WO2011006419A1 - 一种中继链路的物理广播信道映射及发射的方法及装置 - Google Patents

一种中继链路的物理广播信道映射及发射的方法及装置 Download PDF

Info

Publication number
WO2011006419A1
WO2011006419A1 PCT/CN2010/074437 CN2010074437W WO2011006419A1 WO 2011006419 A1 WO2011006419 A1 WO 2011006419A1 CN 2010074437 W CN2010074437 W CN 2010074437W WO 2011006419 A1 WO2011006419 A1 WO 2011006419A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
mapping
information
base station
bit
Prior art date
Application number
PCT/CN2010/074437
Other languages
English (en)
French (fr)
Inventor
毕峰
杨瑾
梁枫
袁明
吴栓栓
袁弋非
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011006419A1 publication Critical patent/WO2011006419A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a wireless communication technology, and more particularly to a physical broadcast channel of a relay link in a Long Term Evolution (LTE) system and a Long Term Evolution Advanced (LTE-A) system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • R-PBCH Physical Broadcast Channel
  • LTE systems, LTE-A systems, IMT-Advanced International Mobile Telecommunication Advanced, advanced international mobile communication systems
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 2 is a schematic diagram of a radio frame structure decomposition in the current LTE system.
  • One radio frame is composed of 10 radio subframes, and each subframe is composed of multiple OFDM symbols.
  • 3 is a schematic diagram of resource blocks and subcarriers in an LTE and LTE-A system.
  • an RB Resource Block
  • 1 RB consists of N x W 8 RE (Resource Element), where ⁇ denotes the number of OFDM symbols in 1 slot, indicating the resource block at the frequency The number of consecutive subcarriers on the domain.
  • the BCCH Broadcast Control Channel
  • MIB Master Information Block, referred to as primary information block or information bit
  • SIB System Information Block
  • the BCH Broadcast Channel
  • the SIB is mapped to the transport channel DL-SCH (downlink-shared channel); the transport channel BCH is mapped to the PBCH.
  • the transport channel DL-SCH is mapped to the PDSCH (Physical Downlink Shared Channel).
  • the MIB information field includes 24 bits of information, and the order is downlink bandwidth ( dl-Bandwidth ), physical Hybrid Automatic Repeat Request Indicator Channel (phich-Config ), system frame number (systemFrameNumber ), and reservation.
  • dl-Bandwidth downlink bandwidth
  • phich-Config physical Hybrid Automatic Repeat Request Indicator Channel
  • systemFrameNumber system frame number
  • spare bits, each of which includes: dl-Bandwidth ( 3bits ), phich-Config ( 3bits: lbit phich-Duration and 2bits phich-Resource ), systemFrameNumber ( 8bits ), spare ( 1 Obits ).
  • the number of bits to be encoded is equal to 40 bits, that is, 24 bits of information bits plus 16 bits of risk information. Since the terminal does not know the specific antenna configuration before demodulating the PBCH, the 16 bits check bit needs to be configured according to the antenna configuration of the eNode-B. Scrambled.
  • the bit sequence to be encoded is subjected to a tail biting convolutional code, QPSK modulation, multi-antenna processing, and resource mapping.
  • B3G/4G The research goal of B3G/4G is to integrate access systems such as cellular, fixed wireless access, nomadic, wireless regional networks, and all-IP networks to provide users with peaks in high-speed and low-speed mobile environments. Value-rates of up to 100 Mbps and IGbps wireless transmission capabilities, and the seamless integration of cellular systems, regional wireless networks, broadcast, and television satellite communications, enabling humans to achieve "anyone, anytime, anywhere, with anyone else, any way Communication".
  • Relay technology can be applied as an effective measure. Relay technology can increase cell coverage and increase cell capacity.
  • FIG. 1 is a schematic structural diagram of a system for introducing a relay node. After the introduction of a relay in the system, a new link is added.
  • the corresponding term includes:
  • the link between the eNode-B (referred to as eNB) and the relay is called a backhaul link.
  • the link between the relay and the UE (User Equipment) is called an access link, and the link between the eNode-B and the UE is called a direct link.
  • the eNode-B to relay link and the relay to UE link operate on the same frequency resource. Since the in-band relay transmitter will interfere with its own receiver (self-interference), it is impossible for the eNode-B to relay link and relay to UE link to be on the same frequency resource, unless there is enough signal separation. And antenna isolation. Similarly, it is not possible for the relay to transmit to the eNode-B while receiving the data transmitted by the UE.
  • a 10 ms radio frame is composed of 10 1 ms subframes, which may include a unicast Unicast and a multicast broadcast Multicast Broadcast, where the frequency division duplex (FDD) mode is used. #0, #5 subframes are used as the transmission synchronization signal, and #4, #9 subframes are used as paging paging. In the time division duplex (TDD) mode, #0, #5 subframes are used.
  • FDD frequency division duplex
  • #0, #5 subframes are used as the transmission synchronization signal
  • #4, #9 subframes are used as paging paging.
  • TDD time division duplex
  • the synchronization signal is transmitted, and the #1 and #6 subframes are used for paging paging, that is, for FDD ⁇ #0, #4, #5, #9 ⁇ subframes, TDD ⁇ #0, #1, #5,
  • the #6 ⁇ subframe has the above special purpose, so it cannot be used for the allocation of the MBSFN subframe (Multicast Broadcast Single Frequency Network), that is, the MBSFN subframe that can be allocated in one radio frame is at most 6 subframes. Subframe.
  • MBSFN subframe Multicast Broadcast Single Frequency Network
  • a possible solution to the problem of transceiving interference is to make the relay receive from eNode-B.
  • the data is not transmitted to the UE, that is, the gap "gap" needs to be added after the relay to the UE link, and the MBSFN subframe is configured for the backhaul subframe, so that the UE does not receive any reception within the "gap" time range.
  • Transmit operation, and Relay completes the transmission-to-receive handover in the "gap" time range, and receives data from the eNB in the following OFDM symbols after the handover is completed.
