WO2011001616A1 - Solid-state imaging device, and control method therefor - Google Patents

Solid-state imaging device, and control method therefor Download PDF

Info

Publication number
WO2011001616A1
WO2011001616A1 PCT/JP2010/003919 JP2010003919W WO2011001616A1 WO 2011001616 A1 WO2011001616 A1 WO 2011001616A1 JP 2010003919 W JP2010003919 W JP 2010003919W WO 2011001616 A1 WO2011001616 A1 WO 2011001616A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
signal
imaging device
state imaging
solid
Prior art date
Application number
PCT/JP2010/003919
Other languages
French (fr)
Japanese (ja)
Inventor
山田哲生
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011001616A1 publication Critical patent/WO2011001616A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/583Control of the dynamic range involving two or more exposures acquired simultaneously with different integration times
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/73Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors using interline transfer [IT]

Definitions

  • the present invention relates to a solid-state imaging device and a control method thereof, and more particularly to a solid-state imaging device that outputs signals with different exposure times.
  • CCD Charge Coupled Device
  • MOS Metal Oxide Semiconductor
  • Patent Document 1 discloses a technique for expanding the dynamic range of a CCD image sensor.
  • Patent Document 1 expands the dynamic range by differentiating the exposure times (sensitivities) of two adjacent pixels and synthesizing signals having different exposure times.
  • FIG. 21 is a diagram showing a configuration of a solid-state imaging device described in Patent Document 1.
  • color filters of three primary colors of red R, green G, and blue B are arranged on a large number of pixels PIX.
  • two pixels of the same color are arranged side by side, such as odd-numbered columns B1, B2, G1, and G2, and even-numbered columns G1, G2, R1, and R2.
  • two sets of pixels of the same color are arranged at the same column direction position, such as G1 and G2 on the right side of B1 and B2, and B1 and B2 on the right side thereof.
  • the upper pixel groups R1, G1, and B1 are referred to as a first pixel group
  • the lower pixel groups R2, G2, and B2 are referred to as a second pixel group.
  • the first pixel group is a high-sensitivity pixel group
  • the second pixel group is a low-sensitivity pixel group.
  • One vertical charge transfer path VCCD is arranged along each column of pixels (on the right side of each column in the figure).
  • a horizontal charge transfer path HCCD is coupled in the lateral direction to the lower ends of the plurality of vertical charge transfer paths VCCD, and an output amplifier OA is connected to one end thereof.
  • FIG. 22 is a timing chart of drive signals for the solid-state imaging device described in Patent Document 1.
  • the overflow drain voltage VOD becomes high, the accumulated charge of each pixel is extracted to the substrate, all the pixels PIX are cleared, and new exposure is started.
  • the drive signal ⁇ 3 becomes a high potential at timing t3, and then the drive signal ⁇ 1 becomes a higher potential at timing t4.
  • the drive signal ⁇ 1 becomes a read voltage, and the accumulated charge of tL for a long period from timing t2 to t4 is read from the pixel PIX1 to which ⁇ 1 is applied to the vertical charge transfer path VCCD.
  • charge transfer is performed in the vertical charge transfer path VCCD, and the charges for two pixel rows in which the accumulated charges for short-term exposure and the accumulated charges for long-term exposure are alternately arranged are supplied to the horizontal charge transfer path HCCD.
  • the horizontal charge transfer path HCCD transfers charges for two pixel rows supplied from the VCCD toward the output amplifier OA.
  • the signal charge is read out through the output amplifier OA.
  • the solid-state imaging device described in Patent Document 1 expands the dynamic range by synthesizing signals with different exposure times.
  • the solid-state imaging device described in Patent Document 1 first transfers the short-term exposure accumulated charge to the vertical charge transfer path and holds it in the vertical charge transfer path. Thereafter, the solid-state imaging device described in Patent Document 1 reads out the accumulated charge of long-term exposure to the vertical charge transfer path. As described above, the solid-state imaging device described in Patent Document 1 temporarily holds the accumulated charge of short-term exposure in the vertical charge transfer path from the end of short-term exposure to the end of long-term exposure. .
  • noise charges are superimposed on the accumulated charge during the period in which the accumulated charge of short-time exposure is held in the vertical charge transfer path.
  • One is a so-called smear component due to leakage of incident light, and the other is a dark current component that is thermally generated in the vertical charge transfer path.
  • smear component due to leakage of incident light
  • dark current component that is thermally generated in the vertical charge transfer path.
  • an object of the present invention is to provide a solid-state imaging device capable of suppressing noise due to smear and dark current and a control method thereof.
  • a solid-state imaging device is a solid-state imaging device, which is arranged in a matrix, converts a light into a signal charge, and accumulates the converted signal charge.
  • An element a plurality of vertical transfer units that transfer the signal charges stored in a plurality of photoelectric conversion elements arranged in the corresponding column, and signals transferred by the plurality of vertical transfer units
  • a horizontal transfer unit configured to transfer charges; a light control unit configured to control whether light is incident on the plurality of photoelectric conversion elements; and a control unit, wherein the control unit includes the plurality of units during a first period.
  • the light control unit controls the light so that light is incident on the photoelectric conversion elements, and is accumulated in the plurality of first photoelectric conversion elements included in the plurality of photoelectric conversion elements at the first time included in the first period. Resetting the signal charge, the first And resetting the signal charges accumulated in the plurality of second photoelectric conversion elements included in the plurality of photoelectric conversion elements at a second time that is included in between and at a second time after the first time, During the second period immediately after, the light control unit is controlled so that light does not enter the plurality of photoelectric conversion elements, and during the first exposure time from the first time to the start time of the second period.
  • the second signal charges are read out through the vertical transfer unit and the horizontal transfer unit during the second period, and the first photoelectric conversion elements and the second photoelectric conversion elements have a one-to-one correspondence.
  • Each of the first photoelectric conversion elements is connected to the first photoelectric conversion element. Is located within a predetermined distance from said second photoelectric conversion element corresponding to ⁇ Ko.
  • the solid-state imaging device can output signals with different exposure times.
  • the dynamic range can be expanded by synthesizing signals having different exposure times.
  • the start times of the two exposure times are made different, and the end times of the two exposure times are made the same time by the light control unit.
  • the solid-state imaging device can hold the signal charge in the photoelectric conversion element during the period from the end of the exposure time to the reading of the signal charge. Therefore, the solid-state imaging device according to the present invention does not need to hold the signal charge in the vertical charge transfer path or the like for a long time, so that noise due to smear and dark current can be suppressed.
  • Each of the first photoelectric conversion elements is adjacent to the second photoelectric conversion element corresponding to the first photoelectric conversion element in the row direction, the column direction, or the oblique direction, or adjacent to the second photoelectric conversion element in the row direction or the column direction. May be arranged.
  • an image signal having a wide dynamic range can be generated by synthesizing signals corresponding to the two corresponding photoelectric conversion elements output from the solid-state imaging device according to the present invention.
  • the solid-state imaging device further includes a plurality of filters formed on the plurality of photoelectric conversion elements, respectively, and each of the plurality of filters transmits any light in a plurality of wavelength bands.
  • the same type of filter may be formed on the first photoelectric conversion element and the second photoelectric conversion element which are any of a plurality of types of filters and correspond to each other.
  • Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light, and each of the first photoelectric conversion elements Is arranged next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in the row direction or the column direction, and the first photoelectric conversion element and the second photoelectric conversion element corresponding to each other. May be arranged in a Bayer array.
  • the solid-state imaging device can reduce the distance between the first photoelectric conversion element and the second photoelectric conversion element corresponding to each other.
  • Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light, and is arranged in a Bayer array.
  • Each first photoelectric conversion element formed under the filter is arranged next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in an oblique direction, and the red filter or the blue filter
  • positioned under may be arrange
  • the solid-state imaging device can arrange the first photoelectric conversion element, the second photoelectric conversion element, and the added centroid of each color spatially and evenly.
  • Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light, and the green filters are arranged in a checkered pattern.
  • the red filter In the red filter and the blue filter, two are the red filter, two are the blue filters, and each of the first photoelectric conversion elements is the first filter.
  • the second photoelectric conversion element corresponding to the photoelectric conversion element may be disposed next to the second photoelectric conversion element in an oblique direction.
  • the solid-state imaging device can arrange the first photoelectric conversion element, the second photoelectric conversion element, and the added centroid of each color spatially and evenly.
  • the solid-state imaging device further includes a semiconductor substrate on which the plurality of photoelectric conversion elements are formed, and the control unit stores the signal accumulated in the plurality of first photoelectric conversion elements at the first time.
  • the signal charges accumulated in the plurality of first photoelectric conversion elements are reset by discharging the charges to the semiconductor substrate or transferred to the vertical transfer unit, and at the second time, the plurality of second charges
  • the signal charges accumulated in the plurality of second photoelectric conversion elements may be reset by transferring the signal charges accumulated in the two photoelectric conversion elements to the vertical transfer unit.
  • the solid-state imaging device can reset the signal charge accumulated in the second photoelectric conversion element without adding a function to the vertical transfer unit or the like.
  • the solid-state imaging device further converts the first signal charge into a first image signal, converts the second signal charge into a second image signal, and converts the converted first image signal and second image signal. You may provide the output part which outputs a signal, and the signal processing part which synthesize
  • the solid-state imaging device can generate an image signal with a wide dynamic range by synthesizing signals with different exposure times.
  • the signal processing unit generates a first image signal after correction by setting the first image signal to the first value when the first image signal is larger than a first value.
  • the solid-state imaging device can reduce image unevenness caused by variations in the saturation output voltage of the photoelectric conversion elements.
  • the solid-state imaging device has a first operation mode and a second operation mode.
  • the control unit reads the first signal charge and the second signal charge, and
  • the output unit converts the first signal charge into a first image signal, converts the second signal charge into a second image signal, outputs the converted first image signal and the second image signal, and
  • the signal processing unit synthesizes the first image signal and the second image signal, and in the second operation mode, the control unit transfers the first signal charge and the second signal charge in the vertical transfer unit or
  • the mixed signal charge may be generated by mixing in the horizontal transfer unit, and the output unit may convert the mixed signal charge into a mixed image signal and output the converted mixed image signal.
  • the solid-state imaging device can generate an image signal with a wide dynamic range by operating in the first operation mode. Furthermore, the solid-state imaging device according to the present invention can generate a highly sensitive image signal by operating in the second operation mode.
  • the signal processing unit further sets the second image after correction by setting the mixed image signal to the second value when the mixed image signal is larger than the second value in the second operation mode.
  • a second white clip processing unit for generating a signal wherein the second value is a mixed image signal value corresponding to a saturation signal charge of the photoelectric conversion element is VSAT, the first exposure time is t1, When the second exposure time is t2, it may be equal to or less than the value represented by VSAT ⁇ (1 + t2 / t1).
  • the solid-state imaging device can reduce image unevenness caused by variations in the saturation output voltage of the photoelectric conversion elements.
  • the control unit may set the first exposure time to be twice or more the second exposure time and set the second exposure time to 90% or more of the first exposure time in the second operation mode. .
  • the solid-state imaging device further has a third operation mode, and in the third operation mode, the control unit reads the first signal charge and the second signal charge during the second period.
  • the output unit converts the first signal charge and the second signal charge read by the reading unit into a third image signal, and outputs the converted third image signal.
  • the second exposure time may be 90% or more of the first exposure time.
  • the solid-state imaging device can further generate a high-resolution image signal by operating in the third operation mode.
  • the solid-state imaging device further includes a brightness acquisition unit that acquires the brightness of the object scene, and when the brightness acquired by the brightness acquisition unit is greater than a third value, the first operation mode And when the brightness acquired by the brightness acquisition unit is smaller than the third value, a mode selection unit that selects the second operation mode, and the solid-state imaging device includes the mode selection unit The operation may be performed in the first operation mode or the second operation mode selected by.
  • the solid-state imaging device can automatically select the optimum operation mode and operate in the selected operation mode.
  • the reading unit may read the signal charges accumulated in the plurality of photoelectric conversion elements in a plurality of times during the second period.
  • the solid-state imaging device according to the present invention since the solid-state imaging device according to the present invention only needs to provide one vertical transfer electrode for each photoelectric conversion element, the circuit area of the solid-state imaging device can be reduced.
  • the light control unit may be a mechanical shutter, a liquid crystal, a MEMS mirror, or an optical element that can be electrically controlled.
  • the present invention can be realized not only as such a solid-state imaging device, but also as a control method of a solid-state imaging device using characteristic means included in the solid-state imaging device as a step, or such characteristic steps. It can also be realized as a program for causing a computer to execute. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device, or can be realized as a camera or a digital still camera equipped with such a solid-state imaging device. it can.
  • LSI semiconductor integrated circuit
  • the present invention can provide a solid-state imaging device capable of suppressing noise due to smear and dark current and a control method thereof.
  • FIG. 1 is a block diagram showing a configuration of a solid-state imaging device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the image sensor according to the embodiment of the present invention.
  • FIG. 3 is a timing chart showing the operation of the solid-state imaging device in the wide DR mode according to the embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing the operation of the image sensor in the wide DR mode according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of the vertical transfer unit according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing a potential distribution of the vertical overflow drain portion according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a solid-state imaging device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the image sensor according to the embodiment of the present invention.
  • FIG. 3 is a timing chart showing the operation of the solid-state imaging
  • FIG. 7 is a diagram showing a relationship between opening / closing of the light control unit and opening / closing of the electronic shutter according to the embodiment of the present invention.
  • FIG. 8A is a diagram illustrating a configuration example of the vertical transfer electrode in the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 8B is a diagram illustrating a configuration example of the vertical transfer electrode in the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 9 is a timing chart showing a modified example of the operation of the solid-state imaging device in the wide DR mode according to the embodiment of the present invention.
  • FIG. 10 is a diagram showing the photoelectric conversion characteristics of the photoelectric conversion element in the short exposure time and the long exposure time according to the embodiment of the present invention.
  • FIG. 11 is a diagram showing the characteristics of the composite image signal according to the embodiment of the present invention.
  • FIG. 12 is a timing chart showing the operation of the solid-state imaging device in the high sensitivity mode according to the embodiment of the present invention.
  • FIG. 13A is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention.
  • FIG. 13B is a diagram showing an example of pixel dimensions according to the embodiment of the present invention.
  • FIG. 14A is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention.
  • FIG. 14B is a diagram showing a two-dimensional Nyquist limit before and after pixel mixing according to the embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a configuration example of the vertical transfer electrode in the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 16 is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention.
  • FIG. 17 is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention.
  • FIG. 18 is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention.
  • FIG. 19 is a flowchart showing a flow of operations of the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 20A is a diagram illustrating a configuration example of an imaging unit when a MEMS mirror is used according to an embodiment of the present invention.
  • FIG. 20B is a diagram illustrating a configuration example of an imaging unit when a MEMS mirror is used according to the embodiment of the present invention.
  • FIG. 21 is a diagram illustrating a configuration of a conventional solid-state imaging device.
  • FIG. 22 is a timing chart of a driving signal of a conventional solid-state imaging device.
  • the solid-state imaging device can expand the dynamic range by outputting signals with different exposure times and combining the signals with different exposure times. Furthermore, in the solid-state imaging device according to the embodiment of the present invention, the start times of the two exposure times are made different, and the end times of the two exposure times are made the same time by the mechanical shutter. Thereby, the solid-state imaging device according to the embodiment of the present invention does not need to hold the signal charge in the vertical charge transfer path or the like for a long time, so that it is possible to suppress noise due to smear and dark current.
  • FIG. 1 is a block diagram showing a configuration of a solid-state imaging device 100 according to an embodiment of the present invention.
  • the solid-state imaging device 100 converts the light 150 into an image signal 151 that is an electrical signal, and outputs an image signal 151.
  • the solid-state imaging device 100 has a wide dynamic range mode (hereinafter, “wide DR mode”), a high sensitivity mode, and a high resolution mode.
  • wide DR mode wide dynamic range mode
  • high sensitivity mode high sensitivity mode
  • high resolution mode high resolution mode
  • Wide DR mode is an operation mode that can realize a wider dynamic range than the high sensitivity mode and the high resolution mode. Specifically, in the wide DR mode, the solid-state imaging device 100 generates signals with different exposure times, and generates an image signal 151 with a wide dynamic range by combining signals with different exposure times.
  • the high sensitivity mode (second operation mode) is an operation mode having higher sensitivity than the wide DR mode and the high resolution mode, and is effective when the amount of light in the object scene is small (in a dark place). Specifically, in the high sensitivity mode, the solid-state imaging device 100 mixes signal charges generated by two pixels and outputs an image signal 151 corresponding to the mixed signal charges.
  • the high resolution mode (third operation mode) is an operation mode for generating an image signal 151 having a higher resolution than the wide DR mode and the high sensitivity mode. Specifically, in the high resolution mode, the solid-state imaging device 100 outputs an image signal 151 corresponding to the signal charge generated at each pixel. Thereby, the solid-state imaging device 100 generates an image signal 151 having a resolution twice as high as that in the wide DR mode and the high sensitivity mode in the high resolution mode, for example.
  • a designation mode signal 152 corresponding to a user operation is input to the solid-state imaging device 100.
  • the solid-state imaging device 100 selects any one of the wide DR mode, the high sensitivity mode, and the high resolution mode according to the designation mode signal 152, and operates in the selected mode.
  • the solid-state imaging device 100 includes an imaging unit 110, a control unit 120, a mode determination unit 130, and a signal processing unit 140.
  • the imaging unit 110 converts the light 150 in the object scene into an image signal 153 that is an electrical signal and outputs the image signal 153.
  • the imaging unit 110 includes lenses 111 and 113, a light control unit 112, and an imaging element 114.
  • the lens 111 condenses the light 150 in the object field on the light control unit 112.
  • the light control unit 112 controls whether or not the light 150 collected by the lens 111 is incident on all of the plurality of photoelectric conversion elements included in the imaging element 114.
  • the light control unit 112 is a mechanical shutter.
  • the lens 113 collects the light 150 that has passed through the light control unit 112 on the image sensor 114.
  • the image sensor 114 converts the light 150 collected by the lens 113 into an image signal 153 that is an electrical signal and outputs the image signal 153.
  • the mode determination unit 130 determines the operation mode of the solid-state imaging device 100 according to the designation mode signal 152. Further, the mode determination unit 130 outputs a selection mode signal 160 indicating the determined operation mode to the control unit 120 and the signal processing unit 140.
  • the mode determination unit 130 includes a mode acquisition unit 131, a brightness acquisition unit 132, and a mode selection unit 133.
  • the signal processing unit 140 generates an image signal 151 by performing signal processing according to the operation mode determined by the mode determination unit 130 on the image signal 153 output from the image sensor 114, and the generated image signal 151 is Output.
  • the signal processing unit 140 includes a first white clip processing unit 141, a synthesis unit 142, an output unit 143, and a second white clip processing unit 144.
  • the control unit 120 controls the operation of the imaging unit 110 according to the operation mode determined by the mode determination unit 130.
  • the control unit 120 includes a first drive unit 121 and a second drive unit 122.
  • the first drive unit 121 generates a first drive signal 154 that drives the image sensor 114.
  • the second drive unit 122 generates a second drive signal 155 that controls the light control unit 112.
  • FIG. 2 is a diagram illustrating a configuration of the image sensor 114.
  • the image sensor 114 shown in FIG. 2 is a CCD image sensor, and includes a plurality of pixels 180 arranged in a matrix, a plurality of vertical transfer units 181 provided for each column, a horizontal transfer unit 182, and an output unit 183. With.
  • Each pixel 180 includes a photoelectric conversion element and a filter.
  • the photoelectric conversion element converts light into signal charges and accumulates the converted signal charges.
  • FIG. 2 an example in which 8 ⁇ 8 pixels 180 are arranged is shown, but the number of pixels 180 may be other than this.
  • the filter is formed on the photoelectric conversion element and transmits only light in a predetermined wavelength band to the photoelectric conversion element.
  • Each filter is one of a plurality of types of filters that transmit any one of a plurality of wavelength bands.
  • the plurality of filters are any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light.
  • the filter may include a filter that transmits a wavelength band other than the above, such as a filter that transmits colorless (visible light) or a filter that transmits infrared light.
  • a pixel 180 that includes a red filter and photoelectrically converts red light is referred to as an R pixel
  • a green filter is included
  • a pixel 180 that photoelectrically converts green light is referred to as a G pixel
  • a blue filter is included
  • blue light A pixel 180 that performs photoelectric conversion is referred to as a B pixel.
  • the R pixel R1, the G pixel G1, and the B pixel B1 are pixels 180 that perform photoelectric conversion during a short exposure time in the wide DR mode, and are referred to as a first pixel below.
  • the R pixel R2, the G pixel G2, and the B pixel B2 are pixels 180 that perform photoelectric conversion during the long exposure time in the wide DR mode, and are referred to as second pixels below.
  • the plurality of first pixels and the plurality of second pixels are arranged in a one-to-one correspondence, and one corresponding first pixel and one corresponding second pixel form a set.
  • pixels 180 of the same color adjacent in the column direction form one set.
  • the signal processing unit 140 In the wide DR mode, the signal processing unit 140 generates an image signal 151 having a wide dynamic range by synthesizing the image signals 153 corresponding to the pixels 180 forming this set.
