WO2011002085A1 - 通信方法、通信システム及び制御装置 - Google Patents

通信方法、通信システム及び制御装置 Download PDF

Info

Publication number
WO2011002085A1
WO2011002085A1 PCT/JP2010/061342 JP2010061342W WO2011002085A1 WO 2011002085 A1 WO2011002085 A1 WO 2011002085A1 JP 2010061342 W JP2010061342 W JP 2010061342W WO 2011002085 A1 WO2011002085 A1 WO 2011002085A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection state
size
hsdpa
data unit
mobile station
Prior art date
Application number
PCT/JP2010/061342
Other languages
English (en)
French (fr)
Inventor
林 貴裕
昌史 増田
安藤 英浩
隆明 佐藤
佳之 保田
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/382,073 priority Critical patent/US8737224B2/en
Priority to CN2010800294522A priority patent/CN102550073A/zh
Priority to EP10794253A priority patent/EP2451205A1/en
Publication of WO2011002085A1 publication Critical patent/WO2011002085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to a communication method, a communication system, and a control device that switch between a first connection state in which a data unit is transmitted in a first size and a second connection state in which a data unit is transmitted in a second size larger than the first size. .
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • DCH Dedicated Channel
  • PDU Protocol Data Unit
  • first size for example, 42 octets
  • the size of the PDU (for example, RLC PDU) is the second size (82 octets). Note that the second size is larger than the first size.
  • the receiving apparatus accumulates the PDU in the buffer and transmits delivery confirmation information (ACK / NACK) indicating whether or not the receiving apparatus has successfully received the PDU to the transmitting apparatus.
  • the receiving device uses the PDU retransmitted from the transmitting device to recover the error of the PDU that the receiving device has failed to receive.
  • the size of the PDU accumulated in the buffer is different from the size of the PDU retransmitted from the transmission apparatus. Therefore, since an error occurring in the radio section cannot be recovered, the PDU stored in the buffer is discarded. As described above, with the PDU size change, the transmitted PDU is wasted and data loss occurs.
  • the communication method is a method of switching between a first connection state in which a data unit is transmitted in a first size and a second connection state in which the data unit is transmitted in a second size that is also larger than the first size. is there.
  • the communication method maintains the size of the data unit at the first size when transitioning from the first connection state to the second connection state after transitioning from the second connection state to the first connection state. Comprising steps.
  • the communication method is such that the receiving device that receives the data unit transmits delivery confirmation information indicating whether or not the data unit has been successfully received to the transmitting device that receives the data unit. And a step in which the transmitting device retransmits a data unit that the receiving device has failed to receive to the receiving device.
  • the data unit is an RLC layer protocol data unit.
  • the first size is 42 octets.
  • the second size is 82 octets.
  • the first connection state is a common channel connection state.
  • the second connection state is an HSDPA connection state.
  • the first connection state is an individual channel connection state.
  • the second connection state is an HSDPA connection state.
  • the communication system switches between a first connection state in which a data unit is transmitted in a first size and a second connection state in which the data unit is transmitted in a second size that is also larger than the first size.
  • the communication system maintains the size of the data unit at the first size when transitioning from the first connection state to the second connection state after transitioning from the second connection state to the first connection state.
  • a control unit is provided.
  • the control device switches between a first connection state in which a data unit is transmitted in a first size and a second connection state in which the data unit is transmitted in a second size that is also larger than the first size.
  • the control device maintains the size of the data unit at the first size when transitioning from the first connection state to the second connection state after transitioning from the second connection state to the first connection state.
  • a control unit is provided.
  • FIG. 1 is a diagram illustrating a configuration of a communication system 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating state transition according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the mobile station 10 according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration of the wireless control device 40 according to the first embodiment.
  • FIG. 5 is a diagram illustrating an operation of the communication system 100 according to the first embodiment.
  • FIG. 6 is a diagram illustrating an operation of the communication system 100 according to the first embodiment.
  • the communication method is a method of switching between a first connection state in which a data unit is transmitted in a first size and a second connection state in which a data unit is transmitted in a second size that is also larger in first size.
  • the communication method includes a step of maintaining the size of the data unit at the first size when transitioning from the first connection state to the second connection state after transitioning from the second connection state to the first connection state.
  • the communication system and the control device switch between a first connection state in which a data unit is transmitted in a first size and a second connection state in which a data unit is transmitted in a second size that is also larger than the first size.
  • the communication system includes a controller that maintains the size of the data unit at the first size when the first connection state is changed to the second connection state after the second connection state is changed to the first connection state.
  • the size of the data unit is changed to the first size without changing to the second size. maintain. Therefore, although the increase in transmission speed is sacrificed, discarding of the data unit accompanying the data unit size change is suppressed. That is, data loss is reduced.
  • FIG. 1 is a diagram illustrating a configuration of a communication system 100 according to the first embodiment.
  • the communication system 100 includes a mobile station 10, a radio base station 30, a radio control device 40, and a core network 50.
  • the mobile station 10 communicates with the radio control device 40 via the radio base station 30 that manages the service area 20 in which the mobile station 10 exists.
  • the mobile station 10 functions as a receiving device that receives downlink data, and functions as a transmitting device that transmits uplink data.
  • the radio base station 30 manages the service area 20 and communicates with the mobile stations 10 existing in the service area 20.
  • the service area 20 may be configured by one cell or may be configured by a plurality of cells.
  • a cell is identified by frequency, time slot or spreading code.
  • a cell may be considered not only a spatial area but also a function provided in the radio base station 30.
  • the radio base station 30A to the radio base station 30D are provided as the radio base station 30.
  • Radio base station 30A to radio base station 30D manage service area 20A to service area 20D, respectively.
  • the radio control device 40 manages the radio base station 30 and communicates with the mobile station 10 via the radio base station 30.
  • the radio network controller 40 functions as a transmission device that transmits downlink data and functions as a reception device that receives uplink data.
  • the wireless control device 40A to the wireless control device 40B are provided as the wireless control device 40.
  • the radio control device 40A manages the radio base station 30A and the radio base station 30B
  • the radio control device 40B manages the radio base station 30C and the radio base station 30D.
  • the core network 50 is connected to a radio access network constituted by the radio base station 30 and the radio control device 40.
  • the core network 50 includes a circuit switch and a packet switch.
  • the state transition of the mobile station 10 will be described by taking HSDPA (High Speed Downlink Packet Access) as an example. Further, description will be given by taking downlink communication as an example. That is, the mobile station 10 functions as a receiving device, and the radio control device 40 functions as a transmitting device. Further, the wireless control device 40 functions as a control device.
  • HSDPA High Speed Downlink Packet Access
  • FIG. 2 is a diagram illustrating state transition according to the first embodiment.
  • the mobile station 10 includes a standby state 101, a first HSDPA connection state 102, a common channel connection state 103, an individual channel connection state 104, and a second HSDPA connection state 105.
  • the standby state 101 is a state where no wireless link is set.
  • the mobile station 10 performs location registration processing, cell selection processing, and the like.
  • the first HSDPA connection state 102 is a state in which a channel (wireless link) corresponding to HSDPA is set.
  • the channel corresponding to HSDPA is, for example, HS-DSCH (High Speed Downlink Shared Channel).
  • HS-DSCH is a channel shared by a plurality of mobile stations 10.
