WO2011004539A1 - Structure of binding multiple cores of optical fibers and method for manufacturing same - Google Patents

Structure of binding multiple cores of optical fibers and method for manufacturing same Download PDF

Info

Publication number
WO2011004539A1
WO2011004539A1 PCT/JP2010/003468 JP2010003468W WO2011004539A1 WO 2011004539 A1 WO2011004539 A1 WO 2011004539A1 JP 2010003468 W JP2010003468 W JP 2010003468W WO 2011004539 A1 WO2011004539 A1 WO 2011004539A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical fibers
coupling structure
core
optical
Prior art date
Application number
PCT/JP2010/003468
Other languages
French (fr)
Japanese (ja)
Inventor
八若正義
金井一晃
佐竹武史
谷口浩一
大泉晴郎
阿久津剛二
Original Assignee
三菱電線工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電線工業株式会社 filed Critical 三菱電線工業株式会社
Publication of WO2011004539A1 publication Critical patent/WO2011004539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres

Definitions

  • the present invention relates to an optical fiber multi-core coupling structure and a method for manufacturing the same.
  • an optical combiner having a coupling portion in which one end portions of a plurality of optical fibers are bundled is configured, and a laser oscillator having the same performance is provided at the other end portion.
  • a method of emitting lasers from a plurality of laser oscillators collectively from the emission end of the coupling portion by connecting the lasers and inputting the lasers for example, Patent Document 1.
  • one end portions of a plurality of optical fibers each having a relatively high refractive index core and a relatively low refractive index cladding covering the core are bundled.
  • a coupling part configured as follows: The coupling portion is formed by bundling a plurality of rod members thinner than the plurality of optical fibers together with the plurality of optical fibers, and fusing them together.
  • the method for manufacturing a multi-core coupling structure of an optical fiber according to the present invention includes: a first end portion of a plurality of optical fibers each having a core having a relatively high refractive index and a clad having a relatively low refractive index covering the core; Are bundled together with a plurality of rod members, and they are fused and integrated to form a joint.
  • FIG. 1 is a perspective view showing an optical combiner of Embodiment 1.
  • FIG. It is a perspective view which shows an optical fiber core wire.
  • 3 is a front view of an end face of a coupling portion in the optical combiner of Embodiment 1.
  • FIG. 3 is an end face photograph of a coupling portion of the optical combiner according to the first embodiment.
  • (A) And (b) is a front view of the end surface of the connection part at the time of using a pipe material.
  • (A) And (b) is a cross-sectional view of a pipe material.
  • A) And (b) is a front view of the end surface of the mode coupling
  • FIG. 3 is an explanatory diagram of a method for manufacturing the optical combiner according to the first embodiment.
  • (A)-(d) is sectional drawing which shows the state which filled the pipe fiber with the optical fiber and the rod material. It is a perspective view which shows the optical combiner of Embodiment 2.
  • FIG. It is a front view of the end surface of the coupling part in the optical combiner of Embodiment 2. It is a perspective view which shows a thin diameter optical fiber core wire. It is an end surface photograph of the joint part of the conventional optical combiner.
  • FIG. 1 shows an optical combiner 100 having a multi-core coupling structure of optical fibers according to the first embodiment.
  • the optical combiner 100 according to the first embodiment is an optical device used for collecting and emitting lasers from a plurality of laser oscillators, for example.
  • the optical combiner 100 of the first embodiment includes a plurality of optical fiber cores 110.
  • the number of optical fiber cores 110 is, for example, 2 to 37 (seven in FIG. 1).
  • FIG. 2 shows the optical fiber core wire 110.
  • the plurality of optical fiber cores 110 may be configured by the same optical fiber core 110, or may be configured by mixing different optical fiber cores 110.
  • Each of the plurality of optical fiber cores 110 has a configuration in which an optical fiber 111 is covered with a coating layer 112.
  • the optical fiber 111 has a core 111a having a relatively high refractive index provided at the center of the fiber and a clad 111b having a relatively low refractive index provided concentrically so as to cover the core 111a.
  • the fiber diameter of the optical fiber 111 is, for example, 100 to 1500 ⁇ m.
  • the core 111a is preferably made of quartz.
  • the quartz core 111a may be doped with a dopant such as germanium (Ge) that increases the refractive index, but is preferably non-doped quartz that is not doped with a dopant.
  • the softening temperature of the core 111a is about 1700 ° C.
  • the core diameter is, for example, 50 to 1200 ⁇ m.
  • the clad 111b is preferably made of quartz.
  • the quartz clad 111b may be non-doped quartz that is not doped with a dopant, or may be doped with a dopant such as fluorine (F) or boron (B) that lowers the refractive index.
  • the softening temperature of the clad 111b is about 1600 ° C.
  • the clad 111b has a relatively low refractive index and a lower refractive index than the core 111a.
  • the thickness of the clad 111b is, for example, 10 to 150 ⁇ m.
  • the covering layer 112 is formed, for example, in a double layer in which a silicon resin layer and a polyamide resin layer are sequentially laminated from the inside.
  • a silicon resin layer and a polyamide resin layer are sequentially laminated from the inside.
  • the optical combiner 100 includes a plurality of rods that are thinner than the plurality of optical fibers 111 from which the coating layers 112 are peeled off at one end of the plurality of optical fiber cores 110.
  • the material 120 is bundled, and the joint part 130 formed by melting and integrating them is configured.
  • the coupling portion 130 has a configuration in which the cores 111a of the plurality of optical fibers 111 are arranged at intervals in a cladding coupling portion 131 in which the cladding 111b of the optical fiber 111 and the rod member 120 are integrally formed. Have.
  • the coupling portion is configured, and the adhesive burns due to the heat of the high-power laser, which may damage the laser guide.
  • the coupling portion is configured by bundling one end of a plurality of optical fibers and mechanically fixing them without using an adhesive, when dust or dirt enters the gap between the optical fibers, Because they cannot be removed, the high power laser may burn the dust and dirt, which may damage the laser guide.
  • the circular shape of the cross-section of the 'core 111a' is deformed, and light spreads beyond the numerical aperture of the optical fiber 111 having a circular cross section at the deformed portion, so that the quality of the laser is impaired and the optical fiber having a circular cross section
  • the optical fiber having the same numerical aperture as that of the bundle is connected, there is a problem that light spreading beyond the numerical aperture leaks from the connected optical fiber and causes loss.
  • the coupling portion 130 is formed by bundling a plurality of rod materials 120 thinner than them together with the plurality of optical fibers 111, and these are formed by fusion and integration.
  • the rod material 120 is interposed in the gap between the optical fibers 111 to restrict the flow of the optical fiber 111, particularly the clad 111b, thereby suppressing the deformation of the cross-sectional shape of the optical fiber 111, As a result, it is possible to suppress the quality of light emitted from the coupling unit 130 from being impaired, and it is possible to suppress loss due to light leakage.
  • the plurality of rod members 120 may be composed of the rod members 120 having the same material, shape, etc., or may be composed of a mixture of different rod members 120.
  • a large-diameter rod material 120 is provided between the optical fibers 111 outside the bundle of optical fibers 111, and a small-diameter rod material 120 is provided between the optical fibers 111 inside the bundle of optical fibers 111. It has been.
  • the rod member 120 is preferably made of quartz, and may be made of the same material as that of the clad 111b of the optical fiber 111 from the viewpoint of forming the uniform clad coupling portion 131.
  • the rod member 120 made of quartz may be doped with a dopant such as germanium (Ge) that increases the refractive index, or may be non-doped quartz that is not doped with a dopant.
  • the rod member 120 may have a circular cross-sectional shape or a polygon such as a triangle.
  • the softening temperature of the rod member 120 is about 1700 ° C., but from the viewpoint of regulating the deformation of the optical fiber 111 by starting the flow before the optical fiber 111 melts and sealing the gap between the optical fibers 111.
  • the temperature is preferably equal to or lower than the softening temperature of the core 111a and the clad 111b of the optical fiber 111.
  • the refractive index of the rod member 120 is preferably the same as the refractive index of the clad 111 b of the optical fiber 111 from the viewpoint of forming a uniform clad coupling part 131.
  • the rod member 120 has an outer diameter of about 150 ⁇ m, but is accommodated in a gap between the optical fibers 111 formed in the plurality of optical fibers 111 provided in the closest packing state. It is preferable that it is a size.
  • the plurality of optical fibers 111 and the plurality of rod members 120 are regularly closely packed and fused and integrated, but may be irregularly bundled and melted and integrated. .
  • the coupling unit 130 may have a configuration in which a bundle of a plurality of optical fibers 111 and a plurality of rod members 120 is integrated in a pipe member 140.
  • the pipe material 140 is preferably made of quartz, and is preferably made of the same material as the optical fiber 111.
  • the pipe material 140 has a length of 30 to 100 mm, the outer diameter is 1.40 to 2.00 mm, and the core diameter is 1200 ⁇ m and 4 cores. 30 to 100 mm and the outer diameter is 4.00 to 5.00 mm.
  • the coupling unit 130 may have a configuration in which a plurality of optical fibers 111 and a plurality of rod members 120 are bundled by a pipe member 140 and integrated with each other. As shown to (b), the structure by which the pipe material 140 of another body was covered on the part 130a in which the some optical fiber 111 was integrated may be sufficient.
  • the coupling portion 130 functions to confine light by air cladding.
  • the pipe material 140 connects the plurality of optical fibers 111 from the viewpoint of obtaining a higher light confinement effect. It is preferable to have a layer formed of a material having a lower refractive index than the material to be formed.
  • the pipe material 140 is doped with low refraction made of quartz doped with a dopant that lowers the refractive index, such as F (fluorine) or B (boron). 6 (b), and the inner doped low refractive index layer 141 and the outer non-doped high refractive index formed of quartz doped with such a dopant.
  • the layer 142 may be included.
  • the pipe material 140 may be formed of non-doped quartz that is not doped with a dopant.
  • the coupling portion 130 includes the clads 111b of the plurality of optical fibers 111, as shown in FIG.
  • a plurality of cores 111a are disposed in the clad coupling part 131 where the two are coupled to each other with a space therebetween, and a low refractive index layer 132 is provided by the doped low refractive index layer 141 of the pipe material 140 so as to cover them. It becomes the composition which was made.
  • the thickness of the low refractive index layer 132 is, for example, 50 to 500 ⁇ m.
  • the coupling portion 130 is formed as shown in FIG.
  • a plurality of cores 111a are disposed at intervals in a clad coupling portion 131 in which clads 111b of a plurality of optical fibers 111 are coupled to each other, and the pipe material 140 is covered so as to cover them.
  • a low-refractive index layer 132 made of an inner doped low-refractive index layer 141 that is an inner peripheral side portion is provided, and a support by an outer non-doped high-refractive index layer 142 that is an outer peripheral side portion of the pipe material 140 so as to cover it.
  • the layer 133 is provided.
  • the thickness of the low refractive index layer 132 is, for example, 10 to 100 ⁇ m.