  • the image sensor 114 mixes and outputs the signal charges photoelectrically converted by the pixels 180 forming this set.
  • each first pixel is arranged within a predetermined distance from the second pixel corresponding to the first pixel.
  • the two pixels 180 forming this set are arranged next to each other in the column direction.
  • this set is arranged in a Bayer array.
  • the Bayer arrangement means that G pixels are arranged in a checkered pattern, and rows (or columns) in which R pixels are arranged and rows (or columns) in which B pixels are arranged are alternately arranged.
  • the Bayer array is an array in which unit pixel cells composed of four 2 ⁇ 2 pixels are arranged in a plane. This unit pixel cell includes two G pixels, one R pixel, and one B pixel that are arranged obliquely to each other.
  • the plurality of vertical transfer units 181 and the horizontal transfer unit 182 correspond to a reading unit of the present invention, and read signal charges accumulated by the plurality of pixels 180.
  • the vertical transfer unit 181 is a vertical transfer CCD that transfers signal charges accumulated in a plurality of pixels 180 arranged in a corresponding column in the column direction (vertical direction).
  • the horizontal transfer unit 182 is a horizontal transfer CCD that transfers a plurality of signal charges transferred by the plurality of vertical transfer units 181 in the row direction (horizontal direction).
  • the output unit 183 converts the signal charge transferred by the horizontal transfer unit 182 into an image signal 153, and outputs the converted image signal 153. Specifically, in the wide DR mode, the output unit 183 converts the signal charge accumulated in the first pixel into the long exposure image signal 153a, and converts the signal charge accumulated in the second pixel into the short exposure image signal. 153b and the converted long exposure image signal 153a and short exposure image signal 153b are output to the signal processing unit 140.
  • the output unit 183 converts the mixed signal charge obtained by mixing the signal charges accumulated in the first pixel and the second pixel to form a mixed image signal 153c, and converts the mixed image signal into a mixed image signal. 153c is output to the signal processing unit 140. In the high resolution mode, the output unit 183 converts the signal charges of all the pixels 180 into the high resolution image signal 153d, and outputs the converted high resolution image signal 153d to the signal processing unit.
  • the control unit 120 controls the light control unit 112 so that the light 150 is incident on all of the plurality of pixels 180 during the first period.
  • the control unit 120 resets the signal charge accumulated in the second pixel at a first time included in the first period, and at a second time included in the first period and after the first time. The signal charge accumulated in the first pixel is reset.
  • the control unit 120 controls the light control unit 112 so that the light 150 does not enter all of the plurality of pixels 180 and accumulates the light in the plurality of pixels 180.
  • the signal charge is read through the plurality of vertical transfer units 181 and horizontal transfer units 182.
  • control unit 120 discharges the signal charges accumulated in all of the plurality of pixels 180 to the semiconductor substrate at the first time, thereby obtaining the signal charges accumulated in the plurality of second pixels. Reset.
  • control unit 120 resets the signal charges accumulated in the plurality of first pixels by transferring the signal charges accumulated in the plurality of first pixels to the vertical transfer unit 181 at the second time. To do.
  • the short exposure time of the first pixel and the long exposure time of the second pixel are started at different timings and are simultaneously ended.
  • FIG. 3 is a timing chart showing the operation of the solid-state imaging device 100 in the wide DR mode.
  • FIG. 4 is a diagram schematically showing the operation of the image sensor 114 in the wide DR mode.
  • the second drive unit 122 opens the light control unit 112 to cause the light 150 to enter the image sensor 114.
  • the first drive unit 121 resets signal charges accumulated in all the pixels 180 by applying a substrate sweep pulse to the signal Vsub between time t10 and time t11 (S101 in FIG. 4). .
  • FIG. 5 is a cross-sectional view of the pixel 180 and the vertical transfer unit 181.
  • the image sensor 114 has a so-called vertical overflow drain (VOD) structure.
  • the imaging element 114 includes an n-type semiconductor substrate 191, a p-well 192 formed in the n-type semiconductor substrate 191, a photodiode 196 (photoelectric conversion element) formed in the p-well, And a p + region 193 formed on the diode 196.
  • the vertical transfer unit 181 includes a vertical transfer channel 194 and a vertical transfer electrode 195 formed on the vertical transfer channel 194.
  • FIG. 6 is a diagram showing a potential distribution in the x section shown in FIG.
  • the voltage VSB is applied to the n-type semiconductor substrate 191 when the photodiode 196 is accumulated (other than when the substrate is swept).
  • the photodiode 196 accumulates signal charges corresponding to the amount of incident light 150.
  • the first drive unit 121 applies, for example, 15 V to the pulse ⁇ ES.
  • the voltage VSB + ⁇ ES is applied to the n-type semiconductor substrate 191.
  • the signal charge accumulated in the photodiode 196 is swept out to the n-type semiconductor substrate 191 via the p-well 192.
  • FIG. 7 is a diagram showing a relationship between opening / closing of the light control unit 112 and opening / closing of the electronic shutter. As shown in FIG. 7, in a state where the light control unit 112 is open, a period from when the substrate sweep is performed until the light control unit 112 is closed is a state where the electronic shutter is open (long exposure time). Become.
  • the first pixel and the second pixel convert the incident light 150 shown in FIG. 1 into signal charges, and accumulate the converted signal charges.
  • the circles shown in FIG. 4 indicate signal charges. The size of the circle indicates the amount of signal charge, and the larger the circle, the greater the signal charge.
  • the first driving unit 121 has accumulated in the first pixel by applying the VCCD sweep pulse (readout pulse) to ⁇ V1 and ⁇ V5 applied to the first pixel.
  • the signal charge is transferred (swept out) to the vertical transfer unit 181.
  • the first drive unit 121 resets the signal charge accumulated in the first pixel (S102 in FIG. 4).
  • the first pixel and the second pixel convert the incident light 150 into a signal charge and accumulate the converted signal charge (S103 in FIG. 4).
  • the second drive unit 122 closes the light control unit 112. Thereby, the light 150 does not enter the image sensor 114 after the time t14. That is, the exposure time ends.
  • the short exposure time of the first pixel is from time t13 to time t14 from when the VCCD sweep pulse is applied until the light control unit 112 is closed, and the long exposure time of the second pixel is the substrate sweep pulse. From time t11 to time t14 until the light control unit 112 is closed.
  • pulses are applied to ⁇ V3 and ⁇ V7 applied to the second pixel. This is done to prevent the potential of the p-well 192 from fluctuating due to the application of the VCCD sweep pulse to ⁇ V1 and ⁇ V5. It is not necessary to apply a pulse to ⁇ V3 and ⁇ V7 at this timing.
  • the signal charges accumulated in the first pixel and the second pixel are read out.
  • the first drive unit 121 performs so-called N-field reading that causes the image sensor 114 to read the signal charges accumulated in the plurality of pixels 180 in N times.
  • the signal charges held in the vertical transfer unit 181 are transferred to the horizontal transfer unit 182 during the dummy field period from time t14 to time t15. As a result, the signal charge held in the vertical transfer unit 181 is reset. That is, the signal charge swept out by the vertical transfer unit 181 from time t12 to time t13 is reset.
  • the dummy field period has an effect of making the state of the vertical transfer unit 181 at the start of the first field period immediately after the dummy field period the same as the state at the start of each of the subsequent second to fourth field periods.
  • the tendency of variation between the signal charge read in the first field period and the signal charge read in the second to fourth field periods can be made closer.
  • the signal charges accumulated in all the pixels 180 are read out.
  • the number of fields is not limited to four. Further, it is not necessary to divide into fields and perform reading. That is, the signal charges accumulated in all the pixels 180 may be read at a time.
  • the signal charge of the first pixel is read after reading the signal charge of the second pixel.
  • the signal charge of the second pixel may be read after reading the signal charge of the first pixel. Then, the signal charge of the first pixel and the signal charge of the second pixel may be alternately read out.
  • FIG. 8A is a diagram illustrating a configuration example of the vertical transfer electrode 195. As shown in FIG. 8A, two vertical transfer electrodes 195 are formed for one pixel 180. In addition, when performing the above-described four-field reading, the first drive unit 121 controls the vertical transfer unit 181 with eight-phase drive pulses of ⁇ V1 to ⁇ V8.
  • the solid-state imaging device 100 can output the long exposure image signal 153a and the short exposure image signal 153b.
  • the signal processing unit 140 synthesizes the long exposure image signal 153a and the short exposure image signal 153b having different exposure times, so that the dynamic range can be expanded.
  • the start times of the short exposure time t2 and the long exposure time t1 are different, and the light control unit 112 sets the short exposure time t2 and the long exposure time t1. Make the end time the same.
  • the solid-state imaging device 100 does not need to hold the signal charge in the vertical transfer unit 181 for a long time as in the technique described in Patent Document 1, so that noise due to smear and dark current is reduced. Can be suppressed.
  • two vertical transfer electrodes 195 are arranged for one pixel, and then N times. N-field reading is used to read signal charges separately.
  • the signal charge is temporarily accumulated in the pixel 180, so that the N-field readout described above can be performed.
  • the solid-state imaging device 100 according to the embodiment of the present invention only has to arrange two vertical transfer electrodes 195 in one pixel as shown in FIG. 8A.
  • FIG. 8B is a diagram illustrating a configuration example of the vertical transfer electrode 195 in this case.
  • FIG. 8B shows a configuration example of the vertical transfer electrode 195 in the case where the Bayer array is used. Details of the case in which such a Bayer array is used will be described later.
  • the imaging element 114 can be downsized, that is, the solid-state imaging device. 100 can be reduced in size and cost. Further, the present invention can be easily applied to a solid-state imaging device in which the pixel size is miniaturized, such as a solid-state imaging device for a digital still camera.
  • the first drive unit 121 resets the signal charge accumulated in the second pixel by applying a substrate sweep pulse to the image sensor 114.
  • the signal charge accumulated in the second pixel may be reset by applying a VCCD sweep pulse (readout pulse) to ⁇ V3 and ⁇ V7 applied to the second pixel.
  • FIG. 9 is a timing chart of the solid-state imaging device 100 when the first driving unit 121 resets the signal charge accumulated in the second pixel using the VCCD sweep pulse.
  • the first driving unit 121 applies a VCCD sweep pulse (readout pulse) to ⁇ V3 and ⁇ V7 applied to the second pixel between time t20 and time t21 to thereby apply the second pixel to the second pixel.
  • the accumulated signal charge may be reset.
  • the first driving unit 121 accumulates in the first pixel by applying the VCCD sweep pulse (readout pulse) to ⁇ V1 and ⁇ V5 applied to the first pixel.
  • the signal charge is reset, the VCCD sweep pulse need not be applied.
  • the first drive unit 121 applies the VCCD sweep pulse, and once resets the signal charge accumulated in the first pixel, the second VCCD sweep pulse at the time t12 to t13 is surely performed.
  • the signal charge stored in one pixel can be reset. Therefore, as shown in FIG. 9, it is more preferable to apply a VCCD sweep pulse (readout pulse) to the first pixel between times t22 and t23.
  • the first driving unit 121 may simultaneously apply the VCCD sweep pulse to the first pixel and the second pixel from time t20 to t21.
  • ⁇ V1, ⁇ V3, ⁇ V5, and ⁇ V7 simultaneously change to a high potential.
  • the potential of the p well 192 changes. Therefore, as shown in FIG. 9, it is more preferable to apply the VCCD sweep pulse to the first pixel and the second pixel at different times.
  • the image sensor 114 causes the vertical overflow drain (VOD) described above to be reset. There is no need to have a structure. Thereby, the structure of the image pick-up element 114 can be simplified.
  • the long exposure image signal 153a corresponding to the long exposure time t1 and the short exposure image signal 153b corresponding to the short exposure time t2 are input to the signal processing unit 140.
  • the signal processing unit 140 generates the image signal 151 having a wide dynamic range by combining the long exposure image signal 153a and the short exposure image signal 153b.
  • FIG. 10 is a diagram showing the photoelectric conversion characteristics of the pixel 180 in the short exposure time and the long exposure time.
  • the horizontal axis in FIG. 10 indicates the exposure amount (the integrated value of the amount of light received during the exposure time), and the vertical axis indicates the output level of the image signal 153.
  • the output level of the long exposure image signal 153a is equal to the output level of the short exposure image signal 153b and the output level of the long exposure image signal 153a and the short exposure image signal 153b. It increases according to the ratio of the exposure time (integration time). Further, the slope of the sensitivity curve shown in FIG. 10 represents the sensitivity. That is, the longer the exposure time, the higher the sensitivity.
  • the dynamic range of the long exposure image signal 153a with high sensitivity is narrow, and the dynamic range of the short exposure image signal 153b with low sensitivity is wide.
  • high sensitivity in the solid-state imaging device 100 is the most important requirement.
  • the dynamic range for the contrast of the subject becomes narrow.
  • the output level of the bright part is saturated and the details are crushed (generally called overexposure). That is, it is preferable that the sensitivity is high for a dark portion and the sensitivity is low for a bright portion.
  • FIG. 11 is a diagram illustrating the characteristics of a combined image signal obtained by combining the long exposure image signal 153a and the short exposure image signal 153b.
  • the composite image signal can realize high sensitivity in a dark region (low exposure amount), and low sensitivity in a bright region (high exposure amount). Further, the composite image signal can provide a wide dynamic range determined by low sensitivity characteristics.
  • the first white clip processing unit 141 generates a corrected long exposure image signal 156 by performing white clip processing on the long exposure image signal 153a.
  • the white clip processing is processing for setting the level of the long exposure image signal 153a to the white clip level when the level of the long exposure image signal 153a is higher than the white clip level.
  • the saturation output voltage VSAT of the pixel 180 varies between elements. This causes unevenness in the video. That is, the knee points shown in FIG. 11 vary.
  • the white clip process is performed. In other words, it is necessary to read out the image signals 153 of all the pixels 180 independently in order to perform this white clip processing.
  • the white clip level is a level lower than the saturation output voltage VSAT.
  • the synthesizing unit 142 generates a synthesized image signal 157 having high sensitivity and a wide dynamic range by synthesizing the corrected long exposure image signal 156 and the short exposure image signal 153b generated by the first white clip processing unit 141. To do.
  • the output unit 143 outputs the composite image signal 157 as the image signal 151 to the outside.
  • the output unit 143 may generate the image signal 151 by performing predetermined signal processing such as gain adjustment, noise removal, level correction, and matrix conversion on the composite image signal 157.
  • the signal processing unit 140 may perform part or all of the predetermined signal processing on the long exposure image signal 153a, the short exposure image signal 153b, or the corrected long exposure image signal 156 before synthesis.
  • the signal processing unit 140 can generate the image signal 151 having a wide dynamic range by combining the long exposure image signal 153a and the short exposure image signal 153b having different exposure times.
  • the control unit 120 controls the light control unit 112 so that the light 150 is incident on all of the plurality of pixels 180 during the first period.
  • the control unit 120 resets the signal charge accumulated in the second pixel at the first time included in the first period, and accumulates in the first pixel at the second time included in the first period. Reset the signal charge.
  • the control unit 120 controls the light control unit 112 so that light does not enter all of the plurality of pixels 180 during the second period after the first period, and the first and second pixels forming the set
  • the mixed signal charge is generated by mixing the signal charges accumulated in the two pixels in the plurality of vertical transfer units 181 or the horizontal transfer unit 182.
  • the output unit 183 converts the mixed signal charge into a mixed image signal 153c, and outputs the converted mixed image signal 153c to the signal processing unit 140.
  • FIG. 12 is a timing chart showing the operation of the solid-state imaging device 100 in the high sensitivity mode. As shown in FIG. 12, in the high sensitivity mode, the control unit 120 makes the long exposure time t1 and the short exposure time t2 substantially equal.
  • the second drive unit 122 opens the light control unit 112 to cause the light 150 to enter the image sensor 114.
  • the first driving unit 121 applies a VCCD sweep pulse (readout pulse) to ⁇ V3 and ⁇ V7 applied to the second pixel between time t30 and time t31, so that the signal accumulated in the second pixel is applied. Reset the charge.
  • VCCD sweep pulse readout pulse
  • the first driving unit 121 applies a VCCD sweep pulse (readout pulse) to ⁇ V1 and ⁇ V5 applied to the first pixel between time t32 and time t33, thereby storing the signal accumulated in the first pixel. Reset the charge.
  • a VCCD sweep pulse readout pulse
  • the first pixel and the second pixel convert the incident light 150 into signal charges, and store the converted signal charges.
  • the second drive unit 122 closes the light control unit 112. Thereby, the light 150 does not enter the image sensor 114 after the time t34. That is, the exposure time ends.
  • the short exposure time t2 of the first pixel is from time t33 to time t34 from when the VCCD sweep pulse is applied until the light control unit 112 is closed
  • the long exposure time t1 of the second pixel is VCCD. It is from time t31 to time t34 from when the sweep pulse is applied until the light control unit 112 is closed.
  • the first drive unit 121 may simultaneously apply the VCCD sweep pulse to the first pixel and the second pixel from time t30 to t31.
  • ⁇ V1, ⁇ V3, ⁇ V5, and ⁇ V7 simultaneously change to a high potential.
  • the potential of the p well 192 changes. Therefore, as shown in FIG. 12, it is more preferable to apply the VCCD sweep pulse to the first pixel and the second pixel at different times.
  • the signal charges accumulated in the first pixel and the second pixel are mixed and read out.
  • the first drive unit 121 performs so-called N-field reading that causes the image sensor 114 to read the signal charges accumulated in the plurality of pixels 180 in N times.
  • the signal charge held in the vertical transfer unit 181 is transferred to the horizontal transfer unit 182 during the dummy field period from time t34 to time t35.
  • the signal charge held in the vertical transfer unit 181 is reset. That is, the signal charges swept out by the vertical transfer unit 181 from time t30 to t31 and from time t32 to time t33 are reset.
  • the signal charges accumulated in the first pixel and the second pixel to which ⁇ V5 and ⁇ V7 are applied are mixed and read out.
  • the signal charges accumulated in the first pixel and the second pixel to which ⁇ V1 and ⁇ V3 are applied are mixed and read out.
  • the first drive unit 121 mixes signal charges of pixels of the same color arranged adjacent to each other in the vertical direction in the vertical transfer unit 181.
  • the signal charges accumulated in all the pixels 180 are mixed and read out.
  • the number of fields is not limited to two. Further, it is not necessary to divide into fields and perform reading. That is, the signal charges accumulated in all the pixels 180 may be read at a time.
  • the solid-state imaging device 100 in the high sensitivity mode, can increase the signal charge amount by mixing the signal charges of the pixels 180 forming the group in the imaging element 114. wear. Thereby, the effective sensitivity can be increased.
  • the high sensitivity mode is selected.
  • the mixed image signal 153c is input to the signal processing unit 140 in the high sensitivity mode.
  • the second white clip processing unit 144 illustrated in FIG. 1 generates a corrected mixed image signal 158 by performing white clip processing on the mixed image signal 153c.
  • the white clip level VM used by the second white clip processing unit 144 has the relationship of the following formula (1) with respect to the long exposure time t1, the short exposure time t2, and the saturation output voltage VSAT of the pixel 180. Set to meet.
  • the output unit 143 outputs the corrected mixed image signal 158 to the outside as the image signal 151.
  • the output unit 143 may generate the image signal 151 by performing predetermined signal processing such as gain adjustment, noise removal, level correction, and matrix conversion on the corrected mixed image signal 158. Further, the signal processing unit 140 may perform part or all of the predetermined signal processing on the mixed image signal 153c.
  • the solid-state imaging device 100 can mix the signal charges generated by the two pixels and output the highly sensitive image signal 151 corresponding to the mixed signal charges.
  • the gravity center of the pixel mixture when the signal charges of the same color pixels adjacent in the upper and lower directions are mixed in the high sensitivity mode will be described.
  • the addition centroid when the image signals 153 of the same color pixels adjacent in the vertical direction are combined is also the same.
  • FIG. 13A is a diagram showing the distribution of the added centroids on the imaging surface when signal charges of pixels of the same color adjacent in the vertical direction are mixed.
  • the center of gravity Rg shown in FIG. 13A is the added center of gravity of the R pixels R1 and R2
  • the center of gravity Gg is the added center of gravity of the G pixels G1 and G2
  • the center of gravity Bg is the added center of gravity of the B pixels B1 and B2.
  • the added centroids are regularly arranged. Thereby, deterioration of image quality (resolution) can be suppressed as much as possible.
  • FIG. 13B is a diagram illustrating an example of pixel dimensions.
  • isotropic resolution can be ensured by setting the vertical pixel size to about 1 ⁇ 2 of the horizontal pixel size.
  • the vertical pixel size is made smaller than the horizontal pixel size and larger than 1/4, so that the resolution can be reduced.
  • the directionality can be improved.
  • the pixel size is a size of a region including the pixel 180 (photodiode 196) and part of the vertical transfer unit 181 corresponding to the pixel 180 (two vertical transfer electrodes 195 in the above example). It is.
  • first pixel and the second pixel forming the set are adjacent to each other in the column direction.
  • first pixel and the second pixel forming the set may be adjacent to each other in the row direction.
