WO2011006264A1 - Volant bi-masse à disque à cames - Google Patents
Volant bi-masse à disque à cames Download PDFInfo
- Publication number
- WO2011006264A1 WO2011006264A1 PCT/CA2010/001140 CA2010001140W WO2011006264A1 WO 2011006264 A1 WO2011006264 A1 WO 2011006264A1 CA 2010001140 W CA2010001140 W CA 2010001140W WO 2011006264 A1 WO2011006264 A1 WO 2011006264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass flywheel
- hub
- dual mass
- mass
- links
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/10—Suppression of vibrations in rotating systems by making use of members moving with the system
- F16F15/12—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
- F16F15/131—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
- F16F15/13157—Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses with a kinematic mechanism or gear system, e.g. planetary
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/0052—Physically guiding or influencing
- F16F2230/0064—Physically guiding or influencing using a cam
Definitions
- a torsional vibration damper for use within a drive train of a vehicle. More particularly, a dual mass flywheel may be configured as a torsional damper including cam surfaces driving spring loaded pivot arms with roller followers.
- a dual mass flywheel functions to filter out engine torque fluctuations prior to transferring torque to a vehicle transmission.
- a dual mass flywheel includes a primary rotary inertia connected to a crankshaft of an internal combustion engine.
- a second rotary inertia is coupled to an input shaft of the transmission.
- a rotary spring interconnects the primary rotary inertia and the secondary rotary inertia.
- Several arc springs having different lengths are implemented such that the springs become engaged at various degrees of mutual rotary displacement between the primary and secondary inertia.
- the dual mass flywheel stiffness varies in several discrete steps. Engine operation does not necessarily match the discrete steps in dual mass flywheel stiffness. Therefore, undesirable torque fluctuations may be input to the transmission.
- the springs are arranged as compression spring coils that may be completely collapsed against one another. This loading condition may negatively affect the fatigue life of the springs.
- a dual mass flywheel includes a rotatable primary mass and a secondary mass being rotatable relative to the primary mass.
- a cam plate is fixed for rotation with the primary mass and includes a plurality of circumferentially spaced apart cams.
- a hub is fixed for rotation with the secondary mass. Links are pivotally coupled to the hub. Each link includes a roller follower biased into engagement with one of the cams to dampen torsional vibrations at the primary mass.
- a dual mass flywheel in another form, includes a rotatable primary mass and a secondary mass being rotatable relative to the primary mass.
- a cam plate is fixed for rotation with the primary mass and includes a plurality of circumferentially spaced apart cams.
- a hub is fixed for rotation with the secondary mass. Links are pivotally coupled to the hub.
- a roller follower is rotatably coupled to each link.
- a plurality of springs bias each roller follower into engagement with one of the cams to dampen torsional vibrations.
- Each spring has a first end coupled to the hub and a second end coupled to one of the links.
- Figure 1 is a fragmentary cross-sectional view of a dual mass flywheel constructed in accordance with the teachings of the present disclosure
- Figure 2 is a partial perspective view of the dual mass flywheel depicted in Figure 1 ;
- Figure 3 is a fragmentary exploded perspective view showing a hub, a link and a roller follower of the dual mass flywheel;
- Figure 4 is a fragmentary plan view of an asymmetrical cam. [0012] Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
- Figures 1 and 2 depict a dual mass flywheel including a primary mass 12 and a secondary mass 14.
- Primary mass 12 is adapted to be fixed for rotation with a crankshaft of an internal combustion engine (not shown).
- Secondary mass 14 is adapted to be fixed for rotation with an input shaft 16 of a transmission (not shown).
- Primary mass 12 may rotate relative to secondary mass 14.
- a cam plate 18 is fixed to primary mass 12 by a plurality of fasteners 20. More particularly, fasteners 20 extend through apertures 22 formed in a flange 24 of cam plate 18. Cam plate 18 also includes a wall 26 extending substantially perpendicular to flange 24. An internal surface 28 of wall 26 defines a plurality of circumferentially spaced apart cams 30. Cams
- Cam plate 18 may be formed as a monolithic member such as a sheet having a substantially constant thickness.