  • the softening temperature of the pipe material 140 itself or at least the inner layer which is the inner peripheral side portion thereof is lower than the softening temperatures of the cores 111a and the clads 111b of the plurality of optical fibers 111.
  • the pipe material 140 melted earlier than the clad 111b or the inner doped low-refractive index layer 141, which is the inner peripheral portion thereof flows into the gap between the optical fibers 111 during the melt processing, and thereby the optical fiber.
  • the collapse of the structure of the 111 core 111a and the clad 111b can be suppressed. Therefore, the movement of light between the optical fibers 111 can be suppressed, and for example, the occurrence of unevenness in the emission pattern when emitted to the lens system can be suppressed.
  • the pipe material 140 itself or at least the inner layer preferably has the same refractive index as the clad 111b of the plurality of optical fibers 111.
  • the clad 111b of the plurality of optical fibers 111 may be made of the same material, while being melted faster than the optical fiber 111 and flows into the gap between the optical fibers 111, thereby the structure of the core 111a and the clad 111b.
  • the optical fiber 111 may be formed of a material having a softening temperature lower than that of the core 111a and the clad 111b.
  • the pipe material 140 itself or the outer layer is a part other than the pipe material 140 and the core 111a and the clad 111b of the plurality of optical fibers 111. It is preferable that the softening temperature is high. According to such a configuration, the pipe member 140 or the outer layer that is the outer peripheral side portion thereof is most difficult to melt during the melting process, whereby the joint portion 130 can be formed in a state in which the outer shape of the pipe member 140 is retained.
  • the optical combiner 100 peels the coating layer 112 at one end portion of the plurality of optical fiber cores 110, and ends one end portion and a plurality of end portions of the plurality of optical fibers 111.
  • the rod member 120 is heated in a bundled state, thereby melting and integrating them to form a joint 130, and then cleaving that portion to form an end face and polishing the end face be able to.
  • a coating layer is formed at one end of the plurality of optical fiber cores 110.
  • one end of a plurality of optical fibers 111 and a plurality of rod members 120 are inserted into a pipe member 140 and heated in a bundled state, thereby fusing them together and joining them. It can be manufactured by forming the portion 130 and cleaving the portion to form an end face and polishing the end face.
  • one end portion of the plurality of optical fiber cores 110 in the case of the configuration shown in FIG. 5B in which a separate pipe material 140 is covered on a portion where the plurality of optical fibers 111 and the plurality of rod members 120 are integrated, one end portion of the plurality of optical fiber cores 110.
  • the coating layer 112 is peeled off, and one end portions of the plurality of optical fibers 111 and the plurality of rod members 120 are heated in a bundled state, thereby melting and integrating them, and the pipe member 140 is put thereon to cover the coupling portion. It can be manufactured by forming 130 and cleaving the part to form an end face and polishing the end face.
  • heating means a torch, a carbon dioxide laser, etc. are mentioned, for example.
  • the heating temperature is, for example, 1200 to 2000 ° C. although it depends on the material of the optical fiber 111 and the like.
  • the optical combiner 100 according to the first embodiment can be used in a case where light is incident on a plurality of optical fibers 111 from a light source or a fiber laser, and is propagated and emitted from the coupling unit 130. Can also be used in applications in which light is incident from, propagated, distributed from a plurality of optical fibers 111, and emitted.
  • all of the plurality of optical fibers 111 may be used for laser transmission. However, in addition to such usage, only a part of them is used for laser transmission. May be used for purposes other than laser transmission, such as for laser monitoring.
  • a fiber 111 may be included.
  • the optical fiber 111 and the optical fiber 111 and the optical fiber 111 and the rod member 120 formed with the coupling portion 130 are formed by the above method. Since the space factor of the optical fiber 111 in the cross section of the bundle of rod members 120 is low, the effect of suppressing deformation of the cross-sectional shape of the optical fiber 111 by the rod member 120 is relatively low.
  • the coupling portion 130 is formed by the seven optical fibers 111 and the rod member 120, and two or three of the optical fibers 111 are used for laser transmission, the light is transmitted. Since the space factor of the optical fiber 111 in the cross section of the bundle of the fiber 111 and the rod material 120 becomes high, the deformation suppression effect of the cross-sectional shape of the optical fiber 111 by the rod material 120 becomes relatively high, and light with very little deformation. Laser transmission can be performed by the fiber 111. Further, when a failure occurs in the two to three optical fibers 111 used for laser transmission, the remaining unused optical fibers 111 can be used as an alternative.
  • the pipe member 140 is filled with a plurality of optical fibers 111 each having a fiber diameter of 1 mm so that the bundles are inscribed, and between the pipe member 140 and the bundle of optical fibers 111, and at the end.
  • the space factor of the optical fiber 111 in the cross section when a plurality of rod members 120 are filled so as to fit between the optical fibers 111 not tightly packed will be described.
  • Table 1 shows two optical fibers 111 and two rod members 120 as shown in FIG. 9A, and three optical fibers 111 and three rod members as shown in FIG. 9B.
  • 120 four optical fibers 111 and five rod members 120 as shown in FIG. 9 (c), and seven optical fibers 111 and six rods as shown in FIG. 9 (d).
  • the material 120 calculation of the void space factor in the pipe material and the optical fiber space factor in the pipe material in a cross section in a state where the pipe material 140 is filled with the plurality of optical fibers 111 and the plurality of rod materials 120 Results are shown.
  • the space factor in the pipe material is 28% for the two optical fibers 111 and the two rod members 120, 20% for the three optical fibers 111 and the three rod members 120, and four
  • the case of the optical fiber 111 and the five rod members 120 is 17%
  • the case of the seven optical fibers 111 and the six rod members 120 is 14%.
  • the optical fiber space factor in the pipe material is 50% in the case of two optical fibers 111 and two rod members 120, 65% in the case of three optical fibers 111 and three rod members 120, and four.
  • the optical fiber 111 and the five rod members 120 are 69%, and the seven optical fibers 111 and the six rod members 120 are 78%.
  • FIG. 1 shows an optical combiner 100 having an optical fiber multi-core coupling structure according to the second embodiment.
  • the optical combiner 100 of the second embodiment is also an optical device used for collecting and emitting lasers from a plurality of laser oscillators, for example.
  • the part of the same name as Embodiment 1 is shown with the same code
  • FIG. 1 shows an optical combiner 100 having an optical fiber multi-core coupling structure according to the second embodiment.
  • the optical combiner 100 of the second embodiment is also an optical device used for collecting and emitting lasers from a plurality of laser oscillators, for example.
  • the part of the same name as Embodiment 1 is shown with the same code
  • the optical combiner 100 in the optical combiner 100 according to the first embodiment, in the optical combiner 100 according to the first embodiment, instead of the large-diameter rod member 120 provided between the optical fibers 111 outside the bundle of the optical fibers 111, the finer than the optical fiber 111. It has a configuration in which a diameter optical fiber 151 is provided. Specifically, at one end of the plurality of optical fiber cores 110, a plurality of optical fibers 111 from which the coating layer 112 has been peeled are bundled, and a plurality of small-diameter optical fiber cores 150 (which are thinner than them).
  • a plurality of small-diameter optical fibers 151 from which the coating layer 152 has been peeled are disposed between the optical fibers 111 outside the bundle of optical fibers 111, and inside the bundle of optical fibers 111.
  • the rod member 120 is bundled so as to be disposed between the optical fibers 111, and a coupling portion 130 is formed by melting and integrating them.
  • the plurality of small-diameter optical fibers 151 can be used for purposes other than laser transmission, such as for laser monitoring.
  • FIG. 12 shows a thin optical fiber core wire 150.
  • the plurality of small-diameter optical fiber cores 150 may be configured by the same small-diameter optical fiber core 150, or may be configured by mixing different small-diameter optical fiber cores 150.
  • Each of the plurality of thin optical fiber cores 150 has a configuration in which the thin optical fiber 151 is covered with a coating layer 152.
  • the small-diameter optical fiber 151 has a relatively high refractive index core 151a provided at the center of the fiber and a relatively low refractive index clad 151b provided concentrically so as to cover the core 151a.
  • the fiber diameter of the thin optical fiber 151 is, for example, 100 to 500 ⁇ m.
  • the core 151a is preferably made of quartz.
  • the quartz core 151a may be doped with a dopant such as germanium (Ge) that increases the refractive index, but is preferably non-doped quartz that is not doped with a dopant.
  • the softening temperature of the core 151a is about 1700 ° C.
  • the core diameter is, for example, 50 to 400 ⁇ m.
  • the clad 151b is preferably made of quartz.
  • the quartz clad 151b may be non-doped quartz that is not doped with a dopant, or may be doped with a dopant such as fluorine (F) or boron (B) that lowers the refractive index.
  • the softening temperature of the clad 151b starts from flowing before the optical fiber 111 is melted to seal the gap between the optical fibers 111, thereby restricting the deformation of the optical fiber 111, so that the core 111a and the clad of the optical fiber 111 are controlled. It is preferably below the softening temperature of 111b.
  • the clad 151b has a relatively low refractive index and a lower refractive index than the core 151a.
  • the thickness of the clad 151b is, for example, 25 to 225 ⁇ m.
  • the covering layer 152 is made of, for example, an ultraviolet curable acrylic resin.
  • the light-proof combiner 100 having the coupling portion 130 at one end is taken as an example.
  • the embodiment is not particularly limited thereto, and may be a heat-resistant bundle having coupling portions at both ends. .
  • the coupling portion 130 is the exit end.
  • the present invention is not particularly limited to this, and another optical fiber core wire is connected to the coupling portion 130 at the exit end.
  • an optical coupling device can be configured by connecting a quartz rod made of a single material such as pure quartz.
  • the present invention relates to an optical fiber multi-core coupling structure and a method for manufacturing the same.
  • Optical combiner (optical fiber multi-core coupling structure) DESCRIPTION OF SYMBOLS 110 Optical fiber core wire 111 Optical fiber 111a Core 111b Clad 112 Coating layer 120 Rod material 130 Coupling part 131 Clad coupling part 132 Low refractive index layer 133 Support layer 140 Pipe material 141 Doped low refractive index layer (inner peripheral side part) 142 Non-doped High Refractive Index Layer 150 Thin Optical Fiber Core 151 Thin Optical Fiber (Rod Material) 151a Core 151b Clad 152 Coating layer

Abstract

Disclosed is a structure (100) for binding multiple cores of optical fibers. The structure (100) is provided with a binding section (130) configured by binding the ends of multiple optical fibers (111) comprising a core (111a) having a relatively high refractive index and a clad (111b) covering the core (111a) and having a relatively low refractive index. The binding section (130) is formed by binding the multiple optical fibers (111) and multiple rod members (120) thinner than the optical fibers and fusing them into one piece.