  • MBSFN subframe is used in LTE for backhaul subframe, and the specific manner is: MBMS Control Entity First, the eNode-B is configured with an available MBSFN subframe, and the eNode-B is configured in these available MBSFN subframes. Available backhaul subframe. Therefore, at the time of downlink, the relay first transmits control information (including ACK/NACK (Acknowlegment/Negative Acknowlegment) and uplink grant information UL grant) to the UEs of the subordinates in the first 1 or 2 OFDM symbols.
  • control information including ACK/NACK (Acknowlegment/Negative Acknowlegment) and uplink grant information UL grant
  • FDD ⁇ #0, #4, #5, #9 ⁇ subframes, TDD ⁇ #0, #1, #5, #6 ⁇ subframes have the above special purposes, so they cannot be used.
  • Multicast broadcasts the allocation of the single-frequency network MBSFN subframe, and the PBCH is transmitted at #0 subframe as described above, and #0 subframe cannot be used as the backhaul subframe, which causes the relay that is in the N-state to fail to receive the eNode-B normally.
  • each subframe containing a PBCH is self-decodable, that is, if the channel quality is good enough, the terminal can demodulate the PBCH by receiving any of the four times, for the backhaul link.
  • the channel quality is very good, so the PBCH does not need to be transmitted multiple times in the repetition period, only one time can be transmitted, and of course, it can also be transmitted multiple times.
  • the present invention will physics between the base station and the relay node.
  • the broadcast channel is called R-PBCH (Relay Link-Physical Broadcast Channel). Summary of the invention
  • the main object of the present invention is to provide a physical broadcast channel mapping and transmission method for a relay link, which is used to solve the mapping problem of a PBCH from a base station to a relay node link in the prior art.
  • a method for physical broadcast channel mapping and transmission of a relay link comprising:
  • R-PBCH physical broadcast channel
  • the mapping satisfies the condition:
  • R-PBCH-SF represents the subframe in which the R-PBCH is located
  • RF represents the radio frame in which the R-PBCH is located
  • SFN represents the system frame number
  • n represents R - the radio frame period of the PBCH mapping, and n is a positive integer; mod represents the remainder;
  • the R-PBCH is carried in one backhaul link subframe or multiple backhaul link subframes in the radio frame period of the R-PBCH mapping.
  • mapping of the R-PBCH on the OFDM symbol means:
  • the first 4, or the first 3, or the first 2, or the first OFDM symbol of the slot 1 including the subframe in which the R-PBCH is located bears the R-PBCH; or;
  • the symbol carries the R-PBCH.
  • the normal cyclic prefix and the extended cyclic prefix carry different R-PBCH encoded bits; when less than 4 OFDM symbols are used to carry the R-PBCH, the normal cyclic prefix and the extension The cyclic prefix carries the same number of bits after R-PBCH coding.
  • the method for determining the mapping position of the R-PBCH in the frequency direction is: the mapping position of the R-PBCH in the frequency direction is the same as or different from the mapping position of the physical broadcast channel of the base station to the terminal link in the frequency direction. ;
  • mapping position means that the mapping is at a frequency position of 540 kHz symmetrically about the center bandwidth
  • the different mapping positions mean that the mapping is at a frequency position of (W 2 ) * 180 kHz symmetrically about the center bandwidth, and (m / 2 ) * l 8 0 kHz represents the frequency width of m/2 resource blocks (RB).
  • the frequency width of m RBs that is, m * 180 kHz, where m is a positive integer; or, the frequency width of a total of m RBs, that is, m * 180 kHz, where m is a positive integer, at a frequency position not symmetric with the center bandwidth
  • the frequency position that is not symmetric with the center bandwidth is fixed or not fixed.
  • the information bits of the R-PBCH are the same as or different from the information bits of the base-to-terminal link physical broadcast channel
  • the information bits are the same: the information bits are in 24-bit information bits, and the specific bits have the same meaning; the information bits include public information between the base station and the relay node, and the base station to the terminal and the base station to the relay node. The same public information;
  • the information bits are different: the information bits include: a 3-bit downlink bandwidth (dl-Bandwidth), a 3-bit PHICH configuration information (phich-Config), an 8-bit system frame number (systemFrameNumber), and a 10-bit reservation (spare) a combination of one or more of the bits; common information between the base station and the relay node and the same common information between the base station and the terminal and the base station to the relay node; optionally, the information bits further include Other base stations than bit information Public information to the relay nodes.
  • dl-Bandwidth 3-bit downlink bandwidth
  • phich-Config 3-bit PHICH configuration information
  • systemFrameNumber 8-bit system frame number
  • 10-bit reservation 10-bit reservation
  • the CRC check bit adopts the same or different scrambling mode as the base-to-terminal link physical broadcast channel
  • the same scrambling mode means that: the CRC check bit scrambling mode corresponding to the information bit is consistent with the CRC check bit scrambling mode corresponding to the information bit of the base station to the terminal link physical broadcast channel;
  • the different scrambling manners are: using the CRC check bit scrambling method corresponding to the information bits to carry public information between other base stations to the relay nodes.
  • the constellation modulation mode of the R-PBCH is the same as or different from the constellation modulation mode of the base-to-terminal link physical broadcast channel; the same constellation modulation mode refers to adopting the QPSK mode; The modulation method of R-PBCH adopts 16QAM or 64QAM mode.
  • the present invention also provides a physical broadcast channel mapping and transmitting apparatus for a relay link, the apparatus comprising:
  • An information bit generating module configured to generate information bits of the R-PBCH
  • a frequency direction mapping module configured to map the R-PBCH in the frequency direction
  • a time direction mapping module configured to map the R-PBCH in the time direction
  • a transmitting module configured to the relay node on the backhaul link Transmitting R-PBCH
