WO2011001965A1 - small RNA二本鎖およびヘアピン型RNAの設計方法 - Google Patents

small RNA二本鎖およびヘアピン型RNAの設計方法 Download PDF

Info

Publication number
WO2011001965A1
WO2011001965A1 PCT/JP2010/061036 JP2010061036W WO2011001965A1 WO 2011001965 A1 WO2011001965 A1 WO 2011001965A1 JP 2010061036 W JP2010061036 W JP 2010061036W WO 2011001965 A1 WO2011001965 A1 WO 2011001965A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
strand
sequence
risc
guide strand
Prior art date
Application number
PCT/JP2010/061036
Other languages
English (en)
French (fr)
Inventor
幸秀 泊
朋子 川俣
真由子 依田
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2011001965A1 publication Critical patent/WO2011001965A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/50Methods for regulating/modulating their activity
    • C12N2320/53Methods for regulating/modulating their activity reducing unwanted side-effects

Definitions

  • the present invention relates to a method for designing a small RNA double strand and a hairpin RNA.
  • Small RNA including siRNA and microRNA (miRNA), suppresses target gene expression through cleavage of the target mRNA and translational suppression.
  • Small RNA does not function on its own, but acts on a specific target that can be paired with its own sequence after being incorporated into an RNA-induced silencing complex (RISC).
  • RISC RNA-induced silencing complex
  • the core of RISC is a protein called Argonaute (Ago) family, and there are multiple types of Ago proteins depending on the species (Non-patent Documents 1-3). Each small RNA molecule functions by binding to a specific Ago protein. In Drosophila melanogaster (flies), there are two types of Ago proteins, and the structure of the small RNA duplex determines which Ago binds.
  • Ago1 In flies, typical miRNAs that have a mismatch in the central region of the precursor miRNA / miRNA * duplex are mainly incorporated into Ago1, and highly complementary foreign and endogenous siRNAs are predominantly Incorporated into Ago2 (this is called a small RNA distribution system; Non-Patent Documents 4-8).
  • Ago proteins human Ago1-4
  • the distribution system of small RNA is thought to exist in mammals including humans, it is not as strict as in other animals and plants, and small RNA including siRNA and miRNA is incorporated into all Ago1-4 (non-patented) References 9 and 10).
  • Ago1-4 In humans, all of Ago1-4 have the ability to suppress translation, but only human Ago2 has a slicer activity that cleaves the target mRNA (Non-patent Documents 11 and 12). In flies, both Ago1 and Ago2 have the ability to suppress translation, but Ago1 is more active. Moreover, although both hold
  • RNA duplexes including siRNA duplexes and miRNA / miRNA * duplexes
  • only one strand (guide strand) is selectively incorporated into RISC, and the other strand (passenger strand) from RISC It is eliminated and decomposed.
  • This process is called siRNA duplex or miRNA / miRNA * duplex single strand, or unwinding wrinkle.
  • the small RNA that has been incorporated into RISC into a single strand binds to mRNA that pairs with its own base sequence, and cleaves the target mRNA or suppresses translation.
  • a state in which Ago contains double-stranded RNA is called pre-RISC, and a state in which single-stranded RNA is contained is called mature RISC.
  • a siRNA duplex is received from RLC, and then the passenger strand is cleaved to form mature Ago2-RISC having only a guide strand.
  • fly Ago1 has insufficient slicer activity (Non-patent Document 5), and mammalian Ago1, 3 and 4 do not have slicer activity (Non-patent Documents 11 and 12). Nevertheless, these Agos can also make small double-stranded RNA single strands. Such a mechanism for single stranding of small double-stranded RNA without breakage of the passenger strand has been unknown so far.
  • the present inventors have made RISC with human and fly Ago2 having a slicer activity in the complementary siRNA or hairpin RNA conventionally used for gene knockdown (or introduced with a mismatch only at the terminal). Biochemical analysis reveals that the formation of RISC with human Ago1,3,4 without slicer activity and fly Ago1 with insufficient slicer activity is inefficient. . Therefore, when conventional siRNA is used, knockdown efficiency is expected to be low in tissues where Ago2 expression is low.
  • the present invention is not limited to tissues with high Ago2 expression (such as heart and kidney in humans), but also small RNA duplexes with high knockdown efficiency in tissues with low Ago2 expression (such as liver and pancreas in humans). Providing a method for designing hairpin RNA was an issue to be solved.
  • the sequence of the guide strand is designed to be highly complementary to the sequence information of the mRNA to be targeted.
  • the sequence of the passenger strand on the basis of the sequence complementary to the guide strand, (1) at least one passenger strand position corresponding to the central portion of the guide strand (9th to 11th from the 5 'end) Base substitution, introducing mismatched base pairs or G: U wobble base pairs, and (2) seed region of the guide strand (second to the eighth base from the 5 'end) and / or 3' At least one base substitution at the position of the passenger strand corresponding to the -mid region (12th to 16th base from the 5 'end) and introducing a mismatched base pair or G: U wobble base pair Including
  • a method for designing small RNA double-stranded or hairpin RNA is provided.
  • the sequence of the guide strand is designed to be highly complementary to the sequence information of the mRNA to be targeted,
  • the passenger strand sequence based on the sequence complementary to the guide strand, (1) at least one base at the position of the passenger strand corresponding to the central portion of the guide strand (9th to 11th from the 5 'end) Making substitutions and introducing mismatched base pairs or G: U wobble base pairs, and (2) the seed region of the guide strand (second to eighth base from the 5 'end) and / or 3'-mid Including introducing a mismatched base pair or a G: U wobble base pair at the position of the passenger strand corresponding to the region (12th to 16th base from the 5 'end), A method for producing a small RNA double-stranded or hairpin RNA is provided.
  • the sequence of the passenger strand which is a strand excluded from RISC, corresponds to the seed region of the guide strand (2nd to 8th base from the 5 'end) based on the sequence complementary to the guide strand. At least one base substitution is made at the position of the passenger strand to introduce a mismatch or G: U wobble base pair.
  • RNA double-stranded or hairpin RNA produced by the production method of the present invention described above.
  • a step of producing a small RNA duplex or hairpin RNA by the production method of the present invention described above; and (ii) a small RNA duplex or hairpin produced in step (i) There is provided a method for suppressing the expression of a target gene, comprising the step of introducing a type RNA into a cell to suppress the expression of the target gene.
  • the target gene comprising the step of expressing RNA containing a hairpin RNA sequence designed by the above-described design method of the present invention in a cell using a promoter and suppressing the expression of the target gene.
  • a method of suppressing the expression of is provided.
  • the above-described method for suppressing the expression of a target gene according to the present invention may be performed on cells in vitro, or may be performed in vivo on animals other than humans, plants, insects, microorganisms, or the like.
  • the mismatch in the central part of the guide strand indicates that the small RNA duplex is incorporated into Ago, the seed strand of the guide strand and the 3′-mid region. It became clear that the mismatch remarkably promotes the step of single-stranded small double RNA duplexes. That is, according to the present invention, knockdown with respect to the target mRNA can be made more efficient by introducing mismatches into a plurality of specific parts of the complementary double-stranded part of the small RNA duplex or hairpin RNA. It is possible to design molecules that induce well.
  • tissue with high Ago2 expression such as heart and kidney in humans
  • tissues with low Ago2 expression expected to have low knockdown efficiency by conventional siRNA ( In humans (such as liver and spleen) or cell types
  • small RNA double-stranded or hairpin RNA that can cause knockdown more efficiently than conventional siRNA or hairpin RNA.
  • the small RNA or hairpin RNA produced by the production method of the present invention has high utility value as a tool for basic biology and from the viewpoint of pharmaceutical application.
  • Figure 1 shows that in Drosophila, a mismatch at the center of the guide strand increases the efficiency of incorporation of small RNA duplexes into pre-Ago1-RISC, while a mismatch in the guide strand seed or 3'-mid indicates pre-Ago1-RISC.
  • a mismatch at the center of the guide strand increases the efficiency of incorporation of small RNA duplexes into pre-Ago1-RISC, while a mismatch in the guide strand seed or 3'-mid indicates pre-Ago1-RISC.
  • a Pre-Ago1-RISC formation was examined at 15 ° C. using a 21-nt mm mm series mm (mm1-mm17) mm.
  • Quantification of pre-Ago1-RISC in a was examined at 25 ° C.
  • FIG. 3 shows that in Drosophila, G: U wobble base pair behaves similarly to mismatches in both incorporation and single stranding of small RNA duplexes into Ago1.
  • FIG. 4 shows the results of performing a native gel in the same manner as in Drosophila (Example 1) using an extract prepared from HEK293T cells overexpressing human Ago1,2,3,4.
  • RNA double-stranded or hairpin double-stranded RNA Small RNA, including siRNA and miRNA, is targeted mRNA via RNA induced silencing complex: (RISC) with Argonaute (Ago) family protein as the nucleus. Regulates the expression of.
  • miRNAs are generally incorporated into RISCs containing Ago1, and siRNAs are typically incorporated into RISCs containing Ago2.
  • small RNAs including siRNA and miRNA are taken up by all Ago1-4.
  • a RISC containing a small RNA duplex is called pre-RISC
  • a RISC containing a small RNA single strand is called a mature RISC.
  • the present inventor has established a native gel system that can biochemically analyze the constituent pathway of RISC centered on fly Ago1 and human Ago1-4, and analyzed the elementary process of RISC formation.
  • the mismatch in the central part of the guide strand bases 9 to 11 from the 5 'end