Description

光ファイバの多芯結合構造及びその製造方法Multi-fiber coupling structure of optical fiber and manufacturing method thereof
 本発明は光ファイバの多芯結合構造及びその製造方法に関する。 The present invention relates to an optical fiber multi-core coupling structure and a method for manufacturing the same.
 レーザーガイドを用いたレーザー加工機をハイパワー化する方法として、複数の光ファイバの一端部を束ねた結合部を有する光コンバイナを構成し、そして、それらの他端部に同一性能のレーザー発振器をそれぞれ接続してレーザーを入力することにより、結合部の出射端から複数のレーザー発振器からのレーザーを纏めて出射させる方法が知られている(例えば、特許文献1)。 As a method of increasing the power of a laser processing machine using a laser guide, an optical combiner having a coupling portion in which one end portions of a plurality of optical fibers are bundled is configured, and a laser oscillator having the same performance is provided at the other end portion. There is known a method of emitting lasers from a plurality of laser oscillators collectively from the emission end of the coupling portion by connecting the lasers and inputting the lasers (for example, Patent Document 1).
特開2008-83690号公報JP 2008-83690 A
 本発明の光ファイバの多芯結合構造は、各々、相対的に高屈折率であるコアとそれを被覆する相対的に低屈折率であるクラッドとを有する複数の光ファイバの一端部が束ねられて構成された結合部を備えたものであって、
 上記結合部は、上記複数の光ファイバと共に該複数の光ファイバよりも細い複数のロッド材が束ねられ、それらが溶融一体化して形成されている。
In the optical fiber multi-core coupling structure of the present invention, one end portions of a plurality of optical fibers each having a relatively high refractive index core and a relatively low refractive index cladding covering the core are bundled. Comprising a coupling part configured as follows:
The coupling portion is formed by bundling a plurality of rod members thinner than the plurality of optical fibers together with the plurality of optical fibers, and fusing them together.
 本発明の光ファイバの多芯結合構造の製造方法は、各々、相対的に高屈折率であるコアとそれを被覆する相対的に低屈折率であるクラッドとを有する複数の光ファイバの一端部を複数のロッド材と共に束ね、それらを溶融一体化させて結合部を形成するものである。 The method for manufacturing a multi-core coupling structure of an optical fiber according to the present invention includes: a first end portion of a plurality of optical fibers each having a core having a relatively high refractive index and a clad having a relatively low refractive index covering the core; Are bundled together with a plurality of rod members, and they are fused and integrated to form a joint.
実施形態1の光コンバイナを示す斜視図である。1 is a perspective view showing an optical combiner of Embodiment 1. FIG. 光ファイバ心線を示す斜視図である。It is a perspective view which shows an optical fiber core wire. 実施形態1の光コンバイナにおける結合部の端面の正面図である。3 is a front view of an end face of a coupling portion in the optical combiner of Embodiment 1. FIG. 実施形態1の光コンバイナの結合部の端面写真である。3 is an end face photograph of a coupling portion of the optical combiner according to the first embodiment. (a)及び(b)はパイプ材を用いた場合の結合部の端面の正面図である。(A) And (b) is a front view of the end surface of the connection part at the time of using a pipe material. (a)及び(b)はパイプ材の横断面図である。(A) And (b) is a cross-sectional view of a pipe material. (a)及び(b)は図5(a)及び(b)にそれぞれ対応するモード結合部の端面の正面図である。(A) And (b) is a front view of the end surface of the mode coupling | bond part corresponding to Fig.5 (a) and (b), respectively. 実施形態1の光コンバイナの製造方法の説明図である。FIG. 3 is an explanatory diagram of a method for manufacturing the optical combiner according to the first embodiment. (a)~(d)はパイプ材に光ファイバ及びロッド材を充填した状態を示す断面図である。(A)-(d) is sectional drawing which shows the state which filled the pipe fiber with the optical fiber and the rod material. 実施形態2の光コンバイナを示す斜視図である。It is a perspective view which shows the optical combiner of Embodiment 2. FIG. 実施形態2の光コンバイナにおける結合部の端面の正面図である。It is a front view of the end surface of the coupling part in the optical combiner of Embodiment 2. 細径光ファイバ心線を示す斜視図である。It is a perspective view which shows a thin diameter optical fiber core wire. 従来の光コンバイナの結合部の端面写真である。It is an end surface photograph of the joint part of the conventional optical combiner.
 以下、実施形態について図面に基づいて詳細に説明する。 Hereinafter, embodiments will be described in detail based on the drawings.
 (実施形態1)
 図1は、実施形態1に係る光ファイバの多芯結合構造の光コンバイナ100を示す。この実施形態1の光コンバイナ100は、例えば、複数のレーザー発振器等からのレーザーを集めて出射するために用いられる光デバイスである。
(Embodiment 1)
FIG. 1 shows an optical combiner 100 having a multi-core coupling structure of optical fibers according to the first embodiment. The optical combiner 100 according to the first embodiment is an optical device used for collecting and emitting lasers from a plurality of laser oscillators, for example.
 実施形態1の光コンバイナ100は複数の光ファイバ心線110を備えている。光ファイバ心線110の本数は例えば2~37本である(図1では7本)。 The optical combiner 100 of the first embodiment includes a plurality of optical fiber cores 110. The number of optical fiber cores 110 is, for example, 2 to 37 (seven in FIG. 1).
 図2は光ファイバ心線110を示す。 FIG. 2 shows the optical fiber core wire 110.
 複数の光ファイバ心線110は、同一の光ファイバ心線110で構成されていてもよく、また、異なる光ファイバ心線110が混在して構成されていてもよい。複数の光ファイバ心線110のそれぞれは、光ファイバ111が被覆層112で被覆された構成を有する。 The plurality of optical fiber cores 110 may be configured by the same optical fiber core 110, or may be configured by mixing different optical fiber cores 110. Each of the plurality of optical fiber cores 110 has a configuration in which an optical fiber 111 is covered with a coating layer 112.
 光ファイバ111は、ファイバ中心に設けられた相対的に高屈折率なコア111aとそれを被覆するように同心状に設けられた相対的に低屈折率なクラッド111bとを有する。光ファイバ111のファイバ径は例えば100~1500μmである。 The optical fiber 111 has a core 111a having a relatively high refractive index provided at the center of the fiber and a clad 111b having a relatively low refractive index provided concentrically so as to cover the core 111a. The fiber diameter of the optical fiber 111 is, for example, 100 to 1500 μm.
 コア111aは、石英で形成されていることが好ましい。石英製のコア111aは、屈折率を高めるゲルマニウム(Ge)等のドーパントがドープされていてもよいが、ドーパントがドープされていないノンドープ石英であることが好ましい。コア111aの軟化温度は約1700℃である。コア径は例えば50~1200μmである。 The core 111a is preferably made of quartz. The quartz core 111a may be doped with a dopant such as germanium (Ge) that increases the refractive index, but is preferably non-doped quartz that is not doped with a dopant. The softening temperature of the core 111a is about 1700 ° C. The core diameter is, for example, 50 to 1200 μm.
 クラッド111bは、石英で形成されていることが好ましい。石英製のクラッド111bは、ドーパントがドープされていないノンドープ石英であってもよく、また、屈折率を低めるフッ素(F)やボロン(B)等のドーパントがドープされていてもよい。クラッド111bの軟化温度は約1600℃である。クラッド111bは、相対的に低屈折率であって、コア111aよりも屈折率が低い。クラッド111bの厚さは例えば10~150μmである。 The clad 111b is preferably made of quartz. The quartz clad 111b may be non-doped quartz that is not doped with a dopant, or may be doped with a dopant such as fluorine (F) or boron (B) that lowers the refractive index. The softening temperature of the clad 111b is about 1600 ° C. The clad 111b has a relatively low refractive index and a lower refractive index than the core 111a. The thickness of the clad 111b is, for example, 10 to 150 μm.
 被覆層112は例えば内側からシリコン樹脂層及びポリアミド樹脂層が順に積層された二重層に形成されている。この構成では、ハイパワーレーザーを伝送する場合、被覆層112の屈折率が高いと、漏れ光で焼損する可能性があることから、少なくともシリコン樹脂層は、クラッド111bよりも低屈折率であることが好ましい。 The covering layer 112 is formed, for example, in a double layer in which a silicon resin layer and a polyamide resin layer are sequentially laminated from the inside. In this configuration, when transmitting a high power laser, if the refractive index of the coating layer 112 is high, there is a possibility that it will be burned out by leaking light, so at least the silicon resin layer has a lower refractive index than the cladding 111b. Is preferred.
 実施形態1の光コンバイナ100は、図3に示すように、複数の光ファイバ心線110の一端部において、各々、被覆層112が剥がされた複数の光ファイバ111と共にそれらよりも細い複数のロッド材120が束ねられ、それらが溶融一体化して形成された結合部130が構成されている。この結合部130は、光ファイバ111のクラッド111bとロッド材120とが一体となって形成されたクラッド結合部131内に複数の光ファイバ111のコア111aが間隔をおいて配設された構成を有する。 As shown in FIG. 3, the optical combiner 100 according to the first embodiment includes a plurality of rods that are thinner than the plurality of optical fibers 111 from which the coating layers 112 are peeled off at one end of the plurality of optical fiber cores 110. The material 120 is bundled, and the joint part 130 formed by melting and integrating them is configured. The coupling portion 130 has a configuration in which the cores 111a of the plurality of optical fibers 111 are arranged at intervals in a cladding coupling portion 131 in which the cladding 111b of the optical fiber 111 and the rod member 120 are integrally formed. Have.
 ところで、複数の光ファイバの一端部を束ねて接着剤で固定することにより結合部を構成したのでは、ハイパワーレーザーの熱によって接着剤が焼け、それによってレーザーガイドが破損してしまう場合がある。また、接着剤を使用せず、複数の光ファイバの一端部を束ねて機械的に固定することにより結合部を構成したのでは、光ファイバ間の隙間に塵や埃が入り込んだとき、実質的にそれらを除去することができないため、ハイパワーレーザーの熱によってそれらの塵や埃が焼け、それによってレーザーガイドが破損してしまう場合がある。 By the way, if one end portion of a plurality of optical fibers is bundled and fixed with an adhesive, the coupling portion is configured, and the adhesive burns due to the heat of the high-power laser, which may damage the laser guide. . In addition, when the coupling portion is configured by bundling one end of a plurality of optical fibers and mechanically fixing them without using an adhesive, when dust or dirt enters the gap between the optical fibers, Because they cannot be removed, the high power laser may burn the dust and dirt, which may damage the laser guide.
