WO2011006297A1 - 一种具有独立直流供电单元的开关电路 - Google Patents

一种具有独立直流供电单元的开关电路 Download PDF

Info

Publication number
WO2011006297A1
WO2011006297A1 PCT/CN2009/072779 CN2009072779W WO2011006297A1 WO 2011006297 A1 WO2011006297 A1 WO 2011006297A1 CN 2009072779 W CN2009072779 W CN 2009072779W WO 2011006297 A1 WO2011006297 A1 WO 2011006297A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power supply
switch
circuit
independent
Prior art date
Application number
PCT/CN2009/072779
Other languages
English (en)
French (fr)
Inventor
霍为民
眭海燕
Original Assignee
Huo Weimin
Sui Haiyan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huo Weimin, Sui Haiyan filed Critical Huo Weimin
Priority to EP09847222.8A priority Critical patent/EP2455960A4/en
Priority to CN200990100766.XU priority patent/CN202796751U/zh
Priority to PCT/CN2009/072779 priority patent/WO2011006297A1/zh
Priority to US13/383,523 priority patent/US20120106020A1/en
Publication of WO2011006297A1 publication Critical patent/WO2011006297A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/722Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region with galvanic isolation between the control circuit and the output circuit
    • H03K17/723Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Definitions

  • the present invention relates to an electronic switching circuit, in particular to a switching circuit with independent DC power supply.
  • the switch unit of the general electronic switch circuit shares the power supply unit with its control unit.
  • the power consumption of the control unit is relatively small, generally between tens of microamperes and several milliamperes; the power consumption of the switch unit is more than that of the control unit, such as the driving current of relays and thyristors. About ten milliamperes, which can be more than ten times that of the control unit.
  • This enables its power supply unit to meet the needs of the switch unit when it is turned on, and to maintain a much larger redundant power supply capability than the control unit requires.
  • the power supply unit adopts a capacitor step-down DC power supply, its input current is approximately constant. Therefore, when the switch unit is turned off, the redundant current will be consumed on its voltage stabilizing device, resulting in waste of power consumption.
  • the present invention aims to solve the above problems, and provides a switch unit with an independent power supply unit different from the control unit.
  • the power supply unit of the switch unit can be turned on or off by the control unit, so that the power supply unit of the switch unit has only When the switch unit needs to be turned on, the power supply switching circuit is turned on.
  • This kind of switch circuit effectively solves the problem of waste of power consumption when the switch unit is turned off in the traditional switch circuit that uses the DC power supply shared with the control unit.
  • the switch circuit of the present invention is directly driven by the AC current of the external power supply.
  • the control unit can turn on the AC circuit of the external power supply to open the AC contactor, and cut off the AC circuit of the external power supply to close the AC contactor.
  • the switch circuit is suitable for a switch circuit that uses a DC power supply, and its switch device uses a low-voltage DC-driven relay, which is different from an AC contactor drive circuit driven by an AC current directly connected to an external power source.
  • the switch circuit and the control part are independent of each other. Power supply circuit.
  • the power supply circuit of its switching circuit is designed for anti-interference purposes. It is assumed that the switch circuit will not be closed after the switch circuit is closed.
  • the power supply circuit of the switch unit is different from the way that the power supply circuit of the switch unit turns off when or after the switch unit is turned off to save power.
  • a switch circuit with independent DC power supply which is characterized in that it includes:
  • a power supply unit of a switch unit which is connected to the switch unit, the on-off unit of the power supply unit, and an external power source;
  • a switch control signal transmission unit which is connected to the on-off unit and the control unit of the power supply unit.
  • the switching device of the switch unit is a DC-driven relay or a silicon controlled rectifier.
  • the power supply unit of the switch unit is a DC power supply circuit; provides a drive current for the switch unit
  • the power supply unit of the switch unit has a capacitor-divided step-down circuit, or a resistor-divided step-down circuit, or a transformer step-down circuit.
  • the rectifier circuit of the power supply unit of the switch unit is a bridge diode rectifier circuit or a half bridge diode rectifier circuit.
  • the on-off unit of the power supply unit is used to turn on and off the power supply unit of the switch unit
  • the switching device used in the on-off unit of the power supply unit is a transistor or a thyristor
  • the switch control signal transmission unit which transmits the switch signal of the control unit to the on-off unit of the switch unit.
  • the switch control signal transmission unit is the power supply unit of the control unit and the power supply unit of the switch unit In common ground, it is a direct electrical connection.
  • the switch control signal transmission unit is used to isolate and transmit a photoelectric coupling circuit, a capacitor circuit, or a mutual inductance circuit.
  • a power supply unit of a switch unit which is connected to the switch unit, the on-off unit of the power supply unit, and an external power source;
  • a switch control signal transmission unit which is connected with the on-off unit of the power supply unit, the on-off unit of the switch unit, and the control unit.