  • efficiently incorporated the small RNA duplex into Ago while the seed region of the guide strand (2 from the 5' end).
  • the 8th to 8th bases) and / or the 3′-mid region (12th to 16th bases from the 5 ′ end) have been shown to promote the conversion to mature RISC.
  • RNA duplex or hairpin RNA when designing a small RNA duplex or hairpin RNA, in accordance with the following rules, base substitution is introduced into the strand (passenger strand) that is finally excluded from RISC, and complementary A mismatch is formed in the double-stranded part.
  • the base sequence of the target gene is searched, the sequence of the guide strand is designed to be highly complementary to the searched base sequence, and the passenger strand With respect to the sequence, base substitution is partially introduced based on the above rules with reference to a sequence complementary to the guide strand.
  • An overhang is usually provided in a small RNA duplex.
  • An overhang part is the part which protruded in the state of the single strand provided in 3 'terminal of each strand in a double stranded small RNA double strand.
  • the length of the overhang portion is not particularly limited, but the number of bases is particularly preferably 2.
  • the base sequence of the overhang is basically arbitrary, but the same base sequence as that of the target gene, dTdT, UU, or the like can be used.
  • the 5 ′ to 1st base part of the guide strand of the small RNA duplex or hairpin RNA is mismatched or G: U wobble (wobble) Base pairs may be introduced.
  • the small RNA duplex or hairpin RNA in the present invention may be composed entirely of RNA, partially DNA, or 2'-O- It may also be a hybrid polynucleotide comprising a 2′-position RNA modification containing methylated RNA or 2′-F-modified RNA, or a phosphodiester-linked oxygen atom-substituted RNA modification containing phosphorothioate or boranophosphate.
  • the number of bases of each strand of the double-stranded portion constituting the small RNA duplex is 18-30, more preferably 20-22, particularly preferably 21, including the overhang.
  • the number of bases in the overhang part is preferably 2.
  • the number of bases in each strand of the double-stranded part constituting the hairpin RNA is 18-30 including the overhang part, and the number of bases in the loop part is 4-11.
  • RNA or hybrid polynucleotide may be synthesized by chemical synthesis.
  • RNA and a part of the hybrid polynucleotide can also be carried out according to a technique such as ordinary biotechnology, and a DNA strand having a predetermined sequence is prepared, and this is used as a template to convert single-stranded RNA using a transcriptase. It can be synthesized by a technique such as synthesizing and double-stranded single-stranded RNA.
  • the small RNA double-stranded or hairpin RNA of the present invention can be produced by preparing a template DNA and performing transcription using RNA polymerase using this as a template.
  • RNA polymerase Transcription for producing the small RNA duplex or hairpin RNA of the present invention can be performed in vitro. Further, as the RNA polymerase, T7 RNA polymerase, SP6 RNA polymerase, T3 RNA polymerase, or the like can be used, and among these, it is preferable to use T7 RNA polymerase. Transcription reaction using RNA polymerase can be carried out by a conventional method known to those skilled in the art. For example, magnesium chloride, NTP, spermidine, dithiothreitol is added to a solution containing a template oligonucleotide, and finally T7 RNA polymerase is used. Can be added to an appropriate concentration to carry out the reaction.
  • pyrophosphatase is preferably added in order to remove pyrophosphate as a by-product from the reaction solution and promote the transcription reaction.
  • a transcription reaction can be performed by incubating such a reaction mixture at 37 ° C. for 60 minutes.
  • a gene containing a target sequence is expressed by expressing an RNA having a sequence containing a hairpin RNA designed by the above-described method of the present invention in a cell using an appropriate promoter such as pol II or pol III. Is suppressed. That is, hairpin RNA can be expressed in a cell by administering an expression vector containing DNA encoding the hairpin RNA to the cell.
  • an expression vector containing DNA encoding the hairpin RNA to the cell.
  • methods known to those skilled in the art can be used.
  • the expression vector may be injected directly into the tissue or administered systemically. In vitro administration includes electroporation or lipofection.
  • an oligonucleotide encoding hairpin RNA can be placed under the control of Pol III (for example, U6 or PolIII H1-RNA promoter) or Pol II promoter. Thereby, a sufficient amount of hairpin RNA can be expressed in the cell, and the expression of the target gene can be knocked down.
  • Pol III for example, U6 or PolIII H1-RNA promoter
  • Pol II Pol II promoter
  • the synthesized oligonucleotide is incorporated into a plasmid containing, for example, a promoter sequence (eg, Pol II or Pol III promoter) and an appropriate terminator sequence (eg, SV40-derived cleavage and polyadenylation signal sequence, or Pol III terminator sequence).
  • a promoter sequence eg, Pol II or Pol III promoter
  • an appropriate terminator sequence eg, SV40-derived cleavage and polyadenylation signal sequence, or Pol III terminator sequence.
  • An expression vector containing DNA encoding hairpin RNA can be constructed using, for example, a viral vector.
  • a viral vector an adenovirus vector, an adeno-associated virus vector, a herpes simplex virus-1 vector and the like can be used. Such viral vectors can be introduced directly into cells.
  • the expression vector containing DNA encoding hairpin RNA may be a plasmid vector.
  • a plasmid vector for example, cationic liposomes (lipofectin) or derivatized (for example, antibody-bound) polylysine conjugate, gramacidin S, artificial virus envelope, etc. can be used to transfect cells. it can.
  • Example 1 Example (method) using Drosophila (1) General method 40x reaction mix (including ATP, ATP regeneration system, and RNase inhibitor) and lysis buffer (30 mM HEPES (pH 7.4), 100 mM KOAc, 2 mM Mg (OAc) 2 ), Dounce Preparation of Drosophila melanogaster embryo extract by homogenization and radiolabelling of small RNA with T4 polynucleotide kinase (Takara) were performed as previously reported (Haley, B., Tang, G. & Zamore, PD In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30, 330-336 (2003)).
  • General method 40x reaction mix including ATP, ATP regeneration system, and RNase inhibitor
  • lysis buffer 30 mM HEPES (pH 7.4), 100 mM KOAc, 2 mM Mg (OAc) 2
  • T4 polynucleotide kinase T4 polynucleo
  • In vitro RISC assay contains 5 ⁇ L embryo extract, 3 ⁇ L 40x reaction mix, 1 ⁇ L small RNA duplex (final concentration 100 nM), and 1 ⁇ L target RNA (final concentration 100 nM) in a total volume of 10 ⁇ L Made in solution.
  • RL 1x MM10 / (U: G) 5 mRNA having one target site complementary to the MM10 / (U: G) 5 guide strand with a central bulge was used.
  • duplexes MM10 / mm1-mm17 were prepared (duplexes MM10 / mm1-mm17) (see Table 2). These 17 types of duplexes are identical to the duplexes mm1-mm17 except that a mismatch is introduced at the guide position 10 that promotes pre-Ago1-RISC formation.
  • pre-Ago1-RISC containing MM10 / mm1 and MM10 / mm9-mm11 is not converted to mature Ago1-RISC, but includes MM10 / mm2-mm8 and MM10 / mm12-mm15 It was confirmed that pre-Ago1-RISC was efficiently converted to mature Ago1-RISC (FIGS. 1c, d and e). That is, the mismatch between the seed and 3'-mid (guide positions 12 to 16) promotes single stranding.
  • G U wobble base pair behaves like a mismatch in the process of incorporation of small RNA duplexes into Ago1 and single strands.
  • G: U wobble base pairs were introduced at fully complementary double stranded guide positions 5, 9 or 15 (G: U5, G: U9 or G: U15) (see Table 5).
  • MM10 double-stranded RNA containing AU base pairs, G: U wobble base pairs, or U: U mismatches at position 5 or 13 was generated (see Table 5).
  • G U wobble base pairing in the seed or 3'-mid region facilitated the conversion of pre-Ago1-RISC to mature Ago1-RISC, as in the mismatch (Fig. 3b).
  • Example 2 Example (method) using human cells (1) Native gel analysis Native gel analysis was performed in the same manner as in Example 1 using an extract of HEK 293T cells expressing FLAG / HA-tagged Ago1, Ago2, or Ago3, or FLAG-tagged Ago4. However, as the target mRNA, an anti-let-7 2′-O-Me oligonucleotide was used instead of RL 4x mRNA.
  • HEK 293T cells are Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum (FBS), 100 U / ml penicillin and 100 ⁇ g / ml streptomycin in 37 ° C, 5% CO 2. Cultured in (DMEM). HEK 293T cells were transfected with plasmid DNA using Fugene HD transfection reagent (Roche). The day before transfection, exponentially growing cells were seeded in 10 cm plates at a density of 1.4 ⁇ 10 5 cells / ml in medium without antibiotics. On the next day, the cells were transfected with 6 ⁇ g / plate of plasmid DNA, and Ago1,2,3 were collected after 24 hours and Ago4 was collected after 48 hours.
  • FBS fetal bovine serum
  • Fugene HD transfection reagent Fugene HD transfection reagent
  • FIG. 4 shows the result of performing a native gel in the same manner as in Drosophila (Example 1) using an extract prepared from HEK 293T cells overexpressing human Ago1,2,3,4.
  • the top row shows the efficiency with which a small RNA duplex with one mismatch at each location forms pre-RISC (a state that includes a double strand), and is promoted when there is a mismatch near the middle. It was done.
  • the bottom row shows that double-stranded RNA with a mismatch introduced at the 10th small RNA double strand and another one at each location is converted from pre-RISC to mature RISC.
  • the seed region (2-8) or 3′-mid region (12-16th) has a mismatch in addition to the 10th, mature RISC was efficiently formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明の目的は、Ago2の発現が高い組織(ヒトでは心臓や腎臓など)のみならず、Ago2の発現が低い組織(ヒトでは肝臓や膵臓など)においてもノックダウンの効率が高いsmall RNA二本鎖あるいはヘアピン型RNAを設計する方法を提供することである。本発明によれば、small RNA二本鎖あるいはヘアピン型RNAの相補的な二本鎖部分において、RISCに取り込まれて作用する側の鎖(ガイド鎖)の配列は、標的としたいmRNAの配列に相補性が高くなる様に設計し、RISCから排除され分解される側の鎖(パッセンジャー鎖)の配列については、ガイド鎖と相補的な配列を基準に、(1)ガイド鎖の中心部位(5'末端から9番目から11番目)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ又はG:U ゆらぎ(wobble)塩基対を導入すること、及び(2)ガイド鎖のシード領域(5'末端から2番目から8番目の塩基)および/又は3'-mid領域(5'末端から12番目から16番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ又はG:U ゆらぎ(wobble)塩基対を導入することを含む、small RNA二本鎖あるいはヘアピン型RNAの設計方法が提供される。

