WO2011002664A1 - Catalysts for oxidative coupling of hydrocarbons - Google Patents

Catalysts for oxidative coupling of hydrocarbons Download PDF

Info

Publication number
WO2011002664A1
WO2011002664A1 PCT/US2010/039886 US2010039886W WO2011002664A1 WO 2011002664 A1 WO2011002664 A1 WO 2011002664A1 US 2010039886 W US2010039886 W US 2010039886W WO 2011002664 A1 WO2011002664 A1 WO 2011002664A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methane
group
elements
toluene
Prior art date
Application number
PCT/US2010/039886
Other languages
French (fr)
Inventor
Sivadinarayana Chinta
Joseph Thorman
James R. Butler
Original Assignee
Fina Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fina Technology, Inc. filed Critical Fina Technology, Inc.
Priority to CN2010800291079A priority Critical patent/CN102471182A/en
Priority to JP2012517751A priority patent/JP2012532010A/en
Priority to EA201270065A priority patent/EA201270065A1/en
Priority to AU2010266599A priority patent/AU2010266599A1/en
Priority to EP10794570.1A priority patent/EP2448886A4/en
Publication of WO2011002664A1 publication Critical patent/WO2011002664A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/073Ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention is related to co-pending applications titled: Process For The Oxidative Coupling Of Methane; and Process For The Oxidative Coupling Of Hydrocarbons, both filed by Fina Technology, Inc. on the same date as the present application.
  • the present invention generally relates to catalysts that can be used in hydrocarbon reactions.
  • Methane is a primary component of natural gas. Although natural gas can be useful as a fuel, natural gas sources can be remote, and often, it is not cost effective to transport the methane. One method of transporting natural gas is by liquefying the gas, however, the boiling point of methane is low enough that liquefaction can be difficult and expensive. Research has been conducted to find new and cost-effective ways of utilizing this resource.
  • Ethylene and higher hydrocarbons can be more easily liquefied and transported from remote sites and can also be valuable products.
  • Ethylene, for one, can be a valuable product, as it can be used for the production of styrene, and has many other uses, such as the production of polyethylene, ethanol, ethylene glycol, and polyvinyl chloride.
  • ethylene is obtained predominantly from the thermal cracking of hydrocarbons, such as ethane, propane, butane, or naphtha.
  • Ethylene can also be produced and recovered from various refinery processes. Ethylene from these sources can also include a variety of undesired products, including diolefms and acetylene, which can be costly to separate from the ethylene. Separation methods can include, for example, extractive distillation and selective hydrogenation of the acetylene back to ethylene.
  • Thermal cracking and separation technologies for the production of relatively pure ethylene can result in significant production costs. Thus, the production of ethylene from methane rather than by some of the traditional routes could decrease ethylene production costs.
  • An embodiment of the present invention is a catalyst that includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf).
  • the catalyst further includes (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5 - 15 of the periodic table and (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; along with (D) oxygen. If an element from Group 1 of the periodic table is used in (B), it cannot be used in (C).
  • the element(s) selected from (A) can range from 40 to 90 wt% of the catalyst.
  • the element(s) selected from (B) can range from 0.01 to 40 wt% of the catalyst.
  • the element(s) selected from (C) can range from 0.01 to 40 wt% of the catalyst.
  • the oxygen in (D) can range from 10 to 45 wt% of the catalyst.
  • the catalyst can be calcined by heating the catalyst to elevated temperatures, such as above 75O 0 C.
  • the catalyst can be used in a reactor for the oxidative coupling of methane.
  • the temperature can be from 500 0 C to 75O 0 C, optionally from 600 0 C to 75O 0 C.
  • the molar ratio of methane to oxygen can be from 1 :1 to 100:1, optionally from 4:1 to 80:1.
  • the catalyst can also be used in a reactor for the oxidative methylation of toluene.
  • the temperature can be from 500 0 C to 800 0 C, optionally from 55O 0 C to 700 0 C.
  • the molar ratio of methane to oxygen can be from 1 :1 to 100:1, optionally from 4:1 to 80: 1.
  • the molar ratio of methane to toluene can be from 1 : 1 to 50:1, optionally from 8:1 to 30:1.
  • Figure 1 is a chart showing data, including conversion and selectivity, of the OMT trial runs conducted in Comparative Example A.
  • Figure 2 is a chart showing the conversion of toluene over various temperatures, from the OMT trials conducted in Example C.
  • Figure 3 is a chart showing the selectivity of various products obtained from the OMT trials conducted in Example C.
  • Figure 4 is a chart showing data, including conversion and selectivity, of the OMT trials conducted in Example D.
  • Figure 5 is a chart showing data, including conversion and selectivity, of the OCM trials conducted in Example E.
  • Figure 6 is a chart showing data, including conversion and selectivity, of the OMT trials conducted in Example E.
  • the results of oxidative coupling can be influenced by many factors, such as reaction conditions, source and contents of the feed, and reactor design.
  • the catalyst used for the reaction can be one of the most important factors.
  • the effectiveness of the reaction can be measured in terms of conversion, selectivity, and yield. Conversion refers to the percentage of reactant (e.g. methane, toluene) that undergoes a chemical reaction.
  • Selectivity refers to the relative activity of a catalyst in reference to a particular compound in a mixture. Selectivity is quantified as the proportion of a particular product relative to all others.
  • a catalyst comprising a substrate that supports a metal or a combination of metals can be used to catalyze the reaction of hydrocarbons, such as in the oxidative coupling of methane (OCM) or cross-coupling of hydrocarbons, such as the oxidative methylation of toluene (OMT).
  • OCM oxidative coupling of methane
  • OMT oxidative methylation of toluene
  • the method of preparing the catalyst, pretreatment of the catalyst, and reaction conditions can influence the conversion, selectivity, and yield of OCM, OMT, and similar processes.
  • the catalyst of the present invention can include a substrate, one or more metal promoters and oxygen.
  • the catalyst of the present invention can include a substrate that ranges from 40 to 90 wt% of the catalyst, the substrate made of one or more of the elements of Set A consisting of: the Lanthanoid group (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Th, Yb, Lu), Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf).
  • the substrate supports a first promoter that ranges from 0.01 to 40 wt% of the catalyst chosen from one or more of the elements of Set B consisting of: Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5 - 15 of the periodic table.
  • the substrate further supports a second promoter that ranges from 0.01 to 40 wt% of the catalyst chosen from one or more of the elements of Set C consisting of: Li, Na, K, Rb, Cs, Ca, Sr, and Ba. If an element from Group 1 of the periodic table (Li, Na, K, Rb, Cs) is used as a catalytic element from Set B it cannot be used as a catalytic element from Set C.
  • the catalyst further includes Set D, which consists of oxygen, in a range of 10 to 45 wt%. All percentages are for the catalyst after calcination.
  • the catalyst contains at least one element from each of the Sets A, B, C, and D in the ranges given above. At least 90 wt% of the catalyst is made of the elements of Sets A, B, C and oxygen in the final catalyst composition after a calcination procedure. Optionally at least 95 wt% of the catalyst is made of the elements of Sets A, B, C and D in the final catalyst after a calcination procedure. Residual anions may be present in the final catalyst, e.g. nitrate, halide, sulfate and acetate.
  • the catalyst can vary in terms of its activity, its basicity, its lifetime, and other characteristics. This variation can be influenced by the selection of the elements chosen from Sets A, B, C and D and their respective content in the catalyst.
  • the various elements that make up the catalyst can be derived from any suitable source, such as in their elemental form, or in compounds or coordination complexes of an organic or inorganic nature, such as carbonates, oxides, hydroxides, nitrates, acetates, chlorides, phosphates, sulfides and sulfonates.
  • the elements and/or compounds can be prepared by any suitable method, known in the art, for the preparation of such materials.
  • substrate as used herein is not meant to indicate that this component is necessarily inactive, while the other metals and/or promoters are the active species.
  • the substrate can be an active part of the catalyst.
  • the term “substrate” would merely imply that the substrate makes up a significant quantity, generally 40% or more by weight, of the entire catalyst.
  • the promoters individually can range from 0.01% to 40% by weight of the catalyst, optionally from 0.01% to 10%. If more than one promoters are combined, they together generally can range from 0.01% up to 50% by weight of the catalyst.
  • the elements of the catalyst composition can be provided from any suitable source, such as in its elemental form, as a salt, as a coordination compound, etc.
  • Binder material, extrusion aids or other additives can be added to the catalyst composition or the final catalyst composition can be added to a structured material that provides a support structure.
  • the final catalyst composition can be supported by a structured material comprising an alumina or aluminate framework.