 これらの接着剤、或いは、塵や埃の焼けによるレーザーガイドの破損の問題は、複数の光ファイバの一端部を束ねて溶融一体化して結合部を構成することにより解決することができる。ところが、図13に示すように、光コンバイナ100’において、複数の光ファイバ111’の一端部を束ねて溶融一体化して結合部130’を形成した場合、その結合部130’において各光ファイバ111’のコア111a’の断面形状の円形が変形し、その変形部分において断面円形の光ファイバ111の開口数以上に光が広がってしまい、そのため、レーザーの品質が損なわれると共に、断面円形の光ファイバのバンドルの開口数と同じ開口数の光ファイバに接続すると、開口数以上に広がった光が接続した光ファイバから漏れて損失を生じてしまうという問題がある。 The problem of breakage of the laser guide due to these adhesives, or dust or dust burn can be solved by bundling one end portions of a plurality of optical fibers and fusing them together to form a coupling portion. However, as shown in FIG. 13, in the optical combiner 100 ′, when one end portions of a plurality of optical fibers 111 ′ are bundled and fused and integrated to form a coupling portion 130 ′, each optical fiber 111 in the coupling portion 130 ′. The circular shape of the cross-section of the 'core 111a' is deformed, and light spreads beyond the numerical aperture of the optical fiber 111 having a circular cross section at the deformed portion, so that the quality of the laser is impaired and the optical fiber having a circular cross section When the optical fiber having the same numerical aperture as that of the bundle is connected, there is a problem that light spreading beyond the numerical aperture leaks from the connected optical fiber and causes loss.
 しかしながら、この実施形態1の光コンバイナ100では、結合部130が複数の光ファイバ111と共にそれらよりも細い複数のロッド材120が束ねられ、それらが溶融一体化して形成されているので、図4に示すように、光ファイバ111間の空隙にロッド材120が介在することにより光ファイバ111、特にクラッド111bの溶融による流動が規制され、それによって光ファイバ111の断面形状の変形が小さく抑えられ、その結果、結合部130から出射される光の品質が損なわれるのを抑制することができると共に、光の漏れによる損失を低く抑えることができる。 However, in the optical combiner 100 of the first embodiment, the coupling portion 130 is formed by bundling a plurality of rod materials 120 thinner than them together with the plurality of optical fibers 111, and these are formed by fusion and integration. As shown, the rod material 120 is interposed in the gap between the optical fibers 111 to restrict the flow of the optical fiber 111, particularly the clad 111b, thereby suppressing the deformation of the cross-sectional shape of the optical fiber 111, As a result, it is possible to suppress the quality of light emitted from the coupling unit 130 from being impaired, and it is possible to suppress loss due to light leakage.
 複数のロッド材120は、材質や形状等が同一のロッド材120で構成されていてもよく、また、それらが異なるロッド材120が混在して構成されていてもよい。図3に示す構成では、光ファイバ111の束の外側の光ファイバ111間に大径のロッド材120が設けられ、光ファイバ111の束の内側の光ファイバ111間に小径のロッド材120が設けられている。ロッド材120は、石英で形成されていることが好ましく、均一なクラッド結合部131を形成する観点から、光ファイバ111のクラッド111bと同一の材質で形成されていてもよい。石英製のロッド材120は、屈折率を高めるゲルマニウム(Ge)等のドーパントがドープされていてもよく、また、ドーパントがドープされていないノンドープ石英であってもよい。ロッド材120の断面形状は円形であってもよく、また、三角形等の多角形であってもよい。ロッド材120の軟化温度は、約1700℃であるが、光ファイバ111が溶融する前に流動を開始させて光ファイバ111間の隙間を封じ、それによって光ファイバ111の変形を規制する観点から、光ファイバ111のコア111a及びクラッド111bの軟化温度以下であることが好ましい。ロッド材120の屈折率は、均一なクラッド結合部131を形成する観点から、光ファイバ111のクラッド111bの屈折率と同一であることが好ましい。ロッド材120は、例えば、コア径が400μmで7芯の場合、外径が約150μmであるが、最密充填状態に設けた複数の光ファイバ111において形成される光ファイバ111間の間隙に収容される大きさであることが好ましい。 The plurality of rod members 120 may be composed of the rod members 120 having the same material, shape, etc., or may be composed of a mixture of different rod members 120. In the configuration shown in FIG. 3, a large-diameter rod material 120 is provided between the optical fibers 111 outside the bundle of optical fibers 111, and a small-diameter rod material 120 is provided between the optical fibers 111 inside the bundle of optical fibers 111. It has been. The rod member 120 is preferably made of quartz, and may be made of the same material as that of the clad 111b of the optical fiber 111 from the viewpoint of forming the uniform clad coupling portion 131. The rod member 120 made of quartz may be doped with a dopant such as germanium (Ge) that increases the refractive index, or may be non-doped quartz that is not doped with a dopant. The rod member 120 may have a circular cross-sectional shape or a polygon such as a triangle. The softening temperature of the rod member 120 is about 1700 ° C., but from the viewpoint of regulating the deformation of the optical fiber 111 by starting the flow before the optical fiber 111 melts and sealing the gap between the optical fibers 111. The temperature is preferably equal to or lower than the softening temperature of the core 111a and the clad 111b of the optical fiber 111. The refractive index of the rod member 120 is preferably the same as the refractive index of the clad 111 b of the optical fiber 111 from the viewpoint of forming a uniform clad coupling part 131. For example, when the core diameter is 400 μm and 7 cores, the rod member 120 has an outer diameter of about 150 μm, but is accommodated in a gap between the optical fibers 111 formed in the plurality of optical fibers 111 provided in the closest packing state. It is preferable that it is a size.
 結合部130は、複数の光ファイバ111及び複数のロッド材120が規則的に最密状に束ねられて溶融一体化していることが好ましいが、不規則に束ねられて溶融一体化していてもよい。 In the coupling unit 130, it is preferable that the plurality of optical fibers 111 and the plurality of rod members 120 are regularly closely packed and fused and integrated, but may be irregularly bundled and melted and integrated. .
 結合部130は、複数の光ファイバ111及び複数のロッド材120の束を溶融一体化したものがパイプ材140内に収容された構成であってもよい。 The coupling unit 130 may have a configuration in which a bundle of a plurality of optical fibers 111 and a plurality of rod members 120 is integrated in a pipe member 140.
 パイプ材140は、石英で形成されていることが好ましく、また、光ファイバ111と同一の材質で形成されていることが好ましい。パイプ材140は、例えば、コア径が400μmで7芯の場合、長さが30~100mm、外径が1.40~2.00mm、また、コア径が1200μmで4芯の場合、長さが30~100mm、外径が4.00~5.00mmである。 The pipe material 140 is preferably made of quartz, and is preferably made of the same material as the optical fiber 111. For example, when the core diameter is 400 μm and 7 cores, the pipe material 140 has a length of 30 to 100 mm, the outer diameter is 1.40 to 2.00 mm, and the core diameter is 1200 μm and 4 cores. 30 to 100 mm and the outer diameter is 4.00 to 5.00 mm.
 結合部130は、図5(a)に示すように、複数の光ファイバ111及び複数のロッド材120がパイプ材140で束ねられてそれらが一体化した構成であってもよく、また、図5(b)に示すように、複数の光ファイバ111が一体化した部分130aに別体のパイプ材140が被せられた構成であってもよい。 As shown in FIG. 5A, the coupling unit 130 may have a configuration in which a plurality of optical fibers 111 and a plurality of rod members 120 are bundled by a pipe member 140 and integrated with each other. As shown to (b), the structure by which the pipe material 140 of another body was covered on the part 130a in which the some optical fiber 111 was integrated may be sufficient.
 結合部130はエアクラッドにより光の閉じ込め作用が機能するが、パイプ材140が用いられた構成の場合には、より高い光の閉じ込め効果を得る観点から、パイプ材140が複数の光ファイバ111を形成する材料よりも低屈折率な材料で形成された層を有することが好ましい。具体的には、例えば、パイプ材140は、図6(a)に示すように、F(フッ素)やB(ボロン)等の屈折率を下げるドーパントがドープされた石英で形成されたドープ低屈折率層141のみで構成されていてもよく、また、図6(b)に示すように、かかるドーパントがドープされた石英で形成された内層のドープ低屈折率層141と外層のノンドープ高屈折率層142とを有して構成されていてもよい。なお、図6(a)に示す構成において、パイプ材140はドーパントがドープされていないノンドープ石英で形成されていてもよい。 The coupling portion 130 functions to confine light by air cladding. However, in the case where the pipe material 140 is used, the pipe material 140 connects the plurality of optical fibers 111 from the viewpoint of obtaining a higher light confinement effect. It is preferable to have a layer formed of a material having a lower refractive index than the material to be formed. Specifically, for example, as shown in FIG. 6A, the pipe material 140 is doped with low refraction made of quartz doped with a dopant that lowers the refractive index, such as F (fluorine) or B (boron). 6 (b), and the inner doped low refractive index layer 141 and the outer non-doped high refractive index formed of quartz doped with such a dopant. The layer 142 may be included. In the configuration shown in FIG. 6A, the pipe material 140 may be formed of non-doped quartz that is not doped with a dopant.
 図6(a)に示すドープ低屈折率層141のみで構成されたパイプ材140の場合には、結合部130は、図7(a)に示すように、複数の光ファイバ111のクラッド111b同士が結合したクラッド結合部131内に相互に間隔をおいて複数のコア111aが配設され、そして、それらを被覆するようにパイプ材140のドープ低屈折率層141による低屈折率層132が設けられた構成となる。低屈折率層132の厚さは例えば50~500μmである。 In the case of the pipe member 140 composed only of the doped low refractive index layer 141 shown in FIG. 6A, the coupling portion 130 includes the clads 111b of the plurality of optical fibers 111, as shown in FIG. A plurality of cores 111a are disposed in the clad coupling part 131 where the two are coupled to each other with a space therebetween, and a low refractive index layer 132 is provided by the doped low refractive index layer 141 of the pipe material 140 so as to cover them. It becomes the composition which was made. The thickness of the low refractive index layer 132 is, for example, 50 to 500 μm.
 図6(b)に示す内層がドープ低屈折率層141で且つその外側の外層がノンドープ高屈折率層142に構成されたパイプ材140の場合には、結合部130は、図7(b)に示すように、複数の光ファイバ111のクラッド111b同士が結合したクラッド結合部131内に相互に間隔をおいて複数のコア111aが配設され、そして、それらを被覆するようにパイプ材140の内周側部分である内層のドープ低屈折率層141による低屈折率層132が設けられ、さらにそれを被覆するようにパイプ材140の外周側部分である外層のノンドープ高屈折率層142によるサポート層133が設けられた構成となる。低屈折率層132の厚さは例えば10~100μmである。 In the case of the pipe member 140 in which the inner layer shown in FIG. 6B is a doped low-refractive index layer 141 and the outer layer outside thereof is a non-doped high-refractive index layer 142, the coupling portion 130 is formed as shown in FIG. As shown in FIG. 3, a plurality of cores 111a are disposed at intervals in a clad coupling portion 131 in which clads 111b of a plurality of optical fibers 111 are coupled to each other, and the pipe material 140 is covered so as to cover them. A low-refractive index layer 132 made of an inner doped low-refractive index layer 141 that is an inner peripheral side portion is provided, and a support by an outer non-doped high-refractive index layer 142 that is an outer peripheral side portion of the pipe material 140 so as to cover it. The layer 133 is provided. The thickness of the low refractive index layer 132 is, for example, 10 to 100 μm.