Description

small RNA二本鎖およびヘアピン型RNAの設計方法
 本発明は、small RNA二本鎖およびヘアピン型RNAの設計方法に関する。
 siRNAやmicroRNA (miRNA)を含むsmall RNAは、標的mRNAの切断や翻訳抑制等を通して、標的遺伝子の発現を抑制する。small RNAはそれ単独では機能せず、RNA induced silencing complex(RISC)に取り込まれた後、自身のもつ配列と対合できる特異的な標的に対して作用する。RISCの中心をなすのは、Argonaute (Ago)ファミリーと呼ばれる蛋白質であり、生物種によっては、Ago蛋白質は複数種類存在する(非特許文献1-3)。各small RNA分子は、特異的なAgo蛋白質に結合して機能する。Drosophila melanogaster(ハエ)では、Ago蛋白質は二種類存在し、small RNA二本鎖がもつ構造によって、どちらのAgoに結合するかが決定づけられている。ハエでは、前駆体であるmiRNA/miRNA*二本鎖の中心領域にミスマッチを有するような典型的なmiRNAは、主にAgo1に取り込まれ、相補性の高い外来性及び内在性のsiRNAは主にAgo2に取り込まれる(これをsmall RNAの分配システムと呼ぶ。非特許文献4-8)。ヒトには、4種類のAgo蛋白質(ヒトAgo1-4)が存在する。small RNAの分配システムはヒトを含む哺乳類にも存在すると考えられるが、他の動物や植物の場合ほど厳格なものではなく、siRNAやmiRNAを含むsmall RNAはAgo1-4すべてに取り込まれる(非特許文献9及び10)。ヒトではAgo1-4のすべてが翻訳抑制能を持つが、標的mRNAを切断するスライサー活性を持つのはヒトAgo2のみである(非特許文献11及び12)。ハエでは、Ago1およびAgo2はどちらも翻訳抑制能を持つが、Ago1の方がその活性が高い。また、どちらもスライサー活性を保持しているが、Ago1はAgo2より遥かに弱いエンドヌクレアーゼである(非特許文献5)。
 siRNA二本鎖やmiRNA/miRNA*二本鎖を含むsmall RNA二本鎖のうち、一方の鎖(ガイド鎖)のみが選択的にRISCに取り込まれ、もう一方の鎖(パッセンジャー鎖)はRISCから排除されて分解される。この過程を、siRNA二本鎖またはmiRNA/miRNA*二本鎖の一本鎖化、またはunwinding (巻き戻し)と呼ぶ。その結果、RISCに取り込まれて一本鎖になったsmall RNAは、自身の塩基配列と対合するmRNAと結合し、標的mRNA の切断または翻訳抑制を行う。Agoが二本鎖RNAを含む状態をpre-RISC、一本鎖RNAを含む状態を成熟型RISCと呼ぶ。ハエおよびヒトAgo2の場合(非特許文献13-15)、RLCからsiRNA二本鎖を受けとった後、パッセンジャー鎖を切断することで、ガイド鎖のみをもつ成熟型Ago2-RISCを形成する。しかし、ハエAgo1はスライサー活性が不十分であり(非特許文献5)、哺乳類のAgo1, 3及び4はスライサー活性を持たない(非特許文献11及び12)。それにもかかわらず、これらのAgoもsmall RNA二本鎖を一本鎖化することができる。このような、パッセンジャー鎖の切断を伴わないsmall RNA二本鎖の一本鎖化についての機構は、これまで不明であった。
Bartel, D. P. microRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004). Tomari, Y. & Zamore, P. D. Perspective: machines for RNAi. Genes Dev 19, 517-529 (2005). Filipowicz, W. RNAi: the nuts and bolts of the RISC machine. Cell 122, 17-20 (2005). Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18, 1655-1666 (2004). Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell 130, 287-297 (2007). Tomari, Y., Du, T. & Zamore, P. D. Sorting of Drosophila small silencing RNAs. Cell 130, 299-308 (2007). Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute2 in somatic cells. Nature 453, 793-797 (2008). Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077-1081 (2008). Azuma-Mukai, A. et al. Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci U S A 105, 7964-7969 (2008). Su, H., Trombly, M. I., Chen, J. & Wang, X. Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 23, 304-17 (2009). Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441 (2004). Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185-197 (2004). Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621-629 (2005). Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607-620 (2005). Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19, 2837-2848 (2005).
 本発明者らは、遺伝子のノックダウンに従来から使用されている相補的な(あるいは末端にのみミスマッチを導入した)siRNAあるいはヘアピン型RNAでは、スライサー活性を持つヒトおよびハエAgo2を核とするRISCは効率よく形成されるが、スライサー活性を持たないヒトAgo1,3,4およびスライサー活性の不十分なハエAgo1を核とするRISCの形成は効率が悪いことを生化学的な解析から明らかにした。よって、従来のsiRNAを用いた場合、Ago2の発現が低い組織においては、ノックダウンの効率が低いことが予想される。本発明は、Ago2の発現が高い組織(ヒトでは心臓や腎臓など)のみならず、Ago2の発現が低い組織(ヒトでは肝臓や膵臓など)においてもノックダウンの効率が高いsmall RNA二本鎖あるいはヘアピン型RNAを設計する方法を提供することを解決すべき課題とした。
 本発明者らは、上記課題を解決するために鋭意検討し、スライサー活性を持たないあるいはスライサー活性が不十分なAgoを核とするRISCの形成を効率よく進行させるため、small RNA二本鎖あるいはヘアピン型RNAの相補的な二本鎖領域の、複数の特定の部位にミスマッチを導入した。これにより、Ago2の発現が高い細胞種や組織のみならず、Ago2の発現が低い細胞種や組織においても、標的のノックダウンが従来のsiRNAあるいはヘアピン型RNAよりも効率よく行えるようになる。本発明はこれらの知見に基づいて完成したものである。
 即ち、本発明によれば、small RNA二本鎖あるいはヘアピン型RNAの相補的な二本鎖部分において、ガイド鎖の配列は、標的としたいmRNAの配列情報と相補性が高くなるように設計し、パッセンジャー鎖の配列については、ガイド鎖と相補的な配列を基準に、(1)ガイド鎖の中心部位(5′末端から9番目から11番目)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入すること、及び(2)ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)および/又は3′-mid領域(5′末端から12番目から16番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入することを含む、small RNA二本鎖あるいはヘアピン型RNAの設計方法が提供される。
