WO2011001823A1 - Composition, cured object, and electronic device - Google Patents

Composition, cured object, and electronic device Download PDF

Info

Publication number
WO2011001823A1
WO2011001823A1 PCT/JP2010/060163 JP2010060163W WO2011001823A1 WO 2011001823 A1 WO2011001823 A1 WO 2011001823A1 JP 2010060163 W JP2010060163 W JP 2010060163W WO 2011001823 A1 WO2011001823 A1 WO 2011001823A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
component
compound
organic
group
Prior art date
Application number
PCT/JP2010/060163
Other languages
French (fr)
Japanese (ja)
Inventor
新井 隆之
高橋 昌之
松木 安生
酒井 達也
圭二 今野
俊之 早川
直矢 野坂
昭一 松見
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2011520858A priority Critical patent/JP5773160B2/en
Publication of WO2011001823A1 publication Critical patent/WO2011001823A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/44Materials comprising a mixture of organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials

Definitions

  • the present invention relates to a composition, a cured body formed from the composition, and an electronic device including the cured body.
  • an organic EL element that is a typical sealed electronic device has a luminance that is caused by the electrode being oxidized by moisture or oxygen that has entered the organic EL element as the driving period becomes longer, and further the organic matter is denatured.
  • the light emission characteristics such as the light emission efficiency are remarkably deteriorated.
  • JP-A Nos. 9-148066, 2003-142256, 2003-338366, 2005-230818, and 2006-68729 are disclosed.
  • Japanese Patent Laid-Open No. 2006-59571, etc. a technique in which a desiccant is disposed in an element and the inside of the element is maintained in a low humidity and low oxygen environment is studied.
  • an organic EL lighting device in which a plurality of organic EL elements are arranged emits light when a current flows through the organic EL elements.
  • heat is generated when a current flows through the organic EL element itself, and the temperature in the vicinity of the element is increased, which adversely affects light emission characteristics such as luminance and light emission efficiency. May occur.
  • Japanese Patent Application Laid-Open No. 2008-291220 Japanese Patent Application Laid-Open No. 2008-277768, Japanese Patent Application Laid-Open No. 2008-169265, and the like discuss various materials having excellent heat conductivity. Has been.
  • the moisture or oxygen scavenger as described above has insufficient moisture absorption and oxygen absorption capacity when considering long-term use, and further has problems such as volume expansion and opacification due to moisture absorption and oxygen absorption. It was.
  • the capturing agent is required to be transparent.
  • the above moisture or oxygen scavenger alone is difficult to arrange in an electronic device, for example, in JP-A No. 2003-142256, a moisture or oxygen scavenger and a polymer binder are mixed and used in a sheet form.
  • a moisture or oxygen scavenger and a polymer binder are mixed and used in a sheet form.
  • the above-described sheet-like scavenger is decomposed by moisture absorption (hereinafter also referred to as “decomposition product”) acts as a binder plasticizer, so that the use environment (about 80 ° C.) In some cases, heat flow and deformation occurred.
  • volatilization of the decomposition product causes aged deterioration in sealed electronic device elements such as organic EL elements.
  • the moisture or oxygen scavenger described above may adversely affect light emission characteristics such as luminance and light emission efficiency due to heat generated in the vicinity of the organic EL element, it is required to efficiently release the heat.
  • some aspects of the present invention provide a moisture that can form a cured body that is excellent in water absorption and oxygen absorption and hardly causes heat flow by solving at least a part of the above problems.
  • an oxygen scavenging composition, a cured body formed from the composition, and an electronic device including the cured body are provided.
  • some embodiments according to the present invention are water or oxygen capable of forming a cured body that is excellent in water absorption and oxygen absorption and that is less likely to cause heat flow and also has excellent thermal conductivity.
  • a capturing composition, a cured body formed from the composition, and an electronic device including the cured body are provided.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • composition according to the present invention is: (A) an organometallic compound; (B) inorganic particles or organic polymer particles; (C) a binder component; It is characterized by containing.
  • the organometallic compound may be a compound represented by the following general formula (1).
  • R 1 is a hydrogen atom or an organic group, and a plurality of R 1 may be the same or different.
  • N is 2 or 3, and is equal to the valence of M.
  • M is (It is a divalent or trivalent metal atom.)
  • the M may be aluminum.
  • Application Example 4 In the composition of Application Example 2 or Application Example 3, The compound represented by the general formula (1) may have at least one MC bond.
  • the compound represented by the general formula (1) is tridodecylaluminum, trihexadecylaluminum, tristetramethylhexadecylaluminum, tri (1-phytyl) aluminum, tri (3-cyclododecylpropyl) aluminum, and tri (2 , 2-bis (allyloxymethyl) -1-butoxy) aluminum.
  • the inorganic particles may be at least one particle selected from silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, silicon carbide, boron carbide, and smectite.
  • the organic polymer particles may be crosslinked styrene / butadiene rubber particles.
  • the content of the (B) inorganic particles or organic polymer particles may be 0.1% by mass or more and 20% by mass or less.
  • the binder component (C) is at least one selected from a (meth) acrylic polymer, a polyether polymer, a styrene elastomer, a compound having a cyclic ether structure, and a compound having a Si—H bond. be able to.
  • Application Example 11 The composition described in any one of Application Examples 1 to 10 can be used for capturing moisture or oxygen.
  • Application Example 12 One aspect of the cured body according to the present invention is: It is formed by using the composition described in any one of Application Examples 1 to 11.
  • Application Example 13 One aspect of the electronic device according to the present invention is: The cured body described in Application Example 12 is provided inside.
  • composition of the present invention a specific organometallic compound capable of capturing moisture or oxygen, inorganic particles or organic polymer particles for capturing decomposition products, a binder component as a matrix, Therefore, it is possible to form a cured body (coating film, film, etc.) that is excellent in hygroscopicity or oxygen absorption and hardly causes heat flow.
  • the cured body may not be deformed by heat flow even in a use environment exceeding 80 ° C., and may have excellent heat dissipation performance.
  • the cured body is suitable for applications such as a sealing material for electronic devices such as organic EL elements, and when it is excellent in transparency, it can be used for, for example, a top emission type organic EL element.
  • FIG. 1 is a cross-sectional view schematically showing an example of the organic EL element according to the present embodiment.
  • FIG. 2 is a 1 H-NMR spectrum of tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum.
  • composition The composition concerning this Embodiment is (A) an organometallic compound (hereinafter also simply referred to as “(A) component”), (B) inorganic particles or organic polymer particles (hereinafter also simply referred to as “(B) component”), and (C ) A binder component (hereinafter also simply referred to as “component (C)”).
  • component (C) A binder component
  • composition according to the present embodiment contains (A) an organometallic compound.
  • organometallic compound is preferably a compound represented by the following general formula (1).
  • R 1 is a hydrogen atom or an organic group, and a plurality of R 1 may be the same or different.
  • n is 2 or 3, and is equal to the valence of M.
  • M is a divalent or trivalent metal atom.
  • R 1 in Formula (1) is an organic group
  • the organic group includes a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group, aryl group, alkoxyl group, carboxyl group, Or an amino group is mentioned.
  • R 1 is an alkenyl group or an alkynyl group
  • the position and number of double bonds and triple bonds are not particularly limited.
  • alkyl group methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, hexadecyl group, tetramethylhexadecyl group And octadecyl group.
  • alkenyl group examples include a propenyl group, a butenyl group, an octenyl group, a dodecenyl group, and an octadecenyl group.
  • alkynyl group examples include propynyl group and phenylethynyl group.
  • Examples of the cyclic alkyl group include a cyclopropyl group and a cyclohexyl group.
  • aryl group examples include a phenyl group and a benzyl group.
  • alkoxyl group examples include an ethoxy group, a propoxy group, and a butoxy group.
  • alkyl groups, alkenyl groups, alkynyl groups, and alkoxyl groups may be linear or branched.
  • the carbon number of R 1 is preferably 1-30, more preferably 6-25, and particularly preferably 12-20. In particular, it is preferable that the carbon number of R 1 is 6 to 25 because it is difficult to become an outgas component when the component derived from R 1 is liberated by hydrolysis, and it is easy to form a uniform mixture with the component (B) described later. .
  • decomposition products such as alcohol (R 1 -OH) and alkane (R 1 -H) are generated.
  • the boiling point of this decomposition product is preferably 200 ° C. or higher, more preferably 250 ° C. or higher at 1 atmosphere. If it is 200 degreeC or more, the spreading
  • M is a divalent or trivalent metal atom.
  • metal atoms include Group 2 elements, Group 4 elements, Group 12 elements and Group 13 elements in the IUPAC periodic table.
  • Al, B, Mg, Zn, Ti , Zr and the like are preferable from the viewpoint of excellent hygroscopicity and oxygen absorption, and Al is more preferable from the viewpoint of maintaining transparency without being colored after being decomposed by trapping moisture and oxygen.
  • the compound represented by the general formula (1) preferably has at least one MC bond (where C represents a carbon atom).
  • C represents a carbon atom
  • the compound represented by the general formula (1) preferably has at least one MO bond (where O represents an oxygen atom).
  • O represents an oxygen atom
  • the compound represented by the general formula (1) include, for example, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tricyclopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t -Butylaluminum, tri-2-methylbutylaluminum, tri-n-hexylaluminum, tricyclohexylaluminum, tri (2-ethylhexyl) aluminum, tri-n-octylaluminum, tri-n-decylaluminum, tri-n-dodecyl Aluminum, trihexadecylaluminum, tristetramethylhexadecylaluminum, triphenylaluminum, tribenzylaluminum, dimethylphenylaluminum, dibutylphenol Aluminum, diisobutylphenylaluminum, methyldiphenylaluminum,
  • R 1 is a group having 6 or more carbon atoms such as tri-n-hexyl aluminum, tri-n-octyl aluminum, tri-n-dodecyl aluminum, trihexa Decylaluminum, tristetramethylhexadecylaluminum and the like are preferable, and compounds in which R 1 is a group having 12 or more carbon atoms such as tri-n-dodecylaluminum, trioctadecyloxyaluminum, tri (2,2-bis (allyloxy) Methyl) -1-butoxy) aluminum, tri (3-cyclododecylpropyl) aluminum (compound represented by the following formula (2)), trihexadecylaluminum, tristetramethylhexadecylaluminum, tris (3,7,11, 15-tetramethylhexadecyl) aluminum
  • Tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum represented by the above formula (4) is a novel compound having an excellent moisture trapping action.
  • the boiling point of the alcohol produced by the reaction of tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum with moisture is 258 ° C. under 1 atm. It has the feature of generating.
  • tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum is excellent in compatibility with the component (C) described later, and a transparent composition can be produced.
  • the content of the component (A) in the composition according to the present embodiment is such that the content of the component (A) in the cured product is 10% by mass when the total mass of the obtained cured product is 100% by mass. It is not particularly limited as long as it can be set to be 80% by mass or less, but when the total mass of the composition is 100% by mass, it is preferably 10% by mass to 80% by mass, more preferably 50% by mass or more. 80% by mass or less. It is preferable for the content of the component (A) to be in the above-mentioned range since the action of capturing moisture and oxygen can be effectively expressed in the cured body. Furthermore, when the content of the component (A) is within the above range, an appropriate viscosity as described later can be imparted to the composition, and workability (applicability, etc.) when forming a cured product is good. It becomes.
  • composition according to the present embodiment is also referred to as (B1) inorganic particles (hereinafter also simply referred to as (B1) component) or (B2) organic polymer particles (hereinafter simply referred to as (B2) component).
  • B1 component inorganic particles
  • B2 component organic polymer particles
  • the component (B) will be described in the order of (B1) inorganic particles and (B2) organic polymer particles.
  • (B1) Inorganic particles (B1) One of the functions of the inorganic particles is to improve the thermal conductivity of a cured body formed using the composition according to the present embodiment.
  • the component (A) is decomposed by moisture absorption and adsorbs the component (decomposition product) to suppress diffusion to the binder component (matrix), One example is capturing the decomposition product inside. Thereby, it can prevent that the said decomposition product acts as a plasticizer of a hardening body. That is, the cured body formed using the composition according to the present embodiment is not deformed by heat flow even in a use environment exceeding 80 ° C., for example.
  • Other functions of the inorganic particles include improving the mechanical strength of the cured body formed using the composition according to the present embodiment, increasing the hygroscopic capacity of the cured body, and the like. It is done.
  • inorganic particles refer to particles formed from compounds other than organic compounds having carbon atoms in the basic skeleton of the structure, but also include particles formed from allotropes of carbon.
  • the material of the inorganic particles is preferably a metal oxide or a metal nitride.
  • the metal oxide include silica (including silica gel), smectite, zeolite, alumina, titanium oxide, zirconia, magnesia, and various glass powders used for heat dissipation materials.
  • the metal nitride include boron nitride, aluminum nitride, and silicon nitride.
  • silicon carbide, boron carbide, and activated carbon can also be used as (B1) inorganic particles.
  • the viewpoint of suppressing thermal fluidity it is preferably at least one particle selected from silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, silicon carbide, boron carbide and smectite, Further, from the viewpoint of excellent thermal conductivity, alumina and / or boron nitride particles are particularly preferable. These inorganic particles may be used alone or in combination of two or more.
  • the method for producing the silica particles used in the present embodiment is not particularly limited, and a conventionally known method can be applied. For example, it can be produced according to the method for producing a silica particle dispersion described in JP-A No. 2003-109921 and JP-A No. 2006-80406. Further, as a conventionally known method, there is a method of producing silica particles by removing alkali from an alkali silicate aqueous solution.
  • the alkali silicate aqueous solution include a sodium silicate aqueous solution, an ammonium silicate aqueous solution, a lithium silicate aqueous solution, and a potassium silicate aqueous solution that are generally known as water glass.
  • ammonium silicate include silicates made of ammonium hydroxide and tetramethylammonium hydroxide.
  • the silica particles used in the present embodiment are preferably hydrophobically modified.
  • “Hydrophobic modification” means that a hydrogen atom of a silanol group (—SiOH) present in a silica particle is substituted with a hydrophobic group (—R) such as an alkyl group.
  • Silanol groups present on the surface of the silica particles tend to reduce the water absorption capacity of the cured product formed from the composition according to the present embodiment by reacting with the component (A). Therefore, it is possible to suppress a decrease in water absorption ability of the cured body by hydrophobically modifying the silanol group present on the surface of the silica particles.
  • the dispersibility of the silica particles when mixed with the component (C) is improved.
  • the shape of the inorganic particles is not particularly limited, and may be spherical, elliptical, or polygonal.
  • (B1) inorganic particles may be porous particles, or core / shell particles having a hollow inside.
  • the average particle size of the inorganic particles is preferably 5 to 5,000 nm, more preferably 5 to 2,000 nm, still more preferably 5 to 500 nm, and particularly preferably 5 to 100 nm.
  • an average particle diameter of 5 to 100 nm is advantageous in that a cured product having excellent transparency can be formed.
  • the average particle size is within the above range, it becomes easy to impart an appropriate viscosity as described later to the composition, and workability (applicability, etc.) when forming a cured product is improved.
  • the inorganic particles have a surface area sufficient to capture the decomposition products, thereby suppressing deformation due to heat flow of the cured body. Is preferable.
  • the average particle diameter of (B1) inorganic particle is calculated from the specific surface area measured using BET method, it is not limited to this, It can also measure by another well-known method. .
  • grains collects the hardening body formed from the composition concerning this Embodiment, cut
  • the content of the component (B1) in the composition according to the present embodiment is preferably 0.1 mass from the viewpoint of improving the thermal conductivity of the cured product when the total mass of the composition is 100 mass%. % To 80% by mass, more preferably 20% to 60% by mass. Furthermore, from the viewpoint of ensuring the transparency of the cured body, it is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0.1% by mass or more and 10% by mass or less. In addition, if content of (B1) component is 0.1 mass% or more, the hardening body which does not deform
  • (B2) Organic polymer particles In the composition according to this embodiment, it is necessary to use (B) inorganic particles from the viewpoint of improving the thermal conductivity of the cured body to be formed. Focusing only on the property and the ability to capture decomposition products, (B1) organic polymer particles can be used instead of (B1) inorganic particles.
  • the “organic polymer particles” need only include at least particles formed from an organic polymer.
  • organic polymer particles and inorganic particles are integrally formed to such an extent that they are not easily separated during use.
  • Organic / inorganic composite particles may also be used.
  • the (B2) organic polymer particles used in the present invention are components different from the (C) binder component having a binder function described later, and the coating and application of the above (A) component like the (C) binder component. It does not have a function of improving film formability.
  • Organic polymer particles include polymethylene, polypropylene, polybutadiene, poly-1-butene, poly-4-methyl-1-pentene, polyethylene and ethylene copolymers, polyvinyl chloride and vinyl chloride copolymers And (meth) acrylic resins such as polystyrene and styrene copolymers, polyethylene oxide, polyisobutylene, polyacetal, polyester, polyamide, polycarbonate, phenoxy resin, polymethyl methacrylate, and acrylic copolymers.
  • a styrene copolymer is preferable, and a crosslinked styrene-butadiene rubber (SBR) synthesized by emulsion copolymerization or solution polymerization of styrene and butadiene is particularly preferable.
  • SBR crosslinked styrene-butadiene rubber
  • the organic polymer particles may be organic-inorganic composite particles integrally formed to such an extent that the organic polymer particles and inorganic particles described above are not easily separated during use.
  • the organic inorganic composite particles are not particularly limited in kind and configuration, for example, in the presence of polymer particles such as polystyrene and polymethyl methacrylate, polycondensation of alkoxysilane, aluminum alkoxide, titanium alkoxide, etc. Examples include composite particles in which a polycondensate such as polysiloxane, polyaluminoxane, polytitanoxane or the like is formed on at least the surface of the coalesced particles. Such a polycondensate may be directly bonded to the functional group of the polymer particle, or may be bonded via a silane coupling agent or the like.
  • the organic / inorganic composite particles may be formed using the organic polymer particles described above and inorganic particles such as silica particles, alumina particles, and titania particles.
  • the organic-inorganic composite particles may be formed such that silica particles or the like are present on the surface of the polymer particles via a polycondensate such as polysiloxane, polyaluminoxane, polytitanoxane, or the like.
  • a functional group such as a hydroxyl group possessed by and a functional group of the polymer particles may be chemically bonded.
  • the shape of the organic polymer particles is not particularly limited, and may be spherical, elliptical, or polygonal. Further, the organic polymer particles may be porous particles or core / shell particles having a hollow inside.
  • the average particle diameter of the organic polymer particles is preferably 5 to 3,000 nm, more preferably 5 to 1,000 nm, still more preferably 5 to 500 nm, and particularly preferably 5 to 100 nm. is there.
  • an average particle diameter of 5 to 100 nm is advantageous in that a cured product having excellent transparency can be formed.
  • the average particle size is within the above range, it becomes easy to impart an appropriate viscosity as described later to the composition, and workability (applicability, etc.) when forming a cured product is improved.
  • the organic polymer particles have a sufficient surface area to capture the decomposition products, thereby suppressing deformation due to heat flow of the cured product. This is preferable because it can be performed.
  • the average particle diameter of (B2) organic polymer particle is calculated from the specific surface area measured using BET method, it is not limited to this and should be measured by other known methods. You can also.
  • the average particle diameter of the organic polymer particles is obtained by recovering the cured body formed from the composition according to the present embodiment, cutting the cured body, and observing the cut surface with an electron microscope or the like. Can also be measured. By measuring by this method, the average particle diameter of the organic polymer particles can be measured even after the cured body is formed.
  • the content of (B2) organic polymer particles in the composition according to the present embodiment is preferably 0.1% by mass or more and 20% by mass or less when the total mass of the composition is 100% by mass. More preferably, it is 0.1 mass% or more and 10 mass% or less. When the content of the component (B2) is 0.1% by mass or more, a cured body that is not deformed by heat flow can be obtained.
  • composition concerning this Embodiment contains (C) binder component.
  • C) binder component One of the functions of the binder component is to function as a binder (matrix) and to improve the coating and film forming properties of the component (A).
  • the component (A) exists in a solid or liquid state at room temperature, but the component (A) alone is difficult to apply and form a film inside an electronic device or the like. Therefore, by mixing the component (A), the component (B), the component (C), and an additive such as an organic solvent, if necessary, a form having an appropriate viscosity is obtained. Application / film-formability can be greatly improved.
  • the component (decomposition product) generated by the decomposition of the (A) component due to moisture absorption can be supplementarily captured in the same manner as the above-described component (B). Can be mentioned.
  • the content of the component (C) in the composition according to the present embodiment is preferably 0.1 mass from the viewpoint of improving the thermal conductivity of the cured product when the total mass of the composition is 100 mass%. % To 70% by mass, more preferably 1% to 50% by mass. Furthermore, from the viewpoint of ensuring the transparency of the cured body, the content is preferably 10% by mass or more and 70% by mass or less. When the content of the component (C) is within the above range, a function of capturing moisture and oxygen can be sufficiently obtained, and the component (C) can sufficiently function as a polymer matrix.
  • the component (C) is a material that functions as a binder (matrix) of the component (A) and the component (B) as described above without impairing the characteristics of the component (A) and the component (B),
  • a conjugated diene copolymer a hydrogenated conjugated diene copolymer, a (meth) acrylic polymer, a polymer having a polyimide skeleton (for example, International Publication No. 2009/37834 pamphlet), A polymer having a polyamide skeleton, a polymerizable compound having a cyclic ether structure, a polyether polymer, a compound having a Si—H bond, a reactive carboxylate compound (for example, International Publication No.
  • a conjugated diene copolymer a hydrogenated conjugated diene copolymer, a (meth) acrylic polymer, a polymerizable compound having a cyclic ether structure, a polyether-based polymer
  • Preferred are a compound, a compound having an Si—H bond, and the like.
  • the conjugated diene copolymer is a block copolymer comprising a block containing a repeating unit derived from an aromatic vinyl compound and a block containing a repeating unit derived from a conjugated diene compound. Is preferred.
  • aromatic vinyl compound examples include styrene, t-butylstyrene, ⁇ -methylstyrene, ⁇ -chlorostyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl.
  • aromatic vinyl compound examples include styrene, t-butylstyrene, ⁇ -methylstyrene, ⁇ -chlorostyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl.
  • examples thereof include styrene, vinyl pyridine, N, N-diethyl-p-aminostyrene and the like. Of these, styrene and ⁇ -methylstyrene are preferable, and sty
  • conjugated diene compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4 , 5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene and the like.
  • 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene and isoprene are more preferred.
  • the component (C) is selected from the group consisting of a styrene / butadiene block copolymer, a styrene / isoprene block copolymer, a styrene / butadiene / styrene block copolymer, and a styrene / isoprene / styrene block copolymer.
  • the styrene-based elastomer is preferably at least one styrene-based elastomer, and more preferably a styrene / butadiene / styrene block copolymer or a styrene / isoprene / styrene block copolymer.
  • the weight average molecular weight of the conjugated diene copolymer is preferably 50,000 to 600,000, and more preferably 50,000 to 300,000. When the weight average molecular weight is within the above range, an appropriate viscosity as described later can be imparted to the composition, and workability (applicability, etc.) when forming a cured product is improved.
  • the weight average molecular weight can be analyzed by GPC (gel permeation chromatography) using tetrahydrofuran as a solvent.
  • the production method of the conjugated diene copolymer is not particularly limited, and examples thereof include a method of living anion polymerization of a monomer component in an organic solvent using an organic alkali metal compound as a polymerization initiator.
  • a polymer obtained by hydrogenating the above conjugated diene copolymer can also be used.
  • (Meth) acrylic polymer The method for producing the (meth) acrylic polymer is not particularly limited, but a predetermined amount of monomer, polymerization initiator, and organic solvent are charged and mixed at a predetermined temperature in a nitrogen atmosphere. The method of making it radical-polymerize is mentioned.
  • Examples of the monomer include (meth) acrylic acid, methyl methacrylate (MMA), ethyl methacrylate (EMA), propyl methacrylate (PMA), butyl methacrylate (BMA), ethyl hexyl methacrylate (EHMA), glycidyl methacrylate ( GMA), trimethoxysilylpropyl methacrylate (TMSPMA), tertiary butyl methacrylate (t-BMA), hydrogenated polybutadiene methacrylate (for example, “L1253” manufactured by Kuraray Co., Ltd.), methyl acrylate, ethyl acrylate, acrylic Examples include benzyl acid.
  • (meth) acrylic acid, methyl methacrylate (MMA), butyl methacrylate (BMA), and ethylhexyl methacrylate (EHMA) are preferable.
  • these monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polymerization initiator examples include azobisisobutyronitrile (AIBN) and azobiscyclohexanecarbonitrile.
  • organic solvent examples include toluene, xylene, cyclohexane and the like.
  • the weight average molecular weight of the (meth) acrylic polymer is preferably 5,000 to 100,000, more preferably 10,000 to 50,000. When the weight average molecular weight is within the above range, an appropriate viscosity as described later can be imparted to the composition, and workability (applicability, etc.) when forming a cured product is improved.
  • the weight average molecular weight can be analyzed by GPC (gel permeation chromatography) using tetrahydrofuran as a solvent.
  • the cyclic ether structure is preferably an epoxy group or an oxetanyl group, and more preferably an epoxy group.
  • Examples of the polymerizable compound having a cyclic ether structure include bisepoxycyclohexanecarboxylate, diepoxylimonene, 1,2-epoxy-4-vinylcyclohexane, xylylene bisoxetane, 3-ethyl-3 ⁇ [((3-ethyl Examples thereof include, but are not limited to, oxetane-3-yl) methoxy] methyl ⁇ oxetane, compounds described in JP2010-7040A and WO2010 / 41670.
  • bisepoxycyclohexanecarboxylate and diepoxylimonene having an epoxy group are preferable, and bisepoxycyclohexanecarboxylate is more preferable. This is because bisepoxycyclohexanecarboxylate can be cured by heat even in the absence of a curing agent such as an acid generator.
  • the cyclic ether structure in the polymerizable compound having a cyclic ether structure reacts to cause a repetition derived from the polymerizable compound having a cyclic ether structure.
  • a polymer compound having a unit is formed.
  • Such a polymer compound may have a structure in which repeating units derived from a polymerizable compound having a cyclic ether structure are homopolymerized with each other, or a repeating unit derived from a polymerizable compound having a cyclic ether structure (A )
  • a structure in which a repeating unit derived from the component is copolymerized may be used.
  • the polymerizable compound having a cyclic ether structure can hold decomposition products such as alcohol and alkane that are produced when the component (A) reacts with moisture.
  • the component (A) is fixed in the polymer compound when the polymer compound derived from the polymerizable compound having a cyclic ether structure is formed.
  • the decomposition product produced by the reaction of the component (A) with moisture is efficiently absorbed in the polymer compound derived from the polymerizable compound having a cyclic ether structure. Diffusion into the device can be suppressed.
  • the composition can be made solvent-free by using a polymerizable compound having a cyclic ether structure. Since the polymerizable compound having a cyclic ether structure can be arbitrarily mixed with the component (A), a solvent for dissolving the component (A) becomes unnecessary. Thereby, the bad effect by a solvent remaining in the hardening body as mentioned above can be prevented.
  • the polymerizable compound having a cyclic ether structure can suppress the thermal fluidity of the cured product.
  • the polymerizable compound having a cyclic ether structure undergoes a polymerization reaction when the composition according to the present embodiment is cured to generate a polymer compound.
  • This polymer compound can suppress the heat fluidity of the cured product while maintaining the hygroscopicity of the component (A) described above.
  • an appropriate viscosity can be imparted to the composition by adding a polymerizable compound having a cyclic ether structure. Thereby, the film-forming property of the composition concerning this Embodiment can be improved.
  • the polymerizable compound having a cyclic ether structure can be arbitrarily mixed with the component (A), the transparency of the cured product obtained by curing the composition can be improved.
  • Polyether-based polymer examples include polyethylene oxide and polypropylene oxide.
  • the number average molecular weight of these polyether polymers is usually 200 to 2,000, preferably 350 to 1,500.
  • the compound having Si—H bond is preferably a compound having a structure represented by the following general formula (5), and may be a polymer or a monomer.
  • R 2 is one selected from a hydrogen atom, a halogen atom and an organic group having 1 to 30 carbon atoms.
  • the compound having an Si—H bond is a polymer
  • the step of curing the composition according to the present embodiment to form a cured body when R 1 of the component (A) has an unsaturated bond, Si—H
  • the bond can be cleaved and an addition reaction (so-called hydrosilylation reaction) can be performed on the unsaturated bond present in component (A).
  • a cured product in which the component (A) is immobilized on a compound having a Si—H bond can be formed.
  • “low molecular weight” means that the molecular weight is up to about 300.
  • the compound having a Si—H bond when the compound having a Si—H bond is a monomer, the compound itself having a Si—H bond undergoes a polymerization reaction in the step of curing the composition according to the present embodiment to form a cured body, and the above-described process is performed.
  • the component (A) and a compound having a Si—H bond are copolymerized to form a cured product in which the component (A) is fixed to the compound having a Si—H bond.
  • the compound having an Si—H bond is preferably a polymer having a repeating unit represented by the general formula (5), more preferably a polysiloxane having a repeating unit represented by the following general formula (6). .
  • R 2 is one selected from a hydrogen atom, a halogen atom and an organic group having 1 to 30 carbon atoms.
  • R 2 is one selected from a hydrogen atom, a halogen atom, and an organic group having 1 to 30 carbon atoms.
  • the organic group having 1 to 30 carbon atoms include a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group or aryl group, and the group contains a halogen atom or an ether group. May be. These organic groups may be linear or cyclic, and may have a branched chain. In the alkenyl group and alkynyl group, the position and number of double bonds and triple bonds are not particularly limited.
  • alkyl group examples include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, hexadecyl, tetramethylhexadecyl, octadecyl, 3,3,3-trifluoropropyl. Groups and the like.
  • alkenyl group examples include a vinyl group, an octenyl group, a dodecenyl group, an octadecenyl group, and an allyl group.
  • alkynyl group examples include ethynyl group, propynyl group, phenylethynyl group and the like.
  • Examples of the cyclic alkyl group include a cyclohexyl group.
  • aryl group examples include a phenyl group and a benzyl group.
  • the compound having an Si—H bond is a polymer
  • polydihydrogensiloxane poly (methylhydrogensiloxane), poly (ethylhydrogensiloxane), poly (phenylhydrogensiloxane), poly Phenyl (dimethylhydrogensiloxy) siloxane
  • poly [(methylhydrogensiloxane) (dimethylsiloxane)] copolymer poly [(methylhydrogensiloxane) (ethylmethylsiloxane)] copolymer
  • poly [(methylhydrogensiloxane) (octylmethylsiloxane) ] Copolymer poly [(methylhydrogensiloxane) (octylmethylsiloxan
  • the weight average molecular weight is preferably 300 to 100,000, more preferably 1,000 to 50,000.
  • “weight average molecular weight” refers to a weight average molecular weight in terms of polystyrene by GPC (gel permeation chromatography).
  • the compound having an Si—H bond is not particularly limited as long as the compound has a structure represented by the general formula (5).
  • diphenyl t-butyl hydro Examples thereof include silane and tribenzylsilane.
  • the component (A) reacts with a compound having a Si—H bond, whereby (A A cured product in which the component is fixed to a compound having a Si—H bond can be formed.
  • the hydrolysis product generated when the part derived from the component (A) in the cured body reacts with moisture is not a highly volatile low molecular weight alcohol or alkane, but a low volatile medium. It becomes a compound such as a molecular weight or high molecular weight alcohol or alkane. Thereby, the spreading
  • the composition can be made solvent-free by using a compound having a Si—H bond. Since the compound having a Si—H bond can be arbitrarily mixed with the component (A), a solvent for dissolving the component (A) becomes unnecessary. Thereby, the bad effect by a solvent remaining in the hardening body as mentioned above can be prevented.
  • a compound having a Si—H bond can suppress the thermal fluidity of the cured body.
  • the component (A) reacts with the compound having a Si—H bond, so that the component (A) becomes Si.
  • a cured product fixed to a compound having a —H bond can be formed.
  • Such a cured product can suppress thermal fluidity while maintaining the hygroscopicity of the component (A) described above.
  • an appropriate viscosity can be imparted to the composition by adding a compound having a Si—H bond.
  • coating and film-forming of the composition concerning this Embodiment, can be improved.
  • the compound having a Si—H bond can be arbitrarily mixed with the component (A), the transparency of the cured product obtained by curing the composition can be improved.
  • the content of the compound having a Si—H bond in the composition according to the present embodiment is preferably 10% by mass or more and 90% by mass or less, more preferably 100% by mass when the total mass of the composition is 100% by mass. Is 20 mass% or more and 50 mass% or less. When the content of the compound having a Si—H bond is within the above range, a good cured product can be formed without impairing each function described above.
  • the composition concerning this Embodiment can contain various additives as needed.
  • various additives include organic solvents, softeners, compatibilizers, and the like.
  • organic solvents include aromatic organic solvents such as toluene and xylene; aliphatic organic solvents such as paraffin, liquid paraffin, and decalin; ether-based organic solvents such as diglyme.
  • the content of the organic solvent is not particularly limited, but is preferably an amount in which the component (A) and the component (C) are uniformly dissolved.
  • composition according to this embodiment may be added with a catalyst for the purpose of promoting the curing reaction.
  • a catalyst for promoting the hydrosilylation reaction it is preferable to add a catalyst for promoting the hydrosilylation reaction.
  • a catalyst in such a case a platinum complex or a rhodium complex is preferable.
  • Examples of the platinum complex include a carbonylcyclovinylmethylsiloxane platinum complex, a platinum-octal / octanol complex, a cyclovinylmethylsiloxane platinum complex, a carbonyldivinylmethylplatinum complex, a divinyltetramethyldisiloxane platinum complex, and the like.
  • Examples of the rhodium complex include tris (dibutyl sulfide) rhodium trichloride.
  • the content of the catalyst in the composition according to the present embodiment is preferably 0.0001% by mass or more and 1% by mass or less, more preferably 0.001 when the total mass of the composition is 100% by mass.
  • composition concerning this Embodiment can be manufactured by mixing (A) component, (B) component, (C) component, and another additive as needed.
  • the method for mixing these components is not particularly limited, but the component (A) or a solution obtained by dissolving the component (A) in a solvent is mixed with the solution of the component (C) in which the component (B) is dispersed.
  • a method of adding the mixture with stirring to make it uniform is mentioned.
  • the component (B) and the component (C) may be kneaded with stirring to obtain a solution, and then the component (A) alone or a solution obtained by dissolving the component (A) in a solvent may be added.
  • the composition according to the present embodiment preferably has a viscosity of 50 to 100,000 cP.
  • the composition can be directly applied to the element substrate by the ODF method and cured. This eliminates the need to prepare the composition according to the present embodiment in the form of a film or the like in advance and incorporate it into the element, thereby simplifying the process. Further, if a photoacid generator or the like is added to the composition according to the present embodiment to impart photosensitivity, fine patterning becomes possible.
  • the said viscosity shows the value measured by the falling needle method. Furthermore, when the composition is used after being diluted with a solvent or the like, it means the viscosity in the composition state at the time of coating.
  • the composition according to the present embodiment can form a cured product containing the component (A), it can be used for capturing moisture or oxygen. Therefore, the composition concerning this Embodiment can be used for sealing materials, such as an organic EL element, an organic TFT, an organic solar cell, an organic CMOS sensor, and is used suitably especially for the sealing material of an organic EL element. .
  • the “cured body” means that the above composition is formed or molded into a shape suitable for use, and further dried or irradiated with light, so that the viscosity or hardness is higher than that of the original composition. Say things.
  • the cured body according to the present embodiment can be obtained, for example, by applying the above composition on a substrate to form a coating film, and then drying the coating film to remove the solvent.
  • Examples of the coating method include a spin coater, a roll coater, a spray coater, a dispenser, and a method using an inkjet device.
  • the temperature at the time of drying is not particularly limited, but is, for example, 5 ° C to 100 ° C.
  • the shape of the obtained cured body is not particularly limited, but has, for example, a film shape.
  • the film thickness is, for example, 0.1 to 1.0 mm.
  • the content of the component (A) in the cured product according to the present embodiment is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more, when the total mass of the cured product is 100% by mass. It is 50 mass% or less, Most preferably, it is 40 mass% or more and 50 mass% or less. It is preferable for the content of the component (A) to be within the above range because the function of capturing moisture and oxygen can be sufficiently expressed. Furthermore, it is preferable that the content of the component (A) is in the above-mentioned range because the coating / film forming property is improved and the cured product can be easily imparted with transparency.
  • the electronic device according to the present embodiment includes the cured body inside the electronic device.
  • the cured body can be mounted on any electronic device as long as it is an electronic device that dislikes moisture and oxygen.
  • an example of an organic EL element which is a typical sealed electronic device, will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view schematically showing an example of the organic EL element according to the present embodiment.
  • the organic EL element 100 includes an organic EL layer 10, a structure 20 for housing the organic EL layer 10 and blocking it from the outside air, and a trapping agent layer 30 formed in the structure 20. And consist of
  • the organic EL layer 10 may have a structure in which an organic light emitting material layer made of an organic material is sandwiched between a pair of electrodes facing each other.
  • anode / charge (hole) transport agent / light emitting layer / cathode A known structure such as the above can be adopted.
  • the scavenger layer 30 is a cured product of the above composition. As shown in FIG. 1, the scavenger layer 30 may be formed away from the organic EL layer 10 or may be formed so as to cover the organic EL layer 10.
  • the structure 20 includes a substrate 22, a sealing cap 24, and an adhesive 26.
  • the substrate 22 include a glass substrate
  • examples of the sealing cap 24 include a structure made of glass.
  • the structure of the structure 20 is not particularly limited as long as the organic EL layer 10 can be accommodated.
  • the organic EL layer 10 and the capture agent layer 30 are separated without contacting each other, but the capture agent layer 30 is provided on the cathode of the organic EL layer 10, the substrate 22, and the sealing cap 24.
  • the heat dissipation efficiency of the heat generated from the organic EL layer 10 can be further increased. Accordingly, the applied voltage can be increased and the current supplied to the element can be made uniform, so that uneven luminance of light emission can be suppressed and the life of the element can be extended.
  • composition was prepared in a glove box having a dew point of ⁇ 60 ° C. or lower and oxygen of 1 ppm or lower.
  • the obtained residue was subjected to distillation, and 43 g of the target compound, 3-cyclododecyl-1-propene, was obtained as a colorless and transparent liquid from the fraction obtained under conditions of 109 to 110 ° C./3.2 mmHg.
  • the yield was 34%.
  • FIG. 2 is a 1 H-NMR spectrum of the obtained tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum.
  • toluene-d8 near peak ⁇ 2.1
  • FIG. 2 shows that the obtained compound has a chemical structure represented by the above formula (4).
  • Example 1 The film evaluated in Example 1 was produced as follows.
  • the coating solution was prepared by sufficiently stirring.
  • the composition of this coating solution was 19.6% by mass of “Dynalon 8600”, 0.4% by mass of “silica particles”, 20% by mass of “B20”, and 60% by mass of toluene.
  • This coating solution was applied on a substrate and dried at 100 ° C. for 20 minutes to obtain a film.
  • the films evaluated in Examples 2 to 9 and Comparative Example 4 were the same as those described above except that the component (A), the component (B), or the component (C) was changed to the components described in Table 1 or Table 4. It was produced by the same method as the method.
  • Example 10 Comparative Example 5
  • the film evaluated in Example 10 was produced as follows.
  • composition of this coating solution was 16% by mass of “Dynalon 8600”, 4% by mass of “crosslinked SBR particles”, 20% by mass of “B20”, and 60% by mass of toluene. This coating solution was applied on a substrate and dried at 100 ° C. for 20 minutes to obtain a film.
  • the films evaluated in Examples 11 to 14 and Comparative Example 5 were the same as those described above except that the component (A), the component (B), or the component (C) was changed to the components described in Table 2 or Table 4. It was produced by the same method as the method.
  • Example 15 to 22 First, in a glove box with a dew point of ⁇ 60 ° C. or less and oxygen of 5 ppm or less, the components (A), (B), (C) and, if necessary, the catalyst are sufficiently set to have the composition shown in Table 3. A composition was obtained by stirring and mixing.
  • the obtained composition was applied onto a glass substrate and heated at 80 ° C. for 1 hour to thermoset to form a film.
  • Comparative Examples 1 to 3 A film to be evaluated in Comparative Example 1 was produced as follows.
  • a 25% by mass toluene solution of a styrene-based elastomer manufactured by JSR Corporation, “Dynalon 8600”, corresponding to component (C)
  • a coating solution was 20% by mass for “Dynalon 8600”, 20% by mass for “B20”, and 60% by mass for toluene.
  • This coating solution was applied on a substrate and dried at 100 ° C. for 20 minutes to obtain a film.
  • Hygroscopicity To a glass petri dish having an inner diameter of 3 cm, a film having a thickness of 0.6 mm is prepared for each film of Examples and Comparative Examples, and a vacuum desiccator with an internal volume of 800 cm 3 equipped with a hygrometer and a thermometer. The previously produced film was put together with the glass petri dish, and the changes in humidity and temperature inside the vacuum desiccator were measured. From the relative humidity (Hr,%) and the temperature in degrees Celsius (Tc, ° C) obtained by the measurement, the absolute humidity (Ha,%) was obtained from the following formula (7). And the reduction rate of absolute humidity Ha (2h) after 2 hours from the absolute temperature Ha (0h) at the time of a measurement start was made into a water absorption, and the water absorption was calculated and evaluated by following formula (8).
  • the water absorption rate (%) is preferably 20% or more, more preferably 30% or more, and particularly preferably 40% or more.
  • thermal conductivity (W / m ⁇ K) of the film is measured using a thermal conductivity measurement system (manufactured by I-Phase Co., Ltd., “ai-Phase Mobile 1u”, measured by temperature wave analysis method). Was calculated from the calculation of specific heat and density separately measured.
  • the thermal conductivity (W / m ⁇ K) is preferably higher.
  • compositions of Comparative Examples 4 to 5 are obtained by mixing calcium oxide generally used as a hygroscopic agent with the (B) component and the (C) component. Calcium oxide was dispersed in the component (C).
  • the films formed from the compositions of Comparative Examples 4 to 5 showed good heat resistance but were not excellent in hygroscopicity. In addition, the films formed from the compositions of Comparative Examples 4 to 5 were not excellent in transparency because calcium oxide was dispersed in the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Gas Separation By Absorption (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Disclosed is a composition comprising (A) an organometallic compound, (B) inorganic particles or organic-polymer particles, and (C) a binder ingredient. The organometallic compound (A) preferably is a compound represented by general formula (1): (R1)nM (1) wherein R1 is a hydrogen atom or an organic group and the R1s may be the same or different, n is 2 or 3 and is equal to the valence of M, and M is a di- or trivalent metal atom.