  • the content of such a binder material, extrusion aids, structured material, or other additives, and their respective calcination products, will not be taken into consideration within the stated percentage ranges of Sets A - D stated herein.
  • a binder material which can contain elements that are contained within Sets A - D, can be added to the catalyst composition.
  • binder material elements and the calcination products are not taken into consideration within the stated percentage ranges of Sets A - D stated herein.
  • additional elements such as a binder, extrusion aid, structured material, or other additives, and their respective calcination products, are included within the scope of the invention.
  • the invention is a method for the preparation of an oxidative catalyst for OCM, OMT, or another oxidative coupling reaction.
  • the catalyst can be prepared by combining a substrate chosen from at least one element from Set A with at least one promoter element chosen from Set B, at least one promoter element chosen from Set C, and oxygen from Set D.
  • the present invention is not limited by the method of catalyst preparation, and all suitable methods should be considered to fall within the scope herein. Particularly effective techniques are those utilized for the preparation of solid catalysts. Conventional methods include co-precipitation from an aqueous, an organic or a combination solution-dispersion, impregnation, dry mixing, wet mixing or the like, alone or in various combinations.
  • any method can be used which provides compositions of matter containing the prescribed components in effective amounts.
  • the substrate is charged with promoter via an incipient wetness impregnation.
  • Other impregnation techniques such as by soaking, pore volume impregnation, or percolation can optionally be used.
  • Alternate methods such as ion exchange, wash coat, precipitation, and gel formation can also be used.
  • Various methods and procedures for catalyst preparation are listed in the technical report Manual of Methods and Procedures for Catalyst Characterization by J. Haber, J. H. Block and B. Dolmon, published in the International Union of Pure and Applied Chemistry, Volume 67, Nos 8/9, pp. 1257-1306, 1995, incorporated herein in its entirety.
  • the substrate can be a metal oxide of one or more elements of Set A.
  • an oxide substrate useful for the present invention is magnesium oxide, MgO.
  • the oxide substrate can be either obtained commercially or produced in the lab.
  • a metal oxide can be made by thermal decomposition of its corresponding salt at elevated temperatures up to 75O 0 C. The choice of precursor salt from which the oxide substrate is produced can have some effect on the performance of the eventual catalyst.
  • the dried composition is generally calcined in the presence of a free oxygen-containing gas, usually at temperatures between about 300 0 C and about 900 0 C for from 1 to 24 hours.
  • the calcination can be in an oxygen-containing atmosphere, or alternately in a reducing or inert atmosphere.
  • a pretreatment of the catalyst may, or may not, be necessary.
  • the invention involves the pretreatment of an oxidative catalyst for OCM, OMT, or another oxidative coupling reaction.
  • the prepared catalyst can be ground, pressed and sieved and loaded into a reactor.
  • the reactor can be any type known in the art to make catalyst particles, such as a fixed bed, fluidized bed, or swing bed reactor.
  • the reactor set-up can optionally include a recycle stream.
  • an inert material such as quartz chips, can be used to support the catalyst bed and to place the catalyst within the bed.
  • the reactor can be heated to elevated temperatures, such as 800 0 C to 900 0 C with an air flow, such as 100 mL/min, and held at these conditions for a length of time, such as 1 to 3 hours. Then, the reactor can be cooled down to a temperature of around the operating temperature of the reactor, for example 500 0 C to 65O 0 C, or optionally down to atmospheric or other desired temperature.
  • the reactor can be kept under an inert purge, such as under helium.
  • the invention involves reaction conditions for OCM, OMT, or another oxidative coupling reaction.
  • Several parameters including feed composition, molar ratio of hydrocarbon reactant to oxygen, temperature, pressure, time on stream, preparation method, particle size, porosity, surface area, contact time and others can influence the outcome of the reaction.
  • contents of the feed can include methane and an oxygen source.
  • Oxygen is a required component of the feed for oxidative coupling.
  • Methane can be obtained from natural gas, or from organic sources, such as the decomposition of waste through fermentation.
  • the oxygen source can be any source suitable for providing oxygen to the reaction zone such as pure oxygen, oxygen-enriched air, or air.
  • the gas containing oxygen should not contain any contaminants that might significantly interfere with the oxidative coupling reaction.
  • Alternate sources of oxygen may also be used, such as nitrobenzene, nitrous oxide, or other oxygen containing compounds.
  • reaction modulators can be used for the control or alteration of conversion, selectivity, or activity of a particular catalyst or in response to certain reaction conditions.
  • Non- limiting examples of possible reaction modulators include chlorine, ethylene and carbon monoxide.
  • Inert diluents such as helium and nitrogen may be included in the feed to adjust the gas partial pressures.
  • CO 2 or water (steam) can be included in the feed stream as these components may have beneficial properties, such as in the prevention of coke deposits.
  • the pressure for oxidative coupling reactions can generally range from 1 psia to 200 psia or more. The reaction pressure is not a limiting factor regarding the present invention and any suitable condition is considered to be within the scope of the invention.
  • the temperature for oxidative coupling reactions can generally range from 500 0 C to 800 0 C, optionally from 600 0 C to 75O 0 C.
  • the reaction temperature is not a limiting factor regarding the present invention and any suitable condition is considered to be within the scope of the invention.
  • the methane to oxygen molar ratio can range from 1 :1 to 100:1, optionally from 4:1 to 80:1.
  • space velocity [feed flow as vapor (cm 3 /h)] / [catalyst weight (g)].
  • a standard reference temperature and pressure 72 0 F and 14.7 psia is used to convert a liquid under these conditions, such as toluene, to a feed vapor flow.
  • 0.076 cm /min of liquid toluene is converted into moles and then using 22.4 L/mol (as if it were an ideal gas) it is converted into a vapor flow of 16 cm 3 /min.
  • the space velocity can generally range from 15,000 cm 3 g ⁇ V to 100,000 cm 3 g ⁇ V, optionally from 20,000 cm 3 g ⁇ V to 85,000 cm 3 g "1 h "1 .
  • This range is an indication of possible space velocities, such as for a fixed bed reactor.
  • altering the catalyst composition, the amount of inert material, etc can alter the space velocity outside of this range.
  • a change in the reactor from a fixed bed to an alternate design, such as a fluidized bed can also dramatically change the relative space velocity and can be outside of the stated range above.
  • the space velocity ranges given are not limiting on the present invention and any suitable condition is considered to be within the scope of the invention.
  • the reaction conditions can be similar to those described for the oxidative coupling of methane.
  • the contents of the feed will be different.
  • the feed will include toluene along with methane and oxygen.
  • the toluene can be vaporized and introduced to the reactor either by passing the oxygen and methane gas mixture through a toluene vapor saturator right before the inlet of the reactor tube, or by syringe-pumping the liquid toluene into the gas flow and vaporizing it in a preheated zone (250-300 0 C) before entering the reactor.
  • the methane to oxygen molar ratio can be from 1 :1 to 100:1, optionally from 4:1 to 80: 1.
  • the molar ratio of methane to toluene can be from 1 : 1 to 50:1, optionally from 8:1 to 30:1.
  • Temperature can be from 300 0 C to 900 0 C, optionally from 35O 0 C to 75O 0 C.
  • Equations 1-2 are reactions that can take place in the reactor over the OCM catalyst.
  • the equations are shown along with their change in enthalpy, or heat of reaction. As Equations 1-2 demonstrates the reactions that occur during OCM are exothermic.
  • the following examples are intended to give a better understanding of certain aspects and embodiments of the present invention and are not intended to limit the scope of the invention in any way.
  • An oxidative catalyst was prepared comprising a MgO substrate that was promoted with Ba.
  • the Ba/MgO catalyst was used in the oxidative coupling of methane and the oxidative methylation of toluene.
  • the catalyst included 5% Ba by weight and was prepared from barium nitrate (6.53g) (Sigma Aldrich, 98.0%) and MgO (23.46g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution. The mixture was dried at 12O 0 C for 3 h and then calcined at 85O 0 C in air for 1 h.
  • the catalyst was ground, pressed and sieved to 20 - 40 mesh size (420 - 841 ⁇ m) and 0.577 g of catalyst was loaded into a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place.
  • the reactor was heated to 85O 0 C under 100 ml/min of air and held for 2 hours.
  • the reactor was then cooled down to 600 0 C under helium to prepare for the OCM and OMT experiments.
  • Figure 1 is a graphical representation of the data presented in Table 2.
  • the x-axis shows temperature from 54O 0 C to 65O 0 C.
  • the y-axis on the left side of the graph corresponds to percent conversion of toluene. As can be seen, toluene conversion increased from 3% to 10% as temperature increased.
  • the y-axis on the right side of the graph corresponds to percent selectivity for all of the products of the reactions.
  • the products included benzene, ethylbenzene, xylene, styrene, benzaldehyde, and stilbene. Benzene was the product with the highest selectivity.
  • An oxidative catalyst was prepared comprising an oxide substrate, MgO, that was promoted with Li.
  • the Li/MgO catalyst was used in the oxidative methylation of toluene.
  • the catalyst included 2.5% Li by weight and was prepared from Lithium carbonate (13.69g) salt (Sigma Aldrich, 98.0%) and MgO (16.304g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution. The mixture was dried at 12O 0 C for 3 hours and then calcined at 85O 0 C in air for 1 hour.
  • the catalyst was ground and sieved to 20 - 40 mesh size and 0.542 g of catalyst was loaded in a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place.
  • the reactor was heated to 85O 0 C under 100 ml/min of air and held for 2 hours.
  • the reactor was then cooled down to 600 0 C under helium to prepare for the OMT experiments.
  • the reaction temperature was 65O 0 C
  • the oxygen source was air
  • the total flow of gasses was 335 cm /min (150 cm 3 /min air, 150 cm 3 /min methane, 0.167 cm 3 /min liquid toluene)
  • the methane to oxygen molar ratio was 5:1
  • the methane to toluene molar ratio was 15:1.
  • the reaction was performed twice, at two different space velocities. For the first trial, the space velocity was 37,085 cm 3 g "1 h "1 .
  • the space velocity was adjusted to 70,295 cm 3 g "1 h "1 by diluting the feed with nitrogen gas (150 cm 3 /min air, 150 cm 3 /min methane, 0.167 cm 3 /min liquid toluene, 300 cm 3 /min nitrogen).
  • Space velocity is inversely related to residence time in the reactor, and modulation of space velocity influences the contact time between reactants and catalyst. At a higher space velocity, residence time and contact time are lower, and more reactants pass over the catalyst in a given period.
  • An oxidative catalyst was prepared comprising a MgO substrate that was promoted with Na, Cs, and Re.
  • the Na/Cs/Re/MgO catalyst was used in the oxidative coupling of methane and the oxidative methylation of toluene.
  • the catalyst included 5% Na by weight (3.811 g) of sodium chloride, 5% Cs by weight (2.199 g) of cesium nitrate, and 0.01% Re by weight (0.5856 g) of rhenium chloride and MgO (23.4033 g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution.
  • the mixture was dried at 12O 0 C for 3 h and then calcined at 85O 0 C in air for 1 h.
  • the catalyst was ground and sieved to 20 - 40 mesh size (420 - 841 ⁇ m) and 0.597 g of catalyst was loaded into a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place.
  • the reactor was heated to 85O 0 C under 100 ml/min of air and held for 2 hours.
  • the reactor was then cooled down to 600 0 C under helium to prepare for the OCM and OMT experiments.
  • Figures 2 and 3 are graphical representations of the data shown in Table 5.
  • Figure 2 shows the data for toluene conversion, with temperature on the x-axis and percent conversion on the y-axis. The conversion of toluene increased from 1.7% at 55O 0 C to 39.9% at 75O 0 C.
  • Figure 3 shows the data for selectivity. At temperatures from 55O 0 C to about 685 0 C, benzene is the predominant product, with selectivity above 50%. At around 685 0 C, the selectivity for benzene and that of styrene intersect and above 685 0 C, styrene is the predominant product.
  • This approximate temperature of 685 0 C also marks a transition in the rate of formation of styrene.
  • the selectivity of styrene rises significantly from 55O 0 C to 685 0 C (from 11.6% to 46.2%) and rises relatively little (from 46.2% to 49.4%) above 685 0 C.
  • Styrene is most commonly the desired product of OMT. However, depending on demand and process needs, other products can also be desired. Ethylbenzene, for instance, can be a desired product as the technology is well established for its conversion to styrene via dehydrogenation. It is thus a useful feature of this process that product distribution can be affected by modulation of reaction conditions such as temperature. Benzene was the product with the highest selectivity. However, its selectivity peaked at 600 0 C and steadily decreased thereafter. Styrene, on the other hand, steadily increased with temperature. Because conversion and the selectivity of key products can vary with temperature, it may be possible to adjust product selectivity based on temperature. Benzene and styrene, for instance, can both be valuable products. The demands for these products may vary, and it can thus be useful to be able to control which of the two is the predominant product of OMT by adjusting the temperature.
  • An oxidative catalyst was prepared comprising an oxide substrate, MgO, that was promoted with Ca and La.
  • the Ca/La/MgO catalyst was used in the oxidative coupling of methane to toluene.
  • the catalyst included 5% Ca by weight from Calcium oxide (2.1Og) and 5% La by weight from lanthanum oxide (3.5Ig) and was prepared from calcium oxide salt, La 2 O 3 (Sigma Aldrich, 98.0%) and MgO (24.38g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution.
  • the mixture was dried at 12O 0 C for 3 hours and then calcined at 85O 0 C in air for 1 hour.
  • the catalyst was ground and sieved to 20 - 40 mesh size and 0.661 g of catalyst was loaded in a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place.
  • the reactor was heated to 85O 0 C under 100 ml/min of air and held for 2 hours.
  • the reactor was then cooled down to 600 0 C under helium to prepare for the OMT experiments.
  • Stilbene Selectivity (mol %) 0 .3 0 .2 0.4 0 .0
  • Figure 4 is a graphical representation of the data shown in Table 6. Toluene conversion increased with increasing temperature, going from about 3% conversion at 55O 0 C to nearly 13% conversion at 700 0 C. Product distribution also varied with temperature. Styrene increased in selectivity from about 40% at 55O 0 C to nearly 60% at 700 0 C. All other products had low selectivity and generally decreased in selectivity as the temperature rose.
  • An oxidative catalyst was prepared comprising an oxide substrate, MgO, that was promoted with Sr and La.
  • the Sr/La/MgO catalyst was used in the oxidative coupling of methane and the oxidative methylation of toluene.
  • the catalyst included 5% Sr by weight from strontium nitrate (3.62g) and 5% La by weight from lanthanum oxide (3.5Ig) and was prepared from Sr(NOs) 2 salt, La 2 O 3 (Sigma Aldrich, 98.0%) and MgO (22.85g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution.
  • the mixture was dried at 12O 0 C for 3 hours and then calcined at 85O 0 C in air for 1 hour.
  • the catalyst was ground and sieved to 20 - 40 mesh size and 0.855 g of catalyst was loaded in a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place.
  • the reactor was heated to 85O 0 C under 100 ml/min of air and held for 2 hours.
  • the reactor was then cooled down to 600 0 C under helium to prepare for the OCM and OMT experiments.
  • Five OCM trials were conducted using the Sr/La/MgO catalyst. The five trials correspond to five temperatures between 500 0 C and 700 0 C.
  • the oxygen source was air
  • the total flow of gasses was 500 cm /min (250 cm /min methane, 250 cm /min air)
  • the methane to oxygen molar ratio was 5:1
  • the space velocity was 35,088 cm 3 g "1 h "1 .
  • the corresponding gas samples were analyzed for product distribution and selectivity. Table 7 shows the results of the five OCM trials.
  • Figure 5 is a graphical representation of the data shown in Table 7. At a temperature between 55O 0 C and 600 0 C, methane conversion and C 2 selectivity rise suddenly, while CO selectivity drops dramatically. As in the previous example, these results indicate that temperature can be modulated to adjust product distribution.
  • the Sr/La/MgO catalyst was used in four trials of OMT at temperatures from 500 0 C to 65O 0 C. All reaction conditions other than temperature were held constant during these trials.
  • the oxygen source was air.
  • the total flow of gasses was 498 cm 3 /min (244 cm 3 /min methane, 240 cm 3 /min air, 0.067 cm 3 /min liquid toluene).
  • the methane to oxygen molar ratio was 5:1.
  • the methane to toluene molar ratio was 15:1.
  • the space velocity was 34,947 cm 3 g ⁇ h "1 .
  • the products were sampled after 20 minutes and analyzed. The table below shows the results of the four OMT trials.
  • Stilbene Selectivity (wt %) 1 .3 0 .2 0.2 0 .3
  • Figure 6 is a graphical representation of the data shown in Table 8.
  • the toluene conversion increased with increasing temperature, from 0.4 wt % at 500 0 C to 15.8 wt % at 65O 0 C.
  • Styrene selectivity also showed a general increase with increasing temperature, increasing from 4.5 wt % at 500 0 C to 43.0 wt % at 600 0 C.
  • the benzene selectivity showed an initial increase in selectivity, with a peak of 51 wt % at 55O 0 C. At temperatures above 55O 0 C, however, benzene selectivity decreased down to 16.2 wt % at 65O 0 C.
  • Figures are used herein to illustrate data, which are shown as data points on a graph. Lines connecting the data points are used to guide the eye and assist in illustrating general trends of the data. The lines are not intended as a predictor of where additional data points would necessarily fall, if they were available.
  • C 2 selectivity is the cumulative selectivity of acetylene, ethane, and ethylene.
  • OCM oxidative coupling of methane. For instance, methane can couple with methane to form higher hydrocarbons such as ethane or ethylene.
  • OMT oxidative methylation of toluene to form new compounds.
  • toluene can couple with methane to form ethylbenzene and/or styrene.
  • space velocity [feed flow as vapor (cm /h)] / [catalyst weight (g)].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A catalyst includes: (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5 - 15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.

Description

CATALYSTS FOR OXIDATIVE COUPLING OF HYDROCARBONS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The present invention is related to co-pending applications titled: Process For The Oxidative Coupling Of Methane; and Process For The Oxidative Coupling Of Hydrocarbons, both filed by Fina Technology, Inc. on the same date as the present application.
FIELD
[0002] The present invention generally relates to catalysts that can be used in hydrocarbon reactions.
BACKGROUND
[0003] Methane is a primary component of natural gas. Although natural gas can be useful as a fuel, natural gas sources can be remote, and often, it is not cost effective to transport the methane. One method of transporting natural gas is by liquefying the gas, however, the boiling point of methane is low enough that liquefaction can be difficult and expensive. Research has been conducted to find new and cost-effective ways of utilizing this resource.
[0004] One possible solution is to convert methane to higher hydrocarbons such as ethane or ethylene. Ethylene and higher hydrocarbons can be more easily liquefied and transported from remote sites and can also be valuable products. Ethylene, for one, can be a valuable product, as it can be used for the production of styrene, and has many other uses, such as the production of polyethylene, ethanol, ethylene glycol, and polyvinyl chloride.
[0005] Traditionally, ethylene is obtained predominantly from the thermal cracking of hydrocarbons, such as ethane, propane, butane, or naphtha. Ethylene can also be produced and recovered from various refinery processes. Ethylene from these sources can also include a variety of undesired products, including diolefms and acetylene, which can be costly to separate from the ethylene. Separation methods can include, for example, extractive distillation and selective hydrogenation of the acetylene back to ethylene. Thermal cracking and separation technologies for the production of relatively pure ethylene can result in significant production costs. Thus, the production of ethylene from methane rather than by some of the traditional routes could decrease ethylene production costs.
SUMMARY
[0006] An embodiment of the present invention is a catalyst that includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf). The catalyst further includes (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5 - 15 of the periodic table and (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; along with (D) oxygen. If an element from Group 1 of the periodic table is used in (B), it cannot be used in (C).
[0007] The element(s) selected from (A) can range from 40 to 90 wt% of the catalyst. The element(s) selected from (B) can range from 0.01 to 40 wt% of the catalyst. The element(s) selected from (C) can range from 0.01 to 40 wt% of the catalyst. The oxygen in (D) can range from 10 to 45 wt% of the catalyst.
[0008] The catalyst can be calcined by heating the catalyst to elevated temperatures, such as above 75O0C.
[0009] The catalyst can be used in a reactor for the oxidative coupling of methane. For OCM, the temperature can be from 5000C to 75O0C, optionally from 6000C to 75O0C. The molar ratio of methane to oxygen can be from 1 :1 to 100:1, optionally from 4:1 to 80:1.
[0010] The catalyst can also be used in a reactor for the oxidative methylation of toluene. For OMT, the temperature can be from 5000C to 8000C, optionally from 55O0C to 7000C. The molar ratio of methane to oxygen can be from 1 :1 to 100:1, optionally from 4:1 to 80: 1. The molar ratio of methane to toluene can be from 1 : 1 to 50:1, optionally from 8:1 to 30:1.
[0011] For both the processes of OCM and OMT, as well as other coupling and cross-coupling of hydrocarbons reactions, adjustments in certain reaction conditions, such as temperature, can be used to control product selectivity. Adjusting the temperature can also alter the exotherm produced by oxidative coupling.
BRIEF DESCRIPTION OF DRAWINGS
[0012] Figure 1 is a chart showing data, including conversion and selectivity, of the OMT trial runs conducted in Comparative Example A.
[0013] Figure 2 is a chart showing the conversion of toluene over various temperatures, from the OMT trials conducted in Example C.
[0014] Figure 3 is a chart showing the selectivity of various products obtained from the OMT trials conducted in Example C.
[0015] Figure 4 is a chart showing data, including conversion and selectivity, of the OMT trials conducted in Example D.
[0016] Figure 5 is a chart showing data, including conversion and selectivity, of the OCM trials conducted in Example E.
[0017] Figure 6 is a chart showing data, including conversion and selectivity, of the OMT trials conducted in Example E.
DETAILED DESCRIPTION
[0018] The results of oxidative coupling can be influenced by many factors, such as reaction conditions, source and contents of the feed, and reactor design. The catalyst used for the reaction can be one of the most important factors. The effectiveness of the reaction can be measured in terms of conversion, selectivity, and yield. Conversion refers to the percentage of reactant (e.g. methane, toluene) that undergoes a chemical reaction. Selectivity refers to the relative activity of a catalyst in reference to a particular compound in a mixture. Selectivity is quantified as the proportion of a particular product relative to all others.
[0019] A catalyst comprising a substrate that supports a metal or a combination of metals can be used to catalyze the reaction of hydrocarbons, such as in the oxidative coupling of methane (OCM) or cross-coupling of hydrocarbons, such as the oxidative methylation of toluene (OMT). The method of preparing the catalyst, pretreatment of the catalyst, and reaction conditions can influence the conversion, selectivity, and yield of OCM, OMT, and similar processes.
[0020] According to one embodiment, the catalyst of the present invention can include a substrate, one or more metal promoters and oxygen. According to an embodiment, the catalyst of the present invention can include a substrate that ranges from 40 to 90 wt% of the catalyst, the substrate made of one or more of the elements of Set A consisting of: the Lanthanoid group (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Th, Yb, Lu), Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf). The substrate supports a first promoter that ranges from 0.01 to 40 wt% of the catalyst chosen from one or more of the elements of Set B consisting of: Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5 - 15 of the periodic table. The substrate further supports a second promoter that ranges from 0.01 to 40 wt% of the catalyst chosen from one or more of the elements of Set C consisting of: Li, Na, K, Rb, Cs, Ca, Sr, and Ba. If an element from Group 1 of the periodic table (Li, Na, K, Rb, Cs) is used as a catalytic element from Set B it cannot be used as a catalytic element from Set C. The catalyst further includes Set D, which consists of oxygen, in a range of 10 to 45 wt%. All percentages are for the catalyst after calcination.
[0021] The catalyst contains at least one element from each of the Sets A, B, C, and D in the ranges given above. At least 90 wt% of the catalyst is made of the elements of Sets A, B, C and oxygen in the final catalyst composition after a calcination procedure. Optionally at least 95 wt% of the catalyst is made of the elements of Sets A, B, C and D in the final catalyst after a calcination procedure. Residual anions may be present in the final catalyst, e.g. nitrate, halide, sulfate and acetate. The catalyst can vary in terms of its activity, its basicity, its lifetime, and other characteristics. This variation can be influenced by the selection of the elements chosen from Sets A, B, C and D and their respective content in the catalyst.
[0022] The various elements that make up the catalyst can be derived from any suitable source, such as in their elemental form, or in compounds or coordination complexes of an organic or inorganic nature, such as carbonates, oxides, hydroxides, nitrates, acetates, chlorides, phosphates, sulfides and sulfonates. The elements and/or compounds can be prepared by any suitable method, known in the art, for the preparation of such materials.
[0023] The term "substrate" as used herein is not meant to indicate that this component is necessarily inactive, while the other metals and/or promoters are the active species. On the contrary, the substrate can be an active part of the catalyst. The term "substrate" would merely imply that the substrate makes up a significant quantity, generally 40% or more by weight, of the entire catalyst. The promoters individually can range from 0.01% to 40% by weight of the catalyst, optionally from 0.01% to 10%. If more than one promoters are combined, they together generally can range from 0.01% up to 50% by weight of the catalyst. The elements of the catalyst composition can be provided from any suitable source, such as in its elemental form, as a salt, as a coordination compound, etc.
[0024] The addition of a support material to improve the catalyst physical properties is possible within the present invention. Binder material, extrusion aids or other additives can be added to the catalyst composition or the final catalyst composition can be added to a structured material that provides a support structure. For example, the final catalyst composition can be supported by a structured material comprising an alumina or aluminate framework. The content of such a binder material, extrusion aids, structured material, or other additives, and their respective calcination products, will not be taken into consideration within the stated percentage ranges of Sets A - D stated herein. As an additional example a binder material, which can contain elements that are contained within Sets A - D, can be added to the catalyst composition. Upon calcination these elements can be altered, such as through oxidation which would increase the relative content of oxygen within the final catalyst structure. The binder material elements and the calcination products are not taken into consideration within the stated percentage ranges of Sets A - D stated herein. The combination of the catalyst of the present invention combined with additional elements such as a binder, extrusion aid, structured material, or other additives, and their respective calcination products, are included within the scope of the invention.
[0025] In one aspect, the invention is a method for the preparation of an oxidative catalyst for OCM, OMT, or another oxidative coupling reaction. In one embodiment, the catalyst can be prepared by combining a substrate chosen from at least one element from Set A with at least one promoter element chosen from Set B, at least one promoter element chosen from Set C, and oxygen from Set D. The present invention is not limited by the method of catalyst preparation, and all suitable methods should be considered to fall within the scope herein. Particularly effective techniques are those utilized for the preparation of solid catalysts. Conventional methods include co-precipitation from an aqueous, an organic or a combination solution-dispersion, impregnation, dry mixing, wet mixing or the like, alone or in various combinations. In general, any method can be used which provides compositions of matter containing the prescribed components in effective amounts. According to an embodiment the substrate is charged with promoter via an incipient wetness impregnation. Other impregnation techniques such as by soaking, pore volume impregnation, or percolation can optionally be used. Alternate methods such as ion exchange, wash coat, precipitation, and gel formation can also be used. Various methods and procedures for catalyst preparation are listed in the technical report Manual of Methods and Procedures for Catalyst Characterization by J. Haber, J. H. Block and B. Dolmon, published in the International Union of Pure and Applied Chemistry, Volume 67, Nos 8/9, pp. 1257-1306, 1995, incorporated herein in its entirety.
[0026] In an embodiment, the substrate can be a metal oxide of one or more elements of Set A. One example of an oxide substrate useful for the present invention is magnesium oxide, MgO. The oxide substrate can be either obtained commercially or produced in the lab. For instance, a metal oxide can be made by thermal decomposition of its corresponding salt at elevated temperatures up to 75O0C. The choice of precursor salt from which the oxide substrate is produced can have some effect on the performance of the eventual catalyst.
[0027] When slurries, precipitates or the like are prepared, they will generally be dried, usually at a temperature sufficient to volatilize the water or other carrier, such as from 1000C to 2500C. Irrespective of how the components are combined and irrespective of the source of the components, the dried composition is generally calcined in the presence of a free oxygen-containing gas, usually at temperatures between about 3000C and about 9000C for from 1 to 24 hours. The calcination can be in an oxygen-containing atmosphere, or alternately in a reducing or inert atmosphere.
[0028] Depending on the catalyst, a pretreatment of the catalyst may, or may not, be necessary. In one embodiment the invention involves the pretreatment of an oxidative catalyst for OCM, OMT, or another oxidative coupling reaction. The prepared catalyst can be ground, pressed and sieved and loaded into a reactor. The reactor can be any type known in the art to make catalyst particles, such as a fixed bed, fluidized bed, or swing bed reactor. The reactor set-up can optionally include a recycle stream. Optionally an inert material, such as quartz chips, can be used to support the catalyst bed and to place the catalyst within the bed. For the pretreatment, the reactor can be heated to elevated temperatures, such as 8000C to 9000C with an air flow, such as 100 mL/min, and held at these conditions for a length of time, such as 1 to 3 hours. Then, the reactor can be cooled down to a temperature of around the operating temperature of the reactor, for example 5000C to 65O0C, or optionally down to atmospheric or other desired temperature. The reactor can be kept under an inert purge, such as under helium.
[0029] In another aspect, the invention involves reaction conditions for OCM, OMT, or another oxidative coupling reaction. Several parameters including feed composition, molar ratio of hydrocarbon reactant to oxygen, temperature, pressure, time on stream, preparation method, particle size, porosity, surface area, contact time and others can influence the outcome of the reaction. For almost every reaction condition, there can be a range of values best suited to oxidative coupling. Measures are generally taken to increase conversion and selectivity. [0030] For the oxidative coupling of methane, contents of the feed can include methane and an oxygen source. Oxygen is a required component of the feed for oxidative coupling. Methane can be obtained from natural gas, or from organic sources, such as the decomposition of waste through fermentation. Whatever the source, methane used in OMT should not contain contaminants that might significantly interfere or give a detrimental effect on the oxidative coupling reaction. The oxygen source can be any source suitable for providing oxygen to the reaction zone such as pure oxygen, oxygen-enriched air, or air. The gas containing oxygen should not contain any contaminants that might significantly interfere with the oxidative coupling reaction. Alternate sources of oxygen may also be used, such as nitrobenzene, nitrous oxide, or other oxygen containing compounds.
[0031] Although contaminants that might significantly interfere with the oxidative coupling reaction should be avoided, the addition of trace quantities of a reaction modulator may be useful. Reaction modulators can be used for the control or alteration of conversion, selectivity, or activity of a particular catalyst or in response to certain reaction conditions. Non- limiting examples of possible reaction modulators include chlorine, ethylene and carbon monoxide.
[0032] Inert diluents such as helium and nitrogen may be included in the feed to adjust the gas partial pressures. Optionally, CO2 or water (steam) can be included in the feed stream as these components may have beneficial properties, such as in the prevention of coke deposits. The pressure for oxidative coupling reactions can generally range from 1 psia to 200 psia or more. The reaction pressure is not a limiting factor regarding the present invention and any suitable condition is considered to be within the scope of the invention.
[0033] The temperature for oxidative coupling reactions can generally range from 5000C to 8000C, optionally from 6000C to 75O0C. The reaction temperature is not a limiting factor regarding the present invention and any suitable condition is considered to be within the scope of the invention. The methane to oxygen molar ratio can range from 1 :1 to 100:1, optionally from 4:1 to 80:1.
[0034] Any suitable space velocity can be considered to be within the scope of the invention. As used herein the space velocity shall be defined as: space velocity = [feed flow as vapor (cm3/h)] / [catalyst weight (g)]. A standard reference temperature and pressure (720F and 14.7 psia) is used to convert a liquid under these conditions, such as toluene, to a feed vapor flow. For example: 0.076 cm /min of liquid toluene is converted into moles and then using 22.4 L/mol (as if it were an ideal gas) it is converted into a vapor flow of 16 cm3/min. The space velocity can generally range from 15,000 cm3g~V to 100,000 cm3g~V, optionally from 20,000 cm3g~V to 85,000 cm3g"1h"1. This range is an indication of possible space velocities, such as for a fixed bed reactor. Of course altering the catalyst composition, the amount of inert material, etc can alter the space velocity outside of this range. Also a change in the reactor from a fixed bed to an alternate design, such as a fluidized bed can also dramatically change the relative space velocity and can be outside of the stated range above. The space velocity ranges given are not limiting on the present invention and any suitable condition is considered to be within the scope of the invention.
[0035] For the oxidative methylation of toluene, as well as other cross-coupling reactions involving hydrocarbons, the reaction conditions can be similar to those described for the oxidative coupling of methane. The contents of the feed, of course, will be different. In the case of OMT, the feed will include toluene along with methane and oxygen. The toluene can be vaporized and introduced to the reactor either by passing the oxygen and methane gas mixture through a toluene vapor saturator right before the inlet of the reactor tube, or by syringe-pumping the liquid toluene into the gas flow and vaporizing it in a preheated zone (250-3000C) before entering the reactor. The methane to oxygen molar ratio can be from 1 :1 to 100:1, optionally from 4:1 to 80: 1. The molar ratio of methane to toluene can be from 1 : 1 to 50:1, optionally from 8:1 to 30:1. Temperature can be from 3000C to 9000C, optionally from 35O0C to 75O0C.
[0036] The following equations, Equations 1-2, are reactions that can take place in the reactor over the OCM catalyst. The equations are shown along with their change in enthalpy, or heat of reaction. As Equations 1-2 demonstrates the reactions that occur during OCM are exothermic.
[0037] Equation 1. 2 CH4 + 0.5 O2 -— > C2H6 + H2O; ΔH = - 174.2 kJ/mole [0038] Equation 2. C2H6 + 0.5 O2 -— > C2H4 + H2O; ΔH = - 103.9 kJ/mole [0039] The following examples are intended to give a better understanding of certain aspects and embodiments of the present invention and are not intended to limit the scope of the invention in any way.
Comparative Example A
[0040] An oxidative catalyst was prepared comprising a MgO substrate that was promoted with Ba. The Ba/MgO catalyst was used in the oxidative coupling of methane and the oxidative methylation of toluene. The catalyst included 5% Ba by weight and was prepared from barium nitrate (6.53g) (Sigma Aldrich, 98.0%) and MgO (23.46g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution. The mixture was dried at 12O0C for 3 h and then calcined at 85O0C in air for 1 h. The catalyst was ground, pressed and sieved to 20 - 40 mesh size (420 - 841 μm) and 0.577 g of catalyst was loaded into a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place. For catalyst pretreatment, the reactor was heated to 85O0C under 100 ml/min of air and held for 2 hours. The reactor was then cooled down to 6000C under helium to prepare for the OCM and OMT experiments.
[0041] Two OCM trials were conducted. In one trial, the reactor temperature was 6000C; in the other trial, the reactor temperature was 65O0C. All reaction conditions other than temperature were held constant during the two trials. The oxygen source was air. The methane to oxygen molar ratio was 5:1. The total flow of gasses was 500 cm3/min (250 cm3/min air and 250 cm3/min methane), and space velocity of 51,993 cm3g"1h"1. The following table shows the results of the two trials. C2 selectivity as used herein is the cumulative selectivity of acetylene, ethane, and ethylene.
[0042] Table 1. Results for OCM over Ba/MgO catalyst
Figure imgf000011_0001
Figure imgf000012_0001
[0043] As shown in Table 1, there was very little methane activation at 6000C and no production of ethylene. At 65O0C, methane conversion was higher, at 14.3%, and the ethylene selectivity was 31.4%.
[0044] For the oxidative methylation of toluene, four trials were conducted, at reaction temperatures between 55O0C and 65O0C. All reaction conditions other than temperature were held constant during the four trials. The oxygen source was air. The methane to oxygen molar ratio was 5:1. The methane to toluene molar ratio was 15:1. The total flow of gasses was 500 cm /min (240 cm /min air, 244 cm /min methane, 0.076 cm3/min liquid toluene), and the space velocity was 51,993 cm3g"1h"1. Product samples were taken after twenty minutes of run time and analyzed for product distribution. The results of the trials are shown in the table below.
[0045] Table 2. Results for OMT over Ba/MgO catalyst
Figure imgf000012_0002
[0046] The results are also shown in Figure 1. Figure 1 is a graphical representation of the data presented in Table 2. The x-axis shows temperature from 54O0C to 65O0C. The y-axis on the left side of the graph corresponds to percent conversion of toluene. As can be seen, toluene conversion increased from 3% to 10% as temperature increased. The y-axis on the right side of the graph corresponds to percent selectivity for all of the products of the reactions. The products included benzene, ethylbenzene, xylene, styrene, benzaldehyde, and stilbene. Benzene was the product with the highest selectivity. However, its selectivity peaked at 57O0C and steadily decreased thereafter. Styrene, on the other hand, steadily increased with temperature. Because conversion and the selectivity of key products can vary with temperature, it may be possible to adjust product selectivity based on temperature. Benzene and styrene, for instance, can both be valuable products. The demands for these products may vary, and it can thus be useful to be able to control which of the two is the predominant product of OMT by adjusting the temperature. Selectivity of the other products was less variable. For benzaldehyde, the selectivity rapidly decreased from 30% to less than 1% at 5750C. Ethylbenzene selectivity, the total xylenes selectivity, and the stilbene selectivity remained low in all the trial runs.
Comparative Example B
[0047] An oxidative catalyst was prepared comprising an oxide substrate, MgO, that was promoted with Li. The Li/MgO catalyst was used in the oxidative methylation of toluene. The catalyst included 2.5% Li by weight and was prepared from Lithium carbonate (13.69g) salt (Sigma Aldrich, 98.0%) and MgO (16.304g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution. The mixture was dried at 12O0C for 3 hours and then calcined at 85O0C in air for 1 hour. The catalyst was ground and sieved to 20 - 40 mesh size and 0.542 g of catalyst was loaded in a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place. As a form of catalyst pretreatment, the reactor was heated to 85O0C under 100 ml/min of air and held for 2 hours. The reactor was then cooled down to 6000C under helium to prepare for the OMT experiments.
[0048] For the oxidative methylation of toluene, the reaction temperature was 65O0C, the oxygen source was air, the total flow of gasses was 335 cm /min (150 cm3/min air, 150 cm3/min methane, 0.167 cm3/min liquid toluene), the methane to oxygen molar ratio was 5:1, and the methane to toluene molar ratio was 15:1. The reaction was performed twice, at two different space velocities. For the first trial, the space velocity was 37,085 cm3g"1h"1. For the second trial, the space velocity was adjusted to 70,295 cm3g"1h"1 by diluting the feed with nitrogen gas (150 cm3/min air, 150 cm3/min methane, 0.167 cm3/min liquid toluene, 300 cm3/min nitrogen). Space velocity is inversely related to residence time in the reactor, and modulation of space velocity influences the contact time between reactants and catalyst. At a higher space velocity, residence time and contact time are lower, and more reactants pass over the catalyst in a given period.
[0049] The results of the two OMT trials are shown in the table below. Gas and liquid samples were analyzed for product distribution at twenty minutes.
[0050] Table 3. Results for OMT over Li/MgO catalyst
Figure imgf000014_0001
[0051] At the higher space velocity, there was greater selectivity to styrene (10.4% as compared to 9.9%). For toluene, the conversion dropped from 4.3% to 3.7%. The selectivity to benzene and ethylbenzene formation did not change with increasing space velocity. However, stilbene selectivity increased dramatically from 2.6 to 8.1 mol%.
Example C
[0052] An oxidative catalyst was prepared comprising a MgO substrate that was promoted with Na, Cs, and Re. The Na/Cs/Re/MgO catalyst was used in the oxidative coupling of methane and the oxidative methylation of toluene. The catalyst included 5% Na by weight (3.811 g) of sodium chloride, 5% Cs by weight (2.199 g) of cesium nitrate, and 0.01% Re by weight (0.5856 g) of rhenium chloride and MgO (23.4033 g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution. The mixture was dried at 12O0C for 3 h and then calcined at 85O0C in air for 1 h. The catalyst was ground and sieved to 20 - 40 mesh size (420 - 841 μm) and 0.597 g of catalyst was loaded into a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place. For catalyst pretreatment, the reactor was heated to 85O0C under 100 ml/min of air and held for 2 hours. The reactor was then cooled down to 6000C under helium to prepare for the OCM and OMT experiments.
[0053] Four OCM trials were conducted, at reaction temperatures between 6000C and 75O0C. In all trials, the oxygen source was air, the total flow of gasses was 500 cm3/min (250 cm3/min air, 250 cm3/min methane), the methane to oxygen molar ratio was 5:1, and the space velocity was 50,251 cm3g"1h"1. Product samples were taken after the twenty- five minutes of run time and analyzed for product distribution. The results of the trials are shown in the table below.
[0054] Table 4. Results for OCM over Na/Cs/Re/MgO catalyst
Figure imgf000015_0001
[0055] Five OMT trials were conducted, at reaction temperatures between 55O0C and 75O0C. In all trials, the oxygen source was air, the total flow of gasses was 500 cm3/min (244 cm3/min methane, 240 cm3/min air, 0.076 cm3/min liquid toluene), the methane to oxygen molar ratio was 5:1, the methane to toluene molar ratio was 15:1, and the space velocity was 50,251 cm3g"1h"1. Product samples were taken after the first twenty minutes of run time and analyzed for product distribution. The results of the trials are shown in the table below.
[0056] Table 5. Results for OMT over Na/Cs/Re/MgO
Figure imgf000016_0001
[0057] Figures 2 and 3 are graphical representations of the data shown in Table 5. Figure 2 shows the data for toluene conversion, with temperature on the x-axis and percent conversion on the y-axis. The conversion of toluene increased from 1.7% at 55O0C to 39.9% at 75O0C. Figure 3 shows the data for selectivity. At temperatures from 55O0C to about 6850C, benzene is the predominant product, with selectivity above 50%. At around 6850C, the selectivity for benzene and that of styrene intersect and above 6850C, styrene is the predominant product. This approximate temperature of 6850C also marks a transition in the rate of formation of styrene. The selectivity of styrene rises significantly from 55O0C to 6850C (from 11.6% to 46.2%) and rises relatively little (from 46.2% to 49.4%) above 6850C.
[0058] The selectivity of the other products decreased or remained low over the temperatures explored. For instance, benzaldehyde selectivity decreased from 30.6% at 55O0C to 2.0% at 75O0C.
[0059] Styrene is most commonly the desired product of OMT. However, depending on demand and process needs, other products can also be desired. Ethylbenzene, for instance, can be a desired product as the technology is well established for its conversion to styrene via dehydrogenation. It is thus a useful feature of this process that product distribution can be affected by modulation of reaction conditions such as temperature. Benzene was the product with the highest selectivity. However, its selectivity peaked at 6000C and steadily decreased thereafter. Styrene, on the other hand, steadily increased with temperature. Because conversion and the selectivity of key products can vary with temperature, it may be possible to adjust product selectivity based on temperature. Benzene and styrene, for instance, can both be valuable products. The demands for these products may vary, and it can thus be useful to be able to control which of the two is the predominant product of OMT by adjusting the temperature.
Example D
[0060] An oxidative catalyst was prepared comprising an oxide substrate, MgO, that was promoted with Ca and La. The Ca/La/MgO catalyst was used in the oxidative coupling of methane to toluene. The catalyst included 5% Ca by weight from Calcium oxide (2.1Og) and 5% La by weight from lanthanum oxide (3.5Ig) and was prepared from calcium oxide salt, La2O3 (Sigma Aldrich, 98.0%) and MgO (24.38g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution. The mixture was dried at 12O0C for 3 hours and then calcined at 85O0C in air for 1 hour. The catalyst was ground and sieved to 20 - 40 mesh size and 0.661 g of catalyst was loaded in a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place. As a form of catalyst pretreatment, the reactor was heated to 85O0C under 100 ml/min of air and held for 2 hours. The reactor was then cooled down to 6000C under helium to prepare for the OMT experiments.
[0061] Four OMT trials were conducted over the Ca/La/MgO catalyst at temperatures of from 55O0C to 7000C. Reactions conditions other than temperature were held constant. The oxygen source was air. The total flow of gasses was 498 cm3/min (244 cm3/min methane, 240 cm3/min air, 0.067 cm3/min liquid toluene). The methane to oxygen molar ratio was 5:1. The methane to toluene molar ratio was 15:1. The space velocity was 45,204 cm3g"1h"1. The products were analyzed after twenty minutes for product distribution. The table below shows results for the four OMT trials. [0062] Table 6. Results of OMT over Ca/La/MgO
Temperature 550° C 600° C 65O0C 750° C
Toluene Conversion (%) 3 .0 5 .8 7.5 12 .6
Benzene Selectivity (mol %) 60 .6 40 .4 39.5 28 .1
Total Xylene Selectivity (mol %) 5 .0 4 .6 4.1 3 .5
Stilbene Selectivity (mol %) 0 .3 0 .2 0.4 0 .0
Benzaldehyde Selectivity (mol %) 1 .4 0 .1 0.0 0 .0
Ethylbenzene Selectivity (mol %) 5 .9 5 .7 5.2 4 .5
Styrene Selectivity (mol %) 39 .7 49 .7 50.4 58. 2
[0063] Figure 4 is a graphical representation of the data shown in Table 6. Toluene conversion increased with increasing temperature, going from about 3% conversion at 55O0C to nearly 13% conversion at 7000C. Product distribution also varied with temperature. Styrene increased in selectivity from about 40% at 55O0C to nearly 60% at 7000C. All other products had low selectivity and generally decreased in selectivity as the temperature rose.
Example E
[0064] An oxidative catalyst was prepared comprising an oxide substrate, MgO, that was promoted with Sr and La. The Sr/La/MgO catalyst was used in the oxidative coupling of methane and the oxidative methylation of toluene. The catalyst included 5% Sr by weight from strontium nitrate (3.62g) and 5% La by weight from lanthanum oxide (3.5Ig) and was prepared from Sr(NOs)2 salt, La2O3 (Sigma Aldrich, 98.0%) and MgO (22.85g) (Fisher, 99%) by incipient wetness impregnation methodology in aqueous solution. The mixture was dried at 12O0C for 3 hours and then calcined at 85O0C in air for 1 hour. The catalyst was ground and sieved to 20 - 40 mesh size and 0.855 g of catalyst was loaded in a quartz reactor using quartz wool plugs and quartz chips to hold the catalyst bed in place. As a form of catalyst pretreatment, the reactor was heated to 85O0C under 100 ml/min of air and held for 2 hours. The reactor was then cooled down to 6000C under helium to prepare for the OCM and OMT experiments. [0065] Five OCM trials were conducted using the Sr/La/MgO catalyst. The five trials correspond to five temperatures between 5000C and 7000C. For all five trials, the oxygen source was air, the total flow of gasses was 500 cm /min (250 cm /min methane, 250 cm /min air), the methane to oxygen molar ratio was 5:1, and the space velocity was 35,088 cm3g"1h"1. After the first 25 minutes, the corresponding gas samples were analyzed for product distribution and selectivity. Table 7 shows the results of the five OCM trials.
[0066] Table 7. Results for OCM over Sr/La/MgO catalyst
Figure imgf000019_0001
[0067] The selectivity of C2 products (acetylene, ethane, and ethylene) was limited and the partial oxidation product, CO, took up a large portion of the products below 6000C. At 6000C and above, methane conversion was higher, C2 products had a higher selectivity while the selectivity for CO was lower.
[0068] Figure 5 is a graphical representation of the data shown in Table 7. At a temperature between 55O0C and 6000C, methane conversion and C2 selectivity rise suddenly, while CO selectivity drops dramatically. As in the previous example, these results indicate that temperature can be modulated to adjust product distribution.
[0069] The Sr/La/MgO catalyst was used in four trials of OMT at temperatures from 5000C to 65O0C. All reaction conditions other than temperature were held constant during these trials. The oxygen source was air. The total flow of gasses was 498 cm3/min (244 cm3/min methane, 240 cm3/min air, 0.067 cm3/min liquid toluene). The methane to oxygen molar ratio was 5:1. The methane to toluene molar ratio was 15:1. The space velocity was 34,947 cm3 g^h"1. The products were sampled after 20 minutes and analyzed. The table below shows the results of the four OMT trials.
[0070] Table 8. Results of OMT over Sr/La/MgO catalyst
Temperature 500° C 550° C 6000C 650° C
Toluene Conversion (wt %) 0 .4 1 .1 6.1 15 .8
Benzene Selectivity (wt %) 30 .4 51 .0 40.4 16 .2
Total Xylene Selectivity (wt %) 15 .8 6 .7 3.9 2 .5
Stilbene Selectivity (wt %) 1 .3 0 .2 0.2 0 .3
Benzaldehyde Selectivity (wt %) 21 .2 5 .7 0.1 0 .0
Ethylbenzene Selectivity (wt %) 5 .2 6 .6 7.5 4 .5
Styrene Selectivity (wt %) 4 .5 22 .2 43.0 42 .1
[0071] Figure 6 is a graphical representation of the data shown in Table 8. The toluene conversion increased with increasing temperature, from 0.4 wt % at 5000C to 15.8 wt % at 65O0C. Styrene selectivity also showed a general increase with increasing temperature, increasing from 4.5 wt % at 5000C to 43.0 wt % at 6000C. The benzene selectivity showed an initial increase in selectivity, with a peak of 51 wt % at 55O0C. At temperatures above 55O0C, however, benzene selectivity decreased down to 16.2 wt % at 65O0C. At about 5950C, the benzene and styrene selectivity intersect at about 42.0 wt %. This temperature also seems to mark a change in the rate of formation of styrene. Below 5950C, styrene selectivity increased steadily with increasing temperature, but above this temperature styrene selectivity changed very little. All the products except benzene and styrene showed a general decrease in selectivity with increasing temperature.
[0072] Figures are used herein to illustrate data, which are shown as data points on a graph. Lines connecting the data points are used to guide the eye and assist in illustrating general trends of the data. The lines are not intended as a predictor of where additional data points would necessarily fall, if they were available.
[0073] The term "C2 selectivity" as used herein is the cumulative selectivity of acetylene, ethane, and ethylene. [0074] The abbreviation of "OCM" as used herein refers to oxidative coupling of methane. For instance, methane can couple with methane to form higher hydrocarbons such as ethane or ethylene.
[0075] The abbreviation of "OMT" as used herein refers to the oxidative methylation of toluene to form new compounds. For instance, toluene can couple with methane to form ethylbenzene and/or styrene.
[0076] Use of the term "optionally" with respect to any element of a claim is intended to mean that the subject element is required, or alternatively, is not required. Both alternatives are intended to be within the scope of the claim. Use of broader terms such as comprises, includes, having, etc. should be understood to provide substrate for narrower terms such as consisting of, consisting essentially of, comprised substantially of, etc.
[0077] As used herein the space velocity shall be defined as: space velocity = [feed flow as vapor (cm /h)] / [catalyst weight (g)].
[0078] The above examples demonstrate possible embodiments of the present invention. Depending on the context, all references herein to the "invention" may in some cases refer to certain specific embodiments only. In other cases it may refer to subject matter recited in one or more, but not necessarily all, of the claims. While the foregoing is directed to embodiments, versions and examples of the present invention, which are included to enable a person of ordinary skill in the art to make and use the inventions when the information in this patent is combined with available information and technology, the inventions are not limited to only these particular embodiments, versions and examples. Other and further embodiments, versions and examples of the invention may be devised without departing from the basic scope thereof and the scope thereof is determined by the claims that follow.

Claims

CLAIMS What is claimed is:
1. A catalyst comprising:
(A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf);
(B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5 - 15 of the periodic table;
(C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and
(D) oxygen;
wherein if an element from Group 1 of the periodic table is used in (B), it cannot be used in (C).
2. The catalyst according to claim 1, wherein the at least one element selected in
(A) ranges from 40 to 90 wt% of the catalyst.
3. The catalyst according to claim 1, wherein the at least one element selected in
(B) ranges from 0.01 to 40 wt% of the catalyst.
4. The catalyst according to claim 1, wherein the at least one element selected in
(C) ranges from 0.01 to 40 wt% of the catalyst.
5. The catalyst according to claim 1, wherein the oxygen in (D) ranges from 10 to 45 wt% of the catalyst.
6. The catalyst according to claim 1, wherein the catalyst is calcined after the elements are combined.
7. The catalyst according to claim 6, wherein the wherein the calcination comprises heating to above 75O0C.
8. The catalyst according to claim 6, wherein the catalyst is capable of oxidative coupling of methane that takes place in a reactor at a temperature of from 5000C to 75O0C.
9. The catalyst according to claim 6, wherein the catalyst is capable of oxidative coupling of methane that takes place in a reactor with a molar ratio of methane to oxygen of from 1 :1 to 100:1.
10. The catalyst according to claim 1, wherein the catalyst is capable of oxidative coupling of hydrocarbons consisting of methane and toluene, and the products of the oxidative coupling of methane with toluene comprise ethylbenzene and styrene.
11. The catalyst according to claim 10, wherein the feed for the oxidative coupling of methane with toluene comprises methane, toluene and oxygen or an oxygen source.
12. The catalyst according to claim 11, wherein the oxidative coupling of methane with toluene takes place in a reactor at a temperature of from 5000C to 8000C.
13. The catalyst according to claim 11, wherein the oxidative coupling of methane with toluene takes place in a reactor with a molar ratio of methane to oxygen of from 1 :1 to 100:1.
14. The catalyst according to claim 11, wherein the oxidative coupling of methane with toluene takes place in a reactor with a molar ratio of methane to toluene of from 1 :1 to 50:1.
15. The catalyst according to claim 14, wherein the catalyst is pretreated to above 75O0C before it is used for the oxidative coupling of hydrocarbons.
16. The catalyst according to claim 1, wherein the reaction products from the use of the catalyst can be adjusted by adjusting the temperature of the reaction.
17. The catalyst according to claim 1, wherein the reaction products from the use of the catalyst can be adjusted by adjusting the space velocity of the reaction.
18. A catalyst comprising :
(A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf), the elements from (A) ranging from 40 to 90 wt% of the catalyst;
(B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5 - 15 of the periodic table, the elements from (B) ranging from 0.01 to 40 wt% of the catalyst;
(C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba, the elements from (C) ranging from 0.01 to 40 wt% of the catalyst; and
(D) oxygen ranging from 10 to 45 wt% of the catalyst;
wherein if an element from Group 1 of the periodic table is used in (B), it cannot be used in (C); and
wherein the catalyst is calcined after combining the elements.
19. The catalyst according to claim 18, wherein the catalyst is capable of the oxidative coupling of methane to produce ethane and ethylene.
20. The catalyst according to claim 18, wherein the catalyst is capable of the oxidative coupling of methane and toluene to produce ethylbenzene and styrene.
PCT/US2010/039886 2009-06-29 2010-06-25 Catalysts for oxidative coupling of hydrocarbons WO2011002664A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800291079A CN102471182A (en) 2009-06-29 2010-06-25 Catalysts for oxidative coupling of hydrocarbons
JP2012517751A JP2012532010A (en) 2009-06-29 2010-06-25 Catalysts for oxidative coupling of hydrocarbons
EA201270065A EA201270065A1 (en) 2009-06-29 2010-06-25 CATALYSTS FOR OXIDATIVE COMBINATION OF HYDROCARBONS
AU2010266599A AU2010266599A1 (en) 2009-06-29 2010-06-25 Catalysts for oxidative coupling of hydrocarbons
EP10794570.1A EP2448886A4 (en) 2009-06-29 2010-06-25 Catalysts for oxidative coupling of hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/494,088 US9089832B2 (en) 2009-06-29 2009-06-29 Catalysts for oxidative coupling of hydrocarbons
US12/494,088 2009-06-29

Publications (1)

Publication Number Publication Date
WO2011002664A1 true WO2011002664A1 (en) 2011-01-06

Family

ID=43381392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/039886 WO2011002664A1 (en) 2009-06-29 2010-06-25 Catalysts for oxidative coupling of hydrocarbons

Country Status (9)

Country Link
US (1) US9089832B2 (en)
EP (1) EP2448886A4 (en)
JP (1) JP2012532010A (en)
KR (1) KR20120031953A (en)
CN (1) CN102471182A (en)
AU (1) AU2010266599A1 (en)
EA (1) EA201270065A1 (en)
TW (1) TW201119737A (en)
WO (1) WO2011002664A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8912381B2 (en) * 2009-06-29 2014-12-16 Fina Technology, Inc. Process for the oxidative coupling of methane
US8450546B2 (en) * 2009-06-29 2013-05-28 Fina Technology, Inc. Process for the oxidative coupling of hydrocarbons
MY164976A (en) 2010-05-24 2018-02-28 Siluria Technologies Inc Nanowire catalysts
AU2012258698B2 (en) 2011-05-24 2017-04-06 Lummus Technology Llc Catalysts for oxidative coupling of methane
EA029490B1 (en) 2011-11-29 2018-04-30 Силурия Текнолоджиз, Инк. Nanowire catalysts and methods for their use and preparation
WO2013106771A2 (en) 2012-01-13 2013-07-18 Siluria Technologies, Inc. Process for separating hydrocarbon compounds
US9446397B2 (en) 2012-02-03 2016-09-20 Siluria Technologies, Inc. Method for isolation of nanomaterials
US9469577B2 (en) 2012-05-24 2016-10-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
WO2013177461A2 (en) 2012-05-24 2013-11-28 Siluria Technologies, Inc. Catalytic forms and formulations
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
CN103657640B (en) * 2012-09-10 2015-09-16 中国石油化工股份有限公司 The method of loaded catalyst and its preparation method and application and methane oxidation coupling producing light olefins
AU2013355038B2 (en) 2012-12-07 2017-11-02 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
CA2902192C (en) 2013-03-15 2021-12-07 Siluria Technologies, Inc. Catalysts for petrochemical catalysis
WO2015081122A2 (en) 2013-11-27 2015-06-04 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CN110655437B (en) 2014-01-08 2022-09-09 鲁玛斯技术有限责任公司 System and method for ethylene to liquids
CA3148421C (en) 2014-01-09 2024-02-13 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US9956544B2 (en) 2014-05-02 2018-05-01 Siluria Technologies, Inc. Heterogeneous catalysts
ES2858512T3 (en) 2014-09-17 2021-09-30 Lummus Technology Inc Catalysts for oxidative coupling of methanol and oxidative dehydrogenation of ethane
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3362425B1 (en) 2015-10-16 2020-10-28 Lummus Technology LLC Separation methods and systems for oxidative coupling of methane
EP4071131A1 (en) 2016-04-13 2022-10-12 Lummus Technology LLC Apparatus and method for exchanging heat
WO2018118105A1 (en) 2016-12-19 2018-06-28 Siluria Technologies, Inc. Methods and systems for performing chemical separations
ES2960342T3 (en) 2017-05-23 2024-03-04 Lummus Technology Inc Integration of oxidative methane coupling procedures
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
WO2020059889A1 (en) * 2018-09-21 2020-03-26 積水化学工業株式会社 Catalyst, and method for producing 1,3-butadiene using same
CN112547039A (en) * 2021-01-19 2021-03-26 中国科学院山西煤炭化学研究所 Preparation method and application of catalyst for preparing low-carbon hydrocarbon through oxidative coupling of methane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950827A (en) * 1988-03-28 1990-08-21 Institute Of Gas Technology Oxidative coupling of aliphatic and alicyclic hydrocarbons with aliphatic and alicyclic substituted aromatic hydrocarbons
US20020173420A1 (en) * 2000-09-18 2002-11-21 Cantrell Rick David Catalysts for the oxidative dehydrogenation of hydrocarbons
US20070055083A1 (en) * 2003-04-29 2007-03-08 Ebrahim Bagherzadeh Preparation of catalyst and use for high yield conversion of methane to ethylene