  • the common channel connection state 103 is a state in which a common channel (wireless link) is set for the mobile stations 10 existing in the cell.
  • a channel common to the mobile stations 10 existing in the cell is, for example, FACH (Forward Access Channel).
  • the mobile station 10 transitions to the common channel connection state 103 when the downlink data flow rate falls below a predetermined threshold. For example, the mobile station 10 transitions from the first HSDPA connection state 102 to the common channel connection state 103. Note that the mobile station 10 may transition from the dedicated channel connection state 104 or the second HSDPA connection state 105 to the common channel connection state 103.
  • the individual channel connection state 104 is a state in which an individual channel (wireless link) is set in the mobile station 10.
  • An individual channel for the mobile station 10 is, for example, a DCH (Dedicated Channel).
  • the mobile station 10 transitions from the first HSDPA connection state 102 to the dedicated channel connection state 104.
  • the mobile station 10 may transition from the common channel connection state 103 or the second HSDPA connection state 105 to the dedicated channel connection state 104.
  • the mobile station 10 may transition from the standby state 101 to the dedicated channel connection state 104 when starting communication in an existing cell that does not support HSDPA. is there.
  • the second HSDPA connection state 105 is a state in which a channel (wireless link) corresponding to HSDPA is set, similarly to the first HSDPA connection state 102.
  • the second HSDPA connection state 105 is a state in which after the transition from the first HSDPA connection state 102 to the common channel connection state 103, the state transitions again to the HSDPA connection state.
  • the second HSDPA connection state 105 is a state in which after the transition from the first HSDPA connection state 102 to the dedicated channel connection state 104, the transition to the HSDPA connection state again.
  • the 1st HSDPA connection state 102 and the 2nd HSDPA connection state 105 are only demonstrated as a separate state for convenience of explanation.
  • the first HSDPA connection state 102 and the second HSDPA connection state 105 are states in which channels (wireless links) corresponding to HSDPA are set, and in these states, only the size of the data unit is different.
  • the first embodiment exemplifies a case where two sizes (first size and second size) are used as the size of the data unit.
  • the first size is the size of the data unit used in the common channel connection state 103, the dedicated channel connection state 104, and the second HSDPA connection state 105.
  • the first size is, for example, 42 octets (see 3GPP TS34.108).
  • the second size is the size of the data unit used in the first HSDPA connection state 102. Note that the second size is larger than the first size.
  • the second size is, for example, 82 octets (see 3GPP TS34.108).
  • the second HSDPA connection state 105 is an HSDPA connection state, but in the second HSDPA connection state 105, the same size of data unit (the first data connection state as the state before the transition (the common channel connection state 103 or the individual channel connection state 104)) Note that size) is used. That is, in the second HSDPA connection state 105, the size (first size) of the data unit in the state before the transition (the common channel connection state 103 or the dedicated channel connection state 104) is maintained.
  • an RLC PDU Protocol Data Unit
  • RLC Radio Link Control
  • FIG. 3 is a diagram illustrating a configuration of the mobile station 10 according to the first embodiment.
  • the mobile station 10 includes a communication unit 11, an RLC layer processing unit 12, and an upper layer processing unit 13.
  • the communication unit 11 communicates with the radio control device 40 via the radio base station 30.
  • the communication unit 11 communicates user data and control data.
  • the control data includes a connection request (RRC Connection Request, etc.), RAB connection setting (Radio Bearer Setup), RAB switching setting (Radio Bearer Reconfiguration), and the like.
  • connection request is a message (RRC (Radio Resource Control) message) transmitted from the mobile station 10 to the radio network controller 40.
  • the connection request is a message requesting setting of a radio link.
  • the RAB connection setting (Radio Bearer Setup) is a message (RRC message) transmitted from the radio network controller 40 to the mobile station 10.
  • the RAB connection setting (Radio Bearer Setup) is a message indicating the wireless link connection setting, and includes information specifying the size of the RLC PDU.
  • the RAB switching setting (Radio Bearer Reconfiguration) is a message (RRC message) transmitted from the radio network controller 40 to the mobile station 10.
  • the RAB switching setting (Radio Bearer Reconfiguration) is a message indicating the wireless link switching setting, and includes information specifying the size of the RLC PDU.
  • the RLC layer processing unit 12 performs processing in the RLC layer. Specifically, the RLC layer processing unit 12 has a buffer, and stores the RLC PDU received from the radio network controller 40 in the buffer. The RLC layer processing unit 12 processes the RLC PDU with the size specified by the RAB connection setting (Radio Bearer Setup) or the RAB switching setting (Radio Bearer Reconfiguration). The RLC layer processing unit 12 is configured to discard the RLC PDU stored in the buffer when the size of the RLC PDU is changed.
  • RAB connection setting Radio Bearer Setup
  • RAB switching setting Radio Bearer Reconfiguration
  • the RLC layer processing unit 12 may perform the following processing, for example.
  • the RLC layer processing unit 12 rearranges the RLC PDUs stored in the buffer based on the sequence number set in the RLC PDU.
  • the RLC layer processing unit 12 transmits delivery confirmation information indicating whether or not the reception of the RLC PDU is successful to the radio base station 30.
  • the delivery confirmation information is “ACK” indicating that the reception of the RLC PDU is successful or “NACK” indicating that the reception of the RLC PDU is failed.
  • the RLC layer processing unit is provided in the radio network controller 40, and the radio network controller 40 retransmits RLC PDUs that the mobile station 10 has failed to receive. Therefore, the RLC layer processing unit 12 recovers the error in the radio section by the RLC PDU retransmitted from the radio control device 40.
  • the upper layer processing unit 13 performs processing according to the RRC message received from the radio control device 40. For example, the upper layer processing unit 13 notifies the RLC layer processing unit 12 of the size of the RLC PDU according to the RAB connection setting (Radio Bearer Setup) or the RAB switching setting (Radio Bearer Reconfiguration).
  • RAB connection setting Radio Bearer Setup
  • RAB switching setting Radio Bearer Reconfiguration
  • FIG. 4 is a diagram illustrating a configuration of the wireless control device 40 according to the first embodiment.
  • the wireless control device 40 includes a communication unit 41, a detection unit 42, an RLC layer processing unit 43, and an upper layer processing unit 44.
  • the communication unit 41 communicates with the mobile station 10 via the radio base station 30.
  • the communication unit 41 communicates user data and control data.
  • the detecting unit 42 detects a trigger for changing the state of the mobile station 10. For example, the detection unit 42 detects a change in the flow rate of the downlink data or a change in the position of the mobile station 10.
  • the detection unit 42 detects that the flow rate of the downlink data has fallen below a predetermined threshold value. That the flow rate of the downlink data falls below a predetermined threshold is a trigger for transitioning the state of the mobile station 10 from the first HSDPA connection state 102 to the common channel connection state 103.
  • the detection unit 42 detects that the flow rate of the downlink data exceeds a predetermined threshold in the common channel connection state 103. That the downlink data flow rate exceeds the predetermined threshold is a trigger for transitioning the state of the mobile station 10 from the common channel connection state 103 to the second HSDPA connection state 105.
  • the detection unit 42 detects that the mobile station 10 has moved from the cell corresponding to HSDPA to the outside of the cell corresponding to HSDPA.
  • the movement from the cell corresponding to HSDPA to the outside of the cell corresponding to HSDPA is a trigger for changing the state of the mobile station 10 from the first HSDPA connection state 102 to the dedicated channel connection state 104.
  • the detection unit 42 detects that the mobile station 10 has moved from outside the cell corresponding to HSDPA into the cell corresponding to HSDPA. Movement from outside the cell corresponding to HSDPA into the cell corresponding to HSDPA is a trigger for transitioning the state of the mobile station 10 from the dedicated channel connection state 104 to the second HSDPA connection state 105.
  • the RLC layer processing unit 43 performs processing in the RLC layer. Specifically, the RLC layer processing unit 43 instructs the communication unit 41 to transmit the RLC PDU in which the sequence number is set to the mobile station 10 via the radio base station 30.
  • the upper layer processing unit 44 performs processing in the RRC layer. Specifically, the upper layer processing unit 44 sends the RAB connection setting (Radio Bearer Setup) or the RAB switching setting (Radio Bearer Reconfiguration) to the communication unit 41 via the radio base station 30. Instruct.