  • the arrangement shown below may be used for the arrangement relationship between the first pixel and the second pixel.
  • FIG. 14A is a diagram illustrating an arrangement example of the first pixel and the second pixel, and a distribution of the added centroids.
  • the pixels forming a group may be arranged next to each other in an oblique direction.
  • the dotted line frame shown to FIG. 14A has shown this group.
  • the G pixels are arranged in a checkered pattern, and the R pixels and the B pixels are arranged in an oblique stripe form. That is, the R pixel and the B pixel are alternately arranged via the G pixel in the row direction and the column direction. In addition, columns in which only the first pixels are arranged and columns in which the second pixels are arranged are alternately arranged. In other words, two of the four pixels 180 diagonally adjacent to each R pixel and each B pixel filter are R pixels, and two are B pixels.
  • the spatial sampling pitch of the G pixel, the B pixel, and the R pixel can be made equal in both the horizontal and vertical directions. Furthermore, the distribution of the spatial mixing centroid due to the mixing of signal charges between the pixels forming the set can be made uniform. Thereby, good resolution characteristics can be obtained.
  • FIG. 14B is a diagram showing a two-dimensional Nyquist limit before and after mixing. Before the mixing, the resolution characteristics in the oblique direction of the R pixel and the B pixel are not uniform, but as shown in FIG. 14B, by mixing the two pixels, the R pixel, the B pixel, and the G pixel are evenly distributed. Resolution characteristics can be realized.
  • FIG. 15 is a diagram schematically illustrating a configuration example of the vertical transfer electrode 195 and a reading operation in the pixel arrangement illustrated in FIG. 14A.
  • the image sensor 114 further includes a position adjusting unit 184 and a line memory 185.
  • the position adjustment unit 184 includes the signal charges transferred by the plurality of first column vertical transfer units 181 in which only the first pixels are arranged, and the plurality of second column vertical transfer units 181 in which only the second pixels are arranged.
  • the signal charges transferred by the above are transferred at different stages. For example, in the example shown in FIG. 15, the signal charge transferred by the vertical transfer unit 181 in the first column is transferred in three stages, and the signal charge transferred by the vertical transfer unit 181 in the second column is transferred in four stages. .
  • the line memory 185 temporarily holds the signal charge transferred by the position adjustment unit 184. Also, the line memory 185 is. The signal charge to be held is transferred to the horizontal transfer unit 182.
  • the signal charges of the first pixel 180A and the second pixel 180B forming a set are simultaneously read out to the vertical transfer unit 181.
  • each read signal charge is input to the position adjustment unit 184 by being sequentially transferred in the vertical direction (downward in FIG. 15).
  • the position adjustment unit 184 transfers the input signal charges.
  • the signal charges of the first pixel 180A and the second pixel 180B forming a set in the line memory 185 are simultaneously held.
  • the line memory 185 transfers the signal charges of the first pixel 180A and the second pixel 180B forming this set to the horizontal transfer unit 182.
  • the horizontal transfer unit 182 mixes the signal charges of the first pixel 180A and the second pixel 180B transferred from the line memory 185 in the horizontal transfer unit 182 and transfers the mixed signal charges in the horizontal direction.
  • the output unit 183 converts the signal charge transferred by the horizontal transfer unit 182 into a mixed image signal 153c, and outputs the converted mixed image signal 153c.
  • the signal charges of the first pixels and the signal charges of the second pixels arranged adjacent to each other in the oblique direction can be mixed in the image sensor 114.
  • the following pixel arrangement may be used.
  • FIGS. 16 and 17 are diagrams showing a variation of the pixel arrangement and the distribution of the added centroids. Note that the dotted frame shown in FIGS. 16 and 17 indicates a pair of corresponding first pixel and second pixel.
  • G pixels are arranged in a checkered pattern, and R pixels and B pixels are arranged in vertical stripes every two columns. That is, the R pixel and the B pixel are alternately arranged via the G pixel in the row direction.
  • a column in which only the first pixels of the G pixel and the R pixel are alternately arranged a column in which only the second pixel of the G pixel and the R pixel are alternately arranged, and only the first pixel of the G pixel and the B pixel.
  • a column in which only the second pixels of the G pixel and the B pixel are alternately arranged is repeatedly arranged in this order.
  • the G pixels are arranged in a checkered pattern, and the R pixels and the B pixels are arranged in a horizontal stripe every two rows. That is, the R pixel and the B pixel are alternately arranged via the G pixel in the column direction.
  • the first pixel of the G pixel and the R pixel a row where only the second pixel of the G pixel and the R pixel are alternately arranged, and only the first pixel of the G pixel and the B pixel are arranged.
  • rows in which only the second pixels of the G pixel and the B pixel are alternately arranged are repeatedly arranged in this order.
  • the following pixel arrangement may be used as the arrangement of the first pixel and the second pixel.
  • FIG. 18 is a diagram illustrating a variation of the pixel arrangement and the distribution of the added centroids. Note that the dotted frame shown in FIG. 18 indicates a set of the corresponding first pixel and second pixel.
  • R pixels, G pixels, and B pixels are Bayer arrayed. Specifically, G pixels are arranged in a checkered pattern. In addition, rows in which only G pixels and R pixels are alternately arranged and rows in which only G pixels and B pixels are alternately arranged are alternately arranged, and only G pixels and R pixels are alternately arranged. And columns in which only G pixels and B pixels are alternately arranged are alternately arranged.
  • the G pixel forms a pair between pixels adjacent in the oblique direction
  • the R pixel and the B pixel form a pair between pixels of the same color that are spatially closest.
  • the R pixel and the B pixel form a group between pixels of the same color that are arranged next to each other in the column direction.
  • the R pixel and the B pixel may form a pair between pixels of the same color that are arranged next to each other in the row direction.
  • the added centroids of the G pixel, R pixel, and B pixel can be arranged spatially and evenly. Therefore, uniform resolution characteristics can be realized in each of the R pixel, the B pixel, and the G pixel.
  • the control unit 120 causes the light control unit 112 to control so that light enters all of the plurality of pixels 180 during the first period.
  • the control unit 120 resets the signal charges accumulated in the plurality of second pixels at the first time included in the first period, and the plurality of first pixels at the second time included in the first period. The signal charge accumulated in the is reset.
  • the control unit 120 controls the light control unit 112 so that light does not enter all of the plurality of pixels 180 and is stored in the plurality of pixels 180.
  • the signal charges are read through the plurality of vertical transfer units 181 and horizontal transfer units 182 respectively.
  • the output unit 183 converts the read signal charge into a high resolution image signal 153d, and outputs the converted high resolution image signal 153d to the signal processing unit 140.
  • FIG. 19 is a flowchart showing an operation flow of the solid-state imaging device 100.
  • the mode acquisition unit 131 acquires the designation mode signal 152 corresponding to the user's operation, and outputs the obtained designation mode signal 152 to the mode selection unit 133 (S201).
  • the designation mode signal 152 indicates any one of a wide DR mode, a high sensitivity mode, a high resolution mode, and an auto mode, which are operation modes of the solid-state imaging device 100.
  • the brightness acquisition unit 132 acquires brightness information 159 indicating the brightness of the object scene, and outputs the acquired brightness information 159 to the mode selection unit 133 (S202).
  • the brightness acquisition unit 132 acquires brightness information output from an optical sensor provided in the solid-state imaging device 100 or provided in an imaging device (such as a digital still camera) on which the solid-state imaging device 100 is mounted.
  • the brightness acquisition unit 132 may determine the brightness of the object scene from the image signal 151 or 153 captured in advance.
  • the mode selection unit 133 selects an operation mode using the designation mode signal 152 and the brightness information 159, and outputs a selection mode signal 160 indicating the selected operation mode to the control unit 120.
  • the mode selection unit 133 determines that the brightness of the object scene indicated by the brightness information 159 is equal to or greater than a predetermined threshold value. It is determined whether or not (S204).
  • the mode selection unit 133 selects the wide DR mode.
  • the selection mode signal 160 indicating the wide DR mode is output to the control unit 120.
  • the first drive unit 121 generates the first drive signal 154 that causes the image sensor 114 to perform the above-described wide DR mode operation.
  • the first drive signal 154 includes a substrate sweep pulse (Vsub), a drive signal for driving the vertical transfer unit 181 ( ⁇ V1 to ⁇ V8, etc.), and a drive signal for driving the horizontal transfer unit 182 ( ⁇ H1 to ⁇ H4). ).
  • control unit 120 operates the image sensor 114 with non-addition readout, and makes the long exposure time t1 longer than the short exposure time t2. For example, the control unit 120 sets the long exposure time t1 to at least twice the short exposure time t2 (S205).
  • the image sensor 114 generates the long exposure image signal 153a corresponding to the long exposure time t1 and the short exposure image signal 153b corresponding to the short exposure time t2 (S206).
  • the first white clip processing unit 141 generates a corrected long exposure image signal 156 by performing white clip processing on the long exposure image signal 153a.
  • the synthesizing unit 142 generates the synthesized image signal 157 by synthesizing the corrected long exposure image signal 156 and the short exposure image signal 153b (S207).
  • the output unit 143 determines whether or not the operation mode selected by the mode selection unit 133 is appropriate for the state of the object scene (S208). Specifically, the output unit 143 determines that the operation mode is not appropriate when overexposure or underexposure occurs. For example, the output unit 143 determines that the operation mode is appropriate when the average value of the signal levels of the composite image signal 157 is within a predetermined range, and determines that the operation mode is not appropriate when outside the range. To do. Note that the output unit 143 determines that the operation mode is appropriate when the number of pixels included in the composite image signal 157 whose signal level is outside the predetermined range is less than a predetermined number, and the number is equal to or greater than the number. In this case, it may be determined that the operation mode is not appropriate.
  • the output unit 143 When the operation mode is appropriate (Yes in S208), the output unit 143 outputs the composite image signal 157 to the outside as the image signal 151 (S216).
  • step S204 when the brightness of the object scene indicated in the brightness information 159 is less than a predetermined threshold value in step S204 (No in S204), that is, when the object scene is dark, the mode selection unit 133 The high sensitivity mode is selected, and a selection mode signal 160 indicating the high sensitivity mode is output to the control unit 120.
  • the first drive unit 121 generates the first drive signal 154 that causes the image sensor 114 to perform the above-described operation in the high sensitivity mode.
  • control unit 120 operates the image sensor 114 with mixed readout, and makes the long exposure time t1 and the short exposure time t2 substantially equal. For example, the control unit 120 sets the long exposure time t1 within the range of 90 to 110% of the short exposure time t2 (S210).
  • the image sensor 114 generates the mixed image signal 153c (S211).
  • the second white clip processing unit 144 generates a corrected mixed image signal 158 by performing white clip processing on the mixed image signal 153c.
  • the output unit 143 determines whether or not the operation mode selected by the mode selection unit 133 is appropriate for the state of the object scene (S208).
  • the output unit 143 then outputs the corrected mixed image signal 158 to the outside as the image signal 151 (S216).
  • the mode selection unit 133 selects the wide DR mode and outputs the selection mode signal 160 indicating the wide DR mode. Output to the control unit 120.
  • the operation in this case is the same as that in the case where the brightness of the object scene indicated in the brightness information 159 is equal to or greater than a predetermined threshold value (Yes in S204).
  • the mode selection unit 133 selects the high sensitivity mode and indicates the high sensitivity mode.
  • the selection mode signal 160 is output to the control unit 120. Note that the operation in this case is the same as that in the case where the brightness of the object scene indicated in the brightness information 159 is less than a predetermined threshold in the auto mode (No in S204).
  • the mode selection unit 133 selects the high resolution mode and indicates the high resolution mode.
  • the selection mode signal 160 is output to the control unit 120.
  • the first drive unit 121 generates the first drive signal 154 that causes the image sensor 114 to perform the operation in the high resolution mode.
  • control unit 120 operates the image sensor 114 with non-addition readout, and makes the long exposure time t1 and the short exposure time t2 substantially equal. For example, the control unit 120 sets the long exposure time t1 within the range of 90 to 110% of the short exposure time t2 (S214).
  • the image sensor 114 generates the high-resolution image signal 153d (S215).
  • the high resolution image signal 153d has twice the resolution of the long exposure image signal 153a, the short exposure image signal 153b, and the mixed image signal 153c.
  • the output unit 143 determines whether or not the operation mode selected by the mode selection unit 133 is appropriate for the state of the object scene (S208).
  • the output unit 143 then outputs the high resolution image signal 153d as an image signal 151 to the outside (S216).
  • the brightness acquisition unit 132 acquires the brightness information 159 again and outputs the acquired brightness information 159 to the mode selection unit 133. (S209).
  • the mode selection unit 133 performs the same process as when the auto mode is designated by the designation mode signal 152 (Yes in S203).
  • the exposure time t1 ⁇ t2 may be changed based on the brightness information 159, and the process of step S214 may be performed again. Specifically, when the object scene is bright, the exposure time t1 ⁇ t2 may be shortened, and when the object scene is dark, the exposure time t1 ⁇ t2 may be increased.
  • the solid-state imaging device 100 generates the long exposure image signal 153a and the short exposure image signal 153b having different exposure times in the wide DR mode, and the short exposure image signal 153a and the short exposure image signal 153a.
  • an image signal 151 having a wide dynamic range can be generated.
  • the start times of the two exposure times are made different, and the end times of the two exposure times are made the same time by the light control unit 112.
  • the solid-state imaging device 100 according to the embodiment of the present invention can hold the signal charge in the pixel 180 during the period from the end of the exposure time to the reading of the signal charge. Therefore, the solid-state imaging device 100 does not need to hold the signal charge in the vertical transfer unit 181 or the like for a long time, and thus noise due to smear and dark current can be suppressed.
  • the solid-state imaging device 100 can generate a highly sensitive image signal 151 by mixing signal charges of two pixels in the imaging element 114.
  • the solid-state imaging device 100 can generate the high-resolution image signal 151 by reading the signal charges of each pixel 180 individually.
  • the solid-state imaging device 100 selects an operation mode according to the brightness of the object scene. Thereby, the solid-state imaging device 100 can automatically select an optimal operation mode.
  • the solid-state imaging device 100 according to the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment.
  • the light control unit 112 is a mechanical shutter, but other than the mechanical shutter as long as it can control whether light is incident on all of the plurality of pixels 180. But you can.
  • the light control unit 112 may be an optical element that can electrically control light transmittance, such as a liquid crystal panel.
  • the optical element is disposed on the entire incident surface side of the image sensor 114. In this configuration, the light 150 is controlled not to be incident on the image sensor 114 by lowering the transmittance of the optical element, and the light 150 is incident on the image sensor 114 by increasing the transmittance of the optical element. Can be controlled.
  • the light control unit 112 may be a device that can control the reflection direction of the light 150 such as a MEMS (Micro Electro Mechanical Systems) mirror.
  • MEMS Micro Electro Mechanical Systems
  • FIG. 20A and 20B are diagrams illustrating a configuration example of the imaging unit 110 when the MEMS mirror 112A is used as the light control unit 112.
  • FIG. 20A and 20B are diagrams illustrating a configuration example of the imaging unit 110 when the MEMS mirror 112A is used as the light control unit 112.
  • FIG. 20B is diagrams illustrating a configuration example of the imaging unit 110 when the MEMS mirror 112A is used as the light control unit 112.
  • the light 150 condensed by the lens 111 can be incident on the image sensor 114 by controlling the reflection direction of the MEMS mirror 112A.
  • the light 150 collected by the lens 111 can be prevented from entering the image sensor 114 by controlling the reflection direction of the MEMS mirror 112A.
  • the light control unit 112 may be a light irradiation device that irradiates a subject such as a strobe light. For example, when shooting in a dark place, the light irradiation device irradiates the subject with light, thereby causing the light 150 to enter the imaging device 114, and the light irradiation device does not irradiate the subject with light. It is possible to control so that the light 150 does not enter the beam 114.
  • each processing unit included in the solid-state imaging device 100 according to the above embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • control unit 120 the mode determination unit 130, and the signal processing unit 140 included in the solid-state imaging device 100 according to the embodiment of the present invention is executed by a processor such as a CPU. It may be realized.
  • the present invention may be the above program or a recording medium on which the above program is recorded.
  • the program can be distributed via a transmission medium such as the Internet.
  • the solid-state imaging device 100 includes the imaging unit 110, the control unit 120, the mode determination unit 130, and the signal processing unit 140.
  • the mode determination unit 130 and the signal processing are described.
  • At least one of the units 140 may be formed outside the solid-state imaging device 100. That is, the solid-state imaging device 100 may output the image signal 153 to the outside, and the external device may perform the above-described signal processing on the image signal 153.
  • the numbers used above are all exemplified for specifically describing the present invention, and the present invention is not limited to the illustrated numbers.
  • the logic levels represented by high / low or the switching states represented by on / off are illustrative for the purpose of illustrating the present invention, and different combinations of the illustrated logic levels or switching states. Therefore, it is possible to obtain an equivalent result.
  • n-type and p-type such as a transistor and a semiconductor layer are exemplified to specifically describe the present invention, and it is possible to obtain equivalent results by inverting them.
  • the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
  • the present invention can be applied to a solid-state imaging device, and in particular to a digital still camera.
  • Solid-state imaging device 110 Imaging part 111, 113 Lens 112 Light control part 112A MEMS mirror 114 Imaging element 120 Control part 121 1st drive part 122 2nd drive part 130 Mode determination part 131 Mode acquisition part 132 Brightness acquisition part 133 Mode selection Unit 140 signal processing unit 141 first white clip processing unit 142 combining unit 143 output unit 144 second white clip processing unit 150 light 151, 153 image signal 152 designation mode signal 153a long exposure image signal 153b short exposure image signal 153c mixed image signal 153d High-resolution image signal 154 First drive signal 155 Second drive signal 156 Corrected long exposure image signal 157 Composite image signal 158 Corrected mixed image signal 159 Brightness information 160 Selection mode signal 180 Pixel 180A First image Element 180B Second pixel 181 Vertical transfer unit 182 Horizontal transfer unit 183 Output unit 184 Position adjustment unit 185 Line memory 191 N-type semiconductor substrate 192 p well 193 p + region 194 Vertical transfer channel 195 Vertical transfer electrode 196

Abstract

The disclosed solid-state imaging device (100) is provided with a plurality of pixels (180) disposed in rows; a vertical transfer unit (181) and a horizontal transfer unit (182); and a light-control unit (112), which controls whether or not light is irradiated onto all of the plurality of pixels (180). The solid-state imaging device is further provided with a control unit (120), which, during a first time period, controls the light-control unit (112) so that light is irradiated onto all of the plurality of pixels (180); at a first point in time during the first time period, resets the signal charges accumulated in a plurality of first photoelectric conversion elements included in the plurality of pixels (180); at a second point in time during the first time period and after the first point in time, resets the signal charges accumulated in a plurality of second photoelectric conversion elements included in the plurality of pixels (180); and during a second time period that directly follows the first time period, controls the light-control unit (112) so that light is not irradiated onto all of the plurality of pixels (180), and causes the vertical transfer unit (181) and the horizontal transfer unit (182) to read the signal charges accumulated in the plurality of pixels (180).

Description

固体撮像装置及びその制御方法Solid-state imaging device and control method thereof
 本発明は、固体撮像装置及びその制御方法に関し、特に、異なる露光時間の信号を出力する固体撮像装置に関する。 The present invention relates to a solid-state imaging device and a control method thereof, and more particularly to a solid-state imaging device that outputs signals with different exposure times.
 現在、CCD(Charge Coupled Device)イメージセンサ又はMOS(Metal Oxide Semiconductor)イメージセンサを用いた固体撮像装置が、デジタルスチルカメラ、デジタルビデオカメラ又は携帯電話機などに広く用いられている。これらCCDイメージセンサ又はMOSイメージセンサは、銀塩カメラと比べ、ダイナミックレンジが狭いことが知られている。 Currently, solid-state imaging devices using a CCD (Charge Coupled Device) image sensor or a MOS (Metal Oxide Semiconductor) image sensor are widely used in digital still cameras, digital video cameras, mobile phones, and the like. These CCD image sensors or MOS image sensors are known to have a narrow dynamic range as compared with a silver salt camera.
 これに対して、CCDイメージセンサのダイナミックレンジを広げる技術が特許文献1に記載されている。 On the other hand, Patent Document 1 discloses a technique for expanding the dynamic range of a CCD image sensor.
 特許文献1記載の技術は、近接する2つの画素の露光時間(感度)を異ならせ、この異なる露光時間の信号を合成することで、ダイナミックレンジを広げている。 The technique described in Patent Document 1 expands the dynamic range by differentiating the exposure times (sensitivities) of two adjacent pixels and synthesizing signals having different exposure times.
 以下、特許文献1記載の固体撮像素子について説明する。 Hereinafter, the solid-state imaging device described in Patent Document 1 will be described.
 図21は、特許文献1記載の固体撮像素子の構成を示す図である。 FIG. 21 is a diagram showing a configuration of a solid-state imaging device described in Patent Document 1.
 図21においては、多数の画素PIX上には、赤R、緑G、青Bの3原色のカラーフィルタが配置されている。 In FIG. 21, color filters of three primary colors of red R, green G, and blue B are arranged on a large number of pixels PIX.