  • the switching device of the switch unit is a DC-driven relay or a silicon controlled rectifier.
  • the power supply unit of the switch unit is a DC power supply circuit; provides a drive current for the switch unit
  • the power supply unit of the switch unit has a capacitor-divided step-down circuit, or a resistor-divided step-down circuit, or a transformer step-down circuit.
  • the rectifier circuit of the power supply unit of the switch unit is a bridge diode rectifier circuit or a half-bridge diode rectifier circuit.
  • the power supply unit of the switch unit when it is turned on, the switch unit is turned on; when the switch unit is cut off, the power supply unit of the switch unit cuts off power; it is used to save power consumption when the switch unit is cut off.
  • the on-off unit of the power supply unit is used to turn on and off the power supply unit of the switching unit.
  • the switching device used in the on-off unit of the power supply unit is a transistor or a controllable switch. Silicon, or relay.
  • the on-off unit of the switch unit is used to turn on and off the switch unit.
  • the switching device used in the on-off unit of the switching unit is a transistor or a thyristor
  • the switch control signal transmission unit which transmits the switch signal of the control unit to the on-off unit of the switch unit and the on-off unit of the switch unit.
  • the switch control signal transmission unit is directly electrically connected when the power supply unit of the control unit and the power supply unit of the switch unit share the same ground.
  • the switch control signal transmission unit is used to isolate and transmit a photoelectric coupling circuit, a capacitor circuit, or a mutual inductance circuit.
  • the contribution of the present invention is that it effectively overcomes the problem of power consumption and waste of redundant power supply of the power supply unit when the switch unit is turned off in the traditional switching circuit that shares the DC power supply with the control unit.
  • a control unit and a switch unit respectively have independent power supply units, and the power supply unit of the switch unit conducts a power supply switching circuit only when the switch unit needs to be turned on; and cuts off the power supply switch circuit when the switch unit is closed.
  • Fig. 1 is a schematic circuit diagram of an implementation of the present invention.
  • FIG. 2 is a schematic circuit diagram of an implementation manner of the present invention.
  • FIG. 3 is a schematic circuit diagram of an implementation manner of the present invention.
  • the switch circuit with independent DC power supply of the present invention uses an independent power supply unit different from the power supply unit of the control unit, and the power supply unit of the switch unit is turned on when the switch unit is turned on, and turned off when the switch unit is turned off.
  • the switching device used in the switching unit 10 is a relay driven by DC.
  • the rectifier circuit adopts a half-bridge diode rectifier circuit;
  • the step-down circuit adopts a capacitor-divided step-down circuit.
  • the switching device of the on-off unit 30 of its power supply unit adopts a voltage-driven field effect transistor Q2.
  • the power supply unit 60 of its control unit uses a bridge diode rectifier circuit, and can share the same ground with the power supply unit 20 of a switch unit using a half-bridge diode rectifier circuit, so its switch control signal transmission unit 40 can be directly electrically connected.
  • the control unit 50 turns on the field effect transistor Q2 of the on-off unit 30 of the power supply unit through the switch control signal transmission unit 40.
  • the conduction of the field effect tube turns on the power supply.
  • the control unit 50 turns on the field effect transistor Q2 of the on-off unit 30 of the power supply unit through the switch control signal transmission unit 40, and the control unit 50 turns off the field effect transistor Q2 of the on-off unit 30 of the power supply unit through the switch control signal transmission unit 40,
  • the power supply unit 20 of the switch unit cuts off power supply due to the turn-off of the field effect transistor Q2 of the on-off unit 30 of the power supply unit.
  • the loop current is also cut off, the drive current of the relay drive coil of the switch device DC drive relay of the switch unit 10 is cut off, and the relay is disconnected and cut off.
  • the switch device used in the switch unit 10 is a triac.
  • the rectifier circuit used in the power supply unit 20 of the switch unit is a bridge diode rectifier circuit.
  • the switching device of the on-off unit 30 of its power supply unit adopts a voltage-driven field effect transistor Q2.
  • the power supply unit 60 of its control unit is also a bridge diode rectifier circuit, and the power supply unit 20 of the switch unit using a bridge diode rectifier circuit cannot share the same ground. Therefore, the switch control signal transmission unit 40 adopts isolation. And the mutual inductance inductance circuit that transmits the signal.
  • control unit 50 when the control unit 50 needs to turn on the switch circuit, it sends the switch control signal to the switch control signal transmission unit 4.
  • the pulse signal is transmitted to the on-off unit 30 of the power supply unit through the mutual inductance T of the switch control signal transmission unit 40, and the on-off unit 30 of the power supply unit is rectified and filtered to form the on-off of the power supply unit
  • the unit 30 switches the on-drive voltage of the device field effect transistor Q2, and the on-off unit 30 switches on the field effect transistor Q2 of the power supply unit.
  • the MOSFET Q2 of the switching device of the power supply unit 20 connected to the power supply unit 20 of the switching unit at the DC end of the bridge diode rectifier circuit is turned on, so that the power supply unit 20 of the switching unit is turned on at the AC end of the bridge diode rectifier circuit. .