  • RAB connection setting Radio Bearer Setup
  • RAB switching setting Radio Bearer Reconfiguration
  • the upper layer processing unit 44 controls the size of the RLC PDU according to the detection result of the detection unit 42.
  • the upper layer processing unit 44 performs RAB switching that specifies the first size as the size of the RLC PDU when it is detected in the first HSDPA connection state 102 that the downstream data flow rate is below a predetermined threshold.
  • the communication unit 41 is instructed to transmit the setting (Radio Bearer Reconfiguration).
  • the upper layer processing unit 44 also sets the RAB switching setting to specify the first size as the RLC PDU size when it is detected in the common channel connection state 103 that the flow rate of the downlink data exceeds a predetermined threshold ( The communication unit 41 is instructed to transmit Radio Bearer Reconfiguration).
  • the upper layer processing unit 44 when the upper layer processing unit 44 transitions from the first HSDPA connection state 102 to the common channel connection state 103 and then transitions from the common channel connection state 103 to the second HSDPA connection state 105, the upper layer processing unit 44 changes the size of the RLC PDU. Maintain one size.
  • the upper layer processing unit 44 detects the size of the RLC PDU when it is detected in the first HSDPA connection state 102 that the mobile station 10 has moved from the cell corresponding to HSDPA to the outside of the cell corresponding to HSDPA.
  • the communication unit 41 is instructed to transmit a RAB switching setting (Radio Bearer Reconfiguration) specifying the first size.
  • the upper layer processing unit 44 sets the RLC PDU size as the size of the RLC PDU.
  • the communication unit 41 is instructed to transmit a RAB switching setting (Radio Bearer Reconfiguration) that designates one size.
  • the upper layer processing unit 44 when the upper layer processing unit 44 transitions from the first HSDPA connection state 102 to the dedicated channel connection state 104 and then transitions from the dedicated channel connection state 104 to the second HSDPA connection state 105, the upper layer processing unit 44 changes the size of the RLC PDU. Maintain one size.
  • the upper layer processing unit 44 When the upper layer processing unit 44 receives a connection request (such as RRC Connection Request) requesting setting of a channel (wireless link) corresponding to HSDPA in the standby state 101, the upper layer processing unit 44 sets the second size as the RLC PDU size.
  • the communication unit 41 is instructed to transmit a RAB connection setting (Radio Bearer Setup).
  • step 10 the mobile station 10 is in a standby state 101.
  • step 11 the mobile station 10 transmits a connection request (such as RRC Connection Request) requesting setting of a channel (wireless link) corresponding to HSDPA to the wireless control device 40.
  • a connection request such as RRC Connection Request
  • the radio network controller 40 transmits to the mobile station 10 an RAB connection setting (Radio Bearer Setup) that designates the second size as the size of the RLC PDU.
  • RAB connection setting Radio Bearer Setup
  • the RAB connection setting includes information indicating a channel (wireless link) setting corresponding to HSDPA.
  • step 13 the mobile station 10 transitions from the standby state 101 to the first HSDPA connection state 102.
  • step 14 the radio network controller 40 detects that the flow rate of the downlink data has fallen below a predetermined threshold value.
  • the mobile station 10 may detect that the downlink data flow rate has fallen below a predetermined threshold. In such a case, the mobile station 10 notifies the radio network controller 40 that the downstream data flow rate has fallen below a predetermined threshold.
  • the radio network controller 40 transmits to the mobile station 10 an RAB switching setting (Radio Bearer Reconfiguration) that specifies the first size as the size of the RLC PDU.
  • the RAB switching setting Radio Bearer Reconfiguration
  • the RAB switching setting includes information indicating a channel (radio link) setting common to the mobile stations 10 existing in the cell.
  • step 16 the mobile station 10 transits from the first HSDPA connection state 102 to the common channel connection state 103.
  • step 17 the wireless control device 40 detects that the flow rate of the downlink data has exceeded a predetermined threshold value.
  • the mobile station 10 may detect that the downlink data flow rate has exceeded a predetermined threshold. In such a case, the mobile station 10 notifies the radio network controller 40 that the downstream data flow rate has exceeded a predetermined threshold.
  • the radio control device 40 transmits to the mobile station 10 an RAB switching setting (Radio Bearer Reconfiguration) that specifies the first size as the size of the RLC PDU.
  • the RAB switching setting Radio Bearer Reconfiguration
  • the RAB switching setting includes information indicating a channel (wireless link) setting corresponding to HSDPA.
  • step 20 the mobile station 10 is in a standby state 101.
  • step 21 the mobile station 10 transmits a connection request (such as RRC Connection Request) requesting setting of a channel (wireless link) corresponding to HSDPA to the wireless control device 40.
  • a connection request such as RRC Connection Request
  • the radio control device 40 transmits to the mobile station 10 an RAB connection setting (Radio Bearer Setup) that specifies the second size as the size of the RLC PDU.
  • RAB connection setting Radio Bearer Setup
  • the RAB connection setting includes information indicating a channel (wireless link) setting corresponding to HSDPA.
  • step 23 the mobile station 10 transitions from the standby state 101 to the first HSDPA connection state 102.
  • the radio network controller 40 detects that the mobile station 10 has moved from the cell corresponding to HSDPA to the outside of the cell corresponding to HSDPA.
  • the mobile station 10 may detect that the mobile station 10 has moved from the cell corresponding to HSDPA to the outside of the cell corresponding to HSDPA. In such a case, the mobile station 10 notifies the radio control apparatus 40 that the mobile station 10 has moved from the cell corresponding to HSDPA to the outside of the cell corresponding to HSDPA.
  • the radio network controller 40 transmits to the mobile station 10 a RAB switching setting (Radio Bearer Reconfiguration) that specifies the first size as the size of the RLC PDU.
  • the RAB switching setting (Radio Bearer Reconfiguration) includes information indicating the setting of an individual channel (wireless link) in the mobile station 10.
  • step 26 the mobile station 10 transits from the first HSDPA connection state 102 to the dedicated channel connection state 104.
  • the radio network controller 40 detects that the mobile station 10 has moved from outside the cell corresponding to HSDPA into the cell corresponding to HSDPA.
  • the mobile station 10 may detect that the mobile station 10 has moved from outside the cell corresponding to HSDPA into the cell corresponding to HSDPA. In such a case, the mobile station 10 notifies the radio network controller 40 that the mobile station 10 has moved from outside the cell corresponding to HSDPA into the cell corresponding to HSDPA.
  • the radio controller 40 transmits to the mobile station 10 an RAB switching setting (Radio Bearer Reconfiguration) that designates the first size as the size of the RLC PDU.
  • the RAB switching setting Radio Bearer Reconfiguration
  • the RAB switching setting includes information indicating a channel (wireless link) setting corresponding to HSDPA.
  • the first connection state (common channel connection state 103 or individual channel connection state 104)
  • the first connection state (common channel connection state 103 or individual
  • the second connection state (second HSDPA connection state 105)
  • the size of the data unit (RLC PDU) is maintained at the first size without being changed to the second size. Therefore, although an increase in transmission rate is sacrificed, discarding of the data unit (RLC PDU) accompanying a change in the size of the data unit (RLC PDU) is suppressed. That is, data loss is reduced.
  • a PDCP (Packet Data Convergence Protocol) layer is not provided as an upper layer of the RLC layer, and data loss can be reduced even if retransmission control in the PDCP layer is not performed.
  • PDCP Packet Data Convergence Protocol
  • the downlink communication is exemplified, but the embodiment is not limited to this. Specifically, the embodiment may be applied to uplink communication.
  • the common channel connection state 103 and the individual channel connection state 104 are exemplified as the first connection state in which the data unit is transmitted in the first size.
  • the HSDPA connection state was illustrated as a 2nd connection state which transmits a data unit by 2nd size.
  • the embodiment is not limited to this.
  • the data unit may be maintained. That is, it should be noted that specific names relating to the first connection state and the second connection state are not important.
  • the state of the mobile station 10 is merely exemplified in the embodiment, and there may be other connection states.
  • the wireless control device 40 controls the size of the data unit, but the embodiment is not limited to this.
  • the MME Mobility Management Entity
  • EPC Evolved Packet Core
  • the radio base station 30 may control the size of the data unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