 列方向において、奇数列のB1、B2、G1、G2、偶数列のG1、G2、R1、R2のように、同色の画素が2つずつ並んで配列されている。横方向においては、2つずつの同色画素の組が、B1、B2の右隣にG1、G2、その右隣にB1、B2のように、同じ列方向位置に配置されている。上側の画素群R1、G1、B1を第1の画素群、下側の画素群R2、G2、B2を第2の画素群と呼ぶ。例えば第1の画素群は、高感度の画素群であり、第2の画素群は、低感度の画素群である。 In the column direction, two pixels of the same color are arranged side by side, such as odd-numbered columns B1, B2, G1, and G2, and even-numbered columns G1, G2, R1, and R2. In the horizontal direction, two sets of pixels of the same color are arranged at the same column direction position, such as G1 and G2 on the right side of B1 and B2, and B1 and B2 on the right side thereof. The upper pixel groups R1, G1, and B1 are referred to as a first pixel group, and the lower pixel groups R2, G2, and B2 are referred to as a second pixel group. For example, the first pixel group is a high-sensitivity pixel group, and the second pixel group is a low-sensitivity pixel group.
 画素の各列に沿って(図では各列の右側に)、垂直電荷転送路VCCDがそれぞれ1本配置されている。複数の垂直電荷転送路VCCDの下端に、横方向に水平電荷転送路HCCDが結合され、その一端に出力アンプOAが接続されている。 One vertical charge transfer path VCCD is arranged along each column of pixels (on the right side of each column in the figure). A horizontal charge transfer path HCCD is coupled in the lateral direction to the lower ends of the plurality of vertical charge transfer paths VCCD, and an output amplifier OA is connected to one end thereof.
 図22は、特許文献1記載の固体撮像素子の駆動信号のタイミングチャートである。 FIG. 22 is a timing chart of drive signals for the solid-state imaging device described in Patent Document 1.
 図22に示すタイミングt1~t2に、オーバーフロードレイン電圧VODが高電圧となり、各画素の蓄積電荷は基板に引き抜かれ、全画素PIXがクリアされて新たな露光が開始される。駆動信号φ3はタイミングt3で高電位となり、その後タイミングt4で駆動信号φ1が、それより更に高電位となる。 At timings t1 to t2 shown in FIG. 22, the overflow drain voltage VOD becomes high, the accumulated charge of each pixel is extracted to the substrate, all the pixels PIX are cleared, and new exposure is started. The drive signal φ3 becomes a high potential at timing t3, and then the drive signal φ1 becomes a higher potential at timing t4.
 タイミングt2からt3に至るまでの短期間tS、全画素PIXで入射光に応じた信号電荷の蓄積が行われる。タイミングt3で駆動信号φ3が読み出し電圧となり、φ3を印加された第2の画素群の画素PIX2から垂直電荷転送路VCCDに短期間tSの蓄積電荷が読み出される。φ1を印加された画素では読み出しは生ぜず、入射光に応じた電荷蓄積が継続する。 In a short period tS from timing t2 to t3, signal charges corresponding to incident light are accumulated in all the pixels PIX. At timing t3, the drive signal φ3 becomes a read voltage, and the accumulated charge for a short period tS is read from the pixel PIX2 of the second pixel group to which φ3 is applied to the vertical charge transfer path VCCD. No readout occurs in the pixel to which φ1 is applied, and charge accumulation according to incident light continues.
 次に、タイミングt3~t4では、入射光に応じた信号電荷の蓄積が行われる。垂直電荷転送路VCCDは、タイミングt3で読み出した電荷を保持する。 Next, at timings t3 to t4, signal charges are accumulated according to incident light. The vertical charge transfer path VCCD holds the charge read at timing t3.
 次に、タイミングt4で駆動信号φ1が読み出し電圧となり、φ1を印加された画素PIX1から垂直電荷転送路VCCDにタイミングt2からt4までの長期間tLの蓄積電荷が読み出される。 Next, at timing t4, the drive signal φ1 becomes a read voltage, and the accumulated charge of tL for a long period from timing t2 to t4 is read from the pixel PIX1 to which φ1 is applied to the vertical charge transfer path VCCD.
 図22に示すように、タイミングt5以後、垂直電荷転送路では4層駆動信号φ1、φ2、φ3、φ4が印加され垂直転送が行われる。水平電荷転送路では、2相駆動信号φH1、φH2が印加される。 As shown in FIG. 22, after timing t5, vertical transfer is performed by applying four-layer drive signals φ1, φ2, φ3, and φ4 on the vertical charge transfer path. In the horizontal charge transfer path, two-phase drive signals φH1 and φH2 are applied.
 次に、垂直電荷転送路VCCDで電荷転送が行われ,短期間露光の蓄積電荷、長期間露光の蓄積電荷が交互に配列された2画素行分の電荷が水平電荷転送路HCCDに供給される。水平電荷転送路HCCDは、VCCDから供給される2画素行分の電荷を出力アンプOAに向かって転送する。信号電荷は、出力アンプOAを介して外部に読み出される。 Next, charge transfer is performed in the vertical charge transfer path VCCD, and the charges for two pixel rows in which the accumulated charges for short-term exposure and the accumulated charges for long-term exposure are alternately arranged are supplied to the horizontal charge transfer path HCCD. . The horizontal charge transfer path HCCD transfers charges for two pixel rows supplied from the VCCD toward the output amplifier OA. The signal charge is read out through the output amplifier OA.
 以上のように、特許文献1記載の固体撮像素子は、異なる露光時間の信号を合成することで、ダイナミックレンジを広げている。 As described above, the solid-state imaging device described in Patent Document 1 expands the dynamic range by synthesizing signals with different exposure times.
特開2007-266556号公報JP 2007-266556 A
 しかしながら、特許文献1記載の固体撮像素子は、先ず短期間露光の蓄積電荷を垂直電荷転送路に転送し、この垂直電荷転送路内に保持する。その後、特許文献1記載の固体撮像素子は、長期間露光の蓄積電荷を垂直電荷転送路に読み出す。このように、特許文献1記載の固体撮像素子は、短期間露光の蓄積電荷を短期間露光が終了してから長期間露光が終了するまでの期間、一時的に垂直電荷転送路内に保持する。 However, the solid-state imaging device described in Patent Document 1 first transfers the short-term exposure accumulated charge to the vertical charge transfer path and holds it in the vertical charge transfer path. Thereafter, the solid-state imaging device described in Patent Document 1 reads out the accumulated charge of long-term exposure to the vertical charge transfer path. As described above, the solid-state imaging device described in Patent Document 1 temporarily holds the accumulated charge of short-term exposure in the vertical charge transfer path from the end of short-term exposure to the end of long-term exposure. .
 これにより、短時間露光の蓄積電荷が垂直電荷転送路に保持されている期間に、この蓄積電荷には次の2種類の雑音電荷が重畳されてしまう。1つは入射光の漏洩による所謂スミア成分であり、もう1つは、垂直電荷転送路内で熱的に発生する暗電流成分である。これらにより、従来技術で高品位の映像信号を得る事は困難である。 As a result, the following two types of noise charges are superimposed on the accumulated charge during the period in which the accumulated charge of short-time exposure is held in the vertical charge transfer path. One is a so-called smear component due to leakage of incident light, and the other is a dark current component that is thermally generated in the vertical charge transfer path. As a result, it is difficult to obtain a high-quality video signal with the prior art.
 そこで、本発明は、スミア及び暗電流による雑音を抑えることができる固体撮像装置及びその制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a solid-state imaging device capable of suppressing noise due to smear and dark current and a control method thereof.
 上記目的を達成するために、本発明に係る固体撮像装置は、固体撮像装置であって、行列状に配置され、光を信号電荷に変換し、変換した前記信号電荷を蓄積する複数の光電変換素子と、列毎に設けられ、対応する列に配置された複数の光電変換素子に蓄積されている前記信号電荷を転送する複数の垂直転送部と、前記複数の垂直転送部により転送された信号電荷を転送する水平転送部と、前記複数の光電変換素子へ光を入射させるか否かを制御する光制御部と、制御部とを備え、前記制御部は、第1期間の間、前記複数の光電変換素子に光が入射するように前記光制御部に制御させ、前記第1期間に含まれる第1時刻に、前記複数の光電変換素子に含まれる複数の第1光電変換素子に蓄積されている前記信号電荷をリセットし、前記第1期間に含まれ、かつ前記第1時刻より後の第2時刻に前記複数の光電変換素子に含まれる複数の第2光電変換素子に蓄積されている前記信号電荷をリセットし、前記第1期間の直後の第2期間の間、前記複数の光電変換素子へ光が入射しないように前記光制御部に制御させ、前記第1時刻から前記第2期間の開始時刻までの第1露光時間の間に前記複数の第1光電変換素子に蓄積された第1信号電荷と、前記第2時刻から前記第2期間の開始時刻までの第2露光時間の間に前記複数の第2光電変換素子により蓄積された第2信号電荷とを前記第2期間の間に前記垂直転送部及び前記水平転送部を介して読み出し、前記各第1光電変換素子と各第2光電変換素子とは一対一で対応して配置されており、前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子から予め定められた距離内に配置されている。 In order to achieve the above object, a solid-state imaging device according to the present invention is a solid-state imaging device, which is arranged in a matrix, converts a light into a signal charge, and accumulates the converted signal charge. An element, a plurality of vertical transfer units that transfer the signal charges stored in a plurality of photoelectric conversion elements arranged in the corresponding column, and signals transferred by the plurality of vertical transfer units A horizontal transfer unit configured to transfer charges; a light control unit configured to control whether light is incident on the plurality of photoelectric conversion elements; and a control unit, wherein the control unit includes the plurality of units during a first period. The light control unit controls the light so that light is incident on the photoelectric conversion elements, and is accumulated in the plurality of first photoelectric conversion elements included in the plurality of photoelectric conversion elements at the first time included in the first period. Resetting the signal charge, the first And resetting the signal charges accumulated in the plurality of second photoelectric conversion elements included in the plurality of photoelectric conversion elements at a second time that is included in between and at a second time after the first time, During the second period immediately after, the light control unit is controlled so that light does not enter the plurality of photoelectric conversion elements, and during the first exposure time from the first time to the start time of the second period. Accumulated by the plurality of second photoelectric conversion elements between the first signal charge accumulated in the plurality of first photoelectric conversion elements and a second exposure time from the second time to the start time of the second period. The second signal charges are read out through the vertical transfer unit and the horizontal transfer unit during the second period, and the first photoelectric conversion elements and the second photoelectric conversion elements have a one-to-one correspondence. Each of the first photoelectric conversion elements is connected to the first photoelectric conversion element. Is located within a predetermined distance from said second photoelectric conversion element corresponding to 換素Ko.
 この構成によれば、本発明に係る固体撮像装置は、異なる露光時間の信号を出力できる。これにより、この異なる露光時間の信号を合成することにより、ダイナミックレンジを拡大できる。さらに、本発明に係る固体撮像装置は、2つの露光時間の開始時刻を異ならせ、かつ、光制御部により2つの露光時間の終了時刻を同時刻にする。これにより、本発明に係る固体撮像装置は、露光時間が終了した後から、信号電荷を読み出すまでの期間、光電変換素子に信号電荷を保持できる。よって、本発明に係る固体撮像装置は、垂直電荷転送路等に信号電荷を長時間保持する必要がないので、スミア及び暗電流による雑音を抑えることができる。 According to this configuration, the solid-state imaging device according to the present invention can output signals with different exposure times. Thus, the dynamic range can be expanded by synthesizing signals having different exposure times. Furthermore, in the solid-state imaging device according to the present invention, the start times of the two exposure times are made different, and the end times of the two exposure times are made the same time by the light control unit. Thereby, the solid-state imaging device according to the present invention can hold the signal charge in the photoelectric conversion element during the period from the end of the exposure time to the reading of the signal charge. Therefore, the solid-state imaging device according to the present invention does not need to hold the signal charge in the vertical charge transfer path or the like for a long time, so that noise due to smear and dark current can be suppressed.
 また、前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の行方向、列方向又は斜め方向における1つ隣、又は行方向又は列方向における2つ隣に配置されていてもよい。 Each of the first photoelectric conversion elements is adjacent to the second photoelectric conversion element corresponding to the first photoelectric conversion element in the row direction, the column direction, or the oblique direction, or adjacent to the second photoelectric conversion element in the row direction or the column direction. May be arranged.
 この構成によれば、本発明に係る固体撮像装置により出力される、対応する2つの光電変換素子に対応する信号を合成することにより、広いダイナミックレンジの画像信号を生成できる。 According to this configuration, an image signal having a wide dynamic range can be generated by synthesizing signals corresponding to the two corresponding photoelectric conversion elements output from the solid-state imaging device according to the present invention.
 また、前記固体撮像装置は、さらに、前記複数の光電変換素子の上にそれぞれ形成される複数のフィルタを備え、前記複数のフィルタのそれぞれは、複数の波長帯域のうちいずれかの光を透過する複数の種類のフィルタのうちいずれかであり、互いに対応する前記第1光電変換素子及び前記第2光電変換素子の上には、同一の種類の前記フィルタが形成されていてもよい。 The solid-state imaging device further includes a plurality of filters formed on the plurality of photoelectric conversion elements, respectively, and each of the plurality of filters transmits any light in a plurality of wavelength bands. The same type of filter may be formed on the first photoelectric conversion element and the second photoelectric conversion element which are any of a plurality of types of filters and correspond to each other.
 また、前記複数のフィルタのそれぞれは、赤色光を透過する赤色フィルタと、緑色光を透過する緑色フィルタと、青色光を透過する青色フィルタとのうちいずれかであり、前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の行方向又は列方向における1つ隣に配置されており、前記互いに対応する前記第1光電変換素子及び前記第2光電変換素子の組は、ベイヤ配列されていてもよい。 Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light, and each of the first photoelectric conversion elements Is arranged next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in the row direction or the column direction, and the first photoelectric conversion element and the second photoelectric conversion element corresponding to each other. May be arranged in a Bayer array.
 この構成によれば、本発明に係る固体撮像装置は、互いに対応する第1光電変換素子と第2光電変換素子との距離を小さくできる。 According to this configuration, the solid-state imaging device according to the present invention can reduce the distance between the first photoelectric conversion element and the second photoelectric conversion element corresponding to each other.
 また、前記複数のフィルタのそれぞれは、赤色光を透過する赤色フィルタ、緑色光を透過する緑色フィルタ、及び青色光を透過する青色フィルタのうちいずれかであるとともに、ベイヤ配列されており、前記緑色フィルタの下に形成される各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の斜め方向における1つ隣に配置されており、前記赤色フィルタ又は前記青色フィルタの下に配置される各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の行方向又は列方向における2つ隣に配置されていてもよい。 Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light, and is arranged in a Bayer array. Each first photoelectric conversion element formed under the filter is arranged next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in an oblique direction, and the red filter or the blue filter Each 1st photoelectric conversion element arrange | positioned under may be arrange | positioned 2 adjacent in the row direction or column direction of the said 2nd photoelectric conversion element corresponding to the said 1st photoelectric conversion element.
 この構成によれば、本発明に係る固体撮像装置は、各色の第1光電変換素子と第2光電変換素子と加算重心を空間的に均等に配置させることができる。 According to this configuration, the solid-state imaging device according to the present invention can arrange the first photoelectric conversion element, the second photoelectric conversion element, and the added centroid of each color spatially and evenly.
 また、前記複数のフィルタのそれぞれは、赤色光を透過する赤色フィルタ、緑色光を透過する緑色フィルタ、及び青色光を透過する青色フィルタのうちいずれかであり、前記緑色フィルタは市松状に配置されており、前記各赤色フィルタ及び各青色フィルタの斜めに隣接する4つのフィルタのうち2つは前記赤色フィルタであり、2つは青色フィルタであり、前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の斜め方向における1つ隣に配置されていてもよい。 Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light, and the green filters are arranged in a checkered pattern. Of the four filters adjacent to each of the red filter and the blue filter, two are the red filter, two are the blue filters, and each of the first photoelectric conversion elements is the first filter. The second photoelectric conversion element corresponding to the photoelectric conversion element may be disposed next to the second photoelectric conversion element in an oblique direction.
 この構成によれば、本発明に係る固体撮像装置は、各色の第1光電変換素子と第2光電変換素子と加算重心を空間的に均等に配置させることができる。 According to this configuration, the solid-state imaging device according to the present invention can arrange the first photoelectric conversion element, the second photoelectric conversion element, and the added centroid of each color spatially and evenly.
 また、前記固体撮像装置は、さらに、前記複数の光電変換素子が形成される半導体基板を備え、前記制御部は、前記第1時刻に前記複数の第1光電変換素子に蓄積されている前記信号電荷を、前記半導体基板に排出する、又は前記垂直転送部に転送することにより、当該複数の第1光電変換素子に蓄積されている前記信号電荷をリセットし、前記第2時刻に前記複数の第2光電変換素子に蓄積されている前記信号電荷を、前記垂直転送部に転送することにより、当該複数の第2光電変換素子に蓄積されている前記信号電荷をリセットしてもよい。 The solid-state imaging device further includes a semiconductor substrate on which the plurality of photoelectric conversion elements are formed, and the control unit stores the signal accumulated in the plurality of first photoelectric conversion elements at the first time. The signal charges accumulated in the plurality of first photoelectric conversion elements are reset by discharging the charges to the semiconductor substrate or transferred to the vertical transfer unit, and at the second time, the plurality of second charges The signal charges accumulated in the plurality of second photoelectric conversion elements may be reset by transferring the signal charges accumulated in the two photoelectric conversion elements to the vertical transfer unit.
 この構成によれば、本発明に係る固体撮像装置は、垂直転送部等に機能を追加することなく、第2光電変換素子に蓄積されている信号電荷をリセットできる。 According to this configuration, the solid-state imaging device according to the present invention can reset the signal charge accumulated in the second photoelectric conversion element without adding a function to the vertical transfer unit or the like.
 また、前記固体撮像装置は、さらに、前記第1信号電荷を第1画像信号に変換し、前記第2信号電荷を第2画像信号に変換し、変換した前記第1画像信号及び前記第2画像信号を出力する出力部と、前記第1画像信号及び前記第2画像信号を合成する信号処理部とを備えてもよい。 The solid-state imaging device further converts the first signal charge into a first image signal, converts the second signal charge into a second image signal, and converts the converted first image signal and second image signal. You may provide the output part which outputs a signal, and the signal processing part which synthesize | combines a said 1st image signal and a said 2nd image signal.
 この構成によれば、本発明に係る固体撮像装置は、異なる露光時間の信号を合成することにより、広いダイナミックレンジの画像信号を生成できる。 According to this configuration, the solid-state imaging device according to the present invention can generate an image signal with a wide dynamic range by synthesizing signals with different exposure times.
 また、前記信号処理部は、前記第1画像信号が第1の値より大きい場合に、当該第1画像信号を前記第1の値にすることにより補正後第1画像信号を生成する第1ホワイトクリップ処理部と、前記補正後第1画像信号と、前記第2画像信号とを合成する合成部とを備えてもよい。 Further, the signal processing unit generates a first image signal after correction by setting the first image signal to the first value when the first image signal is larger than a first value. You may provide a clip process part and the synthetic | combination part which synthesize | combines the said 1st image signal after a correction | amendment, and a said 2nd image signal.
 この構成によれば、本発明に係る固体撮像装置は、光電変換素子の飽和出力電圧のばらつきにより生じる映像ムラを低減できる。 According to this configuration, the solid-state imaging device according to the present invention can reduce image unevenness caused by variations in the saturation output voltage of the photoelectric conversion elements.
 また、前記固体撮像装置は、第1動作モードと、第2動作モードとを有し、前記第1動作モード時には、前記制御部は、前記第1信号電荷及び前記第2信号電荷を読み出し、前記出力部は、前記第1信号電荷を第1画像信号に変換し、前記第2信号電荷を第2画像信号に変換し、変換した前記第1画像信号及び前記第2画像信号を出力し、前記信号処理部は、前記第1画像信号及び前記第2画像信号を合成し、前記第2動作モード時には、前記制御部は、前記第1信号電荷と前記第2信号電荷とを前記垂直転送部内又は前記水平転送部内で混合することにより混合信号電荷を生成し、前記出力部は、前記混合信号電荷を混合画像信号に変換し、変換した混合画像信号を出力してもよい。 The solid-state imaging device has a first operation mode and a second operation mode. In the first operation mode, the control unit reads the first signal charge and the second signal charge, and The output unit converts the first signal charge into a first image signal, converts the second signal charge into a second image signal, outputs the converted first image signal and the second image signal, and The signal processing unit synthesizes the first image signal and the second image signal, and in the second operation mode, the control unit transfers the first signal charge and the second signal charge in the vertical transfer unit or The mixed signal charge may be generated by mixing in the horizontal transfer unit, and the output unit may convert the mixed signal charge into a mixed image signal and output the converted mixed image signal.
 この構成によれば、本発明に係る固体撮像装置は、第1動作モードで動作することにより、広いダイナミックレンジの画像信号を生成できる。さらに、本発明に係る固体撮像装置は、第2動作モードで動作することにより、高感度な画像信号を生成できる。 According to this configuration, the solid-state imaging device according to the present invention can generate an image signal with a wide dynamic range by operating in the first operation mode. Furthermore, the solid-state imaging device according to the present invention can generate a highly sensitive image signal by operating in the second operation mode.