Description

組成物、硬化体、および電子デバイスComposition, cured body, and electronic device
 本発明は、組成物、該組成物から形成された硬化体、および該硬化体を備えた電子デバイスに関する。 The present invention relates to a composition, a cured body formed from the composition, and an electronic device including the cured body.
 水分または酸素が進入することによって障害を受ける電子デバイス、例えばキャパシタや有機EL素子等は、密閉して使用する必要がある。しかしながら、水分を十分に除去した状態で密封することは非常に困難である。また、使用している間にデバイス中に徐々に進入する水分を除去しなければ、電子デバイスの機能は徐々に低下してしまう。 Electronic devices that are damaged by the ingress of moisture or oxygen, such as capacitors and organic EL elements, need to be used in a sealed state. However, it is very difficult to seal in a state where moisture is sufficiently removed. Moreover, the function of an electronic device will fall gradually unless the water | moisture content which approachs into a device gradually is removed during use.
 例えば、代表的な密閉型電子デバイスである有機EL素子は、駆動期間の長期化に伴って、有機EL素子内に進入した水分や酸素によって電極が酸化され、さらには有機物が変性されて、輝度や発光効率等の発光特性が著しく低下するという問題があった。 For example, an organic EL element that is a typical sealed electronic device has a luminance that is caused by the electrode being oxidized by moisture or oxygen that has entered the organic EL element as the driving period becomes longer, and further the organic matter is denatured. In addition, there is a problem that the light emission characteristics such as the light emission efficiency are remarkably deteriorated.
 有機EL素子を水分または酸素から保護する方法として、特開平9-148066号公報、特開2003-142256号公報、特開2003-338366号公報、特開2005-230818号公報、特開2006-68729号公報、特開2006-59571号公報等では、素子内に乾燥剤を配置し、素子内部を低湿度・低酸素環境に保つ技術が検討されている。 As a method for protecting the organic EL device from moisture or oxygen, JP-A Nos. 9-148066, 2003-142256, 2003-338366, 2005-230818, and 2006-68729 are disclosed. In Japanese Patent Laid-Open No. 2006-59571, etc., a technique in which a desiccant is disposed in an element and the inside of the element is maintained in a low humidity and low oxygen environment is studied.
 一方、有機EL素子を複数配置した有機EL照明装置は、有機EL素子に電流が流れることにより発光している。このような有機EL照明装置では、有機EL素子自身に電流が流れる際に発熱を生じ、素子近傍の温度が高くなることに起因して、輝度や発光効率等の発光特性に悪影響を与えるという不都合が生じることがある。 On the other hand, an organic EL lighting device in which a plurality of organic EL elements are arranged emits light when a current flows through the organic EL elements. In such an organic EL lighting device, heat is generated when a current flows through the organic EL element itself, and the temperature in the vicinity of the element is increased, which adversely affects light emission characteristics such as luminance and light emission efficiency. May occur.
 有機EL素子の発熱を効率良く放熱するための方法として、特開2008-291220号公報、特開2008-277768号公報、特開2008-169265号公報等では、伝熱性に優れた材料が種々検討されている。 As methods for efficiently dissipating the heat generated by the organic EL element, Japanese Patent Application Laid-Open No. 2008-291220, Japanese Patent Application Laid-Open No. 2008-277768, Japanese Patent Application Laid-Open No. 2008-169265, and the like discuss various materials having excellent heat conductivity. Has been.
 しかしながら、上述したような水分または酸素捕捉剤は、長期間の使用を考慮した場合に吸湿・吸酸素容量が不十分であり、さらに吸湿・吸酸素に伴う体積膨張や不透明化等の問題があった。特にトップエミッション型の有機EL素子においては、発光層と表示面との間に捕捉剤層を形成させる必要があるため、当該捕捉剤は透明であることが求められる。 However, the moisture or oxygen scavenger as described above has insufficient moisture absorption and oxygen absorption capacity when considering long-term use, and further has problems such as volume expansion and opacification due to moisture absorption and oxygen absorption. It was. In particular, in a top emission type organic EL element, since it is necessary to form a capturing agent layer between the light emitting layer and the display surface, the capturing agent is required to be transparent.
 また、上記の水分または酸素捕捉剤単体では、電子デバイス内に配置することが難しいため、例えば特開2003-142256号公報では水分または酸素捕捉剤とポリマーバインダを混合してシート状にして使用する技術が提案されている。しかしながら、上述したようなシート状捕捉剤は、吸湿により分解されて発生する成分(以下、「分解生成物」ともいう。)がバインダの可塑剤として作用することで、使用環境(80℃程度)において熱流動し変形することがあった。さらに、分解生成物が揮発することで、有機EL素子等の密閉型電子デバイス素子における経年劣化の原因を引き起こしていた。 In addition, since the above moisture or oxygen scavenger alone is difficult to arrange in an electronic device, for example, in JP-A No. 2003-142256, a moisture or oxygen scavenger and a polymer binder are mixed and used in a sheet form. Technology has been proposed. However, the above-described sheet-like scavenger is decomposed by moisture absorption (hereinafter also referred to as “decomposition product”) acts as a binder plasticizer, so that the use environment (about 80 ° C.) In some cases, heat flow and deformation occurred. Furthermore, volatilization of the decomposition product causes aged deterioration in sealed electronic device elements such as organic EL elements.
 さらに、上記の水分または酸素捕捉剤は、有機EL素子の近傍で発生する熱によって輝度や発光効率等の発光特性に悪影響を与えることがあるため、その熱を効率良く逃がすことが求められる。 Furthermore, since the moisture or oxygen scavenger described above may adversely affect light emission characteristics such as luminance and light emission efficiency due to heat generated in the vicinity of the organic EL element, it is required to efficiently release the heat.
 そこで、本発明にかかる幾つかの態様は、上記課題のうち少なくとも一部を解決することで、吸水性および吸酸素性に優れ、且つ、熱流動を起こし難い硬化体を形成することができる水分または酸素捕捉用組成物、該組成物から形成された硬化体、および該硬化体を備えた電子デバイスを提供するものである。 Accordingly, some aspects of the present invention provide a moisture that can form a cured body that is excellent in water absorption and oxygen absorption and hardly causes heat flow by solving at least a part of the above problems. Alternatively, an oxygen scavenging composition, a cured body formed from the composition, and an electronic device including the cured body are provided.
 また、本発明にかかる幾つかの態様は、吸水性および吸酸素性に優れ、且つ、熱流動を起こし難いことに加え、熱伝導性にも優れた硬化体を形成することができる水分または酸素捕捉用組成物、該組成物から形成された硬化体、および該硬化体を備えた電子デバイスを提供するものである。 In addition, some embodiments according to the present invention are water or oxygen capable of forming a cured body that is excellent in water absorption and oxygen absorption and that is less likely to cause heat flow and also has excellent thermal conductivity. A capturing composition, a cured body formed from the composition, and an electronic device including the cured body are provided.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。 The present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
 [適用例1]
 本発明にかかる組成物の一態様は、
 (A)有機金属化合物と、
 (B)無機粒子または有機重合体粒子と、
 (C)バインダ成分と、
を含有することを特徴とする。
[Application Example 1]
One aspect of the composition according to the present invention is:
(A) an organometallic compound;
(B) inorganic particles or organic polymer particles;
(C) a binder component;
It is characterized by containing.
 [適用例2]
 適用例1の組成物において、
 前記有機金属化合物が、下記一般式(1)で示される化合物であることができる。
[Application Example 2]
In the composition of Application Example 1,
The organometallic compound may be a compound represented by the following general formula (1).
 (R)nM  …(1)
(式(1)中、Rは、水素原子または有機基であって、複数存在するRは同一または異なってもよい。nは2または3であり、Mの原子価に等しい。Mは2価または3価の金属原子である。)
(R 1 ) nM (1)
(In Formula (1), R 1 is a hydrogen atom or an organic group, and a plurality of R 1 may be the same or different. N is 2 or 3, and is equal to the valence of M. M is (It is a divalent or trivalent metal atom.)
 [適用例3]
 適用例2の組成物において、
 前記Mは、アルミニウムであることができる。
[Application Example 3]
In the composition of Application Example 2,
The M may be aluminum.
 [適用例4]
 適用例2または適用例3の組成物において、
 前記一般式(1)で示される化合物が、少なくとも1つのM-C結合を有することができる。
[Application Example 4]
In the composition of Application Example 2 or Application Example 3,
The compound represented by the general formula (1) may have at least one MC bond.
 [適用例5]
 適用例2ないし適用例4のいずれか一例の組成物において、
 前記一般式(1)で示される化合物が、トリドデシルアルミニウム、トリヘキサデシルアルミニウム、トリステトラメチルヘキサデシルアルミニウム、トリ(1-フィチル)アルミニウム、トリ(3-シクロドデシルプロピル)アルミニウム、およびトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムから選択される少なくとも1種であることができる。
[Application Example 5]
In the composition of any one of Application Examples 2 to 4,
The compound represented by the general formula (1) is tridodecylaluminum, trihexadecylaluminum, tristetramethylhexadecylaluminum, tri (1-phytyl) aluminum, tri (3-cyclododecylpropyl) aluminum, and tri (2 , 2-bis (allyloxymethyl) -1-butoxy) aluminum.
 [適用例6]
 適用例2または適用例3の組成物において、
 前記一般式(1)で示される化合物が、少なくとも1つのM-O結合を有する、組成物。
[Application Example 6]
In the composition of Application Example 2 or Application Example 3,
A composition in which the compound represented by the general formula (1) has at least one MO bond.
 [適用例7]
 適用例1ないし適用例6のいずれか一例の組成物において、
 前記無機粒子は、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、マグネシア、炭化ケイ素、炭化ホウ素、およびスメクタイトから選択される少なくとも1種の粒子であることができる。
[Application Example 7]
In the composition of any one of Application Examples 1 to 6,
The inorganic particles may be at least one particle selected from silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, silicon carbide, boron carbide, and smectite.
 [適用例8]
 適用例1ないし適用例6のいずれか一例において、
 前記有機重合体粒子は、架橋されたスチレン・ブタジエンゴム粒子であることができる。
[Application Example 8]
In any one of Application Examples 1 to 6,
The organic polymer particles may be crosslinked styrene / butadiene rubber particles.
 [適用例9]
 適用例1ないし適用例8のいずれか一例の組成物において、
 前記(B)無機粒子または有機重合体粒子の含有量は、0.1質量%以上20質量%以下であることができる。
[Application Example 9]
In the composition of any one of Application Examples 1 to 8,
The content of the (B) inorganic particles or organic polymer particles may be 0.1% by mass or more and 20% by mass or less.
 [適用例10]
 適用例1ないし適用例9のいずれか一例の組成物において、
 前記(C)バインダ成分は、(メタ)アクリル系重合体、ポリエーテル系重合体、スチレン系エラストマー、環状エーテル構造を有する化合物、およびSi-H結合を有する化合物から選択される少なくとも1種であることができる。
[Application Example 10]
In the composition of any one of Application Examples 1 to 9,
The binder component (C) is at least one selected from a (meth) acrylic polymer, a polyether polymer, a styrene elastomer, a compound having a cyclic ether structure, and a compound having a Si—H bond. be able to.
 [適用例11]
 適用例1ないし適用例10のいずれか一例に記載の組成物は、水分または酸素を捕捉する用途に使用することができる。
[Application Example 11]
The composition described in any one of Application Examples 1 to 10 can be used for capturing moisture or oxygen.
 [適用例12]
 本発明にかかる硬化体の一態様は、
 適用例1ないし適用例11のいずれか一例に記載の組成物を用いて形成されたことを特徴とする。
[Application Example 12]
One aspect of the cured body according to the present invention is:
It is formed by using the composition described in any one of Application Examples 1 to 11.
 [適用例13]
 本発明にかかる電子デバイスの一態様は、
 適用例12に記載の硬化体を内部に備えたことを特徴とする。
[Application Example 13]
One aspect of the electronic device according to the present invention is:
The cured body described in Application Example 12 is provided inside.
 本発明にかかる組成物によれば、水分または酸素を捕捉することのできる特定の有機金属化合物と、分解生成物を捕捉するための無機粒子または有機重合体粒子と、マトリックスとしてのバインダ成分と、を含有しているため、吸湿性または吸酸素性に優れ、且つ、熱流動を起こし難い硬化体(塗布膜やフィルム等)を形成することができる。上記硬化体は、例えば80℃を超える使用環境下においても、熱流動により変形することがなく、しかも放熱性能に優れる場合がある。 According to the composition of the present invention, a specific organometallic compound capable of capturing moisture or oxygen, inorganic particles or organic polymer particles for capturing decomposition products, a binder component as a matrix, Therefore, it is possible to form a cured body (coating film, film, etc.) that is excellent in hygroscopicity or oxygen absorption and hardly causes heat flow. For example, the cured body may not be deformed by heat flow even in a use environment exceeding 80 ° C., and may have excellent heat dissipation performance.
 上記硬化体は、有機EL素子等の電子デバイスの封止材等の用途に好適であり、また透明性に優れる場合には、例えばトップエミッション型の有機EL素子に用いることができる。 The cured body is suitable for applications such as a sealing material for electronic devices such as organic EL elements, and when it is excellent in transparency, it can be used for, for example, a top emission type organic EL element.
図1は、本実施の形態にかかる有機EL素子の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the organic EL element according to the present embodiment. 図2は、トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムのH-NMRスペクトル図である。FIG. 2 is a 1 H-NMR spectrum of tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum.
 以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例をも含む。 Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, Various modifications implemented in the range which does not change the summary of this invention are also included.
 1.組成物
 本実施の形態にかかる組成物は、
 (A)有機金属化合物(以下、単に「(A)成分」ともいう。)と、(B)無機粒子または有機重合体粒子(以下、単に「(B)成分」ともいう。)と、(C)バインダ成分(以下、単に「(C)成分」ともいう。)と、を含有する。以下、本実施の形態にかかる組成物を構成する各成分について説明する。
1. Composition The composition concerning this Embodiment is
(A) an organometallic compound (hereinafter also simply referred to as “(A) component”), (B) inorganic particles or organic polymer particles (hereinafter also simply referred to as “(B) component”), and (C ) A binder component (hereinafter also simply referred to as “component (C)”). Hereinafter, each component which comprises the composition concerning this Embodiment is demonstrated.
 1.1.(A)成分
 本実施の形態にかかる組成物は、(A)有機金属化合物を含有する。(A)有機金属化合物としては、下記一般式(1)で示される化合物であることが好ましい。
1.1. (A) Component The composition according to the present embodiment contains (A) an organometallic compound. (A) The organometallic compound is preferably a compound represented by the following general formula (1).
 (R)nM  …(1) (R 1 ) nM (1)
 式(1)中、Rは、水素原子または有機基であって、複数存在するRは同一または異なってもよい。nは2または3であり、Mの原子価に等しい。Mは2価または3価の金属原子である。 In Formula (1), R 1 is a hydrogen atom or an organic group, and a plurality of R 1 may be the same or different. n is 2 or 3, and is equal to the valence of M. M is a divalent or trivalent metal atom.
 式(1)中のRが有機基である場合、その有機基としては、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基、アリール基、アルコキシル基、カルボキシル基、またはアミノ基が挙げられる。Rがアルケニル基またはアルキニル基である場合、それぞれ二重結合、三重結合の位置および数は特に制限されない。 When R 1 in Formula (1) is an organic group, the organic group includes a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group, aryl group, alkoxyl group, carboxyl group, Or an amino group is mentioned. When R 1 is an alkenyl group or an alkynyl group, the position and number of double bonds and triple bonds are not particularly limited.
 上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、テトラメチルヘキサデシル基、オクタデシル基等が挙げられる。 As the alkyl group, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, hexadecyl group, tetramethylhexadecyl group And octadecyl group.
 上記アルケニル基としては、プロペニル基、ブテニル基、オクテニル基、ドデセニル基、オクタデセニル基等が挙げられる。 Examples of the alkenyl group include a propenyl group, a butenyl group, an octenyl group, a dodecenyl group, and an octadecenyl group.
 上記アルキニル基としては、プロピニル基、フェニルエチニル基等が挙げられる。 Examples of the alkynyl group include propynyl group and phenylethynyl group.
 上記環式アルキル基としては、シクロプロピル基、シクロヘキシル基等が挙げられる。 Examples of the cyclic alkyl group include a cyclopropyl group and a cyclohexyl group.
 上記アリール基としては、フェニル基、ベンジル基等が挙げられる。 Examples of the aryl group include a phenyl group and a benzyl group.
 上記アルコキシル基としては、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。 Examples of the alkoxyl group include an ethoxy group, a propoxy group, and a butoxy group.
 これらのアルキル基、アルケニル基、アルキニル基、アルコキシル基は、直鎖状でも分岐していてもよい。 These alkyl groups, alkenyl groups, alkynyl groups, and alkoxyl groups may be linear or branched.
 また、Rの炭素数は、1~30が好ましく、6~25がより好ましく、12~20が特に好ましい。特にRの炭素数が6~25であると、加水分解によりRに由来する成分が遊離した場合アウトガスの成分となりにくく、また後述する(B)成分と均一な混合物を形成しやすいため好ましい。 The carbon number of R 1 is preferably 1-30, more preferably 6-25, and particularly preferably 12-20. In particular, it is preferable that the carbon number of R 1 is 6 to 25 because it is difficult to become an outgas component when the component derived from R 1 is liberated by hydrolysis, and it is easy to form a uniform mixture with the component (B) described later. .
 なお、上記一般式(1)で示される化合物が加水分解することにより、アルコール(R-OH)やアルカン(R-H)等の分解生成物が発生する。この分解生成物の沸点は、1気圧において200℃以上であることが好ましく、250℃以上であることがより好ましい。200℃以上であれば、分解生成物の電子デバイス内への拡散を抑制することができる。 In addition, when the compound represented by the general formula (1) is hydrolyzed, decomposition products such as alcohol (R 1 -OH) and alkane (R 1 -H) are generated. The boiling point of this decomposition product is preferably 200 ° C. or higher, more preferably 250 ° C. or higher at 1 atmosphere. If it is 200 degreeC or more, the spreading | diffusion into the electronic device of a decomposition product can be suppressed.
 上記一般式(1)中、Mは2価または3価の金属原子である。このような金属原子としては、IUPAC周期表における第2族元素、第4族元素、第12族元素や第13族元素を挙げることができ、具体的にはAl、B、Mg、Zn、Ti、Zr等が例示できる。これらの中でも、吸湿性や吸酸素性に優れる観点から、AlまたはBが好ましく、水分や酸素を捕捉することにより分解した後、着色がなく透明性を保持できる観点から、Alがより好ましい。 In the general formula (1), M is a divalent or trivalent metal atom. Examples of such metal atoms include Group 2 elements, Group 4 elements, Group 12 elements and Group 13 elements in the IUPAC periodic table. Specifically, Al, B, Mg, Zn, Ti , Zr and the like. Among these, Al or B is preferable from the viewpoint of excellent hygroscopicity and oxygen absorption, and Al is more preferable from the viewpoint of maintaining transparency without being colored after being decomposed by trapping moisture and oxygen.
 上記一般式(1)で示される化合物は、少なくとも1つのM-C結合(但し、Cは炭素原子を表す。)を有することが好ましい。M-C結合を有することで、水分または酸素との反応性を高めることができ、水分または酸素の捕捉能が向上する。 The compound represented by the general formula (1) preferably has at least one MC bond (where C represents a carbon atom). By having the MC bond, the reactivity with moisture or oxygen can be increased, and the trapping ability of moisture or oxygen is improved.
 また、上記一般式(1)で示される化合物は、少なくとも1つのM-O結合(但し、Oは酸素原子を表す。)を有することが好ましい。M-O結合を有することで、水分との反応性を高めることができ、水分の捕捉能が向上する。 In addition, the compound represented by the general formula (1) preferably has at least one MO bond (where O represents an oxygen atom). By having the M—O bond, the reactivity with moisture can be increased, and the moisture capturing ability is improved.
 上記一般式(1)で示される化合物の具体例としては、例えばトリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリシクロプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリ-2-メチルブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリ(2-エチルヘキシル)アルミニウム、トリ-n-オクチルアルミニウム、トリ-n-デシルアルミニウム、トリ-n-ドデシルアルミニウム、トリヘキサデシルアルミニウム、トリステトラメチルヘキサデシルアルミニウム、トリフェニルアルミニウム、トリベンジルアルミニウム、ジメチルフェニルアルミニウム、ジブチルフェニルアルミニウム、ジイソブチルフェニルアルミニウム、メチルジフェニルアルミニウム、エトキシジエチルアルミニウム、エトキシジ-n-オクチルアルミニウム、トリオクタデシロキシアルミニウム、トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム、トリ(3-シクロドデシルプロピル)アルミニウム、トリス(3,7,11,15-テトラメチルヘキサデシル)アルミニウム、トリエチルボラン、トリブチルボラン、トリ-n-オクチルボラン、トリ-n-ドデシルボラン、トリフェニルボラン等が挙げられる。 Specific examples of the compound represented by the general formula (1) include, for example, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tricyclopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t -Butylaluminum, tri-2-methylbutylaluminum, tri-n-hexylaluminum, tricyclohexylaluminum, tri (2-ethylhexyl) aluminum, tri-n-octylaluminum, tri-n-decylaluminum, tri-n-dodecyl Aluminum, trihexadecylaluminum, tristetramethylhexadecylaluminum, triphenylaluminum, tribenzylaluminum, dimethylphenylaluminum, dibutylphenol Aluminum, diisobutylphenylaluminum, methyldiphenylaluminum, ethoxydiethylaluminum, ethoxydi-n-octylaluminum, trioctadecyloxyaluminum, tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum, tri (3 -Cyclododecylpropyl) aluminum, tris (3,7,11,15-tetramethylhexadecyl) aluminum, triethylborane, tributylborane, tri-n-octylborane, tri-n-dodecylborane, triphenylborane, etc. It is done.
