送信出力レンジにおいて概ね1dBの間隔でのシームレスな出力電力の制御を実現することができる。また、高出力領域で振幅変調器への入力電力レベルが固定されていた従来に比べて、ポーラ変調送信機を低い消費電力で動作させることが可能となる。
 他の局面では、振幅変調器の出力信号の電力レベルを検出する電力検出器を備える。この場合、制御部は、電力検出器の検出値に応じた第1制御信号を生成し、この第1制御信号を用いて可変利得調整部を制御することにより、位相変調信号の電力レベルを変化させる。
 出力信号の電力が設定された所定の電力レベルとなるように第1制御信号を生成して制御に用いることにより、位相変調信号の電力レベルが一定に保持されていた従来のポーラ変調送信機に比べて消費電力を低減することが可能となる。
 他の局面では、振幅駆動部から振幅変調器へ流れる電流を検出する電流検出器を備える。この場合、制御部は、電流検出器の検出値に応じた第2制御信号を生成し、この第2制御信号を用いて可変利得調整部を制御することにより、位相変調信号の電力レベルを変化させる。
 振幅変調器の消費電流と、振幅変調器の出力電力との間には、相関関係がある。上記構成によれば、振幅駆動部から振幅変調器へ流れる電流が設定された所定の電流レベルとなるように第2制御信号を生成して制御に用いることにより、位相変調信号の電力レベルが一定に保持されていた従来のポーラ変調送信機に比べて消費電力を低減することが可能となる。
 また、本発明の一局面は、通信装置であって、上記ポーラ変調送信機を有し、送信信号を生成する送信回路と、送信回路で生成された送信信号を出力するアンテナとを備える。
 他の局面では、アンテナで受信された受信信号を処理する受信回路と、送信回路で生成された送信信号をアンテナへ出力し、アンテナで受信された受信信号を受信回路へ出力するアンテナ共用部とを備える。
 本発明によれば、振幅変調器への入力電力が連続的に変化するので、振幅変調器の出力の連続性を維持したまま振幅変調器の送信出力レンジを広くすることができる。また、位相変調信号の電力レベルが振幅変調器の状態に応じて適宜変更されるので、位相変調信号の電力レベルが固定されていた従来のポーラ変調送信機に比べて、ポーラ変調送信機を低い消費電力で動作させることができる。
図1は、本発明の第1の実施形態に係るポーラ変調送信機10の構成を示すブロック図である。 図2Aは、振幅変調器13の出力電力と可変利得調整部114の出力電力との関係を例示する図である。 図2Bは、振幅変調器13の出力電力と制御電圧Vccの実効値Vrmsとの関係を例示する図である。 図3は、本発明の第2の実施形態に係るポーラ変調送信機20の構成を示すブロック図である。 図4は、可変利得調整部114の出力と振幅変調器13の出力モニタ値との関係を例示した図である。 図5は、本発明の第3の実施形態に係るポーラ変調送信機30の構成を示すブロック図である。 図6は、振幅変調器13の出力電力と振幅駆動部22から振幅変調器13へ流れる電流との関係を示す図である。 図7は、振幅変調器13の出力電力と電流検出部221による電流モニタ値との関係を示す図である。 図8は、通信装置80の構成例を示すブロック図である。 図9は、従来のポーラ変調送信機140の構成を示すブロック図である。 図10Aは、従来のポーラ変調送信機140における振幅変調器144の出力電力と入力電力との関係を例示する図である。 図10Bは、従来のポーラ変調送信機140における振幅変調器144の出力電力と振幅変調電圧実効値Vrmsとの関係を例示する図である。
 〈第1の実施形態〉
 以下、適宜図面を参照しつつ本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係るポーラ変調送信機10の構成を示すブロック図である。ポーラ変調送信機10は、入力信号を電力増幅して出力信号を出力する装置である。まず、ポーラ変調送信機10の各構成の概略を説明する。
 図1に示されるように、ポーラ変調送信機10は、高周波集積処理回路(以下「RFIC」という)11、振幅駆動部12、及び振幅変調器(PA)13を備える。
 RFIC11は、入力信号から振幅信号及び位相変調信号を生成するものである。このRFIC11は、信号生成部111、DAコンバータ(DAC)112、位相変調器(PM)113、及び可変利得調整部(VGA)114を備える。
 信号生成部111は、入力信号として入力された例えばベースバンド信号を振幅成分と位相成分とに分解して、振幅信号M及び位相信号Pを生成する。ここで、振幅信号Mは、入力信号の振幅成分を示す信号である。位相信号Pは、入力信号の位相成分を示す信号である。生成された振幅信号MはDAコンバータ112へ出力され、生成された位相信号Pは位相変調器113へ出力される。DAコンバータ112は、信号生成部111から出力された振幅信号Mをアナログ信号に変換して振幅駆動部12へ出力する。
 位相変調器113は、信号生成部111から出力された位相信号Pを変調して、位相変調信号として可変利得調整部114へ出力する。可変利得調整部114は、位相変調器113から出力された位相変調信号を増幅又は減衰させることにより、位相変調信号の電力レベルを調整する。可変利得調整部114で電力レベルが調整された位相変調信号は、電力信号として可変利得調整部114から振幅変調器13へ出力される。
 振幅駆動部12は、DAコンバータ112から出力された振幅信号Mを増幅又は減衰して、増幅又は減衰された振幅信号Mを制御電圧Vccとして振幅変調器13へ供給する。これにより、振幅駆動部12は、振幅変調器13を制御電圧Vccで駆動する。この振幅駆動部12は、エンベロープ信号を制御するものであることから、EMICと称される。
 振幅変調器13は、電力増幅器(Power Amplifier)として機能するものであり、可変利得調整部114から出力された電力信号(位相変調信号)を振幅駆動部12から供給された制御電圧Vccで振幅変調して、出力信号として出力する。