 また、前記信号処理部は、さらに、前記第2動作モード時に、前記混合画像信号が第2の値より大きい場合に、当該混合画像信号を前記第2の値にすることにより補正後第2画像信号を生成する第2ホワイトクリップ処理部を備え、前記第2の値は、前記光電変換素子の飽和信号電荷に相当する混合画像信号の値をVSATとし、前記第1露光時間をt1とし、前記第2露光時間をt2とした場合、VSAT×(1+t2/t1)で表される値以下であってもよい。 Further, the signal processing unit further sets the second image after correction by setting the mixed image signal to the second value when the mixed image signal is larger than the second value in the second operation mode. A second white clip processing unit for generating a signal, wherein the second value is a mixed image signal value corresponding to a saturation signal charge of the photoelectric conversion element is VSAT, the first exposure time is t1, When the second exposure time is t2, it may be equal to or less than the value represented by VSAT × (1 + t2 / t1).
 この構成によれば、本発明に係る固体撮像装置は、光電変換素子の飽和出力電圧のばらつきにより生じる映像ムラを低減できる。 According to this configuration, the solid-state imaging device according to the present invention can reduce image unevenness caused by variations in the saturation output voltage of the photoelectric conversion elements.
 また、前記制御部は、前記第1露光時間を前記第2露光時間の2倍以上にし、前記第2動作モード時には、前記第2露光時間を前記第1露光時間の90%以上にしてもよい。 The control unit may set the first exposure time to be twice or more the second exposure time and set the second exposure time to 90% or more of the first exposure time in the second operation mode. .
 また、前記固体撮像装置は、さらに、第3動作モードを有し、前記第3動作モード時には、前記制御部は、前記第1信号電荷及び前記第2信号電荷を前記第2期間の間に読み出し、前記出力部は、前記読み出し部により読み出された前記第1信号電荷及び第2信号電荷を第3画像信号に変換し、変換した前記第3画像信号を出力し、前記制御部は、前記第3動作モード時には、前記第2露光時間を前記第1露光時間の90%以上にしてもよい。 The solid-state imaging device further has a third operation mode, and in the third operation mode, the control unit reads the first signal charge and the second signal charge during the second period. The output unit converts the first signal charge and the second signal charge read by the reading unit into a third image signal, and outputs the converted third image signal. In the third operation mode, the second exposure time may be 90% or more of the first exposure time.
 この構成によれば、本発明に係る固体撮像装置は、さらに、第3動作モードで動作することにより、高解像度な画像信号を生成できる。 According to this configuration, the solid-state imaging device according to the present invention can further generate a high-resolution image signal by operating in the third operation mode.
 また、前記固体撮像装置は、さらに、被写界の明るさを取得する明るさ取得部と、前記明るさ取得部により取得された明るさが第3の値より大きい場合、前記第1動作モードを選択し、前記明るさ取得部により取得された明るさが前記第3の値より小さい場合、前記第2動作モードを選択するモード選択部とを備え、前記固体撮像装置は、前記モード選択部により選択された前記第1動作モード又は前記第2動作モードで動作してもよい。 In addition, the solid-state imaging device further includes a brightness acquisition unit that acquires the brightness of the object scene, and when the brightness acquired by the brightness acquisition unit is greater than a third value, the first operation mode And when the brightness acquired by the brightness acquisition unit is smaller than the third value, a mode selection unit that selects the second operation mode, and the solid-state imaging device includes the mode selection unit The operation may be performed in the first operation mode or the second operation mode selected by.
 この構成によれば、本発明に係る固体撮像装置は、自動的に最適な動作モードを選択し、選択した動作モードで動作できる。 According to this configuration, the solid-state imaging device according to the present invention can automatically select the optimum operation mode and operate in the selected operation mode.
 また、前記読み出し部は、前記第2期間の間に、前記複数の光電変換素子に蓄積された前記信号電荷を複数回に分けて読み出してもよい。 Further, the reading unit may read the signal charges accumulated in the plurality of photoelectric conversion elements in a plurality of times during the second period.
 この構成によれば、本発明に係る固体撮像装置は、各光電変換素子に対して1個の垂直転送電極のみを設ければよいので、当該固体撮像装置の回路面積を縮小できる。 According to this configuration, since the solid-state imaging device according to the present invention only needs to provide one vertical transfer electrode for each photoelectric conversion element, the circuit area of the solid-state imaging device can be reduced.
 また、前記光制御部は、機械式シャッタ、液晶、MEMSミラー、又は電気的に制御可能な光学素子であってもよい。 The light control unit may be a mechanical shutter, a liquid crystal, a MEMS mirror, or an optical element that can be electrically controlled.
 なお、本発明は、このような固体撮像装置として実現できるだけでなく、固体撮像装置に含まれる特徴的な手段をステップとする固体撮像装置の制御方法として実現したり、そのような特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。 The present invention can be realized not only as such a solid-state imaging device, but also as a control method of a solid-state imaging device using characteristic means included in the solid-state imaging device as a step, or such characteristic steps. It can also be realized as a program for causing a computer to execute. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
 さらに、本発明は、このような固体撮像装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現したり、このような固体撮像装置を備えるカメラ又はデジタルスチルカメラとして実現したりできる。 Furthermore, the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device, or can be realized as a camera or a digital still camera equipped with such a solid-state imaging device. it can.
 以上より、本発明は、スミア及び暗電流による雑音を抑えることができる固体撮像装置及びその制御方法を提供できる。 As described above, the present invention can provide a solid-state imaging device capable of suppressing noise due to smear and dark current and a control method thereof.
図1は、本発明の実施の形態に係る固体撮像装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a solid-state imaging device according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る撮像素子の構成を示す図である。FIG. 2 is a diagram showing the configuration of the image sensor according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る、広DRモード時の固体撮像装置の動作を示すタイミングチャートである。FIG. 3 is a timing chart showing the operation of the solid-state imaging device in the wide DR mode according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る、広DRモード時の撮像素子の動作を模式的に示す図である。FIG. 4 is a diagram schematically showing the operation of the image sensor in the wide DR mode according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る垂直転送部の断面図である。FIG. 5 is a cross-sectional view of the vertical transfer unit according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る縦型オーバーフロードレイン部のポテンシャル分布を示す図である。FIG. 6 is a diagram showing a potential distribution of the vertical overflow drain portion according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る、光制御部の開閉と、電子シャッタの開閉との関係を示す図である。FIG. 7 is a diagram showing a relationship between opening / closing of the light control unit and opening / closing of the electronic shutter according to the embodiment of the present invention. 図8Aは、本発明の実施の形態に係る固体撮像装置における垂直転送電極の構成例を示す図である。FIG. 8A is a diagram illustrating a configuration example of the vertical transfer electrode in the solid-state imaging device according to the embodiment of the present invention. 図8Bは、本発明の実施の形態に係る固体撮像装置における垂直転送電極の構成例を示す図である。FIG. 8B is a diagram illustrating a configuration example of the vertical transfer electrode in the solid-state imaging device according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る、広DRモード時の固体撮像装置の動作の変形例を示すタイミングチャートである。FIG. 9 is a timing chart showing a modified example of the operation of the solid-state imaging device in the wide DR mode according to the embodiment of the present invention. 図10は、本発明の実施の形態に係る、短露光時間と長露光時間とにおける光電変換素子の光電変換特性を示す図である。FIG. 10 is a diagram showing the photoelectric conversion characteristics of the photoelectric conversion element in the short exposure time and the long exposure time according to the embodiment of the present invention. 図11は、本発明の実施の形態に係る、合成画像信号の特性を示す図である。FIG. 11 is a diagram showing the characteristics of the composite image signal according to the embodiment of the present invention. 図12は、本発明の実施の形態に係る、高感度モード時の固体撮像装置の動作を示すタイミングチャートである。FIG. 12 is a timing chart showing the operation of the solid-state imaging device in the high sensitivity mode according to the embodiment of the present invention. 図13Aは、本発明の実施の形態に係る、画素配置例及び加算重心の分布を示す図である。FIG. 13A is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention. 図13Bは、本発明の実施の形態に係る、画素の寸法の一例を示す図である。FIG. 13B is a diagram showing an example of pixel dimensions according to the embodiment of the present invention. 図14Aは、本発明の実施の形態に係る、画素配置例及び加算重心の分布を示す図である。FIG. 14A is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention. 図14Bは、本発明の実施の形態に係る、画素混合前と画素混合後の2次元ナイキストリミットを示す図である。FIG. 14B is a diagram showing a two-dimensional Nyquist limit before and after pixel mixing according to the embodiment of the present invention. 図15は、本発明の実施の形態に係る固体撮像装置における垂直転送電極の構成例を示す図である。FIG. 15 is a diagram illustrating a configuration example of the vertical transfer electrode in the solid-state imaging device according to the embodiment of the present invention. 図16は、本発明の実施の形態に係る、画素配置例及び加算重心の分布を示す図である。FIG. 16 is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention. 図17は、本発明の実施の形態に係る、画素配置例及び加算重心の分布を示す図である。FIG. 17 is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention. 図18は、本発明の実施の形態に係る、画素配置例及び加算重心の分布を示す図である。FIG. 18 is a diagram showing a pixel arrangement example and the distribution of the added centroid according to the embodiment of the present invention. 図19は、本発明の実施の形態に係る固体撮像装置の動作の流れを示すフローチャートである。FIG. 19 is a flowchart showing a flow of operations of the solid-state imaging device according to the embodiment of the present invention. 図20Aは、本発明の実施の形態に係る、MEMSミラーを用いた場合の撮像部の構成例を示す図である。FIG. 20A is a diagram illustrating a configuration example of an imaging unit when a MEMS mirror is used according to an embodiment of the present invention. 図20Bは、本発明の実施の形態に係る、MEMSミラーを用いた場合の撮像部の構成例を示す図である。FIG. 20B is a diagram illustrating a configuration example of an imaging unit when a MEMS mirror is used according to the embodiment of the present invention. 図21は、従来の固体撮像素子の構成を示す図である。FIG. 21 is a diagram illustrating a configuration of a conventional solid-state imaging device. 図22は、従来の固体撮像素子の駆動信号のタイミングチャートである。FIG. 22 is a timing chart of a driving signal of a conventional solid-state imaging device.
 以下、本発明に係る固体撮像装置の実施の形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of a solid-state imaging device according to the present invention will be described in detail with reference to the drawings.
 (実施の形態)
 本発明の実施の形態に係る固体撮像装置は、異なる露光時間の信号を出力し、この異なる露光時間の信号を合成することにより、ダイナミックレンジを拡大できる。さらに、本発明の実施の形態に係る固体撮像装置は、2つの露光時間の開始時刻を異ならせ、かつ、機械式シャッタにより2つの露光時間の終了時刻を同時刻にする。これにより、本発明の実施の形態に係る固体撮像装置は、垂直電荷転送路等に信号電荷を長時間保持する必要がないので、スミア及び暗電流による雑音を抑えることができる。
(Embodiment)
The solid-state imaging device according to the embodiment of the present invention can expand the dynamic range by outputting signals with different exposure times and combining the signals with different exposure times. Furthermore, in the solid-state imaging device according to the embodiment of the present invention, the start times of the two exposure times are made different, and the end times of the two exposure times are made the same time by the mechanical shutter. Thereby, the solid-state imaging device according to the embodiment of the present invention does not need to hold the signal charge in the vertical charge transfer path or the like for a long time, so that it is possible to suppress noise due to smear and dark current.
 まず、本発明の実施の形態に係る固体撮像装置100の構成を説明する。 First, the configuration of the solid-state imaging device 100 according to the embodiment of the present invention will be described.
 図1は、本発明の実施の形態に係る固体撮像装置100の構成を示すブロック図である。 FIG. 1 is a block diagram showing a configuration of a solid-state imaging device 100 according to an embodiment of the present invention.
 図1に示す固体撮像装置100は、例えば、デジタルスチルカメラに用いられる。この固体撮像装置100は、光150を電気信号である画像信号151に変換し、画像信号151を出力する。 1 is used for a digital still camera, for example. The solid-state imaging device 100 converts the light 150 into an image signal 151 that is an electrical signal, and outputs an image signal 151.
 また、この固体撮像装置100は、広ダイナミックレンジモード(以下「広DRモード」)と、高感度モードと、高解像度モードとを有する。 The solid-state imaging device 100 has a wide dynamic range mode (hereinafter, “wide DR mode”), a high sensitivity mode, and a high resolution mode.
 広DRモード(第1動作モード)は、高感度モード及び高解像度モードに比べ、広いダイナミックレンジを実現できる動作モードである。具体的には、広DRモード時には、固体撮像装置100は、露光時間の異なる信号を生成し、この露光時間の異なる信号を合成することによりダイナミックレンジの広い画像信号151を生成する。 Wide DR mode (first operation mode) is an operation mode that can realize a wider dynamic range than the high sensitivity mode and the high resolution mode. Specifically, in the wide DR mode, the solid-state imaging device 100 generates signals with different exposure times, and generates an image signal 151 with a wide dynamic range by combining signals with different exposure times.
 高感度モード(第2動作モード)は、広DRモード及び高解像度モードに比べ、高い感度を有する動作モードであり、被写界の光量が少ない場合(暗所)に有効である。具体的には、高感度モード時には、固体撮像装置100は、2画素で生成された信号電荷を混合し、混合した信号電荷に対応する画像信号151を出力する。 The high sensitivity mode (second operation mode) is an operation mode having higher sensitivity than the wide DR mode and the high resolution mode, and is effective when the amount of light in the object scene is small (in a dark place). Specifically, in the high sensitivity mode, the solid-state imaging device 100 mixes signal charges generated by two pixels and outputs an image signal 151 corresponding to the mixed signal charges.
 高解像度モード(第3動作モード)は、広DRモード及び高感度モードに比べ、高い解像度の画像信号151を生成する動作モードである。具体的には、高解像度モード時には、固体撮像装置100は、各画素で生成された信号電荷に対応する画像信号151を出力する。これにより、固体撮像装置100は、高解像度モード時には、例えば、広DRモード及び高感度モードに比べ、2倍の解像度の画像信号151を生成する。 The high resolution mode (third operation mode) is an operation mode for generating an image signal 151 having a higher resolution than the wide DR mode and the high sensitivity mode. Specifically, in the high resolution mode, the solid-state imaging device 100 outputs an image signal 151 corresponding to the signal charge generated at each pixel. Thereby, the solid-state imaging device 100 generates an image signal 151 having a resolution twice as high as that in the wide DR mode and the high sensitivity mode in the high resolution mode, for example.
 また、この固体撮像装置100には、例えば、ユーザの操作に応じた指定モード信号152が入力される。固体撮像装置100は、この指定モード信号152に応じて、広DRモードと、高感度モードと、高解像度モードとのうちいずれかを選択し、選択したモードで動作する。 Further, for example, a designation mode signal 152 corresponding to a user operation is input to the solid-state imaging device 100. The solid-state imaging device 100 selects any one of the wide DR mode, the high sensitivity mode, and the high resolution mode according to the designation mode signal 152, and operates in the selected mode.
 また、図1に示すように、固体撮像装置100は、撮像部110と、制御部120と、モード決定部130と、信号処理部140とを備える。 Further, as shown in FIG. 1, the solid-state imaging device 100 includes an imaging unit 110, a control unit 120, a mode determination unit 130, and a signal processing unit 140.
 撮像部110は、被写界の光150を電気信号である画像信号153に変換し、出力する。この撮像部110は、レンズ111及び113と、光制御部112と、撮像素子114とを備える。 The imaging unit 110 converts the light 150 in the object scene into an image signal 153 that is an electrical signal and outputs the image signal 153. The imaging unit 110 includes lenses 111 and 113, a light control unit 112, and an imaging element 114.
 レンズ111は、被写界の光150を光制御部112に集光する。 The lens 111 condenses the light 150 in the object field on the light control unit 112.
 光制御部112は、撮像素子114が備える複数の光電変換素子の全てに、レンズ111により集光された光150を入射させるか否かを制御する。例えば、光制御部112は、機械式シャッタである。 The light control unit 112 controls whether or not the light 150 collected by the lens 111 is incident on all of the plurality of photoelectric conversion elements included in the imaging element 114. For example, the light control unit 112 is a mechanical shutter.
 レンズ113は、光制御部112を通過した光150を撮像素子114に集光する。 The lens 113 collects the light 150 that has passed through the light control unit 112 on the image sensor 114.
 撮像素子114は、レンズ113により集光された光150を電気信号である画像信号153に変換し、出力する。 The image sensor 114 converts the light 150 collected by the lens 113 into an image signal 153 that is an electrical signal and outputs the image signal 153.
 モード決定部130は、指定モード信号152に応じて、固体撮像装置100の動作モードを決定する。また、モード決定部130は、決定した動作モードを示す選択モード信号160を制御部120及び信号処理部140に出力する。このモード決定部130は、モード取得部131と、明るさ取得部132と、モード選択部133とを備える。 The mode determination unit 130 determines the operation mode of the solid-state imaging device 100 according to the designation mode signal 152. Further, the mode determination unit 130 outputs a selection mode signal 160 indicating the determined operation mode to the control unit 120 and the signal processing unit 140. The mode determination unit 130 includes a mode acquisition unit 131, a brightness acquisition unit 132, and a mode selection unit 133.
 信号処理部140は、撮像素子114により出力される画像信号153に、モード決定部130で決定された動作モードに応じた信号処理を施すことにより画像信号151を生成し、生成した画像信号151を出力する。この信号処理部140は、第1ホワイトクリップ処理部141と、合成部142と、出力部143と、第2ホワイトクリップ処理部144とを備える。 The signal processing unit 140 generates an image signal 151 by performing signal processing according to the operation mode determined by the mode determination unit 130 on the image signal 153 output from the image sensor 114, and the generated image signal 151 is Output. The signal processing unit 140 includes a first white clip processing unit 141, a synthesis unit 142, an output unit 143, and a second white clip processing unit 144.
 制御部120は、モード決定部130により決定された動作モードに応じて、撮像部110の動作を制御する。この制御部120は、第1駆動部121と、第2駆動部122とを備える。第1駆動部121は、撮像素子114を駆動する第1駆動信号154を生成する。第2駆動部122は、光制御部112を制御する第2駆動信号155を生成する。 The control unit 120 controls the operation of the imaging unit 110 according to the operation mode determined by the mode determination unit 130. The control unit 120 includes a first drive unit 121 and a second drive unit 122. The first drive unit 121 generates a first drive signal 154 that drives the image sensor 114. The second drive unit 122 generates a second drive signal 155 that controls the light control unit 112.
 次に、撮像素子114の構成を説明する。 Next, the configuration of the image sensor 114 will be described.
 図2は、撮像素子114の構成を示す図である。 FIG. 2 is a diagram illustrating a configuration of the image sensor 114.
 図2に示す撮像素子114は、CCDイメージセンサであり、行列状に配置された複数の画素180と、列毎に設けられた複数の垂直転送部181と、水平転送部182と、出力部183とを備える。 The image sensor 114 shown in FIG. 2 is a CCD image sensor, and includes a plurality of pixels 180 arranged in a matrix, a plurality of vertical transfer units 181 provided for each column, a horizontal transfer unit 182, and an output unit 183. With.
 各画素180は、光電変換素子とフィルタとを備える。この光電変換素子は、光を信号電荷に変換し、変換した前記信号電荷を蓄積する。 Each pixel 180 includes a photoelectric conversion element and a filter. The photoelectric conversion element converts light into signal charges and accumulates the converted signal charges.
 なお、図2において、8×8の画素180が配置されている例を示しているが、画素180の数は、これ以外であってもよい。 In FIG. 2, an example in which 8 × 8 pixels 180 are arranged is shown, but the number of pixels 180 may be other than this.
 また、当該フィルタは、光電変換素子上に形成され、予め定められた波長帯域の光のみを当該光電変換素子へ透過する。また、各フィルタは、複数の波長帯域のうちいずれかの光を透過する複数の種類のフィルタのうちいずれかである。具体的には、当該複数のフィルタは、赤色光を透過する赤色フィルタと、緑色光を透過する緑色フィルタと、及び青色光を透過する青色フィルタとのうちいずれかである。なお、当該フィルタには、無色(可視光)を透過するフィルタ又は赤外光を透過するフィルタ等の上記以外の波長帯域を透過するフィルタが含まれてもよい。 The filter is formed on the photoelectric conversion element and transmits only light in a predetermined wavelength band to the photoelectric conversion element. Each filter is one of a plurality of types of filters that transmit any one of a plurality of wavelength bands. Specifically, the plurality of filters are any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light. Note that the filter may include a filter that transmits a wavelength band other than the above, such as a filter that transmits colorless (visible light) or a filter that transmits infrared light.
 また、以下において、赤色フィルタを含み、赤色光を光電変換する画素180をR画素と記し、緑色フィルタを含み、緑色光を光電変換する画素180をG画素と記し、青色フィルタを含み、青色光を光電変換する画素180をB画素と記す。 In the following description, a pixel 180 that includes a red filter and photoelectrically converts red light is referred to as an R pixel, a green filter is included, a pixel 180 that photoelectrically converts green light is referred to as a G pixel, a blue filter is included, and blue light A pixel 180 that performs photoelectric conversion is referred to as a B pixel.