 以上の実施形態1の光コンバイナ100の構成において、パイプ材140自体又は少なくともその内周側部分である内層の軟化温度は複数の光ファイバ111のコア111a及びクラッド111bの軟化温度以下であることが好ましい。かかる構成によれば、溶融加工時に、クラッド111bよりも早く溶融したパイプ材140又はその内周側部分である内層のドープ低屈折率層141が光ファイバ111間の空隙に流れ込み、それによって光ファイバ111のコア111a及びクラッド111bの構造の崩れを抑制することができる。従って、光ファイバ111間での光の移行を抑制することができ、例えばレンズ系に出射するときの出射パターンにムラが生じるのを抑制することができる。 In the configuration of the optical combiner 100 of Embodiment 1 described above, the softening temperature of the pipe material 140 itself or at least the inner layer which is the inner peripheral side portion thereof is lower than the softening temperatures of the cores 111a and the clads 111b of the plurality of optical fibers 111. preferable. According to such a configuration, the pipe material 140 melted earlier than the clad 111b or the inner doped low-refractive index layer 141, which is the inner peripheral portion thereof, flows into the gap between the optical fibers 111 during the melt processing, and thereby the optical fiber. The collapse of the structure of the 111 core 111a and the clad 111b can be suppressed. Therefore, the movement of light between the optical fibers 111 can be suppressed, and for example, the occurrence of unevenness in the emission pattern when emitted to the lens system can be suppressed.
 パイプ材140自体又は少なくともその内周側部分である内層(図6(b)のドープ低屈折率層141)は、複数の光ファイバ111のクラッド111bと屈折率が同一であることが好ましく、また、複数の光ファイバ111のクラッド111bと同一の材料で形成されていてもよく、一方、光ファイバ111よりも早く溶融して光ファイバ111間の空隙に流れ込み、それによってコア111a及びクラッド111bの構造の崩れを抑制する観点から、光ファイバ111のコア111a及びクラッド111bよりも軟化温度が低い材料で形成されていてもよい。 The pipe material 140 itself or at least the inner layer (the doped low refractive index layer 141 in FIG. 6B) preferably has the same refractive index as the clad 111b of the plurality of optical fibers 111. The clad 111b of the plurality of optical fibers 111 may be made of the same material, while being melted faster than the optical fiber 111 and flows into the gap between the optical fibers 111, thereby the structure of the core 111a and the clad 111b. From the viewpoint of suppressing the collapse of the optical fiber 111, the optical fiber 111 may be formed of a material having a softening temperature lower than that of the core 111a and the clad 111b.
 また、パイプ材140自体又はその外周側部分である外層(図6(b)のノンドープ高屈折率層142)は、パイプ材140のその他の部分並びに複数の光ファイバ111のコア111a及びクラッド111bよりも軟化温度が高いことが好ましい。かかる構成によれば、溶融加工時に、パイプ材140又はその外周側部分である外層が最も溶融しにくく、それによってパイプ材140の外形を保形した状態で結合部130を形成することができる。 Further, the pipe material 140 itself or the outer layer (the non-doped high refractive index layer 142 in FIG. 6B) is a part other than the pipe material 140 and the core 111a and the clad 111b of the plurality of optical fibers 111. It is preferable that the softening temperature is high. According to such a configuration, the pipe member 140 or the outer layer that is the outer peripheral side portion thereof is most difficult to melt during the melting process, whereby the joint portion 130 can be formed in a state in which the outer shape of the pipe member 140 is retained.
 実施形態1の光コンバイナ100は、パイプ材140を用いない図3に示す構成の場合、複数の光ファイバ心線110の一端部において被覆層112を剥がし、複数の光ファイバ111の一端部及び複数のロッド材120を束ねた状態で加熱し、それによってそれらを溶融一体化させて結合部130を形成し、そして、その部分を劈開して端面を形成すると共にその端面を研磨することにより製造することができる。 In the case of the configuration shown in FIG. 3 in which the pipe material 140 is not used, the optical combiner 100 according to the first embodiment peels the coating layer 112 at one end portion of the plurality of optical fiber cores 110, and ends one end portion and a plurality of end portions of the plurality of optical fibers 111. The rod member 120 is heated in a bundled state, thereby melting and integrating them to form a joint 130, and then cleaving that portion to form an end face and polishing the end face be able to.
 また、複数の光ファイバ111及び複数のロッド材120がパイプ材140で束ねられてそれらが一体化した図5(a)に示す構成の場合、複数の光ファイバ心線110の一端部において被覆層112を剥がし、図8に示すように、複数の光ファイバ111の一端部及び複数のロッド材120をパイプ材140に挿入して束ねた状態で加熱し、それによってそれらを溶融一体化させて結合部130を形成し、そして、その部分を劈開して端面を形成すると共にその端面を研磨することにより製造することができる。 In the case of the configuration shown in FIG. 5A in which a plurality of optical fibers 111 and a plurality of rod members 120 are bundled by a pipe member 140 and integrated, a coating layer is formed at one end of the plurality of optical fiber cores 110. As shown in FIG. 8, one end of a plurality of optical fibers 111 and a plurality of rod members 120 are inserted into a pipe member 140 and heated in a bundled state, thereby fusing them together and joining them. It can be manufactured by forming the portion 130 and cleaving the portion to form an end face and polishing the end face.
 さらに、複数の光ファイバ111及び複数のロッド材120が一体化した部分に別体のパイプ材140が被せられた図5(b)に示す構成の場合、複数の光ファイバ心線110の一端部において被覆層112を剥がし、複数の光ファイバ111の一端部及び複数のロッド材120を束ねた状態で加熱し、それによってそれらを溶融一体化させ、そして、そこにパイプ材140を被せて結合部130を形成し、そして、その部分を劈開して端面を形成すると共にその端面を研磨することにより製造することができる。 Further, in the case of the configuration shown in FIG. 5B in which a separate pipe material 140 is covered on a portion where the plurality of optical fibers 111 and the plurality of rod members 120 are integrated, one end portion of the plurality of optical fiber cores 110. The coating layer 112 is peeled off, and one end portions of the plurality of optical fibers 111 and the plurality of rod members 120 are heated in a bundled state, thereby melting and integrating them, and the pipe member 140 is put thereon to cover the coupling portion. It can be manufactured by forming 130 and cleaving the part to form an end face and polishing the end face.
 なお、上記の加熱手段としては、例えばトーチや炭酸ガスレーザー等が挙げられる。加熱温度は、光ファイバ111の材質等にもよるが、例えば1200~2000℃である。 In addition, as said heating means, a torch, a carbon dioxide laser, etc. are mentioned, for example. The heating temperature is, for example, 1200 to 2000 ° C. although it depends on the material of the optical fiber 111 and the like.
 実施形態1の光コンバイナ100は、複数の光ファイバ111に光源或いはファイバレーザ等から光を入射し、それを伝搬して結合部130から出射する用途で用いることができるが、結合部130に光源から光を入射し、それを伝搬して複数の光ファイバ111から分配して出射する用途でも用いることができる。 The optical combiner 100 according to the first embodiment can be used in a case where light is incident on a plurality of optical fibers 111 from a light source or a fiber laser, and is propagated and emitted from the coupling unit 130. Can also be used in applications in which light is incident from, propagated, distributed from a plurality of optical fibers 111, and emitted.
 また、実施形態1の光コンバイナ100において、複数の光ファイバ111の全てをレーザー伝送用に使用してもよいが、かかる使用法以外に、それらの一部のみをレーザー伝送用に使用し、その他を例えばレーザーのモニタ用等のレーザー伝送用以外の用途に用いてもよい。 Further, in the optical combiner 100 of the first embodiment, all of the plurality of optical fibers 111 may be used for laser transmission. However, in addition to such usage, only a part of them is used for laser transmission. May be used for purposes other than laser transmission, such as for laser monitoring.
 さらに、特に複数の光ファイバ111を最密充填状に設けた構成の場合に、複数の光ファイバ111の一部のみをレーザー伝送用に使用し、その他のうち全部又は一部に不使用の光ファイバ111を含んでいてもよい。レーザー伝送用に例えば2本乃至3本の光ファイバ111が必要である場合、上記方法により2本乃至3本の光ファイバ111及びロッド材120により結合部130を形成したものでは、光ファイバ111及びロッド材120の束の横断面における光ファイバ111の占積率が低くなるため、ロッド材120による光ファイバ111の断面形状の変形抑制効果は相対的に低いものとなってしまう。しかしながら、かかる場合でも、例えば7本の光ファイバ111とロッド材120とにより結合部130を形成し、そのうちの2本乃至3本の光ファイバ111をレーザー伝送用に使用するようにすれば、光ファイバ111及びロッド材120の束の横断面における光ファイバ111の占積率が高くなるため、ロッド材120による光ファイバ111の断面形状の変形抑制効果は相対的に高くなり、変形の極めて少ない光ファイバ111によりレーザー伝送を行うことができる。また、レーザー伝送用に使用した2本乃至3本の光ファイバ111に故障が生じたような場合には、残りの不使用の光ファイバ111を代替として使用することもできる。 Further, particularly in the case of a configuration in which a plurality of optical fibers 111 are provided in a close-packed configuration, only a part of the plurality of optical fibers 111 is used for laser transmission, and light that is not used for all or a part of the others is used. A fiber 111 may be included. For example, when two to three optical fibers 111 are necessary for laser transmission, the optical fiber 111 and the optical fiber 111 and the optical fiber 111 and the rod member 120 formed with the coupling portion 130 are formed by the above method. Since the space factor of the optical fiber 111 in the cross section of the bundle of rod members 120 is low, the effect of suppressing deformation of the cross-sectional shape of the optical fiber 111 by the rod member 120 is relatively low. However, even in such a case, if, for example, the coupling portion 130 is formed by the seven optical fibers 111 and the rod member 120, and two or three of the optical fibers 111 are used for laser transmission, the light is transmitted. Since the space factor of the optical fiber 111 in the cross section of the bundle of the fiber 111 and the rod material 120 becomes high, the deformation suppression effect of the cross-sectional shape of the optical fiber 111 by the rod material 120 becomes relatively high, and light with very little deformation. Laser transmission can be performed by the fiber 111. Further, when a failure occurs in the two to three optical fibers 111 used for laser transmission, the remaining unused optical fibers 111 can be used as an alternative.