- a hub 32 includes a hollow cylindrical portion 34 and a plurality of substantially radially extending arms 36. Hub 32 is fixed for rotation with input shaft 16. A splined connection may be used to couple cylindrical surfaces. A flanged coupling (not shown) may alternatively be implemented.
- a plurality of links 40 are circumferentially spaced apart from one another and circumscribed by wall 26.
- a first end 42 of each link 40 is rotatably coupled to a distal end 44 of each arm 36 by a pin 46.
- a roller follower 48 is rotatably coupled to a second end 50 of each link 40 by a pin 51.
- links 40 may be formed as stampings constructed from a sheet of material having a substantially constant thickness.
- Each link 40 includes spaced apart walls 52, 54 positioned on opposite sides of the corresponding arm 36. Walls 52, 54 are also positioned on opposite sides of each roller follower 48.
- a plurality of springs 56 biasedly engage roller followers 48 with cams 30.
- a first end 58 of each spring 56 is coupled to one of arms 36.
- a second end 60 of each spring 56 is coupled to one of links 40 at a position intermediate first end 42 and second end 50.
- Springs 56 are maintained in a pre-stressed condition such that each roller follower 48 is constantly in contact with one of cams 30.
- Figure 2 depicts each roller follower 48 at a first or most radially outward position.
- Springs 56 are compressed a minimum amount when roller followers 48 are at this position. Accordingly, a minimal torque is required to rotate cam plate 18 relative to hub 32 when roller followers 48 are at the first position.
- cams 30 drive roller followers 48 radially inwardly. Due to the rotatable connection between links 40 and arms 36, compression springs 56 are further compressed as roller followers 48 move radially inwardly. Accordingly, resistance to further relative rotation between cam plate 18 and hub 32 increases as springs 56 are compressed.
- springs 56, links 40 and rollers followers 48 impart a torque upon cam plate 18 urging roller followers 48 toward their first position depicted in Figure 2. This torque increases as springs 56 are compressed.
- the rate of change of the torque applied by roller followers 48 to cam plate 18 may be defined by the spring rate of each spring 56 as well as the shape of cams 30.
- Cams 30 may include profiles designed to result in a continuously changing, predetermined stiffness/deflection profile.
- the stiffness of dual mass flywheel 10 may be custom tailored to a specific hardware configuration. Based on the arrangement of links 40, springs 56 and roller followers 48 in cooperation with cams 30, the dampening characteristic of dual mass flywheel 10 is independent of the rotational speed of primary mass 12 and/or secondary mass 14. Furthermore, it should be appreciated that dual mass flywheel 10 is an efficient torque coupling as well as a damper. Roller followers 48 engage cams 30 in a rolling manner, not in a less efficient sliding interface. Springs 56 store the energy provided by primary mass 12 for later transfer. Minimal energy loss occurs during operation of dual mass flywheel 10.
- each cam 30 may include a first profile 30a that may be engaged by roller followers 48 when cam plate 18 rotates relative to hub 32 in a first direction.
- a different, second profile 30b, may be formed on each cam 30 as well.
- the second cam profile is contacted by each roller follower 48 when cam plate 18 rotates relative to hub 32 in the opposite direction as first described.
- each cam 30 may be asymmetrical about a line passing through the rotational center of hub 32 and a roller follower to cam contact point when the roller follower is at the first position.