 さらに本発明によれば、small RNA二本鎖あるいはヘアピン型RNAの相補的な二本鎖部分において、ガイド鎖の配列は、標的としたいmRNAの配列情報と相補性が高くなるように設計し、パッセンジャー鎖の配列については、ガイド鎖と相補的な配列を基準に、(1)ガイド鎖の中心部位(5′末端から9番目から11番目)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行いミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入すること、及び(2)ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)および/又は3′-mid領域(5′末端から12番目から16番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行いミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入することを含む、small RNA二本鎖あるいはヘアピン型RNAの製造方法が提供される。
 好ましくは、RISCから排除される鎖であるパッセンジャー鎖の配列については、ガイド鎖と相補的な配列を基準に、ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行いミスマッチ又はG:U ゆらぎ(wobble)塩基対を導入する。
 さらに本発明によれば、上記した本発明の製造方法により製造されるsmall RNA二本鎖またはヘアピン型RNAが提供される。
 さらに本発明によれば、(i)上記した本発明の製造方法によりsmall RNA二本鎖またはヘアピン型RNAを製造する工程;及び(ii)工程(i)で製造したsmall RNA二本鎖またはヘアピン型RNAを細胞に導入して、標的遺伝子の発現を抑制する工程を含む、標的遺伝子の発現を抑制する方法が提供される。
 さらに本発明によれば、上記した本発明の設計方法により設計されたヘアピン型RNAの配列を含むRNAをプロモーターを用いて細胞内において発現させ、標的遺伝子の発現を抑制する工程を含む、標的遺伝子の発現を抑制する方法が提供される。
 上記した本発明による標的遺伝子の発現を抑制する方法は、インビトロで細胞に対して行ってもよいし、ヒト以外の動物、又は植物、昆虫、微生物などに対してインビボで行ってもよい。
 本発明におけるショウジョウバエおよびヒト細胞を用いた生化学的な解析から、ガイド鎖の中心部分のミスマッチは、small RNA二本鎖がAgoに取り込まれる段階を、ガイド鎖のシードおよび3′-mid領域のミスマッチは、small RNA二本鎖が一本鎖化する段階を、それぞれ著しく促進することが明らかになった。即ち、本発明によれば、small RNA二本鎖あるいはヘアピン型RNAの相補的な二本鎖部分の、複数の特定の部分にミスマッチを導入することによって、標的mRNAに対してノックダウンをより効率よく誘導するような分子を設計することが可能になる。本発明によれば、Ago2の発現が高い組織(ヒトにおいては心臓や腎臓など)あるいは細胞種のみならず、Ago2の発現が低く従来のsiRNAによるノックダウン効率が低いと予想されるような組織(ヒトでは肝臓や脾臓など)あるいは細胞種において、従来のsiRNAあるいはヘアピン型RNAと比較して、効率よくノックダウンを引き起こすことが可能なsmall RNA二本鎖あるいはヘアピン型RNAを設計することが可能である。本発明の製造方法により製造されるsmall RNAあるいはヘアピン型RNAは、基礎生物学のツールとして、また医薬応用の観点から高い利用価値を有する。
図1は、ショウジョウバエにおいてガイド鎖の中心部のミスマッチはsmall RNA二本鎖をpre-Ago1-RISCに取り込ませる効率を上げる一方、ガイド鎖のシード又は3′-midのミスマッチはpre-Ago1-RISCから成熟型Ago1-RISCへの変換を促進することを示す。(a) 21-nt mm シリーズ (mm1-mm17) を使用して、15℃でpre-Ago1-RISCの形成を調べた。(b) aにおけるpre-Ago1-RISCの定量。(c) 21-nt MM10/mm シリーズ(MM10/mm1-17)を使用して、pre-Ago1-RISCから成熟型Ago1-RISCへの変換を25℃で調べた。(d) cにおけるpre-Ago1-RISC及び成熟型Ago1-RISCの定量。(e) 一本鎖化の効率を、[mature Ago1-RISC] / [mature Ago1-RISC]+[pre-Ago1-RISC]で示す。 図2は、ショウジョウバエにおいてミスマッチの位置は、small RNA二本鎖のAgo1への取り込み及び一本鎖化の両方において、ガイド鎖の5′末端から測定されることを示す。(a-b)25-nt mmシリーズ(25-nt mm1-mm19)を使用して、15℃でpre-Ago1-RISCの形成を調べた。(c-e)25-nt MM10/mmシリーズ(25-nt MM10/mm1-mm19)を使用して、25℃でpre-Ago1-RISCから成熟型Ago1-RISCへの変換を調べた。 図3は、ショウジョウバエにおいてG:U ゆらぎ (wobble)塩基対が、small RNA二本鎖のAgo1への取り込み及び一本鎖化の両方において、ミスマッチと同様に挙動することを示す。(a)21-nt small RNA二本鎖mmシリーズ(mm1, mm5, mm9, 及びmm15)及びG:Uシリーズ(G:U ゆらぎ (wobble)塩基対が、ガイド位置5、9又は15に対応する位置に導入されている(GU5, GU9、及びGU15))を使用して、15℃でpre-Ago1-RISCをpre-Ago1-RISCの形成を調べた。mm9及びGU9は、mm5, GU5、mm15又はGU15よりも、有意に高い量のpre-Ago1-RISCを形成した。位置5(シード領域)又は位置13(3′-mid領域)にA-U塩基対、G:Uゆらぎ(wobble)塩基対、又はU Uミスマッチを含むMM10二本鎖RNAを使用して、25℃で成熟型Ago1-RISCへの変換を調べた。シード領域又は3′-mid領域におけるG:Uゆらぎ(wobble)塩基対並びにミスマッチは、成熟型Ago1-RISCへの変換を促進した。 図4は、ヒトのAgo1,2,3,4を過剰発現させたHEK293T細胞から調製した抽出液を用いて、ショウジョウバエの場合(実施例1)と同様にネイティブゲルを行った結果を示す。
 以下、本発明について更に詳細に説明する。
(1)small RNA二本鎖あるいはヘアピン型二本鎖RNAの設計方法
 siRNAやmiRNAを含むsmall RNAは、Argonaute(Ago)ファミリー蛋白質を核とするRNA induced silencing complex: (RISC)を介して標的mRNAの発現を調節する。ショウジョウバエ(Drosophila)においては、miRNAは一般にAgo1を含むRISCに取り込まれ、siRNAは一般にAgo2を含むRISCに取り込まれる。ヒトにおいてはsiRNAやmiRNAを含むsmall RNAはAgo1-4すべてに取り込まれる。small RNA二本鎖を含むRISCをpre-RISC、small RNA一本鎖を含むRISCを成熟型RISCと呼ぶ。本発明者は、ハエAgo1およびヒトAgo1-4を核とするRISCの構成経路を生化学的に分析できるネイティブゲルシステムを確立し、RISC形成の素過程を解析した。その結果、ガイド鎖の中心部分(5′末端から9番目から11番目の塩基)のミスマッチは、small RNA二本鎖を効率よくAgoに取り込ませる一方、ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)及び/又は3′-mid領域(5′末端から12番目から16番目の塩基)のミスマッチは、成熟型RISCへの転換を促進することを示した。
 本発明においては、small RNA二本鎖あるいはヘアピン型RNAの設計を行う際、以下の規則に従い、最終的にRISCから排除される方の鎖(パッセンジャー鎖)に塩基置換を導入し、相補的な二本鎖部分にミスマッチを形成させる。(1) small RNA二本鎖が効率よくAgoに取り込まれるために、RISCに取り込まれて作用する側の鎖(ガイド鎖)の中心部位(5′末端から9-11番目の塩基)に少なくとも一つのミスマッチ又はG:U ゆらぎ(wobble)塩基対を導入する (2)small RNA二本鎖が、Agoの内部において効率よく一本鎖化(成熟化)するために、ガイド鎖のseed領域(5′末端から2番目から8番目の塩基)および/又は3'-mid領域(5′末端から12番目から16番目の塩基)に、少なくとも一つのミスマッチ又はG:U ゆらぎ(wobble)塩基対を導入する。なお、small RNA二本鎖の非対称性[=どちらの鎖が最終的にRISCに残るか]の観点からは、seed領域に少なくとも一つミスマッチを持つことが好ましいと考えられる。