 ここで、パイプ材140に、各々、ファイバ径が1mmである複数の光ファイバ111を、それらの束が内接するように充填すると共に、パイプ材140と光ファイバ111の束との間、及び最密充填されていない光ファイバ111間に嵌るように複数のロッド材120を充填したときの横断面における光ファイバ111の占積率について説明する。 Here, the pipe member 140 is filled with a plurality of optical fibers 111 each having a fiber diameter of 1 mm so that the bundles are inscribed, and between the pipe member 140 and the bundle of optical fibers 111, and at the end. The space factor of the optical fiber 111 in the cross section when a plurality of rod members 120 are filled so as to fit between the optical fibers 111 not tightly packed will be described.
 表1は、図9(a)に示すように2本の光ファイバ111及び2本のロッド材120の場合、図9(b)に示すように3本の光ファイバ111及び3本のロッド材120の場合、図9(c)に示すように4本の光ファイバ111及び5本のロッド材120の場合、並びに図9(d)に示すように7本の光ファイバ111及び6本のロッド材120の場合のそれぞれについて、パイプ材140に複数の光ファイバ111及び複数のロッド材120を充填した状態での横断面におけるパイプ材内空隙占積率及びパイプ材内光ファイバ占積率の計算結果を示す。 Table 1 shows two optical fibers 111 and two rod members 120 as shown in FIG. 9A, and three optical fibers 111 and three rod members as shown in FIG. 9B. In the case of 120, four optical fibers 111 and five rod members 120 as shown in FIG. 9 (c), and seven optical fibers 111 and six rods as shown in FIG. 9 (d). For each case of the material 120, calculation of the void space factor in the pipe material and the optical fiber space factor in the pipe material in a cross section in a state where the pipe material 140 is filled with the plurality of optical fibers 111 and the plurality of rod materials 120 Results are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 パイプ材内空隙占積率は、2本の光ファイバ111及び2本のロッド材120の場合が28%、3本の光ファイバ111及び3本のロッド材120の場合が20%、4本の光ファイバ111及び5本のロッド材120の場合が17%、並びに7本の光ファイバ111及び6本のロッド材120の場合が14%である。 The space factor in the pipe material is 28% for the two optical fibers 111 and the two rod members 120, 20% for the three optical fibers 111 and the three rod members 120, and four The case of the optical fiber 111 and the five rod members 120 is 17%, and the case of the seven optical fibers 111 and the six rod members 120 is 14%.
 パイプ材内光ファイバ占積率は、2本の光ファイバ111及び2本のロッド材120の場合が50%、3本の光ファイバ111及び3本のロッド材120の場合が65%、4本の光ファイバ111及び5本のロッド材120の場合が69%、並びに7本の光ファイバ111及び6本のロッド材120の場合が78%である。 The optical fiber space factor in the pipe material is 50% in the case of two optical fibers 111 and two rod members 120, 65% in the case of three optical fibers 111 and three rod members 120, and four. The optical fiber 111 and the five rod members 120 are 69%, and the seven optical fibers 111 and the six rod members 120 are 78%.
 この結果によれば、光ファイバ111の本数が多くなるのに伴って、パイプ材内空隙占積率は低く、一方、パイプ材内光ファイバ占積率は高くなることが分かる。 According to this result, it can be seen that as the number of optical fibers 111 increases, the space factor in the pipe material becomes lower, while the space factor in the optical material in the pipe material becomes higher.
 (実施形態2)
 図10及び11は、実施形態2に係る光ファイバの多芯結合構造の光コンバイナ100を示す。この実施形態2の光コンバイナ100も、例えば、複数のレーザー発振器等からのレーザーを集めて出射するために用いられる光デバイスである。なお、実施形態1と同一名称の部分は実施形態1と同一符号で示す。
(Embodiment 2)
10 and 11 show an optical combiner 100 having an optical fiber multi-core coupling structure according to the second embodiment. The optical combiner 100 of the second embodiment is also an optical device used for collecting and emitting lasers from a plurality of laser oscillators, for example. In addition, the part of the same name as Embodiment 1 is shown with the same code | symbol as Embodiment 1. FIG.
 実施形態2の光コンバイナ100では、実施形態1の光コンバイナ100において、光ファイバ111の束の外側の光ファイバ111間に設けられた大径のロッド材120に代わって光ファイバ111よりも細い細径光ファイバ151が設けられた構成を有する。具体的には、複数の光ファイバ心線110の一端部において、各々、被覆層112が剥がされた複数の光ファイバ111が束ねられると共に、それらよりも細い複数の細径光ファイバ心線150(ロッド材)の一端部において、各々、被覆層152が剥がされた複数の細径光ファイバ151が光ファイバ111の束の外側の光ファイバ111間に配され、また、光ファイバ111の束の内側の光ファイバ111間にロッド材120が配されるように束ねられ、それらが溶融一体化して形成された結合部130が構成されている。これらの複数の細径光ファイバ151は、レーザーのモニタ用等、レーザー伝送用以外の用途として用いることができる。 In the optical combiner 100 according to the second embodiment, in the optical combiner 100 according to the first embodiment, instead of the large-diameter rod member 120 provided between the optical fibers 111 outside the bundle of the optical fibers 111, the finer than the optical fiber 111. It has a configuration in which a diameter optical fiber 151 is provided. Specifically, at one end of the plurality of optical fiber cores 110, a plurality of optical fibers 111 from which the coating layer 112 has been peeled are bundled, and a plurality of small-diameter optical fiber cores 150 (which are thinner than them). At one end of the rod member, a plurality of small-diameter optical fibers 151 from which the coating layer 152 has been peeled are disposed between the optical fibers 111 outside the bundle of optical fibers 111, and inside the bundle of optical fibers 111. The rod member 120 is bundled so as to be disposed between the optical fibers 111, and a coupling portion 130 is formed by melting and integrating them. The plurality of small-diameter optical fibers 151 can be used for purposes other than laser transmission, such as for laser monitoring.
 図12は細径光ファイバ心線150を示す。 FIG. 12 shows a thin optical fiber core wire 150.
 複数の細径光ファイバ心線150は、同一の細径光ファイバ心線150で構成されていてもよく、また、異なる細径光ファイバ心線150が混在して構成されていてもよい。複数の細径光ファイバ心線150のそれぞれは、細径光ファイバ151が被覆層152で被覆された構成を有する。 The plurality of small-diameter optical fiber cores 150 may be configured by the same small-diameter optical fiber core 150, or may be configured by mixing different small-diameter optical fiber cores 150. Each of the plurality of thin optical fiber cores 150 has a configuration in which the thin optical fiber 151 is covered with a coating layer 152.
 細径光ファイバ151は、ファイバ中心に設けられた相対的に高屈折率なコア151aとそれを被覆するように同心状に設けられた相対的に低屈折率なクラッド151bとを有する。細径光ファイバ151のファイバ径は例えば100~500μmである。 The small-diameter optical fiber 151 has a relatively high refractive index core 151a provided at the center of the fiber and a relatively low refractive index clad 151b provided concentrically so as to cover the core 151a. The fiber diameter of the thin optical fiber 151 is, for example, 100 to 500 μm.
 コア151aは、石英で形成されていることが好ましい。石英製のコア151aは、屈折率を高めるゲルマニウム(Ge)等のドーパントがドープされていてもよいが、ドーパントがドープされていないノンドープ石英であることが好ましい。コア151aの軟化温度は約1700℃である。コア径は例えば50~400μmである。 The core 151a is preferably made of quartz. The quartz core 151a may be doped with a dopant such as germanium (Ge) that increases the refractive index, but is preferably non-doped quartz that is not doped with a dopant. The softening temperature of the core 151a is about 1700 ° C. The core diameter is, for example, 50 to 400 μm.
 クラッド151bは、石英で形成されていることが好ましい。石英製のクラッド151bは、ドーパントがドープされていないノンドープ石英であってもよく、また、屈折率を低めるフッ素(F)やボロン(B)等のドーパントがドープされていてもよい。クラッド151bの軟化温度は、光ファイバ111が溶融する前に流動を開始させて光ファイバ111間の隙間を封じ、それによって光ファイバ111の変形を規制する観点から、光ファイバ111のコア111a及びクラッド111bの軟化温度以下であることが好ましい。クラッド151bは、相対的に低屈折率であって、コア151aよりも屈折率が低い。クラッド151bの厚さは例えば25~225μmである。 The clad 151b is preferably made of quartz. The quartz clad 151b may be non-doped quartz that is not doped with a dopant, or may be doped with a dopant such as fluorine (F) or boron (B) that lowers the refractive index. The softening temperature of the clad 151b starts from flowing before the optical fiber 111 is melted to seal the gap between the optical fibers 111, thereby restricting the deformation of the optical fiber 111, so that the core 111a and the clad of the optical fiber 111 are controlled. It is preferably below the softening temperature of 111b. The clad 151b has a relatively low refractive index and a lower refractive index than the core 151a. The thickness of the clad 151b is, for example, 25 to 225 μm.
 被覆層152は例えば紫外線硬化型のアクリル樹脂等で形成されている。 The covering layer 152 is made of, for example, an ultraviolet curable acrylic resin.
 その他の構成及び製造方法、並びに作用効果は実施形態1と同一である。 Other configurations, manufacturing methods, and operational effects are the same as those of the first embodiment.
 (その他の実施形態)
 上記実施形態1及び2では、一端部に結合部130を有する耐光コンバイナ100を例としたが、特にこれに限定されるものではなく、両端部に結合部を有する耐熱バンドル等であってもよい。
(Other embodiments)
In the first and second embodiments, the light-proof combiner 100 having the coupling portion 130 at one end is taken as an example. However, the embodiment is not particularly limited thereto, and may be a heat-resistant bundle having coupling portions at both ends. .
 また、上記実施形態1及び2では結合部130を出射端としたが、特にこれに限定されるものではなく、結合部130を出射端に他の光ファイバ心線が接続された構成であってもよく、また、純粋石英等の単一材からなる石英ロッドを接続すれば光結合デバイスを構成することもできる。 In the first and second embodiments, the coupling portion 130 is the exit end. However, the present invention is not particularly limited to this, and another optical fiber core wire is connected to the coupling portion 130 at the exit end. In addition, an optical coupling device can be configured by connecting a quartz rod made of a single material such as pure quartz.
 本発明は光ファイバの多芯結合構造及びその製造方法に関する。 The present invention relates to an optical fiber multi-core coupling structure and a method for manufacturing the same.
100 光コンバイナ(光ファイバの多芯結合構造)
110 光ファイバ心線
111 光ファイバ
111a コア
111b クラッド
112 被覆層
120 ロッド材
130 結合部
131 クラッド結合部
132 低屈折率層
133 サポート層
140 パイプ材
141 ドープ低屈折率層(内周側部分)
142 ノンドープ高屈折率層
150 細径光ファイバ心線
151 細径光ファイバ(ロッド材)
151a コア
151b クラッド
152 被覆層
100 Optical combiner (optical fiber multi-core coupling structure)
DESCRIPTION OF SYMBOLS 110 Optical fiber core wire 111 Optical fiber 111a Core 111b Clad 112 Coating layer 120 Rod material 130 Coupling part 131 Clad coupling part 132 Low refractive index layer 133 Support layer 140 Pipe material 141 Doped low refractive index layer (inner peripheral side part)
142 Non-doped High Refractive Index Layer 150 Thin Optical Fiber Core 151 Thin Optical Fiber (Rod Material)
151a Core 151b Clad 152 Coating layer

Claims (15)

  1.  各々、相対的に高屈折率であるコアとそれを被覆する相対的に低屈折率であるクラッドとを有する複数の光ファイバの一端部が束ねられて構成された結合部を備えた光ファイバの多芯結合構造であって、
     上記結合部は、上記複数の光ファイバと共に該複数の光ファイバよりも細い複数のロッド材が束ねられ、それらが溶融一体化して形成されている光ファイバの多芯結合構造。
    An optical fiber having a coupling portion formed by bundling one end of a plurality of optical fibers each having a core having a relatively high refractive index and a clad having a relatively low refractive index covering the core. A multi-core connection structure,
    The coupling portion is a multi-core coupling structure of optical fibers in which a plurality of rod members thinner than the plurality of optical fibers are bundled together with the plurality of optical fibers, and these are fused and integrated.
  2.  請求項1に記載された光ファイバの多芯結合構造において、
     上記結合部は、上記複数の光ファイバ及び上記複数のロッド材の束がパイプ材内に収容され、それらが溶融一体化して形成されている光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to claim 1,
    The coupling portion is a multi-core coupling structure of optical fibers in which a bundle of the plurality of optical fibers and the plurality of rod members is accommodated in a pipe material and melted and integrated.
  3.  請求項2に記載された光ファイバの多芯結合構造において、
     上記パイプ材は、上記複数の光ファイバのコアよりも屈折率が低い層を有する光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to claim 2,
    The pipe material is a multi-core coupling structure of optical fibers having a layer whose refractive index is lower than that of the cores of the plurality of optical fibers.
  4.  請求項1乃至3のいずれかに記載された光ファイバの多芯結合構造において、
     上記パイプ材は、少なくとも内周側部分の屈折率が上記複数の光ファイバのクラッドの屈折率と同一である光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to any one of claims 1 to 3,
    The pipe material is an optical fiber multi-core coupling structure in which a refractive index of at least an inner peripheral side portion is the same as a refractive index of a clad of the plurality of optical fibers.
  5.  請求項1乃至4のいずれかに記載された光ファイバの多芯結合構造において、
     上記パイプ材は、少なくとも内周側部分の軟化温度が上記複数の光ファイバのコア及びクラッドの軟化温度よりも低い光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to any one of claims 1 to 4,
    The pipe material is an optical fiber multi-core coupling structure in which a softening temperature of at least an inner peripheral side portion is lower than softening temperatures of the cores and clads of the plurality of optical fibers.
  6.  請求項1乃至5のいずれかに記載された光ファイバの多芯結合構造において、
     上記複数の光ファイバが石英で形成されている光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to any one of claims 1 to 5,
    An optical fiber multi-core coupling structure in which the plurality of optical fibers are made of quartz.
  7.  請求項6に記載された光ファイバの多芯結合構造において、
     上記複数の光ファイバのコアがノンドープ石英で形成されている光ファイバの多芯結合構造。
    In the multi-core coupling structure of an optical fiber according to claim 6,
    An optical fiber multi-core coupling structure in which the cores of the plurality of optical fibers are formed of non-doped quartz.
  8.  請求項1乃至7のいずれかに記載された光ファイバの多芯結合構造において、
     上記複数の光ファイバが最密充填状態に設けられている光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to any one of claims 1 to 7,
    An optical fiber multi-core coupling structure in which the plurality of optical fibers are provided in a close-packed state.
  9.  請求項1乃至8のいずれかに記載された光ファイバの多芯結合構造において、
     上記複数のロッド材の軟化温度が上記複数の光ファイバの軟化温度以下である光ファイバの多芯結合構造。
    In the multi-core coupling structure of the optical fiber according to any one of claims 1 to 8,
    An optical fiber multi-core coupling structure in which a softening temperature of the plurality of rod members is equal to or lower than a softening temperature of the plurality of optical fibers.
  10.  請求項1乃至9のいずれかに記載された光ファイバの多芯結合構造において、
     上記複数の光ファイバは、レーザー伝送用の光ファイバと、レーザー伝送用以外の用途の光ファイバ及び/又は不使用の光ファイバと、を含む光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to any one of claims 1 to 9,
    The plurality of optical fibers is an optical fiber multi-core coupling structure including an optical fiber for laser transmission and an optical fiber for use other than laser transmission and / or an unused optical fiber.
  11.  請求項1乃至10のいずれかに記載された光ファイバの多芯結合構造において、
     上記複数のロッド材の屈折率が上記複数の光ファイバのクラッドの屈折率と同一である光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to any one of claims 1 to 10,
    An optical fiber multi-core coupling structure in which a refractive index of the plurality of rod members is the same as a refractive index of a clad of the plurality of optical fibers.
  12.  請求項1乃至10のいずれかに記載された光ファイバの多芯結合構造において、
     上記複数のロッド材は、上記複数の光ファイバよりも細い細径光ファイバを含む光ファイバの多芯結合構造。
    In the multi-fiber coupling structure of an optical fiber according to any one of claims 1 to 10,
    The plurality of rod members is an optical fiber multi-core coupling structure including a thin optical fiber that is thinner than the plurality of optical fibers.
  13.  請求項12に記載された光ファイバの多芯結合構造において、
     上記複数の光ファイバはレーザー伝送用の光ファイバを含み、
     上記細径光ファイバはレーザー伝送用以外の用途の光ファイバである光ファイバの多芯結合構造。
    The multi-fiber coupling structure of an optical fiber according to claim 12,
    The plurality of optical fibers includes an optical fiber for laser transmission,
    The above-mentioned small-diameter optical fiber is an optical fiber multi-core coupling structure that is an optical fiber for uses other than laser transmission.
  14.  各々、相対的に高屈折率であるコアとそれを被覆する相対的に低屈折率であるクラッドとを有する複数の光ファイバの一端部を複数のロッド材と共に束ね、それらを溶融一体化させて結合部を形成する光ファイバの多芯結合構造の製造方法。 One end of a plurality of optical fibers each having a core having a relatively high refractive index and a clad having a relatively low refractive index covering the core are bundled together with a plurality of rod members, and they are fused and integrated. A manufacturing method of a multi-core coupling structure of optical fibers forming a coupling portion.
  15.  請求項14に記載された光ファイバの多芯結合構造の製造方法において、
     上記複数の光ファイバ及び上記複数のロッド材の束をパイプ材内に収容し、それらを溶融一体化させて上記結合部を形成する光ファイバの多芯結合構造の製造方法。
    In the manufacturing method of the multi-core coupling structure of the optical fiber according to claim 14,
    A manufacturing method of a multi-core coupling structure of an optical fiber in which a bundle of the plurality of optical fibers and the plurality of rod members is accommodated in a pipe material and melted and integrated to form the coupling portion.
PCT/JP2010/003468 2009-07-09 2010-05-24 Structure of binding multiple cores of optical fibers and method for manufacturing same WO2011004539A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009162561 2009-07-09
JP2009-162561 2009-07-09
JP2009265420A JP2011034040A (en) 2009-07-09 2009-11-20 Optical combiner and method of manufacturing the same
JP2009-265420 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011004539A1 true WO2011004539A1 (en) 2011-01-13