  • the time direction mapping module maps the R-PBCH in the subframe and the OFDM symbol in the radio frame.
  • the time direction mapping module needs to meet the following conditions when mapping the R-PBCH in the subframe in the radio frame:
  • R-PBCH-SF indicates a subframe in which the R-PBCH is located
  • R indicates a radio frame in which the R-PBCH is located, indicates a system frame number
  • n indicates a radio frame period of the R-PBCH mapping
  • n is a positive integer
  • mod indicates Remainder
  • the R-PBCH is carried in the link subframe or the multiple backhaul link subframes.
  • mapping of the time direction mapping module on the OFDM symbol refers to: the first 4, or the first 3, or the first 2, or the first 1 OFDM symbol of the slot 1 including the subframe in which the R-PBCH is located.
  • the normal cyclic prefix (Normal CP) and the extended cyclic prefix (Extended CP) carry different R-PBCH encoded bits; when less than 4 OFDM symbols are used to carry R-PBCH
  • the normal cyclic prefix and the extended cyclic prefix carry the same number of bits after R-PBCH encoding.
  • the frequency direction mapping module uses the same or different mapping position of the physical broadcast channel of the base-to-terminal link in the frequency direction when mapping the R-PBCH in the frequency direction;
  • mapping position means: the mapping is at a frequency position of 540 kHz symmetrically about the center bandwidth;
  • the mapping position is different: the mapping is at a frequency position symmetrical about the center bandwidth (m/ 2 )* l 8 0 kHz, and (m/ 2 )* l 8 0 kHz represents the frequency width of the m/2 resource blocks RB.
  • the frequency width of a total of m RBs that is, m * 180 kHz, where m is a positive integer
  • the frequency width of a total of m RBs that is, m * 180 kHz, where m is a frequency position that is not symmetric with the center bandwidth, where m is A positive integer
  • the frequency position that is not symmetric with the center bandwidth is fixed or not fixed.
  • the information bit generating module uses the same or different generating mode as the information bits of the base-to-terminal link physical broadcast channel when generating the information bits of the R-PBCH;
  • the same generation manner refers to: all adopt 24-bits information bit mode, the specific bit meanings are the same, the information bits include common information between the base station and the relay node, and also include the base station to the terminal and the base station to the relay node.
  • the different generation manners are: the information bits include 3 bits dl-Bandwidth, 3 !? ⁇ # phich-Config, 8 !? ⁇ # systemFrameNumber , 10 !? ⁇ # spare !? ⁇ # ⁇ ;1
  • the information bits include common information between the base station and the relay node, and also include the same common information between the base station and the terminal and the base station to the relay node; optionally, the information bits further include Common information between the base station and the relay node other than the above bit information; the information bit generating module performs the CRC check on the information bits, and the CRC check bits are the same as or different from the base station to the terminal link physical broadcast channel.
  • the scrambling mode is that the CRC check bit scrambling mode corresponding to the information bit is consistent with the CRC check bit scrambling mode corresponding to the information bit of the base station to the terminal link physical broadcast channel;
  • the different scrambling manners refer to using the CRC check bit scrambling method corresponding to the information bits to carry public information between other base stations to the relay nodes.
  • the modulation module adopts the same or different constellation modulation method as the base-to-terminal link physical broadcast channel when modulating the R-PBCH; the same constellation modulation method refers to adopting the QPSK method; The modulation method of R-PBCH adopts 16QAM or 64QAM mode.
  • the method of the present invention can be well applied to a base-to-relay node link, and the mapping mode is simple, which not only ensures backward compatibility (compatible with LTE system), but also solves the problem that the relay node can Correctly receive the problem of the PBCH delivered from the base station, while ensuring low overhead.
  • FIG. 1 is a schematic structural diagram of a system for introducing a relay node
  • FIG. 2 is a schematic diagram of decomposition of a radio frame structure in an LTE system
  • 3 is a schematic diagram of resource blocks and subcarriers in an LTE and LTE-A system
  • FIG. 4 is a schematic diagram of an R-PBCH with a period of 32 radio frames
  • Figure 5 is a schematic diagram of the frequency width of a total of 6 RBs at a frequency position symmetric with respect to the center bandwidth
  • Figure 6 is a schematic diagram of the frequency width of a total of 3 RBs at a frequency position that is not symmetric with the center bandwidth.
  • FIG. 4 is a schematic diagram of a mapping manner of R-PBCH on a radio frame and a subframe.
  • the subframe of the R-PBCH mapping is different from the subframe of the physical broadcast channel mapping of the base-to-terminal link, and the subframe of the R-PBCH mapping is satisfied.
  • the condition is ⁇ ? ! ⁇ ! ! ⁇ ⁇ " ⁇ :!, that is, the R-PBCH mapped subframe belongs to the R-PBCH mapped radio frame, where R - PBCH - SF represents the subframe where the R-PBCH is located, and RF represents the radio frame where the R-PBCH is located.
  • SFN represents the system frame number
  • n represents the radio frame period of the R-PBCH mapping, and is a positive integer
  • the present invention can be in one or more backhaul link subframes in the radio frame period of the R-PBCH mapping (backhaul subframe ) carrying R-PBCH.
  • n takes 32, and R-PBCH is transmitted in a cycle of 32 radio frames, and then the base station! ⁇ ⁇ :!
  • the #2 subframe of the radio frame (e.g., #0, #32, #64, #96 radio frame) transmits R-PBCH, where RF indicates the radio frame where the R-PBCH is located, and SFN indicates the system frame number.
  • mapping manner of the physical broadcast channel of the base station to the relay node on the radio frame is only 32 integer multiples of the radio frame mapping, and the mapping mode is simple; the LTE system has no influence, ensuring backward compatibility, and ensuring low s expenses.