 本発明によるsmall RNA二本鎖あるいはヘアピン型RNAの設計方法では、標的遺伝子の塩基配列を検索し、ガイド鎖の配列は検索された塩基配列と相補性が高くなる様に設計し、パッセンジャー鎖の配列については、ガイド鎖と相補的な配列を基準として上記のルールに基づいて部分的に塩基置換を導入する。small RNA二本鎖には、オーバーハング部が通常設けられる。オーバーハング部とは、二本鎖のsmall RNA二本鎖において、各鎖の3′末端に設けられる一本鎖の状態で突出した部分である。オーバーハング部の長さは特に限定されないが、塩基数は2が特に好ましい。オーバーハング部の塩基配列は基本的には任意であるが、標的遺伝子と同一の塩基配列、dTdT又はUUなどを用いることができる。
 また、small RNA二本鎖またはヘアピン型RNAの、ガイド鎖の5′から1番目の塩基部分には、small RNA二本鎖の非対称性を規定する観点から、ミスマッチあるいはG:U ゆらぎ(wobble)塩基対を導入してもよい。
(2)small RNA二本鎖あるいはヘアピン型RNAの製造方法
 本発明におけるsmall RNA二本鎖あるいはヘアピン型RNAは、すべてRNAから構成されてもよいし、一部にDNA、あるいは2′-O-メチル化RNAや2′-F化RNAを含む2'位のRNA修飾体、あるいはホスホロチオエートやボラノホスフェートを含むリン酸ジエステル結合の酸素原子置換体のRNA修飾体を含む混成ポリヌクレオチドでもよい。
 small RNA二本鎖を構成する二本鎖部分の各鎖の塩基数はオーバーハング部を含めて18~30であり、より好ましくは20~22、特に好ましくは21である。また、オーバーハング部の塩基数は2であることが好ましい。ヘアピン型RNAを構成する二本鎖部分の各鎖の塩基数はオーバーハング部を含めて18~30である、ループ部分の塩基数は4~11である。
 RNAあるいは混成ポリヌクレオチドの合成は、化学合成によって合成してもよい。また、RNA、および混成ポリヌクレオチドの一部は通常のバイオテクノロジー等の手法に従って行うこともでき、所定の配列を有するDNA鎖を作製し、これを鋳型として転写酵素を用いて一本鎖RNAを合成し、一本鎖RNAを二本鎖化するなどの手法により合成することができる。
 例えば、本発明のsmall RNA二本鎖あるいはヘアピン型RNAは、鋳型となるDNAを調製し、これを鋳型としてRNAポリメラーゼを用いて転写を行うことにより製造することができる。
 本発明のsmall RNA二本鎖あるいはヘアピン型RNAを製造するための転写は、インビトロで行うことができる。また、RNAポリメラーゼとしては、T7RNAポリメラーゼ、SP6RNAポリメラーゼまたはT3RNAポリメラーゼなどを使用することができ、中でもT7RNAポリメラーゼを使用することが好ましい。RNAポリメラーゼを用いた転写反応は当業者に既知の常法で行なうことができ、例えば、鋳型のオリゴヌクレオチドを含む溶液に、塩化マグネシウム、NTP、スペルミジン、ジチオスレイトールを加え、最後にT7 RNAポリメラーゼを適当な濃度になるように加えて反応を行なうことができる。また、反応液中から副生成物であるピロリン酸を除去して転写反応を促進するために、ピロフォスファターゼを加えることが好ましい。このような反応混合物を37℃で60分間インキュベートすることにより転写反応を行うことができる。
(3)標的遺伝子の発現の抑制
 上記した本発明の方法で製造されるsmall RNA二本鎖あるいはヘアピン型RNAを用いて、標的核酸配列を含む遺伝子の発現をノックダウンすることが可能である。例えば、HeLa細胞などの培養細胞を用いる場合には、small RNA二本鎖あるいはヘアピン型RNAと適当なトランスフェクション試薬(例えば、OLIGOFECTAMINEなど)を混合し、培養細胞に添加することによりsmall RNA二本鎖あるいはヘアピン型RNAを培養細胞にトランスフェクションする。培養細胞は好適な条件下で培養することにより、細胞内でノックダウンが誘導され、標的配列を含む遺伝子の発現が抑制される。遺伝子の発現の抑制は、RT-PCR、ノザンブロット又はウエスタンブロットなどにより確認することができ、又は発現を抑制する遺伝子の機能が判明している場合には、細胞の表現型を観察することによって確認することも可能である。
 また、上記した本発明の方法で設計されるヘアピン型RNAを含む配列をもつRNAを、pol IIやpol III等の適切なプロモーターを用いて、細胞内で発現させることにより、標的配列を含む遺伝子の発現が抑制される。即ち、ヘアピン型RNAをコードするDNAを含む発現ベクターを細胞に投与することによって、細胞内でヘアピン型RNAを発現させることができる。発現ベクターを細胞に投与する方法としては、当業者に公知の方法を用いることができる。例えば、インビボ投与としては、発現ベクターを組織に直接注入してもよいし、全身投与してもよい。インビトロ投与としては、エレクトロポレーション又はリポフェクションなどが挙げられる。
 ヘアピン型RNAをコードするDNAを含む発現ベクターにおいては、ヘアピン型RNAをコードするオリゴヌクレオチドを、Pol III (例えば U6又はPolIII H1-RNA プロモーター)又はPol IIプロモーターなどの制御下に置くことができる。これにより、十分量のヘアピン型RNAを細胞内に発現させることができ、標的遺伝子の発現をノックダウンすることができる。このような発現ベクターは、通常のDNA組み換え技術により構築することができる。発現ベクターとしては、プラスミドベクター、ウイルスベクターなどを使用できる。ヘアピン型RNAをコードするDNAは、核酸合成装置などにより合成することができる。合成したオリゴヌクレオチドは、例えば、プロモーター配列(例えば、Pol II又はPol IIIプロモーター)、及び適当なターミネーター配列(例えば、SV40由来の切断及びポリアデニル化シグナル配列、又はPol IIIターミネーター配列)を含むプラスミドに組み込むことにより、発現ベクターを構築することができる。
 ヘアピン型RNAをコードするDNAを含む発現ベクターは、例えばウイルスベクターを用いて構築することができる。ウイルスベクターとしては、アデノウイルスベクター、アデノ随伴ウイルスベクター、単純ヘルペスウイルス-1ベクターなどを使用できる。このようなウイルスベクターは、細胞に直接導入することができる。ヘアピン型RNAをコードするDNAを含む発現ベクターは、プラスミドベクターでもよい。プラスミドベクターの場合は、例えば、カチオン性リポソーム(リポフェクチン)、又は誘導化した(例えば、抗体を結合させた)ポリリジン結合体、グラマシジンS、人工ウイルスエンベロープなどを用いて、細胞にトランスフェクションすることができる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
実施例1:ショウジョウバエを用いた例
(方法)
(1)一般的な方法
 40x反応ミックス(ATP, ATP再生系、及びRNaseインヒビターを含む)及びリシス緩衝液(30 mM HEPES (pH 7.4), 100 mM KOAc, 2 mM Mg(OAc)2) ,DounceホモジナイゼーションによるDrosophila melanogaster の胚抽出液の調製、T4ポリヌクレオチドキナーゼ(Takara)によるsmall RNAの放射標識は、既報の通り行った(Haley, B., Tang, G. & Zamore, P. D. In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30, 330-336 (2003))。インビトロでのRISCアッセイは、全量10μL中に5μLの胚抽出液、3μLの40x反応ミックス、1μLのsmall RNA二本鎖 (最終濃度100 nM)、及び1μLの標的RNA (最終濃度100 nM)を含む溶液で行った。
(2)標的mRNAの調製
 Renilla ルシフェラーゼ遺伝子及び4x let-7 標的部位を3′UTR中に含むDNA断片をpsiCHECK2-let-7 4x(Iwasaki, S., Kawamata, T. & Tomari, Y. Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34, 58-67 (2009))からPCRにより増幅した。各標的部位には、Ago1-RISCによるエンドヌクレアーゼ切断を防ぐために、中心部分にミスマッチを導入した。RL 4x mRNAは、mScript mRNA Production System (Epicentre)を用いて転写した。成熟型Ago1-RISCが、RL 4x mRNAと同様の効率で、RL 1x mRNA (1x let-7 標的部位のみを含む)を用いて検出できることを確認した。図3b (左)においては、RL 1x MM10/(U:G)5 mRNA (中心バルジを有するMM10/(U:G)5ガイド鎖に相補的な1個の標的部位を有する) を使用した。