  • the power supply unit 20 of the switch unit is turned on at the AC end of the bridge diode rectifier circuit to turn on the driving circuit of the triac of the switch unit 10, thereby turning on the output of the Traic switch.
  • the control unit 50 when the control unit 50 needs to close the switch circuit, it stops sending a pulse start signal to the switch control signal transmission unit 40, and transmits it to the power supply unit through the mutual inductance T of the switch control signal transmission unit 40.
  • the pulse signal of the cut-off unit 30 is also stopped, and is adjusted by the conduction and cut-off unit 30 of the power supply unit.
  • the current filter circuit forms the on-off unit 30 of the power supply unit.
  • the on-drive voltage of the switching device FET Q2 disappears, and the on-off unit 30 of the power supply unit turns on the FET Q2 of the switching device. Therefore, the power supply unit of the switching unit is turned off.
  • the 20 bridge diode rectifier circuit is cut off.
  • the driving circuit of the triac Triac of the switching unit 10 is turned off, and the Tmic switch output of the switching unit 10 is turned off.
  • the power supply unit 20 of the switch unit and the switch unit 10 are cut off at the same time.
  • the switching device used in the switching unit 10 is a DC-driven relay Relay.
  • the rectifier circuit adopts a bridge diode rectifier circuit;
  • the step-down circuit adopts a capacitor-divided step-down circuit.
  • the switching device of the on-off unit 30 of its power supply unit adopts a voltage-driven field effect transistor Q2.
  • the on-off unit 80 of its switch unit adopts a voltage-driven field effect transistor Q3 as the switch device.
  • the power supply unit 60 of its control unit is also a bridge diode rectifier circuit, and the power supply unit 20 of the switch unit using a bridge diode rectifier circuit cannot share the same ground. Therefore, the switch control signal transmission unit 40 uses two A mutual inductance inductance circuit for isolation and signal transmission respectively connected with the on-off unit 30 of the power supply unit and the on-off unit 80 of the switch unit.
  • control unit 50 when the control unit 50 needs to turn on the switch circuit, it first sends a pulse turn-on signal to the mutual inductance T2 of the switch control signal transmission unit 40 connected to the on-off unit 30 of the power supply unit
  • the pulse signal is transmitted to the on-off unit 30 of the power supply unit through the mutual inductance T2 of the switch control signal transmission unit 40,
  • the on-off unit 30 of the power supply unit forms the on-off unit 30 of the power supply unit through the rectifier filter circuit and the on-off unit 30 switches on the driving voltage of the field effect transistor Q3, which turns on the on-off unit 30 of the power supply unit and the field effect transistor Q3 of the switching device. .
  • the power supply unit connected to the power supply unit 20 of the switch unit is turned on and the FET Q3 of the switching device 30 is turned on to turn on the power supply unit 20 of the switch unit to provide a driving current for the switch device Relay of the switch unit 10.
  • the control unit 50 sends a pulse turn-on signal to the mutual inductance T1 of the switch control signal transmission unit 40 connected to the on-off unit 80 of the switch unit.
  • the pulse signal is transmitted to the on-off unit 80 of the switch unit through the mutual inductance T1 of the switch control signal transmission unit 40,
  • the on-off unit 80 of the switch unit is turned on and the rectifier filter circuit forms the on-off unit 80 of the switch unit.
  • the turn-on driving voltage of the device field effect transistor Q2 turns on the turn-on and cut-off unit 80 of the switch unit to switch the field effect transistor Q2 of the device.
  • the on-off unit 80 of the switch unit connected to the switch unit 10 is turned on, the loop current of the switching device FET Q2 flows through the switching device of the switch unit 10. It is closed and turned on.
  • control unit 50 when the control unit 50 needs to turn off the switch circuit, it first stops sending a pulse turn-on signal to the mutual inductance T1 of the switch control signal transmission unit 40 connected to the on-off unit 80 of the switch unit.
  • the pulse signal transmitted by the mutual inductance T1 of the control signal transmission unit 40 to the on-off unit 80 of the switch unit is turned off, and the on-off unit 80 of the switch unit turns off the switching device FET Q2, and the switching device of the switch unit 10 drives the relay directly.
  • the driving current of the Relay is cut off, and the relay output of the DC driving relay of the switching device of the switch unit 10 is cut off.
  • the control unit 50 stops sending the switch control signal transmission unit 40 to the mutual inductance connected to the on-off unit 30 of the power supply unit.
  • the inductor T2 sends a pulse start signal, and the pulse signal transmitted to the on-off unit 30 of the power supply unit through the mutual inductance T2 of the switch control signal transmission unit 40 stops,
  • the on-off unit 30 of the power supply unit cuts off the field effect transistor Q3 of the switching device.
  • the power supply unit connected to the power supply unit 20 of the switch unit turns off the field effect transistor Q3 of the switching device 30, so that the power supply unit 20 of the switch unit turns off. Therefore, the power supply unit 20 of the switch unit is also cut off when the switch unit 10 is cut off, so as to save power consumption.
  • the devices used in the aforementioned units can all be conventional devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Relay Circuits (AREA)