  • mapping position of the R-PBCH in the frequency direction and the mapping position of the physical broadcast channel of the base station to the terminal link in the frequency direction may be the same or different.
  • mappings are different, they can be mapped to frequency positions that are symmetric with or without center bandwidth. If the mapping is at a frequency position that is symmetric with the center bandwidth, as shown in Figure 5, the mapping is on the left and right. (m / 2 ) * l 8 0kHz on the frequency width, (m / 2 ) * l 8 0kHz represents the frequency width of m / 2 RB, the frequency width of a total of m RB, that is, m * 180kHz, where is a positive integer ;
  • the R-PBCH is mapped in the first 4 OFDM symbols of the second slot in the R-PBCH-SF (may also be mapped in the first 3 or the first 2 of the second slot in the R-PBCH-SF) Or within the first OFDM symbol); the frequency direction maps over a frequency width of 6 RBs at a frequency position symmetric with respect to the center bandwidth.
  • mapping of the physical broadcast channel of the base station to the relay node on the OFDM symbol and the frequency direction mapping manner have no effect on the LTE system in the mapping of 4 OFDM symbols, and the backward compatibility is ensured, and the mapping is less than 4 OFDM symbols. Guarantee low overhead.
  • the mapping position of the R-PBCH in the frequency direction is different from the mapping position of the physical broadcast channel of the base station to the terminal link in the frequency direction.
  • This embodiment maps the frequency position that is not symmetric with the center bandwidth at a frequency position that is not symmetric with the center bandwidth.
  • the present invention can map R-PBCH in the second to last of the first slot in R - PBCH - SF, or from the second to the third to the last, or from the second to the fourth to the last, or the second to the last On the fifth last OFDM symbol.
  • the R-PBCH is mapped in the second and third OFDM of the first slot of the R-PBCH-SF; the frequency direction mapping is performed at a frequency position that is not symmetric with the center bandwidth.
  • the normal cyclic prefix (Normal CP) and the extended cyclic prefix (Extended CP) carry different R-PBCH encoded bits, since Normal CP is larger than Extended CP.
  • the reference symbols are not used to transmit other data, so the number of bits after R-PBCH coding is different; the R-PBCH is carried in less than 4 OFDM symbols.
  • the normal cyclic prefix and the extended cyclic prefix carry the R-PBCH encoded number of bits In the same way, since the Normal CP and the Extended CP are the same as the reference symbols included in the less than 4 OFDM symbols, the number of bits after the R-PBCH encoding is the same.
  • mapping of the physical broadcast channel of the base station to the relay node on the OFDM symbol and the frequency direction mapping manner have no effect on the LTE system in the mapping of 4 OFDM symbols, and the backward compatibility is ensured, and the mapping is less than 4 OFDM symbols. Guarantee low overhead.
  • the information bits of the R-PBCH and the information bits of the base-to-terminal link physical broadcast channel may be generated in the same or different manners; if they are the same, the information bits of the 24-bits are used, and the specific bit meanings are also the same.
  • the information bits contain common information between the base station and the relay node, and also contain the same common information between the base station and the base station and the base station to the relay node; if different, the information bits include dl-Bandwidth (3bits) and phich-Config (3bits: Combination of one or more of lbit phich-Duration and 2bits phich-Resource), systemFrameNumber (8bits), spare (1 Obits), the information bits include public information between the base station and the relay node, and also include the base station to the terminal And the same common information between the base station and the relay node; public information between other base stations to the relay nodes may also be included in the information bits.
  • the information bits include dl-Bandwidth (3bits) and phich-Config (3bits: Combination of one or more of lbit phich-Duration and 2bits phich-Resource), systemFrameNumber (8bits), spare (1 Obits)
  • the information bits include public
  • the information bits of the base station to the relay node may not transmit systemFrameNumber or not transmit spare or not transmit phich-Resource;
  • the common information between other base stations to the relay nodes may be backhaul link subframe configuration information, backhaul link subframe Information such as configuration changes.
  • the CRC check bits when performing CRC check on the information bits of the R-PBCH, adopt the same or different scrambling mode as the base-to-terminal link physical broadcast channel, and if the same scrambling mode is adopted, At this time, the common information between the other base stations and the relay nodes is not carried in the scrambling mode; if different scrambling methods are adopted, the common information between the other base stations and the relay nodes is carried in the scrambling mode.
  • the CRC check bit corresponding to the information bit of the base-to-terminal physical broadcast channel and ⁇ 0, 0, 0, 0, 0, 0 :
  • a scrambling manner is adopted, which is different from the information bit of the base-to-terminal physical broadcast channel.
  • the information bits corresponding to the physical broadcast channel of the base station to the relay node are corresponding.
  • the different scrambling sequences are associated with common information between other base stations and the relay nodes, and the common information between the other base stations and the relay nodes may be 2-bit phich-Resources corresponding to the above four scrambling sequences.
  • the CRC check mode is performed by using the information bits of the R-PBCH, and the CRC check bits corresponding to the information bits of the physical broadcast channel of the base station to the relay node are uniformly XORed with one of the sequences, and the relay node check is simple.
  • the CRC check bit corresponding to the information bit of the physical broadcast channel of the base station to the relay node is not uniformly XORed with one of the sequences, the public information between the other base stations and the relay node may be carried at this time.