 上記一般式(1)で示される化合物の中でも、Rが炭素数6以上の基である化合物、例えばトリ-n-ヘキシルアルミニウム、トリ-n-オクチルアルミニウム、トリ-n-ドデシルアルミニウム、トリヘキサデシルアルミニウム、トリステトラメチルヘキサデシルアルミニウム等が好ましく、Rが炭素数12以上の基である化合物、例えばトリ-n-ドデシルアルミニウム、トリオクタデシロキシアルミニウム、トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム、トリ(3-シクロドデシルプロピル)アルミニウム(下記式(2)で示される化合物)、トリヘキサデシルアルミニウム、トリステトラメチルヘキサデシルアルミニウム、トリス(3,7,11,15-テトラメチルヘキサデシル)アルミニウム(以下、トリ(1-フィチル)アルミニウムともいう。下記式(3)で示される化合物)、トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム(下記式(4)で示される化合物)等が特に好ましい。これらの化合物は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。 Among the compounds represented by the general formula (1), compounds in which R 1 is a group having 6 or more carbon atoms such as tri-n-hexyl aluminum, tri-n-octyl aluminum, tri-n-dodecyl aluminum, trihexa Decylaluminum, tristetramethylhexadecylaluminum and the like are preferable, and compounds in which R 1 is a group having 12 or more carbon atoms such as tri-n-dodecylaluminum, trioctadecyloxyaluminum, tri (2,2-bis (allyloxy) Methyl) -1-butoxy) aluminum, tri (3-cyclododecylpropyl) aluminum (compound represented by the following formula (2)), trihexadecylaluminum, tristetramethylhexadecylaluminum, tris (3,7,11, 15-tetramethylhexadecyl) aluminum Hereinafter also referred to as tri (1-phytyl) aluminum, a compound represented by the following formula (3)), tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum (shown by the following formula (4)) Compound) and the like are particularly preferable. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(4)で示されるトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムは、優れた水分捕捉作用を有する新規な化合物である。トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムが水分と反応することにより生成されるアルコールの沸点は1気圧下で258℃であり、使用環境下において揮発しにくいアルコールを生成するという特徴を有している。さらに、トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムは、後述する(C)成分との相溶性にも優れており、透明な組成物を製造することができる。 Tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum represented by the above formula (4) is a novel compound having an excellent moisture trapping action. The boiling point of the alcohol produced by the reaction of tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum with moisture is 258 ° C. under 1 atm. It has the feature of generating. Further, tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum is excellent in compatibility with the component (C) described later, and a transparent composition can be produced.
 本実施の形態にかかる組成物中における(A)成分の含有量は、得られる硬化体の全質量を100質量%とした場合、該硬化体中の(A)成分の含有量が10質量%以上80質量%以下となるように設定することができれば特に限定されないが、組成物の全質量を100質量%とした場合、好ましくは10質量%以上80質量%以下、より好ましくは50質量%以上80質量%以下である。(A)成分の含有量が前記範囲内であると、水分や酸素を捕捉する作用を硬化体において効果的に発現させることができるため好ましい。さらに、(A)成分の含有量が前記範囲内であると、組成物に後述するような適度な粘度を付与することができ、硬化体を形成する際の作業性(塗布性等)が良好となる。 The content of the component (A) in the composition according to the present embodiment is such that the content of the component (A) in the cured product is 10% by mass when the total mass of the obtained cured product is 100% by mass. It is not particularly limited as long as it can be set to be 80% by mass or less, but when the total mass of the composition is 100% by mass, it is preferably 10% by mass to 80% by mass, more preferably 50% by mass or more. 80% by mass or less. It is preferable for the content of the component (A) to be in the above-mentioned range since the action of capturing moisture and oxygen can be effectively expressed in the cured body. Furthermore, when the content of the component (A) is within the above range, an appropriate viscosity as described later can be imparted to the composition, and workability (applicability, etc.) when forming a cured product is good. It becomes.
 1.2.(B)成分
 本実施の形態にかかる組成物は、(B1)無機粒子(以下、単に(B1)成分ともいう。)または(B2)有機重合体粒子(以下、単に(B2)成分ともいう。)を含有する。以下、(B)成分について、(B1)無機粒子、(B2)有機重合体粒子の順に説明する。
1.2. (B) Component The composition according to the present embodiment is also referred to as (B1) inorganic particles (hereinafter also simply referred to as (B1) component) or (B2) organic polymer particles (hereinafter simply referred to as (B2) component). ). Hereinafter, the component (B) will be described in the order of (B1) inorganic particles and (B2) organic polymer particles.
 1.2.1.(B1)無機粒子
 (B1)無機粒子の機能の一つとしては、本実施の形態にかかる組成物を用いて形成された硬化体の熱伝導性を向上させることが挙げられる。また(B1)無機粒子の他の機能としては、(A)成分が吸湿により分解されて発生する成分(分解生成物)を吸着してバインダ成分(マトリックス)への拡散を抑制し、硬化体の内部に前記分解生成物を捕捉しておくことが挙げられる。これにより、前記分解生成物が硬化体の可塑剤として作用することを防止することができる。すなわち、本実施の形態にかかる組成物を用いて形成された硬化体は、例えば80℃を超える使用環境下においても、熱流動により変形することがない。さらに(B1)無機粒子の他の機能としては、本実施の形態にかかる組成物を用いて形成された硬化体の機械的強度を向上させること、該硬化体の吸湿能を高めること等が挙げられる。
1.2.1. (B1) Inorganic particles (B1) One of the functions of the inorganic particles is to improve the thermal conductivity of a cured body formed using the composition according to the present embodiment. In addition, as another function of (B1) inorganic particles, the component (A) is decomposed by moisture absorption and adsorbs the component (decomposition product) to suppress diffusion to the binder component (matrix), One example is capturing the decomposition product inside. Thereby, it can prevent that the said decomposition product acts as a plasticizer of a hardening body. That is, the cured body formed using the composition according to the present embodiment is not deformed by heat flow even in a use environment exceeding 80 ° C., for example. Furthermore, (B1) Other functions of the inorganic particles include improving the mechanical strength of the cured body formed using the composition according to the present embodiment, increasing the hygroscopic capacity of the cured body, and the like. It is done.
 本発明において、「無機粒子」とは、炭素原子を構造の基本骨格に有する有機化合物以外の化合物から形成された粒子をいうが、炭素の同素体から形成された粒子も含まれる。 In the present invention, “inorganic particles” refer to particles formed from compounds other than organic compounds having carbon atoms in the basic skeleton of the structure, but also include particles formed from allotropes of carbon.
 (B1)無機粒子の材質としては、金属酸化物または金属窒化物であることが好ましい。金属酸化物としては、例えばシリカ(シリカゲルを含む)、スメクタイト、ゼオライト、アルミナ、酸化チタン、ジルコニア、マグネシア、放熱材料用に使用される各種ガラス粉末等が挙げられる。金属窒化物としては、例えば窒化ホウ素、窒化アルミニウム、窒化ケイ素等が挙げられる。また、金属酸化物や金属窒化物ではないが、炭化ケイ素、炭化ホウ素、活性炭を(B1)無機粒子として使用することもできる。これらの中でも、熱流動性を抑制する観点から、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、マグネシア、炭化ケイ素、炭化ホウ素およびスメクタイトから選択される少なくとも1種の粒子であることが好ましく、さらに熱伝導性に優れている観点から、アルミナおよび/または窒化ホウ素の粒子であることが特に好ましい。これらの無機粒子は、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。 (B1) The material of the inorganic particles is preferably a metal oxide or a metal nitride. Examples of the metal oxide include silica (including silica gel), smectite, zeolite, alumina, titanium oxide, zirconia, magnesia, and various glass powders used for heat dissipation materials. Examples of the metal nitride include boron nitride, aluminum nitride, and silicon nitride. Moreover, although it is not a metal oxide or a metal nitride, silicon carbide, boron carbide, and activated carbon can also be used as (B1) inorganic particles. Among these, from the viewpoint of suppressing thermal fluidity, it is preferably at least one particle selected from silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, silicon carbide, boron carbide and smectite, Further, from the viewpoint of excellent thermal conductivity, alumina and / or boron nitride particles are particularly preferable. These inorganic particles may be used alone or in combination of two or more.
 本実施の形態において使用されるシリカ粒子の作製方法は、特に限定されず、従来の公知の方法を適用することができる。例えば、特開2003-109921号公報や特開2006-80406号公報に記載のシリカ粒子分散液の製造方法に準じて作製することができる。また、従来の公知の方法として、ケイ酸アルカリ水溶液からアルカリを除去することによりシリカ粒子を作製する方法がある。ケイ酸アルカリ水溶液としては、一般に水ガラスとして知られているケイ酸ナトリウム水溶液、ケイ酸アンモニウム水溶液、ケイ酸リチウム水溶液、ケイ酸カリウム水溶液等が挙げられる。また、ケイ酸アンモニウムとしては、水酸化アンモニウム、テトラメチルアンモニウム水酸化物からなるケイ酸塩が挙げられる。 The method for producing the silica particles used in the present embodiment is not particularly limited, and a conventionally known method can be applied. For example, it can be produced according to the method for producing a silica particle dispersion described in JP-A No. 2003-109921 and JP-A No. 2006-80406. Further, as a conventionally known method, there is a method of producing silica particles by removing alkali from an alkali silicate aqueous solution. Examples of the alkali silicate aqueous solution include a sodium silicate aqueous solution, an ammonium silicate aqueous solution, a lithium silicate aqueous solution, and a potassium silicate aqueous solution that are generally known as water glass. Examples of ammonium silicate include silicates made of ammonium hydroxide and tetramethylammonium hydroxide.
 本実施の形態において使用されるシリカ粒子は、疎水変性されているものが好ましい。「疎水変性」とは、シリカ粒子に存在するシラノール基(-SiOH)の水素原子がアルキル基等の疎水基(-R)に置換されることをいう。シリカ粒子の表面に存在するシラノール基は、上記(A)成分と反応することにより本実施の形態にかかる組成物から形成される硬化体の吸水能を低下させる傾向がある。したがって、シリカ粒子の表面に存在するシラノール基を疎水変性することにより、硬化体の吸水能の低下を抑制することができる。また、シリカ粒子の疎水変性を行うことにより、(C)成分と混合する際のシリカ粒子の分散性が向上する。 The silica particles used in the present embodiment are preferably hydrophobically modified. “Hydrophobic modification” means that a hydrogen atom of a silanol group (—SiOH) present in a silica particle is substituted with a hydrophobic group (—R) such as an alkyl group. Silanol groups present on the surface of the silica particles tend to reduce the water absorption capacity of the cured product formed from the composition according to the present embodiment by reacting with the component (A). Therefore, it is possible to suppress a decrease in water absorption ability of the cured body by hydrophobically modifying the silanol group present on the surface of the silica particles. In addition, by performing hydrophobic modification of the silica particles, the dispersibility of the silica particles when mixed with the component (C) is improved.
 (B1)無機粒子の形状については、特に限定されず、球状または楕円球状であってもよいし、多角体状であってもよい。また、(B1)無機粒子は、多孔質粒子であってもよいし、内部が空洞化したコア・シェル粒子であってもよい。 (B1) The shape of the inorganic particles is not particularly limited, and may be spherical, elliptical, or polygonal. In addition, (B1) inorganic particles may be porous particles, or core / shell particles having a hollow inside.
 (B1)無機粒子の平均粒径は、好ましくは5~5,000nmであり、より好ましくは5~2,000nmであり、さらに好ましくは5~500nmであり、特に好ましくは5~100nmである。平均粒径が全記範囲内にあると、本実施の形態にかかる組成物を用いて形成された硬化体の熱流動による変形を防止することができる。特に平均粒径が5~100nmであると、透明性に優れた硬化体を形成できる点で有利である。平均粒径が前記範囲内であると、組成物に後述するような適度な粘度を付与することが容易となり、硬化体を形成する際の作業性(塗布性等)が良好となる。さらに、平均粒径が前記範囲内であると、(B1)無機粒子が分解生成物を捕捉するのに十分な表面積を有することになり、これにより前記硬化体の熱流動による変形を抑制することができるため好ましい。 (B1) The average particle size of the inorganic particles is preferably 5 to 5,000 nm, more preferably 5 to 2,000 nm, still more preferably 5 to 500 nm, and particularly preferably 5 to 100 nm. When the average particle size is in the entire range, deformation due to heat flow of the cured body formed using the composition according to the present embodiment can be prevented. In particular, an average particle diameter of 5 to 100 nm is advantageous in that a cured product having excellent transparency can be formed. When the average particle size is within the above range, it becomes easy to impart an appropriate viscosity as described later to the composition, and workability (applicability, etc.) when forming a cured product is improved. Furthermore, when the average particle diameter is within the above range, (B1) the inorganic particles have a surface area sufficient to capture the decomposition products, thereby suppressing deformation due to heat flow of the cured body. Is preferable.
 なお、(B1)無機粒子の平均粒径は、BET法を用いて測定した比表面積から算出されたものであることが好ましいが、これに限定されず他の公知の方法により測定することもできる。 In addition, although it is preferable that the average particle diameter of (B1) inorganic particle is calculated from the specific surface area measured using BET method, it is not limited to this, It can also measure by another well-known method. .
 また、(B1)無機粒子の平均粒径は、本実施の形態にかかる組成物から形成された硬化体を回収し、該硬化体を切断し、その切断面を電子顕微鏡等で観察することにより測定することもできる。かかる方法で測定することにより、硬化体形成後においても(B)無機粒子の平均粒径を測定することができる。 Moreover, the average particle diameter of (B1) inorganic particle | grains collects the hardening body formed from the composition concerning this Embodiment, cut | disconnects this hardening body, and observes the cut surface with an electron microscope etc. It can also be measured. By measuring by this method, the average particle diameter of (B) inorganic particles can be measured even after the cured body is formed.
 本実施の形態にかかる組成物中における(B1)成分の含有量は、組成物の全質量を100質量%とした場合、硬化体の熱伝導性を向上させる観点では、好ましくは0.1質量%以上80質量%以下であり、より好ましくは20質量%以上60質量%以下である。さらに、硬化体の透明性を確保する観点では、好ましくは0.1質量%以上20質量%以下であり、より好ましくは0.1質量%以上10質量%以下である。なお、(B1)成分の含有量が0.1質量%以上であれば、熱流動により変形しない硬化体を得ることができる。 The content of the component (B1) in the composition according to the present embodiment is preferably 0.1 mass from the viewpoint of improving the thermal conductivity of the cured product when the total mass of the composition is 100 mass%. % To 80% by mass, more preferably 20% to 60% by mass. Furthermore, from the viewpoint of ensuring the transparency of the cured body, it is preferably 0.1% by mass or more and 20% by mass or less, and more preferably 0.1% by mass or more and 10% by mass or less. In addition, if content of (B1) component is 0.1 mass% or more, the hardening body which does not deform | transform by heat flow can be obtained.
 1.2.2.(B2)有機重合体粒子
 本実施の形態にかかる組成物では、形成される硬化体の熱伝導性を向上させる観点から(B)無機粒子を用いる必要があるが、形成される硬化体の透明性および分解生成物の捕捉能のみに着目すれば、(B1)無機粒子に代えて(B2)有機重合体粒子を用いることもできる。
1.2.2. (B2) Organic polymer particles In the composition according to this embodiment, it is necessary to use (B) inorganic particles from the viewpoint of improving the thermal conductivity of the cured body to be formed. Focusing only on the property and the ability to capture decomposition products, (B1) organic polymer particles can be used instead of (B1) inorganic particles.
 ここで、「有機重合体粒子」とは、少なくとも有機重合体から形成された粒子を含んでいればよく、例えば使用時において容易に分離しない程度に有機重合体粒子と無機粒子とが一体形成された有機無機複合粒子であってもよい。なお、本願発明において用いられる(B2)有機重合体粒子は、後述するバインダ機能を有する(C)バインダ成分とは異なる成分であり、(C)バインダ成分のように上記(A)成分の塗布・成膜性を向上させる機能を有しない。 Here, the “organic polymer particles” need only include at least particles formed from an organic polymer. For example, organic polymer particles and inorganic particles are integrally formed to such an extent that they are not easily separated during use. Organic / inorganic composite particles may also be used. The (B2) organic polymer particles used in the present invention are components different from the (C) binder component having a binder function described later, and the coating and application of the above (A) component like the (C) binder component. It does not have a function of improving film formability.
 (B2)有機重合体粒子としては、ポリメチレン、ポリプロピレン、ポリブタジエン、ポリ-1-ブテン、ポリ-4-メチル-1-ペンテン、ポリエチレンおよびエチレン系共重合体、ポリ塩化ビニルおよび塩化ビニル系共重合体、ポリスチレンおよびスチレン系共重合体、ポリエチレンオキシド、ポリイソブチレン、ポリアセタール、ポリエステル、ポリアミド、ポリカーボネート、フェノキシ樹脂、ポリメチルメタクリレート等の(メタ)アクリル樹脂およびアクリル系共重合体等が挙げられる。これらの中でも、スチレン系共重合体であることが好ましく、スチレンとブタジエンの乳化共重合または溶液重合で合成された架橋スチレン・ブタジエンゴム(SBR)が特に好ましい。 (B2) Organic polymer particles include polymethylene, polypropylene, polybutadiene, poly-1-butene, poly-4-methyl-1-pentene, polyethylene and ethylene copolymers, polyvinyl chloride and vinyl chloride copolymers And (meth) acrylic resins such as polystyrene and styrene copolymers, polyethylene oxide, polyisobutylene, polyacetal, polyester, polyamide, polycarbonate, phenoxy resin, polymethyl methacrylate, and acrylic copolymers. Among these, a styrene copolymer is preferable, and a crosslinked styrene-butadiene rubber (SBR) synthesized by emulsion copolymerization or solution polymerization of styrene and butadiene is particularly preferable.
 また、(B2)有機重合体粒子は、上述した有機重合体粒子と無機粒子とが使用時において容易に分離しない程度に一体形成された有機無機複合粒子であってもよい。有機無機複合粒子としては、その種類および構成等は特に限定されず、例えばポリスチレン、ポリメチルメタクリレート等の重合体粒子の存在下で、アルコキシシラン、アルミニウムアルコキシド、チタンアルコキシド等を重縮合させ、前記重合体粒子の少なくとも表面に、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物が形成された複合粒子が挙げられる。かかる重縮合物は、重合体粒子の官能基に直接結合されていてもよいし、シランカップリング剤等を介して結合されていてもよい。 (B2) The organic polymer particles may be organic-inorganic composite particles integrally formed to such an extent that the organic polymer particles and inorganic particles described above are not easily separated during use. The organic inorganic composite particles are not particularly limited in kind and configuration, for example, in the presence of polymer particles such as polystyrene and polymethyl methacrylate, polycondensation of alkoxysilane, aluminum alkoxide, titanium alkoxide, etc. Examples include composite particles in which a polycondensate such as polysiloxane, polyaluminoxane, polytitanoxane or the like is formed on at least the surface of the coalesced particles. Such a polycondensate may be directly bonded to the functional group of the polymer particle, or may be bonded via a silane coupling agent or the like.
 また、有機無機複合粒子は、上述した有機重合体粒子と、シリカ粒子、アルミナ粒子、チタニア粒子等の無機粒子と、を用いて形成してもよい。この場合、有機無機複合粒子は、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物を介して、重合体粒子の表面にシリカ粒子等が存在するように形成されていてもよいし、シリカ粒子等が有するヒドロキシル基等の官能基と、重合体粒子の官能基とが化学的に結合して形成されていてもよい。 The organic / inorganic composite particles may be formed using the organic polymer particles described above and inorganic particles such as silica particles, alumina particles, and titania particles. In this case, the organic-inorganic composite particles may be formed such that silica particles or the like are present on the surface of the polymer particles via a polycondensate such as polysiloxane, polyaluminoxane, polytitanoxane, or the like. A functional group such as a hydroxyl group possessed by and a functional group of the polymer particles may be chemically bonded.
 (B2)有機重合体粒子の形状については、特に限定されず、球状または楕円球状であってもよいし、多角体状であってもよい。また、有機重合体粒子は、多孔質粒子であってもよいし、内部が空洞化したコア・シェル粒子であってもよい。 (B2) The shape of the organic polymer particles is not particularly limited, and may be spherical, elliptical, or polygonal. Further, the organic polymer particles may be porous particles or core / shell particles having a hollow inside.
 (B2)有機重合体粒子の平均粒径は、好ましくは5~3,000nmであり、より好ましくは5~1,000nmであり、さらに好ましくは5~500nmであり、特に好ましくは5~100nmである。平均粒径が全記範囲内にあると、本実施の形態にかかる組成物を用いて形成された硬化体の熱流動による変形を防止することができる。特に平均粒径が5~100nmであると、透明性に優れた硬化体を形成できる点で有利である。平均粒径が前記範囲内であると、組成物に後述するような適度な粘度を付与することが容易となり、硬化体を形成する際の作業性(塗布性等)が良好となる。さらに、平均粒径が前記範囲内であると、(B2)有機重合体粒子が分解生成物を捕捉するのに十分な表面積を有することになり、これにより前記硬化体の熱流動による変形を抑制することができるため好ましい。 (B2) The average particle diameter of the organic polymer particles is preferably 5 to 3,000 nm, more preferably 5 to 1,000 nm, still more preferably 5 to 500 nm, and particularly preferably 5 to 100 nm. is there. When the average particle size is in the entire range, deformation due to heat flow of the cured body formed using the composition according to the present embodiment can be prevented. In particular, an average particle diameter of 5 to 100 nm is advantageous in that a cured product having excellent transparency can be formed. When the average particle size is within the above range, it becomes easy to impart an appropriate viscosity as described later to the composition, and workability (applicability, etc.) when forming a cured product is improved. Further, when the average particle size is within the above range, (B2) the organic polymer particles have a sufficient surface area to capture the decomposition products, thereby suppressing deformation due to heat flow of the cured product. This is preferable because it can be performed.
 なお、(B2)有機重合体粒子の平均粒径は、BET法を用いて測定した比表面積から算出されたものであることが好ましいが、これに限定されず他の公知の方法により測定することもできる。 In addition, although it is preferable that the average particle diameter of (B2) organic polymer particle is calculated from the specific surface area measured using BET method, it is not limited to this and should be measured by other known methods. You can also.
 また、(B2)有機重合体粒子の平均粒径は、本実施の形態にかかる組成物から形成された硬化体を回収し、該硬化体を切断し、その切断面を電子顕微鏡等で観察することにより測定することもできる。かかる方法で測定することにより、硬化体形成後においても有機重合体粒子の平均粒径を測定することができる。 In addition, (B2) the average particle diameter of the organic polymer particles is obtained by recovering the cured body formed from the composition according to the present embodiment, cutting the cured body, and observing the cut surface with an electron microscope or the like. Can also be measured. By measuring by this method, the average particle diameter of the organic polymer particles can be measured even after the cured body is formed.
 本実施の形態にかかる組成物中における(B2)有機重合体粒子の含有量は、組成物の全質量を100質量%とした場合、好ましくは0.1質量%以上20質量%以下であり、より好ましくは0.1質量%以上10質量%以下である。(B2)成分の含有量が0.1質量%以上であると、熱流動により変形しない硬化体を得ることができる。 The content of (B2) organic polymer particles in the composition according to the present embodiment is preferably 0.1% by mass or more and 20% by mass or less when the total mass of the composition is 100% by mass. More preferably, it is 0.1 mass% or more and 10 mass% or less. When the content of the component (B2) is 0.1% by mass or more, a cured body that is not deformed by heat flow can be obtained.
 1.3.(C)成分
 本実施の形態にかかる組成物は、(C)バインダ成分を含有する。(C)バインダ成分の機能の一つとしては、バインダ(マトリックス)として機能し、上記(A)成分の塗布・成膜性を向上させることが挙げられる。上記(A)成分は常温で固体または液体の状態で存在するが、(A)成分単体では、電子デバイス等の内部に塗布・成膜することが困難である。そこで、上記(A)成分、(B)成分、(C)成分、および必要に応じて有機溶媒等の添加剤を混合して、適度な粘度を有する形態にすることで、(A)成分の塗布・成膜性を格段に向上させることができるようになる。