 通信方法は、第1サイズでデータユニットを伝送する第1接続状態と、第1サイズよりも大きい第2サイズでデータユニットを伝送する第2接続状態とを切り替える方法である。通信方法は、第2接続状態から第1接続状態に遷移した後に、第1接続状態から第2接続状態に遷移した場合に、データユニットのサイズを第1サイズで維持するステップを備える。

Description

通信方法、通信システム及び制御装置
 本発明は、第1サイズでデータユニットを伝送する第1接続状態と、第1サイズよりも大きい第2サイズでデータユニットを伝送する第2接続状態とを切り替える通信方法、通信システム及び制御装置に関する。
 近年、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)などのように、データの伝送速度を高める技術が提案されている。
 ここで、R99(Release 99)仕様では、DCH(Dedicated Channel)を用いてデータが伝送される。例えば、DCHでは、PDU:Protocol Data Unit(例えば、RLC PDU)のサイズは、第1サイズ(例えば、42オクテット)である。
 一方で、HSDPAでは、HS-DSCH(High Speed Downlink Shared Channel)を用いてデータが伝送される。例えば、HS-DSCHでは、PDU(例えば、RLC PDU)のサイズは、第2サイズ(82オクテット)である。なお、第2サイズが第1サイズよりも大きい。
 このように、第1サイズよりも大きい第2サイズのPDUを用いることによって、PDUに割り振られるシーケンス番号の取り得る範囲を拡げずに、データの伝送速度の高速化が図られている(例えば、特許文献1)。
 受信装置は、PDUをバッファに蓄積するとともに、受信装置がPDUの受信に成功したか否かを示す送達確認情報(ACK/NACK)を送信装置に送信する。受信装置は、送信装置から再送されたPDUを用いて、受信装置が受信に失敗したPDUの誤りを回復する。
 上述したように、PDUのサイズが変更されると、バッファに蓄積されたPDUのサイズが送信装置から再送されたPDUのサイズと異なってしまう。従って、無線区間で生じる誤りを回復できないため、バッファに蓄積されたPDUが破棄される。このように、PDUのサイズ変更に伴って、送信済みのPDUが無駄になり、データロスが生じてしまう。
 同様に、送信装置においても、PDUのサイズが変更されると、受信装置が受信に成功した旨を示す送達確認情報が得られていないPDUを破棄する必要があり、データロスが生じてしまう。
特開2004-364277号公報
 第1の特徴に係る通信方法は、第1サイズでデータユニットを伝送する第1接続状態と、前記第1サイズも大きい第2サイズで前記データユニットを伝送する第2接続状態とを切り替える方法である。通信方法は、前記第2接続状態から前記第1接続状態に遷移した後に、前記第1接続状態から前記第2接続状態に遷移した場合に、前記データユニットのサイズを前記第1サイズで維持するステップを備える。
 第1の特徴において、通信方法は、前記データユニットを受信する受信装置が、前記データユニットを受信する送信装置に対して、前記データユニットの受信に成功したか否かを示す送達確認情報を送信するステップと、前記送信装置が、前記受信装置に対して、前記受信装置が受信に失敗したデータユニットを再送するステップとを備える。
 第1の特徴において、前記第1サイズ及び前記第2サイズは固定長である。前記データユニットは、RLCレイヤのプロトコルデータユニットである。
 第1の特徴において、前記第1サイズは、42オクテットである。前記第2サイズは、82オクテットである。
 第1の特徴において、前記第1接続状態は、共通チャネル接続状態である。前記第2接続状態は、HSDPA接続状態である。
 第1の特徴において、前記第1接続状態は、個別チャネル接続状態である。前記第2接続状態は、HSDPA接続状態である。
 第2の特徴に係る通信システムは、第1サイズでデータユニットを伝送する第1接続状態と、前記第1サイズも大きい第2サイズで前記データユニットを伝送する第2接続状態とを切り替える。通信システムは、前記第2接続状態から前記第1接続状態に遷移した後に、前記第1接続状態から前記第2接続状態に遷移した場合に、前記データユニットのサイズを前記第1サイズで維持する制御部を備える。
 第3の特徴に係る制御装置は、第1サイズでデータユニットを伝送する第1接続状態と、前記第1サイズも大きい第2サイズで前記データユニットを伝送する第2接続状態とを切り替える。制御装置は、前記第2接続状態から前記第1接続状態に遷移した後に、前記第1接続状態から前記第2接続状態に遷移した場合に、前記データユニットのサイズを前記第1サイズで維持する制御部を備える。
図1は、第1実施形態に係る通信システム100の構成を示す図である。 図2は、第1実施形態に係る状態遷移を示す図である。 図3は、第1実施形態に係る移動局10の構成を示す図である。 図4は、第1実施形態に係る無線制御装置40の構成を示す図である。 図5は、第1実施形態に係る通信システム100の動作を示す図である。 図6は、第1実施形態に係る通信システム100の動作を示す図である。
 以下において、本発明の実施形態に係る通信方法、通信システム及び制御装置について、図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。
 ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 [実施形態の概要]
 実施形態に係る通信方法は、第1サイズでデータユニットを伝送する第1接続状態と、第1サイズも大きい第2サイズでデータユニットを伝送する第2接続状態とを切り替える方法である。通信方法は、第2接続状態から第1接続状態に遷移した後に、第1接続状態から第2接続状態に遷移した場合に、データユニットのサイズを第1サイズで維持するステップを備える。
 実施形態に係る通信システム及び制御装置は、第1サイズでデータユニットを伝送する第1接続状態と、第1サイズも大きい第2サイズでデータユニットを伝送する第2接続状態とを切り替える。通信システムは、第2接続状態から第1接続状態に遷移した後に、第1接続状態から第2接続状態に遷移した場合に、データユニットのサイズを第1サイズで維持する制御部を備える。
 実施形態では、第2接続状態から第1接続状態に遷移した後に、第1接続状態から第2接続状態に遷移した場合に、データユニットのサイズを第2サイズに変更せずに第1サイズで維持する。従って、伝送速度の上昇は犠牲になってしまうが、データユニットのサイズ変更に伴うデータユニットの破棄が抑制される。すなわち、データロスが低減される。
 [第1実施形態]
 (通信システムの構成)
 以下において、第1実施形態に係る通信システムの構成について、図面を参照しながら説明する。図1は、第1実施形態に係る通信システム100の構成を示す図である。
 図1に示すように、通信システム100は、移動局10と、無線基地局30と、無線制御装置40と、コアネットワーク50とを有する。
 移動局10は、自局が存在するサービスエリア20を管理する無線基地局30を介して無線制御装置40と通信を行う。移動局10は、下り方向データを受信する受信装置として機能し、上り方向データを送信する送信装置として機能する。
 無線基地局30は、サービスエリア20を管理しており、サービスエリア20に存在する移動局10と通信を行う。
 サービスエリア20は、1つのセルによって構成されていてもよく、複数のセルによって構成されていてもよい。なお、セルは、周波数、時間スロット又は拡散コードによって識別される。また、セルは、空間的なエリアだけではなくて、無線基地局30に設けられる機能と考えてもよい。