  • the number of information bits of the physical broadcast channel of the base station to the relay node is different, the modulation mode is different, the frequency width of the RB occupied by the frequency direction is different, and the number of OFDM symbols occupied in the time direction is different, and the corresponding effective ones can be respectively calculated.
  • the code rate is:
  • information_bit_ number PRB n represents the physical resource block occupied by the R-PBCH in the frequency direction
  • PRB_number OFDM n represents the number of OFDM symbols occupied in the R-PBCH time direction
  • indicates the number of reference symbols occupied by R-PBCH.
  • reference_symbol_number MOD n indicates the number of modulation bits corresponding to different modulations.
  • the R-PBCH is 24 bits, using QPSK, occupying 6 RBs in the frequency direction and occupying 3 OFDM symbols in the time direction.
  • the R-PBCH is 24 bits, adopts 16QAM, occupies 6 RBs in the frequency direction, and occupies 2 OFDM symbols in the time direction.
  • R-PBCH is 24 bits, 64QAM is used, 4 RBs are occupied in the frequency direction, and 1 OFDM symbol is occupied in the time direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种中继链路的物理广播信道映射及发射的方法及装置 技术领域
本发明涉无线通信技术, 尤其涉及 3GPP中长期演进系统( Long Term Evolution, LTE )、 高级的长期演进系统( Long Term Evolution Advanced, LTE-A )中中继链路的物理广播信道( Relay link-Physical Broadcast Channel, R-PBCH ) 映射及发射的方法及装置。 背景技术
LTE 系统、 LTE-A 系统、 IMT-Advanced ( International Mobile Telecommunication Advanced , 高级的国际移动通信系统)都是以 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用 )技术为基础 , 在 OFDM系统中主要是时频两维的数据形式, 图 2为目前 LTE系统中无线 帧结构分解示意图, 一个无线帧由 10 个无线子帧组成, 每个子帧由多个 OFDM符号组成。 图 3为 LTE、 LTE-A系统中资源块及子载波示意图, 在 LTE、 LTE-A中 RB ( Resource Block, 资源块)定义为在时间域上连续 1个 slot (时隙 ) 内的 OFDM符号, 在频率域上连续 12或 24个子载波, 所以 1 个 RB由 N x W 8个 RE ( Resource Element, 资源单元), 其中 Ν 表示 1 个 slot内的 OFDM符号的个数, 表示资源块在频率域上连续子载波的 个数。
目前 LTE系统中逻辑信道 BCCH ( Broadcast Control Channel, 广播控 制信道)分为 MIB ( Master Information Block, 简称为主信息块或信息比特) 和 SIB ( System Information Block, 系统信息块), 其中 MIB映射到传输信 道 BCH ( Broadcast Channel, 广播信道)上, SIB映射到传输信道 DL-SCH ( Downlink-Shared Channel,下行共享信道)上;传输信道 BCH映射到 PBCH ( Physical Broadcast Channel, 物理广播信道)上, 传输信道 DL-SCH映射 到 PDSCH ( Physical Downlink Shared Channel, 物理下行共享信道)上。
MIB信息域包括 24bits信息, 顺序依次为下行带宽 ( dl-Bandwidth )、 物理 HARQ指示信道配置信息 (Physical Hybrid Automatic Repeat Request Indicator Channel, phich-Config )、 系统巾贞号 ( systemFrameNumber )、 预留
( spare )比特,具体每种信息包括: dl-Bandwidth( 3bits )、 phich-Config( 3bits: lbit phich-Duration和 2bits phich-Resource )、 systemFrameNumber ( 8bits )、 spare ( 1 Obits )。 待编码的比特数等于 40bits, 即 24bits的信息位加 16bits的 校险位, 由于终端在解调 PBCH之前还不知道具体的天线配置,所以 16bits 的校验位需要根据 eNode-B的天线配置进行加扰。 待编码的比特顺序进行 咬尾卷积码、 QPSK调制、 多天线处理、 资源映射。
表 1. CRC校验位加扰
Figure imgf000004_0001
表 2. PBCH映射
Figure imgf000004_0002
B3G/4G的研究目标是汇集蜂窝、 固定无线接入、 游牧、 无线区域网络 等接入系统, 结合全 IP网络, 在高速和低速移动环境下分别为用户提供峰 值速率达 100Mbps以及 IGbps的无线传输能力, 并且实现蜂窝系统、 区域 性无线网络、 广播、 电视卫星通信的无缝衔接, 使得人类实现 "任何人在任 何时间、 任何地点与其他任何人实现任何方式的通信"。 Relay技术可以作 为一项有效的措施应用起来, Relay技术既可以增加小区的覆盖也可以增加 小区容量。
图 1为引入中继节点的系统结构示意图, 系统中引入 relay之后增加了 新的链路, 相应的术语包括: eNode-B (简称 eNB )与 relay之间的链路称 为 backhaul link (回程链路 ), relay与 UE ( User Equipment, 用户设备 )之 间的链路称为 access link(接入链路 ), eNode-B与 UE之间的链路称为 direct link (直传链路)。
在采用带内中继 inband-relay时, 即 eNode-B到 relay链路和 relay到 UE链路运作在相同的频率资源上。 因为带内 relay发射机会对自己的接收 机产生干扰 (自干扰), 所以 eNode-B到 relay链路和 relay到 UE链路同时 在相同的频率资源上是不可能的, 除非有足够的信号分离和天线隔离度。 相似的, relay也不可能在接收 UE所发射的数据的同时再给 eNode-B发射。
依照目前 LTE系统中的规定, 1个 10ms无线帧 frame由 10个 1ms的 子帧 subframe构成, 可包括单播 Unicast和多播广播 Multicast Broadcast, 其中在频分双工 FDD ( Frequency Division Duplex )方式时, #0、 #5子帧用 作发射同步信号, 而 #4、 #9子帧用作寻呼 paging, 在时分双工 TDD ( Time Division Duplex )方式时, #0、 #5子帧用作发射同步信号, 而 #1、 #6子帧 用作寻呼 paging, 也就是说对于 FDD {#0、 #4、 #5、 #9}子帧, TDD{#0、 #1、 #5、 #6}子帧有上述特殊用途, 所以不能用于多播广播单频网络 MBSFN subframe ( Multicast Broadcast Single Frequency Network ) 的分配, 即在 1 个无线帧 frame里可分配的 MBSFN subframe最多为 6个子帧 subframe。
一个可能的收发干扰问题的解决方法是使得 relay在接收来自 eNode-B 的数据时, 不向 UE进行发射操作, 也就是说在 relay到 UE链路后需要增 加间隙 "gap", 通过配置 MBSFN subframe用于 backhaul subframe, 使得 UE 在" gap" 时间范围内不进行任何接收 /发射操作, 而 Relay在" gap"时间范围 内完成发射到接收的切换, 切换完成后在后面的 OFDM符号接收来自 eNB 的数据。 目前在 LTE中采用 MBSFN subframe用于 backhaul subframe , 其 具体的方式是: 多媒体控制实体 MCE ( MBMS Control Entity ) 首先给 eNode-B配置可用的 MBSFN subframe, eNode-B再在这些可用的 MBSFN subframe中配置可用的 backhaul subframe 。 因此,在下行时 relay首先在前 1或 2个 OFDM符号给其下属的 UE发射控制信息 (包括上行发射数据的 反馈信息 ACK/NACK ( Acknowlegment/Negative Acknowlegment )和上行授 权信息 UL grant )。
依照目前 LTE系统中的规定, FDD{#0、 #4、 #5、 #9}子帧, TDD{#0、 #1、 #5、 #6}子帧有上述特殊用途,所以不能用于多播广播单频网络 MBSFN subframe 的分配, 而 PBCH 如上所述是在 #0 subframe 进行发射, 且 #0 subframe不能作为 backhaul subframe, 这导致正处于工 N夫态的 relay无法 正常接收 eNode-B下发的 PBCH。
目前, 对于 MBSFN subframe作为 backhaul subframe 的研究是一个热 点, 但 eNode-B (基站)到 RN ( Relay Node: 中继节点 /中继站 )链路具体 的物理广播信道映射及发射方式仍然是空白, 而这正是该发明要解决的问 题。 接收端 (中继节点、 用户终端)在同步之后或者每隔一定时间, 需要 获取广播信息才能进行后续正常的工作。 目前在 LTE中,每一个包含 PBCH 的 subframe都是可自解码的, 也就是说假设信道质量足够好的话, 终端可 以通过 4次中的任一次接收就能解调出 PBCH,对于 backhaul link而言,信 道质量是非常好的, 所以 PBCH没有必要在重复周期内发射多次, 仅仅发 射一次即可, 当然也可以发射多次, 本发明将基站到中继节点之间的物理 广播信道称之为 R-PBCH ( Relay link-Physical Broadcast Channel, 中继链路 的物理广播信道)。 发明内容
有鉴于此, 本发明的主要目的在于提供一种中继链路的物理广播信道 映射及发射方法, 用于解决现有技术中基站到中继节点链路的 PBCH的映 射问题,
为达到上述目的, 本发明的技术方案是这样实现的:
一种中继链路的物理广播信道映射及发射的方法, 包括:
生成基站到中继节点链路的物理广播信道(R-PBCH ) 的信息比特; 对信息比特进行信道编码、 星座调制、 多天线处理;
确定所述 R-PBCH在频率方向上的映射位置及在时间方向上的映射位 分复用 (OFDM )符号上的映射; 进一步地, 所述 R-PBCH在所述无线帧中的子帧上的映射满足条件:
R - PBCH - SF e {R | SFN mod n = o}, 其中 R-PBCH-SF表示 R-PBCH所在的子帧, RF 表示 R-PBCH所在的无线帧, SFN表示系统帧号, n表示 R-PBCH映射的 无线帧周期, 并且 n为正整数; mod表示取余;
在 R-PBCH映射的无线帧周期内, 在 1个回程链路子帧或多个回程链 路子帧内 载 R-PBCH。
进一步地, 所述 R-PBCH在 OFDM符号上的映射是指:
在包含 R-PBCH所在的子帧的 1号时隙的前 4个, 或前 3个, 或前 2 个, 或前 1个 OFDM符号承载 R-PBCH; 或;
在包含 R-PBCH所在的子帧的 0号时隙的倒数第 2个, 或倒数第 2至 倒数第 3个, 或倒数第 2至倒数第 4个, 或倒数第 2至倒数第 5个 OFDM 符号承载 R-PBCH。
进一步地, 在使用 4个 OFDM符号承载 R-PBCH时, 正常循环前缀和 扩展循环前缀承载 R-PBCH编码后的比特数不同; 使用小于 4个 OFDM符 号承载 R-PBCH时, 正常循环前缀和扩展循环前缀承载 R-PBCH编码后的 比特数相同。
进一步地, 确定 R-PBCH在频率方向上的映射位置的方法为: 所述 R-PBCH在频率方向上的映射位置与基站到终端链路的物理广播 信道在频率方向上的映射位置相同或不同;
所述映射位置相同是指映射在以中心带宽对称左右各 540kHz 的频率 位置上;
所述映射位置不同是指映射在以中心带宽对称左右各 (W2) * 180kHz的 频率位置上, (m/2)* l80kHz表示 m/2个资源块( RB ) 的频率宽度, 共 m个 RB的频率宽度, 即 m * 180kHz , 其中 m为正整数; 或, 映射在不以中心带 宽对称的频率位置上, 共 m个 RB的频率宽度, 即 m * 180kHz , 其中 m为正 整数, 所述不以中心带宽对称的频率位置固定或不固定。
进一步地, 所述 R-PBCH的信息比特与基站到终端链路物理广播信道 的信息比特相同或不同;
所述信息比特相同是指: 所述信息比特都采用 24bits的信息比特方式, 具体比特位含义相同; 所述信息比特包含基站到中继节点间的公共信息及 基站到终端和基站到中继节点间的相同的公共信息;
所述信息比特不同是指: 所述信息比特包含: 3 比特下行带宽 ( dl-Bandwidth )、 3比特 PHICH配置信息 ( phich-Config )、 8比特系统帧号 ( systemFrameNumber )、 10比特预留( spare )比特中的一种或多种的组合; 基站到中继节点间的公共信息及基站到终端和基站到中继节点间的相同的 公共信息; 可选地, 所述信息比特还包含除上述比特信息以外的其它基站 到中继节点间的公共信息。
进一步地, 所述信息比特进行循环冗余码校验(CRC ) 时, CRC校验 位采用与基站到终端链路物理广播信道相同或不同的加扰方式;
所述相同的加扰方式是指: 所述信息比特对应的 CRC校验位加扰方式 与基站到终端链路物理广播信道的信息比特对应的 CRC校验位加扰方式一 致;
所述不同的加扰方式是指: 利用所述信息比特对应的 CRC校验位加扰 方式来承载其它基站到中继节点间的公共信息。
进一步地, 所述 R-PBCH的星座调制方式与基站到终端链路物理广播 信道的星座调制方式相同或不同;所述星座调制方式相同是指都采用 QPSK 方式; 所述星座调制方式不同是指 R-PBCH 的调制方式采用 16QAM 或 64QAM方式。
基于上述方法, 本发明还提出一种中继链路的物理广播信道映射及发 射装置, 该装置包括:
信息比特生成模块, 用于生成 R-PBCH的信息比特;
调制模块, 用于对 R-PBCH进行调制;
频率方向映射模块, 用于在频率方向上对 R-PBCH进行映射; 时间方向映射模块, 用于在时间方向上对 R-PBCH进行映射; 发射模块, 用于在回程链路上向中继节点发射 R-PBCH;
所述时间方向映射模块在无线帧中的子帧及 OFDM符号上对 R-PBCH 进行映射; 所述时间方向映射模块在所述无线帧中的子帧上映射 R-PBCH 时需满足如下条件:
R - PBCH - SFe {RF | SFN mod η = θ}
其中, R-PBCH-SF表示 R-PBCH所在的子帧, R 表示 R-PBCH所在的 无线帧, 表示系统帧号, n表示 R-PBCH映射的无线帧周期, 并且 n 为正整数; mod表示取余; 在 R-PBCH映射的无线帧周期内, 在 1个回程 链路子帧或多个回程链路子帧内承载 R-PBCH。
进一步地, 时间方向映射模块在 OFDM 符号上的映射指: 在包含 R-PBCH所在的子帧的 1号时隙的前 4个, 或前 3个, 或前 2个, 或前 1 个 OFDM符号承载 R-PBCH; 或在包含 R-PBCH所在的子帧的 0号时隙的 倒数第 2个, 或倒数第 2至倒数第 3个, 或倒数第 2至倒数第 4个, 或倒 数第 2至倒数第 5个 OFDM符号承载 R-PBCH;
在使用 4个 OFDM符号承载 R-PBCH时, 正常循环前缀( Normal CP ) 和扩展循环前缀( Extended CP )承载 R-PBCH编码后的比特数不同; 在使 用小于 4个 OFDM符号承载 R-PBCH时, 正常循环前缀和扩展循环前缀承 载 R-PBCH编码后的比特数相同。
进一步地, 所述频率方向映射模块在频率方向上映射 R-PBCH时采用 与基站到终端链路的物理广播信道在频率方向上的映射位置相同或不同的 方式;
所述映射位置相同是指: 映射在以中心带宽对称左右各 540kHz的频率 位置上;
所述映射位置不同是指: 映射在以中心带宽对称左右各 (m/2)* l80kHz的 频率位置上, (m/2)* l80kHz表示 m/2个资源块 RB的频率宽度, 共 m个 RB 的频率宽度, 即 m * 180kHz , 其中 m为正整数; 或, 映射在不以中心带宽对 称的频率位置上,共 m个 RB的频率宽度, 即 m * 180kHz ,其中 m为正整数, 所述不以中心带宽对称的频率位置固定或不固定。
进一步地, 所述信息比特生成模块在生成 R-PBCH的信息比特时采用 与基站到终端链路物理广播信道的信息比特相同或不同的生成方式;
所述相同的生成方式是指: 都采用 24bits 的信息比特方式, 具体比特 位含义相同, 所述信息比特包含基站到中继节点间的公共信息, 也包含基 站到终端和基站到中继节点间的相同的公共信息; 所述不同的生成方式是指: 所述信息比特包含 3比特 dl-Bandwidth、 3 !?匕# phich-Config, 8 !?匕# systemFrameNumber , 10 !?匕# spare !?匕#中^;一 种或多种的组合; 所述信息比特包含基站到中继节点间的公共信息, 也包 含基站到终端和基站到中继节点间的相同的公共信息; 可选地, 所述信息 比特还包含除上述比特信息以外的其它基站到中继节点间的公共信息; 所述信息比特生成模块在对信息比特进行 CRC校验时, CRC校验位采 用与基站到终端链路物理广播信道相同或不同的加扰方式, 所述相同的加 扰方式是指所述信息比特对应的 CRC校验位加扰方式与基站到终端链路物 理广播信道的信息比特对应的 CRC校验位加扰方式一致; 所述不同的加扰 方式是指利用所述信息比特对应的 CRC校验位加扰方式来承载其它基站到 中继节点间的公共信息。
进一步地, 所述调制模块在对 R-PBCH进行调制时采用与基站到终端 链路物理广播信道的星座调制方式相同或不同; 星座调制方式相同是指都 采用 QPSK方式;星座调制方式不同是指 R-PBCH的调制方式采用 16QAM 或 64QAM方式。
综上所述, 采用本发明所述方法, 可以很好地适用于基站到中继节点 链路, 映射方式简单, 既保证了后向兼容性(兼容 LTE系统), 也解决了中 继节点能够正确接收来自基站下发的 PBCH的问题, 同时保证低的开销。 附图说明
图 1为引入中继节点的系统结构示意图;
图 2为目前 LTE系统中无线帧结构分解示意图;
图 3为 LTE、 LTE-A系统中资源块及子载波示意图;
图 4是以 32个无线帧为周期的 R-PBCH示意图;
图 5 是以中心带宽对称的频率位置上共 6个 RB的频率宽度示意图; 图 6是不以中心带宽对称的频率位置上共 3个 RB的频率宽度示意图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
下面结合附图和具体的实施例来进一步说明本发明的技术方案。
实例一:
图 4为 R-PBCH在无线帧、 子帧上的映射方式示意图, R-PBCH映射 的子帧与基站到终端链路的物理广播信道映射的子帧不同, R-PBCH映射的 子帧满足的条件为 ^?!^!!^^ ^^ " ^:!, 即表示 R-PBCH映射的子 帧属于 R-PBCH映射的无线帧,其中 R - PBCH - SF表示 R-PBCH所在子帧, RF 表示 R-PBCH所在无线帧, SFN表示系统帧号, n表示 R-PBCH映射的无 线帧周期, 并且为正整数; 本发明在 R-PBCH映射的无线帧周期内, 可在 1 个或多个回程链路子帧 ( backhaul subframe ) 内承载 R-PBCH。
本实施例中, n取 32, 以 32个无线帧为周期进行发射 R-PBCH, 则基 站在 !^^ ^:!无线帧内 (例如 #0、 #32、 #64、 #96无线帧) 的 #2子 帧发射 R-PBCH, 其中 RF表示 R-PBCH所在无线帧, SFN表示系统帧号。
采用上述基站到中继节点的物理广播信道在无线帧上的映射方式, 仅 在 32整数倍的无线帧映射, 映射方式简单; 对 LTE系统没有任何影响, 保 证了后向兼容性, 同时保证低的开销。
实例二:
本发明中, R-PBCH在频率方向上映射位置与基站到终端链路的物理广 播信道在频率方向上映射位置可以相同也可以不同。
若相同则映射在以中心带宽对称左右各 540kHz 频率位置上 (即共 1.08MHz的频率宽度, 共 72个子载波)。
若不同则可以映射在以中心带宽对称或不以中心带宽对称的频率位 置, 若映射在以中心带宽对称的频率位置上, 则如图 5 所示, 映射在左右 各 (m/2)* l80kHz频率宽度上, (m/2)* l80kHz表示 m/2个 RB的频率宽度, 共 m 个 RB的频率宽度, 即 m * 180kHz , 其中为正整数;
本实施例中, R-PBCH映射在 R - PBCH - SF中第 2个 slot的前 4个 OFDM 符号内 (也可映射在 R - PBCH - SF中第 2个 slot的前 3个或前 2个或前 1个 OFDM符号内); 频率方向映射在以中心带宽对称的频率位置上共 6个 RB 的频率宽度上。
采用上述基站到中继节点的物理广播信道在 OFDM符号上的映射、 频 率方向映射方式, 映射 4个 OFDM符号内对 LTE系统没有任何影响, 保证 了后向兼容性, 映射小于 4个 OFDM符号内保证低的开销。
实例三:
R-PBCH在频率方向上映射位置与基站到终端链路的物理广播信道在 频率方向上映射位置不同, 本实施例映射在不以中心带宽对称的频率位置 上, 不以中心带宽对称的频率位置可以固定, 或是可以不固定。 本发明可 将 R-PBCH映射在 R - PBCH - SF中第 1个 slot的倒数第 2个、 或倒数第 2至 倒数第 3个, 或倒数第 2至倒数第 4个, 或倒数第 2至倒数第 5个 OFDM 符号上。
如图 6所示, 本实施例将 R-PBCH映射在 R - PBCH - SF中第 1个 slot的 倒数第 2和第 3个 OFDM内; 频率方向映射在不以中心带宽对称的频率位 置上共 3个 RB的频率宽度上。
本发明中, 在采用 4个 OFDM符号承载 R-PBCH时, 正常循环前缀 ( Normal CP )和扩展循环前缀( Extended CP )承载 R-PBCH编码后的比特 数不同, 由于 Normal CP比 Extended CP在这 4个 OFDM符号内包含的参 考符号少, 参考符号位置对应的导频子载波不能用于发射其他数据, 所以 导致 R-PBCH编码后的比特数不同; 在采用小于 4 个 OFDM符号承载 R-PBCH时, 正常循环前缀和扩展循环前缀承载 R-PBCH编码后的比特数 相同, 由于 Normal CP和 Extended CP在这小于 4个 OFDM符号内包含的 参考符号一样, 所以导致 R-PBCH编码后的比特数相同。
采用上述基站到中继节点的物理广播信道在 OFDM符号上的映射、 频 率方向映射方式, 映射 4个 OFDM符号内对 LTE系统没有任何影响, 保证 了后向兼容性, 映射小于 4个 OFDM符号内保证低的开销。
实例四:
本发明中, R-PBCH的信息比特与基站到终端链路物理广播信道的信息 比特的生成方式可以相同或不同; 若相同则都采用 24bits的信息比特方式, 具体比特位含义也相同, 所述信息比特包含基站到中继节点间的公共信息, 也包含基站到终端和基站到中继节点间的相同的公共信息; 若不同则信息 比特包含 dl-Bandwidth ( 3bits )、 phich-Config ( 3bits: lbit phich-Duration和 2bits phich-Resource )、 systemFrameNumber ( 8bits )、 spare ( 1 Obits ) 中一种 或多种的组合, 所述信息比特包含基站到中继节点间的公共信息, 也包含 基站到终端和基站到中继节点间的相同的公共信息; 还可在信息比特中包 含其它基站到中继节点间的公共信息。
例如: 基站到中继节点的信息比特可以不发射 systemFrameNumber或 不发射 spare或不发射 phich-Resource; 其它基站到中继节点间的公共信息 可以是回程链路子帧配置信息、 回程链路子帧配置更改等信息。
实例五:
本发明具体实施例中, 对 R-PBCH的信息比特进行 CRC校验时, CRC 校验位采用与基站到终端链路物理广播信道相同或不同的加扰方式, 若采 用相同的加扰方式, 则此时在加扰方式上不承载其它基站到中继节点间的 公共信息; 若采用不同的加扰方式, 则在加扰方式上承载其它基站到中继 节点间的公共信息。
采用相同的加扰方式时, 假设基站的天线配置为 1 根发射天线, 则此 时基站到终端物理广播信道的信息比特对应的 CRC校验位与 <0, 0, 0, 0, 0, 0:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0>进行异或运算; 基站到中继节点物理广播信道的信 息比特对应的 CRC校验位也统一与 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0> 进行异或运算, 此时不通过加扰方式承载其它基站到中继节点间的公共信 <¾- ,
该具体实施例中, 采用与基站到终端物理广播信道的信息比特不同的 加扰方式, 该实施例中, 基站到中继节点物理广播信道的信息比特对应的
CRC校验位与 <0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0>或<1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1>或 <0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1>或<1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0>进行异或运算, 由于采用了 4种加扰序列, 因此 可以将不同的加扰序列与其它基站到中继节点间的公共信息进行对应, 其 它基站到中继节点间的公共信息可以是 2比特位的 phich-Resource, 分别对 应上述 4种加扰序列。
采用上述 R-PBCH的信息比特进行 CRC校验方式, 当基站到中继节点 物理广播信道的信息比特对应的 CRC校验位统一与其中一个序列进行异或 运算, 此时中继节点校验简单; 当基站到中继节点物理广播信道的信息比 特对应的 CRC校验位不统一与其中一个序列进行异或运算, 此时可承载其 它基站到中继节点间的公共信息。
实例六:
基站到中继节点链路物理广播信道的信息比特数不同、 调制方式不同、 频率方向上所占用的 RB的频率宽度不同、 时间方向上所占用的 OFDM符 号数不同, 可分别计算对应的有效的码率为:
CR = INFOn /(((12 * PRBn ) * OFDM n _ (4 * PRBn )* RSn )* MODn )
CR表示 R-PBCH的有效码速率 code— rate
表示 R-PBCH的信息位个数 information— bit— number PRBn表示 R-PBCH频率方向上所占用的物理资源块 PRB— number OFDMn表示 R-PBCH 时间方向上所占用的 OFDM 符号个数
Figure imgf000016_0001
^表示 R—PBCH所占用的参考符号个数 reference— symbol— number MODn表示不同调制所对应的调制位个数 modulation— bit— number 例如:
R-PBCH为 24bits, 采用 QPSK, 频率方向上占用 6个 RB, 时间方向 上占用 3个 OFDM符号, 则有效码率为 0? = 24/((12*6*3-4*6*2)*2) = l/14;
R-PBCH为 24bits, 采用 16QAM, 频率方向上占用 6个 RB, 时间方向 上占用 2个 OFDM符号, 则有效码率为 0? = 24/((12*6*2- 4*6*2)*4) = 1/16;
R-PBCH为 24bits, 采用 64QAM, 频率方向上占用 4个 RB, 时间方向 上占用 1个 OFDM符号, 则有效码率为 0? = 24/((12*4*2- 4*4*1)*6) = 1/20。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质 的情况下, 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和 变形, 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范 围。

Claims

权利要求书
1、 一种中继链路的物理广播信道映射及发射的方法, 其特征在于, 包 括:
生成基站到中继节点链路的物理广播信道(R-PBCH ) 的信息比特; 对信息比特进行信道编码、 星座调制、 多天线处理;
确定所述 R-PBCH在频率方向上的映射位置及在时间方向上的映射位 分复用 (OFDM )符号上的映射;
2、 根据权利要求 1所述的方法, 其特征在于, 所述 R-PBCH在所述无 线帧中的子帧上的映射满足条件: R - PBCH - SF e {RF | SFN mod n = o} , 其中
R-PBCH-SF表示 R-PBCH所在的子帧, RF表示 R-PBCH所在的无线帧, SFN 表示系统帧号, n表示 R-PBCH映射的无线帧周期, 并且 n为正整数; mod 表示取余;
在 R-PBCH映射的无线帧周期内, 在 1个回程链路子帧或多个回程链 路子帧内承载 R-PBCH。
3、 根据权利要求 1所述的方法, 其特征在于, 所述 R-PBCH在 OFDM 符号上的映射是指:
在包含 R-PBCH所在的子帧的 1号时隙的前 4个, 或前 3个, 或前 2 个, 或前 1个 OFDM符号承载 R-PBCH; 或;
在包含 R-PBCH所在的子帧的 0号时隙的倒数第 2个, 或倒数第 2至 倒数第 3个, 或倒数第 2至倒数第 4个, 或倒数第 2至倒数第 5个 OFDM 符号承载 R-PBCH。
4、根据权利要求 3所述的方法, 其特征在于, 在使用 4个 OFDM符号 承载 R-PBCH时, 正常循环前缀和扩展循环前缀承载 R-PBCH编码后的比 特数不同; 使用小于 4个 OFDM符号承载 R-PBCH时, 正常循环前缀和扩 展循环前缀承载 R-PBCH编码后的比特数相同。
5、 根据权利要求 1所述的方法, 其特征在于, 确定 R-PBCH在频率方 向上的映射位置的方法为:
所述 R-PBCH在频率方向上的映射位置与基站到终端链路的物理广播 信道在频率方向上的映射位置相同或不同;
所述映射位置相同是指映射在以中心带宽对称左右各 540kHz 的频率 位置上;
所述映射位置不同是指映射在以中心带宽对称左右各 (m/2) * 180kHz的 频率位置上, (m/2)* l80kHz表示 m/2个资源块( RB ) 的频率宽度, 共 m个 RB的频率宽度, 即 m * 180kHz , 其中 m为正整数; 或, 映射在不以中心带 宽对称的频率位置上, 共 m个 RB的频率宽度, 即 m * 180kHz , 其中 m为正 整数, 所述不以中心带宽对称的频率位置固定或不固定。
6、 根据权利要求 1所述的方法, 其特征在于, 所述 R-PBCH的信息比 特与基站到终端链路物理广播信道的信息比特相同或不同;
所述信息比特相同是指: 所述信息比特都采用 24bits的信息比特方式, 具体比特位含义相同; 所述信息比特包含基站到中继节点间的公共信息及 基站到终端和基站到中继节点间的相同的公共信息;
所述信息比特不同是指: 所述信息比特包含: 3 比特下行带宽 ( dl-Bandwidth )、 3比特 PHICH配置信息 ( phich-Config )、 8比特系统帧号 ( systemFrameNumber )、 10比特预留( spare )比特中的一种或多种的组合; 基站到中继节点间的公共信息及基站到终端和基站到中继节点间的相同的 公共信息; 可选地, 所述信息比特还包含除上述比特信息以外的其它基站 到中继节点间的公共信息。
7、 根据权利要求 6所述的方法, 其特征在于, 所述信息比特进行循环 冗余码校验(CRC ) 时, CRC校验位采用与基站到终端链路物理广播信道 相同或不同的加扰方式;
所述相同的加扰方式是指: 所述信息比特对应的 CRC校验位加扰方式 与基站到终端链路物理广播信道的信息比特对应的 CRC校验位加扰方式一 致;
所述不同的加扰方式是指: 利用所述信息比特对应的 CRC校验位加扰 方式来承载其它基站到中继节点间的公共信息。
8、 根据权利要求 1所述的方法, 其特征在于, 所述 R-PBCH的星座调 制方式与基站到终端链路物理广播信道的星座调制方式相同或不同; 所述 星座调制方式相同是指都采用 QPSK 方式; 所述星座调制方式不同是指 R-PBCH的调制方式采用 16QAM或 64QAM方式。
9、 一种中继链路的物理广播信道映射及发射装置, 其特征在于, 该装 置包括:
信息比特生成模块, 用于生成 R-PBCH的信息比特;
调制模块, 用于对 R-PBCH进行调制;
频率方向映射模块, 用于在频率方向上对 R-PBCH进行映射; 时间方向映射模块, 用于在时间方向上对 R-PBCH进行映射; 发射模块, 用于在回程链路上向中继节点发射 R-PBCH;
所述时间方向映射模块在无线帧中的子帧及 OFDM符号上对 R-PBCH 进行映射; 所述时间方向映射模块在所述无线帧中的子帧上映射 R-PBCH 时需满足如下条件:
R - PBCH - SFe {RF | SFN mod η = θ}
其中, R-PBCH-SF表示 R-PBCH所在的子帧, R 表示 R-PBCH所在的 无线帧, 表示系统帧号, n表示 R-PBCH映射的无线帧周期, 并且 n 为正整数; mod表示取余; 在 R-PBCH映射的无线帧周期内, 在 1个回程 链路子帧或多个回程链路子帧内承载 R-PBCH。
10、 根据权利要求 9所述的装置, 其特征在于, 时间方向映射模块在 OFDM符号上的映射指:在包含 R-PBCH所在的子帧的 1号时隙的前 4个, 或前 3个,或前 2个,或前 1个 OFDM符号承载 R-PBCH;或在包含 R-PBCH 所在的子帧的 0号时隙的倒数第 2个, 或倒数第 2至倒数第 3个, 或倒数 第 2至倒数第 4个, 或倒数第 2至倒数第 5个 OFDM符号承载 R-PBCH; 在使用 4个 OFDM符号承载 R-PBCH时, 正常循环前缀( Normal CP ) 和扩展循环前缀( Extended CP )承载 R-PBCH编码后的比特数不同; 在使 用小于 4个 OFDM符号承载 R-PBCH时, 正常循环前缀和扩展循环前缀承 载 R-PBCH编码后的比特数相同。
11、 根据权利要求 9所述的装置, 其特征在于, 所述频率方向映射模 块在频率方向上映射 R-PBCH时采用与基站到终端链路的物理广播信道在 频率方向上的映射位置相同或不同的方式;
所述映射位置相同是指映射在以中心带宽对称左右各 540kHz 的频率 位置上;
所述映射位置不同是指映射在以中心带宽对称左右各 (W2) * 180kHz的 频率位置上, (m/2)* l80kHz表示 m/2个资源块 RB的频率宽度, 共 m个 RB 的频率宽度, 即 m * 180kHz , 其中 m为正整数; 或, 映射在不以中心带宽对 称的频率位置上,共 m个 RB的频率宽度, 即 m * 180kHz ,其中 m为正整数, 所述不以中心带宽对称的频率位置固定或不固定。
12、 根据权利要求 9所述的装置, 其特征在于, 所述信息比特生成模 块在生成 R-PBCH的信息比特时采用与基站到终端链路物理广播信道的信 息比特相同或不同的生成方式;
所述相同的生成方式是指: 都采用 24bits 的信息比特方式, 具体比特 位含义相同, 所述信息比特包含基站到中继节点间的公共信息, 也包含基 站到终端和基站到中继节点间的相同的公共信息;
所述不同的生成方式是指: 所述信息比特包含 3比特 dl-Bandwidth、 3 !?匕# phich-Config, 8 !?匕# systemFrameNumber , 10 !?匕# spare !?匕#中^;一 种或多种的组合; 所述信息比特包含基站到中继节点间的公共信息, 也包 含基站到终端和基站到中继节点间的相同的公共信息; 可选地, 所述信息 比特还包含除上述比特信息以外的其它基站到中继节点间的公共信息; 所述信息比特生成模块在对信息比特进行 CRC校验时, CRC校验位采 用与基站到终端链路物理广播信道相同或不同的加扰方式, 所述相同的加 扰方式是指所述信息比特对应的 CRC校验位加扰方式与基站到终端链路物 理广播信道的信息比特对应的 CRC校验位加扰方式一致; 所述不同的加扰 方式是指利用所述信息比特对应的 CRC校验位加扰方式来承载其它基站到 中继节点间的公共信息。
13、 根据权利要求 9 所述的装置, 其特征在于, 所述调制模块在对 R-PBCH 进行调制时采用与基站到终端链路物理广播信道的星座调制方式 相同或不同; 星座调制方式相同是指都采用 QPSK方式; 星座调制方式不 同是指 R-PBCH的调制方式采用 16QAM或 64QAM方式。
PCT/CN2010/074437 2009-07-13 2010-06-24 一种中继链路的物理广播信道映射及发射的方法及装置 WO2011006419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910088272.0A CN101959240B (zh) 2009-07-13 2009-07-13 一种中继链路的物理广播信道映射及发射的方法及装置
CN200910088272.0 2009-07-13