1.3. (C) Component The composition concerning this Embodiment contains (C) binder component. (C) One of the functions of the binder component is to function as a binder (matrix) and to improve the coating and film forming properties of the component (A). The component (A) exists in a solid or liquid state at room temperature, but the component (A) alone is difficult to apply and form a film inside an electronic device or the like. Therefore, by mixing the component (A), the component (B), the component (C), and an additive such as an organic solvent, if necessary, a form having an appropriate viscosity is obtained. Application / film-formability can be greatly improved.
 また、(C)バインダ成分の他の機能としては、上述した(B)成分と同様に、吸湿により(A)成分が分解されて発生する成分(分解生成物)を補助的に捕捉することが挙げられる。 Further, as another function of the (C) binder component, the component (decomposition product) generated by the decomposition of the (A) component due to moisture absorption can be supplementarily captured in the same manner as the above-described component (B). Can be mentioned.
 本実施の形態にかかる組成物中における(C)成分の含有量は、組成物の全質量を100質量%とした場合、硬化体の熱伝導性を向上させる観点では、好ましくは0.1質量%以上70質量%以下、より好ましくは1質量%以上50質量%以下である。さらに、硬化体の透明性を確保する観点では、好ましくは10質量%以上70質量%以下である。なお、(C)成分の含有量が前記範囲内であると、水分や酸素を捕捉する機能を十分に得ることができ、(C)成分がポリマーマトリックスとして十分に機能することができる。 The content of the component (C) in the composition according to the present embodiment is preferably 0.1 mass from the viewpoint of improving the thermal conductivity of the cured product when the total mass of the composition is 100 mass%. % To 70% by mass, more preferably 1% to 50% by mass. Furthermore, from the viewpoint of ensuring the transparency of the cured body, the content is preferably 10% by mass or more and 70% by mass or less. When the content of the component (C) is within the above range, a function of capturing moisture and oxygen can be sufficiently obtained, and the component (C) can sufficiently function as a polymer matrix.
 (C)成分は、上記(A)成分および上記(B)成分の特性を損なうことなく、上述したように(A)成分および(B)成分のバインダ(マトリックス)として機能する材料であれば特に限定されないが、共役ジエン系共重合体、水添された共役ジエン系共重合体、(メタ)アクリル系重合体、ポリイミド骨格を有する重合体(例えば、国際公開第2009/37834号パンフレット等)、ポリアミド骨格を有する重合体、環状エーテル構造を有する重合性化合物、ポリエーテル系重合体、Si-H結合を有する化合物、反応性カルボキシレート化合物(例えば、国際公開第2007/132724号パンフレット等)等を使用することができる。特に、塗布・成膜性の観点から、共役ジエン系共重合体、水添された共役ジエン系共重合体、(メタ)アクリル系重合体、環状エーテル構造を有する重合性化合物、ポリエーテル系重合体、Si-H結合を有する化合物等が好ましい。 As long as the component (C) is a material that functions as a binder (matrix) of the component (A) and the component (B) as described above without impairing the characteristics of the component (A) and the component (B), Although not limited, a conjugated diene copolymer, a hydrogenated conjugated diene copolymer, a (meth) acrylic polymer, a polymer having a polyimide skeleton (for example, International Publication No. 2009/37834 pamphlet), A polymer having a polyamide skeleton, a polymerizable compound having a cyclic ether structure, a polyether polymer, a compound having a Si—H bond, a reactive carboxylate compound (for example, International Publication No. 2007/132724, etc.), etc. Can be used. In particular, from the viewpoint of coating and film forming properties, a conjugated diene copolymer, a hydrogenated conjugated diene copolymer, a (meth) acrylic polymer, a polymerizable compound having a cyclic ether structure, a polyether-based polymer, Preferred are a compound, a compound having an Si—H bond, and the like.
 1.3.1.共役ジエン系共重合体
 共役ジエン系共重合体は、芳香族ビニル化合物に由来する繰り返し単位を含むブロックと、共役ジエン化合物に由来する繰り返し単位を含むブロックと、を含むブロック共重合体であることが好ましい。
1.3.1. Conjugated diene copolymer The conjugated diene copolymer is a block copolymer comprising a block containing a repeating unit derived from an aromatic vinyl compound and a block containing a repeating unit derived from a conjugated diene compound. Is preferred.
 上記芳香族ビニル化合物としては、スチレン、t-ブチルスチレン、α-メチルスチレン、α-クロロスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルスチレン、N,N-ジエチル-p-アミノエチルスチレン、ビニルピリジン、N,N-ジエチル-p-アミノスチレン等が挙げられる。これらのうち、スチレン、α-メチルスチレンが好ましく、スチレンがより好ましい。 Examples of the aromatic vinyl compound include styrene, t-butylstyrene, α-methylstyrene, α-chlorostyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylstyrene, N, N-diethyl-p-aminoethyl. Examples thereof include styrene, vinyl pyridine, N, N-diethyl-p-aminostyrene and the like. Of these, styrene and α-methylstyrene are preferable, and styrene is more preferable.
 上記共役ジエン化合物としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン、クロロプレン等が挙げられる。これらのうち、1,3-ブタジエン、イソプレンおよび1,3-ペンタジエンが好ましく、1,3-ブタジエン、イソプレンがより好ましい。 Examples of the conjugated diene compound include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4 , 5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, chloroprene and the like. Of these, 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene and isoprene are more preferred.
 すなわち、(C)成分としては、スチレン・ブタジエンブロック共重合体、スチレン・イソプレンブロック共重合体、スチレン・ブタジエン・スチレンブロック共重合体、およびスチレン・イソプレン・スチレンブロック共重合体からなる群から選択される少なくとも1種のスチレン系エラストマーであることが好ましく、スチレン・ブタジエン・スチレンブロック共重合体またはスチレン・イソプレン・スチレンブロック共重合体であることがより好ましい。 That is, the component (C) is selected from the group consisting of a styrene / butadiene block copolymer, a styrene / isoprene block copolymer, a styrene / butadiene / styrene block copolymer, and a styrene / isoprene / styrene block copolymer. The styrene-based elastomer is preferably at least one styrene-based elastomer, and more preferably a styrene / butadiene / styrene block copolymer or a styrene / isoprene / styrene block copolymer.
 共役ジエン系共重合体の重量平均分子量は、5万~60万であることが好ましく、5万~30万であることがより好ましい。重量平均分子量が前記範囲内であると、組成物に後述するような適度な粘度を付与することができ、硬化体を形成する際の作業性(塗布性等)が良好となる。なお、上記の重量平均分子量は、テトラヒドロフランを溶媒としたGPC(ゲルパーミエーションクロマトグラフィー)によって分析することができる。 The weight average molecular weight of the conjugated diene copolymer is preferably 50,000 to 600,000, and more preferably 50,000 to 300,000. When the weight average molecular weight is within the above range, an appropriate viscosity as described later can be imparted to the composition, and workability (applicability, etc.) when forming a cured product is improved. The weight average molecular weight can be analyzed by GPC (gel permeation chromatography) using tetrahydrofuran as a solvent.
 上記共役ジエン系共重合体の製造方法としては、特に限定されないが、例えば有機アルカリ金属化合物を重合開始剤としてモノマー成分を有機溶媒中でリビングアニオン重合する方法が挙げられる。 The production method of the conjugated diene copolymer is not particularly limited, and examples thereof include a method of living anion polymerization of a monomer component in an organic solvent using an organic alkali metal compound as a polymerization initiator.
 また、上記共役ジエン系共重合体を水添させた重合体を用いることもできる。 Further, a polymer obtained by hydrogenating the above conjugated diene copolymer can also be used.
 1.3.2.(メタ)アクリル系重合体
 上記(メタ)アクリル系重合体の製造方法としては、特に限定されないが、所定量のモノマー、重合開始剤、有機溶媒を仕込み、窒素雰囲気下所定の温度で混合してラジカル重合反応させる方法が挙げられる。
1.3.2. (Meth) acrylic polymer The method for producing the (meth) acrylic polymer is not particularly limited, but a predetermined amount of monomer, polymerization initiator, and organic solvent are charged and mixed at a predetermined temperature in a nitrogen atmosphere. The method of making it radical-polymerize is mentioned.
 上記モノマーとしては、(メタ)アクリル酸、メタクリル酸メチル(MMA)、メタクリル酸エチル(EMA)、メタクリル酸プロピル(PMA)、メタクリル酸ブチル(BMA)、メタクリル酸エチルヘキシル(EHMA)、メタクリル酸グリシジル(GMA)、メタクリル酸トリメトキシシリルプロピル(TMSPMA)、メタクリル酸ターシャリーブチル(t-BMA)、メタクリル酸水添ポリブタジエン(例えば、クラレ社製、「L1253」)、アクリル酸メチル、アクリル酸エチル、アクリル酸ベンジル等が挙げられる。これらの中でも、(メタ)アクリル酸、メタクリル酸メチル(MMA)、メタクリル酸ブチル(BMA)、メタクリル酸エチルヘキシル(EHMA)であることが好ましい。また、これらのモノマーは、1種単独で用いてもよいし、2種以上組み合わせて用いてもよい。 Examples of the monomer include (meth) acrylic acid, methyl methacrylate (MMA), ethyl methacrylate (EMA), propyl methacrylate (PMA), butyl methacrylate (BMA), ethyl hexyl methacrylate (EHMA), glycidyl methacrylate ( GMA), trimethoxysilylpropyl methacrylate (TMSPMA), tertiary butyl methacrylate (t-BMA), hydrogenated polybutadiene methacrylate (for example, “L1253” manufactured by Kuraray Co., Ltd.), methyl acrylate, ethyl acrylate, acrylic Examples include benzyl acid. Among these, (meth) acrylic acid, methyl methacrylate (MMA), butyl methacrylate (BMA), and ethylhexyl methacrylate (EHMA) are preferable. Moreover, these monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
 上記重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、アゾビスシクロヘキサンカルボニトリル等が挙げられる。 Examples of the polymerization initiator include azobisisobutyronitrile (AIBN) and azobiscyclohexanecarbonitrile.
 上記有機溶媒としては、トルエン、キシレン、シクロヘキサン等が挙げられる。 Examples of the organic solvent include toluene, xylene, cyclohexane and the like.
 上記(メタ)アクリル系重合体の重量平均分子量は、好ましくは5千~10万であり、より好ましくは1万~5万である。重量平均分子量が前記範囲内であると、組成物に後述するような適度な粘度を付与することができ、硬化体を形成する際の作業性(塗布性等)が良好となる。なお、上記の重量平均分子量は、テトラヒドロフランを溶媒としたGPC(ゲルパーミエーションクロマトグラフィー)によって分析することができる。 The weight average molecular weight of the (meth) acrylic polymer is preferably 5,000 to 100,000, more preferably 10,000 to 50,000. When the weight average molecular weight is within the above range, an appropriate viscosity as described later can be imparted to the composition, and workability (applicability, etc.) when forming a cured product is improved. The weight average molecular weight can be analyzed by GPC (gel permeation chromatography) using tetrahydrofuran as a solvent.
 1.3.3.環状エーテル構造を有する重合性化合物
 環状エーテル構造を有する重合性化合物において、環状エーテル構造としては、エポキシ基、オキセタニル基であることが好ましく、エポキシ基であることがより好ましい。
1.3.3. Polymerizable compound having a cyclic ether structure In the polymerizable compound having a cyclic ether structure, the cyclic ether structure is preferably an epoxy group or an oxetanyl group, and more preferably an epoxy group.
 環状エーテル構造を有する重合性化合物としては、例えば、ビスエポキシシクロヘキサンカルボキシレート、ジエポキシリモネン、1,2-エポキシ-4-ビニルシクロヘキサン、キシリレンビスオキセタン、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、特開2010-7040号公報や国際公開第2010/41670号パンフレットに記載されている化合物等が挙げられるが、これらに限定されない。これらの中でも、エポキシ基を有するビスエポキシシクロヘキサンカルボキシレート、ジエポキシリモネンが好ましく、ビスエポキシシクロヘキサンカルボキシレートがより好ましい。ビスエポキシシクロヘキサンカルボキシレートは、酸発生剤等の硬化剤が存在しない条件下においても、熱により硬化することができるからである。 Examples of the polymerizable compound having a cyclic ether structure include bisepoxycyclohexanecarboxylate, diepoxylimonene, 1,2-epoxy-4-vinylcyclohexane, xylylene bisoxetane, 3-ethyl-3 {[((3-ethyl Examples thereof include, but are not limited to, oxetane-3-yl) methoxy] methyl} oxetane, compounds described in JP2010-7040A and WO2010 / 41670. Among these, bisepoxycyclohexanecarboxylate and diepoxylimonene having an epoxy group are preferable, and bisepoxycyclohexanecarboxylate is more preferable. This is because bisepoxycyclohexanecarboxylate can be cured by heat even in the absence of a curing agent such as an acid generator.
 本実施の形態にかかる組成物を硬化させて得られる硬化体中において、環状エーテル構造を有する重合性化合物中の環状エーテル構造が反応することにより、環状エーテル構造を有する重合性化合物に由来する繰り返し単位を有する高分子化合物が形成される。かかる高分子化合物は、環状エーテル構造を有する重合性化合物に由来する繰り返し単位が互いに単独重合した構造であってもよいし、環状エーテル構造を有する重合性化合物に由来する繰り返し単位と前述した(A)成分に由来する繰り返し単位とが共重合した構造であってもよい。 In the cured product obtained by curing the composition according to the present embodiment, the cyclic ether structure in the polymerizable compound having a cyclic ether structure reacts to cause a repetition derived from the polymerizable compound having a cyclic ether structure. A polymer compound having a unit is formed. Such a polymer compound may have a structure in which repeating units derived from a polymerizable compound having a cyclic ether structure are homopolymerized with each other, or a repeating unit derived from a polymerizable compound having a cyclic ether structure (A ) A structure in which a repeating unit derived from the component is copolymerized may be used.
 以下、環状エーテル構造を有する重合性化合物の機能について列挙して説明する。 Hereinafter, the functions of the polymerizable compound having a cyclic ether structure will be listed and described.
 第1に、環状エーテル構造を有する重合性化合物は、(A)成分が水分と反応することにより生成されるアルコールやアルカン等の分解生成物を保持することができる。(A)成分は、環状エーテル構造を有する重合性化合物に由来する高分子化合物が形成されると、該高分子化合物中に固定される。その結果、(A)成分が水分と反応することにより生成される分解生成物は、環状エーテル構造を有する重合性化合物に由来する高分子化合物中に効率良く吸収されるので、分解生成物の電子デバイス内への拡散を抑制することができる。 First, the polymerizable compound having a cyclic ether structure can hold decomposition products such as alcohol and alkane that are produced when the component (A) reacts with moisture. The component (A) is fixed in the polymer compound when the polymer compound derived from the polymerizable compound having a cyclic ether structure is formed. As a result, the decomposition product produced by the reaction of the component (A) with moisture is efficiently absorbed in the polymer compound derived from the polymerizable compound having a cyclic ether structure. Diffusion into the device can be suppressed.
 第2に、環状エーテル構造を有する重合性化合物を使用することで組成物を無溶媒化することができる。環状エーテル構造を有する重合性化合物は、(A)成分と任意に混ざり合うことができるため、(A)成分を溶解させるための溶媒が不要となる。これにより、前述したような硬化体中に溶媒が残留することによる弊害を防止することができる。 Second, the composition can be made solvent-free by using a polymerizable compound having a cyclic ether structure. Since the polymerizable compound having a cyclic ether structure can be arbitrarily mixed with the component (A), a solvent for dissolving the component (A) becomes unnecessary. Thereby, the bad effect by a solvent remaining in the hardening body as mentioned above can be prevented.
 第3に、環状エーテル構造を有する重合性化合物は、硬化体の熱流動性を抑制することができる。前述したように、環状エーテル構造を有する重合性化合物は本実施の形態にかかる組成物を硬化させる際に重合反応し、高分子化合物を生成する。この高分子化合物は、前述した(A)成分の吸湿能を維持したまま、硬化体の熱流動性を抑制することができる。 Thirdly, the polymerizable compound having a cyclic ether structure can suppress the thermal fluidity of the cured product. As described above, the polymerizable compound having a cyclic ether structure undergoes a polymerization reaction when the composition according to the present embodiment is cured to generate a polymer compound. This polymer compound can suppress the heat fluidity of the cured product while maintaining the hygroscopicity of the component (A) described above.
 第4に、環状エーテル構造を有する重合性化合物を添加することで組成物に適度な粘性を付与することができる。これにより、本実施の形態にかかる組成物の成膜性を向上させることができる。 Fourth, an appropriate viscosity can be imparted to the composition by adding a polymerizable compound having a cyclic ether structure. Thereby, the film-forming property of the composition concerning this Embodiment can be improved.
 第5に、環状エーテル構造を有する重合性化合物は、(A)成分と任意に混ざり合うことができるため、組成物を硬化させて得られる硬化体の透明性を向上させることができる。 Fifth, since the polymerizable compound having a cyclic ether structure can be arbitrarily mixed with the component (A), the transparency of the cured product obtained by curing the composition can be improved.
 1.3.4.ポリエーテル系重合体
 ポリエーテル系重合体としては、例えばポリエチレンオキシド、ポリプロピレンオキシド等が挙げられる。これらのポリエーテル系重合体の数平均分子量は、通常200~2,000、好ましくは350~1,500が好ましい。
1.3.4. Polyether-based polymer Examples of the polyether-based polymer include polyethylene oxide and polypropylene oxide. The number average molecular weight of these polyether polymers is usually 200 to 2,000, preferably 350 to 1,500.
 1.3.5.Si-H結合を有する化合物
 Si-H結合を有する化合物は、下記一般式(5)で示される構造を有する化合物であることが好ましく、ポリマーであってもよいし、モノマーであってもよい。
1.3.5. Compound having Si—H bond The compound having Si—H bond is preferably a compound having a structure represented by the following general formula (5), and may be a polymer or a monomer.
Figure JPOXMLDOC01-appb-C000004
(上記式(5)中、Rは、水素原子、ハロゲン原子および炭素数1~30の有機基から選択される1種である。)
Figure JPOXMLDOC01-appb-C000004
(In the above formula (5), R 2 is one selected from a hydrogen atom, a halogen atom and an organic group having 1 to 30 carbon atoms.)
 Si-H結合を有する化合物がポリマーである場合、本実施の形態にかかる組成物を硬化させて硬化体を形成する工程において(A)成分のRが不飽和結合を有する場合、Si-H結合が開裂して(A)成分中に存在する不飽和結合に付加反応(いわゆるヒドロシリル化反応)することができる。この付加反応によって、(A)成分がSi-H結合を有する化合物に固定化された硬化体を形成することができる。このような硬化体を形成することで、(A)成分が吸湿することによって発生する加水分解生成物を低分子量化させることを防止できる。これにより、加水分解生成物の揮発を抑制することができる。なお、本明細書において、「低分子量」とは、分子量が300程度までであることをいう。 When the compound having an Si—H bond is a polymer, in the step of curing the composition according to the present embodiment to form a cured body, when R 1 of the component (A) has an unsaturated bond, Si—H The bond can be cleaved and an addition reaction (so-called hydrosilylation reaction) can be performed on the unsaturated bond present in component (A). By this addition reaction, a cured product in which the component (A) is immobilized on a compound having a Si—H bond can be formed. By forming such a cured product, it is possible to prevent the hydrolysis product generated when the component (A) absorbs moisture from being reduced in molecular weight. Thereby, volatilization of the hydrolysis product can be suppressed. In the present specification, “low molecular weight” means that the molecular weight is up to about 300.
 一方、Si-H結合を有する化合物がモノマーである場合、本実施の形態にかかる組成物を硬化させて硬化体を形成する工程においてSi-H結合を有する化合物自体が重合反応すると共に、前述した(A)成分とSi-H結合を有する化合物とが共重合反応して、(A)成分がSi-H結合を有する化合物に固定化された硬化体を形成することができる。このような硬化体を形成することで、(A)成分が吸湿することにより発生する加水分解生成物を低分子量化させることを防止できる。これにより、加水分解生成物の揮発を抑制することができる。 On the other hand, when the compound having a Si—H bond is a monomer, the compound itself having a Si—H bond undergoes a polymerization reaction in the step of curing the composition according to the present embodiment to form a cured body, and the above-described process is performed. The component (A) and a compound having a Si—H bond are copolymerized to form a cured product in which the component (A) is fixed to the compound having a Si—H bond. By forming such a cured body, it is possible to prevent the hydrolysis product generated when the component (A) absorbs moisture from being reduced in molecular weight. Thereby, volatilization of the hydrolysis product can be suppressed.
 Si-H結合を有する化合物は、上記一般式(5)で示される繰り返し単位を有するポリマーであることが好ましく、下記一般式(6)で示される繰り返し単位を有するポリシロキサンであることがより好ましい。 The compound having an Si—H bond is preferably a polymer having a repeating unit represented by the general formula (5), more preferably a polysiloxane having a repeating unit represented by the following general formula (6). .
Figure JPOXMLDOC01-appb-C000005
(上記式(6)中、Rは、水素原子、ハロゲン原子および炭素数1~30の有機基から選択される1種である。)
Figure JPOXMLDOC01-appb-C000005
(In the above formula (6), R 2 is one selected from a hydrogen atom, a halogen atom and an organic group having 1 to 30 carbon atoms.)
 上記一般式(5)および上記一般式(6)中、Rは、水素原子、ハロゲン原子および炭素数1~30の有機基から選択される1種である。炭素数1~30の有機基としては、例えば、置換もしくは非置換の、アルキル基、アルケニル基、アルキニル基、環式アルキル基またはアリール基が挙げられ、基中にハロゲン原子、エーテル基を含んでいてもよい。これらの有機基は、直鎖状でも環状でもよいし、分岐鎖を有してもよい。また、アルケニル基、アルキニル基において、それぞれ二重結合、三重結合の位置および数は特に限定されない。 In the general formula (5) and the general formula (6), R 2 is one selected from a hydrogen atom, a halogen atom, and an organic group having 1 to 30 carbon atoms. Examples of the organic group having 1 to 30 carbon atoms include a substituted or unsubstituted alkyl group, alkenyl group, alkynyl group, cyclic alkyl group or aryl group, and the group contains a halogen atom or an ether group. May be. These organic groups may be linear or cyclic, and may have a branched chain. In the alkenyl group and alkynyl group, the position and number of double bonds and triple bonds are not particularly limited.
 上記アルキル基としては、例えば、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、テトラメチルヘキサデシル基、オクタデシル基、3,3,3-トリフルオロプロピル基等が挙げられる。 Examples of the alkyl group include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, hexadecyl, tetramethylhexadecyl, octadecyl, 3,3,3-trifluoropropyl. Groups and the like.
 上記アルケニル基としては、ビニル基、オクテニル基、ドデセニル基、オクタデセニル基、アリル基等が挙げられる。 Examples of the alkenyl group include a vinyl group, an octenyl group, a dodecenyl group, an octadecenyl group, and an allyl group.
 上記アルキニル基としては、エチニル基、プロピニル基、フェニルエチニル基等が挙げられる。 Examples of the alkynyl group include ethynyl group, propynyl group, phenylethynyl group and the like.
 上記環式アルキル基としては、シクロヘキシル基等が挙げられる。 Examples of the cyclic alkyl group include a cyclohexyl group.
 上記アリール基としては、フェニル基、ベンジル基等が挙げられる。 Examples of the aryl group include a phenyl group and a benzyl group.