 次に、ポーラ変調送信機10の動作について説明する。なお、本実施形態では、可変利得調整部114及び振幅駆動部12が本発明の制御部として機能する場合について説明する。
 図2Aは、振幅変調器13の出力電力と可変利得調整部114の出力電力との関係を示す図である。図2Bは、振幅変調器13の出力電力と制御電圧Vccの実効値Vrmsとの関係を示す図である。図2Bに示されているように、振幅駆動部12は、振幅変調器13の出力が-50dBmから10dBmの低出力領域では実効値Vrmsが0.5Vで一定となるように制御電圧Vccを制御する。そして、振幅駆動部12は、振幅変調器13の出力が10dBmから24dBmの高出力領域では実効値Vrmsが0.5Vから3Vまでの間で連続的に変化するように制御電圧Vccを制御する。一方、可変利得調整部114は、低出力領域から高出力領域にわたって可変利得調整部114の出力が線形的に変化するように電力信号の電力レベルを変化させる。
 このように、電力信号の電力レベルと制御電圧Vccの実効値Vrmsとを、低出力領域と高出力領域とにわたって連続的に変化させることによって、振幅変調器13の動作を飽和動作状態から線形動作状態へと連続的に遷移させることができる。その結果、振幅変調器13の出力(出力信号の信号レベル)の連続性を維持したまま、振幅変調器13の送信出力レンジを広くすることができる。また、図2Aに示されているように、振幅変調器13の状態に応じて電力信号の電力レベルが適宜変更されるので、電力信号の電力レベルが固定されていた従来のポーラ変調送信機140に比べて、ポーラ変調送信機10を低い消費電力で動作させることができる。
 〈第2の実施形態〉
 以下、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態に係るポーラ変調送信機20の構成を示すブロック図である。ポーラ変調送信機20は、電力検出器14及び制御部115を更に備えている他は、第1の実施形態に係るポーラ変調送信機10と同様の構成を備えている。このため、第2の実施形態では、ポーラ変調送信機10と共通する構成についてはその説明を省略し、異なる点について説明する。
 電力検出器14は、振幅変調器13から出力された出力信号の電力レベルを検出する。電力検出器14の検出値は、制御部115へ出力される。
 RFIC21は、RFIC11に対して制御部115を更に備えている他は、RFIC11と同様の構成を備えている。第1の実施形態では可変利得調整部114が本発明の制御部として機能する場合について説明したが、第2の実施形態では、この制御部115が本発明の制御部として機能する。図には示されていないが、制御部115は、出力信号の電力レベルと、電力信号の電力値(電力レベル)とを対応付けたテーブルを備えている。制御部115は、電力検出器14の検出値(出力信号の電力レベル)に対応する電力値をテーブルから読み出して、その電力値の電力信号を出力させるための第1制御信号を生成して、可変利得調整部114へ出力する。このように、制御部115は、電力検出器14の検出値に応じた第1制御信号を生成して可変利得調整部114へ出力することにより、可変利得調整部114の動作を制御する。この制御により、可変利得調整部114から振幅変調器13へ出力される電力信号の電力レベルが変化する。
 図4は、可変利得調整部114の出力と振幅変調器13の出力モニタ値との関係を例示した図である。ポーラ変調送信機20で温度変化が生じた場合、振幅変調器13から出力される出力信号の電力レベルや可変利得調整部114から出力される電力信号の電力レベルが変動することが考えられる。このため、出力信号の電力レベルを例えば10dBmに制御するために可変利得調整部114から-20dBmの電力信号を出力させた場合に、実際には、出力信号の電力レベルが10dBmよりも大きくなっているといった問題が生じうる。これに対して、本実施形態に係るポーラ変調送信機20では、制御部115において、電力検出器14の検出結果に応じた第1制御信号が生成される。ここでは、電力検出器14で検出される検出値が設定電力である10dBmとなるように、電力信号の信号レベルを-20dBmから例えば-19dBmへと変化させるための第1制御信号が、上述のようにテーブルを用いて生成される。制御部115は、振幅変調器13の出力モニタ値が所望の電力値に到達するまで、可変利得調整部114から出力される電力信号の電力レベルを制御する。
 以上説明したように、ポーラ変調送信機20によれば、振幅変調器13の出力が所望の値となるように制御部115によって可変利得調整部114の出力電力が制御されるので、高出力領域において電力信号の信号レベルが固定されていた従来のポーラ変調送信機140に比べて、ポーラ変調送信機20を低い消費電力で動作させることができる。また、第1の実施形態で説明したのと同様に、振幅変調器13に入力される制御電圧Vccの信号レベルと電力信号の信号レベルとを低出力領域と高出力領域とにわたって同時且つ連続的に変化させるので、振幅変調器13の出力の連続性を維持したまま振幅変調器13の送信出力レンジを広くすることができる。
 なお、本実施形態では、制御部115が電力信号の電力レベルを変化させる場合について説明したが、この制御部115の機能を可変利得調整部114が兼ね備えていてもよい。すなわち、可変利得調整部114が、振幅変調器13から出力される出力信号の電力レベルが所望の値となるように、必要な電力値をテーブルから読み出してその電力値の電力信号を振幅変調器13へ出力するようにしてもよい。
 〈第3の実施形態〉
 以下、本発明の第3の実施形態について説明する。図5は、本発明の第3の実施形態に係るポーラ変調送信機30の構成を示すブロック図である。ポーラ変調送信機30は、電流検出器221及び制御部116を更に備えている他は、第1の実施形態に係るポーラ変調送信機10と同様の構成を備えている。このため、第3の実施形態では、ポーラ変調送信機10と共通する構成についてはその説明を省略し、異なる点について説明する。