 また、R画素R1、G画素G1及びB画素B1は、広DRモード時において、短露光時間の間、光電変換を行う画素180であり、以下において第1画素と記す。また、R画素R2、G画素G2及びB画素B2は、広DRモード時において、長露光時間の間、光電変換を行う画素180であり、以下において第2画素と記す。 The R pixel R1, the G pixel G1, and the B pixel B1 are pixels 180 that perform photoelectric conversion during a short exposure time in the wide DR mode, and are referred to as a first pixel below. The R pixel R2, the G pixel G2, and the B pixel B2 are pixels 180 that perform photoelectric conversion during the long exposure time in the wide DR mode, and are referred to as second pixels below.
 ここで、複数の第1画素と複数の第2画素とは一対一で対応して配置されており、対応する1つの第1画素と対応する1つの第2画素とが組を成す。図2に示す例では、列方向に隣接する同色の画素180が、1つの組を成す。広DRモード時には、信号処理部140は、この組を成す画素180に対応する画像信号153を合成することにより、ダイナミックレンジの広い画像信号151を生成する。また、高感度モード時には、撮像素子114は、この組を成す画素180により光電変換された信号電荷を混合したうえで出力する。 Here, the plurality of first pixels and the plurality of second pixels are arranged in a one-to-one correspondence, and one corresponding first pixel and one corresponding second pixel form a set. In the example shown in FIG. 2, pixels 180 of the same color adjacent in the column direction form one set. In the wide DR mode, the signal processing unit 140 generates an image signal 151 having a wide dynamic range by synthesizing the image signals 153 corresponding to the pixels 180 forming this set. In the high sensitivity mode, the image sensor 114 mixes and outputs the signal charges photoelectrically converted by the pixels 180 forming this set.
 また、各第1画素は、当該第1画素に対応する第2画素から予め定められた距離内に配置されている。例えば、図2では、この組を成す2つの画素180は、列方向における1つ隣に配置されている。また、この組は、ベイヤ配列されている。 Further, each first pixel is arranged within a predetermined distance from the second pixel corresponding to the first pixel. For example, in FIG. 2, the two pixels 180 forming this set are arranged next to each other in the column direction. In addition, this set is arranged in a Bayer array.
 ここで、ベイヤ配列とは、G画素が市松状に配置されるとともに、R画素が配置される行(又は列)と、B画素が配置される行(又は列)とが交互に配置される配列である。言い換えると、ベイヤ配列とは、2×2の4つの画素で構成される単位画素セルが平面状に配置された配列である。この単位画素セルは、互いに斜めに方向に配置される2つのG画素と、1つのR画素と、1つのB画素とを備える。 Here, the Bayer arrangement means that G pixels are arranged in a checkered pattern, and rows (or columns) in which R pixels are arranged and rows (or columns) in which B pixels are arranged are alternately arranged. Is an array. In other words, the Bayer array is an array in which unit pixel cells composed of four 2 × 2 pixels are arranged in a plane. This unit pixel cell includes two G pixels, one R pixel, and one B pixel that are arranged obliquely to each other.
 複数の垂直転送部181及び水平転送部182は、本発明の読み出し部に相当し、複数の画素180により蓄積された信号電荷を読み出す。 The plurality of vertical transfer units 181 and the horizontal transfer unit 182 correspond to a reading unit of the present invention, and read signal charges accumulated by the plurality of pixels 180.
 垂直転送部181は、対応する列に配置された複数の画素180に蓄積されている信号電荷を列方向(垂直方向)に転送する垂直転送CCDである。 The vertical transfer unit 181 is a vertical transfer CCD that transfers signal charges accumulated in a plurality of pixels 180 arranged in a corresponding column in the column direction (vertical direction).
 水平転送部182は、複数の垂直転送部181により転送された複数の信号電荷を行方向(水平方向)に転送する水平転送CCDである。 The horizontal transfer unit 182 is a horizontal transfer CCD that transfers a plurality of signal charges transferred by the plurality of vertical transfer units 181 in the row direction (horizontal direction).
 出力部183は、水平転送部182により転送された信号電荷を画像信号153に変換し、変換した画像信号153を出力する。具体的には、広DRモード時には、出力部183は、第1画素に蓄積されていた信号電荷を長露光画像信号153aに変換し、第2画素に蓄積されていた信号電荷を短露光画像信号153bに変換し、変換した長露光画像信号153a及び短露光画像信号153bを信号処理部140へ出力する。 The output unit 183 converts the signal charge transferred by the horizontal transfer unit 182 into an image signal 153, and outputs the converted image signal 153. Specifically, in the wide DR mode, the output unit 183 converts the signal charge accumulated in the first pixel into the long exposure image signal 153a, and converts the signal charge accumulated in the second pixel into the short exposure image signal. 153b and the converted long exposure image signal 153a and short exposure image signal 153b are output to the signal processing unit 140.
 また、高感度モード時には、出力部183は、組を成す第1画素及び第2画素に蓄積されていた信号電荷が混合された混合信号電荷を混合画像信号153cに変換し、変換した混合画像信号153cを信号処理部140へ出力する。また、高解像度モード時には、出力部183は、全画素180の信号電荷を高解像度画像信号153dに変換し、変換した高解像度画像信号153dを信号処理部へ出力する。 In the high sensitivity mode, the output unit 183 converts the mixed signal charge obtained by mixing the signal charges accumulated in the first pixel and the second pixel to form a mixed image signal 153c, and converts the mixed image signal into a mixed image signal. 153c is output to the signal processing unit 140. In the high resolution mode, the output unit 183 converts the signal charges of all the pixels 180 into the high resolution image signal 153d, and outputs the converted high resolution image signal 153d to the signal processing unit.
 以下、広DRモード時の固体撮像装置100の動作を説明する。 Hereinafter, the operation of the solid-state imaging device 100 in the wide DR mode will be described.
 広DRモード時には、制御部120は、第1期間の間、複数の画素180の全てに光150が入射するように光制御部112に制御させる。また、制御部120は、第1期間に含まれる第1時刻に、第2画素に蓄積されている信号電荷をリセットし、第1期間に含まれ、かつ第1時刻より後の第2時刻に第1画素に蓄積されている前記信号電荷をリセットする。また、制御部120は、第1期間の直後の第2期間の間、複数の画素180の全てに光150が入射しないように光制御部112に制御させるとともに、複数の画素180に蓄積された信号電荷を複数の垂直転送部181及び水平転送部182を介して読み出す。 In the wide DR mode, the control unit 120 controls the light control unit 112 so that the light 150 is incident on all of the plurality of pixels 180 during the first period. In addition, the control unit 120 resets the signal charge accumulated in the second pixel at a first time included in the first period, and at a second time included in the first period and after the first time. The signal charge accumulated in the first pixel is reset. In addition, during the second period immediately after the first period, the control unit 120 controls the light control unit 112 so that the light 150 does not enter all of the plurality of pixels 180 and accumulates the light in the plurality of pixels 180. The signal charge is read through the plurality of vertical transfer units 181 and horizontal transfer units 182.
 具体的には、制御部120は、第1時刻に、複数の画素180の全てに蓄積されている信号電荷を半導体基板に排出することにより、複数の第2画素に蓄積されている信号電荷をリセットする。また、制御部120は、第2時刻に複数の第1画素に蓄積されている信号電荷を、垂直転送部181に転送することにより、当該複数の第1画素に蓄積されている信号電荷をリセットする。 Specifically, the control unit 120 discharges the signal charges accumulated in all of the plurality of pixels 180 to the semiconductor substrate at the first time, thereby obtaining the signal charges accumulated in the plurality of second pixels. Reset. In addition, the control unit 120 resets the signal charges accumulated in the plurality of first pixels by transferring the signal charges accumulated in the plurality of first pixels to the vertical transfer unit 181 at the second time. To do.
 これにより、第1画素の短露光時間及び第2画素の長露光時間が異なるタイミングで開始されるとともに、同時に終了する。 Thus, the short exposure time of the first pixel and the long exposure time of the second pixel are started at different timings and are simultaneously ended.
 図3は、広DRモード時の固体撮像装置100の動作を示すタイミングチャートである。図4は、広DRモード時の撮像素子114の動作を模式的に示す図である。 FIG. 3 is a timing chart showing the operation of the solid-state imaging device 100 in the wide DR mode. FIG. 4 is a diagram schematically showing the operation of the image sensor 114 in the wide DR mode.
 図3に示すように、時刻t10より前において、第2駆動部122は、光制御部112を開くことにより、撮像素子114に光150を入射させる。 As shown in FIG. 3, before the time t10, the second drive unit 122 opens the light control unit 112 to cause the light 150 to enter the image sensor 114.
 次に、第1駆動部121は、時刻t10~時刻t11の間、信号Vsubに基板掃出しパルスを印加することにより、全ての画素180に蓄積されている信号電荷をリセットする(図4のS101)。 Next, the first drive unit 121 resets signal charges accumulated in all the pixels 180 by applying a substrate sweep pulse to the signal Vsub between time t10 and time t11 (S101 in FIG. 4). .
 ここで、この基板掃出し動作について説明する。 Here, the substrate sweeping operation will be described.
 図5は、画素180及び垂直転送部181の断面図である。図5に示すように、撮像素子114は、所謂縦型オーバーフロードレイン(VOD)構造を有する。具体的には、撮像素子114は、n型半導体基板191と、n型半導体基板191内に形成されたpウェル192と、pウェル内に形成されたフォトダイオード196(光電変換素子)と、フォトダイオード196上に形成されたp+領域193とを備える。また、垂直転送部181は、垂直転送チャネル194と、垂直転送チャネル194上に形成された垂直転送電極195とを備える。 FIG. 5 is a cross-sectional view of the pixel 180 and the vertical transfer unit 181. As shown in FIG. 5, the image sensor 114 has a so-called vertical overflow drain (VOD) structure. Specifically, the imaging element 114 includes an n-type semiconductor substrate 191, a p-well 192 formed in the n-type semiconductor substrate 191, a photodiode 196 (photoelectric conversion element) formed in the p-well, And a p + region 193 formed on the diode 196. The vertical transfer unit 181 includes a vertical transfer channel 194 and a vertical transfer electrode 195 formed on the vertical transfer channel 194.
 図6は、図5に示すx断面におけるポテンシャル分布を示す図である。図6に示すように、フォトダイオード196の蓄積時(基板掃出し時以外)には、n型半導体基板191に電圧VSBが印加される。これにより、フォトダイオード196は入射光150の光量に応じた信号電荷を蓄積する。 FIG. 6 is a diagram showing a potential distribution in the x section shown in FIG. As shown in FIG. 6, the voltage VSB is applied to the n-type semiconductor substrate 191 when the photodiode 196 is accumulated (other than when the substrate is swept). As a result, the photodiode 196 accumulates signal charges corresponding to the amount of incident light 150.
 一方、基板掃出し時には、第1駆動部121は、パルスφESに例えば15Vを印加する。これにより、n型半導体基板191に電圧VSB+φESが印加される。よって、図6に示すようにフォトダイオード196に蓄積されていた信号電荷がpウェル192を経由して、n型半導体基板191に掃出される。 On the other hand, at the time of substrate sweeping, the first drive unit 121 applies, for example, 15 V to the pulse φES. Thereby, the voltage VSB + φES is applied to the n-type semiconductor substrate 191. Accordingly, as shown in FIG. 6, the signal charge accumulated in the photodiode 196 is swept out to the n-type semiconductor substrate 191 via the p-well 192.
 また、図7は、光制御部112の開閉と、電子シャッタの開閉との関係を示す図である。図7に示すように、光制御部112が開いている状態において、基板掃出しが行われてから、光制御部112が閉まるまでの期間が、電子シャッタが開いている状態(長露光時間)になる。 FIG. 7 is a diagram showing a relationship between opening / closing of the light control unit 112 and opening / closing of the electronic shutter. As shown in FIG. 7, in a state where the light control unit 112 is open, a period from when the substrate sweep is performed until the light control unit 112 is closed is a state where the electronic shutter is open (long exposure time). Become.
 再び、図3及び図4を用いて説明を行う。 Again, description will be made with reference to FIGS.
 図3の時刻t11~時刻t12の間、第1画素及び第2画素は、図1に示す入射光150を信号電荷に変換し、変換した信号電荷を蓄積する。なお、図4に示す丸印は信号電荷を示す。また、当該丸印の大きさは信号電荷の量を示し、丸印が大きいほど信号電荷が大きいことを示す。 3 between time t11 and time t12 in FIG. 3, the first pixel and the second pixel convert the incident light 150 shown in FIG. 1 into signal charges, and accumulate the converted signal charges. The circles shown in FIG. 4 indicate signal charges. The size of the circle indicates the amount of signal charge, and the larger the circle, the greater the signal charge.
 次に、時刻t12~時刻t13の間、第1駆動部121は、第1画素に印加されるφV1及びφV5にVCCD掃出しパルス(読み出しパルス)を印加することにより、第1画素に蓄積されていた信号電荷を垂直転送部181に転送する(掃出す)。これにより、第1駆動部121は、第1画素に蓄積されていた信号電荷をリセットする(図4のS102)。 Next, during the time t12 to the time t13, the first driving unit 121 has accumulated in the first pixel by applying the VCCD sweep pulse (readout pulse) to φV1 and φV5 applied to the first pixel. The signal charge is transferred (swept out) to the vertical transfer unit 181. Thereby, the first drive unit 121 resets the signal charge accumulated in the first pixel (S102 in FIG. 4).
 次に、時刻t13~時刻t14の間、第1画素及び第2画素は、入射光150を信号電荷に変換し、変換した信号電荷を蓄積する(図4のS103)。 Next, between the time t13 and the time t14, the first pixel and the second pixel convert the incident light 150 into a signal charge and accumulate the converted signal charge (S103 in FIG. 4).
 次に、時刻t14において、第2駆動部122は、光制御部112を閉じる。これにより、時刻t14以降において、光150は、撮像素子114に入射しない。つまり、露光時間が終了する。 Next, at time t14, the second drive unit 122 closes the light control unit 112. Thereby, the light 150 does not enter the image sensor 114 after the time t14. That is, the exposure time ends.
 以上のように、第1画素の短露光時間は、VCCD掃出しパルスが印加されてから、光制御部112が閉じるまでの時刻t13~時刻t14となり、第2画素の長露光時間は、基板掃出しパルスが印加されてから、光制御部112が閉じるまでの時刻t11~時刻t14となる。 As described above, the short exposure time of the first pixel is from time t13 to time t14 from when the VCCD sweep pulse is applied until the light control unit 112 is closed, and the long exposure time of the second pixel is the substrate sweep pulse. From time t11 to time t14 until the light control unit 112 is closed.
 なお、図3に示す時刻t12の前後において、第2画素に印加されるφV3及びφV7にパルスを印加している。これは、φV1及びφV5にVCCD掃出しパルスが印加されることにより、pウェル192の電位が変動することを防止するために行っている。なお、このタイミングでφV3及びφV7にパルスを印加しなくてもよい。 Note that before and after time t12 shown in FIG. 3, pulses are applied to φV3 and φV7 applied to the second pixel. This is done to prevent the potential of the p-well 192 from fluctuating due to the application of the VCCD sweep pulse to φV1 and φV5. It is not necessary to apply a pulse to φV3 and φV7 at this timing.
 次に、時刻t14~時刻t19において、第1画素及び第2画素に蓄積された信号電荷が読み出される。ここで第1駆動部121は、撮像素子114に、複数の画素180に蓄積された信号電荷をN回に分けて読み出させる所謂Nフィールド読み出しを行う。 Next, at time t14 to time t19, the signal charges accumulated in the first pixel and the second pixel are read out. Here, the first drive unit 121 performs so-called N-field reading that causes the image sensor 114 to read the signal charges accumulated in the plurality of pixels 180 in N times.
 具体的には、時刻t14~時刻t15のダミーフィールド期間において、垂直転送部181に保持されている信号電荷を水平転送部182に転送する。これにより、垂直転送部181に保持されている信号電荷がリセットされる。つまり、時刻t12~時刻t13において垂直転送部181に掃出された信号電荷がリセットされる。 Specifically, the signal charges held in the vertical transfer unit 181 are transferred to the horizontal transfer unit 182 during the dummy field period from time t14 to time t15. As a result, the signal charge held in the vertical transfer unit 181 is reset. That is, the signal charge swept out by the vertical transfer unit 181 from time t12 to time t13 is reset.
 また、このダミーフィールド期間は、直後の第1フィールド期間開始時の垂直転送部181の状態を、後続の第2~第4フィールド期間のそれぞれの開始時の状態と同様にする効果がある。これにより、第1フィールド期間で読み出される信号電荷と、第2~第4フィールド期間で読み出される信号電荷とのばらつきの傾向を近づけることができる。 Also, the dummy field period has an effect of making the state of the vertical transfer unit 181 at the start of the first field period immediately after the dummy field period the same as the state at the start of each of the subsequent second to fourth field periods. As a result, the tendency of variation between the signal charge read in the first field period and the signal charge read in the second to fourth field periods can be made closer.
 なお、垂直転送部181に保持されている信号電荷をリセットするためだけであれば、ダミーフィールド期間の転送速度を、第1~第4フィールド期間の転送速度よりも早くする、所謂高速転送を行ってもよい。 Note that if only to reset the signal charge held in the vertical transfer unit 181, so-called high-speed transfer is performed in which the transfer rate in the dummy field period is faster than the transfer rate in the first to fourth field periods. May be.
 次に、時刻t15から時刻t16の第1フィールド期間において、φV7が印加される第2画素に蓄積された信号電荷が読み出される(図4のS104)。 Next, in the first field period from time t15 to time t16, the signal charge accumulated in the second pixel to which φV7 is applied is read (S104 in FIG. 4).
 次に、時刻t16から時刻t17の第2フィールド期間において、φV3が印加される第2画素に蓄積された信号電荷が読み出される(図4のS105)。 Next, in the second field period from time t16 to time t17, the signal charge accumulated in the second pixel to which φV3 is applied is read (S105 in FIG. 4).
 次に、時刻t17から時刻t18の第3フィールド期間において、φV5が印加される第1画素に蓄積された信号電荷が読み出される(図4のS106)。 Next, in the third field period from time t17 to time t18, the signal charge accumulated in the first pixel to which φV5 is applied is read (S106 in FIG. 4).
 最後に、時刻t18から時刻t19の第4フィールド期間において、φV1が印加される第1画素に蓄積された信号電荷が読み出される(図4のS107)。 Finally, in the fourth field period from time t18 to time t19, the signal charge accumulated in the first pixel to which φV1 is applied is read (S107 in FIG. 4).
 以上のように、全ての画素180に蓄積された信号電荷が読み出される。 As described above, the signal charges accumulated in all the pixels 180 are read out.
 なお、ここでは、4フィールドに分けて読み出しを行う場合を例に説明したが、フィールドの数は4に限定されるものではない。また、フィールドに分割して読み出しを行わなくてもよい。つまり、1度で全ての画素180に蓄積された信号電荷を読み出してもよい。 In addition, although the case where reading is performed by dividing into four fields has been described as an example here, the number of fields is not limited to four. Further, it is not necessary to divide into fields and perform reading. That is, the signal charges accumulated in all the pixels 180 may be read at a time.
 また、ここでは、第2画素の信号電荷を読み出した後に、第1画素の信号電荷を読み出しているが、第1画素の信号電荷を読み出した後に、第2画素の信号電荷を読み出してもよいし、第1画素の信号電荷と第2画素の信号電荷とを交互に読み出してもよい。 Here, the signal charge of the first pixel is read after reading the signal charge of the second pixel. However, the signal charge of the second pixel may be read after reading the signal charge of the first pixel. Then, the signal charge of the first pixel and the signal charge of the second pixel may be alternately read out.
 次に、撮像素子114の垂直転送電極195の構成を説明する。 Next, the configuration of the vertical transfer electrode 195 of the image sensor 114 will be described.
 図8Aは、垂直転送電極195の構成例を示す図である。図8Aに示すように1つの画素180に対して、2つの垂直転送電極195が形成される。また、上述した4フィールド読み出しを行う場合には、第1駆動部121は、φV1~φV8の8相の駆動パルスにより垂直転送部181を制御する。 FIG. 8A is a diagram illustrating a configuration example of the vertical transfer electrode 195. As shown in FIG. 8A, two vertical transfer electrodes 195 are formed for one pixel 180. In addition, when performing the above-described four-field reading, the first drive unit 121 controls the vertical transfer unit 181 with eight-phase drive pulses of φV1 to φV8.