 Si-H結合を有する化合物がポリマーである場合の具体例としては、例えば、ポリジハイドロジェンシロキサン、ポリ(メチルハイドロジェンシロキサン)、ポリ(エチルハイドロジェンシロキサン)、ポリ(フェニルハイドロジェンシロキサン)、ポリフェニル(ジメチルハイドロジェンシロキシ)シロキサン、ポリ[(メチルハイドロジェンシロキサン)(ジメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(エチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ヘキシルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(オクチルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(オクタデシルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(フェニルメチルシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジエトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(ジメトキシシロキサン)]コポリマー、ポリ[(メチルハイドロジェンシロキサン)(3,3,3-トリフルオロプロピルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(2-フルオロエトキシメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)((2-メトキシエトキシ)メチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(フェノキシメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(ナフチルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)(4-クロロフェニルメチルシロキサン)]コポリマー、ポリ[(ジハイドロジェンシロキサン)((4-メトキシフェニル)シメチルシロキサン)]コポリマー等が挙げられる。 Specific examples of the case where the compound having an Si—H bond is a polymer include, for example, polydihydrogensiloxane, poly (methylhydrogensiloxane), poly (ethylhydrogensiloxane), poly (phenylhydrogensiloxane), poly Phenyl (dimethylhydrogensiloxy) siloxane, poly [(methylhydrogensiloxane) (dimethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (ethylmethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (diethyl Siloxane)] copolymer, poly [(methylhydrogensiloxane) (hexylmethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (octylmethylsiloxane) ] Copolymer, poly [(methylhydrogensiloxane) (octadecylmethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (phenylmethylsiloxane)] copolymer, poly [(methylhydrogensiloxane) (diethoxysiloxane)] copolymer , Poly [(methylhydrogensiloxane) (dimethoxysiloxane)] copolymer, poly [(methylhydrogensiloxane) (3,3,3-trifluoropropylmethylsiloxane)] copolymer, poly [(dihydrogensiloxane) (2 -Fluoroethoxymethylsiloxane)] copolymer, poly [(dihydrogensiloxane) ((2-methoxyethoxy) methylsiloxane)] copolymer, poly [(dihydrogensiloxane) Phenoxymethylsiloxane)] copolymer, poly [(dihydrogensiloxane) (naphthylmethylsiloxane)] copolymer, poly [(dihydrogensiloxane) (4-chlorophenylmethylsiloxane)] copolymer, poly [(dihydrogensiloxane) ( (4-methoxyphenyl) cymethylsiloxane)] copolymer and the like.
 Si-H結合を有する化合物がポリマーである場合の重量平均分子量は、好ましくは300~100,000であり、より好ましくは1,000~50,000である。なお、本発明において「重量平均分子量」とは、GPC(ゲル浸透クロマトグラフィー)によるポリスチレン換算の重量平均分子量のことである。Si-H結合を有する化合物の重量平均分子量が前記範囲であると、(A)成分が吸湿することにより発生する加水分解生成物の低分子量化を防止することができる。これにより、加水分解生成物の揮発を抑制することができるため好ましい。 When the compound having a Si—H bond is a polymer, the weight average molecular weight is preferably 300 to 100,000, more preferably 1,000 to 50,000. In the present invention, “weight average molecular weight” refers to a weight average molecular weight in terms of polystyrene by GPC (gel permeation chromatography). When the weight average molecular weight of the compound having a Si—H bond is in the above range, it is possible to prevent the hydrolysis product generated by the moisture absorption of the component (A) from being reduced in molecular weight. Thereby, since the volatilization of a hydrolysis product can be suppressed, it is preferable.
 Si-H結合を有する化合物がポリマーでない場合、Si-H結合を有する化合物としては、上記一般式(5)で示される構造を有する化合物であれば特に限定されないが、例えば、ジフェニルt-ブチルハイドロシラン、トリベンジルシラン等が挙げられる。 When the compound having an Si—H bond is not a polymer, the compound having an Si—H bond is not particularly limited as long as the compound has a structure represented by the general formula (5). For example, diphenyl t-butyl hydro Examples thereof include silane and tribenzylsilane.
 以下、Si-H結合を有する化合物の機能について列挙して説明する。 Hereinafter, functions of compounds having Si—H bonds will be listed and described.
 第1に、前述したように、本実施の形態にかかる組成物を硬化させて硬化体を形成する工程において、(A)成分とSi-H結合を有する化合物とが反応することにより、(A)成分がSi-H結合を有する化合物に固定された硬化体を形成することができる。その結果、該硬化体中の(A)成分に由来する部位が水分と反応することにより発生する加水分解生成物は、揮発性の高い低分子量のアルコールやアルカン等ではなく、揮発性の低い中分子量ないし高分子量のアルコールやアルカン等の化合物となる。これにより、加水分解生成物の揮発による電子デバイス内への拡散を抑制することができる。 First, as described above, in the step of curing the composition according to the present embodiment to form a cured body, the component (A) reacts with a compound having a Si—H bond, whereby (A A cured product in which the component is fixed to a compound having a Si—H bond can be formed. As a result, the hydrolysis product generated when the part derived from the component (A) in the cured body reacts with moisture is not a highly volatile low molecular weight alcohol or alkane, but a low volatile medium. It becomes a compound such as a molecular weight or high molecular weight alcohol or alkane. Thereby, the spreading | diffusion in the electronic device by volatilization of a hydrolysis product can be suppressed.
 第2に、Si-H結合を有する化合物を使用することで組成物を無溶媒化することができる。Si-H結合を有する化合物は(A)成分と任意に混ざり合うことができるため、(A)成分を溶解させるための溶媒が不要となる。これにより、前述したような硬化体中に溶媒が残留することによる弊害を防止することができる。 Second, the composition can be made solvent-free by using a compound having a Si—H bond. Since the compound having a Si—H bond can be arbitrarily mixed with the component (A), a solvent for dissolving the component (A) becomes unnecessary. Thereby, the bad effect by a solvent remaining in the hardening body as mentioned above can be prevented.
 第3に、Si-H結合を有する化合物は、硬化体の熱流動性を抑制させることができる。前述したように、本実施の形態にかかる組成物を硬化させて硬化体を形成する工程において、(A)成分とSi-H結合を有する化合物とが反応することにより、(A)成分がSi-H結合を有する化合物に固定された硬化体を形成することができる。かかる硬化体は、前述した(A)成分の吸湿能を維持したままで熱流動性を抑制させることができる。 Third, a compound having a Si—H bond can suppress the thermal fluidity of the cured body. As described above, in the step of curing the composition according to the present embodiment to form a cured body, the component (A) reacts with the compound having a Si—H bond, so that the component (A) becomes Si. A cured product fixed to a compound having a —H bond can be formed. Such a cured product can suppress thermal fluidity while maintaining the hygroscopicity of the component (A) described above.
 第4に、Si-H結合を有する化合物を添加することで組成物に適度な粘性を付与することができる。これにより、本実施の形態にかかる組成物の塗布・成膜等の作業性を向上させることができる。 Fourth, an appropriate viscosity can be imparted to the composition by adding a compound having a Si—H bond. Thereby, workability | operativity, such as application | coating and film-forming of the composition concerning this Embodiment, can be improved.
 第5に、Si-H結合を有する化合物は、(A)成分と任意に混ざり合うことができるため、組成物を硬化させて得られる硬化体の透明性を向上させることができる。 Fifth, since the compound having a Si—H bond can be arbitrarily mixed with the component (A), the transparency of the cured product obtained by curing the composition can be improved.
 本実施の形態にかかる組成物中におけるSi-H結合を有する化合物の含有量は、組成物の全質量を100質量%とした場合、好ましくは10質量%以上90質量%以下であり、より好ましくは20質量%以上50質量%以下である。Si-H結合を有する化合物の含有量が前記範囲内であると、前述した各機能を損なわずに良好な硬化体を形成することができる。 The content of the compound having a Si—H bond in the composition according to the present embodiment is preferably 10% by mass or more and 90% by mass or less, more preferably 100% by mass when the total mass of the composition is 100% by mass. Is 20 mass% or more and 50 mass% or less. When the content of the compound having a Si—H bond is within the above range, a good cured product can be formed without impairing each function described above.
 1.4.その他の添加剤
 本実施の形態にかかる組成物は、必要に応じて、各種添加剤を含有することができる。各種添加剤としては、例えば有機溶媒、軟化剤、相溶化剤等が挙げられる。例えば塗布・成膜等の加工を行う際には、上記(A)成分と反応しない有機溶媒に均一に溶解させて使用することができる。このような有機溶媒としては、トルエン、キシレン等の芳香族有機溶媒;パラフィン、流動パラフィン、デカリン等の脂肪族有機溶媒;ジグライム等のエーテル系有機溶媒が挙げられる。有機溶媒の含有量は、特に制限されないが、上記(A)成分と上記(C)成分とが均一に溶解する量であることが好ましい。
1.4. Other additive The composition concerning this Embodiment can contain various additives as needed. Examples of various additives include organic solvents, softeners, compatibilizers, and the like. For example, when processing such as coating and film formation, it can be used by uniformly dissolving in an organic solvent that does not react with the component (A). Examples of such organic solvents include aromatic organic solvents such as toluene and xylene; aliphatic organic solvents such as paraffin, liquid paraffin, and decalin; ether-based organic solvents such as diglyme. The content of the organic solvent is not particularly limited, but is preferably an amount in which the component (A) and the component (C) are uniformly dissolved.
 また、本実施の形態にかかる組成物は、硬化反応を促進させる目的で触媒を添加してもよい。特に(C)バインダ成分が上述したSi-H結合を有する化合物である場合、ヒドロシリル化反応を促進させるための触媒を添加することが好ましい。かかる場合の触媒としては、白金錯体またはロジウム錯体が好ましい。白金錯体としては、例えば、カルボニルシクロビニルメチルシロキサン白金錯体、白金―オクタナル/オクタノール錯体、シクロビニルメチルシロキサン白金錯体、カルボニルジビニルメチル白金錯体、ジビニルテトラメチルジシロキサン白金錯体等が挙げられる。ロジウム錯体としては、例えば、トリス(ジブチルスルフィド)ロジウムトリクロライド等が挙げられる。本実施の形態にかかる組成物中における触媒の含有量は、組成物の全質量を100質量%とした場合、好ましくは0.0001質量%以上1質量%以下であり、より好ましくは0.001質量%以上0.1質量%以下である。触媒の含有量が前記範囲内であると、(A)成分とSi-H結合を有する化合物とのヒドロシリル化反応を促進させることができるだけでなく、組成物を硬化させて得られる硬化体の吸湿性や透明性等の基本的な性能を損なわない点で好ましい。 Further, the composition according to this embodiment may be added with a catalyst for the purpose of promoting the curing reaction. In particular, when the binder component (C) is a compound having the Si—H bond described above, it is preferable to add a catalyst for promoting the hydrosilylation reaction. As a catalyst in such a case, a platinum complex or a rhodium complex is preferable. Examples of the platinum complex include a carbonylcyclovinylmethylsiloxane platinum complex, a platinum-octal / octanol complex, a cyclovinylmethylsiloxane platinum complex, a carbonyldivinylmethylplatinum complex, a divinyltetramethyldisiloxane platinum complex, and the like. Examples of the rhodium complex include tris (dibutyl sulfide) rhodium trichloride. The content of the catalyst in the composition according to the present embodiment is preferably 0.0001% by mass or more and 1% by mass or less, more preferably 0.001 when the total mass of the composition is 100% by mass. It is not less than mass% and not more than 0.1 mass%. When the content of the catalyst is within the above range, not only can the hydrosilylation reaction between the component (A) and the compound having an Si—H bond be promoted, but also the moisture absorption of the cured product obtained by curing the composition. It is preferable in that basic performance such as property and transparency is not impaired.
 1.5.組成物の製造方法
 本実施の形態にかかる組成物は、(A)成分、(B)成分、(C)成分、必要に応じてその他の添加剤を混合することにより製造することができる。
1.5. Manufacturing method of composition The composition concerning this Embodiment can be manufactured by mixing (A) component, (B) component, (C) component, and another additive as needed.
 これらの成分を混合する方法としては、特に制限されないが、(A)成分単体または(A)成分を溶媒に溶解させた溶液を、(B)成分が分散した(C)成分の溶液に対して撹拌しながら添加し、均一にする方法が挙げられる。または、(B)成分および(C)成分を撹拌しながら練ることでそれを溶液とした後、(A)成分単体または(A)成分を溶媒に溶解させた溶液を添加してもよい。 The method for mixing these components is not particularly limited, but the component (A) or a solution obtained by dissolving the component (A) in a solvent is mixed with the solution of the component (C) in which the component (B) is dispersed. A method of adding the mixture with stirring to make it uniform is mentioned. Alternatively, the component (B) and the component (C) may be kneaded with stirring to obtain a solution, and then the component (A) alone or a solution obtained by dissolving the component (A) in a solvent may be added.
 1.6.組成物の物性および用途
 本実施の形態にかかる組成物は、粘度が50~100,000cPであることが好ましい。粘度が前記範囲であることにより、組成物をODF法により直接、素子基板へ塗布し、硬化させることができる。これにより、本実施の形態にかかる組成物をフィルム状等の成形体としてあらかじめ作製しておき、それを素子へ組み込む工程を経る必要がなくなるので、工程を簡略化することができる。また、本実施の形態にかかる組成物に光酸発生剤等を添加して、感光性を付与すれば、微細なパターニングが可能となる。
1.6. Physical properties and use of the composition The composition according to the present embodiment preferably has a viscosity of 50 to 100,000 cP. When the viscosity is in the above range, the composition can be directly applied to the element substrate by the ODF method and cured. This eliminates the need to prepare the composition according to the present embodiment in the form of a film or the like in advance and incorporate it into the element, thereby simplifying the process. Further, if a photoacid generator or the like is added to the composition according to the present embodiment to impart photosensitivity, fine patterning becomes possible.
 なお、上記粘度は、フォーリング・ニードル法により測定される値を示す。さらに上記粘度は組成物を溶媒等で希釈して使用する場合は、塗布時の組成の状態での粘度を意味するものとする。 In addition, the said viscosity shows the value measured by the falling needle method. Furthermore, when the composition is used after being diluted with a solvent or the like, it means the viscosity in the composition state at the time of coating.
 本実施の形態にかかる組成物は、(A)成分を含有する硬化体を形成することができるため、水分または酸素を捕捉する用途に使用することができる。したがって、本実施の形態にかかる組成物は、有機EL素子、有機TFT、有機太陽電池、有機CMOSセンサー等の封止材に用いることができ、特に有機EL素子の封止材に好適に用いられる。 Since the composition according to the present embodiment can form a cured product containing the component (A), it can be used for capturing moisture or oxygen. Therefore, the composition concerning this Embodiment can be used for sealing materials, such as an organic EL element, an organic TFT, an organic solar cell, an organic CMOS sensor, and is used suitably especially for the sealing material of an organic EL element. .
 2.硬化体
 本発明において「硬化体」とは、上記組成物を使用に適する形状に成膜もしくは成形し、さらに乾燥または光照射等することにより、もとの組成物よりも粘度または硬度が上昇したものをいう。
2. Cured body In the present invention, the “cured body” means that the above composition is formed or molded into a shape suitable for use, and further dried or irradiated with light, so that the viscosity or hardness is higher than that of the original composition. Say things.
 本実施の形態にかかる硬化体は、例えば上記組成物を基材上に塗布して、塗膜を形成した後、該塗膜を乾燥させて溶媒を除去することにより得られる。 The cured body according to the present embodiment can be obtained, for example, by applying the above composition on a substrate to form a coating film, and then drying the coating film to remove the solvent.
 塗布方法としては、スピンコータ、ロールコータ、スプレーコータ、ディスペンサ、インクジェット装置を用いる方法等が挙げられる。 Examples of the coating method include a spin coater, a roll coater, a spray coater, a dispenser, and a method using an inkjet device.
 乾燥の際の温度は、特に限定されないが、例えば5℃~100℃である。 The temperature at the time of drying is not particularly limited, but is, for example, 5 ° C to 100 ° C.
 得られた硬化体の形状は、特に限定されないが、例えばフィルム形状を有する。該硬化体がフィルム形状を有する場合、その膜厚は、例えば0.1~1.0mmである。 The shape of the obtained cured body is not particularly limited, but has, for example, a film shape. When the cured body has a film shape, the film thickness is, for example, 0.1 to 1.0 mm.
 本実施の形態にかかる硬化体中における(A)成分の含有量は、硬化体の全質量を100質量%とした場合、好ましくは10質量%以上80質量%以下、より好ましくは10質量%以上50質量%以下、特に好ましくは40質量%以上50質量%以下である。(A)成分の含有量が前記範囲内であると、水分や酸素を捕捉する機能を十分に発現させることができるため好ましい。さらに、(A)成分の含有量が前記範囲内であると、塗布・成膜性が良好となり、硬化体に透明性を付与しやすくなる点で好ましい。 The content of the component (A) in the cured product according to the present embodiment is preferably 10% by mass or more and 80% by mass or less, more preferably 10% by mass or more, when the total mass of the cured product is 100% by mass. It is 50 mass% or less, Most preferably, it is 40 mass% or more and 50 mass% or less. It is preferable for the content of the component (A) to be within the above range because the function of capturing moisture and oxygen can be sufficiently expressed. Furthermore, it is preferable that the content of the component (A) is in the above-mentioned range because the coating / film forming property is improved and the cured product can be easily imparted with transparency.
 3.電子デバイス
 本実施の形態にかかる電子デバイスは、上記硬化体を電子デバイスの内部に備えている。水分や酸素を嫌う電子デバイスであれば、いかなる電子デバイスにも上記硬化体を搭載することができる。以下、代表的な密閉型電子デバイスである有機EL素子の一例について図面を参照しながら説明する。
3. Electronic Device The electronic device according to the present embodiment includes the cured body inside the electronic device. The cured body can be mounted on any electronic device as long as it is an electronic device that dislikes moisture and oxygen. Hereinafter, an example of an organic EL element, which is a typical sealed electronic device, will be described with reference to the drawings.
 図1は、本実施の形態にかかる有機EL素子の一例を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an example of the organic EL element according to the present embodiment.
 図1に示すように、有機EL素子100は、有機EL層10と、有機EL層10を収納して外気から遮断するための構造体20と、構造体20内に形成された捕捉剤層30と、からなる。 As shown in FIG. 1, the organic EL element 100 includes an organic EL layer 10, a structure 20 for housing the organic EL layer 10 and blocking it from the outside air, and a trapping agent layer 30 formed in the structure 20. And consist of
 有機EL層10は、有機材料からなる有機発光材料層が、互いに対向する一対の電極の間に挟持されてなる構造であればよく、例えば陽極/電荷(正孔)輸送剤/発光層/陰極等の公知の構造をとることができる。 The organic EL layer 10 may have a structure in which an organic light emitting material layer made of an organic material is sandwiched between a pair of electrodes facing each other. For example, anode / charge (hole) transport agent / light emitting layer / cathode A known structure such as the above can be adopted.
 捕捉剤層30は、上記組成物の硬化体である。捕捉剤層30は、図1に示すように、有機EL層10と離間して形成させてもよいし、有機EL層10を被覆するように形成させてもよい。 The scavenger layer 30 is a cured product of the above composition. As shown in FIG. 1, the scavenger layer 30 may be formed away from the organic EL layer 10 or may be formed so as to cover the organic EL layer 10.
 図1中、構造体20は、基板22と、封止キャップ24と、接着剤26とからなる。基板22としてはガラス基板等、封止キャップ24としてはガラスからなる構造体等が挙げられる。なお、構造体20の構造は、有機EL層10を収納することができればよく、特に限定されない。 1, the structure 20 includes a substrate 22, a sealing cap 24, and an adhesive 26. Examples of the substrate 22 include a glass substrate, and examples of the sealing cap 24 include a structure made of glass. The structure of the structure 20 is not particularly limited as long as the organic EL layer 10 can be accommodated.
 なお、図1では、有機EL層10と捕捉剤層30とを接触させずに分離させているが、有機EL層10の陰極と、基板22および封止キャップ24と、に捕捉剤層30を密着させることで、有機EL層10から発生する熱の放熱効率をさらに高めることができる。これにより、印加電圧を高め、素子に供給する電流を均一にすることができるため、発光の輝度ムラを抑制すると共に、素子の長寿命化も可能となる。また捕捉剤層30を貼り付けるだけで、効率良く放熱することが可能となり、簡便な方法で高品質の有機EL照明装置を提供することができる。 In FIG. 1, the organic EL layer 10 and the capture agent layer 30 are separated without contacting each other, but the capture agent layer 30 is provided on the cathode of the organic EL layer 10, the substrate 22, and the sealing cap 24. By making it adhere, the heat dissipation efficiency of the heat generated from the organic EL layer 10 can be further increased. Accordingly, the applied voltage can be increased and the current supplied to the element can be made uniform, so that uneven luminance of light emission can be suppressed and the life of the element can be extended. Moreover, it becomes possible to dissipate heat efficiently only by attaching the capturing agent layer 30, and a high-quality organic EL lighting device can be provided by a simple method.
 4.実施例
 以下に本発明に関して実施例を挙げて説明するが、本発明はこれら実施例により何ら制限されるものではない。なお、組成物の調製は、露点-60℃以下、酸素1ppm以下のグローブボックス中で行った。
4). Examples Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. The composition was prepared in a glove box having a dew point of −60 ° C. or lower and oxygen of 1 ppm or lower.
 4.1.(A)成分の合成
 4.1.1.トリ(1-フィチル)アルミニウムの合成
 200mLの三口フラスコに、トリイソブチルアルミニウム2.32g(11.7mmol)、1-フィテン10.0g(35.6mmol)、およびヘプタン15mLをグローブボックス中で仕込み、一晩還流した。その後、55℃まで冷却し、この温度で真空ポンプによって減圧しながら溶媒を留去し室温まで冷却して、トリ(1-フィチル)アルミニウム10.4gを無色透明油状物として得た。収率は、定量的であった。
4.1. Synthesis of component (A) 4.1.1. Synthesis of tri (1-phytyl) aluminum A 200 mL three-necked flask was charged with 2.32 g (11.7 mmol) of triisobutylaluminum, 10.0 g (35.6 mmol) of 1-phytene and 15 mL of heptane in a glove box. Refluxed overnight. Thereafter, the mixture was cooled to 55 ° C., and the solvent was distilled off under reduced pressure with a vacuum pump at this temperature, followed by cooling to room temperature to obtain 10.4 g of tri (1-phytyl) aluminum as a colorless transparent oil. The yield was quantitative.
 4.1.2.トリ(3-シクロドデシルプロピル)アルミニウムの合成
 削状マグネシウム15.5g(0.637mol)と無水テトラヒドロフラン600mLを1,000mLの反応容器に入れ、ブロモシクロドデカン150g(0.607mol)のうち30gを滴下した。これを50℃に加熱し、反応が開始したらバスから外して弱く還流する程度の状態を保ちつつ残りのブロモシクロドデカンを滴下した。滴下終了後、2時間還流し、室温まで冷却した。これを氷水浴で冷却し、3-ブロモ-1-プロペン57.8mL(0.668mol)を内温30℃にて滴下し、滴下終了後、一晩還流を行った。室温まで冷却後、氷水浴下で1規定塩化水素水を滴下して有機層を分取した後、有機層は水200mLで3回洗浄した。有機層は、無水硫酸マグネシウムで乾燥し、ろ過、濃縮を順次行った。得られた残渣を蒸留に付し、109~110℃/3.2mmHgの条件で得た留分から、目的化合物である3-シクロドデシル-1-プロペン43gを無色透明な液体として得た。収率は34%であった。