 図5に示されるように、ポーラ変調送信機30の振幅駆動部22には、電流検出器221が設けられている。振幅駆動部22は、電流検出器221を有している他は、振幅駆動部12と同様のものである。電流検出器221は、振幅駆動部22から振幅変調器13へ流れる電流を検出する。この電流検出器221の検出値は、制御部116へ出力される。
 図6は、振幅変調器13の出力電力と振幅駆動部22から振幅変調器13へ流れる電流との関係を示す図である。図6に例示されているように、例えば振幅変調器13の出力電力を10dBmに設定するには、振幅駆動部22から振幅変調器13へ流れる電流値を100mAにすればよい。また、例えば振幅変調器13の出力電力を24dBmに設定するには、振幅駆動部22から振幅変調器13へ流れる電流値を250mAにすればよい。このように、振幅変調器13の出力電力が10dBm以上の高出力領域では、振幅変調器13の消費電流と出力電力との間に相関関係がある。このため、電流検出器221の検出結果に応じて電力信号の電力レベルを変化させれば、振幅変調器13の出力を所望の値に設定することが可能である。
 RFIC31は、RFIC11に対して制御部116を更に備えている他は、RFIC11と同様の構成を備えている。第1の実施形態では可変利得調整部114が本発明の制御部として機能する場合について説明したが、第3の実施形態では、この制御部116が本発明の制御部として機能する。図には示されていないが、制御部116は、振幅駆動部22から振幅変調器13へ流れる電流の電流値と、電力信号の電力値(電力レベル)とを対応付けたテーブルを備えている。制御部116は、電流検出器221の検出値に対応する電力値をテーブルから読み出して、その電力値の電力信号を出力させるための第2制御信号を生成して、可変利得調整部114へ出力する。このように、制御部116は、電流検出器221の検出値に応じた第2制御信号を生成して可変利得調整部114へ出力することにより、可変利得調整部114の動作を制御する。この制御により、可変利得調整部114から振幅変調器13へ出力される電力信号の電力レベルが変化する。振幅変調器13の消費電流と振幅変調器13の出力電力値との間にも相関関係があるため、電流検出器221の検出結果に基づいて可変利得調整部114の出力電力値を制御することにより、振幅変調器13の出力電力が所望の値に設定される。
 図7は、振幅変調器13の出力電力と電流検出部221による電流モニタ値との関係を示す図である。ここで、電流検出器221で検出される電流値が100mAであれば、設定出力レベルである-19.5dBmの出力信号が振幅変調器13から出力されるものとする。ここでは、電流検出器221で検出される電流値が100mAよりも大きくなっているので、振幅変調器13から-20dBmの出力信号が出力されている。このような場合、制御部116では、電流検出器221で検出される電流値が100mAとなるように第2制御信号が生成される。その結果、可変利得調整部114から出力される電力信号の電力レベルが変更されて、出力信号の信号レベルが-20dBmから-19.5dBmに変更される。
 以上説明したように、ポーラ変調送信機30によれば、振幅駆動部22から振幅変調器13へ流れる電流が設定された所定の電流レベルとなるように第2制御信号を生成出力することにより、電力信号の電力レベルが一定に保持されていた従来のポーラ変調送信機140に比べて消費電力を低減することができる。
 なお、上述した本実施形態とは異なった形態として、電流検出器221でモニタされた電流値が所定の電流値に到達するまで可変利得調整部114の出力電力を制御することによって、振幅変調器13の出力電力を所望の値に設定するようにしてもよい。
 また、振幅変調器13の出力を所望の値に設定するために、例えば振幅駆動部22から振幅変調器13へ流れる電流に応じて制御電圧Vccの値を制御する。具体的には、振幅駆動部22は、電流と電圧値とを対応付けたテーブル(図示せず)から、振幅駆動部22から振幅変調器13へ流れる電流に対応する電圧値を読み出して、その電圧値の制御電圧Vccを振幅変調器13へ供給する。この場合、RFIC31の制御部116は不要である。
 〈ポーラ変調送信機を用いた構成例〉
 図8は、通信装置80の構成例を示すブロック図である。通信装置80は、送信回路81、受信回路82、アンテナ共用部83、及びアンテナ84を備える。送信回路81には、上述した第1、第2、及び第3の実施形態に係るポーラ変調送信機10、20、及び30のいずれかが用いられる。送信回路81は、ポーラ変調送信機を用いて送信信号(出力信号)を生成する。
 アンテナ共用部83は、送信回路81から出力された送信信号をアンテナ84へ伝達すると共に、受信回路82に送信信号が漏れるのを阻止する。アンテナ84に伝達された送信信号は、アンテナ84から空間に放出される。
 アンテナ共用部83は、アンテナ84で受信された受信信号を受信回路82へ伝達すると共に、送信回路81に受信信号が漏れるのを阻止する。受信回路82に伝達された受信信号は、受信回路82によって処理される。
 この通信装置80によれば、送信回路81としてポーラ変調送信機10、20、及び30のいずれかを用いるため、第1~第3の実施形態で説明した同様の効果が得られる。
 本発明は、位相変調信号を振幅信号で振幅変調するポーラ変調送信機やポーラ変調送信機を備える通信装置等に適用可能である。
10、20、30、140 ポーラ変調送信機
11、21、31 高周波集積処理回路(RFIC)
12、22 振幅駆動部(EMIC)
13、144 振幅変調器
14 電力検出器
80 通信装置
81 送信回路
82 受信回路
83 アンテナ共用部
84 アンテナ
111、141 信号生成部
112、146 DAコンバータ
113、143 位相変調器
114 可変利得調整部
115、116、117 制御部
142 レギュレータ
221 電流検出器