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239658A (en) * 1979-04-05 1980-12-16 Exxon Research & Engineering Co. Catalysts for the conversion of relatively low molecular weight hydrocarbons to higher molecular weight hydrocarbons and the regeneration of the catalysts
EP0054249B2 (en) * 1980-12-09 1993-04-21 Toray Industries, Inc. Immunoparticles and process for preparing the same
US4523049A (en) * 1984-04-16 1985-06-11 Atlantic Richfield Company Methane conversion process
US4450310A (en) * 1983-03-04 1984-05-22 The Standard Oil Company Conversion of methane to olefins and hydrogen
US4704493A (en) * 1983-10-31 1987-11-03 Chevron Corporation Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst (II-A)
US4704487A (en) * 1983-10-31 1987-11-03 Chevron Research Company Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst (IV-B)
US4499324A (en) * 1984-04-16 1985-02-12 Atlantic Richfield Company Methane conversion
US4658077A (en) * 1985-06-07 1987-04-14 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US4658076A (en) * 1985-03-19 1987-04-14 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US4672145A (en) * 1985-03-19 1987-06-09 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5157188A (en) * 1985-03-19 1992-10-20 Phillips Petroleum Company Methane conversion
US4775654A (en) * 1985-03-19 1988-10-04 Phillips Petroleum Company Composition of matter
US4950836A (en) * 1985-06-07 1990-08-21 Phillips Petroleum Company Oxidative methylation of organic compounds
US4895823A (en) * 1985-03-19 1990-01-23 Phillips Petroleum Company Composition of matter for oxidative conversion of organic compounds
US5210357A (en) * 1985-06-07 1993-05-11 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US4982038A (en) * 1985-03-19 1991-01-01 Phillips Petroleum Company Oxidative methylation of organic compounds
US5959170A (en) * 1985-05-24 1999-09-28 Atlantic Richfield Company Methane conversion process
US5146027A (en) * 1985-05-24 1992-09-08 Atlantic Richfield Co. Methane conversion process
US5105045A (en) * 1985-06-07 1992-04-14 Phillips Petroleum Company Method of oxidative conversion
US4774216A (en) * 1985-06-07 1988-09-27 Phillips Petroleum Company Composition of matter for oxidative conversion of organic compounds
US4780449A (en) * 1985-06-14 1988-10-25 W. R. Grace & Co.-Conn. Catalyst for the conversion of methane
US5118899A (en) * 1986-12-22 1992-06-02 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5160502A (en) * 1986-12-22 1992-11-03 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5087787A (en) * 1986-12-29 1992-02-11 Phillips Petroleum Company Method of oxidative conversion
US4801762A (en) * 1987-02-13 1989-01-31 Atlantic Richfield Company Methane conversion process
US5068215A (en) * 1987-06-04 1991-11-26 Standard Oil Company Catalyst for upgrading low molecular weight hydrocarbons
GB8802731D0 (en) * 1988-02-06 1988-03-09 British Petroleum Co Plc Chemical process
US4956327A (en) * 1989-05-31 1990-09-11 Institute Of Gas Technology Mixed basic metal oxide/sulfide catalyst
US4950830A (en) * 1988-03-28 1990-08-21 Institute Of Gas Technology Dehydration of aliphatic and alicyclic hydrocarbons and aliphatic and alicyclic substituted aromatic hydrocarbons
EP0335130A1 (en) * 1988-03-28 1989-10-04 Institute of Gas Technology Mixed basic metal oxide catalyst
US4826796A (en) * 1988-03-28 1989-05-02 Institute Of Gas Technology Mixed basic metal oxide catalyst for oxidative coupling of methane
US5081324A (en) * 1989-01-11 1992-01-14 Amoco Corporation Lower alkane conversion
US5238898A (en) * 1989-12-29 1993-08-24 Mobil Oil Corp. Catalyst and process for upgrading methane to higher hydrocarbons
US5132482A (en) * 1990-06-14 1992-07-21 Alberta Research Council Process for the oxidative coupling of methane to higher hydrocarbons
US5097086A (en) * 1991-05-31 1992-03-17 Institute Of Gas Technology Liquid catalyst for oxidative coupling reactions
IT1255945B (en) * 1992-10-30 1995-11-17 Eniricerche Spa PROCEDURE AND CATALYST FOR THE TRANSFORMATION OF METHANE INTO HIGHER HYDROCARBON PRODUCTS.
US5712217A (en) * 1995-06-05 1998-01-27 Council Of Scientific & Industrial Research Supported catalyst with mixed lanthanum and other rare earth oxides
JPH1025257A (en) * 1996-07-12 1998-01-27 Toyota Motor Corp Method for converting methyl group into vinyl group
US5780003A (en) * 1996-08-23 1998-07-14 Uop Llc Crystalline manganese phosphate compositions
US6096934A (en) * 1998-12-09 2000-08-01 Uop Llc Oxidative coupling of methane with carbon conservation
JP2003265965A (en) * 2002-03-15 2003-09-24 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2010524684A (en) * 2007-04-25 2010-07-22 エイチアールディー コーポレイション Catalyst and method for converting natural gas to higher carbon compounds
US8100996B2 (en) * 2008-04-09 2012-01-24 Velocys, Inc. Process for upgrading a carbonaceous material using microchannel process technology

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950827A (en) * 1988-03-28 1990-08-21 Institute Of Gas Technology Oxidative coupling of aliphatic and alicyclic hydrocarbons with aliphatic and alicyclic substituted aromatic hydrocarbons
US20020173420A1 (en) * 2000-09-18 2002-11-21 Cantrell Rick David Catalysts for the oxidative dehydrogenation of hydrocarbons
US20070055083A1 (en) * 2003-04-29 2007-03-08 Ebrahim Bagherzadeh Preparation of catalyst and use for high yield conversion of methane to ethylene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2448886A4 *

Also Published As

Publication number Publication date
AU2010266599A1 (en) 2011-12-22
JP2012532010A (en) 2012-12-13
KR20120031953A (en) 2012-04-04
EA201270065A1 (en) 2012-05-30
CN102471182A (en) 2012-05-23
US20100331174A1 (en) 2010-12-30
TW201119737A (en) 2011-06-16
EP2448886A1 (en) 2012-05-09
EP2448886A4 (en) 2013-09-11
US9089832B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
US9089832B2 (en) Catalysts for oxidative coupling of hydrocarbons
US9227887B2 (en) Process for the oxidative coupling of hydrocarbons
US8912381B2 (en) Process for the oxidative coupling of methane
CA1289125C (en) Upgrading low molecular weight alkanes
CN109890501A (en) Sr-Ce-Yb-O catalyst for methane oxidation coupling
WO2008134484A2 (en) Catalyst and method for converting natural gas to higher carbon compounds
EA029026B1 (en) Catalyst and process for the selective production of lower hydrocarbons c1-c5 from syngass with low methane and coproduction
EA025619B1 (en) Process for producing ethylene and propylene from syngas
JP2007125515A (en) Catalyst for liquefied petroleum-gas production and production method of liquefied petroleum-gas using it
WO2019028018A1 (en) Nickel alloy catalysts for light alkane dehydrogenation
CN110072813B (en) Process for converting synthesis gas to olefins using bifunctional chromium oxide/zinc oxide-SAPO-34 catalysts
WO2018013349A1 (en) Integrated process combining methane oxidative coupling and dry methane reforming
WO2019028014A1 (en) Catalyst for dehydrogenation of light alkanes
WO2005037962A1 (en) Method for producing liquefied petroleum gas containing propane or butane as main component
WO2024177775A1 (en) Catalyst compositions and processes for making and using same
CN116023212A (en) Process for the selective hydrogenation of gas mixtures having a high acetylene content
JPH11246446A (en) Production of lower olefin
WO2017082752A1 (en) Catalyst, preparation method thereof, and process for methane enrichment of hydrocarbon gas mixtures
Oscar et al. Catalytic decomposition of methane over cerium-doped Ni catalysts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029107.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010794570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010266599

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2012517751

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2010266599

Country of ref document: AU

Date of ref document: 20100625

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117030876

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5142/KOLNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201270065

Country of ref document: EA