Family

ID=43428972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003468 WO2011004539A1 (en) 2009-07-09 2010-05-24 Structure of binding multiple cores of optical fibers and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2011034040A (en)
WO (1) WO2011004539A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891951A (en) * 2014-09-30 2016-08-24 中国兵器装备研究院 Modularized manufacturing method of multi-core beam combiner
CN114072712A (en) * 2019-08-09 2022-02-18 株式会社藤仓 Optical combiner, laser device, and method for manufacturing optical combiner
CN112352176B (en) * 2018-05-04 2023-09-12 努布鲁有限公司 Three-clad optical fiber

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158307A (en) * 1980-05-12 1981-12-07 Sumitomo Electric Ind Ltd Image fiber
JPS5738331A (en) * 1980-07-09 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for multicore fiber
JPS5758105A (en) * 1980-09-26 1982-04-07 Furukawa Electric Co Ltd:The Manufacture of glass material of optical system
JPS5758104A (en) * 1980-09-26 1982-04-07 Furukawa Electric Co Ltd:The Manufacture of multicore fiber preform
JPS5762005A (en) * 1980-07-29 1982-04-14 Furukawa Electric Co Ltd:The Manufacture of multicore fiber
JPS5792303A (en) * 1980-11-28 1982-06-08 Nippon Telegr & Teleph Corp <Ntt> Manufacture of multicore fiber preform
JPS5797503A (en) * 1980-12-10 1982-06-17 Furukawa Electric Co Ltd:The Forming method for end part of light guide
JPS5928104A (en) * 1982-08-06 1984-02-14 Furukawa Electric Co Ltd:The Production of base material of image fiber
JPS5971023A (en) * 1982-10-15 1984-04-21 Olympus Optical Co Ltd Image pickup device by endoscope
JPS60184209A (en) * 1984-03-01 1985-09-19 Sumitomo Electric Ind Ltd Image fiber and its production
JPS6126005A (en) * 1984-07-16 1986-02-05 Agency Of Ind Science & Technol Production for image fiber
JPS63221302A (en) * 1987-03-11 1988-09-14 Sumitomo Electric Ind Ltd Light guide and photoirradiation device
JPH02228612A (en) * 1989-03-01 1990-09-11 Fuji Photo Film Co Ltd Optical guide
JPH0561417A (en) * 1991-09-03 1993-03-12 Sharp Corp Display device
JPH0588027A (en) * 1991-03-28 1993-04-09 Kurabo Ind Ltd Light guide terminal part and its formation
JPH06347645A (en) * 1993-06-11 1994-12-22 Fujikura Ltd Light guide
JPH0756027A (en) * 1993-08-19 1995-03-03 Fujikura Ltd Production of bundle type optical fiber end part
JPH0894864A (en) * 1994-04-08 1996-04-12 Olympus Optical Co Ltd Image fiber and its production
JPH08114717A (en) * 1994-10-17 1996-05-07 Fujikura Ltd Image fiber
JPH08304642A (en) * 1995-01-13 1996-11-22 Fujikura Ltd Terminal part of optical fiber bundle and its formation
US5792233A (en) * 1994-11-24 1998-08-11 Alcatel Fibres Optiques Method of manufacturing a multi-core optical fiber
JP2002296430A (en) * 2001-03-30 2002-10-09 Shizuki Electric Co Inc Image display device
JP2003201140A (en) * 2001-12-28 2003-07-15 Sumitomo Electric Ind Ltd Method of manufacturing multicore optical fiber and optical fiber preform and multicore optical fiber
JP2003322730A (en) * 2002-04-30 2003-11-14 Sumitomo Electric Ind Ltd Bundle fiber, light source device using the same and its manufacturing method
JP2004131340A (en) * 2002-10-11 2004-04-30 Sumitomo Electric Ind Ltd Bundle optical fiber and vacuum device provided with the same
JP2008083690A (en) * 2006-08-29 2008-04-10 Sumitomo Electric Ind Ltd Fiber bundle and light source equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492998B2 (en) * 2004-08-31 2009-02-17 Corning Incorporated Fiber bundles and methods of making fiber bundles
JP2008277582A (en) * 2007-04-27 2008-11-13 Fujikura Ltd Multicore fiber for optical pumping device, manufacturing method therefor, optical pumping device, fiber laser, and fiber amplifier

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158307A (en) * 1980-05-12 1981-12-07 Sumitomo Electric Ind Ltd Image fiber
JPS5738331A (en) * 1980-07-09 1982-03-03 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for multicore fiber
JPS5762005A (en) * 1980-07-29 1982-04-14 Furukawa Electric Co Ltd:The Manufacture of multicore fiber
JPS5758105A (en) * 1980-09-26 1982-04-07 Furukawa Electric Co Ltd:The Manufacture of glass material of optical system
JPS5758104A (en) * 1980-09-26 1982-04-07 Furukawa Electric Co Ltd:The Manufacture of multicore fiber preform
JPS5792303A (en) * 1980-11-28 1982-06-08 Nippon Telegr & Teleph Corp <Ntt> Manufacture of multicore fiber preform
JPS5797503A (en) * 1980-12-10 1982-06-17 Furukawa Electric Co Ltd:The Forming method for end part of light guide
JPS5928104A (en) * 1982-08-06 1984-02-14 Furukawa Electric Co Ltd:The Production of base material of image fiber
JPS5971023A (en) * 1982-10-15 1984-04-21 Olympus Optical Co Ltd Image pickup device by endoscope
JPS60184209A (en) * 1984-03-01 1985-09-19 Sumitomo Electric Ind Ltd Image fiber and its production
JPS6126005A (en) * 1984-07-16 1986-02-05 Agency Of Ind Science & Technol Production for image fiber
JPS63221302A (en) * 1987-03-11 1988-09-14 Sumitomo Electric Ind Ltd Light guide and photoirradiation device
JPH02228612A (en) * 1989-03-01 1990-09-11 Fuji Photo Film Co Ltd Optical guide
JPH0588027A (en) * 1991-03-28 1993-04-09 Kurabo Ind Ltd Light guide terminal part and its formation
JPH0561417A (en) * 1991-09-03 1993-03-12 Sharp Corp Display device
JPH06347645A (en) * 1993-06-11 1994-12-22 Fujikura Ltd Light guide
JPH0756027A (en) * 1993-08-19 1995-03-03 Fujikura Ltd Production of bundle type optical fiber end part
JPH0894864A (en) * 1994-04-08 1996-04-12 Olympus Optical Co Ltd Image fiber and its production
JPH08114717A (en) * 1994-10-17 1996-05-07 Fujikura Ltd Image fiber
US5792233A (en) * 1994-11-24 1998-08-11 Alcatel Fibres Optiques Method of manufacturing a multi-core optical fiber
JPH08304642A (en) * 1995-01-13 1996-11-22 Fujikura Ltd Terminal part of optical fiber bundle and its formation
JP2002296430A (en) * 2001-03-30 2002-10-09 Shizuki Electric Co Inc Image display device
JP2003201140A (en) * 2001-12-28 2003-07-15 Sumitomo Electric Ind Ltd Method of manufacturing multicore optical fiber and optical fiber preform and multicore optical fiber
JP2003322730A (en) * 2002-04-30 2003-11-14 Sumitomo Electric Ind Ltd Bundle fiber, light source device using the same and its manufacturing method
JP2004131340A (en) * 2002-10-11 2004-04-30 Sumitomo Electric Ind Ltd Bundle optical fiber and vacuum device provided with the same
JP2008083690A (en) * 2006-08-29 2008-04-10 Sumitomo Electric Ind Ltd Fiber bundle and light source equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891951A (en) * 2014-09-30 2016-08-24 中国兵器装备研究院 Modularized manufacturing method of multi-core beam combiner
CN112352176B (en) * 2018-05-04 2023-09-12 努布鲁有限公司 Three-clad optical fiber
CN114072712A (en) * 2019-08-09 2022-02-18 株式会社藤仓 Optical combiner, laser device, and method for manufacturing optical combiner
CN114072712B (en) * 2019-08-09 2023-10-31 株式会社藤仓 Optical combiner, laser device, and method for manufacturing optical combiner
US11808982B2 (en) 2019-08-09 2023-11-07 Fujikura Ltd. Optical combiner, laser device, and method for manufacturing optical combiner

Also Published As

Publication number Publication date
JP2011034040A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5689929B2 (en) Optical fiber combiner manufacturing method, optical fiber combiner, and laser apparatus
US8064742B2 (en) Light input/output terminal module of the optical components and beam converting apparatus
JP5327108B2 (en) Optical fiber concentrator and laser device using the same
JP2008277582A (en) Multicore fiber for optical pumping device, manufacturing method therefor, optical pumping device, fiber laser, and fiber amplifier
JP6678286B2 (en) Optical fiber assembly and optical coupling device, optical fiber coupling device
WO2018207872A1 (en) Combiner, fiber laser device, and method for manufacturing combiner
JP6921021B2 (en) Methods for forming clad mode strippers and clad mode strippers used with optical systems
KR20150122663A (en) Ultra-high power fiber laser system with multimode-multimode fiber combiner
JP2007293298A (en) Light input/output port of optical component
WO2018062484A1 (en) Optical connection structure and optical module
JP2009271108A (en) Optical combiner, and method for manufacturing the same
WO2011004539A1 (en) Structure of binding multiple cores of optical fibers and method for manufacturing same
JP2007293300A (en) Beam converting apparatus
US20190237929A1 (en) Optical fiber and fiber laser
JP5128913B2 (en) Manufacturing method of optical combiner
JP4620626B2 (en) Optical fiber structure and block chip used therefor
JP5475533B2 (en) Fiber optic bundle
JP2005300596A (en) Composite optical fiber, optical connector, and optical fiber with optical connector
WO2021172226A1 (en) Optical coupler and optical output device
JP5858838B2 (en) Optical device manufacturing method
JP2010232634A (en) Optical combiner and fiber laser using the same
JP2009265310A (en) Optical fiber module
JP2005208113A (en) Mode field converter
JP2011022540A (en) Multi-core connection structure of optical fiber and method of manufacturing the same
JP2008276007A (en) Optical device and exposure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10796853

Country of ref document: EP

Kind code of ref document: A1