Claims (5)

  1.  位相成分と振幅成分とを用いて信号を処理するポーラ変調送信機であって、
     位相変調信号を振幅信号で振幅変調する振幅変調器と、
     前記振幅変調器を前記振幅信号で駆動する振幅駆動部と、
     前記位相変調信号の電力レベルを調整する可変利得調整部と、
     前記電力レベルを連続的に変化させて前記振幅変調器を飽和動作状態から線形動作状態へと連続的に遷移させる制御部とを備えることを特徴とする、ポーラ変調送信機。
  2.  前記振幅変調器の出力信号の電力レベルを検出する電力検出器を備え、
     前記制御部は、前記電力検出器の検出値に応じた第1制御信号を生成し、当該第1制御信号を用いて前記可変利得調整部を制御することにより、前記位相変調信号の電力レベルを変化させることを特徴とする、請求項1に記載のポーラ変調送信機。
  3.  前記振幅駆動部から前記振幅変調器へ流れる電流を検出する電流検出器を備え、
     前記制御部は、前記電流検出器の検出値に応じた第2制御信号を生成し、当該第2制御信号を用いて前記可変利得調整部を制御することにより、前記位相変調信号の電力レベルを変化させることを特徴とする、請求項1に記載のポーラ変調送信機。
  4.  通信装置であって、
     請求項1から3のいずれかに記載のポーラ変調送信機を有し、送信信号を生成する送信回路と、
     前記送信回路で生成された送信信号を出力するアンテナとを備えることを特徴とする、通信装置。
  5.  前記アンテナで受信された受信信号を処理する受信回路と、
     前記送信回路で生成された送信信号を前記アンテナへ出力し、前記アンテナで受信された受信信号を前記受信回路へ出力するアンテナ共用部とを備えることを特徴とする、請求項4に記載の通信装置。
PCT/JP2010/004045 2009-07-14 2010-06-17 ポーラ変調送信機及びそれを用いた通信装置 WO2011007499A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-166025 2009-07-14
JP2009166025 2009-07-14