 例えば、第1実施形態では、無線基地局30A~無線基地局30Dが無線基地局30として設けられる。無線基地局30A~無線基地局30Dは、それぞれ、サービスエリア20A~サービスエリア20Dを管理する。
 無線制御装置40は、無線基地局30を管理しており、無線基地局30を介して移動局10と通信を行う。無線制御装置40は、下り方向データを送信する送信装置として機能し、上り方向データを受信する受信装置として機能する。
 例えば、第1実施形態では、無線制御装置40A~無線制御装置40Bが無線制御装置40として設けられる。無線制御装置40Aは、無線基地局30A及び無線基地局30Bを管理しており、無線制御装置40Bは、無線基地局30C及び無線基地局30Dを管理している。
 コアネットワーク50は、無線基地局30や無線制御装置40などによって構成される無線アクセスネットワークと接続される。コアネットワーク50は、回線交換機やパケット交換機などを有する。
 なお、第1実施形態では、HSDPA(High Speed Downlink Packet Access)を例に挙げて、移動局10の状態遷移について説明する。また、下り方向通信を例に挙げて説明する。すなわち、移動局10が受信装置として機能し、無線制御装置40が送信装置として機能として機能する。さらに、無線制御装置40が制御装置として機能する。
 (状態遷移)
 以下において、第1実施形態に係る状態遷移について、図面を参照しながら説明する。図2は、第1実施形態に係る状態遷移を示す図である。
 図2に示すように、移動局10の状態としては、待ち受け状態101、第1HSDPA接続状態102、共通チャネル接続状態103、個別チャネル接続状態104、第2HSDPA接続状態105が挙げられる。
 待ち受け状態101は、無線リンクが設定されていない状態である。なお、待ち受け状態101において、移動局10は、位置登録処理やセル選択処理などを行う。
 第1HSDPA接続状態102は、HSDPAに対応するチャネル(無線リンク)が設定された状態である。HSDPAに対応するチャネルは、例えば、HS-DSCH(High Speed Downlink Shared Channel)である。HS-DSCHは、複数の移動局10によって共有されるチャネルである。
 共通チャネル接続状態103は、セルに存在する移動局10に共通のチャネル(無線リンク)が設定された状態である。セルに存在する移動局10に共通のチャネルは、例えば、FACH(Forward Access Channel)である。
 移動局10は、下り方向データの流量が所定閾値を下回ると、共通チャネル接続状態103に遷移する。例えば、移動局10は、第1HSDPA接続状態102から共通チャネル接続状態103に遷移する。なお、移動局10は、個別チャネル接続状態104や第2HSDPA接続状態105から共通チャネル接続状態103に遷移してもよい。
 個別チャネル接続状態104は、移動局10に個別のチャネル(無線リンク)が設定された状態である。移動局10に個別のチャネルは、例えば、DCH(Dedicated Channel)である。
 移動局10は、HSDPAがサポートされていない既存のセルに移動した場合に、第1HSDPA接続状態102から個別チャネル接続状態104に遷移する。なお、移動局10は、共通チャネル接続状態103や第2HSDPA接続状態105から個別チャネル接続状態104に遷移していもよい。
 なお、図示していないが、移動局10は、HSDPAがサポートされていない既存のセルで通信を開始する場合には、待ち受け状態101から個別チャネル接続状態104に遷移してもよいことは勿論である。
 第2HSDPA接続状態105は、第1HSDPA接続状態102と同様に、HSDPAに対応するチャネル(無線リンク)が設定された状態である。なお、第2HSDPA接続状態105は、第1HSDPA接続状態102から共通チャネル接続状態103に遷移した後に、HSDPA接続状態に再び遷移した状態である。同様に、第2HSDPA接続状態105は、第1HSDPA接続状態102から個別チャネル接続状態104に遷移した後に、HSDPA接続状態に再び遷移した状態である。
 なお、第1HSDPA接続状態102及び第2HSDPA接続状態105は、説明の便宜上、別々な状態として説明しているに過ぎない。第1HSDPA接続状態102及び第2HSDPA接続状態105は、HSDPAに対応するチャネル(無線リンク)が設定された状態であり、これらの状態では、データユニットのサイズが異なっているに過ぎない。
 (データユニットのサイズ)
 以下において、第1実施形態に係るデータユニットのサイズについて説明する。第1実施形態では、データユニットのサイズとして、2つのサイズ(第1サイズ及び第2サイズ)が用いられるケースを例示する。
 第1サイズは、共通チャネル接続状態103、個別チャネル接続状態104及び第2HSDPA接続状態105で用いられるデータユニットのサイズである。なお、第1サイズは、例えば、42オクテットである(3GPP TS34.108を参照)。
 第2サイズは、第1HSDPA接続状態102で用いられるデータユニットのサイズである。なお、第2サイズは、第1サイズよりも大きい。第2サイズは、例えば、82オクテットである(3GPP TS34.108を参照)。
 ここで、第2HSDPA接続状態105は、HSDPA接続状態であるが、第2HSDPA接続状態105では、遷移前の状態(共通チャネル接続状態103又は個別チャネル接続状態104)と同じデータユニットのサイズ(第1サイズ)が用いられることに留意すべきである。すなわち、第2HSDPA接続状態105では、遷移前の状態(共通チャネル接続状態103又は個別チャネル接続状態104)のデータユニットのサイズ(第1サイズ)が維持される。
 第1実施形態では、データユニットとして、RLC(Radio Link Control)レイヤで処理されるRLC PDU(Protocol Data Unit)を例示する。また、第1サイズ及び第2サイズは固定長である。
 (移動局の構成)
 以下において、第1実施形態に係る移動局の構成について、図面を参照しながら説明する。図3は、第1実施形態に係る移動局10の構成を示す図である。
 図3に示すように、移動局10は、通信部11と、RLCレイヤ処理部12と、上位レイヤ処理部13とを有する。
 通信部11は、無線基地局30を介して無線制御装置40と通信を行う。例えば、通信部11は、ユーザデータや制御データの通信を行う。
 制御データは、接続要求(RRC Connection Requestなど)、RAB接続設定(Radio Bearer Setup)、RAB切り替え設定(Radio Bearer Reconfiguration)などである。
 接続要求(RRC Connection Requestなど)は、移動局10から無線制御装置40に送信されるメッセージ(RRC(Radio Resource Control)メッセージ)である。接続要求(RRC Connection Requestなど)は、無線リンクの設定を要求するメッセージである。
 RAB接続設定(Radio Bearer Setup)は、無線制御装置40から移動局10に送信されるメッセージ(RRCメッセージ)である。RAB接続設定(Radio Bearer Setup)は、無線リンクの接続設定を示すメッセージであり、RLC PDUのサイズを指定する情報を含む。