- Dual mass flywheel 10 may also act as a clutch by allowing cam plate 18 to rotate relative to hub 32 at angles greater than defined by a singular cam 30. If a torque greater than a predetermined magnitude is attempted to be transferred across dual mass flywheel 10, each roller follower 48 will pass through the cam 30 of its current location and enter an adjacent cam 30. It should be appreciated that a convex surface 62 interconnects each pair of adjacent cams 30. Convex surfaces 62 are located at predetermined radially inward positions to assure that springs 56 are not compressed to a condition of complete spring solidification when roller followers 48 are driven to a second most radially inward position during the transition from one cam 30 to an adjacent cam 30.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Mechanical Operated Clutches (AREA)
Abstract
Linvention concerne un volant bi-masse comportant une masse primaire rotative et une masse secondaire pouvant tourner par rapport à la masse primaire. Un disque à cames est fixé de façon à tourner avec la masse primaire et comporte une pluralité de cames espacées les unes des autres de manière circonférentielle. Un moyeu est fixé de façon à tourner avec la masse secondaire. Des bielles sont couplées pivotantes au moyeu. Chaque bielle comporte un galet suiveur sollicité pour venir en contact avec l'une des cames pour amortir les vibrations de torsion au niveau de la masse primaire.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22600409P | 2009-07-16 | 2009-07-16 | |
US61/226,004 | 2009-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011006264A1 true WO2011006264A1 (fr) | 2011-01-20 |
Family
ID=43448853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2010/001140 WO2011006264A1 (fr) | 2009-07-16 | 2010-07-16 | Volant bi-masse à disque à cames |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011006264A1 (fr) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014128380A1 (fr) * | 2013-02-22 | 2014-08-28 | Valeo Embrayages | Amortisseur de torsion pour disque de friction d'embrayage d'un véhicule automobile |
CN104220777A (zh) * | 2012-04-04 | 2014-12-17 | 丰田自动车株式会社 | 扭矩变动吸收装置和变速器 |
EP3220007A1 (fr) * | 2016-03-16 | 2017-09-20 | Valeo Embrayages | Mecanisme de filtration de torsion a chemin de came |
FR3049019A1 (fr) * | 2016-03-16 | 2017-09-22 | Valeo Embrayages | Mecanisme de filtration de torsion a chemin de came |
FR3049018A1 (fr) * | 2016-03-16 | 2017-09-22 | Valeo Embrayages | Mecanisme de filtration de torsion a chemin de came |
US9822862B2 (en) | 2015-10-02 | 2017-11-21 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US9850995B2 (en) | 2015-10-02 | 2017-12-26 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US9885406B2 (en) | 2015-10-02 | 2018-02-06 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US9903456B1 (en) | 2016-08-24 | 2018-02-27 | Valeo Embrayages | Torque converter with lock-up clutch bias spring |
US9989135B2 (en) | 2015-10-02 | 2018-06-05 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US10030753B2 (en) | 2015-10-02 | 2018-07-24 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US10054209B2 (en) | 2016-06-20 | 2018-08-21 | Valeo Embrayages | Torque transmitting device |
US10094458B2 (en) | 2016-08-24 | 2018-10-09 | Valeo Embrayages | Torque transmitting device |
US10094460B1 (en) | 2017-04-06 | 2018-10-09 | Valeo Embrayages | Vibration damper and lock-up clutch for hydrokinetic torque-coupling device, and method for making the same |
US10100909B2 (en) | 2016-06-21 | 2018-10-16 | Valeo Embrayages | Torque transmission device for motor vehicle |
US10107372B2 (en) | 2016-11-22 | 2018-10-23 | Valeo Embrayages | Torsional vibration damper and lock-up clutch for hydrokinetic torque-coupling device, and method for making the same |