Publications (1)

Publication Number Publication Date
WO2011007499A1 true WO2011007499A1 (ja) 2011-01-20

Family

ID=43449111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004045 WO2011007499A1 (ja) 2009-07-14 2010-06-17 ポーラ変調送信機及びそれを用いた通信装置

Country Status (1)

Country Link
WO (1) WO2011007499A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117315A (ja) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd 送信装置、送信出力制御方法、および無線通信装置
JP2005269346A (ja) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及びポーラ変調方法
WO2008084852A1 (ja) * 2007-01-12 2008-07-17 Panasonic Corporation 送信パワー制御方法及び送信装置
JP2009094721A (ja) * 2007-10-05 2009-04-30 Panasonic Corp ポーラ変調送信装置及び無線通信装置、並びにポーラ変調送信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117315A (ja) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd 送信装置、送信出力制御方法、および無線通信装置
JP2005269346A (ja) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及びポーラ変調方法
WO2008084852A1 (ja) * 2007-01-12 2008-07-17 Panasonic Corporation 送信パワー制御方法及び送信装置
JP2009094721A (ja) * 2007-10-05 2009-04-30 Panasonic Corp ポーラ変調送信装置及び無線通信装置、並びにポーラ変調送信方法

Similar Documents

Publication Publication Date Title
KR101800728B1 (ko) 전력 증폭기의 동작 영역을 확대하기 위한 장치 및 방법
JP4608487B2 (ja) 増幅器、情報通信機器、及び増幅方法
JP4628142B2 (ja) ポーラ変調送信装置、無線通信機及び電源電圧制御方法
JP2008539601A (ja) ポーラ変調送信回路及び通信機器
KR101800726B1 (ko) 전력 증폭기의 효율을 개선하기 위한 장치 및 방법
KR20140116494A (ko) 엔벨로프 추적 증폭기에 대한 엔벨로프 경로에서 형상 테이블과 조합하는 rf 경로에서의 사전-왜곡
US8417199B2 (en) Method and apparatus for improving efficiency in a power supply modulated system
JP2009517891A (ja) 送信回路、及びそれを用いた通信機器
JP2010011449A (ja) 電力増幅部のバイアス制御を行う送信回路
KR20040102298A (ko) 바이어스 적응 방식의 대전력 증폭기
JP2007053540A (ja) ドハティ型増幅器
US8442459B2 (en) Transmitter and communication apparatus using the same
JP2011188123A (ja) ポーラ変調方式を用いた送信回路及び通信機器
US7616702B2 (en) Transmission circuit and communication apparatus comprising the same
JP3874747B2 (ja) 送信装置、送信電力制御方法および無線通信装置
US8145148B2 (en) Transmitter and communication apparatus
JP4714184B2 (ja) 無線信号増幅装置
WO2011007499A1 (ja) ポーラ変調送信機及びそれを用いた通信装置
US9577581B2 (en) Signal amplifier with active power management
US7107027B2 (en) Distributed transmitter automatic gain control
JP2016100622A (ja) 増幅装置
US6727771B2 (en) Semiconductor integrated circuit device with variable gain amplifier
US9882536B2 (en) Wireless apparatus and method for controlling voltage supplied to amplifier unit
GB2358555A (en) Transmitter for mobile terminal with carrier leak suppressing circuit
US8532591B2 (en) Transmission circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP