WO2011002090A1 - Method for producing fatty acid lower alkyl ester, glycerin, and steryl glucoside - Google Patents

Method for producing fatty acid lower alkyl ester, glycerin, and steryl glucoside Download PDF

Info

Publication number
WO2011002090A1
WO2011002090A1 PCT/JP2010/061359 JP2010061359W WO2011002090A1 WO 2011002090 A1 WO2011002090 A1 WO 2011002090A1 JP 2010061359 W JP2010061359 W JP 2010061359W WO 2011002090 A1 WO2011002090 A1 WO 2011002090A1
Authority
WO
WIPO (PCT)
Prior art keywords
steryl glucoside
reaction mixture
reaction
fatty acid
glycerin
Prior art date
Application number
PCT/JP2010/061359
Other languages
French (fr)
Japanese (ja)
Inventor
孝信 片山
勝敏 山本
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to BRPI1015067-6A priority Critical patent/BRPI1015067B1/en
Priority to CN201080027594.5A priority patent/CN102459307B/en
Publication of WO2011002090A1 publication Critical patent/WO2011002090A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J17/00Normal steroids containing carbon, hydrogen, halogen or oxygen, having an oxygen-containing hetero ring not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J17/005Glycosides

Definitions

  • the present invention relates to a method for producing fatty acid lower alkyl esters, glycerin and steryl glucoside from fats and oils.
  • Sterol glycosides and sterol glycoside esters such as steryl glucoside and acyl steryl glucoside are contained in fats and oils as natural fat and oil components, and their usefulness regarding their physiological activity has been pointed out.
  • various uses such as hair growth / hair growth (Japanese Patent Laid-Open No. 7-101835), reduction of blood lipid (Japanese Patent Laid-Open No. 7-118159), obesity prevention (Japanese Patent Laid-Open No. 7-107939) are disclosed.
  • As a technique for obtaining steryl glucoside from natural products organic solvent extraction from gypsum (Japanese Patent Laid-Open No.
  • the present invention comprises a step (hereinafter referred to as step 1) of obtaining a reaction mixture in which steryl glucoside is precipitated by subjecting a fat and oil containing steryl glucoside dissolved and a lower alcohol to a transesterification reaction.
  • the present invention relates to a method for producing steryl glucoside, a fatty acid lower alkyl ester, and glycerin having a step of separating rilglucoside (hereinafter referred to as step 2).
  • the term “steryl glucoside” may refer to steryl glucoside and acyl steryl glucoside.
  • the amount of steryl glucoside present in fats and oils is extremely small, and extraction methods using solvents such as JP-A-62-2238299, JP-A-2001-199992, and JP-A-7-062384 are in large quantities. It is not suitable as a method for stably supplying steryl glucoside. Moreover, a complicated process is required to separate steryl glucoside. On the other hand, Japanese Patent Application Laid-Open No. 2007-295848 can use only limited yeasts, and as a step of separating steryl glucoside from yeast cells, for example, extraction with an organic solvent needs to be performed.
  • Patent Document 8 does not describe obtaining a reaction product containing steryl glucoside or producing steryl glucoside together with a fatty acid lower alkyl ester or glycerin.
  • the present invention provides a method by which steryl glucoside, which is a useful physiologically active substance in fats and oils, can be easily and stably separated, and a fatty acid lower alkyl ester and glycerin can be simultaneously produced.
  • ADVANTAGE OF THE INVENTION According to this invention, the method which can isolate
  • steryl glucoside can be recovered by solid-liquid separation after alcohol removal. Steryl glucoside can be recovered more efficiently depending on the preferred conditions of transesterification reaction rate, residual concentration of unreacted alcohol, and separation temperature.
  • the present invention is a method for producing steryl glucoside and acyl steryl glucoside from fats and oils, or a method for producing steryl glucoside and acyl steryl glucosides, fatty acid lower alkyl esters and glycerin from fats and oils, and (I) Steryl Obtaining a reaction mixture containing a fatty acid lower alkyl ester corresponding to the lower alcohol and glycerin by transesterifying the fat and oil containing the glucoside in a dissolved state and the lower alcohol; (II) steryl glucoside in the reaction mixture; And (III) separating the steryl glucoside from the reaction mixture in which the steryl glucoside is precipitated.
  • step 1 (I) and (II) are performed.
  • the fats and oils used in Step 1 of the present invention are not limited to the type as long as they contain steryl glucoside in a dissolved state, but are vegetable oils and fats that contain a large amount of steryl glucoside and acyl steryl glucoside. Is preferred. More specifically, it is preferable to use coconut oil, palm oil, palm kernel oil, or the like. Generally, fats and oils exist in a state where steryl glucoside is dissolved at room temperature (25 to 40 ° C.).
  • the lower alcohol used in Step 1 of the present invention is a lower alcohol having 1 to 5 carbon atoms, and specifically, methanol, ethanol, propanol or the like can be used. In particular, methanol is preferable because it is easy to remove and uses a small amount of separation energy.
  • the transesterification reaction in Step 1 is performed in the presence of a catalyst.
  • the catalyst may be any catalyst that can be used for transesterification and esterification, and a homogeneous catalyst or a heterogeneous catalyst (for example, a powder catalyst or a molded product thereof, or an ion exchange resin) can be used.
  • a powder catalyst that can be used even at a high reaction temperature, or a molded product thereof, from the point that no soap by-product is produced.
  • a solid acid catalyst is preferable, a weak acid point having a strong acid point as defined below of 0.2 mmol / g-cat or less and a weak acid point as defined below of 0.3 mmol / g-cat or more.
  • a solid acid catalyst is more preferred.
  • Weak acid point A point where NH 3 is desorbed in the range of 100 to 250 ° C. in TPD (Temperature Programmed Desorption). Strong acid point: NH 3 is desorbed at a temperature higher than 250 ° C.
  • a preferred group includes solid catalyst shaped bodies having the following structure (A), structure (B) and metal atom (C).
  • examples of the inorganic phosphoric acid include condensed phosphoric acid such as orthophosphoric acid, metaphosphoric acid, and pyrophosphoric acid.
  • orthophosphoric acid is preferable.
  • the organic phosphoric acid represented by the general formula (1) or (2) phosphonic acid, phosphonic acid monoester, phosphinic acid, phosphoric monoester, phosphoric diester, phosphorous monoester , Phosphorous acid diesters, and the like, and a mixture thereof, preferably phosphonic acid.
  • Examples of the organic group R in the organic phosphoric acid include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl, 2-ethylhexyl, octyl, dodecyl, octadecyl, etc.
  • An aryl group such as an alkyl group, phenyl or 3-methylphenyl is preferable, and these groups include an amino group, an alkoxy group, a carbonyl group, an alkoxycarbonyl group, a carboxylic acid group, a halogen group such as a chloro group, a phosphonic acid group, A group to which a sulfonic acid group or the like is bonded is also used.
  • the metal atom (C) aluminum is preferable from the viewpoint of performance and / or cost. For the purpose of improving selectivity and other performance, a small amount of metal atoms other than aluminum, gallium, and iron may be included.
  • metal atoms (C) contained in the catalyst are necessarily bonded to the structure (A) or the structure (B), and a part of the metal atoms (C) is a metal oxide or metal hydroxide. It may exist in the form of a thing or the like.
  • Another preferred group of weakly acidic solid acid catalysts used in the present invention is a molded product of a heterogeneous catalyst containing aluminum orthophosphate, and in particular, a pore volume having a pore diameter of 6 to 100 nm is 0.46 ml. / G or more and having an acid amount of 0.40 mmol / g or more is preferable.
  • a precipitation method a method of impregnating a metal oxide or hydroxide with inorganic phosphoric acid and organic phosphoric acid, an inorganic phosphate group in an inorganic aluminum phosphate gel is organic A method of substituting a phosphate group is used, and a precipitation method is preferred.
  • a supported catalyst by coexisting a high surface area carrier.
  • the carrier silica, alumina, silica alumina, titania, zirconia, diatomaceous earth, activated carbon, or the like can be used.
  • the proportion of the carrier in the catalyst is preferably 90% by mass or less.
  • a catalyst other than the weakly acidic solid acid catalyst a known homogeneous or heterogeneous catalyst can be used.
  • an alkali catalyst such as NaOH can be used.
  • the heterogeneous catalyst is not particularly limited as long as it has an alcoholysis reaction activity.
  • sodium carbonate, sodium hydrogen carbonate as described in JP-A-61-2254255, European Examples thereof include crystalline titanium silicate, crystalline titanium aluminum silicate, amorphous titanium silicate, and a corresponding zirconium compound as described in Japanese Patent No. 0623581.
  • the reaction mode of Step 1 may be either a tank reactor having a stirrer or a fixed bed reactor filled with a catalyst, but a fixed bed reactor is preferred because it does not require catalyst separation.
  • a transesterification reaction in Step 1 an ester of fatty acid derived from fat and oil and a lower alcohol and glycerin are produced.
  • the preferred reaction method in Step 1 is a solid catalytic reaction between a liquid fat and a lower alcohol, but it may be supplied in a gaseous state or in a liquid state depending on the reaction pressure and reaction temperature depending on the activity of the catalyst used. May be. Moreover, you may perform reaction in a several step.
  • the concentration of the fatty acid lower alkyl ester reaches the concentration at which steryl glucoside is precipitated.
  • the progress of the reaction depends on the activity of the catalyst used. When catalyst activity is high, steryl glucoside can be precipitated in a single reaction, but when using an existing catalyst with relatively low activity, a multistage reaction method is effective in consideration of economy. is there.
  • concentration of the fatty-acid lower alkyl ester in the oil phase of the reaction mixture obtained at the process 1 is 88 mass% or more. This concentration is measured by an analytical method such as a gas chromatograph.
  • the oil phase is a fat and fatty acid lower alkyl ester obtained by adding ion-exchanged water or warm water of ion-exchanged water to the reaction mixture after transesterification, removing glycerin and lower alcohol in the reaction mixture, and removing residual water. It is a mixture containing. If the reaction mixture is a mixture of an oil phase and a glycerin containing a fatty acid lower alkyl ester having a concentration of 88% by mass or more, steryl glucoside is easily precipitated, and separation and concentration are also preferable.
  • the transesterification reaction is such that the conversion rate of fatty acid derived from fat into fatty acid lower alkyl ester is 88% or higher, preferably 90% or higher, more preferably 92% or higher, particularly preferably 95% or higher. Is preferably performed.
  • the conversion rate is defined as saponification value calculated from the methyl ester concentration of the oil phase / saponification value of raw oil and fat ⁇ 100. If this conversion rate is 88% or more, the reaction mixture having the fatty acid lower alkyl ester concentration in the oil phase of 88% by mass or more can be easily obtained.
  • the concentration of the fatty acid lower alkyl ester, for example, methyl ester, in the oil phase can be measured by a known method.
  • the molar ratio of the lower alcohol to the fat depends on the catalytic activity, but is preferably 5 or more, more preferably 8 or more from the viewpoint of obtaining a good reaction rate. Also, from the viewpoint of economically reacting while suppressing the recovered amount of lower alcohol, it is preferably 50 or less, more preferably 40 or less, and even more preferably 30 or less.
  • the reaction temperature depends on the catalyst activity, but is preferably 100 ° C.
  • reaction pressure depends on the reaction type, the type of catalyst used, and the temperature, but is preferably 0.1 to 10 MPa-G (where G means gauge pressure), more preferably 0.5 to 8 MPa-G, 1.5 to 8 MPa-G is particularly preferable.
  • the reaction time in step 1 varies depending on the reaction conditions (reaction type, amount of catalyst, temperature, etc.), but in a reaction using a tank reactor, it is usually 2 to 10 hours.
  • the liquid space velocity (LHSV) based on fats and oils is 0.02 / hr from the viewpoint of increasing the productivity per unit volume of the reactor and conducting the reaction economically.
  • the above is preferable, and 0.1 / hr or more is more preferable.
  • 2.0 / hr or less is preferable and 1.0 / hr or less is more preferable.
  • the reaction mixture obtained in Step 1 is a mixture containing a fatty acid lower alkyl ester, unreacted fat, glycerin, lower alcohol, and steryl glucoside, and is in a uniform liquid phase or two-phase state depending on the reaction molar ratio. Form. Since the composition of the mixture of fat and lower alcohol before the transesterification reaction and the reaction mixture after the transesterification reaction varies, it is considered that steryl glucoside is likely to precipitate or precipitate. If steryl glucoside is precipitated in the obtained reaction mixture due to sufficient progress of the transesterification reaction, it can be used as it is in Step 2.
  • the present invention it is preferable to perform an operation for precipitating steryl glucoside in the reaction product, and it is preferable to remove steryl glucoside by removing lower alcohol (unreacted lower alcohol) in the reaction mixture.
  • the method for removing the lower alcohol is not particularly limited, and can be performed by a commonly used flash distillation or rectification operation. It is preferable to remove the lower alcohol until the content of the lower alcohol in the reaction mixture is 8% by mass or less, preferably 6% by mass or less, more preferably 4% by mass or less.
  • the method for removing the lower alcohol is not particularly limited, and a known method can be used. For example, by passing the reaction mixture through an evaporator, the lower alcohol present can be separated to 8 mass% or less.
  • the evaporation conditions are such that the lower alcohol content in the liquid reactant of the reaction mixture is 8% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less.
  • the reaction mixture may optionally be flushed after being heated in advance.
  • the evaporation field can be adjusted as appropriate, for example, under reduced pressure conditions. Preferably, it can be carried out at a pressure of -0.993 MPa-G to 0.2 MPa-G and a separation temperature of 60 ° C to 160 ° C. It is also possible to obtain a reaction mixture in which steryl glucoside is precipitated by lowering the temperature of the reaction mixture.
  • the cooling temperature is a temperature at which steryl glucoside and acyl steryl glucoside are precipitated, and is not particularly limited as long as there is no problem with the heat resistance of the apparatus used in the separation in Step 2, but is preferably 55 ° C. or less, more preferably 53 C. or lower, more preferably 50.degree. C. or lower. Moreover, it is preferable that it is 30 degreeC or more, Preferably it is 35 degreeC or more from the raise of the viscosity of a reaction mixture being suppressed, and the time which filtration requires appropriately. Therefore, it is preferable to obtain a reaction mixture in which steryl glucoside is precipitated by adjusting the temperature of the reaction mixture to 30 to 55 ° C.
  • Step 2 is a step of separating steryl glucoside from the reaction mixture obtained in step 1 in which steryl glucoside is deposited. Furthermore, it is the process of isolate
  • the reaction mixture in Step 1 is a mixture containing an oil phase and a glycerin phase, but steryl glucoside is usually precipitated as a white precipitate containing steryl glucoside, acyl steryl glucoside, and the like.
  • steryl glucoside is usually precipitated as a white precipitate containing steryl glucoside, acyl steryl glucoside, and the like.
  • Separation of steryl glucoside from the reaction mixture is preferably carried out by filtration.
  • Filtration can be performed by a known method using a filtration device.
  • the filtration device is not particularly limited, but for continuous treatment, for example, a filtration method using a cartridge filter can be employed.
  • the reaction mixture is a mixture containing a fatty acid lower alkyl ester, fats and oils, and glycerin, any material can be used as the filter medium material used for filtration.
  • any material can be used as the filter medium material used for filtration.
  • polyethylene, polypropylene, polyester, and the like can be suitably used.
  • the coarseness of the filter medium may be such that the precipitated steryl glucoside does not pass, and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the cartridge filter for example, CP-01, CPH-01 manufactured by Chisso Filter Co., Ltd. can be suitably used.
  • the processing amount per filtration area is reduced and becomes inefficient, so that it is preferably 0.5 ⁇ m or more, more preferably 2 ⁇ m or more, more preferably 5 ⁇ m. The above can be used suitably.
  • steryl glucoside may be purified and isolated from the filtration residue as necessary.
  • a fatty-acid lower alkyl ester and glycerol can be isolate
  • the separation method of the present invention can be incorporated into a process for producing a fatty acid lower alkyl ester from fats and oils and a lower alcohol, and does not require a complicated operation or apparatus for precipitating steryl glucoside. Very useful.
  • the separation method of the present invention can be carried out as a method for producing both fatty acid lower alkyl ester and steryl glucoside from fats and oils, and further producing three components of fatty acid lower alkyl ester, glycerin and steryl glucoside from fats and oils.
  • Step (d): Step of precipitating steryl glucoside in the reaction mixture obtained from step (c) (It may include a lower alcohol removing step)
  • the reaction article and operation in each process can be performed according to the above-mentioned preferable aspect and a
  • glycerin can also be recovered in the step (b).
  • the present invention comprises a step of transesterifying an oil and fat containing a steryl glucoside in a dissolved state with a lower alcohol to obtain a reaction mixture containing a fatty acid lower alkyl ester, glycerin and steryl glucoside, and from the reaction mixture
  • Catalyst production example 1 9.9 g of ethylphosphonic acid, 27.7 g of 85% orthophosphoric acid, and 112.5 g of aluminum nitrate (9 hydrate) were dissolved in 1000 g of water. At room temperature, an aqueous ammonia solution was added dropwise to the mixed solution to raise the pH to 5. On the way, a gel-like white precipitate was formed. The precipitate was filtered, washed with water, dried at 110 ° C. for 15 hours, and pulverized to 60 mesh or less.
  • catalyst 1 10% alumina sol was added to the pulverized catalyst, and extrusion molding of 2.5 mm ⁇ was performed. This was calcined at 250 ° C. for 3 hours to obtain a solid acid catalyst forming catalyst (hereinafter referred to as catalyst 1). The obtained catalyst had a weak acid point of 1 mmol / g-cat and a strong acid point below the detection limit.
  • catalyst 1 Two reaction tubes having an inner diameter of 35.5 mm ⁇ and a length of 800 mm were connected in series, and 500 cc each of the catalyst 1 was packed for measuring the temperature.
  • the reaction temperature is 170 ° C.
  • LHSV is 0.4
  • reaction pressure is 3
  • Methanol was fed at a 10-fold molar ratio with respect to the fat (all the fat was converted to triglyceride).
  • the oil and fat flowed 112 times the volume of the catalyst 1.
  • an evaporator was used to evaporate methanol at a pressure of ⁇ 0.9867 MPa-G (100 mmHg) and 100 ° C.
  • the methanol content in the oil phase was 1.0% by mass or less. Then, the anti-end liquid was cooled and allowed to stand at 50 ° C., and separated into a methyl ester phase and a glycerin phase. In this reaction mixture, steryl glucoside was not precipitated. The methyl ester concentration of the obtained methyl ester phase was measured by gas chromatography and found to be 85.3%. Moreover, the obtained glycerol was 76% with respect to the theoretical production amount.
  • the theoretical production amount of glycerol is calculated
  • Example 1 The methyl ester phase obtained in Comparative Example 1 was reacted with methanol again using the same reaction tube as in Comparative Example 1. The reaction was conducted at a reaction temperature of 170 ° C., LHSV of 0.8, and a reaction pressure of 3.0 MPa-G.
  • Methanol was fed at a 10-fold molar ratio with respect to the fat (all the fat was converted to triglyceride).
  • the amount of methyl ester phase passed was 102 times the volume of catalyst 1.
  • the obtained anti-end liquid was evaporated using an evaporator at a pressure of ⁇ 0.9867 MPa-G (100 mmHg) and 100 ° C.
  • the methanol content in the oil phase was 1.0% by mass or less.
  • the anti-end solution was cooled to 50 ° C. At this time, a white precipitate of steryl glucoside was suspended between the methyl ester phase and the glycerin phase.
  • a filter paper No.
  • Comparative Example 3 In a tubular reactor filled with the catalyst 1, purified coconut oil having an acid value of 8.5 containing steryl glucoside at a concentration of 45 mg / kg is LHSV 0.5, reaction temperature is 175 ° C., reaction pressure is 4.0 MPa-G, liquid The reaction was carried out by supplying a molar ratio of 10 moles of methanol. At this time, the passing ratio with respect to the catalyst volume was 738 times. The reaction mixture after the reaction was continuously removed with methanol at a pressure of 0 MPa-G and 130 ° C. using a flash distillation can. The methanol concentration in the reaction mixture after removal of methanol was 1.8% by mass. The reaction mixture after removal of methanol was continuously cooled to 60 ° C.
  • Example 2 After separating the methyl ester phase from the reaction mixture after filtration obtained in Comparative Example 3, it was tube-shaped again under the conditions of LHSV 1.1, reaction temperature 173 ° C., reaction pressure 4.0 MPa-G, and a molar ratio of methanol of 10 mol. The reaction was carried out using a reactor to obtain a reaction mixture in which the methyl ester concentration in the methyl ester phase was 98.1% and the glycerin production amount was 90.7% of the theoretical production amount. The passing ratio with respect to the catalyst volume was 1616 times.
  • This mixture was continuously introduced into a flash distillation can and subjected to flash separation at 120 ° C. and 0 MPa-G to obtain a reaction mixture having a methanol concentration of 2.1%. Furthermore, after continuously cooling to 45 ° C., the solution was passed through a cartridge filter (CP-01 manufactured by Chisso Filter Co., Ltd.) to obtain a white concentrated composition containing 82% by mass of steryl glucoside.
  • a cartridge filter CP-01 manufactured by Chisso Filter Co., Ltd.
  • Comparative Example 4 In a tubular reactor filled with the catalyst 1, purified coconut oil having an acid value of 8.5 containing steryl glucoside at a concentration of 45 mg / kg is LHSV 0.4, reaction temperature is 166 ° C., reaction pressure is 4.0 MPa-G, liquid The reaction was carried out by supplying a molar ratio of 10 moles of methanol. At this time, the liquid passage ratio with respect to the catalyst volume was 38 times. The reaction mixture after the reaction was continuously removed with methanol at a pressure of 0 MPa-G and 130 ° C. using a flash distillation can. The methanol concentration in the reaction mixture after removal of methanol was 1.8% by mass. The reaction mixture after removal of methanol was continuously cooled to 40 ° C.
  • Comparative Example 5 After separating the methyl ester phase from the reaction mixture after filtration obtained in Comparative Example 4, it was tube-shaped again under the conditions of LHSV 1.5, reaction temperature 182 ° C., reaction pressure 4.0 MPa-G, and a molar ratio of methanol of 10 mol. Reaction was performed using a reactor to obtain a reaction mixture in which the methyl ester concentration in the methyl ester phase was 97.9%. The passing ratio with respect to the catalyst volume was 392 times. This mixture was continuously introduced into a flash distillation can and subjected to flash separation at 120 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a method for producing a fatty acid lower alkyl ester, glycerin, and steryl glucoside by subjecting a fat or oil containing steryl glucoside in a dissolved state and a lower alcohol to a transesterification reaction, thereby obtaining a reaction mixture in which the steryl glucoside deposits, and thereafter separating the steryl glucoside from the reaction mixture.