Description

一种具有独立直流供电单元的幵关电路
[1] 技术领域
[2] 本发明涉及电子开关电路, 特别是涉及一种具有独立直流供电的开关电路。
[3] 背景技术
[4] 一般电子开关电路的开关单元是与其控制单元是共用供电单元的。 但是由于 控制单元耗电较小, 一般的在几十微安到几毫安之间; 而开关单元耗电相对控 制单元而言耗电较多, 如继电器、 可控硅等的驱动电流约在几十毫安左右, 可 以是控制单元的十倍以上。 这就使得其供电单元为满足开关单元开启吋所需, 要保持相对于控制单元所需大很多的冗余供电能力。 当供电单元釆用电容降压 式直流电源吋, 其输入电流近似恒定, 因此在开关单元关闭吋, 冗余的电流就 会消耗在其稳压器件上, 从而造成耗电浪费。
[5]
[6] 发明内容
[7] 本发明旨在解决上述问题, 而提供一种开关单元具有与控制单元不同的独立 供电单元, 开关单元的供电单元可以由控制单元控制导通或截止, 从而使开关 单元的供电单元只有在开关单元需要开启吋, 才导通供电的开关电路。 这种开 关电路有效地解决了传统的釆用与控制单元共用直流电源的开关电路, 其开关 单元在关闭吋的耗电浪费问题。
[8] 同吋应提到的是本发明开关电路与交流接触器驱动电路的区别。 交流接触器 直接由外电源交流电流驱动, 控制单元导通其外电源交流回路便可开启交流接 触器, 截止其外电源交流回路便可关闭交流接触器。 而本开关电路适用于釆用 直流供电电源的开关电路, 其开关器件釆用的是低压直流驱动的继电器, 与直 接外电源交流电流驱动的交流接触器驱动电路是不同的。
[9] 除了上述的交流接触器驱动电路之外, 部分应用于工业控制的开关电路, 为 了防止在开关电路一侧的干扰信号影响到控制部分, 而在开关电路和控制部分 分别釆用相互独立的供电电路。 但是其开关电路的供电电路是为抗干扰目的而 设的, 不会在开关电路关闭后随之而关闭。 与本发明具有独立直流供电的开关 电路中, 开关单元的供电电路为节省耗电在开关单元关闭吋或之后随之关闭的 方式是不同的。
[10] 为实现上述目的, 提供的一种具有独立直流供电的开关电路, 其特征在于, 它包括:
[11] 一个开关单元; 及
[12] 一个开关单元的供电单元, 它与开关单元、 供电单元的导通截止单元、 外部 电源相连接; 及
[13] 一个供电单元的导通截止单元, 它与开关单元的供电单元、 开关控制信号传 送单元相连接; 及
[14] 一个开关控制信号传送单元, 它与供电单元的导通截止单元、 控制单元相连 接。
[15] 所述的开关单元的开关器件是直流驱动的继电器、 或者可控硅。
[16] 所述的开关单元的供电单元是一个直流供电电路; 为开关单元提供驱动电流
[17] 所述的开关单元的供电单元具有电容分压的降压电路、 或者电阻分压的降压 电路、 或者变压器降压电路。
[18] 所述的开关单元的供电单元的整流电路是桥式二极管整流电路, 或者是半桥 式二极管整流电路。
[19] 所述的开关单元的供电单元, 当它导通供电吋开关单元导通; 当开关单元的 供电单元截止供电吋开关单元截止; 用以节省开关单元截止吋的耗电。
[20] 所述的供电单元的导通截止单元, 它是用于导通和截开关单元的供电单元的
[21] 所述的供电单元的导通截止单元所用的开关器件是晶体开关管、 或者可控硅
、 或者继电器。
[22] 所述的开关控制信号传送单元, 它是传递控制单元开关信号给开关单元的导 通截止单元的。
[23] 所述开关控制信号传送单元在当控制单元的供电单元与开关单元的供电单元 共地吋, 是直接电连接。
[24] 所述开关控制信号传送单元在当控制单元的供电单元与开关单元的供电单元 不共地吋, 用于隔离及传递信号的光电耦合电路、 电容电路或互感电感电路。
[25]
[26] 为实现上述目的, 提供的一种具有独立直流供电的开关电路, 其特征还在于
, 它包括:
[27] 一个开关单元; 及
[28] 一个开关单元的供电单元, 它与开关单元、 供电单元的导通截止单元、 外部 电源相连接; 及
[29] 一个开关单元的导通截止单元, 它与开关单元、 开关控制信号传送单元相连 接; 及
[30] 一个供电单元的导通截止单元, 它与开关单元的供电单元、 开关控制信号传 送单元相连接; 及
[31] 一个开关控制信号传送单元, 它与供电单元的导通截止单元、 开关单元的导 通截止单元、 控制单元相连接。
[32] 所述的开关单元的开关器件是直流驱动的继电器、 或者可控硅。
[33] 所述的开关单元的供电单元是一个直流供电电路; 为开关单元提供驱动电流
[34] 所述的开关单元的供电单元具有电容分压的降压电路、 或者电阻分压的降压 电路、 或者变压器降压电路。
[35] 所述的开关单元的供电单元的整流电路是桥式二极管整流电路, 或者是半桥 式二极管整流电路。
[36] 所述的开关单元的供电单元, 当它导通供电后开关单元导通; 当开关单元截 止后开关单元的供电单元截止供电; 用以节省开关单元截止吋的耗电。
[37] 所述的供电单元的导通截止单元, 它是用于导通和截开关单元的供电单元的 所述的供电单元的导通截止单元所用的开关器件是晶体开关管、 或者可控硅 、 或者继电器。 [39] 所述的开关单元的导通截止单元, 它是用于导通和截开关单元的。
[40] 所述的开关单元的导通截止单元所用的开关器件是晶体开关管、 或者可控硅
、 或者继电器。
[41] 所述的开关控制信号传送单元, 它是传递控制单元开关信号给开关单元的导 通截止单元和开关单元的导通截止单元的。
[42] 所述开关控制信号传送单元在当控制单元的供电单元与开关单元的供电单元 共地吋, 是直接电连接。
[43] 所述开关控制信号传送单元在当控制单元的供电单元与开关单元的供电单元 不共地吋, 用于隔离及传递信号的光电耦合电路、 电容电路或互感电感电路。
[44] 本发明的贡献在于, 它有效克服了传统的与控制单元共用直流供电电源的开 关电路, 在开关单元关闭吋的供电单元冗余供电的耗电浪费问题。 而提供一种 控制单元与开关单元分别具有独立供电单元, 而开关单元的供电单元只有在开 关单元需要开启吋, 才导通供电的开关电路; 在开关单元关闭吋, 截止供电的 开关电路。
[45] 附图说明
[46] 图 1是本发明一种实现方式的电路原理图。
[47] 图 2是本发明一种实现方式的电路原理图。
[48] 图 3是本发明一种实现方式的电路原理图。
[49] 具体实施方式
[50] 本发明的具有独立直流供电的开关电路釆用不同于控制单元供电单元的独立 供电单元, 且开关单元的供电单元随开关单元的导通而导通, 随开关单元的截 止而截止。
[51] 如图 1所示的具有独立直流供电的开关电路, 开关单元 10釆用的开关器件是 一个直流驱动的继电器 Relay。 其开关单元的供电单元 20, 整流电路釆用的是半 桥式二极管整流电路; 降压电路釆用电容分压的降压电路。 它的供电单元的导 通截止单元 30的开关器件釆用一个电压驱动型场效应管 Q2。 它的控制单元的供 电单元 60釆用桥式二极管整流电路, 可以与釆用半桥式二极管整流电路的开关 单元的供电单元 20共地, 因此其开关控制信号传送单元 40可以是直接电连接。 [52] 如图 1所示, 控制单元 50通过开关控制信号传送单元 40开启供电单元的导通 截止单元 30的场效应管 Q2, 开关单元的供电单元 20因为供电单元的导通截止单 元 30的场效应管的导通而导通供电。 开关单元的供电单元 20导通吋其回路电流 流经开关单元 10的开关器件直流驱动继电器 Relay的驱动线圏形成驱动电流, 使 继电器吸合而导通。 控制单元 50通过开关控制信号传送单元 40开启供电单元的 导通截止单元 30的场效应管 Q2, 控制单元 50通过开关控制信号传送单元 40关闭 供电单元的导通截止单元 30的场效应管 Q2, 开关单元的供电单元 20因为供电单 元的导通截止单元 30的场效应管 Q2的截止而截止供电。 开关单元的供电单元 20 供电截止吋其回路电流也截止, 开关单元 10的开关器件直流驱动继电器 Relay驱 动线圏的驱动电流截止, 继电器分离而截止。
[53] 如图 2所示的具有独立直流供电的开关电路, 开关单元 10釆用的开关器件是 一个双向可控硅 Triac。 其开关单元的供电单元 20釆用的整流电路是桥式二极管 整流电路。 它的供电单元的导通截止单元 30的开关器件釆用一个电压驱动型场 效应管 Q2。 它的控制单元的供电单元 60釆用也是桥式二极管整流电路, 与釆用 桥式二极管整流电路的开关单元的供电单元 20不可以共地, 因此其开关控制信 号传送单元 40釆用的是隔离及传递信号的互感电感电路。
[54] 如图 2所示, 控制单元 50在需要开启开关电路吋, 向开关控制信号传送单元 4
0发送脉冲开启信号, 通过开关控制信号传送单元 40的互感电感 T将脉冲信号传 送给供电单元的导通截止单元 30, 经供电单元的导通截止单元 30整流滤波电路 形成供电单元的导通截止单元 30开关器件场效应管 Q2的导通驱动电压, 导通供 电单元的导通截止单元 30开关器件的场效应管 Q2。 连接在开关单元的供电单元 2 0桥式二极管整流电路直流端的供电单元的导通截止单元 30开关器件的场效应管 Q2导通, 使开关单元的供电单元 20桥式二极管整流电路交流端导通。 开关单元 的供电单元 20桥式二极管整流电路交流端导通使开关单元 10的双向可控硅 Triac 的驱动回路导通, 从而使 Traic开关输出导通。
[55] 如图 2所示, 控制单元 50在需要关闭开关电路吋, 停止向开关控制信号传送 单元 40发送脉冲开启信号, 通过开关控制信号传送单元 40的互感电感 T传送给供 电单元的导通截止单元 30的脉冲信号也停止, 经供电单元的导通截止单元 30整 流滤波电路形成供电单元的导通截止单元 30开关器件场效应管 Q2的导通驱动电 压消失, 导通供电单元的导通截止单元 30开关器件的场效应管 Q2因此截止, 开 关单元的供电单元 20桥式二极管整流电路截止。 使开关单元 10的双向可控硅 Tria c的驱动回路截止, 使开关单元 10的 Tmic开关输出截止。 从而使开关单元的供电 单元 20和开关单元 10同吋截止。
[56] 如图 3所示的具有独立直流供电的开关电路, 开关单元 10釆用的开关器件是 一个直流驱动的继电器 Relay。 其开关单元的供电单元 20, 整流电路釆用的是桥 式二极管整流电路; 降压电路釆用电容分压的降压电路。 它的供电单元的导通 截止单元 30的开关器件釆用一个电压驱动型场效应管 Q2。 它的开关单元的导通 截止单元 80的开关器件釆用一个电压驱动型场效应管 Q3。 它的控制单元的供电 单元 60釆用也是桥式二极管整流电路, 与釆用桥式二极管整流电路的开关单元 的供电单元 20不可以共地, 因此其开关控制信号传送单元 40釆用的是两个分别 与供电单元的导通截止单元 30和开关单元的导通截止单元 80相连接的隔离及传 递信号的互感电感电路。
[57] 如图 3所示, 控制单元 50在需要开启开关电路吋, 首先向开关控制信号传送 单元 40的与供电单元的导通截止单元 30相连接的互感电感 T2发送脉冲开启信号
, 通过开关控制信号传送单元 40的互感电感 T2将脉冲信号传送给供电单元的导 通截止单元 30,
经供电单元的导通截止单元 30整流滤波电路形成供电单元的导通截止单元 30开 关器件场效应管 Q3的导通驱动电压, 导通供电单元的导通截止单元 30开关器件 的场效应管 Q3。 与开关单元的供电单元 20相连接的供电单元导通截止单元 30开 关器件的场效应管 Q3导通, 使开关单元的供电单元 20导通, 可以为开关单元 10 的开关器件 Relay提供驱动电流。
[58] 如图 3所示, 在开关单元的供电单元 20导通后控制单元 50再向开关控制信号 传送单元 40的与开关单元的导通截止单元 80相连接的互感电感 T1发送脉冲开启 信号, 通过开关控制信号传送单元 40的互感电感 T1将脉冲信号传送给开关单元 的导通截止单元 80,
经开关单元的导通截止单元 80整流滤波电路形成开关单元的导通截止单元 80开 关器件场效应管 Q2的导通驱动电压, 导通开关单元的导通截止单元 80开关器件 的场效应管 Q2。 与开关单元 10相连接的开关单元的导通截止单元 80开关器件场 效应管 Q2的导通吋其回路电流流经开关单元 10的开关器件直流驱动继电器 Relay 的驱动线圏形成驱动电流, 使继电器吸合而导通。
[59] 如图 3所示控制单元 50在需要关闭开关电路吋, 首先停止向开关控制信号传 送单元 40的与开关单元的导通截止单元 80相连接的互感电感 T1发送脉冲开启信 号, 通过开关控制信号传送单元 40的互感电感 T1传送给开关单元的导通截止单 元 80的脉冲信号截止, 开关单元的导通截止单元 80开关器件场效应管 Q2因此截 止, 开关单元 10的开关器件直流驱动继电器 Relay的驱动电流截止, 开关单元 10 的开关器件直流驱动继电器 Relay输出截止。
[60] 如图 3所示, 在开关单元 10的开关器件直流驱动继电器 Relay输出截止后, 控 制单元 50再停止向开关控制信号传送单元 40的与供电单元的导通截止单元 30相 连接的互感电感 T2发送脉冲开启信号, 通过开关控制信号传送单元 40的互感电 感 T2传送给供电单元的导通截止单元 30的脉冲信号停止,
截止供电单元的导通截止单元 30开关器件的场效应管 Q3。 与开关单元的供电单 元 20相连接的供电单元导通截止单元 30开关器件的场效应管 Q3截止, 使开关单 元的供电单元 20截止。 从而使开关单元的供电单元 20在开关单元 10截止吋也截 止, 以节省耗电。
[61] 如前述各单元所用器件均可釆用常规器件。
[62] 尽管通过以上实施例对本发明进行了揭示, 但是本发明的范围并不局限于此
, 在不偏离本发明构思的条件下, 以上各构件可用所属技术领域人员了解的相 似或等同元件来替换。

Claims

权利要求书
1、 一种具有独立直流供电的开关电路, 其特征在于, 它包括:
一个开关单元(10) ; 及
一个开关单元的供电单元(20) , 它与开关单元(10)、 供电单元的导通 截止单元(30)、 外部电源(70)相连接; 及
一个供电单元的导通截止单元(30) , 它与开关单元的供电单元(20)、 开关控制信号传送单元(40)相连接; 及
一个开关控制信号传送单元(40) , 它与供电单元的导通截止单元(30)、 控制单元(50)相连接。
2、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于, 所述的开关单元(10)的开关器件是直流驱动的继电器、 或者可控硅。
3、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于,所述的开关单元的供电单元(20)是一个直流供电电路;为开关单元(10) 提供驱动电流。
4、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于, 所述的开关单元的供电单元(20)具有电容分压的降压电路、 或者电阻 分压的降压电路、 或者变压器降压电路。
5、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于, 所述的开关单元的供电单元(20)的整流电路是桥式二极管整流电路, 或者是半桥式二极管整流电路。
6、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于, 所述的开关单元的供电单元(20) , 当它导通供电时开关单元(10)导通; 当开关单元的供电单元(20)截止供电时开关单元(20)截止; 用以节省开关 单元(10)截止时的耗电。
7、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于, 所述的供电单元的导通截止单元(30) , 它是用于导通和截开关单元的 供电单元(20)的。 更正页 (细则第 91条)
8、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于, 所述的供电单元的导通截止单元(30)所用的开关器件是晶体开关管、 或者可控硅、 或者继电器。
9、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征在 于, 所述的开关控制信号传送单元(40) , 它是传递控制单元(50)开关信号 给开关单元的导通截止单元(30)的。
10、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述开关控制信号传送单元(40)在当控制单元的供电单元(60)与开 关单元的供电单元(20)共地时, 是直接电连接。
11、 如权利要求 1所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述开关控制信号传送单元(40)在当控制单元的供电单元 0)与开 关单元的供电单元(20)不共地时, 用于隔离及传递信号的光电耦合电路、 电容电路或互感电感电路。
12、 一种具有独立直流供电的开关电路, 其特征在于, 它包括: 一个开关单元(10) ; 及
一个开关单元的供电单元(20) , 它与开关单元(10)、 供电单元的导通 截止单元(30)、 外部电源(70)相连接; 及
一个开关单元的导通截止单元(80) , 它与开关单元(10)、 开关控制信 号传送单元(40)相连接; 及
一个供电单元的导通截止单元(30) , 它与开关单元的供电单元(20)、 开关控制信号传送单元(40)相连接; 及
一个开关控制信号传送单元(40), 它与供电单元的导通截止单元(30)、 开关单元的导通截止单元(80)、 控制单元(50)相连接。
13、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关单元(10)的开关器件是直流驱动的继电器、 或者可控硅。
14、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关单元的供电单元(20)是一个直流供电电路; 为开关单元 更正页 (细则第 91条) (10)提供驱动电流。
15、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关单元的供电单元(20)具有电容分压的降压电路、 或者电 阻分压的降压电路、 或者变压器降压电路。
16、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关单元的供电单元(20)的整流电路是桥式二极管整流电路, 或者是半桥式二极管整流电路。
17、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关单元的供电单元(20) , 当它导通供电后开关单元(10)导 通; 当开关单元(10)截止后开^单元的供电单元(20)截止供电; 用以节省 开关单元(10)截止时的耗电。
18、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的供电单元的导通截止单元(30), 它是用于导通和截开关单元 的供电单元(20)的。
19、 如权利要求 12.所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的供电单元的导通截止单元(30)所用的开关器件是晶体开关管、 或者可控硅、 或者继电器。
20、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关单元的导通截止单元(80) , 它是用于导通和截开关单元 (10)的。
21、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关单元的导通截止单元(80)所用的开关器件是晶体开关管、 或者可控硅、 或者继电器。
22、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述的开关控制信号传送单元(40) , 它是传递控制单元(50)开关信 号给开关单元的导通截止单元(30)和开关单元的导通截止单元(80)的。
23、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 更正页(细则第 91条) 在于, 所述开关控制信号传送单元(40)在当控制单元的供电单元(60)与开 关单元的供电单元(20)共地时, 是直接电连接。
24、 如权利要求 12所述的一种具有独立直流供电的开关电路, 其特征 在于, 所述开关控制信号传送单元(40)在当控制单元的供电单元(60)与开 关单元的供电单元(20)不共地时, 用于隔离及传递信号的光电耦合电路、 电容电路或互感电感电路。
更正页 (细则第 91条)
PCT/CN2009/072779 2009-07-15 2009-07-15 一种具有独立直流供电单元的开关电路 WO2011006297A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09847222.8A EP2455960A4 (en) 2009-07-15 2009-07-15 INDEPENDENT CONTINUOUS POWER SUPPLY SWITCHING CIRCUIT
CN200990100766.XU CN202796751U (zh) 2009-07-15 2009-07-15 一种具有独立直流供电单元的开关电路
PCT/CN2009/072779 WO2011006297A1 (zh) 2009-07-15 2009-07-15 一种具有独立直流供电单元的开关电路
US13/383,523 US20120106020A1 (en) 2009-07-15 2009-07-15 Switch circuit with independent dc power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/072779 WO2011006297A1 (zh) 2009-07-15 2009-07-15 一种具有独立直流供电单元的开关电路

Publications (1)

Publication Number Publication Date
WO2011006297A1 true WO2011006297A1 (zh) 2011-01-20

Family

ID=43448872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072779 WO2011006297A1 (zh) 2009-07-15 2009-07-15 一种具有独立直流供电单元的开关电路

Country Status (4)

Country Link
US (1) US20120106020A1 (zh)
EP (1) EP2455960A4 (zh)
CN (1) CN202796751U (zh)
WO (1) WO2011006297A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198977B (zh) * 2013-03-29 2016-05-25 深圳市汇川技术股份有限公司 接触器线圈供电电路
KR102334932B1 (ko) * 2017-04-04 2021-12-06 삼성전자주식회사 전원 안정화 모듈 및 그가 적용된 디스플레이 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252730A (ja) * 1993-02-24 1994-09-09 Fuji Electric Co Ltd トライアックの駆動回路
CN1151816A (zh) * 1994-06-27 1997-06-11 拉里C·Y·李 晶闸管电源控制电路
CN2582271Y (zh) * 2002-06-06 2003-10-22 缪益品 红外遥控墙壁开关

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265933A (en) * 1963-10-24 1966-08-09 Allis Chalmers Mfg Co Control circuit for operating circuit interrupter at a zero current point in system wave form
DE3110314A1 (de) * 1980-07-31 1982-04-01 LGZ Landis & Gyr Zug AG, 6301 Zug System und einrichtung zur betaetigung eines elektromagneten
DE3427478A1 (de) * 1984-07-25 1986-02-06 Siemens AG, 1000 Berlin und 8000 München Verfahren und einrichtung zum schalten von lasten unter vermeidung hoher einschaltstromspitzen
US7439636B2 (en) * 2001-12-31 2008-10-21 Lewis James M Driver system for MOSFET based, high voltage electronic relays for AC power switching and inductive loads
CN100359418C (zh) * 2004-07-05 2008-01-02 周先谱 一种零功耗待机电源控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252730A (ja) * 1993-02-24 1994-09-09 Fuji Electric Co Ltd トライアックの駆動回路
CN1151816A (zh) * 1994-06-27 1997-06-11 拉里C·Y·李 晶闸管电源控制电路
CN2582271Y (zh) * 2002-06-06 2003-10-22 缪益品 红外遥控墙壁开关

Also Published As

Publication number Publication date
EP2455960A1 (en) 2012-05-23
EP2455960A4 (en) 2014-01-08
CN202796751U (zh) 2013-03-13
US20120106020A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
JP2009207353A5 (zh)
CN102651615B (zh) 电源转换器以及电源转换器的控制方法
WO2004098060A1 (en) High speed bi-directional solid state switch
WO2010102458A1 (zh) 电梯制动系统的控制电路及控制方法
JP5729840B2 (ja) 力率補正装置、電源装置及びモーター駆動装置
JP2004536543A5 (zh)
TWI610536B (zh) 交流電壓導通及截止相角同步調控電路
CN105871218A (zh) 一种配置推挽式隔离电源的igbt驱动方法及装置
US11645894B2 (en) Doorbell chime bypass circuit
US20100123357A1 (en) Electrical appliance
CN105532074A (zh) 变换器和操作用于将电流提供给发光装置的变换器的方法
JP2013502195A5 (zh)
KR101288201B1 (ko) 역률 보정 회로, 이를 갖는 전원 장치 및 모터 구동 장치
EP1345325B1 (en) Solid-state relay
US9859833B1 (en) Fixed and variable speed induction motor and light controller
WO2011006297A1 (zh) 一种具有独立直流供电单元的开关电路
TWI551022B (zh) Dynamic drive capability adjustment of the power control device
CN215949169U (zh) 一种采用正激变换原理的电磁锁驱动装置
CN209930151U (zh) 温控液晶屏控制器的电源电路
CN114961434A (zh) 一种采用正激变换原理的电磁锁驱动电路
TW201223143A (en) Driver for driving power switch element
US6815845B1 (en) Method and apparatus for reversing polarity of a high voltage power source
TWI628906B (zh) 電源供應器與殘餘電壓放電方法
KR101054990B1 (ko) Led tv용 전원장치의 스탠바이 전원회로
CN105814251B (zh) 具有电流隔离的电路部分的家用器具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200990100766.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13383523

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009847222

Country of ref document: EP