 以上のように、本発明の実施の形態に係る固体撮像装置100は、長露光画像信号153aと短露光画像信号153bとを出力できる。これにより、信号処理部140がこの異なる露光時間の長露光画像信号153aと短露光画像信号153bとを合成することにより、ダイナミックレンジを拡大できる。さらに、本発明の実施の形態に係る固体撮像装置100は、短露光時間t2と長露光時間t1の開始時刻を異ならせ、かつ、光制御部112により短露光時間t2と長露光時間t1との終了時刻を同じにする。これにより、本発明の実施の形態に係る固体撮像装置100は、特許文献1記載の技術のように垂直転送部181に信号電荷を長時間保持する必要がないので、スミア及び暗電流による雑音を抑えることができる。 As described above, the solid-state imaging device 100 according to the embodiment of the present invention can output the long exposure image signal 153a and the short exposure image signal 153b. Thereby, the signal processing unit 140 synthesizes the long exposure image signal 153a and the short exposure image signal 153b having different exposure times, so that the dynamic range can be expanded. Furthermore, in the solid-state imaging device 100 according to the embodiment of the present invention, the start times of the short exposure time t2 and the long exposure time t1 are different, and the light control unit 112 sets the short exposure time t2 and the long exposure time t1. Make the end time the same. As a result, the solid-state imaging device 100 according to the embodiment of the present invention does not need to hold the signal charge in the vertical transfer unit 181 for a long time as in the technique described in Patent Document 1, so that noise due to smear and dark current is reduced. Can be suppressed.
 さらに、撮像素子114の画素数の増加及び撮像素子114の小型化を実現するために、図8Aに示すように、1画素に対して2つの垂直転送電極195を配置したうえで、N回に分けて信号電荷を読み出すNフィールド読み出しが用いられている。 Further, in order to realize an increase in the number of pixels of the image sensor 114 and a reduction in size of the image sensor 114, as shown in FIG. 8A, two vertical transfer electrodes 195 are arranged for one pixel, and then N times. N-field reading is used to read signal charges separately.
 ここで、特許文献1記載の技術では、垂直電荷転送路(垂直転送部181)に一時的に信号電荷を蓄積するために、このようなNフィールド読み出しを行うことができない。 Here, in the technique described in Patent Document 1, such N field readout cannot be performed because signal charges are temporarily accumulated in the vertical charge transfer path (vertical transfer unit 181).
 また、特許文献1記載の技術を実現しようとすると、1画素に対して1転送段を配置する必要がある。ここで、1転送段には少なくとも3つの垂直転送電極195を配置する必要があるため、垂直転送電極195の構造が複雑になる。さらに1転送段が占有できる面積が1画素の中に限定されるので、転送できる電荷量が低下してしまう。一方、近年のデジタルスチルカメラに搭載されている固体撮像装置の画素のサイズは2μm以下に微細化されている。このような微細化された画素に従来技術を適用する事は極めて困難である。 Also, if the technique described in Patent Document 1 is to be realized, it is necessary to arrange one transfer stage for one pixel. Here, since it is necessary to arrange at least three vertical transfer electrodes 195 in one transfer stage, the structure of the vertical transfer electrodes 195 becomes complicated. Furthermore, since the area that can be occupied by one transfer stage is limited to one pixel, the amount of charge that can be transferred is reduced. On the other hand, the pixel size of a solid-state imaging device mounted on a recent digital still camera is miniaturized to 2 μm or less. It is extremely difficult to apply the conventional technique to such a fine pixel.
 一方、本発明の実施の形態に係る固体撮像装置100では、画素180に一時的に信号電荷を蓄積することにより、上述したNフィールド読み出しが可能となる。これにより、本発明の実施の形態に係る固体撮像装置100は、図8Aに示すように1画素に2つの垂直転送電極195のみを配置すればよい。 On the other hand, in the solid-state imaging device 100 according to the embodiment of the present invention, the signal charge is temporarily accumulated in the pixel 180, so that the N-field readout described above can be performed. As a result, the solid-state imaging device 100 according to the embodiment of the present invention only has to arrange two vertical transfer electrodes 195 in one pixel as shown in FIG. 8A.
 さらに、1画素に1つの垂直転送電極195のみを配置することもできる。図8Bは、この場合の垂直転送電極195の構成例を示す図である。なお、図8Bは、ベイヤ配列を用いた場合の垂直転送電極195の構成例を示すが、このようなベイヤ配列を用いた場合の詳細については後述する。 Furthermore, it is possible to arrange only one vertical transfer electrode 195 per pixel. FIG. 8B is a diagram illustrating a configuration example of the vertical transfer electrode 195 in this case. FIG. 8B shows a configuration example of the vertical transfer electrode 195 in the case where the Bayer array is used. Details of the case in which such a Bayer array is used will be described later.
 図8Bに示すように、本発明の実施の形態に係る固体撮像装置100は、1画素に1つの垂直転送電極195のみを配置すればよいので、撮像素子114の小型化、つまり、固体撮像装置100の小型化及び低コスト化を実現できる。また、本発明は、デジタルスチルカメラ用の固体撮像装置等の画素サイズが微細化されている固体撮像装置に容易に適用できる。 As shown in FIG. 8B, since the solid-state imaging device 100 according to the embodiment of the present invention only needs to arrange one vertical transfer electrode 195 per pixel, the imaging element 114 can be downsized, that is, the solid-state imaging device. 100 can be reduced in size and cost. Further, the present invention can be easily applied to a solid-state imaging device in which the pixel size is miniaturized, such as a solid-state imaging device for a digital still camera.
 なお、上記説明では、図3に示す時刻t10~時刻t11において、第1駆動部121は、撮像素子114に基板掃出しパルスを印加することにより、第2画素に蓄積された信号電荷をリセットしているが、第2画素に印加されるφV3及びφV7にVCCD掃出しパルス(読み出しパルス)を印加することにより、第2画素に蓄積された信号電荷をリセットしてもよい。 In the above description, at time t10 to time t11 shown in FIG. 3, the first drive unit 121 resets the signal charge accumulated in the second pixel by applying a substrate sweep pulse to the image sensor 114. However, the signal charge accumulated in the second pixel may be reset by applying a VCCD sweep pulse (readout pulse) to φV3 and φV7 applied to the second pixel.
 図9は、第1駆動部121がVCCD掃出しパルスを用いて第2画素に蓄積された信号電荷をリセットする場合の固体撮像装置100のタイミングチャートである。 FIG. 9 is a timing chart of the solid-state imaging device 100 when the first driving unit 121 resets the signal charge accumulated in the second pixel using the VCCD sweep pulse.
 図9に示すように、第1駆動部121は、時刻t20~時刻t21の間、第2画素に印加されるφV3及びφV7にVCCD掃出しパルス(読み出しパルス)を印加することにより、第2画素に蓄積された信号電荷をリセットしてもよい。 As shown in FIG. 9, the first driving unit 121 applies a VCCD sweep pulse (readout pulse) to φV3 and φV7 applied to the second pixel between time t20 and time t21 to thereby apply the second pixel to the second pixel. The accumulated signal charge may be reset.
 なお、図9に示す時刻t22~t23の間、第1駆動部121は、第1画素に印加されるφV1及びφV5にVCCD掃出しパルス(読み出しパルス)を印加することにより、第1画素に蓄積された信号電荷をリセットしているが、このVCCD掃出しパルスは印加しなくてもよい。だたし、第1駆動部121がVCCD掃出しパルスを印加し、一旦、第1画素に蓄積された信号電荷をリセットすることにより、時刻t12~t13での2回目のVCCD掃出しパルスで確実に第1画素に蓄積された信号電荷をリセットできる。よって、図9に示すように、時刻t22~t23の間に、第1画素にVCCD掃出しパルス(読み出しパルス)を印加するほうがより好ましい。 In addition, during the time t22 to t23 shown in FIG. 9, the first driving unit 121 accumulates in the first pixel by applying the VCCD sweep pulse (readout pulse) to φV1 and φV5 applied to the first pixel. Although the signal charge is reset, the VCCD sweep pulse need not be applied. However, the first drive unit 121 applies the VCCD sweep pulse, and once resets the signal charge accumulated in the first pixel, the second VCCD sweep pulse at the time t12 to t13 is surely performed. The signal charge stored in one pixel can be reset. Therefore, as shown in FIG. 9, it is more preferable to apply a VCCD sweep pulse (readout pulse) to the first pixel between times t22 and t23.
 また、第1駆動部121は、時刻t20~t21において、第1画素及び第2画素に同時にVCCD掃出しパルスを印加してもよい。ただし、第1画素及び第2画素に同時にVCCD掃出しパルスを印加する場合には、φV1、φV3、φV5及びφV7が同時に高電位に変化することになる。これにより、例えば、pウェル192の電位が変動してしまう。よって、図9に示すように、異なる時刻に、第1画素と第2画素とにVCCD掃出しパルスを印加することがより好ましい。 Further, the first driving unit 121 may simultaneously apply the VCCD sweep pulse to the first pixel and the second pixel from time t20 to t21. However, when the VCCD sweep pulse is simultaneously applied to the first pixel and the second pixel, φV1, φV3, φV5, and φV7 simultaneously change to a high potential. Thereby, for example, the potential of the p well 192 changes. Therefore, as shown in FIG. 9, it is more preferable to apply the VCCD sweep pulse to the first pixel and the second pixel at different times.
 以上のように、長露光時間t1の開始時刻において、第2画素にVCCD掃出しパルスを印加することにより当該第2画素をリセットすることにより、撮像素子114は、上述した縦型オーバーフロードレイン(VOD)構造を有する必要がない。これにより、撮像素子114の構成を簡略化できる。 As described above, by resetting the second pixel by applying the VCCD sweep pulse to the second pixel at the start time of the long exposure time t1, the image sensor 114 causes the vertical overflow drain (VOD) described above to be reset. There is no need to have a structure. Thereby, the structure of the image pick-up element 114 can be simplified.
 次に、広DRモード時の信号処理部140の動作を説明する。 Next, the operation of the signal processing unit 140 in the wide DR mode will be described.
 上述したように、広DRモード時には、信号処理部140には、長露光時間t1に対応する長露光画像信号153aと、短露光時間t2に対応する短露光画像信号153bとが入力される。また、信号処理部140は、この長露光画像信号153aと短露光画像信号153bとを合成することによりダイナミックレンジが広い画像信号151を生成する。 As described above, in the wide DR mode, the long exposure image signal 153a corresponding to the long exposure time t1 and the short exposure image signal 153b corresponding to the short exposure time t2 are input to the signal processing unit 140. In addition, the signal processing unit 140 generates the image signal 151 having a wide dynamic range by combining the long exposure image signal 153a and the short exposure image signal 153b.
 以下、長露光画像信号153aと短露光画像信号153bとを合成することによりダイナミックレンジが広い画像信号151が得られる原理を説明する。 Hereinafter, the principle of obtaining the image signal 151 having a wide dynamic range by synthesizing the long exposure image signal 153a and the short exposure image signal 153b will be described.
 図10は、短露光時間と長露光時間とにおける画素180の光電変換特性を示す図である。図10の横軸は露光量(露光時間中に受光した光量の積分値)を示し、縦軸は画像信号153の出力レベルを示す。 FIG. 10 is a diagram showing the photoelectric conversion characteristics of the pixel 180 in the short exposure time and the long exposure time. The horizontal axis in FIG. 10 indicates the exposure amount (the integrated value of the amount of light received during the exposure time), and the vertical axis indicates the output level of the image signal 153.
 図10に示すように、同一の露光量に対して、長露光画像信号153aの出力レベルは短露光画像信号153bの出力レベルに対して、当該長露光画像信号153aと当該短露光画像信号153bの露光時間(積分時間)の比に応じて大きくなる。また、図10に示す感度曲線の傾きが感度を表す。つまり、露光時間が長いほど、感度は高くなる。 As shown in FIG. 10, for the same exposure amount, the output level of the long exposure image signal 153a is equal to the output level of the short exposure image signal 153b and the output level of the long exposure image signal 153a and the short exposure image signal 153b. It increases according to the ratio of the exposure time (integration time). Further, the slope of the sensitivity curve shown in FIG. 10 represents the sensitivity. That is, the longer the exposure time, the higher the sensitivity.
 また、各画素180に蓄積できる信号電荷量には上限がある。これにより、この上限に相当する出力レベル(飽和出力電圧VSAT)まで、画像信号153の出力レベルが達すると、それ以上露光量が増加しても、画像信号153の出力レベルは一定値(飽和出力電圧VSAT)に保たれる。この飽和出力電圧VSATに達する露光量(飽和露光量)に応じて、光量(明るさ)に対するダイナミックレンジが決定される。 Also, there is an upper limit on the amount of signal charge that can be accumulated in each pixel 180. As a result, when the output level of the image signal 153 reaches the output level corresponding to the upper limit (saturation output voltage VSAT), the output level of the image signal 153 is a constant value (saturation output) even if the exposure amount further increases. Voltage VSAT). The dynamic range with respect to the light amount (brightness) is determined according to the exposure amount (saturation exposure amount) reaching the saturation output voltage VSAT.
 従って、感度が高い長露光画像信号153aのダイナミックレンジは狭く、感度が低い短露光画像信号153bのダイナミックレンジは広い。 Therefore, the dynamic range of the long exposure image signal 153a with high sensitivity is narrow, and the dynamic range of the short exposure image signal 153b with low sensitivity is wide.
 一方、固体撮像装置100において感度が高いことは、最も重要な要件である。しかしながら、高感度を実現すると、図10に示すように、被写体のコントラストに対するダイナミックレンジが狭くなる。つまり、明るい部分の出力レベルが飽和し、ディテールが潰れてしまう(一般に白とびと称す)。即ち、暗い部分に対しては高感度であり、明るい部分に対しては低感度であることが好ましい。 On the other hand, high sensitivity in the solid-state imaging device 100 is the most important requirement. However, when high sensitivity is realized, as shown in FIG. 10, the dynamic range for the contrast of the subject becomes narrow. In other words, the output level of the bright part is saturated and the details are crushed (generally called overexposure). That is, it is preferable that the sensitivity is high for a dark portion and the sensitivity is low for a bright portion.
 これを実現するには、長露光画像信号153aと短露光画像信号153bとを合成すればよい。図11は、長露光画像信号153aと短露光画像信号153bとを合成した合成画像信号の特性を示す図である。図11に示すように、合成画像信号は、暗い領域(低露光量)では高感度を実現し、明るい領域(高露光量)では低感度の特性が実現できる。さらに、合成画像信号は、低感度特性で決まる広いダイナミックレンジが得られる。 To realize this, the long exposure image signal 153a and the short exposure image signal 153b may be synthesized. FIG. 11 is a diagram illustrating the characteristics of a combined image signal obtained by combining the long exposure image signal 153a and the short exposure image signal 153b. As shown in FIG. 11, the composite image signal can realize high sensitivity in a dark region (low exposure amount), and low sensitivity in a bright region (high exposure amount). Further, the composite image signal can provide a wide dynamic range determined by low sensitivity characteristics.
 以下、図1に示す信号処理部140の動作を説明する。 Hereinafter, the operation of the signal processing unit 140 shown in FIG. 1 will be described.
 第1ホワイトクリップ処理部141は、長露光画像信号153aにホワイトクリップ処理を行うことにより、補正後長露光画像信号156を生成する。ここでホワイトクリップ処理とは、長露光画像信号153aのレベルがホワイトクリップレベルより大きい場合に、当該長露光画像信号153aのレベルを当該ホワイトクリップレベルにする処理である。 The first white clip processing unit 141 generates a corrected long exposure image signal 156 by performing white clip processing on the long exposure image signal 153a. Here, the white clip processing is processing for setting the level of the long exposure image signal 153a to the white clip level when the level of the long exposure image signal 153a is higher than the white clip level.
 ここで、一般的に、画素180の飽和出力電圧VSATは素子間でばらつく。これにより、映像にムラが生じる。つまり、図11に示すニーポイントがばらつく。これを避けるために上記ホワイトクリップ処理が行われる。換言すると、このホワイトクリップ処理を行うために全画素180の画像信号153を独立に読み出す必要がある。また、ホワイトクリップレベルは、飽和出力電圧VSATより低いレベルである。 Here, in general, the saturation output voltage VSAT of the pixel 180 varies between elements. This causes unevenness in the video. That is, the knee points shown in FIG. 11 vary. In order to avoid this, the white clip process is performed. In other words, it is necessary to read out the image signals 153 of all the pixels 180 independently in order to perform this white clip processing. The white clip level is a level lower than the saturation output voltage VSAT.
 合成部142は、第1ホワイトクリップ処理部141により生成された補正後長露光画像信号156と短露光画像信号153bとを合成することにより、高感度及び広ダイナミックレンジを有する合成画像信号157を生成する。 The synthesizing unit 142 generates a synthesized image signal 157 having high sensitivity and a wide dynamic range by synthesizing the corrected long exposure image signal 156 and the short exposure image signal 153b generated by the first white clip processing unit 141. To do.
 出力部143は、合成画像信号157を画像信号151として外部に出力する。なお、出力部143は、合成画像信号157に、ゲイン調整、ノイズ除去、レベル補正及びマトリックス変換等の所定の信号処理を施すことにより、画像信号151を生成してもよい。また、信号処理部140は、上記所定の信号処理の一部又は全てを合成前の長露光画像信号153a、短露光画像信号153b又は補正後長露光画像信号156に対して行ってもよい。 The output unit 143 outputs the composite image signal 157 as the image signal 151 to the outside. Note that the output unit 143 may generate the image signal 151 by performing predetermined signal processing such as gain adjustment, noise removal, level correction, and matrix conversion on the composite image signal 157. Further, the signal processing unit 140 may perform part or all of the predetermined signal processing on the long exposure image signal 153a, the short exposure image signal 153b, or the corrected long exposure image signal 156 before synthesis.
 以上のように、広DRモード時には、信号処理部140は、露光時間の異なる長露光画像信号153aと短露光画像信号153bとを合成することによりダイナミックレンジの広い画像信号151を生成できる。 As described above, in the wide DR mode, the signal processing unit 140 can generate the image signal 151 having a wide dynamic range by combining the long exposure image signal 153a and the short exposure image signal 153b having different exposure times.
 次に、高感度モード時の固体撮像装置100の動作を説明する。 Next, the operation of the solid-state imaging device 100 in the high sensitivity mode will be described.
 高感度モード時には、制御部120は、第1期間の間、複数の画素180の全てに光150が入射するように光制御部112に制御させる。また、制御部120は、当該第1期間に含まれる第1時刻に、第2画素に蓄積されている信号電荷をリセットし、当該第1期間に含まれる第2時刻に第1画素に蓄積されている信号電荷をリセットする。また、制御部120は、当該第1期間の後の第2期間の間、複数の画素180の全てに光が入射しないように光制御部112に制御させるとともに、組を成す第1画素及び第2画素に蓄積されていた信号電荷を複数の垂直転送部181内又は水平転送部182内で混合することにより、混合信号電荷を生成する。 In the high sensitivity mode, the control unit 120 controls the light control unit 112 so that the light 150 is incident on all of the plurality of pixels 180 during the first period. In addition, the control unit 120 resets the signal charge accumulated in the second pixel at the first time included in the first period, and accumulates in the first pixel at the second time included in the first period. Reset the signal charge. In addition, the control unit 120 controls the light control unit 112 so that light does not enter all of the plurality of pixels 180 during the second period after the first period, and the first and second pixels forming the set The mixed signal charge is generated by mixing the signal charges accumulated in the two pixels in the plurality of vertical transfer units 181 or the horizontal transfer unit 182.
 また、出力部183は、当該混合信号電荷を混合画像信号153cに変換し、変換した混合画像信号153cを信号処理部140へ出力する。 Also, the output unit 183 converts the mixed signal charge into a mixed image signal 153c, and outputs the converted mixed image signal 153c to the signal processing unit 140.
 図12は、高感度モード時の固体撮像装置100の動作を示すタイミングチャートである。図12に示すように、高感度モード時には、制御部120は、長露光時間t1と短露光時間t2とを略等しくする。 FIG. 12 is a timing chart showing the operation of the solid-state imaging device 100 in the high sensitivity mode. As shown in FIG. 12, in the high sensitivity mode, the control unit 120 makes the long exposure time t1 and the short exposure time t2 substantially equal.
 具体的には、時刻t30より前において、第2駆動部122は、光制御部112を開くことにより、撮像素子114に光150を入射させる。 Specifically, before the time t30, the second drive unit 122 opens the light control unit 112 to cause the light 150 to enter the image sensor 114.
 次に、第1駆動部121は、時刻t30~時刻t31の間、第2画素に印加されるφV3及びφV7にVCCD掃出しパルス(読み出しパルス)を印加することにより、第2画素に蓄積された信号電荷をリセットする。 Next, the first driving unit 121 applies a VCCD sweep pulse (readout pulse) to φV3 and φV7 applied to the second pixel between time t30 and time t31, so that the signal accumulated in the second pixel is applied. Reset the charge.
 次に、第1駆動部121は、時刻t32~時刻t33の間、第1画素に印加されるφV1及びφV5にVCCD掃出しパルス(読み出しパルス)を印加することにより、第1画素に蓄積された信号電荷をリセットする。 Next, the first driving unit 121 applies a VCCD sweep pulse (readout pulse) to φV1 and φV5 applied to the first pixel between time t32 and time t33, thereby storing the signal accumulated in the first pixel. Reset the charge.
 次に、時刻t33~時刻t34の間、第1画素及び第2画素は、入射光150を信号電荷に変換し、変換した信号電荷を蓄積する。 Next, between time t33 and time t34, the first pixel and the second pixel convert the incident light 150 into signal charges, and store the converted signal charges.