4.1.2. Synthesis of tri (3-cyclododecylpropyl) aluminum 15.5 g (0.637 mol) of shaved magnesium and 600 mL of anhydrous tetrahydrofuran were placed in a 1,000 mL reaction vessel, and 30 g of 150 g (0.607 mol) of bromocyclododecane was added dropwise. did. This was heated to 50 ° C., and when the reaction started, the remaining bromocyclododecane was added dropwise while maintaining a state where it was removed from the bath and weakly refluxed. After completion of the dropwise addition, the mixture was refluxed for 2 hours and cooled to room temperature. This was cooled in an ice-water bath, and 57.8 mL (0.668 mol) of 3-bromo-1-propene was added dropwise at an internal temperature of 30 ° C. After completion of the addition, the mixture was refluxed overnight. After cooling to room temperature, 1N aqueous hydrogen chloride was added dropwise in an ice-water bath to separate the organic layer, and the organic layer was washed 3 times with 200 mL of water. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated sequentially. The obtained residue was subjected to distillation, and 43 g of the target compound, 3-cyclododecyl-1-propene, was obtained as a colorless and transparent liquid from the fraction obtained under conditions of 109 to 110 ° C./3.2 mmHg. The yield was 34%.
 次いで、200mLの三口フラスコに、トリイソブチルアルミニウム10g(50.4mmol)、3-シクロドデシル-1-プロペン31.9g(153mmol)、およびヘプタン50mLをグローブボックス中で仕込み、一晩還流した。その後、55℃まで冷却し、この温度で真空ポンプにて減圧しながら溶媒を留去し室温まで冷却して、水飴状の無色透明油状物を得た。これをグローブボックス内で数日放置することによって、トリ(3-シクロドデシルプロピル)アルミニウムの白色固体33gを得た。収率は、定量的であった。 Next, 10 g (50.4 mmol) of triisobutylaluminum, 31.9 g (153 mmol) of 3-cyclododecyl-1-propene, and 50 mL of heptane were charged in a glove box in a 200 mL three-necked flask and refluxed overnight. Thereafter, the mixture was cooled to 55 ° C., and the solvent was distilled off while reducing the pressure with a vacuum pump at this temperature, followed by cooling to room temperature to obtain a syrupy colorless transparent oil. This was left in a glove box for several days to obtain 33 g of tri (3-cyclododecylpropyl) aluminum white solid. The yield was quantitative.
 4.1.3.トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムの合成
 500mLの三口フラスコに、トリメチロールプロパンジアリルエーテル(ダイソー株式会社製、商品名「ネオアリルT-20」)162.0g[756mmol]を仕込み、撹拌しながら少量ずつトリイソブチルアルミニウム50.0g[252.7mmol]をグローボックス中で滴下した。1時間そのまま撹拌した後、120℃で90分間撹拌した。温度を120℃に保ちつつ、真空ポンプによって減圧しながら未反応の原料を留去し、室温まで冷却してトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム164.0gを無色透明油状物として得た。収率は、定量的であった。
4.1.3. Synthesis of tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum In a 500 mL three-necked flask, 162.0 g of trimethylolpropane diallyl ether (trade name “Neoallyl T-20”, manufactured by Daiso Corporation) [ 756 mmol] was added, and 50.0 g [252.7 mmol] of triisobutylaluminum was added dropwise in a glow box while stirring. After stirring for 1 hour, the mixture was stirred at 120 ° C. for 90 minutes. While maintaining the temperature at 120 ° C., the unreacted raw material was distilled off while reducing the pressure with a vacuum pump, and the mixture was cooled to room temperature to obtain 164.0 g of tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum. Obtained as a colorless transparent oil. The yield was quantitative.
 図2は、得られたトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムのH-NMRスペクトル図である。H-NMR測定においては、内部標準物質としてトルエン-d8(ピークδ2.1付近)を用いた。図2により、得られた化合物は、上記式(4)で示される化学構造を有することが示された。 FIG. 2 is a 1 H-NMR spectrum of the obtained tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum. In 1 H-NMR measurement, toluene-d8 (near peak δ2.1) was used as an internal standard substance. FIG. 2 shows that the obtained compound has a chemical structure represented by the above formula (4).
 4.2.ポリブチルメタクリレートの合成
 温度計、三方コック、窒素導入管を配置した200mL三口フラスコに、ブチルメタクリレート22.5g(0.157mol)、トルエン75mL、AIBN0.26g(1.58mmol)を仕込み、この溶液に窒素を10分間導入した。オイルバスで昇温し、70℃で4時間攪拌した。冷却後、メタノール1Lで再沈殿法による精製を3回行い、真空ポンプで乾燥し、ポリブチルメタクリレート13.5gを白色固体として得た。
4.2. Synthesis of polybutylmethacrylate 22.5 g (0.157 mol) of butylmethacrylate, 75 mL of toluene and 0.26 g (1.58 mmol) of AIBN were charged into a 200 mL three-necked flask equipped with a thermometer, a three-way cock, and a nitrogen introduction tube. Nitrogen was introduced for 10 minutes. The temperature was raised in an oil bath, and the mixture was stirred at 70 ° C. for 4 hours. After cooling, purification by the reprecipitation method was performed 3 times with 1 L of methanol and dried with a vacuum pump to obtain 13.5 g of polybutyl methacrylate as a white solid.
 4.3.実施例および比較例
 4.3.1.フィルムの作製
 [実施例1~9、比較例4]
 下記のようにして、実施例1において評価するフィルムを作製した。
4.3. Examples and Comparative Examples 4.3.1. Production of Film [Examples 1 to 9, Comparative Example 4]
The film evaluated in Example 1 was produced as follows.
 まず、スチレン系エラストマー(JSR株式会社製、「ダイナロン8600」、(C)成分に相当)の24.5質量%トルエン溶液を調製した。このトルエン溶液に対して0.5質量%のシリカ粒子(日本アエロジル社製、「AEROSIL(登録商標)R976」、平均粒径12nm、(B)成分に相当)を加え、激しく撹拌した。この溶液200mgに対して、上記「4.1.1.トリ(1-フィチル)アルミニウムの合成」で得られたトリ(1-フィチル)アルミニウム(以下、「B20」ともいう。(A)成分に相当)を50mg入れ、十分に撹拌して塗布溶液を調製した。この塗布溶液の組成は、「ダイナロン8600」が19.6質量%、「シリカ粒子」が0.4質量%、「B20」が20質量%、トルエンが60質量%であった。この塗布溶液を基板上に塗布し、100℃で20分間乾燥させることによりフィルムを得た。 First, a 24.5 mass% toluene solution of a styrene-based elastomer (manufactured by JSR Corporation, “Dynalon 8600”, corresponding to component (C)) was prepared. To this toluene solution, 0.5% by mass of silica particles (manufactured by Nippon Aerosil Co., Ltd., “AEROSIL (registered trademark) R976”, average particle size of 12 nm, corresponding to component (B)) was added, and vigorously stirred. With respect to 200 mg of this solution, tri (1-phytyl) aluminum (hereinafter also referred to as “B20”) obtained in the above “4.1.1. Synthesis of tri (1-phytyl) aluminum”. The coating solution was prepared by sufficiently stirring. The composition of this coating solution was 19.6% by mass of “Dynalon 8600”, 0.4% by mass of “silica particles”, 20% by mass of “B20”, and 60% by mass of toluene. This coating solution was applied on a substrate and dried at 100 ° C. for 20 minutes to obtain a film.
 なお、実施例2~9、比較例4において評価するフィルムは、(A)成分、(B)成分、または(C)成分を表1または表4に記載の成分へ変更したこと以外は上述した方法と同様の方法により作製した。 The films evaluated in Examples 2 to 9 and Comparative Example 4 were the same as those described above except that the component (A), the component (B), or the component (C) was changed to the components described in Table 1 or Table 4. It was produced by the same method as the method.
 [実施例10~14、比較例5]
 下記のようにして、実施例10において評価するフィルムを作製した。
[Examples 10 to 14, Comparative Example 5]
The film evaluated in Example 10 was produced as follows.
 まず、スチレン系エラストマー(JSR株式会社製、「ダイナロン8600」、(C)--成分に相当)の80質量部に対して、架橋SBR粒子(JSR株式会社製、「P19」、平均粒径500nm、(B)成分に相当)が20質量部となるように混練したポリマーの25質量%トルエン溶液を調製した。この溶液200mgに対して、上記「4.1.1.トリ(1-フィチル)アルミニウムの合成」で得られたトリ(1-フィチル)アルミニウム(以下、「B20」ともいう。(A)成分に相当)を50mg入れ、十分に撹拌して塗布溶液を調製した。この塗布溶液の組成は、「ダイナロン8600」が16質量%、「架橋SBR粒子」が4質量%、「B20」が20質量%、トルエンが60質量%であった。この塗布溶液を基板上に塗布し、100℃で20分間乾燥させることによりフィルムを得た。 First, with respect to 80 parts by mass of a styrene-based elastomer (manufactured by JSR Corporation, “Dynalon 8600”, equivalent to component (C)), crosslinked SBR particles (manufactured by JSR Corporation, “P19”, average particle size 500 nm). , (Corresponding to component (B)) was prepared in a 25% by mass toluene solution of the polymer kneaded so as to be 20 parts by mass. With respect to 200 mg of this solution, tri (1-phytyl) aluminum (hereinafter also referred to as “B20”) obtained in the above “4.1.1. Synthesis of tri (1-phytyl) aluminum”. The coating solution was prepared by sufficiently stirring. The composition of this coating solution was 16% by mass of “Dynalon 8600”, 4% by mass of “crosslinked SBR particles”, 20% by mass of “B20”, and 60% by mass of toluene. This coating solution was applied on a substrate and dried at 100 ° C. for 20 minutes to obtain a film.
 なお、実施例11~14、比較例5において評価するフィルムは、(A)成分、(B)成分、または(C)成分を表2または表4に記載の成分へ変更したこと以外は上述した方法と同様の方法により作製した。 The films evaluated in Examples 11 to 14 and Comparative Example 5 were the same as those described above except that the component (A), the component (B), or the component (C) was changed to the components described in Table 2 or Table 4. It was produced by the same method as the method.
 [実施例15~22]
 まず、露点-60℃以下、酸素5ppm以下のグローブボックス中で、(A)成分、(B)成分、(C)成分および必要に応じて触媒を表3に記載の組成となるように十分に撹拌・混合することにより組成物を得た。
[Examples 15 to 22]
First, in a glove box with a dew point of −60 ° C. or less and oxygen of 5 ppm or less, the components (A), (B), (C) and, if necessary, the catalyst are sufficiently set to have the composition shown in Table 3. A composition was obtained by stirring and mixing.
 次いで、得られた組成物をガラス基板上に塗布し、80℃で1時間加熱することにより熱硬化させてフィルムを成形した。 Next, the obtained composition was applied onto a glass substrate and heated at 80 ° C. for 1 hour to thermoset to form a film.
 [比較例1~3]
 下記のようにして、比較例1において評価するフィルムを作製した。
[Comparative Examples 1 to 3]
A film to be evaluated in Comparative Example 1 was produced as follows.
 まず、スチレン系エラストマー(JSR株式会社製、「ダイナロン8600」、(C)成分に相当)の25質量%トルエン溶液を調製した。この溶液200mgに対してトリ(1-フィチル)アルミニウムを50mg入れ、十分に撹拌して塗布溶液を調製した。この塗布溶液の組成は、「ダイナロン8600」が20質量%、「B20」が20質量%、トルエンが60質量%であった。この塗布溶液を基板上に塗布し、100℃で20分間乾燥させることによりフィルムを得た。 First, a 25% by mass toluene solution of a styrene-based elastomer (manufactured by JSR Corporation, “Dynalon 8600”, corresponding to component (C)) was prepared. 50 mg of tri (1-phytyl) aluminum was added to 200 mg of this solution, and sufficiently stirred to prepare a coating solution. The composition of this coating solution was 20% by mass for “Dynalon 8600”, 20% by mass for “B20”, and 60% by mass for toluene. This coating solution was applied on a substrate and dried at 100 ° C. for 20 minutes to obtain a film.
 なお、比較例2~3において評価するフィルムは、(A)成分を表4に記載の成分へ変更したこと以外は上述した方法と同様の方法により作製した。 The films evaluated in Comparative Examples 2 to 3 were produced by the same method as described above except that the component (A) was changed to the components shown in Table 4.
 なお、表1~表4における成分の略称は、それぞれ下記の成分を表す。
・「L12」;トリドデシルアルミニウム(商品名「TDDA」、ケムチュラ社製)
・「B20」;トリ(1-フィチル)アルミニウム(上記「4.1.(A)成分の合成」で合成したもの)
・「C15」;トリ(3-シクロドデシルプロピル)アルミニウム(上記「4.1.(A)成分の合成」で合成したもの)
・「TMDE-3」;トリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウム(上記「4.1.(A)成分の合成」で合成したもの)
・「R976」;シリカ粒子(商品名「AEROSIL(登録商標)R976」、日本アエロジル社製、平均粒径12nm)
・「R972」;シリカ粒子(商品名「AEROSIL(登録商標)R972」、日本アエロジル社製、平均粒径16nm)
・「R972CF」;シリカ粒子(商品名「AEROSIL(登録商標)R972CF」、日本アエロジル社製、平均粒径16nm)
・「SAN」;合成スメクタイト粒子(商品名「スメクタイトSAN」、コープケミカル社製、平均粒径1μm)
・「SAN316」;合成スメクタイト粒子(商品名「スメクタイトSAN316」、コープケミカル社製、平均粒径1μm)
・「アルミナ」;(D50=3.5μm)
・「窒化ホウ素」;(D50=3.5μm)
・「PBMA」;ポリブチルメタクリレート(上記「4.2.ポリブチルメタクリレートの合成」で合成したもの)
・「CE-2021」;ビスエポキシシクロヘキサンカルボキシレート(ダイセル化学工業株式会社製、商品名「セロキサイド2021」)
・「EX-830」;ビスエポキシオリゴエチレングリコール(ナガセケムテックス株式会社製、商品名「デナコール EX-830」)
・「PMHS」;ポリメチルハイドロジェンシロキサン
・「PEHS」;ポリエチルハイドロジェンシロキサン
・「PPMHS」;ポリフェニル(ジメチルハイドロジェンシロキシ)シロキサン
・「ポリプロピレングリコール」;(数平均分子量1000)
・「ポリエチレングリコール」;(数平均分子量1000)
The abbreviations of components in Tables 1 to 4 represent the following components, respectively.
・ "L12": Tridodecyl aluminum (trade name "TDDA", manufactured by Chemtura)
"B20"; tri (1-phytyl) aluminum (synthesized in "4.1. Synthesis of component (A)" above)
"C15"; tri (3-cyclododecylpropyl) aluminum (synthesized in the above "4.1. Synthesis of component (A)")
"TMDE-3"; tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum (synthesized in "4.1. Synthesis of component (A)" above)
"R976": silica particles (trade name "AEROSIL (registered trademark) R976", manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 12 nm)
"R972"; silica particles (trade name "AEROSIL (registered trademark) R972", manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 16 nm)
"R972CF": silica particles (trade name "AEROSIL (registered trademark) R972CF", manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 16 nm)
"SAN": synthetic smectite particles (trade name "Smectite SAN", manufactured by Co-op Chemical Co., Ltd., average particle size 1 µm)
"SAN 316"; synthetic smectite particles (trade name "Smectite SAN 316", manufactured by Co-op Chemical Co., Ltd., average particle size 1 µm)
・ "Alumina"; (D50 = 3.5μm)
・ "Boron nitride"; (D50 = 3.5μm)
・ "PBMA": Polybutyl methacrylate (synthesized in the above "4.2. Synthesis of polybutyl methacrylate")
"CE-2021"; bisepoxycyclohexanecarboxylate (Daicel Chemical Industries, trade name "Celoxide 2021")
"EX-830"; bisepoxy oligoethylene glycol (manufactured by Nagase ChemteX Corporation, trade name "Denacol EX-830")
・ “PMHS”; polymethylhydrogensiloxane ・ “PEHS”; polyethylhydrogensiloxane ・ “PPMHS”; polyphenyl (dimethylhydrogensiloxy) siloxane ・ “polypropylene glycol”; (number average molecular weight 1000)
・ "Polyethylene glycol"; (Number average molecular weight 1000)
 4.3.2.評価方法
 上記「4.3.1.フィルムの作製」で得られたフィルムについて、吸湿性および透明性を下記の方法により評価した。また、熱流動性および熱伝導率の測定は、下記の方法により別途フィルムを作製して評価した。その結果を表1~表4に示す。なお、吸酸素性については、吸湿性と相関関係があることが知られているので、評価を省略した。
4.3.2. Evaluation Method The film obtained in the above “4.3.1. Production of film” was evaluated for hygroscopicity and transparency by the following methods. In addition, the measurement of thermal fluidity and thermal conductivity was evaluated by separately producing a film by the following method. The results are shown in Tables 1 to 4. Since oxygen absorption is known to have a correlation with hygroscopicity, evaluation was omitted.
 (1)吸湿性
 内径3cmのガラスシャーレに、実施例、比較例の各フィルムで厚さが0.6mmのものを作製し、湿度計と温度計を装着した内容積800cmの真空デシケーターに、先に作製したフィルムをガラスシャーレごと入れ、真空デシケーター内部の湿度と温度の変化を測定した。測定により得られた相対湿度(Hr、%)、摂氏温度(Tc、℃)の値から、下記式(7)より絶対湿度(Ha、%)を求めた。そして、測定開始時の絶対温度Ha(0h)から2時間後の絶対湿度Ha(2h)の減少割合を吸水率とし、吸水率を下記式(8)により算出して評価した。
(1) Hygroscopicity To a glass petri dish having an inner diameter of 3 cm, a film having a thickness of 0.6 mm is prepared for each film of Examples and Comparative Examples, and a vacuum desiccator with an internal volume of 800 cm 3 equipped with a hygrometer and a thermometer. The previously produced film was put together with the glass petri dish, and the changes in humidity and temperature inside the vacuum desiccator were measured. From the relative humidity (Hr,%) and the temperature in degrees Celsius (Tc, ° C) obtained by the measurement, the absolute humidity (Ha,%) was obtained from the following formula (7). And the reduction rate of absolute humidity Ha (2h) after 2 hours from the absolute temperature Ha (0h) at the time of a measurement start was made into a water absorption, and the water absorption was calculated and evaluated by following formula (8).
 Ha=4.0×10-3{exp(6.4×10-2・Tc)}Hr …(7) Ha = 4.0 × 10 −3 {exp (6.4 × 10 −2 · Tc)} Hr (7)
 吸水率(%)=100×(Ha(0h)-Ha(2h))/Ha(0h) …(8) Water absorption rate (%) = 100 × (Ha (0h) −Ha (2h)) / Ha (0h) (8)
 吸水率(%)は、20%以上が好ましく、30%以上がより好ましく、40%以上が特に好ましい。 The water absorption rate (%) is preferably 20% or more, more preferably 30% or more, and particularly preferably 40% or more.
 (2)熱流動性(耐熱性)
 まず、実施例および比較例の組成物をサンプル管中に適量入れて、100℃で60分間焼成することにより、膜厚2mmのフィルムを前記サンプル管の底部に作製した。次に、大気中で前記フィルムを十分に吸湿させた後、さらに蓋を閉めシールし、サンプル管の底部が上(成膜面が上)となるように固定した状態で85℃の環境下に静置した。その後336時間経過した時点のフィルムの状態を観察した。なお、熱流動性の評価基準は、フィルムに変化が認められなかった場合を「○」、フィルムが下方へ垂れて変形が認められた場合を「×」とした。
(2) Thermal fluidity (heat resistance)
First, appropriate amounts of the compositions of Examples and Comparative Examples were placed in a sample tube, and baked at 100 ° C. for 60 minutes to produce a film having a thickness of 2 mm on the bottom of the sample tube. Next, after sufficiently absorbing the film in the atmosphere, the lid is further closed and sealed, and the sample tube is placed in an environment of 85 ° C. with the bottom of the sample tube being fixed (the film formation surface is upward). Left to stand. Thereafter, the state of the film when 336 hours passed was observed. The evaluation criteria for heat fluidity were “◯” when no change was observed in the film, and “X” when the film was slid downward and deformation was observed.
 (3)熱伝導率の測定
 PETフィルムからなる支持フィルム上に、実施例および比較例の組成物を、ブレードコーターを用いて塗布して塗膜を形成し、該塗膜を100℃で5分間乾燥して溶剤を完全に除去することにより、膜厚20μmの熱伝導性樹脂層を支持フィルム上に形成した。次いで、支持フィルムから熱伝導性樹脂層を剥離しフィルムを作製した。フィルムの熱伝導率(W/m・K)は、熱伝導率測定システム(株式会社アイフェイズ製、「ai-Phase Mobile 1u」、温度波分析法により測定)を用いて測定される熱拡散係数を用い、別途測定した比熱や密度との計算から算出した。熱伝導率(W/m・K)は、より高い値を示す方が好ましい。
(3) Measurement of thermal conductivity On a support film made of PET film, the compositions of Examples and Comparative Examples were applied using a blade coater to form a coating film, and the coating film was formed at 100 ° C for 5 minutes. By drying and completely removing the solvent, a 20 μm thick thermally conductive resin layer was formed on the support film. Subsequently, the heat conductive resin layer was peeled from the support film to produce a film. The thermal conductivity (W / m · K) of the film is measured using a thermal conductivity measurement system (manufactured by I-Phase Co., Ltd., “ai-Phase Mobile 1u”, measured by temperature wave analysis method). Was calculated from the calculation of specific heat and density separately measured. The thermal conductivity (W / m · K) is preferably higher.
 (4)透明性
 上記「4.3.1.フィルムの作製」で得られたフィルムについて、目視により白濁が生じないものを「○」、グローブボックスでの焼成直後では白濁しないが大気中では白濁するものを「△」、焼成直後より白濁するものを「×」とした。なお、透明性の要求されるトップエミッション型の有機EL等の用途に適用する場合には、透明性が良好なものが好ましい。
(4) Transparency For the film obtained in the above “4.3.1. Production of film”, “O” indicates that no white turbidity occurs by visual observation. “△” was used for the sample to be processed, and “X” was used for the sample that became cloudy immediately after baking. In addition, when applying to uses, such as top emission type organic EL etc. in which transparency is requested | required, a thing with favorable transparency is preferable.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 4.3.3.評価結果
 表1~表3の結果から、実施例1~22の組成物から形成されたフィルムよれば、いずれの組成物も(A)成分を含有しているので吸湿性に優れていることが分かった。また、実施例1~22の組成物によれば、熱流動により変形しないフィルムが得られることが分かった。さらに、実施例15~22の組成物によれば、熱伝導性にも優れたフィルムが得られることが分かった。また、(B)成分としてシリカ粒子を用いた場合には、(A)成分との相性により透明性が異なることが分かった。但し、実施例6~7の結果から、(B)成分としてシリカ粒子および(C)成分としてポリブチルメタクリレートを用いた場合には、(A)成分の種類によらず良好な透明性が得られることが分かった。一方、(B)成分として、アルミナ、窒化ホウ素、スメクタイト粒子を用いた場合には、良好な透明性が得られた。
4.3.3. Evaluation results From the results of Tables 1 to 3, according to the films formed from the compositions of Examples 1 to 22, all the compositions contain the component (A) and therefore have excellent hygroscopicity. I understood. It was also found that according to the compositions of Examples 1 to 22, films that are not deformed by heat flow can be obtained. Furthermore, according to the compositions of Examples 15 to 22, it was found that films having excellent thermal conductivity can be obtained. Moreover, when silica particle was used as (B) component, it turned out that transparency changes with compatibility with (A) component. However, from the results of Examples 6 to 7, when silica particles are used as the component (B) and polybutyl methacrylate is used as the component (C), good transparency can be obtained regardless of the type of the component (A). I understood that. On the other hand, when alumina, boron nitride, and smectite particles were used as the component (B), good transparency was obtained.
 これに対して、比較例1~3の組成物から形成されたフィルムによれば、いずれの組成物も(A)成分を含有しているので吸湿性には優れていたが、熱流動により変形しやすい傾向が認められた。 On the other hand, according to the films formed from the compositions of Comparative Examples 1 to 3, all the compositions contained the component (A) and thus were excellent in hygroscopicity, but deformed by heat flow. The tendency to do was recognized.
 比較例4~5の組成物は、吸湿剤として一般的に使用されている酸化カルシウムを(B)成分、(C)成分と混合したものである。酸化カルシウムは(C)成分中に分散された状態であった。比較例4~5の組成物から形成されたフィルムは、良好な耐熱性を示したが、吸湿性には優れなかった。また、比較例4~5の組成物から形成されたフィルムは、フィルム中に酸化カルシウムが分散しており、透明性にも優れなかった。 The compositions of Comparative Examples 4 to 5 are obtained by mixing calcium oxide generally used as a hygroscopic agent with the (B) component and the (C) component. Calcium oxide was dispersed in the component (C). The films formed from the compositions of Comparative Examples 4 to 5 showed good heat resistance but were not excellent in hygroscopicity. In addition, the films formed from the compositions of Comparative Examples 4 to 5 were not excellent in transparency because calcium oxide was dispersed in the film.
 以上の結果より、(A)成分および(C)成分を含有する組成物に、さらに(B)成分を含有させることで、熱流動により変形しないフィルムを作製できることが分かった。 From the above results, it was found that a film that is not deformed by heat flow can be produced by further adding the component (B) to the composition containing the component (A) and the component (C).
10…有機EL層、20…構造体、22…基板、24…封止キャップ、26…接着剤、30…捕捉剤層、100…有機EL素子 DESCRIPTION OF SYMBOLS 10 ... Organic EL layer, 20 ... Structure, 22 ... Substrate, 24 ... Sealing cap, 26 ... Adhesive, 30 ... Capture agent layer, 100 ... Organic EL element