Publications (1)

Publication Number Publication Date
WO2011006419A1 true WO2011006419A1 (zh) 2011-01-20

Family

ID=43448936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074437 WO2011006419A1 (zh) 2009-07-13 2010-06-24 一种中继链路的物理广播信道映射及发射的方法及装置

Country Status (2)

Country Link
CN (1) CN101959240B (zh)
WO (1) WO2011006419A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046928A1 (en) 2013-09-25 2015-04-02 Samsung Electronics Co., Ltd. System and method for resource mapping for coverage enhancements of broadcast channels
EP2892264A4 (en) * 2012-09-24 2015-08-12 Huawei Tech Co Ltd METHOD, BASIC STATION AND USER DEVICE FOR TRANSMITTING RADIO MESSAGES
CN108933647A (zh) * 2017-05-26 2018-12-04 华为技术有限公司 一种比特映射的方法及装置
US10200225B2 (en) 2014-09-30 2019-02-05 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944699A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 一种系统帧序号信息的传输方法、装置及系统
WO2015042888A1 (zh) * 2013-09-27 2015-04-02 华为技术有限公司 一种信息传输的方法、装置及系统
JP6894522B2 (ja) 2017-07-28 2021-06-30 エルジー エレクトロニクス インコーポレイティド 放送チャネルを送受信する方法及びそのための装置
CN110612682B (zh) * 2018-08-16 2022-01-25 深圳市汇顶科技股份有限公司 窄带物联网下行链路控制信道中的误报检测的方法
CN112822140B (zh) * 2019-11-15 2022-08-09 上海华为技术有限公司 一种传输数据的方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064703A (zh) * 2006-04-25 2007-10-31 北京三星通信技术研究有限公司 Ofdm接入基站中基站发射信号的正交化方法及系统
CN101123789A (zh) * 2006-08-10 2008-02-13 华为技术有限公司 无线资源控制和分配的方法及系统
CN101159488A (zh) * 2007-11-12 2008-04-09 中兴通讯股份有限公司 一种时分双工系统物理广播信道的发送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064703A (zh) * 2006-04-25 2007-10-31 北京三星通信技术研究有限公司 Ofdm接入基站中基站发射信号的正交化方法及系统
CN101123789A (zh) * 2006-08-10 2008-02-13 华为技术有限公司 无线资源控制和分配的方法及系统
CN101159488A (zh) * 2007-11-12 2008-04-09 中兴通讯股份有限公司 一种时分双工系统物理广播信道的发送方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10327225B2 (en) 2012-09-24 2019-06-18 Huawei Technologies Co., Ltd. Broadcast message transmission method, base station and user equipment
EP2892264A4 (en) * 2012-09-24 2015-08-12 Huawei Tech Co Ltd METHOD, BASIC STATION AND USER DEVICE FOR TRANSMITTING RADIO MESSAGES
US9877304B2 (en) 2012-09-24 2018-01-23 Huawei Technologies Co., Ltd. Broadcast message transmission method, base station and user equipment
KR20160060635A (ko) * 2013-09-25 2016-05-30 삼성전자주식회사 브로드캐스트 채널들의 커버리지 향상을 위한 자원 매핑 시스템 및 방법
EP3050243A4 (en) * 2013-09-25 2017-09-27 Samsung Electronics Co., Ltd. System and method for resource mapping for coverage enhancements of broadcast channels
AU2014329037B2 (en) * 2013-09-25 2018-08-16 Samsung Electronics Co., Ltd. System and method for resource mapping for coverage enhancements of broadcast channels
KR102225173B1 (ko) 2013-09-25 2021-03-10 삼성전자주식회사 브로드캐스트 채널들의 커버리지 향상을 위한 자원 매핑 시스템 및 방법
WO2015046928A1 (en) 2013-09-25 2015-04-02 Samsung Electronics Co., Ltd. System and method for resource mapping for coverage enhancements of broadcast channels
US10637702B2 (en) 2014-09-30 2020-04-28 Huawei Technologies Co., Ltd. Data Transmission method and apparatus
US10200225B2 (en) 2014-09-30 2019-02-05 Huawei Technologies Co., Ltd. Data transmission method and apparatus
US11212148B2 (en) 2014-09-30 2021-12-28 Huawei Technologies Co., Ltd. Data transmission method and apparatus
US11729032B2 (en) 2014-09-30 2023-08-15 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN108933647A (zh) * 2017-05-26 2018-12-04 华为技术有限公司 一种比特映射的方法及装置
CN108933647B (zh) * 2017-05-26 2023-09-12 华为技术有限公司 一种比特映射的方法及装置

Also Published As

Publication number Publication date
CN101959240A (zh) 2011-01-26
CN101959240B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6744503B2 (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
JP6163554B2 (ja) 端末装置、基地局装置、および通信方法
WO2011006419A1 (zh) 一种中继链路的物理广播信道映射及发射的方法及装置
CN108476087B (zh) 无线接入节点、无线设备及其操作方法和存储介质
WO2018145607A1 (zh) 一种用于无线通信中的方法和装置
US9844050B2 (en) Method and apparatus for allocating resources to multiple sites which use same frequency band
WO2010105536A1 (zh) 一种中继链路控制信道传输方法及系统
WO2018173416A1 (ja) 端末装置、基地局装置、通信方法および記憶媒体
KR20130023279A (ko) 릴레이 백홀 링크에 대한 업링크 제어 채널 할당 방법
WO2013129870A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널을 검출하기 위한 검색 영역을 설정하는 방법 및 이를 위한 장치
WO2013079034A1 (zh) 下行数据发送、接收方法及基站与用户终端
CN111050402B (zh) 一种被用于无线通信的节点中的方法和装置
JP2018026660A (ja) 通信装置、通信方法及びプログラム
WO2013077517A1 (ko) 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 전송하는 방법 및 이를 위한 장치
KR20180106869A (ko) 차세대 무선망에서 하향 링크 선점 지시 정보를 모니터링하고 송수신하는 방법 및 그 장치
CN114175699A (zh) 在支持机器类型通信的无线通信系统中发送和接收紧急信息的方法及其装置
WO2011079718A1 (zh) 基站、中继节点、中继子帧配置信息的通知方法及系统
KR20180106859A (ko) 차세대 무선망에서 하향 링크 선점 지시 정보를 모니터링하고 송수신하는 방법 및 그 장치
WO2012113314A1 (zh) 一种上行授权信息的发送方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799417

Country of ref document: EP

Kind code of ref document: A1