Description

脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法Process for producing fatty acid lower alkyl ester, glycerin and steryl glucoside
 本発明は、油脂からの脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法に関する。 The present invention relates to a method for producing fatty acid lower alkyl esters, glycerin and steryl glucoside from fats and oils.
 ステリルグルコシド及びアシルステリルグルコシド等のステロール配糖体及びステロール配糖体エステルは天然油脂成分として油脂中に含有されており、その生理活性に関する有用性が指摘されている。例えば、発毛・育毛(特開平7−101835)、血中脂質の低下(特開平7−118159)、肥満予防(特開平7−107939)などの種々の用途が開示されている。
 天然物からのステリルグルコシドの取得技術として、油さいからの有機溶媒抽出(特開昭62−238299)、大豆油、ゴマ油等の食用油脂の精製工程で発生する副産物を原料としたステリルグルコシドの製造方法(特開2001−199992号公報、特開平7−062384号公報)が開示されている。また、特定の酵母にステリルグルコシドを蓄積させて、ステリルグルコシドを分離、精製する方法も知られている(特開2007−295848号公報)。
 2009年7月16日頒布された特開2009−155476号公報(2009年7月2日頒布されたWO−A2009/081836の同族)では、油脂とアルコールを反応させてアルキルエステルとグリセリンを得る工程において、反応物からアルコールを除去し、ろ過機に通して固体のステロール類を分離する工程が開示されている。
Sterol glycosides and sterol glycoside esters such as steryl glucoside and acyl steryl glucoside are contained in fats and oils as natural fat and oil components, and their usefulness regarding their physiological activity has been pointed out. For example, various uses such as hair growth / hair growth (Japanese Patent Laid-Open No. 7-101835), reduction of blood lipid (Japanese Patent Laid-Open No. 7-118159), obesity prevention (Japanese Patent Laid-Open No. 7-107939) are disclosed.
As a technique for obtaining steryl glucoside from natural products, organic solvent extraction from gypsum (Japanese Patent Laid-Open No. Sho 62-238299), steryl glucoside made from by-products generated in the purification process of edible fats and oils such as soybean oil and sesame oil Manufacturing methods (Japanese Patent Laid-Open Nos. 2001-199992 and 7-062384) are disclosed. In addition, a method for accumulating steryl glucoside in a specific yeast to separate and purify steryl glucoside is also known (Japanese Patent Laid-Open No. 2007-295848).
In JP-A-2009-155476 distributed on July 16, 2009 (a family of WO-A2009 / 081836 distributed on July 2, 2009), a process of obtaining an alkyl ester and glycerin by reacting oil and fat with alcohol. Discloses a process of removing alcohol from a reaction product and separating solid sterols through a filter.
 本発明は、ステリルグルコシドを溶解した状態で含有する油脂と低級アルコールとをエステル交換反応させてステリルグルコシドが析出した反応混合物を得る工程(以下、工程1という)と、該反応混合物からステリルグルコシドを分離する工程(以下、工程2という)とを有する、ステリルグルコシド、脂肪酸低級アルキルエステル及びグリセリンの製造法に関する。
 なお、本発明で、ステリルグルコシドという場合、ステリルグルコシド及びアシルステリルグルコシドを指す場合もある。
The present invention comprises a step (hereinafter referred to as step 1) of obtaining a reaction mixture in which steryl glucoside is precipitated by subjecting a fat and oil containing steryl glucoside dissolved and a lower alcohol to a transesterification reaction. The present invention relates to a method for producing steryl glucoside, a fatty acid lower alkyl ester, and glycerin having a step of separating rilglucoside (hereinafter referred to as step 2).
In the present invention, the term “steryl glucoside” may refer to steryl glucoside and acyl steryl glucoside.
 油脂中のステリルグルコシドの存在量は極めて微量であり、特開昭62−238299、特開2001−199992号公報、特開平7−062384号公報のような溶媒を用いた抽出方法は、大量のステリルグルコシドを安定供給する方法としては適していない。また、ステリルグルコシドを分離するために煩雑な工程が必要となる。一方、特開2007−295848号公報は、限定された酵母しか使用できず、また、酵母菌体からのステリルグルコシドを分離するステップとして、例えば、有機溶媒による抽出を行う必要がある。また、特許文献8には、ステリルグルコシドを含む反応生成物を得ることや、ステリルグルコシドを脂肪酸低級アルキルエステルやグリセリンと共に製造することは記載されていない。
 本発明は、油脂中の有用な生理活性物質であるステリルグルコシドを、簡便かつ安定に分離でき、更に脂肪酸低級アルキルエステルとグリセリンも同時に製造できる方法を提供する。
 本発明によれば、油脂中に含有される微量のステリルグルコシドを、簡便かつ安定に分離・製造できる方法が提供され、同時に脂肪酸低級アルキルエステル及びグリセリンを製造する方法が提供される。本発明では、アルコール除去の後、ステリルグルコシドを固液分離によって回収できる。エステル交換の反応率、未反応アルコールの残存濃度、分離温度の好ましい条件により、より効率よくステリルグルコシドを回収できる。
 本発明は、油脂からのステリルグルコシド及びアシルステリルグルコシドの製造法、もしくは、油脂からのステリルグルコシド及びアシルステリルグルコシド、脂肪酸低級アルキルエステル並びにグリセリンの製造法であり、(I)ステリルグルコシドを溶解した状態で含有する油脂と低級アルコールとをエステル交換反応させて低級アルコールに対応する脂肪酸低級アルキルエステルとグリセリンとを含む反応混合物を得ること、(II)該反応混合物中にステリルグルコシドを析出させること、(III)ステリルグルコシドが析出した反応混合物からステリルグルコシドを分離すること、を行うものである。工程1では、この(I)と(II)が行われる。
 本発明の工程1で使用される油脂は、ステリルグルコシドを溶解した状態で含有するものであればその種類に限定されるものではないが、ステリルグルコシド及びアシルステリルグルコシドを多く含む植物油脂の使用が好ましい。より具体的には、椰子油、パーム油、パーム核油等を使用する事が好ましい。一般に、油脂には、常温(25~40℃)でステリルグルコシドが溶解した状態で存在する。
 本発明の工程1で使用される低級アルコールとしては、炭素数1~5の低級アルコールであり、具体的にはメタノール、エタノール、プロパノール等が使用できる。特に除去が容易で分離エネルギーの使用量が少ないメタノールが好ましい。
 工程1のエステル交換反応は、触媒の存在下に行われる。触媒としては、エステル交換反応及びエステル化反応に供せられる触媒であれば良く、均一系触媒、不均一系触媒(例えば、粉末触媒あるいはその成型体、またはイオン交換樹脂)を用いることができるが、高い反応温度でも使用できる粉末触媒、あるいはその成型体を使用する方が石鹸副生の無い点から好ましい。不均一系触媒としては、固体酸触媒が好ましく、下記で定義される強酸点を0.2mmol/g−cat以下、かつ下記で定義される弱酸点を0.3mmol/g−cat以上有する弱酸性固体酸触媒がより好ましい。
 弱酸点:TPD(Temperature Programmed Desorption:アンモニア吸着脱離法)において、100~250℃の範囲でNHの脱離を起こす点
 強酸点:TPDにおいて、250℃より高い温度でNHの脱離を起こす点
 これらの弱酸性固体酸触媒の中で好ましい一群として、下記構造(A)、構造(B)及び金属原子(C)を有する固体触媒の成形体が挙げられる。
構造(A):無機リン酸が有するOH基の少なくとも一つから水素原子が除かれた構造
構造(B):一般式(1)又は(2)で表される有機リン酸が有するOH基の少なくとも一つから水素原子が除かれた構造
Figure JPOXMLDOC01-appb-I000001
(式中、−R及び−Rは、それぞれ−R、−OR、−OH、−Hから選ばれる基を示し、−R及び−Rの少なくとも一方は、−R又は−ORである。但し、Rは炭素数1~22の有機基である。)
金属原子(C):アルミニウム、ガリウム、鉄から選ばれる一種以上の金属原子
 上記構造(A)において、無機リン酸として、オルトリン酸、メタリン酸やピロリン酸等の縮合リン酸等が挙げられ、性能の点から、オルトリン酸が好ましい。また構造(B)において、一般式(1)又は(2)で表される有機リン酸として、ホスホン酸、ホスホン酸モノエステル、ホスフィン酸、リン酸モノエステル、リン酸ジエステル、亜リン酸モノエステル、亜リン酸ジエステルなどが挙げられ、これらの混合物でもよく、好ましくはホスホン酸である。
 有機リン酸中の有機基Rとしては、メチル、エチル、n−プロピル、iso−プロピル、n−ブチル、iso−ブチル、tert−ブチル、n−ヘキシル、2−エチルヘキシル、オクチル、ドデシル、オクタデシル等のアルキル基、フェニル、3−メチルフェニル等のアリール基が好ましく、またそれらの基に、アミノ基、アルコキシ基、カルボニル基、アルコキシカルボニル基、カルボン酸基、クロロ基等のハロゲン基、ホスホン酸基、スルホン酸基等が結合した基も用いられる。
 金属原子(C)としては、性能及び/又はコストの点から、アルミニウムが好ましい。尚、選択性その他性能を改良する目的で、アルミニウム、ガリウム、鉄以外の金属原子を少量有してもよい。また触媒中に含まれる金属原子(C)の全てが、必ずしも、構造(A)或いは構造(B)と結合している必要はなく、金属原子(C)の一部分が金属酸化物或いは金属水酸化物等の形で存在しても構わない。
 本発明で用いる弱酸性固体酸触媒の好ましい他の一群として、オルトリン酸アルミニウムを含有する不均一系触媒の成形体が挙げられ、特に細孔直径が6~100nmである細孔容量が0.46ml/g以上であって、かつ0.40mmol/g以上の酸量を有するものが好ましい。
 本発明で用いる弱酸性固体酸触媒の調製法として、沈殿法や金属酸化物或いは水酸化物へ無機リン酸及び有機リン酸を含浸する方法、無機リン酸アルミニウムゲル中の無機リン酸基を有機リン酸基へ置換する方法等が用いられ、沈殿法が好ましい。
 また、本発明で用いる弱酸性固体酸触媒を調製する際に、高表面積の担体を共存させ、担持触媒を得る事も可能である。担体として、シリカ、アルミナ、シリカアルミナ、チタニア、ジルコニア、ケイソウ土、活性炭等を用いる事ができる。担体を過剰に用いると、活性成分の含有量が低下し、活性を低下させるため、触媒中の担体の占める割合は、90質量%以下が好ましい。
 上記弱酸性固体酸触媒以外の触媒として、周知の均一系又は不均一系の触媒を用いることができる。均一系の触媒としてはNaOH等のアルカリ触媒を用いることができる。また、不均一系の触媒としてはアルコーリシス反応活性を有する触媒であれば特に限定されないが、例えば、特開昭61−254255号公報に記載されているような炭酸ナトリウム、炭酸水素ナトリウムや、欧州特許第0623581号明細書に記載されているような結晶性チタンシリケート、結晶性チタンアルミニウムシリケート、アモルファスチタンシリケート、及び対応するジルコニウム化合物等が挙げられる。
 工程1の反応形式は、攪拌機を有する槽型反応器及び触媒を充填した固定床反応器のいずれでも良いが、触媒分離を必要としない点から固定床反応器が好ましい。
 工程1のエステル交換反応では、油脂由来の脂肪酸と低級アルコールとのエステル及びグリセリンが生成する。工程1における好ましい反応方式は液状油脂と低級アルコールとの固体触媒反応であるが、使用する触媒の活性に応じた反応圧力と反応温度に応じてガス状で供給してもよく、液状で供給しても良い。また、反応を複数の段階で行ってもよい。例えば、固定床反応器を使用する場合には、第一段目の反応を行った後に低級アルコールを除去し、脂肪酸低級アルキルエステルを含む油相とグリセリン相を含む混合物を既知の方法で油水分離(油相とグリセリン相の分離を以下油水分離と称する)せしめ、分離した油相を再度第二段目の反応に供することによって脂肪酸低級アルキルエステルの濃度を所定値まで進行させる方法が効果的である。第一段目の反応のみでステリルグルコシドを回収する場合には、脂肪酸低級アルキルエステルの濃度がステリルグルコシドの析出する濃度になるまで反応を進行させる必要がある。反応の進行は使用する触媒の活性に依存する。触媒活性が高い場合には一段の反応でステリルグルコシドの析出が可能であるが、比較的活性の低い既存の触媒を使用する場合、経済性を考慮して多段反応とする方法が効果的である。
 本発明では、工程1で得られる反応混合物の油相中における脂肪酸低級アルキルエステルの濃度が88質量%以上であることが好ましい。この濃度は、ガスクロマトグラフ等の分析手法によって測定される。ここで油相とはエステル交換後の反応混合物にイオン交換水あるいはイオン交換水の温水を添加し、反応混合物中のグリセリン及び低級アルコールを除去した後に残存する水分を除去した油脂及び脂肪酸低級アルキルエステルを含む混合物である。反応混合物が、88質量%以上の濃度の脂肪酸低級アルキルエステルを含む油相及びグリセリンの混合物であれば、ステリルグルコシドの析出が容易となり、分離、濃縮も容易となるため好ましい。
 また、工程1では、エステル交換反応を、油脂由来の脂肪酸の脂肪酸低級アルキルエステルへの変換率が88%以上、好ましくは90%以上、更に好ましくは92%以上、特に好ましくは95%以上となるまで行うことが好ましい。ここで、変換率とは、油相のメチルエステル濃度から算出される鹸化価/原料油脂の鹸化価×100で定義されるものである。この変換率が88%以上であれば、上記のような、油相中における脂肪酸低級アルキルエステルの濃度が88質量%以上の反応混合物を容易に得ることができる。油相の肪酸低級アルキルエステル、例えばメチルエステル濃度の測定は既知の方法で行うことができる。例えばガスクロマトグラフィーを用いた方法により測定することができる。また、原料油脂の鹸化価の測定も既知の方法で行うことができる。例えばJIS K0070のような方法で測定することができる。
 工程1において、油脂に対する低級アルコールのモル比(油脂を全てトリグリセリド換算)は触媒活性にも依るが、良好な反応速度を得る観点から5以上が好ましく、8以上がより好ましい。また低級アルコールの回収量を抑えて経済的に反応を行う観点から50以下が好ましく、40以下がより好ましく、30以下が更に好ましい。
 反応温度は触媒活性にも依るが、100℃以上が好ましく、130℃以上がより好ましく、150℃以上が更に好ましく、160℃以上が特に好ましい。また、副生成物であるメトキシプロパンジオール等のグリセリンと低級アルコールとのエーテル体の生成を抑制するために、250℃以下が好ましく、220℃以下がより好ましい。
 反応圧力は反応形式、使用触媒の種類と温度にも依るが、0.1~10MPa−G(ここでGはゲージ圧力を意味する)がより好ましく、0.5~8MPa−Gが更に好ましく、1.5~8MPa−Gが特に好ましい。
 工程1での反応時間は、反応条件(反応形式、触媒量、温度など)によって異なるが、槽型反応器を用いた反応では、通常2~10時間で良い。また、固定床反応器を用いた連続反応では、油脂基準の液空間速度(LHSV)は、反応器の単位体積あたりの生産性を高め、経済的に反応を行う観点から、0.02/hr以上が好ましく、0.1/hr以上がより好ましい。また、十分な反応率を得る観点から、2.0/hr以下が好ましく、1.0/hr以下がより好ましい。
 工程1で得られた反応混合物は、脂肪酸低級アルキルエステル、未反応油脂、グリセリン、低級アルコール、及びステリルグルコシドを含む混合物であり、反応モル比にも依るが均一の液相あるいは2相の状態を形成する。エステル交換反応前の油脂と低級アルコールの混合物と、エステル交換反応後の反応混合物との組成が変動することから、ステリルグルコシドが析出ないし析出しやすい状態となるものと考えられる。エステル交換反応が十分に進行する等により、得られた反応混合物中にステリルグルコシドが析出していればそのまま工程2に供することもできる。本発明では、反応生成物にステリルグルコシドを析出させる操作を施すことが好ましく、反応混合物中の低級アルコール(未反応低級アルコール)を除去してステリルグルコシドを析出させることが好ましい。
 低級アルコールの除去方法は特に限定されるものではなく、通常用いられるフラッシュ蒸留、あるいは精留操作で行うことができる。反応混合物中の低級アルコール含有量が8質量%以下、好ましくは6質量%以下、更に好ましくは4質量%以下となるまで低級アルコールを除去することが好ましい。
 低級アルコールを除去する方法としては特に限定されず、既知の方法を用いることができる。例えば、反応混合物を蒸発器に通すことで、存在する低級アルコールを8質量%以下となるまで分離することができる。ここで蒸発条件としては反応混合物の液体反応物中の低級アルコール含有量が8質量%以下、好ましくは5質量%以下、更に好ましくは2質量%以下となるような圧力、温度で行う。具体的には、常圧下にフラッシュさせる場合には、場合により反応混合物を予め加熱した後にフラッシュさせても良い。また、蒸発場を減圧条件とするなど、適宜調整が可能である。好ましくは圧力−0.993MPa−Gから0.2MPa−G、分離温度60℃から160℃の範囲で行うことができる。
 また、反応混合物の温度を低下させることでステリルグルコシドが析出した反応混合物を得ることもできる。冷却温度としてはステリルグルコシド及びアシルステリルグルコシドが析出する温度であり、工程2の分離で用いる装置の耐熱性に問題がなければ特に限定はされないが、好ましくは55℃以下、より好ましくは53℃以下、更に好ましくは50℃以下とするのがよい。また30℃以上、好ましくは35℃以上であることが、反応混合物の粘度の上昇を抑え、ろ過に要する時間を適正にできることから好ましい。よって、反応混合物の温度を30~55℃に調整することにより、ステリルグルコシドが析出した反応混合物を得ることが好ましい。更に、上記のように、低級アルコール濃度を低減した反応混合物を前記温度範囲に冷却してステリルグルコシドが析出した反応混合物を得ることが好ましい。
 工程2は、工程1で得られた、ステリルグルコシドが析出した反応混合物からステリルグルコシドを分離する工程である。更には、工程1で得られた、ステリルグルコシドが析出した反応混合物から、脂肪酸低級アルキルエステル、グリセリン、ステリルグルコシドを、それぞれ分離する工程である。上記の通り、工程1の反応混合物は、油相とグリセリン相とを含む混合物であるが、ステリルグルコシドは、通常、ステリルグルコシドとアシルステリルグルコシド等を含む白色析出物として析出する。本発明では、このようなステリルグルコシドが析出した反応混合物を、油相、水相と共にそのまま分離操作に供するため、極めて効率がよい。本発明では、ステリルグルコシドが析出した温度が30~55℃の反応混合物からステリルグルコシドを分離することが好ましい。
 反応混合物からのステリルグルコシドの分離は、ろ過により行うことが好ましい。ろ過は、ろ過装置を用いた既知の方法により行うことができる。ろ過装置は特に限定はされないが、連続的に処理する場合には、例えばカートリッジフィルターによるろ過方法が採用できる。ろ過に供するろ材材質としては反応混合物が脂肪酸低級アルキルエステル、油脂、グリセリンを含む混合物であることから、これらが通過できるものであればよく、例えばポリエチレン、ポリプロピレン、ポリエステルなどが好適に使用できる。またろ材の目の粗さに関しては析出したステリルグルコシドが通過しない程度のものでよく、好ましくは100μm以下、より好ましくは50μm以下、より好ましくは20μm以下のものが使用できる。カートリッジフィルターでは例えば、チッソフィルター(株)製のCP−01、CPH−01などが好適に使用できる。また、あまりに目の粗さが細かいものを使用した場合には、ろ過面積当たりの処理量が減少し効率的ではなくなることから、好ましくは0.5μm以上、より好ましくは2μm以上、より好ましくは5μm以上のものが好適に使用できる。
 ろ過後は、必要に応じてろ過残渣からステリルグルコシドを精製、単離すればよい。また、ろ液を油水分離することで、脂肪酸低級アルキルエステルとグリセリンとを分離することができる。
 本発明の分離法は、油脂と低級アルコールとから脂肪酸低級アルキルエステルを製造する工程に取り込むことができ、しかも、ステリルグルコシドを析出させるために煩雑な操作や装置を必要としないため、工業的に極めて有用である。本発明の分離法は、油脂から脂肪酸低級アルキルエステルとステリルグルコシドの両方、更には油脂から脂肪酸低級アルキルエステルとグリセリンとステリルグルコシドの3成分を製造する方法として実施できる。その具体例としては、次の工程(a)~(g)を含む、脂肪酸低級アルキルエステルとグリセリンとステリルグルコシドの製造法が挙げられる。
工程(a):油脂と低級アルコールとをエステル交換反応させる工程
工程(b):工程(a)より得られた反応混合物を油水分離する工程(低級アルコール除去工程を含んでもよい)
工程(c):工程(b)で得られた油相と低級アルコールとをエステル交換反応させる工程
工程(d):工程(c)より得られた反応混合物中にステリルグルコシドを析出させる工程(低級アルコール除去工程を含んでもよい)
工程(e):工程(d)より得られた反応混合物からステリルグルコシドを分離する工程工程(f):工程(e)により分離された反応混合物を油水分離し、脂肪酸アルキルエステル及びグリセリンを得る工程
 上記製造法において、各工程での反応物品や操作は前述の好ましい態様及び公知の方法に従って行うことができる。なお、上記製造法では、工程(b)においてグリセリンを併せて回収することができる。
 本発明は、ステリルグルコシドを溶解した状態で含有する油脂と低級アルコールとをエステル交換反応させて、脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドを含有する反応混合物を得る工程と、該反応混合物から、脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドをそれぞれ分離する工程とを有する、脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法であり、前記反応混合物は、脂肪酸低級アルキルエステルを含む油相、グリセリンを含む水相、ステリルグルコシドを含む固相とに分離した状態で得られる。
 また、本発明は、ステリルグルコシドを溶解した状態で含有する油脂と低級アルコールとをエステル交換反応させてステリルグルコシドが析出した反応混合物を得る工程と、該反応混合物からステリルグルコシドを分離する工程とを有する、ステリルグルコシドの製造法もまた提供する。この製造法の好ましい態様も前記のものを参照できる。
The amount of steryl glucoside present in fats and oils is extremely small, and extraction methods using solvents such as JP-A-62-2238299, JP-A-2001-199992, and JP-A-7-062384 are in large quantities. It is not suitable as a method for stably supplying steryl glucoside. Moreover, a complicated process is required to separate steryl glucoside. On the other hand, Japanese Patent Application Laid-Open No. 2007-295848 can use only limited yeasts, and as a step of separating steryl glucoside from yeast cells, for example, extraction with an organic solvent needs to be performed. Patent Document 8 does not describe obtaining a reaction product containing steryl glucoside or producing steryl glucoside together with a fatty acid lower alkyl ester or glycerin.
The present invention provides a method by which steryl glucoside, which is a useful physiologically active substance in fats and oils, can be easily and stably separated, and a fatty acid lower alkyl ester and glycerin can be simultaneously produced.
ADVANTAGE OF THE INVENTION According to this invention, the method which can isolate | separate and manufacture the trace amount steryl glucoside contained in fats and oils easily and stably is provided, and the method of manufacturing a fatty-acid lower alkyl ester and glycerol simultaneously is provided. In the present invention, steryl glucoside can be recovered by solid-liquid separation after alcohol removal. Steryl glucoside can be recovered more efficiently depending on the preferred conditions of transesterification reaction rate, residual concentration of unreacted alcohol, and separation temperature.
The present invention is a method for producing steryl glucoside and acyl steryl glucoside from fats and oils, or a method for producing steryl glucoside and acyl steryl glucosides, fatty acid lower alkyl esters and glycerin from fats and oils, and (I) Steryl Obtaining a reaction mixture containing a fatty acid lower alkyl ester corresponding to the lower alcohol and glycerin by transesterifying the fat and oil containing the glucoside in a dissolved state and the lower alcohol; (II) steryl glucoside in the reaction mixture; And (III) separating the steryl glucoside from the reaction mixture in which the steryl glucoside is precipitated. In step 1, (I) and (II) are performed.
The fats and oils used in Step 1 of the present invention are not limited to the type as long as they contain steryl glucoside in a dissolved state, but are vegetable oils and fats that contain a large amount of steryl glucoside and acyl steryl glucoside. Is preferred. More specifically, it is preferable to use coconut oil, palm oil, palm kernel oil, or the like. Generally, fats and oils exist in a state where steryl glucoside is dissolved at room temperature (25 to 40 ° C.).
The lower alcohol used in Step 1 of the present invention is a lower alcohol having 1 to 5 carbon atoms, and specifically, methanol, ethanol, propanol or the like can be used. In particular, methanol is preferable because it is easy to remove and uses a small amount of separation energy.
The transesterification reaction in Step 1 is performed in the presence of a catalyst. The catalyst may be any catalyst that can be used for transesterification and esterification, and a homogeneous catalyst or a heterogeneous catalyst (for example, a powder catalyst or a molded product thereof, or an ion exchange resin) can be used. It is preferable to use a powder catalyst that can be used even at a high reaction temperature, or a molded product thereof, from the point that no soap by-product is produced. As the heterogeneous catalyst, a solid acid catalyst is preferable, a weak acid point having a strong acid point as defined below of 0.2 mmol / g-cat or less and a weak acid point as defined below of 0.3 mmol / g-cat or more. A solid acid catalyst is more preferred.
Weak acid point: A point where NH 3 is desorbed in the range of 100 to 250 ° C. in TPD (Temperature Programmed Desorption). Strong acid point: NH 3 is desorbed at a temperature higher than 250 ° C. Point of Occurrence Among these weakly acidic solid acid catalysts, a preferred group includes solid catalyst shaped bodies having the following structure (A), structure (B) and metal atom (C).
Structure (A): Structure in which hydrogen atom is removed from at least one of OH groups of inorganic phosphoric acid (B): OH group of organic phosphoric acid represented by formula (1) or (2) Structure with at least one hydrogen atom removed
Figure JPOXMLDOC01-appb-I000001
(In the formula, -R 1 and -R 2 each represent a group selected from -R, -OR, -OH, and -H, and at least one of -R 1 and -R 2 is -R or -OR; Provided that R is an organic group having 1 to 22 carbon atoms.)
Metal atom (C): One or more metal atoms selected from aluminum, gallium, and iron In the structure (A), examples of the inorganic phosphoric acid include condensed phosphoric acid such as orthophosphoric acid, metaphosphoric acid, and pyrophosphoric acid. From this point, orthophosphoric acid is preferable. In the structure (B), as the organic phosphoric acid represented by the general formula (1) or (2), phosphonic acid, phosphonic acid monoester, phosphinic acid, phosphoric monoester, phosphoric diester, phosphorous monoester , Phosphorous acid diesters, and the like, and a mixture thereof, preferably phosphonic acid.
Examples of the organic group R in the organic phosphoric acid include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, n-hexyl, 2-ethylhexyl, octyl, dodecyl, octadecyl, etc. An aryl group such as an alkyl group, phenyl or 3-methylphenyl is preferable, and these groups include an amino group, an alkoxy group, a carbonyl group, an alkoxycarbonyl group, a carboxylic acid group, a halogen group such as a chloro group, a phosphonic acid group, A group to which a sulfonic acid group or the like is bonded is also used.
As the metal atom (C), aluminum is preferable from the viewpoint of performance and / or cost. For the purpose of improving selectivity and other performance, a small amount of metal atoms other than aluminum, gallium, and iron may be included. Further, not all of the metal atoms (C) contained in the catalyst are necessarily bonded to the structure (A) or the structure (B), and a part of the metal atoms (C) is a metal oxide or metal hydroxide. It may exist in the form of a thing or the like.
Another preferred group of weakly acidic solid acid catalysts used in the present invention is a molded product of a heterogeneous catalyst containing aluminum orthophosphate, and in particular, a pore volume having a pore diameter of 6 to 100 nm is 0.46 ml. / G or more and having an acid amount of 0.40 mmol / g or more is preferable.
As a preparation method of the weakly acidic solid acid catalyst used in the present invention, a precipitation method, a method of impregnating a metal oxide or hydroxide with inorganic phosphoric acid and organic phosphoric acid, an inorganic phosphate group in an inorganic aluminum phosphate gel is organic A method of substituting a phosphate group is used, and a precipitation method is preferred.
Moreover, when preparing the weakly acidic solid acid catalyst used in the present invention, it is possible to obtain a supported catalyst by coexisting a high surface area carrier. As the carrier, silica, alumina, silica alumina, titania, zirconia, diatomaceous earth, activated carbon, or the like can be used. If the carrier is used in excess, the content of the active ingredient is lowered and the activity is lowered. Therefore, the proportion of the carrier in the catalyst is preferably 90% by mass or less.
As a catalyst other than the weakly acidic solid acid catalyst, a known homogeneous or heterogeneous catalyst can be used. As the homogeneous catalyst, an alkali catalyst such as NaOH can be used. Further, the heterogeneous catalyst is not particularly limited as long as it has an alcoholysis reaction activity. For example, sodium carbonate, sodium hydrogen carbonate as described in JP-A-61-2254255, European Examples thereof include crystalline titanium silicate, crystalline titanium aluminum silicate, amorphous titanium silicate, and a corresponding zirconium compound as described in Japanese Patent No. 0623581.
The reaction mode of Step 1 may be either a tank reactor having a stirrer or a fixed bed reactor filled with a catalyst, but a fixed bed reactor is preferred because it does not require catalyst separation.
In the transesterification reaction in Step 1, an ester of fatty acid derived from fat and oil and a lower alcohol and glycerin are produced. The preferred reaction method in Step 1 is a solid catalytic reaction between a liquid fat and a lower alcohol, but it may be supplied in a gaseous state or in a liquid state depending on the reaction pressure and reaction temperature depending on the activity of the catalyst used. May be. Moreover, you may perform reaction in a several step. For example, when a fixed bed reactor is used, the lower alcohol is removed after the first stage reaction, and a mixture containing an oil phase containing a fatty acid lower alkyl ester and a glycerin phase is separated into oil and water by a known method. (The separation of the oil phase and the glycerin phase is hereinafter referred to as oil-water separation), and the method of advancing the concentration of the fatty acid lower alkyl ester to a predetermined value by subjecting the separated oil phase to the second-stage reaction again is effective. is there. In the case where steryl glucoside is recovered only by the first stage reaction, it is necessary to proceed the reaction until the concentration of the fatty acid lower alkyl ester reaches the concentration at which steryl glucoside is precipitated. The progress of the reaction depends on the activity of the catalyst used. When catalyst activity is high, steryl glucoside can be precipitated in a single reaction, but when using an existing catalyst with relatively low activity, a multistage reaction method is effective in consideration of economy. is there.
In this invention, it is preferable that the density | concentration of the fatty-acid lower alkyl ester in the oil phase of the reaction mixture obtained at the process 1 is 88 mass% or more. This concentration is measured by an analytical method such as a gas chromatograph. Here, the oil phase is a fat and fatty acid lower alkyl ester obtained by adding ion-exchanged water or warm water of ion-exchanged water to the reaction mixture after transesterification, removing glycerin and lower alcohol in the reaction mixture, and removing residual water. It is a mixture containing. If the reaction mixture is a mixture of an oil phase and a glycerin containing a fatty acid lower alkyl ester having a concentration of 88% by mass or more, steryl glucoside is easily precipitated, and separation and concentration are also preferable.
In Step 1, the transesterification reaction is such that the conversion rate of fatty acid derived from fat into fatty acid lower alkyl ester is 88% or higher, preferably 90% or higher, more preferably 92% or higher, particularly preferably 95% or higher. Is preferably performed. Here, the conversion rate is defined as saponification value calculated from the methyl ester concentration of the oil phase / saponification value of raw oil and fat × 100. If this conversion rate is 88% or more, the reaction mixture having the fatty acid lower alkyl ester concentration in the oil phase of 88% by mass or more can be easily obtained. The concentration of the fatty acid lower alkyl ester, for example, methyl ester, in the oil phase can be measured by a known method. For example, it can be measured by a method using gas chromatography. Moreover, the measurement of the saponification value of raw material fats and oils can be performed by a known method. For example, it can be measured by a method such as JIS K0070.
In step 1, the molar ratio of the lower alcohol to the fat (all the fat is converted to triglyceride) depends on the catalytic activity, but is preferably 5 or more, more preferably 8 or more from the viewpoint of obtaining a good reaction rate. Also, from the viewpoint of economically reacting while suppressing the recovered amount of lower alcohol, it is preferably 50 or less, more preferably 40 or less, and even more preferably 30 or less.
The reaction temperature depends on the catalyst activity, but is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, further preferably 150 ° C. or higher, and particularly preferably 160 ° C. or higher. Moreover, in order to suppress the production | generation of the ether body of glycerol and lower alcohol, such as methoxypropanediol which is a by-product, 250 degrees C or less is preferable and 220 degrees C or less is more preferable.
The reaction pressure depends on the reaction type, the type of catalyst used, and the temperature, but is preferably 0.1 to 10 MPa-G (where G means gauge pressure), more preferably 0.5 to 8 MPa-G, 1.5 to 8 MPa-G is particularly preferable.
The reaction time in step 1 varies depending on the reaction conditions (reaction type, amount of catalyst, temperature, etc.), but in a reaction using a tank reactor, it is usually 2 to 10 hours. Moreover, in the continuous reaction using a fixed bed reactor, the liquid space velocity (LHSV) based on fats and oils is 0.02 / hr from the viewpoint of increasing the productivity per unit volume of the reactor and conducting the reaction economically. The above is preferable, and 0.1 / hr or more is more preferable. Moreover, from a viewpoint of obtaining sufficient reaction rate, 2.0 / hr or less is preferable and 1.0 / hr or less is more preferable.
The reaction mixture obtained in Step 1 is a mixture containing a fatty acid lower alkyl ester, unreacted fat, glycerin, lower alcohol, and steryl glucoside, and is in a uniform liquid phase or two-phase state depending on the reaction molar ratio. Form. Since the composition of the mixture of fat and lower alcohol before the transesterification reaction and the reaction mixture after the transesterification reaction varies, it is considered that steryl glucoside is likely to precipitate or precipitate. If steryl glucoside is precipitated in the obtained reaction mixture due to sufficient progress of the transesterification reaction, it can be used as it is in Step 2. In the present invention, it is preferable to perform an operation for precipitating steryl glucoside in the reaction product, and it is preferable to remove steryl glucoside by removing lower alcohol (unreacted lower alcohol) in the reaction mixture.
The method for removing the lower alcohol is not particularly limited, and can be performed by a commonly used flash distillation or rectification operation. It is preferable to remove the lower alcohol until the content of the lower alcohol in the reaction mixture is 8% by mass or less, preferably 6% by mass or less, more preferably 4% by mass or less.
The method for removing the lower alcohol is not particularly limited, and a known method can be used. For example, by passing the reaction mixture through an evaporator, the lower alcohol present can be separated to 8 mass% or less. Here, the evaporation conditions are such that the lower alcohol content in the liquid reactant of the reaction mixture is 8% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less. Specifically, when flushing under normal pressure, the reaction mixture may optionally be flushed after being heated in advance. In addition, the evaporation field can be adjusted as appropriate, for example, under reduced pressure conditions. Preferably, it can be carried out at a pressure of -0.993 MPa-G to 0.2 MPa-G and a separation temperature of 60 ° C to 160 ° C.
It is also possible to obtain a reaction mixture in which steryl glucoside is precipitated by lowering the temperature of the reaction mixture. The cooling temperature is a temperature at which steryl glucoside and acyl steryl glucoside are precipitated, and is not particularly limited as long as there is no problem with the heat resistance of the apparatus used in the separation in Step 2, but is preferably 55 ° C. or less, more preferably 53 C. or lower, more preferably 50.degree. C. or lower. Moreover, it is preferable that it is 30 degreeC or more, Preferably it is 35 degreeC or more from the raise of the viscosity of a reaction mixture being suppressed, and the time which filtration requires appropriately. Therefore, it is preferable to obtain a reaction mixture in which steryl glucoside is precipitated by adjusting the temperature of the reaction mixture to 30 to 55 ° C. Furthermore, as described above, it is preferable to obtain a reaction mixture in which steryl glucoside is precipitated by cooling the reaction mixture in which the lower alcohol concentration is reduced to the above temperature range.
Step 2 is a step of separating steryl glucoside from the reaction mixture obtained in step 1 in which steryl glucoside is deposited. Furthermore, it is the process of isolate | separating a fatty-acid lower alkyl ester, glycerol, and steryl glucoside from the reaction mixture which the steryl glucoside precipitated in process 1 precipitated. As described above, the reaction mixture in Step 1 is a mixture containing an oil phase and a glycerin phase, but steryl glucoside is usually precipitated as a white precipitate containing steryl glucoside, acyl steryl glucoside, and the like. In the present invention, since the reaction mixture in which such steryl glucoside is precipitated is subjected to the separation operation as it is together with the oil phase and the aqueous phase, it is extremely efficient. In the present invention, it is preferable to separate steryl glucoside from the reaction mixture having a temperature at which steryl glucoside is deposited of 30 to 55 ° C.
Separation of steryl glucoside from the reaction mixture is preferably carried out by filtration. Filtration can be performed by a known method using a filtration device. The filtration device is not particularly limited, but for continuous treatment, for example, a filtration method using a cartridge filter can be employed. Since the reaction mixture is a mixture containing a fatty acid lower alkyl ester, fats and oils, and glycerin, any material can be used as the filter medium material used for filtration. For example, polyethylene, polypropylene, polyester, and the like can be suitably used. Further, the coarseness of the filter medium may be such that the precipitated steryl glucoside does not pass, and preferably 100 μm or less, more preferably 50 μm or less, more preferably 20 μm or less. As the cartridge filter, for example, CP-01, CPH-01 manufactured by Chisso Filter Co., Ltd. can be suitably used. In addition, when a material with too fine mesh is used, the processing amount per filtration area is reduced and becomes inefficient, so that it is preferably 0.5 μm or more, more preferably 2 μm or more, more preferably 5 μm. The above can be used suitably.
After filtration, steryl glucoside may be purified and isolated from the filtration residue as necessary. Moreover, a fatty-acid lower alkyl ester and glycerol can be isolate | separated by carrying out oil-water separation of a filtrate.
The separation method of the present invention can be incorporated into a process for producing a fatty acid lower alkyl ester from fats and oils and a lower alcohol, and does not require a complicated operation or apparatus for precipitating steryl glucoside. Very useful. The separation method of the present invention can be carried out as a method for producing both fatty acid lower alkyl ester and steryl glucoside from fats and oils, and further producing three components of fatty acid lower alkyl ester, glycerin and steryl glucoside from fats and oils. Specific examples thereof include a method for producing a fatty acid lower alkyl ester, glycerin and steryl glucoside including the following steps (a) to (g).
Step (a): Transesterification reaction of fats and oils and lower alcohol Step (b): Step of separating the reaction mixture obtained from step (a) into oil and water (may include a lower alcohol removal step)
Step (c): Step of transesterifying the oil phase obtained in step (b) with a lower alcohol Step (d): Step of precipitating steryl glucoside in the reaction mixture obtained from step (c) ( (It may include a lower alcohol removing step)
Step (e): Step for separating steryl glucoside from the reaction mixture obtained in step (d) Step (f): Separating the reaction mixture separated in step (e) into oil and water to obtain fatty acid alkyl ester and glycerin Process In the said manufacturing method, the reaction article and operation in each process can be performed according to the above-mentioned preferable aspect and a well-known method. In the above production method, glycerin can also be recovered in the step (b).
The present invention comprises a step of transesterifying an oil and fat containing a steryl glucoside in a dissolved state with a lower alcohol to obtain a reaction mixture containing a fatty acid lower alkyl ester, glycerin and steryl glucoside, and from the reaction mixture A method for producing a fatty acid lower alkyl ester, glycerin and steryl glucoside, wherein the reaction mixture comprises an oil phase containing a fatty acid lower alkyl ester, It is obtained in a state separated into an aqueous phase containing glycerin and a solid phase containing steryl glucoside.
The present invention also includes a step of transesterifying the fat and oil containing steryl glucoside in a dissolved state and a lower alcohol to obtain a reaction mixture in which steryl glucoside is deposited, and separating steryl glucoside from the reaction mixture. There is also provided a process for producing steryl glucoside, comprising the steps of: The above-mentioned thing can also refer to the preferable aspect of this manufacturing method.
 次の実施例は本発明の実施について述べる。実施例は本発明の例示について述べるものであり、本発明を限定するためではない。
触媒製造例1
 エチルホスホン酸9.9gと、85%オルトリン酸27.7g、硝酸アルミニウム(9水和物)112.5gを水1000gに溶解させた。室温にて、この混合溶液にアンモニア水溶液を滴下し、pHを5まで上昇させた。途中、ゲル状の白色沈殿が生成した。沈殿をろ過し、水洗後、110℃で15時間乾燥し、60メッシュ以下に粉砕した。粉砕した触媒に対して、アルミナゾルを10%添加し、2.5mmφの押出成形を行った。これを250℃で3時間焼成して、固体酸触媒の成形触媒(以下、触媒1という)を得た。得られた触媒の弱酸点は1mmol/g−cat、強酸点は検出限界以下であった。
比較例1
 温度測定用に内径6mmの管を軸方向に有する、内径35.5mmφ、長さ800mmの反応管を2本直列につなぎ、触媒1をそれぞれ500ccずつ充填した。油脂としてはステリルグルコシドを45mg/kgの濃度で含む酸価8.5の精製椰子油を用い、これと液状メタノールを反応器上部より供給し、反応温度170℃、LHSV0.4、反応圧力3.0MPa−Gで反応を行った。メタノールは油脂に対し10モル倍(油脂を全てトリグリセリド換算)でフィードした。油脂の通液量は触媒1の体積に対して112倍を通液した。反終液はエバポレータを使用して、圧力−0.9867MPa−G(100mmHg)、100℃でメタノールを蒸発させた。油相中のメタノール含有量は1.0質量%以下であった。その後、反終液を50℃に冷却静置させ、メチルエステル相とグリセリン相に分離した。この反応混合物にはステリルグルコシドが析出していなかった。得られたメチルエステル相のメチルエステル濃度をガスクロマトグラフィーで測定したところ、85.3%であった。また得られたグリセリンは理論生成量に対して76%であった。なお、グリセリンの理論生成量は、原料ヤシ油通液量[g]/654[g/mol−ヤシ油]×92.04[g/mol−グリセリン]により求められ、理論生成量に対するグリセリン生成比率は、グリセリン生成量[g]/理論生成量[g]×100により求められる。
実施例1
 比較例1で得られたメチルエステル相を、比較例1と同じ反応管を用いて再度メタノールと反応させた。反応温度170℃、LHSV0.8、反応圧力3.0MPa−Gで反応を行った。メタノールは油脂に対し10モル倍(油脂を全てトリグリセリド換算)でフィードした。メチルエステル相の通液量は触媒1の体積に対して102倍を通液した。得られた反終液はエバポレータを使用して、圧力−0.9867MPa−G(100mmHg)、100℃でメタノールを蒸発させた。油相中のメタノール含有量は1.0質量%以下であった。その後、反終液を50℃に冷却させた。この際、メチルエステル相とグリセリン相の中間にステリルグルコシドの白色析出物が浮遊している状態であった。この混合物の全量をろ紙(ADVANTECH社製No2ろ紙)を使用して減圧ろ過したところ、ろ紙上に残渣としてステリルグルコシドの濃縮物が得られた。ステリルグルコシドとして78質量%の濃縮組成物を得た。またこの際のメチルエステル濃度は98.0%であり、得られたグリセリンは理論生成量に対して90.7%であった。
比較例2
 実施例1と同様の操作で反応を行い、2回目の反応後にメタノールの除去を行わない以外はすべて同様の操作を行った。ろ過前の反応混合物中のメタノール濃度は31.5%であった。50℃で静置分離させたが、ステリルグルコシドは析出せず、ろ過後のろ紙上にも残渣は得られなかった。
比較例3
 触媒1を充填した管型反応器に、ステリルグルコシドを45mg/kgの濃度で含む酸価8.5の精製椰子油をLHSV0.5、反応温度175℃、反応圧力4.0MPa−G、液状メタノールのモル比10モル倍を供給して反応を行わせた。この際の触媒体積に対する通液倍数は738倍であった。反応後の反応混合物はフラッシュ蒸留缶を使用し圧力0MPa−G、130℃で連続的にメタノール除去を行った。メタノール除去後の反応混合物中のメタノール濃度は1.8質量%であった。メタノール除去後の反応混合物を連続的に60℃に冷却後、カートリッジフィルター(チッソフィルター社製CP−01)に通してろ過を行ったが、析出物は得られなかった。
実施例2
 比較例3で得られたろ過後の反応混合物からメチルエステル相を分離した後、再度LHSV1.1、反応温度173℃、反応圧力4.0MPa−G、メタノールのモル比10モルの条件で管型反応器を用いて反応を行い、メチルエステル相のメチルエステル濃度が98.1%であり、グリセリン生成量が理論生成量に対し90.7%となる反応混合物を得た。触媒体積に対する通液倍数は1616倍であった。この混合物を連続的にフラッシュ蒸留缶に導入し、120℃,0MPa−Gでフラッシュ分離を行い、メタノール濃度2.1%の反応混合物を得た。更に連続的に45℃まで冷却後に、カートリッジフィルター(チッソフィルター社製CP−01)に通液させたところ、ステリルグルコシド82質量%を含む白色の濃縮組成物を得た。
比較例4
 触媒1を充填した管型反応器に、ステリルグルコシドを45mg/kgの濃度で含む酸価8.5の精製椰子油をLHSV0.4、反応温度166℃、反応圧力4.0MPa−G、液状メタノールのモル比10モル倍を供給して反応を行わせた。この際の触媒体積に対する通液倍数は38倍であった。反応後の反応混合物はフラッシュ蒸留缶を使用し圧力0MPa−G、130℃で連続的にメタノール除去を行った。メタノール除去後の反応混合物中のメタノール濃度は1.8質量%であった。メタノール除去後の反応混合物を連続的に40℃に冷却後、カートリッジフィルター(チッソフィルター社製CP−01)に通してろ過を行ったが、析出物は得られなかった。
比較例5
 比較例4で得られたろ過後の反応混合物からメチルエステル相を分離した後、再度LHSV1.5、反応温度182℃、反応圧力4.0MPa−G、メタノールのモル比10モルの条件で管型反応器を用いて反応を行い、メチルエステル相のメチルエステル濃度が97.9%となる反応混合物を得た。触媒体積に対する通液倍数は392倍であった。この混合物を連続的にフラッシュ蒸留缶に導入し、120℃,0MPa−Gでフラッシュ分離を行い、メタノール濃度2.2%の反応混合物を得た。更に連続的に60℃まで冷却後に、カートリッジフィルター(チッソフィルター社製CP−01)に通してろ過を行ったが、析出物は得られなかった。
 上記実施例及び比較例の反応条件、ステリルグルコシドの分離結果等を表1に示す。
Figure JPOXMLDOC01-appb-T000002
The following examples describe the practice of the present invention. The examples are illustrative of the invention and are not intended to limit the invention.
Catalyst production example 1
9.9 g of ethylphosphonic acid, 27.7 g of 85% orthophosphoric acid, and 112.5 g of aluminum nitrate (9 hydrate) were dissolved in 1000 g of water. At room temperature, an aqueous ammonia solution was added dropwise to the mixed solution to raise the pH to 5. On the way, a gel-like white precipitate was formed. The precipitate was filtered, washed with water, dried at 110 ° C. for 15 hours, and pulverized to 60 mesh or less. 10% alumina sol was added to the pulverized catalyst, and extrusion molding of 2.5 mmφ was performed. This was calcined at 250 ° C. for 3 hours to obtain a solid acid catalyst forming catalyst (hereinafter referred to as catalyst 1). The obtained catalyst had a weak acid point of 1 mmol / g-cat and a strong acid point below the detection limit.
Comparative Example 1
Two reaction tubes having an inner diameter of 35.5 mmφ and a length of 800 mm were connected in series, and 500 cc each of the catalyst 1 was packed for measuring the temperature. As fats and oils, refined coconut oil having an acid value of 8.5 containing steryl glucoside at a concentration of 45 mg / kg is used, and this and liquid methanol are supplied from the top of the reactor. The reaction temperature is 170 ° C., LHSV is 0.4, reaction pressure is 3 The reaction was performed at 0.0 MPa-G. Methanol was fed at a 10-fold molar ratio with respect to the fat (all the fat was converted to triglyceride). The oil and fat flowed 112 times the volume of the catalyst 1. As an anti-end solution, an evaporator was used to evaporate methanol at a pressure of −0.9867 MPa-G (100 mmHg) and 100 ° C. The methanol content in the oil phase was 1.0% by mass or less. Then, the anti-end liquid was cooled and allowed to stand at 50 ° C., and separated into a methyl ester phase and a glycerin phase. In this reaction mixture, steryl glucoside was not precipitated. The methyl ester concentration of the obtained methyl ester phase was measured by gas chromatography and found to be 85.3%. Moreover, the obtained glycerol was 76% with respect to the theoretical production amount. In addition, the theoretical production amount of glycerol is calculated | required by raw material coconut oil flow-through volume [g] / 654 [g / mol-coconut oil] x 92.04 [g / mol-glycerol], and the glycerol production ratio with respect to a theoretical production amount Is obtained by the following formula: glycerol production amount [g] / theoretical production amount [g] × 100.
Example 1
The methyl ester phase obtained in Comparative Example 1 was reacted with methanol again using the same reaction tube as in Comparative Example 1. The reaction was conducted at a reaction temperature of 170 ° C., LHSV of 0.8, and a reaction pressure of 3.0 MPa-G. Methanol was fed at a 10-fold molar ratio with respect to the fat (all the fat was converted to triglyceride). The amount of methyl ester phase passed was 102 times the volume of catalyst 1. The obtained anti-end liquid was evaporated using an evaporator at a pressure of −0.9867 MPa-G (100 mmHg) and 100 ° C. The methanol content in the oil phase was 1.0% by mass or less. Thereafter, the anti-end solution was cooled to 50 ° C. At this time, a white precipitate of steryl glucoside was suspended between the methyl ester phase and the glycerin phase. When the total amount of this mixture was filtered under reduced pressure using a filter paper (No. 2 filter paper manufactured by ADVANTECH), a concentrate of steryl glucoside was obtained as a residue on the filter paper. A concentrated composition of 78% by mass was obtained as steryl glucoside. The methyl ester concentration at this time was 98.0%, and the obtained glycerin was 90.7% based on the theoretical production amount.
Comparative Example 2
The reaction was carried out in the same manner as in Example 1, and the same operation was carried out except that methanol was not removed after the second reaction. The methanol concentration in the reaction mixture before filtration was 31.5%. Although it was allowed to stand at 50 ° C. for separation, steryl glucoside did not precipitate, and no residue was obtained on the filter paper after filtration.
Comparative Example 3
In a tubular reactor filled with the catalyst 1, purified coconut oil having an acid value of 8.5 containing steryl glucoside at a concentration of 45 mg / kg is LHSV 0.5, reaction temperature is 175 ° C., reaction pressure is 4.0 MPa-G, liquid The reaction was carried out by supplying a molar ratio of 10 moles of methanol. At this time, the passing ratio with respect to the catalyst volume was 738 times. The reaction mixture after the reaction was continuously removed with methanol at a pressure of 0 MPa-G and 130 ° C. using a flash distillation can. The methanol concentration in the reaction mixture after removal of methanol was 1.8% by mass. The reaction mixture after removal of methanol was continuously cooled to 60 ° C. and then filtered through a cartridge filter (CP-01 manufactured by Chisso Filter), but no precipitate was obtained.
Example 2
After separating the methyl ester phase from the reaction mixture after filtration obtained in Comparative Example 3, it was tube-shaped again under the conditions of LHSV 1.1, reaction temperature 173 ° C., reaction pressure 4.0 MPa-G, and a molar ratio of methanol of 10 mol. The reaction was carried out using a reactor to obtain a reaction mixture in which the methyl ester concentration in the methyl ester phase was 98.1% and the glycerin production amount was 90.7% of the theoretical production amount. The passing ratio with respect to the catalyst volume was 1616 times. This mixture was continuously introduced into a flash distillation can and subjected to flash separation at 120 ° C. and 0 MPa-G to obtain a reaction mixture having a methanol concentration of 2.1%. Furthermore, after continuously cooling to 45 ° C., the solution was passed through a cartridge filter (CP-01 manufactured by Chisso Filter Co., Ltd.) to obtain a white concentrated composition containing 82% by mass of steryl glucoside.
Comparative Example 4
In a tubular reactor filled with the catalyst 1, purified coconut oil having an acid value of 8.5 containing steryl glucoside at a concentration of 45 mg / kg is LHSV 0.4, reaction temperature is 166 ° C., reaction pressure is 4.0 MPa-G, liquid The reaction was carried out by supplying a molar ratio of 10 moles of methanol. At this time, the liquid passage ratio with respect to the catalyst volume was 38 times. The reaction mixture after the reaction was continuously removed with methanol at a pressure of 0 MPa-G and 130 ° C. using a flash distillation can. The methanol concentration in the reaction mixture after removal of methanol was 1.8% by mass. The reaction mixture after removal of methanol was continuously cooled to 40 ° C. and then filtered through a cartridge filter (CP-01 manufactured by Chisso Filter), but no precipitate was obtained.
Comparative Example 5
After separating the methyl ester phase from the reaction mixture after filtration obtained in Comparative Example 4, it was tube-shaped again under the conditions of LHSV 1.5, reaction temperature 182 ° C., reaction pressure 4.0 MPa-G, and a molar ratio of methanol of 10 mol. Reaction was performed using a reactor to obtain a reaction mixture in which the methyl ester concentration in the methyl ester phase was 97.9%. The passing ratio with respect to the catalyst volume was 392 times. This mixture was continuously introduced into a flash distillation can and subjected to flash separation at 120 ° C. and 0 MPa-G to obtain a reaction mixture having a methanol concentration of 2.2%. Further, after continuously cooling to 60 ° C., the solution was filtered through a cartridge filter (CP-01 manufactured by Chisso Filter), but no precipitate was obtained.
Table 1 shows the reaction conditions of the above Examples and Comparative Examples, the separation results of steryl glucoside, and the like.
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  ステリルグルコシドを溶解した状態で含有する油脂と低級アルコールとをエステル交換反応させてステリルグルコシドが析出した反応混合物を得る工程と、該反応混合物からステリルグルコシドを分離する工程とを有する、脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法。 Fatty acid having a step of obtaining a reaction mixture in which steryl glucoside is precipitated by subjecting an oil and fat containing steryl glucoside in a dissolved state to a transesterification reaction, and a step of separating steryl glucoside from the reaction mixture. A process for producing lower alkyl esters, glycerin and steryl glucoside.
  2.  ステリルグルコシドの分離を反応混合物のろ過により行う、請求項1記載の脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法。 The method for producing fatty acid lower alkyl ester, glycerin and steryl glucoside according to claim 1, wherein the separation of steryl glucoside is performed by filtration of the reaction mixture.
  3.  エステル交換反応を、油脂由来の脂肪酸の脂肪酸低級アルキルエステルへの変換率が88%以上となるまで行う、請求項1又は2記載の脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法。 The method for producing a fatty acid lower alkyl ester, glycerin and steryl glucoside according to claim 1 or 2, wherein the transesterification reaction is carried out until the conversion rate of fatty acid derived from fat into fatty acid lower alkyl ester is 88% or more.
  4. 反応混合物の温度を30~55℃に調整することにより、ステリルグルコシドが析出した反応混合物を得る、請求項1~3の何れか1項記載の脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法。 The production of fatty acid lower alkyl ester, glycerin and steryl glucoside according to any one of claims 1 to 3, wherein a reaction mixture in which steryl glucoside is precipitated is obtained by adjusting the temperature of the reaction mixture to 30 to 55 ° C. Law.
  5. 反応混合物中の低級アルコール濃度を8質量%以下に調整することにより、ステリルグルコシドが析出した反応混合物を得る、請求項1~4の何れか1項記載の脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法。 The fatty acid lower alkyl ester, glycerin and steryl according to any one of claims 1 to 4, wherein a reaction mixture in which steryl glucoside is precipitated is obtained by adjusting the lower alcohol concentration in the reaction mixture to 8% by mass or less. Production method of glucoside.
  6. エステル交換反応を、固体酸触媒を用いて行う、請求項1~5の何れか1項記載の脂肪酸低級アルキルエステル、グリセリン及びステリルグルコシドの製造法。 6. The process for producing a fatty acid lower alkyl ester, glycerin and steryl glucoside according to any one of claims 1 to 5, wherein the transesterification reaction is carried out using a solid acid catalyst.
PCT/JP2010/061359 2009-06-30 2010-06-28 Method for producing fatty acid lower alkyl ester, glycerin, and steryl glucoside WO2011002090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI1015067-6A BRPI1015067B1 (en) 2009-06-30 2010-06-28 METHOD FOR PRODUCING A LOWER ALKYL ESTER OF FATTY ACID, GLYCEROL AND STERILE GLYCOSIDE.
CN201080027594.5A CN102459307B (en) 2009-06-30 2010-06-28 Method for producing fatty acid lower alkyl ester, glycerin, and steryl glucoside