US10113624B2 (en) | 2016-11-17 | 2018-10-30 | Valeo Embrayages | Torsional vibration damper and lock-up clutch for hydrokinetic torque-coupling device, and method for making the same |
US10161492B2 (en) | 2015-10-02 | 2018-12-25 | Valeo Embrayages | Hydrokinetic torque coupling device for motor vehicle |
US10234007B2 (en) | 2016-05-23 | 2019-03-19 | Valeo Embrayages | Hydrokinetic torque coupling device for motor vehicle |
US10288144B2 (en) | 2016-02-11 | 2019-05-14 | Valeo Embrayages | Transmission torque converter device |
US10309482B2 (en) | 2014-08-08 | 2019-06-04 | Valeo Embrayages | Damper for an automobile clutch |
US10400825B2 (en) | 2012-12-21 | 2019-09-03 | Valeo Embrayages | Vibration damper for a torque transmission device of a motor vehicle |
US11118652B2 (en) | 2015-10-30 | 2021-09-14 | Valeo Embrayages | Vibration damper, associated damping mechanism and propulsion assembly |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB219975A (en) * | 1923-07-31 | 1924-10-02 | Wilhelm Ruppert | Improvements in automatic clutches |
US2028459A (en) * | 1930-05-26 | 1936-01-21 | Kjaer Viggo Axel | Device for reducing torsional vibrations in shafts |
EP1024311A2 (fr) * | 1998-12-23 | 2000-08-02 | Automotive Products Plc | Amortisseurs de vibrations torsionelles |
FR2795795A1 (fr) * | 1999-06-29 | 2001-01-05 | Aisin Seiki | Dispositif d'absorption de variation de couple |
WO2004016968A1 (fr) * | 2002-08-12 | 2004-02-26 | Valeo Embrayages | Double volant amortisseur a came et suiveur de came, en particulier pour vehicule automobile |
DE102009035914A1 (de) * | 2008-09-01 | 2010-03-04 | Luk Lamellen Und Kupplungsbau Beteiligungs Kg | Zweimassenschwungrad |
-
2010
- 2010-07-16 WO PCT/CA2010/001140 patent/WO2011006264A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB219975A (en) * | 1923-07-31 | 1924-10-02 | Wilhelm Ruppert | Improvements in automatic clutches |
US2028459A (en) * | 1930-05-26 | 1936-01-21 | Kjaer Viggo Axel | Device for reducing torsional vibrations in shafts |
EP1024311A2 (fr) * | 1998-12-23 | 2000-08-02 | Automotive Products Plc | Amortisseurs de vibrations torsionelles |
FR2795795A1 (fr) * | 1999-06-29 | 2001-01-05 | Aisin Seiki | Dispositif d'absorption de variation de couple |
WO2004016968A1 (fr) * | 2002-08-12 | 2004-02-26 | Valeo Embrayages | Double volant amortisseur a came et suiveur de came, en particulier pour vehicule automobile |
DE102009035914A1 (de) * | 2008-09-01 | 2010-03-04 | Luk Lamellen Und Kupplungsbau Beteiligungs Kg | Zweimassenschwungrad |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104220777A (zh) * | 2012-04-04 | 2014-12-17 | 丰田自动车株式会社 | 扭矩变动吸收装置和变速器 |
US10400825B2 (en) | 2012-12-21 | 2019-09-03 | Valeo Embrayages | Vibration damper for a torque transmission device of a motor vehicle |
FR3002605A1 (fr) * | 2013-02-22 | 2014-08-29 | Valeo Embrayages | Amortisseur de torsion pour disque de friction d'embrayage |
WO2014128380A1 (fr) * | 2013-02-22 | 2014-08-28 | Valeo Embrayages | Amortisseur de torsion pour disque de friction d'embrayage d'un véhicule automobile |
US10309482B2 (en) | 2014-08-08 | 2019-06-04 | Valeo Embrayages | Damper for an automobile clutch |
US9885406B2 (en) | 2015-10-02 | 2018-02-06 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US9822862B2 (en) | 2015-10-02 | 2017-11-21 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US9850995B2 (en) | 2015-10-02 | 2017-12-26 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US10161492B2 (en) | 2015-10-02 | 2018-12-25 | Valeo Embrayages | Hydrokinetic torque coupling device for motor vehicle |
US9989135B2 (en) | 2015-10-02 | 2018-06-05 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US10030753B2 (en) | 2015-10-02 | 2018-07-24 | Valeo Embrayages | Hydrokinetic torque coupling device for a motor vehicle |