 RAB切り替え設定(Radio Bearer Reconfiguration)は、無線制御装置40から移動局10に送信されるメッセージ(RRCメッセージ)である。RAB切り替え設定(Radio Bearer Reconfiguration)は、無線リンクの切り替え設定を示すメッセージであり、RLC PDUのサイズを指定する情報を含む。
 RLCレイヤ処理部12は、RLCレイヤにおける処理を行う。具体的には、RLCレイヤ処理部12は、バッファを有しており、無線制御装置40から受信するRLC PDUをバッファに格納する。なお、RLCレイヤ処理部12は、RAB接続設定(Radio Bearer Setup)又はRAB切り替え設定(Radio Bearer Reconfiguration)によって指定されたサイズでRLC PDUを処理する。また、RLCレイヤ処理部12は、RLC PDUのサイズが変更されると、バッファに格納されたRLC PDUを破棄するように構成されている。
 ここで、RLCレイヤ処理部12は、例えば、以下に示す処理を行ってもよいことに留意すべきである。
 (1) RLCレイヤ処理部12は、RLC PDUに設定されたシーケンス番号に基づいて、バッファに格納されたRLC PDUを並び替える。
 (2) RLCレイヤ処理部12は、RLC PDUの受信に成功したか否かを示す送達確認情報を無線基地局30に送信する。送達確認情報は、RLC PDUの受信に成功したことを示す“ACK”、又は、RLC PDUの受信に失敗したことを示す“NACK”である。
 なお、RLCレイヤ処理部は、無線制御装置40に設けられており、移動局10が受信に失敗したRLC PDUを無線制御装置40が再送することに留意すべきである。従って、RLCレイヤ処理部12は、無線制御装置40から再送されたRLC PDUによって、無線区間における誤りを回復する。
 上位レイヤ処理部13は、無線制御装置40から受信するRRCメッセージに応じた処理を行う。例えば、上位レイヤ処理部13は、RAB接続設定(Radio Bearer Setup)又はRAB切り替え設定(Radio Bearer Reconfiguration)に応じて、RLC PDUのサイズをRLCレイヤ処理部12に通知する。
 (無線制御装置の構成)
 以下において、第1実施形態に係る無線制御装置の構成について、図面を参照しながら説明する。図4は、第1実施形態に係る無線制御装置40の構成を示す図である。
 図4に示すように、無線制御装置40は、通信部41と、検出部42と、RLCレイヤ処理部43と、上位レイヤ処理部44とを有する。
 通信部41は、無線基地局30を介して移動局10と通信を行う。例えば、通信部41は、ユーザデータや制御データの通信を行う。
 検出部42は、移動局10の状態を遷移するトリガを検出する。例えば、検出部42は、下り方向データの流量の変化又は移動局10の位置の変化を検出する。
 第1に、検出部42は、第1HSDPA接続状態102において、下り方向データの流量が所定閾値を下回ったことを検出する。下り方向データの流量が所定閾値を下回ることは、第1HSDPA接続状態102から共通チャネル接続状態103に移動局10の状態を遷移するトリガである。また、検出部42は、共通チャネル接続状態103において、下り方向データの流量が所定閾値を上回ったことを検出する。下り方向データの流量が所定閾値を上回ることは、共通チャネル接続状態103から第2HSDPA接続状態105に移動局10の状態を遷移するトリガである。
 第2に、検出部42は、第1HSDPA接続状態102において、HSDPAに対応するセル内からHSDPAに対応するセル外に移動局10が移動したことを検出する。HSDPAに対応するセル内からHSDPAに対応するセル外への移動は、第1HSDPA接続状態102から個別チャネル接続状態104に移動局10の状態を遷移するトリガである。また、検出部42は、個別チャネル接続状態104において、HSDPAに対応するセル外からHSDPAに対応するセル内に移動局10が移動したことを検出する。HSDPAに対応するセル外からHSDPAに対応するセル内への移動は、個別チャネル接続状態104から第2HSDPA接続状態105に移動局10の状態を遷移するトリガである。
 RLCレイヤ処理部43は、RLCレイヤにおける処理を行う。具体的には、RLCレイヤ処理部43は、シーケンス番号が設定されたRLC PDUを、無線基地局30を介して移動局10に送信するように通信部41に指示する。
 上位レイヤ処理部44は、RRCレイヤにおける処理を行う。具体的には、上位レイヤ処理部44は、RAB接続設定(Radio Bearer Setup)又はRAB切り替え設定(Radio Bearer Reconfiguration)を、無線基地局30を介して移動局10に送信するように通信部41に指示する。
 ここで、上位レイヤ処理部44は、検出部42の検出結果に応じて、RLC PDUのサイズを制御する。
 第1に、上位レイヤ処理部44は、第1HSDPA接続状態102において、下り方向データの流量が所定閾値を下回ったことが検出された場合に、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)の送信を通信部41に指示する。また、上位レイヤ処理部44は、共通チャネル接続状態103において、下り方向データの流量が所定閾値を上回ったことが検出された場合に、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)の送信を通信部41に指示する。
 このように、上位レイヤ処理部44は、第1HSDPA接続状態102から共通チャネル接続状態103に遷移した後に、共通チャネル接続状態103から第2HSDPA接続状態105に遷移する場合に、RLC PDUのサイズを第1サイズで維持する。
 第2に、上位レイヤ処理部44は、第1HSDPA接続状態102において、HSDPAに対応するセル内からHSDPAに対応するセル外に移動局10が移動したことが検出された場合に、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)の送信を通信部41に指示する。また、上位レイヤ処理部44は、個別チャネル接続状態104において、HSDPAに対応するセル外からHSDPAに対応するセル内に移動局10が移動したことが検出された場合に、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)の送信を通信部41に指示する。
 このように、上位レイヤ処理部44は、第1HSDPA接続状態102から個別チャネル接続状態104に遷移した後に、個別チャネル接続状態104から第2HSDPA接続状態105に遷移する場合に、RLC PDUのサイズを第1サイズで維持する。
 なお、上位レイヤ処理部44は、待ち受け状態101において、HSDPAに対応するチャネル(無線リンク)の設定を要求する接続要求(RRC Conection Requestなど)を受信した場合に、RLC PDUのサイズとして第2サイズを指定するRAB接続設定(Radio Bearer Setup)の送信を通信部41に指示する。
 (通信システムの動作)
 以下において、第1実施形態に係る通信システムの動作について、図面を参照しながら説明する。図5及び図6は、第1実施形態に係る通信システム100の動作を示す図である。
 第1に、待ち受け状態101、第1HSDPA接続状態102、共通チャネル接続状態103、第2HSDPA接続状態105の順に、移動局10の状態が遷移するケースについて、図5を参照しながら説明する。
 図5に示すように、ステップ10において、移動局10は、待ち受け状態101である。
 ステップ11において、移動局10は、HSDPAに対応するチャネル(無線リンク)の設定を要求する接続要求(RRC Conection Requestなど)を無線制御装置40に送信する。
 ステップ12において、無線制御装置40は、RLC PDUのサイズとして第2サイズを指定するRAB接続設定(Radio Bearer Setup)を移動局10に送信する。ここで、RAB接続設定(Radio Bearer Setup)は、HSDPAに対応するチャネル(無線リンク)の設定を示す情報を含む。
 ステップ13において、移動局10は、待ち受け状態101から第1HSDPA接続状態102に遷移する。
 ステップ14において、無線制御装置40は、下り方向データの流量が所定閾値を下回ったことを検出する。なお、下り方向データの流量が所定閾値を下回ったことを移動局10が検出してもよい。このようなケースでは、移動局10から無線制御装置40に対して、下り方向データの流量が所定閾値を下回った旨が通知される。
 ステップ15において、無線制御装置40は、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)を移動局10に送信する。ここで、RAB切り替え設定(Radio Bearer Reconfiguration)は、セルに存在する移動局10に共通のチャネル(無線リンク)の設定を示す情報を含む。
 ステップ16において、移動局10は、第1HSDPA接続状態102から共通チャネル接続状態103に遷移する。
 ステップ17において、無線制御装置40は、下り方向データの流量が所定閾値を上回ったことを検出する。なお、下り方向データの流量が所定閾値を上回ったことを移動局10が検出してもよい。このようなケースでは、移動局10から無線制御装置40に対して、下り方向データの流量が所定閾値を上回った旨が通知される。
 ステップ18において、無線制御装置40は、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)を移動局10に送信する。ここで、RAB切り替え設定(Radio Bearer Reconfiguration)は、HSDPAに対応するチャネル(無線リンク)の設定を示す情報を含む。
 第2に、待ち受け状態101、第1HSDPA接続状態102、個別チャネル接続状態104、第2HSDPA接続状態105の順に、移動局10の状態が遷移するケースについて、図6を参照しながら説明する。
 図6に示すように、ステップ20において、移動局10は、待ち受け状態101である。
 ステップ21において、移動局10は、HSDPAに対応するチャネル(無線リンク)の設定を要求する接続要求(RRC Conection Requestなど)を無線制御装置40に送信する。
 ステップ22において、無線制御装置40は、RLC PDUのサイズとして第2サイズを指定するRAB接続設定(Radio Bearer Setup)を移動局10に送信する。ここで、RAB接続設定(Radio Bearer Setup)は、HSDPAに対応するチャネル(無線リンク)の設定を示す情報を含む。
 ステップ23において、移動局10は、待ち受け状態101から第1HSDPA接続状態102に遷移する。
 ステップ24において、無線制御装置40は、HSDPAに対応するセル内からHSDPAに対応するセル外に移動局10が移動したことを検出する。なお、HSDPAに対応するセル内からHSDPAに対応するセル外に移動局10が移動したことを移動局10が検出してもよい。このようなケースでは、移動局10から無線制御装置40に対して、HSDPAに対応するセル内からHSDPAに対応するセル外に移動局10が移動した旨が通知される。
 ステップ25において、無線制御装置40は、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)を移動局10に送信する。ここで、RAB切り替え設定(Radio Bearer Reconfiguration)は、移動局10に個別のチャネル(無線リンク)の設定を示す情報を含む。
 ステップ26において、移動局10は、第1HSDPA接続状態102から個別チャネル接続状態104に遷移する。
 ステップ27において、無線制御装置40は、HSDPAに対応するセル外からHSDPAに対応するセル内に移動局10が移動したことを検出する。なお、HSDPAに対応するセル外からHSDPAに対応するセル内に移動局10が移動したことを移動局10が検出してもよい。このようなケースでは、移動局10から無線制御装置40に対して、HSDPAに対応するセル外からHSDPAに対応するセル内に移動局10が移動した旨が通知される。
 ステップ28において、無線制御装置40は、RLC PDUのサイズとして第1サイズを指定するRAB切り替え設定(Radio Bearer Reconfiguration)を移動局10に送信する。ここで、RAB切り替え設定(Radio Bearer Reconfiguration)は、HSDPAに対応するチャネル(無線リンク)の設定を示す情報を含む。
 (作用及び効果)
 実施形態では、第2接続状態(第1HSDPA接続状態102)から第1接続状態(共通チャネル接続状態103又は個別チャネル接続状態104)に遷移した後に、第1接続状態(共通チャネル接続状態103又は個別チャネル接続状態104)から第2接続状態(第2HSDPA接続状態105)に遷移した場合に、データユニット(RLC PDU)のサイズを第2サイズに変更せずに第1サイズで維持する。従って、伝送速度の上昇は犠牲になってしまうが、データユニット(RLC PDU)のサイズの変更に伴うデータユニット(RLC PDU)の破棄が抑制される。すなわち、データロスが低減される。
 実施形態では、例えば、RLCレイヤの上位レイヤとして、PDCP(Packet Data Convergence Protocol)レイヤが設けられておらず、PDCPレイヤにおける再送制御が行われなくても、データロスを低減することができる。
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 上述した実施形態では、下り方向通信について例示したが、実施形態は、これに限定されるものではない。具体的には、実施形態は、上り方向通信について適用されてもよい。
 上述した実施形態では、第1サイズでデータユニットを伝送する第1接続状態として、共通チャネル接続状態103及び個別チャネル接続状態104を例示した。また、第2サイズでデータユニットを伝送する第2接続状態として、HSDPA接続状態を例示した。しかしながら、実施形態は、これに限定されるものではない。実施形態は、第2接続状態から第1接続状態に遷移した後に、第1接続状態から第2接続状態に遷移した場合に、データユニットが維持されればよい。すなわち、第1接続状態及び第2接続状態に係る具体的な名称は重要ではないことに留意すべきである。また、移動局10の状態についても、実施形態で例示したに過ぎず、他の接続状態があってもよい。
 上述した実施形態では、無線制御装置40がデータユニットのサイズを制御するが、実施形態は、これに限定されるものではない。例えば、LTE(Long Time Evolution)では、EPC(Evolved Packet Core)に設けられたMME(Mobility Management Entity)がデータユニットのサイズを制御してもよい。又は、無線基地局30がデータユニットのサイズを制御してもよい。
 本発明によれば、データロスの低減を図ることを可能とする通信方法、通信システム及び制御装置を提供することができる。

Claims (8)

  1.  第1サイズでデータユニットを伝送する第1接続状態と、前記第1サイズよりも大きい第2サイズで前記データユニットを伝送する第2接続状態とを切り替える通信方法であって、
     前記第2接続状態から前記第1接続状態に遷移した後に、前記第1接続状態から前記第2接続状態に遷移した場合に、前記データユニットのサイズを前記第1サイズで維持するステップを備えることを特徴とする通信方法。
  2.  前記データユニットを受信する受信装置が、前記データユニットを送信する送信装置に対して、前記データユニットの受信に成功したか否かを示す送達確認情報を送信するステップと、
     前記送信装置が、前記受信装置に対して、前記受信装置が受信に失敗したデータユニットを再送するステップとを備えることを特徴とする請求項1に記載の通信方法。
  3.  前記第1サイズ及び前記第2サイズは固定長であり、
     前記データユニットは、RLCレイヤのプロトコルデータユニットであることを特徴とする請求項1に記載の通信方法。
  4.  前記第1サイズは、42オクテットであり、
     前記第2サイズは、82オクテットであることを特徴とする請求項3に記載の通信方法。
  5.  前記第1接続状態は、共通チャネル接続状態であり、
     前記第2接続状態は、HSDPA接続状態であることを特徴とする請求項1に記載の通信方法。
  6.  前記第1接続状態は、個別チャネル接続状態であり、
     前記第2接続状態は、HSDPA接続状態であることを特徴とする請求項1に記載の通信方法。
  7.  第1サイズでデータユニットを伝送する第1接続状態と、前記第1サイズよりも大きい第2サイズで前記データユニットを伝送する第2接続状態とを切り替える通信システムであって、
     前記第2接続状態から前記第1接続状態に遷移した後に、前記第1接続状態から前記第2接続状態に遷移した場合に、前記データユニットのサイズを前記第1サイズで維持する制御部を備えることを特徴とする通信システム。
  8.  第1サイズでデータユニットを伝送する第1接続状態と、前記第1サイズよりも大きい第2サイズで前記データユニットを伝送する第2接続状態とを切り替える制御装置であって、
     前記第2接続状態から前記第1接続状態に遷移した後に、前記第1接続状態から前記第2接続状態に遷移した場合に、前記データユニットのサイズを前記第1サイズで維持する制御部を備えることを特徴とする制御装置。
PCT/JP2010/061342 2009-07-02 2010-07-02 通信方法、通信システム及び制御装置 WO2011002085A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/382,073 US8737224B2 (en) 2009-07-02 2010-07-02 Communication method, communication system, and control apparatus
CN2010800294522A CN102550073A (zh) 2009-07-02 2010-07-02 通信方法、通信系统以及控制装置
EP10794253A EP2451205A1 (en) 2009-07-02 2010-07-02 Communication method, communication system and control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-157886 2009-07-02
JP2009157886A JP5235171B2 (ja) 2009-07-02 2009-07-02 通信方法、通信システム及び制御装置

Publications (1)

Publication Number Publication Date
WO2011002085A1 true WO2011002085A1 (ja) 2011-01-06

Family

ID=43411153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061342 WO2011002085A1 (ja) 2009-07-02 2010-07-02 通信方法、通信システム及び制御装置

Country Status (5)

Country Link
US (1) US8737224B2 (ja)
EP (1) EP2451205A1 (ja)
JP (1) JP5235171B2 (ja)
CN (1) CN102550073A (ja)
WO (1) WO2011002085A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364277A (ja) 2003-05-14 2004-12-24 Ntt Docomo Inc パケット通信方法及びパケット通信システム。
WO2008097486A2 (en) * 2007-02-02 2008-08-14 Interdigital Technology Corporation Method and apparatus for controlling a handover between utra r6 cells and r7 cells
WO2008115488A1 (en) * 2007-03-16 2008-09-25 Interdigital Technology Corporation Acknowledged mode radio link control architecture and method within evolved hspa systems
JP2009044370A (ja) * 2007-08-08 2009-02-26 Fujitsu Ltd 無線通信装置、送信方法、受信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219713B1 (en) * 1998-07-07 2001-04-17 Nokia Telecommunications, Oy Method and apparatus for adjustment of TCP sliding window with information about network conditions
US7477604B2 (en) 2003-05-14 2009-01-13 Ntt Docomo, Inc. Packet communications system
US20080239948A1 (en) * 2007-03-28 2008-10-02 Honeywell International, Inc. Speculative congestion control system and cross-layer architecture for use in lossy computer networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364277A (ja) 2003-05-14 2004-12-24 Ntt Docomo Inc パケット通信方法及びパケット通信システム。
WO2008097486A2 (en) * 2007-02-02 2008-08-14 Interdigital Technology Corporation Method and apparatus for controlling a handover between utra r6 cells and r7 cells
WO2008115488A1 (en) * 2007-03-16 2008-09-25 Interdigital Technology Corporation Acknowledged mode radio link control architecture and method within evolved hspa systems
JP2009044370A (ja) * 2007-08-08 2009-02-26 Fujitsu Ltd 無線通信装置、送信方法、受信方法

Also Published As

Publication number Publication date
US8737224B2 (en) 2014-05-27
JP2011015213A (ja) 2011-01-20
CN102550073A (zh) 2012-07-04
US20120155392A1 (en) 2012-06-21
JP5235171B2 (ja) 2013-07-10
EP2451205A1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
KR101137327B1 (ko) 상향링크 채널 스케쥴링을 위한 제어정보 전송 방법 및상향링크 채널 스케쥴링 방법
EP3413617B1 (en) Transmitting pdcp status report
KR101221244B1 (ko) 향상된 무선링크 제어에러 처리
JP4991011B2 (ja) 無線装置とネットワーク間のデータユニットのシーケンスの送信のための無線通信方法
EP1993226B1 (en) Method and related apparatus for handling re-establishment of radio link control entity in a wireless communications system
KR101306724B1 (ko) 이동통신 시스템에서의 제어 정보 전송 방법 및 이를구현하는 전송 장치
KR101211758B1 (ko) 무선 통신 시스템의 블록 데이터 생성 방법
EP2426846B1 (en) Data retransmission method and user equipment
US20100027413A1 (en) Method of transmitting control signal in wireless communication system
EP3419205B1 (en) Method and system for recovering from drx timing de-synchronization in lte-active
KR20050101482A (ko) 무선링크 제어계층에서의 데이터 처리방법
CN101114992A (zh) 切换方法、发送端设备和接收端设备
KR20070037980A (ko) Rlc 재설정을 위한 무선통신 시스템 및 그 방법
JP2010514328A (ja) 移動通信システムにおける制御情報伝送方法
JP3840480B2 (ja) 制御局装置及び基地局装置
US8699455B2 (en) Providing a serving HS-DSCH cell change acknowledgement
WO2009117944A1 (zh) 一种多载波/小区系统中的载频控制方法和装置
US20220201786A1 (en) Methods and apparatus to reduce packet latency in multi-leg transmission
WO2019102965A1 (ja) 通信方法、無線通信装置、及びプロセッサ
JP7301065B2 (ja) 無線通信方法及び装置
JP5864746B2 (ja) 共通e−dch伝送についてのmac−isリセットのあいまいさを低減するための方法およびシステム
KR100969765B1 (ko) 이동통신 시스템에서의 핸드오버 방법 및 장치
JP5235171B2 (ja) 通信方法、通信システム及び制御装置
KR101500342B1 (ko) 무선 통신 시스템에서 핸드 오버 시 데이터 포워딩 방법 및이를 수행하는 시스템
KR20100045860A (ko) 데이터 전송 문제 탐지 방법 및 단말

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029452.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010794253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13382073

Country of ref document: US