Claims (13)

  1.  (A)有機金属化合物と、
     (B)無機粒子または有機重合体粒子と、
     (C)バインダ成分と、
    を含有する、組成物。
    (A) an organometallic compound;
    (B) inorganic particles or organic polymer particles;
    (C) a binder component;
    A composition comprising:
  2.  請求項1において、
     前記有機金属化合物が、下記一般式(1)で示される化合物である、組成物。
     (R)nM  …(1)
    (式(1)中、Rは、水素原子または有機基であって、複数存在するRは同一または異なってもよい。nは2または3であり、Mの原子価に等しい。Mは2価または3価の金属原子である。)
    In claim 1,
    The composition in which the organometallic compound is a compound represented by the following general formula (1).
    (R 1 ) nM (1)
    (In Formula (1), R 1 is a hydrogen atom or an organic group, and a plurality of R 1 may be the same or different. N is 2 or 3, and is equal to the valence of M. M is (It is a divalent or trivalent metal atom.)
  3.  請求項2において、
     前記Mは、アルミニウムである、組成物。
    In claim 2,
    The composition wherein M is aluminum.
  4.  請求項2または請求項3において、
     前記一般式(1)で示される化合物が、少なくとも1つのM-C結合を有する、組成物。
    In claim 2 or claim 3,
    A composition in which the compound represented by the general formula (1) has at least one MC bond.
  5.  請求項2ないし請求項4のいずれか一項において、
     前記一般式(1)で示される化合物が、トリドデシルアルミニウム、トリヘキサデシルアルミニウム、トリステトラメチルヘキサデシルアルミニウム、トリ(1-フィチル)アルミニウム、トリ(3-シクロドデシルプロピル)アルミニウム、およびトリ(2,2-ビス(アリロキシメチル)-1-ブトキシ)アルミニウムから選択される少なくとも1種である、組成物。
    In any one of Claims 2 thru | or 4,
    The compound represented by the general formula (1) is tridodecylaluminum, trihexadecylaluminum, tristetramethylhexadecylaluminum, tri (1-phytyl) aluminum, tri (3-cyclododecylpropyl) aluminum, and tri (2 , 2-bis (allyloxymethyl) -1-butoxy) aluminum.
  6.  請求項2または請求項3において、
     前記一般式(1)で示される化合物が、少なくとも1つのM-O結合を有する、組成物。
    In claim 2 or claim 3,
    A composition in which the compound represented by the general formula (1) has at least one MO bond.
  7.  請求項1ないし請求項6のいずれか一項において、
     前記無機粒子は、シリカ、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、マグネシア、炭化ケイ素、炭化ホウ素、およびスメクタイトから選択される少なくとも1種の粒子である、組成物。
    In any one of Claims 1 thru | or 6,
    The composition wherein the inorganic particles are at least one particle selected from silica, alumina, boron nitride, aluminum nitride, silicon nitride, magnesia, silicon carbide, boron carbide, and smectite.
  8.  請求項1ないし請求項6のいずれか一項において、
     前記有機重合体粒子は、架橋されたスチレン・ブタジエンゴム粒子である、組成物。
    In any one of Claims 1 thru | or 6,
    The organic polymer particles are cross-linked styrene-butadiene rubber particles.
  9.  請求項1ないし請求項8のいずれか一項において、
     前記(B)無機粒子または有機重合体粒子の含有量は、0.1質量%以上20質量%以下である、組成物。
    In any one of Claims 1 thru | or 8,
    Content of said (B) inorganic particle or organic polymer particle is 0.1 mass% or more and 20 mass% or less.
  10.  請求項1ないし請求項9のいずれか一項において、
     前記(C)バインダ成分は、(メタ)アクリル系重合体、ポリエーテル系重合体、スチレン系エラストマー、環状エーテル構造を有する化合物、およびSi-H結合を有する化合物から選択される少なくとも1種である、組成物。
    In any one of Claims 1 thru | or 9,
    The binder component (C) is at least one selected from a (meth) acrylic polymer, a polyether polymer, a styrene elastomer, a compound having a cyclic ether structure, and a compound having a Si—H bond. ,Composition.
  11.  請求項1ないし請求項10のいずれか一項に記載の水分または酸素捕捉用組成物。 The moisture or oxygen scavenging composition according to any one of claims 1 to 10.
  12.  請求項1ないし請求項11のいずれか一項に記載の組成物を用いて形成された、硬化体。 A cured body formed using the composition according to any one of claims 1 to 11.
  13.  請求項12に記載の硬化体を内部に備えた、電子デバイス。 An electronic device comprising the cured body according to claim 12 inside.
PCT/JP2010/060163 2009-06-30 2010-06-16 Composition, cured object, and electronic device WO2011001823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011520858A JP5773160B2 (en) 2009-06-30 2010-06-16 Moisture or oxygen scavenging composition, cured body, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009154859 2009-06-30
JP2009155118 2009-06-30
JP2009-154859 2009-06-30
JP2009-155118 2009-06-30