US11118652B2 (en) | 2015-10-30 | 2021-09-14 | Valeo Embrayages | Vibration damper, associated damping mechanism and propulsion assembly |
US10288144B2 (en) | 2016-02-11 | 2019-05-14 | Valeo Embrayages | Transmission torque converter device |
CN107202096A (zh) * | 2016-03-16 | 2017-09-26 | 法雷奥离合器公司 | 具有凸轮路径的扭转过滤机构 |
FR3049018A1 (fr) * | 2016-03-16 | 2017-09-22 | Valeo Embrayages | Mecanisme de filtration de torsion a chemin de came |
FR3049019A1 (fr) * | 2016-03-16 | 2017-09-22 | Valeo Embrayages | Mecanisme de filtration de torsion a chemin de came |
US10422406B2 (en) | 2016-03-16 | 2019-09-24 | Valeo Embrayages | Torsion filtering mechanism having a cam track |
EP3220007A1 (fr) * | 2016-03-16 | 2017-09-20 | Valeo Embrayages | Mecanisme de filtration de torsion a chemin de came |
US10234007B2 (en) | 2016-05-23 | 2019-03-19 | Valeo Embrayages | Hydrokinetic torque coupling device for motor vehicle |
US10054209B2 (en) | 2016-06-20 | 2018-08-21 | Valeo Embrayages | Torque transmitting device |
US10100909B2 (en) | 2016-06-21 | 2018-10-16 | Valeo Embrayages | Torque transmission device for motor vehicle |
US10094458B2 (en) | 2016-08-24 | 2018-10-09 | Valeo Embrayages | Torque transmitting device |
US9903456B1 (en) | 2016-08-24 | 2018-02-27 | Valeo Embrayages | Torque converter with lock-up clutch bias spring |
US10113624B2 (en) | 2016-11-17 | 2018-10-30 | Valeo Embrayages | Torsional vibration damper and lock-up clutch for hydrokinetic torque-coupling device, and method for making the same |
US10107372B2 (en) | 2016-11-22 | 2018-10-23 | Valeo Embrayages | Torsional vibration damper and lock-up clutch for hydrokinetic torque-coupling device, and method for making the same |
US10094460B1 (en) | 2017-04-06 | 2018-10-09 | Valeo Embrayages | Vibration damper and lock-up clutch for hydrokinetic torque-coupling device, and method for making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011006264A1 (fr) | Volant bi-masse à disque à cames | |
US10473182B2 (en) | Torsional vibration absorption system | |
US8910762B2 (en) | Centrifugal-pendulum vibration absorbing device | |
EP1626198B1 (fr) | Amortisseur de vibrations de torsion | |
EP2273144B1 (fr) | Découpleur de vilebrequin | |
JP6240149B2 (ja) | 自動車用のトルク伝達装置 | |
US20180372182A1 (en) | Vibration damping device | |
US5147246A (en) | Device with torsion damping by resilient plates, especially for an automotive vehicle | |
US20170363174A1 (en) | Vibration damping device for a motor vehicle transmission drivetrain | |
EP1626197B1 (fr) | Amortisseur de vibrations torsionelles | |
WO2006035602A1 (fr) | Dispositif de gestion de temporisation d’ouverture et de fermeture de soupape | |
US11204078B2 (en) | Vibration damping device | |
EP3284969A1 (fr) | Dispositif d'amortissement de vibration | |
US20140027239A1 (en) | Friction clutch plate with damping springs | |
US20160160959A1 (en) | Centrifugal-pendulum vibration absorbing device | |
EP2783130B1 (fr) | Double volant amortisseur amélioré | |
JP4179694B2 (ja) | ダンパスプリングを有するクラッチ | |
JP2000516333A (ja) | ねじり振動ダンパ | |
US20190257398A1 (en) | Vibration damping device | |
WO2010012078A1 (fr) | Volant double masse avec rigidité de système continue non linéaire, capacité de roue libre, via une translation axiale à l’encontre d’un système de ressort | |
EP2657567B1 (fr) | Dispositif d'amortissement d'une vibration de torsion | |
JPH1130311A (ja) | 歯車組立体 | |
JPH04321844A (ja) | 2質量体式フライホイール | |
JP2002266892A (ja) | 摩擦クラッチ用被駆動板 | |
JP5074961B2 (ja) | 車両用遠心クラッチ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10799338 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10799338 Country of ref document: EP Kind code of ref document: A1 |