(3)ネイティブゲル分析
 ネイティブゲルは、1.5~2 mmの厚さ、1.4% (w/v)アガロース (Low Range Ultra Agarose, Bio-Rad Laboratories)を用いた。Ago1-RISC形成過程における複合体を検出するために、10-20 nM の32P放射標識したsmall RNA二本鎖及び10 nMの標的mRNA(~1.5k nt)を、標準RISCアッセイ条件下で、25℃又は15℃でインキュベートした。インキュベーション後、試料を垂直ネイティブアガロースゲル電気泳動により分離した(300 V、1.5時間、氷冷0.5x TBE 緩衝液)。複合体は、phosphoimageryにより検出し、BAS-1500 又はFLA-7000 イメージアナライザー及びMultigaugeソフトウエア(富士フイルム)を用いて定量した。
(4)small RNA二本鎖の調製
 以下の表1から表5に示すsmall RNA二本鎖を化学合成により調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(結果)
(1)中心部のミスマッチは、small RNA二本鎖のAgo1-RISCへの取り込みを促進する。
 17種のsmall RNA二本鎖を調製した。1種は、機能的に非対称のlet-7 siRNA二本鎖(ガイド鎖及びパッセンジャー鎖が、ガイド位置1を除いて完全に相補的なもの)である(duplex mm1)。16種は、それぞれのガイド位置に対応するパッセンジャー鎖の位置にさらに1個のミスマッチを有する(duplexes mm2-mm17)。 ガイド鎖の配列はすべて同じである(表1を参照)。15℃(成熟型Ago1-RISC がほとんど形成されない条件)では、duplexes mm8-mm12が、pre-Ago1-RISCを効率的に形成した(図1a及びb)。Mm10 が最も活性が高かった。この結果から、中心部分のミスマッチが、pre-Ago1-RISCの形成に必須であることが示された。
(2)シード及び3′-midのミスマッチは一本鎖化を促進する。
 更に別の17種のsmall RNA二本鎖を作製した(duplexes MM10/mm1-mm17)(表2を参照)。これらの17種の二本鎖は、pre-Ago1-RISC形成を促進するガイド位置10にミスマッチが導入されている以外は、二本鎖mm1-mm17と同一である。25℃では、MM10/mm1及びMM10/mm9-mm11を含有するpre-Ago1-RISCの大部分が成熟型Ago1-RISCに変換されていないが、MM10/mm2-mm8及びMM10/mm12-mm15を含むpre-Ago1-RISCは、効率よく成熟型Ago1-RISCに変換されることが確認された(図1c、d及びe)。即ち、シード及び3′-mid (ガイド位置12から16)のミスマッチは、一本鎖化を促進する。
(3)ミスマッチの位置は、ガイドの5′末端から正確に測られている。
 ミスマッチの位置の測定が、正確に5′から計測されているかを調べるために、21ntより長い25-ntの二本鎖(表3及び表4を参照;25-nt mm及びMM10/mm シリーズ)を作製し、small RNA二本鎖がAgoに取り込まれる過程および成熟型Ago1-RISC形成過程を調べた。21-nt二本鎖シリーズの場合と同様に、25-nt二本鎖の位置7-11におけるミスマッチにより、pre-Ago1-RISCの形成は促進し (図2a及び,b)、シード又は32-mid領域におけるミスマッチは、一本鎖化を促進した(図2c、d及びe)。よって、ミスマッチの位置はガイドの5′末端から正確に測られているという結論になる。
(4)G:U ゆらぎ(wobble)塩基対はsmall RNA二本鎖のAgo1への取り込み、および一本鎖化過程においてミスマッチのように挙動する。
 完全に相補的な二本鎖のガイド位置5, 9又は15にG:U ゆらぎ(wobble)塩基対を導入した(G:U5, G:U9 or G:U15) (表5を参照)。中心領域のG:U ゆらぎ(wobble)塩基対(G:U9)は、ミスマッチと同様にAgo1-RISC形成を促進した (図3a)。次に、位置5又は13に、A-U 塩基対、G:U ゆらぎ(wobble)塩基対、又はU:U ミスマッチを含むMM10二本鎖RNAを作製した(表5を参照)。シード又は3′-mid領域におけるG:U ゆらぎ(wobble)塩基対は、ミスマッチの場合と同様、pre-Ago1-RISCから成熟型Ago1-RISCへの転換を促進した(図3b)。これらの結果は、miRNA二本鎖内のG:U G:U ゆらぎ(wobble)塩基対は、small RNA二本鎖のAgo1への取り込み、および一本鎖化の両方の過程において、ミスマッチと同様に挙動することを示している。
実施例2:ヒト細胞を用いた例
(方法)
(1)ネイティブゲル分析
 ネイティブゲル分析は、FLAG/HA-tagged Ago1, Ago2 又はAgo3, 又はFLAG-tagged Ago4を発現するHEK 293T細胞の抽出液を用いて、実施例1と同様に行った。但し、標的mRNAは、RL 4x mRNAの代わりにanti-let-7 2'-O-Meオリゴヌクレオチドを使用した。
(2)プラスミドの構築
 pIRES-neo-FLAG-HA-Ago1, 2, 3及び 4は、既報のものを使用した (Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185-197 (2004))。pCAGEN-FLAG-Ago4を構築するために、全長ヒト Ago4配列を、pIRES-neo-FLAG-HA-Ago4からEcoRI部位及びFLAG-tag配列を含む5′プライマー及びNotI部位を含む3′プライマーを用いてPCR で増幅し、pCAGENベクターのEcoRI/NotI部位に挿入した(Matsuda et al. Electroporation and RNA interference in the rodent retina in vivo and in vitro.Proc Natl Acad Sci USA. 101, 16-22. (2004))。
(3)細胞培養及びトランスフェクション
 HEK 293T細胞は、37℃,5%CO2中で、10% 胎児ウシ血清(FBS), 100 U/ml ペニシリン及び100 μg/mlストレプトマイシンを補充したダルベッコ改変イーグル培地(DMEM)中で培養した。HEK 293T細胞に、Fugene HDトランスフェクション試薬(Roche)を用いてプラスミドDNAをトランスフェクションした。トランスフェクションの前日、指数増殖期の細胞を10 cmプレートに、抗生物質を含まない培地中に1.4 x 105細胞/mlの密度で撒いた。翌日、細胞に、6 μg/プレートのプラスミドDNAをトランスフェクションし、Ago1,2,3は24時間後、Ago4は48時間後に回収した。
(4)ライセートの調製
 HEK 293T細胞をPBS (pH 7.4)で洗浄し、遠心により回収した。細胞ペレットを、5 mM DTT及び1 mg/ml Complete EDTA-free protease inhibitor tablets (Roche)を含有する2ペレット容量のリシス緩衝液(100 mM KOAc, 30 mM HEPES-KOH (pH 7.4), 2 mM Mg(OAc)2)に再懸濁し、Douncingでホモジナイズした。ライセートは、17,000 x gで4℃で20分間遠心することによってその上清を回収した。上清を液体窒素で凍結し、-80℃で保存した。
(5)small RNA二本鎖
 実施例1で用いた21塩基のsmall RNA二本鎖と同じものを使用した。
(結果)
 ヒトのAgo1,2,3,4を過剰発現させたHEK 293T細胞から調製した抽出液を用いて、ショウジョウバエの場合(実施例1)と同様にネイティブゲルを行った結果を図4に示す。上段は、ミスマッチをそれぞれの場所に一カ所持つsmall RNA二本鎖が、pre-RISC(二本鎖を含む状態)を形成する効率を見たものであり、真ん中付近にミスマッチがある場合に促進された。下段は、10番目に一つのミスマッチを有するsmall RNA二本鎖に、さらにもう一つそれぞれの場所にミスマッチを導入した二本鎖RNAが、pre-RISCから成熟型RISCに変換されるところを観察したものであり、10番目に加えてseed領域(2-8)あるいは3'-mid領域(12-16番目)にミスマッチを有する場合に、効率よく成熟型RISCが形成された。