Publications (1)

Publication Number Publication Date
WO2011001823A1 true WO2011001823A1 (en) 2011-01-06

Family

ID=43410901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060163 WO2011001823A1 (en) 2009-06-30 2010-06-16 Composition, cured object, and electronic device

Country Status (3)

Country Link
JP (1) JP5773160B2 (en)
TW (1) TW201100478A (en)
WO (1) WO2011001823A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157428A (en) * 2010-01-29 2011-08-18 Jsr Corp Thermally conductive paste and heat dissipation material
JP2012246359A (en) * 2011-05-26 2012-12-13 Shin-Etsu Chemical Co Ltd Silicone composition for release paper or release film
JP2014140797A (en) * 2013-01-22 2014-08-07 Jsr Corp Moisture capture agent, moisture capture body forming composition, moisture capture body and electronic device
JP2016110963A (en) * 2014-12-08 2016-06-20 古河電気工業株式会社 Resin composition for electronic device encapsulation, and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667282B1 (en) 2013-12-27 2015-02-12 古河電気工業株式会社 Filling material for organic electroluminescence device and sealing method of organic electroluminescence device
JP5667281B1 (en) 2013-12-27 2015-02-12 古河電気工業株式会社 Filling material for organic electroluminescence device and sealing method of organic electroluminescence device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210984A (en) * 2006-02-13 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Scavenger for organic electronic device and organic electronic device
JP2007214015A (en) * 2006-02-10 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Capture agent of water and oxygen, and organic electronic device
JP2007214017A (en) * 2006-02-10 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Capture agent sheet for organic electronic device, and organic electronic device
JP2008004839A (en) * 2006-06-23 2008-01-10 Dainippon Printing Co Ltd Back protection sheet film of solar cell, and back protection sheet of solar cell module using it
JP2010045015A (en) * 2008-07-16 2010-02-25 Jsr Corp Composition for capturing moisture and oxygen, curing object, and organic el element
JP2010045016A (en) * 2008-07-16 2010-02-25 Jsr Corp Composition for capturing moisture and oxygen, curing object, and organic el element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269352A (en) * 1998-03-23 1999-10-05 Nitto Denko Corp Epoxy resin composition for sealing semiconductor
JP2005298703A (en) * 2004-04-13 2005-10-27 Mitsui Chemicals Inc Adhesive film, chassis and organic el light-emitting element using the same
WO2006006581A1 (en) * 2004-07-14 2006-01-19 Jsr Corporation Photosensitive insulating resin composition, cured product thereof and use thereof
JP4909581B2 (en) * 2005-01-20 2012-04-04 三井化学株式会社 Organic EL element sealing method
JP2009090632A (en) * 2007-09-19 2009-04-30 Fujifilm Corp Laminated film and light emitting element or display element using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214015A (en) * 2006-02-10 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Capture agent of water and oxygen, and organic electronic device
JP2007214017A (en) * 2006-02-10 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Capture agent sheet for organic electronic device, and organic electronic device
JP2007210984A (en) * 2006-02-13 2007-08-23 Kokusai Kiban Zairyo Kenkyusho:Kk Scavenger for organic electronic device and organic electronic device
JP2008004839A (en) * 2006-06-23 2008-01-10 Dainippon Printing Co Ltd Back protection sheet film of solar cell, and back protection sheet of solar cell module using it
JP2010045015A (en) * 2008-07-16 2010-02-25 Jsr Corp Composition for capturing moisture and oxygen, curing object, and organic el element
JP2010045016A (en) * 2008-07-16 2010-02-25 Jsr Corp Composition for capturing moisture and oxygen, curing object, and organic el element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157428A (en) * 2010-01-29 2011-08-18 Jsr Corp Thermally conductive paste and heat dissipation material
JP2012246359A (en) * 2011-05-26 2012-12-13 Shin-Etsu Chemical Co Ltd Silicone composition for release paper or release film
JP2014140797A (en) * 2013-01-22 2014-08-07 Jsr Corp Moisture capture agent, moisture capture body forming composition, moisture capture body and electronic device
JP2016110963A (en) * 2014-12-08 2016-06-20 古河電気工業株式会社 Resin composition for electronic device encapsulation, and electronic device
WO2016121289A1 (en) * 2014-12-08 2016-08-04 古河電気工業株式会社 Electronic-device-sealing resin composition and electronic device
CN107113928A (en) * 2014-12-08 2017-08-29 古河电气工业株式会社 Resin composition for electronic part sealing and electronic device
US10079360B2 (en) 2014-12-08 2018-09-18 Furukawa Electric Co., Ltd. Resin composition for sealing electronic devices, and electronic device

Also Published As

Publication number Publication date
JPWO2011001823A1 (en) 2012-12-13
JP5773160B2 (en) 2015-09-02
TW201100478A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
JP5773160B2 (en) Moisture or oxygen scavenging composition, cured body, and electronic device
CN107849198B (en) Photocurable resin composition, fuel cell, and sealing method
JP5103364B2 (en) Manufacturing method of heat conductive sheet
EP2505613A1 (en) Composition, cured product, and electronic device
JP5565176B2 (en) Composition, cured product thereof, and electronic device
JP5044326B2 (en) Epoxy resin composition and resin sealing device
TW201241841A (en) Electroconductive adhesive
CN104870569A (en) Adhesive composition
JP2002249531A5 (en)
CN1657155A (en) Film type drier for closed electronic device and its manufacturing method
JP5981577B2 (en) Resin composition for sealing electronic device and electronic device
JP2013028722A (en) Sealing material having high barrier property
WO2012086334A1 (en) Light-emitting body and display device
TW201606059A (en) Layered polymer structures and methods
JP5716921B2 (en) Composition, cured body and electronic device, and tri (2,2-bis (allyloxymethyl) -1-butoxy) aluminum and method for producing the same
TWI757308B (en) Formulation containing a metal aprotic organosilanoxide compound
JP2018150537A (en) Base material particle, conductive particle, conductive material and connection structure
CN109768019B (en) Heat radiating fin for power module and power module manufactured by same
JP5262964B2 (en) Moisture and oxygen scavenging composition, cured body, and organic EL device
TWI795016B (en) Desiccant composition, sealing structure, organic EL device, and method for manufacturing organic EL device
JP2005302564A (en) Sealing agent for dye-sensitized solar battery
JP5262963B2 (en) Moisture and oxygen scavenging composition, cured body, and organic EL device
JP6814454B2 (en) Composition, gas barrier material, coating material, adhesive, molded product, laminate, and method for producing the molded product.
JP2011026556A (en) Composition, cured product, and electronic device
JP6960629B2 (en) Method for manufacturing resin composition, molded product, laminate, gas barrier material, coating material, adhesive and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793993

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520858

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793993

Country of ref document: EP

Kind code of ref document: A1