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-155423 2009-06-30
JP2009155423 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011002090A1 true WO2011002090A1 (en) 2011-01-06

Family

ID=43411158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061359 WO2011002090A1 (en) 2009-06-30 2010-06-28 Method for producing fatty acid lower alkyl ester, glycerin, and steryl glucoside

Country Status (5)

Country Link
JP (1) JP5618648B2 (en)
CN (1) CN102459307B (en)
BR (1) BRPI1015067B1 (en)
MY (1) MY162664A (en)
WO (1) WO2011002090A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665537A1 (en) * 2011-01-21 2013-11-27 Perstorp Ab Method for purification of biodiesel using a self-cleaning filter
CN116103167A (en) * 2023-02-09 2023-05-12 南京工业大学 Wilkham yeast with abnormal characteristics, and separation method and application thereof
US11950828B2 (en) 2012-02-08 2024-04-09 Avenu Medical, Inc. Intravascular arterial to venous anastomosis and tissue welding catheter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199992A (en) * 2000-12-05 2001-07-24 Showa Sangyo Co Ltd Method of fractionating soybean lipid saccharide
JP2007169355A (en) * 2005-12-20 2007-07-05 Kao Corp Method for producing fatty acid alkyl ester and glycerol
US20070151146A1 (en) * 2005-12-29 2007-07-05 Inmok Lee Processes of Producing Biodiesel and Biodiesel Produced Therefrom
US20070175091A1 (en) * 2006-02-02 2007-08-02 Renewable Energy Group, Llc Biodiesel cold filtration process
WO2009081836A1 (en) * 2007-12-26 2009-07-02 Nippon Shokubai Co., Ltd. Method and apparatus for producing fatty acid alkyl ester and/or glycerin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310090A (en) * 1994-05-19 1995-11-28 Tensei Seiyu Kk Production of fatty acid methyl ester
FR2752242B1 (en) * 1996-08-08 1998-10-16 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF ESTERS FROM VEGETABLE OR ANIMAL OILS AND ALCOHOLS
US8039651B2 (en) * 2007-10-31 2011-10-18 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl ester and/or glycerin
US8093416B2 (en) * 2007-11-22 2012-01-10 Nippon Shokubai Co., Ltd. Method for producing fatty acid alkyl esters and/or glycerin using fat or oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199992A (en) * 2000-12-05 2001-07-24 Showa Sangyo Co Ltd Method of fractionating soybean lipid saccharide
JP2007169355A (en) * 2005-12-20 2007-07-05 Kao Corp Method for producing fatty acid alkyl ester and glycerol
US20070151146A1 (en) * 2005-12-29 2007-07-05 Inmok Lee Processes of Producing Biodiesel and Biodiesel Produced Therefrom
US20070175091A1 (en) * 2006-02-02 2007-08-02 Renewable Energy Group, Llc Biodiesel cold filtration process
WO2009081836A1 (en) * 2007-12-26 2009-07-02 Nippon Shokubai Co., Ltd. Method and apparatus for producing fatty acid alkyl ester and/or glycerin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE ET AL., THE ROLE OF STEROL GLUCOSIDES ON FILTER PLUGGING, April 2007 (2007-04-01), BBI INTERNATIONAL *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665537A1 (en) * 2011-01-21 2013-11-27 Perstorp Ab Method for purification of biodiesel using a self-cleaning filter
EP2665537A4 (en) * 2011-01-21 2014-07-02 Perstorp Ab Method for purification of biodiesel using a self-cleaning filter
US11950828B2 (en) 2012-02-08 2024-04-09 Avenu Medical, Inc. Intravascular arterial to venous anastomosis and tissue welding catheter
CN116103167A (en) * 2023-02-09 2023-05-12 南京工业大学 Wilkham yeast with abnormal characteristics, and separation method and application thereof

Also Published As

Publication number Publication date
CN102459307A (en) 2012-05-16
BRPI1015067A2 (en) 2015-09-01
JP2011026567A (en) 2011-02-10
MY162664A (en) 2017-06-30
CN102459307B (en) 2014-11-26
JP5618648B2 (en) 2014-11-05
BRPI1015067B1 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
EP1963471B1 (en) Process for producing fatty acid alkyl esters and glycerin
EP1966360B1 (en) Process for producing alkyl fatty esters
ES2593283T3 (en) Method for the production of fatty acid alkyl esters
JPH01283251A (en) Continous esterification of fatty acid
JP2007153943A (en) Method for producing ester by transesterification reaction
JP5618648B2 (en) Process for producing fatty acid lower alkyl ester, glycerin and steryl glucoside
WO2009081836A1 (en) Method and apparatus for producing fatty acid alkyl ester and/or glycerin
JP5595719B2 (en) Method for producing glycerin
CN109438187B (en) Use of sulfonic acid for recovery of glycerol from transesterification of triglycerides
JP5334462B2 (en) Production method of fatty acid ester
JP2006241015A (en) Method for producing fatty acid lower alkyl ester
JP5324772B2 (en) Method for producing high-quality fatty acid alkyl ester and / or glycerin
US8853436B2 (en) Heterogeneous catalysts for transesterification of triglycerides and preparation methods of same
JP2001062308A (en) Solid acid catalyst
JP2010037256A (en) Method for producing sucrose fatty acid ester
KR20020028119A (en) Process for Preparing Fatty Acid Ester Using Synthetic Zeolite Catalyst
JP5618126B2 (en) Method for producing ester compound
CN103342652A (en) Preparation method for N,N-dimethylamino acetate
PL226051B1 (en) Method for obtaining lactic acid esters from the lactic acid salts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027594.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10245/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794258

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1015067

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1015067

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111215