Claims (7)

  1. small RNA二本鎖あるいはヘアピン型RNAの相補的な二本鎖部分において、RISCに取り込まれて作用する側の鎖であるガイド鎖の配列は、標的としたいmRNAの配列情報と相補性が高くなるように設計し、RISCから排除されて分解される側の鎖であるパッセンジャー鎖の配列については、ガイド鎖と相補的な配列を基準に、(1)ガイド鎖の中心部位(5′末端から9番目から11番目)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入すること、及び(2)ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)および/又は3′-mid領域(5′末端から12番目から16番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入することを含む、small RNA二本鎖あるいはヘアピン型RNAの設計方法。
  2. RISCから排除される鎖であるパッセンジャー鎖の配列は、ガイド鎖と相補的な配列を基準に、ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ又はG:U ゆらぎ(wobble)塩基対を導入する、請求項1に記載のsmall RNA二本鎖あるいはヘアピン型RNAの設計方法。
  3. small RNA二本鎖あるいはヘアピン型RNAの相補的な二本鎖部分において、ガイド鎖の配列は、標的としたいmRNAの配列情報と相補性が高くなるように設計し、パッセンジャー鎖の配列については、ガイド鎖と相補的な配列を基準に、(1)ガイド鎖の中心部位(5′末端から9番目から11番目)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入すること、及び(2)ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)および/又は3′-mid領域(5′末端から12番目から16番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ塩基対又はG:U ゆらぎ(wobble)塩基対を導入することを含む、small RNA二本鎖あるいはヘアピン型RNAの製造方法。
  4. RISCから排除される鎖であるパッセンジャー鎖の配列については、ガイド鎖と相補的な配列を基準に、ガイド鎖のシード領域(5′末端から2番目から8番目の塩基)に対応するパッセンジャー鎖の位置に、少なくとも一つの塩基置換を行い、ミスマッチ又はG:U ゆらぎ(wobble)塩基対を導入する、請求項3に記載のsmall RNA二本鎖あるいはヘアピン型RNAの製造方法。
  5. 請求項3又は4に記載の製造方法により製造されるsmall RNA二本鎖またはヘアピン型RNA。
  6. (i)請求項3又は4に記載の製造方法によりsmall RNA二本鎖またはヘアピン型RNAを製造する工程;及び(ii)工程(i)で製造したsmall RNA二本鎖またはヘアピン型RNAを細胞に導入して、標的遺伝子の発現を抑制する工程を含む、標的遺伝子の発現を抑制する方法。
  7. 請求項1又は2に記載の設計方法により設計されたヘアピン型RNAの配列を含むRNAをプロモーターを用いて細胞内において発現させ、標的遺伝子の発現を抑制する工程を含む、標的遺伝子の発現を抑制する方法。
PCT/JP2010/061036 2009-06-29 2010-06-29 small RNA二本鎖およびヘアピン型RNAの設計方法 WO2011001965A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-153798 2009-06-29
JP2009153798A JP2011004708A (ja) 2009-06-29 2009-06-29 smallRNA二本鎖およびヘアピン型RNAの設計方法

Publications (1)

Publication Number Publication Date
WO2011001965A1 true WO2011001965A1 (ja) 2011-01-06

Family

ID=43411037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061036 WO2011001965A1 (ja) 2009-06-29 2010-06-29 small RNA二本鎖およびヘアピン型RNAの設計方法

Country Status (2)

Country Link
JP (1) JP2011004708A (ja)
WO (1) WO2011001965A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6837963B2 (ja) * 2014-09-08 2021-03-03 ミラゲン セラピューティクス, インコーポレイテッド Mir−29模倣物およびその使用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008147839A1 (en) * 2007-05-23 2008-12-04 Dharmacon, Inc. Micro-rna scaffolds and non-naturally occurring micro-rnas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008147839A1 (en) * 2007-05-23 2008-12-04 Dharmacon, Inc. Micro-rna scaffolds and non-naturally occurring micro-rnas

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRODERSEN, P. ET AL.: "Revisiting the principles of microRNA target recognition and mode of action.", NATURE REVIEWS MOLECULAR CELL BIOLOGY, vol. 10, no. 2, February 2009 (2009-02-01), pages 141 - 148 *
HU, ZHIBIN ET AL.: "Genetic variants of miRNA sequences and non-small cell lung cancer survival.", J. CLINICAL INVESTIGATION, vol. 118, no. 7, 2008, pages 2600 - 2608 *
KAWAMATA, T ET AL.: "Making RISC", TRENDS IN BIOCHEMICAL SCIENCES, vol. 35, 13 April 2010 (2010-04-13), pages 368 - 376, XP027117665 *
KAWAMATA, T. ET AL.: "Structural determinants of miRNAs for RISC loading and slicer-independent unwinding.", NATURE STRUCTRAL & MOLECULAR BIOLOGY, vol. 16, no. 9, 16 August 2009 (2009-08-16), pages 953 - 960 *
YEKTA, S. ET AL.: "MicroRNA-directed cleavage of HOXB8 mRNA.", SCIENCE, vol. 304, no. 5670, 2004, pages 594 - 596, XP003034012, DOI: doi:10.1126/science.1097434 *

Also Published As

Publication number Publication date
JP2011004708A (ja) 2011-01-13

Similar Documents

Publication Publication Date Title
Chong et al. Transfection types, methods and strategies: a technical review
Tang et al. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system
Laursen et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo
Horwich et al. Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells
Bicker et al. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134
US10519443B2 (en) Microrna inhibitor system and methods of use thereof
EP2123752A2 (en) Novel nucleic acid
Shu et al. A simplified system to express circularized inhibitors of miRNA for stable and potent suppression of miRNA functions
Cao et al. A new plasmid-based microRNA inhibitor system that inhibits microRNA families in transgenic mice and cells: a potential new therapeutic reagent
Hu et al. Comparative studies of various artificial microRNA expression vectors for RNAi in mammalian cells
Kizana et al. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells
Lim et al. The Drosophila Dicer-1 partner loquacious enhances miRNA processing from hairpins with unstable structures at the dicing site
Galka-Marciniak et al. siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA
Seow et al. Artificial mirtron-mediated gene knockdown: functional DMPK silencing in mammalian cells
CN104031916B (zh) 新型RNAi前体及其制备和应用
US20120122203A1 (en) METHODS AND KITS TO GENERATE miRNA- AND SMALL RNA-EXPRESSING VECTORS, AND ITS APPLICATION TO DEVELOP LENTIVIRAL EXPRESSION LIBRARIES
WO2011001965A1 (ja) small RNA二本鎖およびヘアピン型RNAの設計方法
US20230287408A1 (en) Nucleic acid constructs for delivering polynucleotides into exosomes
Shan et al. A quick and efficient approach for gene silencing by using triple putative microRNA-based short hairpin RNAs
WO2017008755A1 (zh) 新型shRNA表达载体及其制备和应用
Chen Interaction Between Argonaute2 and RNA Molecules: AGO2 Molecular Structure and Different Regions in Nucleotide Chain
US8795988B2 (en) Primer-extension based method for the generation of siRNA/miRNA expression vectors
KR102193869B1 (ko) 마이크로rna의 비정규 표적을 억제하는 rna 간섭 유도 핵산 및 그 용도
Sons et al. A functional screen for optimization of short hairpin RNA biogenesis and RISC loading
Park et al. Enhancement of gene knockdown efficiency by CNNC motifs in the intronic shRNA precursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794134

Country of ref document: EP

Kind code of ref document: A1