 次に、時刻t34において、第2駆動部122は、光制御部112を閉じる。これにより、時刻t34以降において、光150は、撮像素子114に入射しない。つまり、露光時間が終了する。 Next, at time t34, the second drive unit 122 closes the light control unit 112. Thereby, the light 150 does not enter the image sensor 114 after the time t34. That is, the exposure time ends.
 以上のように、第1画素の短露光時間t2は、VCCD掃出しパルスが印加されてから、光制御部112が閉じるまでの時刻t33~時刻t34となり、第2画素の長露光時間t1は、VCCD掃出しパルスが印加されてから、光制御部112が閉じるまでの時刻t31~時刻t34となる。 As described above, the short exposure time t2 of the first pixel is from time t33 to time t34 from when the VCCD sweep pulse is applied until the light control unit 112 is closed, and the long exposure time t1 of the second pixel is VCCD. It is from time t31 to time t34 from when the sweep pulse is applied until the light control unit 112 is closed.
 なお、第1駆動部121は、時刻t30~t31において、第1画素及び第2画素に同時にVCCD掃出しパルスを印加してもよい。ただし、第1画素及び第2画素に同時にVCCD掃出しパルスを印加する場合には、φV1、φV3、φV5及びφV7が同時に高電位に変化することになる。これにより、例えば、pウェル192の電位が変動してしまう。よって、図12に示すように、第1画素と第2画素とを異なる時刻にVCCD掃出しパルスを印加することがより好ましい。 Note that the first drive unit 121 may simultaneously apply the VCCD sweep pulse to the first pixel and the second pixel from time t30 to t31. However, when the VCCD sweep pulse is simultaneously applied to the first pixel and the second pixel, φV1, φV3, φV5, and φV7 simultaneously change to a high potential. Thereby, for example, the potential of the p well 192 changes. Therefore, as shown in FIG. 12, it is more preferable to apply the VCCD sweep pulse to the first pixel and the second pixel at different times.
 次に、時刻t34~時刻t37において、第1画素及び第2画素に蓄積された信号電荷が混合されたうえで読み出される。ここで第1駆動部121は、撮像素子114に、複数の画素180に蓄積された信号電荷をN回に分けて読み出させる所謂Nフィールド読み出しを行う。 Next, at time t34 to time t37, the signal charges accumulated in the first pixel and the second pixel are mixed and read out. Here, the first drive unit 121 performs so-called N-field reading that causes the image sensor 114 to read the signal charges accumulated in the plurality of pixels 180 in N times.
 具体的には、時刻t34~時刻t35のダミーフィールド期間において、垂直転送部181に保持されている信号電荷を水平転送部182に転送する。これにより、垂直転送部181に保持されている信号電荷がリセットされる。つまり、時刻t30~t31及び時刻t32~時刻t33において垂直転送部181に掃出された信号電荷がリセットされる。 Specifically, the signal charge held in the vertical transfer unit 181 is transferred to the horizontal transfer unit 182 during the dummy field period from time t34 to time t35. As a result, the signal charge held in the vertical transfer unit 181 is reset. That is, the signal charges swept out by the vertical transfer unit 181 from time t30 to t31 and from time t32 to time t33 are reset.
 次に、時刻t35から時刻t36の第1フィールド期間において、φV5及びφV7が印加される第1画素及び第2画素に蓄積された信号電荷が混合されたうえで読み出される。 Next, in the first field period from time t35 to time t36, the signal charges accumulated in the first pixel and the second pixel to which φV5 and φV7 are applied are mixed and read out.
 次に、時刻t36から時刻t37の第2フィールド期間において、φV1及びφV3が印加される第1画素及び第2画素に蓄積された信号電荷が混合されたうえで読み出される。 Next, in the second field period from time t36 to time t37, the signal charges accumulated in the first pixel and the second pixel to which φV1 and φV3 are applied are mixed and read out.
 具体的には、第1駆動部121は、上下に隣接して配置された同色の画素の信号電荷を垂直転送部181内で混合する。 Specifically, the first drive unit 121 mixes signal charges of pixels of the same color arranged adjacent to each other in the vertical direction in the vertical transfer unit 181.
 以上のように、全ての画素180に蓄積された信号電荷が混合されたうえで読み出される。 As described above, the signal charges accumulated in all the pixels 180 are mixed and read out.
 なお、ここでは、2フィールドに分けて読み出しを行う場合を例に説明したが、フィールドの数は2に限定されるものではない。また、フィールドに分割して読み出しを行わなくてもよい。つまり、1度で全ての画素180に蓄積された信号電荷を読み出してもよい。 In addition, although the case where reading is performed in two fields has been described as an example here, the number of fields is not limited to two. Further, it is not necessary to divide into fields and perform reading. That is, the signal charges accumulated in all the pixels 180 may be read at a time.
 このように、本発明の実施の形態に係る固体撮像装置100は、高感度モード時には、組を成す画素180の信号電荷を撮像素子114内で混合することにより、信号電荷量を増加させることがきる。これにより、実効感度を上昇させる事ができる。 As described above, in the high sensitivity mode, the solid-state imaging device 100 according to the embodiment of the present invention can increase the signal charge amount by mixing the signal charges of the pixels 180 forming the group in the imaging element 114. wear. Thereby, the effective sensitivity can be increased.
 例えば、暗い被写体を撮影する場合には、感度がダイナミックレンジに優先する。このような場合に、高感度モードが選択される。 For example, when shooting a dark subject, sensitivity has priority over the dynamic range. In such a case, the high sensitivity mode is selected.
 次に、高感度モード時の信号処理部140の動作を説明する。 Next, the operation of the signal processing unit 140 in the high sensitivity mode will be described.
 上述したように、高感度モード時には、信号処理部140には、混合画像信号153cが入力される。 As described above, the mixed image signal 153c is input to the signal processing unit 140 in the high sensitivity mode.
 図1に示す第2ホワイトクリップ処理部144は、混合画像信号153cにホワイトクリップ処理を行うことにより、補正後混合画像信号158を生成する。ここで、第2ホワイトクリップ処理部144が用いるホワイトクリップレベルVMは、長露光時間t1と、短露光時間t2と、画素180の飽和出力電圧VSATとに対して、下記式(1)の関係を満たすように設定される。 The second white clip processing unit 144 illustrated in FIG. 1 generates a corrected mixed image signal 158 by performing white clip processing on the mixed image signal 153c. Here, the white clip level VM used by the second white clip processing unit 144 has the relationship of the following formula (1) with respect to the long exposure time t1, the short exposure time t2, and the saturation output voltage VSAT of the pixel 180. Set to meet.
   VM ≦ VSAT×(1+t2/t1) ・・・ (1)
 これにより、飽和出力電圧VSATのムラが画像に現れるのを回避できる。また、t1≒t2とすれば、混合電荷量が大凡2倍になり、実効感度は約2倍になる。
VM ≦ VSAT × (1 + t2 / t1) (1)
Thereby, it is possible to avoid the unevenness of the saturation output voltage VSAT from appearing in the image. Further, if t1≈t2, the mixed charge amount is approximately doubled, and the effective sensitivity is approximately doubled.
 出力部143は、補正後混合画像信号158を画像信号151として外部に出力する。なお、出力部143は、補正後混合画像信号158に、ゲイン調整、ノイズ除去、レベル補正及びマトリックス変換等の所定の信号処理を施すことにより、画像信号151を生成してもよい。また、信号処理部140は、上記所定の信号処理の一部又は全てを混合画像信号153cに対して行ってもよい。 The output unit 143 outputs the corrected mixed image signal 158 to the outside as the image signal 151. The output unit 143 may generate the image signal 151 by performing predetermined signal processing such as gain adjustment, noise removal, level correction, and matrix conversion on the corrected mixed image signal 158. Further, the signal processing unit 140 may perform part or all of the predetermined signal processing on the mixed image signal 153c.
 以上のように、高感度モード時には、固体撮像装置100は、2画素で生成された信号電荷を混合し、混合した信号電荷に対応する高感度な画像信号151を出力できる。 As described above, in the high sensitivity mode, the solid-state imaging device 100 can mix the signal charges generated by the two pixels and output the highly sensitive image signal 151 corresponding to the mixed signal charges.
 以下、高感度モード時において、上下に隣接する同色の画素の信号電荷を混合した場合の画素混合の重心について説明する。なお、広DRモード時において、上下に隣接する同色の画素の画像信号153を合成した場合の加算重心も同様である。 Hereinafter, the gravity center of the pixel mixture when the signal charges of the same color pixels adjacent in the upper and lower directions are mixed in the high sensitivity mode will be described. In addition, in the wide DR mode, the addition centroid when the image signals 153 of the same color pixels adjacent in the vertical direction are combined is also the same.
 図13Aは、上下に隣接する同色の画素の信号電荷を混合した場合の、撮像面上における加算重心の分布を示す図である。図13Aに示す重心RgはR画素R1とR2との加算重心であり、重心GgはG画素G1とG2との加算重心であり、重心BgはB画素B1とB2との加算重心である。図13Aに示すように、隣接画素間の混合になるので、加算重心は規則的に配置される。これにより、画質(解像度)の劣化を極力抑えることができる。 FIG. 13A is a diagram showing the distribution of the added centroids on the imaging surface when signal charges of pixels of the same color adjacent in the vertical direction are mixed. The center of gravity Rg shown in FIG. 13A is the added center of gravity of the R pixels R1 and R2, the center of gravity Gg is the added center of gravity of the G pixels G1 and G2, and the center of gravity Bg is the added center of gravity of the B pixels B1 and B2. As shown in FIG. 13A, since the adjacent pixels are mixed, the added centroids are regularly arranged. Thereby, deterioration of image quality (resolution) can be suppressed as much as possible.
 図13Bは、画素寸法の一例を示す図である。図13Bに示すように、垂直方向の画素寸法を水平方向の画素寸法の約1/2にすることにより、解像度の等方性を確保できる。なお、例えば、垂直方向の画素寸法と水平方向の画素寸法とが等しい場合に比べ、垂直方向の画素寸法を水平方向の画素寸法より小さくするとともに、1/4より大きくすることで、解像度の等方性を向上できる。また、ここで、画素寸法とは、上述した画素180(フォトダイオード196)と当該画素180に対応する垂直転送部181の一部(上記例では2つの垂直転送電極195)とを含む領域の寸法である。 FIG. 13B is a diagram illustrating an example of pixel dimensions. As shown in FIG. 13B, isotropic resolution can be ensured by setting the vertical pixel size to about ½ of the horizontal pixel size. For example, compared with the case where the vertical pixel size is equal to the horizontal pixel size, the vertical pixel size is made smaller than the horizontal pixel size and larger than 1/4, so that the resolution can be reduced. The directionality can be improved. Here, the pixel size is a size of a region including the pixel 180 (photodiode 196) and part of the vertical transfer unit 181 corresponding to the pixel 180 (two vertical transfer electrodes 195 in the above example). It is.
 なお、上記説明では、組を成す第1画素及び第2画素が、列方向に隣接する例を示したが、組を成す第1画素及び第2画素は、行方向に隣接してもよい。 In the above description, the example in which the first pixel and the second pixel forming the set are adjacent to each other in the column direction is shown. However, the first pixel and the second pixel forming the set may be adjacent to each other in the row direction.
 また、第1画素と第2画素との配置関係は、以下に示す配置を用いてもよい。 Moreover, the arrangement shown below may be used for the arrangement relationship between the first pixel and the second pixel.
 図14Aは、第1画素及び第2画素の配置例、及び加算重心の分布を示す図である。 FIG. 14A is a diagram illustrating an arrangement example of the first pixel and the second pixel, and a distribution of the added centroids.
 図14Aに示すように、組を成す画素が斜め方向における1つ隣に配置されてもよい。なお、図14Aに示す点線枠はこの組を示している。 As shown in FIG. 14A, the pixels forming a group may be arranged next to each other in an oblique direction. In addition, the dotted line frame shown to FIG. 14A has shown this group.
 具体的には、G画素が市松状に配置され、R画素及びB画素は斜めストライプ状に配置される。つまり、R画素及びB画素は、行方向及び列方向にG画素を介して交互に配置される。また、第1画素のみが配置される列と、第2画素が配置される列とが交互に配置される。言い換えると、各R画素及び各B画素フィルタの斜めに隣接する4つの画素180のうち2つはR画素であり、2つはB画素である。 Specifically, the G pixels are arranged in a checkered pattern, and the R pixels and the B pixels are arranged in an oblique stripe form. That is, the R pixel and the B pixel are alternately arranged via the G pixel in the row direction and the column direction. In addition, columns in which only the first pixels are arranged and columns in which the second pixels are arranged are alternately arranged. In other words, two of the four pixels 180 diagonally adjacent to each R pixel and each B pixel filter are R pixels, and two are B pixels.
 組を成す画素が斜め方向に隣接することにより、水平及び垂直の両方向に対して、G画素、B画素、及びR画素の空間サンプリングピッチを等しくできる。さらに、組を成す画素間の信号電荷の混合による空間的混合重心の分布も均等にすることができる。これにより、良好な解像度特性を得ることができる。 When the pixels forming the set are adjacent to each other in the oblique direction, the spatial sampling pitch of the G pixel, the B pixel, and the R pixel can be made equal in both the horizontal and vertical directions. Furthermore, the distribution of the spatial mixing centroid due to the mixing of signal charges between the pixels forming the set can be made uniform. Thereby, good resolution characteristics can be obtained.
 図14Bは、混合前と混合後の2次元ナイキストリミットを示す図である。混合前において、R画素とB画素との斜め方向の解像度特性は不均一になるが、図14Bに示すように、2画素を混合することによってR画素、B画素及びG画素の各々で均等な解像度特性を実現することができる。 FIG. 14B is a diagram showing a two-dimensional Nyquist limit before and after mixing. Before the mixing, the resolution characteristics in the oblique direction of the R pixel and the B pixel are not uniform, but as shown in FIG. 14B, by mixing the two pixels, the R pixel, the B pixel, and the G pixel are evenly distributed. Resolution characteristics can be realized.
 以下、図14Aに示す画素配置の場合の、画素混合の方法について説明する。 Hereinafter, a pixel mixing method in the pixel arrangement shown in FIG. 14A will be described.
 図15は、図14Aに示す画素配置の場合の、垂直転送電極195の構成例、及び読み出し動作を模式的に示す図である。 FIG. 15 is a diagram schematically illustrating a configuration example of the vertical transfer electrode 195 and a reading operation in the pixel arrangement illustrated in FIG. 14A.
 図15に示すように、撮像素子114は、さらに、位置調整部184と、ラインメモリ185とを備える。 As shown in FIG. 15, the image sensor 114 further includes a position adjusting unit 184 and a line memory 185.
 位置調整部184は、第1画素のみが配置される複数の第1列の垂直転送部181により転送された信号電荷と、第2画素のみが配置される複数の第2列の垂直転送部181により転送された信号電荷とを異なる段数で転送する。例えば、図15に示す例では、第1列の垂直転送部181により転送された信号電荷を3段で転送し、第2列の垂直転送部181により転送された信号電荷を4段で転送する。 The position adjustment unit 184 includes the signal charges transferred by the plurality of first column vertical transfer units 181 in which only the first pixels are arranged, and the plurality of second column vertical transfer units 181 in which only the second pixels are arranged. The signal charges transferred by the above are transferred at different stages. For example, in the example shown in FIG. 15, the signal charge transferred by the vertical transfer unit 181 in the first column is transferred in three stages, and the signal charge transferred by the vertical transfer unit 181 in the second column is transferred in four stages. .
 ラインメモリ185は、位置調整部184により転送された信号電荷を一時的に保持する。また、ラインメモリ185は。保持する信号電荷を水平転送部182に転送する。 The line memory 185 temporarily holds the signal charge transferred by the position adjustment unit 184. Also, the line memory 185 is. The signal charge to be held is transferred to the horizontal transfer unit 182.
 以下、図15に示す組を成す第1画素180A及び第2画素180Bに蓄積された信号電荷を混合する場合を例に説明する。なお、図15における丸印内の数値は、転送回数を示す。 Hereinafter, the case where the signal charges accumulated in the first pixel 180A and the second pixel 180B forming the set shown in FIG. 15 are mixed will be described as an example. Note that the numerical values in circles in FIG. 15 indicate the number of transfers.
 図15に示すように組を成す第1画素180A及び第2画素180Bの信号電荷が同時に垂直転送部181に読み出される。次に、読み出された各信号電荷は、垂直方向(図15の下方向)に順時転送されることにより、位置調整部184に入力される。位置調整部184は、入力された信号電荷をそれぞれ転送する。これにより、ラインメモリ185に組を成す第1画素180A及び第2画素180Bの信号電荷が同時に保持される。次に、ラインメモリ185は、この組を成す第1画素180A及び第2画素180Bの信号電荷を水平転送部182に転送する。次に、水平転送部182は、ラインメモリ185から転送された第1画素180A及び第2画素180Bの信号電荷を当該水平転送部182内で混合するとともに、混合した信号電荷を水平方向に転送する。次に、出力部183は、水平転送部182により転送された信号電荷を混合画像信号153cに変換し、変換した混合画像信号153cを出力する。 As shown in FIG. 15, the signal charges of the first pixel 180A and the second pixel 180B forming a set are simultaneously read out to the vertical transfer unit 181. Next, each read signal charge is input to the position adjustment unit 184 by being sequentially transferred in the vertical direction (downward in FIG. 15). The position adjustment unit 184 transfers the input signal charges. Thus, the signal charges of the first pixel 180A and the second pixel 180B forming a set in the line memory 185 are simultaneously held. Next, the line memory 185 transfers the signal charges of the first pixel 180A and the second pixel 180B forming this set to the horizontal transfer unit 182. Next, the horizontal transfer unit 182 mixes the signal charges of the first pixel 180A and the second pixel 180B transferred from the line memory 185 in the horizontal transfer unit 182 and transfers the mixed signal charges in the horizontal direction. . Next, the output unit 183 converts the signal charge transferred by the horizontal transfer unit 182 into a mixed image signal 153c, and outputs the converted mixed image signal 153c.
 このように、斜め方向に隣接して配置された第1画素の信号電荷と第2画素の信号電荷とを撮像素子114内で混合できる。 As described above, the signal charges of the first pixels and the signal charges of the second pixels arranged adjacent to each other in the oblique direction can be mixed in the image sensor 114.
 なお、第1画素及び第2画素を斜め方向に隣接して配置する画素配置として、以下に示す画素配置を用いてもよい。 In addition, as a pixel arrangement in which the first pixel and the second pixel are arranged adjacent to each other in the oblique direction, the following pixel arrangement may be used.
 図16及び図17は、画素配置の変形例、及び加算重心の分布を示す図である。なお、図16及び図17に示す点線枠は、対応する第1画素と第2画素の組を示している。 16 and 17 are diagrams showing a variation of the pixel arrangement and the distribution of the added centroids. Note that the dotted frame shown in FIGS. 16 and 17 indicates a pair of corresponding first pixel and second pixel.
 図16に示す画素配置例では、G画素が市松状に配置され、R画素及びB画素は2列ごとの縦ストライプ状に配置される。つまり、R画素及びB画素は、行方向にG画素を介して交互に配置される。また、G画素及びR画素の第1画素のみが交互に配置される列と、G画素及びR画素の第2画素のみが交互に配置される列と、G画素及びB画素の第1画素のみが交互に配置される列と、G画素及びB画素の第2画素のみが交互に配置される列とが、この順に繰り返し配置される。 In the pixel arrangement example shown in FIG. 16, G pixels are arranged in a checkered pattern, and R pixels and B pixels are arranged in vertical stripes every two columns. That is, the R pixel and the B pixel are alternately arranged via the G pixel in the row direction. In addition, a column in which only the first pixels of the G pixel and the R pixel are alternately arranged, a column in which only the second pixel of the G pixel and the R pixel are alternately arranged, and only the first pixel of the G pixel and the B pixel. Are alternately arranged, and a column in which only the second pixels of the G pixel and the B pixel are alternately arranged is repeatedly arranged in this order.
 また、図17に示す画素配置例では、G画素が市松状に配置され、R画素及びB画素は2行ごとの横ストライプ状に配置される。つまり、R画素及びB画素は、列方向にG画素を介して交互に配置される。また、G画素及びR画素の第1画素のみが交互に配置される行と、G画素及びR画素の第2画素のみが交互に配置される行と、G画素及びB画素の第1画素のみが交互に配置される行と、G画素及びB画素の第2画素のみが交互に配置される行とが、この順に繰り返し配置される。 In the pixel arrangement example shown in FIG. 17, the G pixels are arranged in a checkered pattern, and the R pixels and the B pixels are arranged in a horizontal stripe every two rows. That is, the R pixel and the B pixel are alternately arranged via the G pixel in the column direction. In addition, only the first pixel of the G pixel and the R pixel, a row where only the second pixel of the G pixel and the R pixel are alternately arranged, and only the first pixel of the G pixel and the B pixel are arranged. Are alternately arranged, and rows in which only the second pixels of the G pixel and the B pixel are alternately arranged are repeatedly arranged in this order.
 図16及び図17に示す配置の場合も、図14Aに示す配置と同様の効果を得ることができる。 In the case of the arrangement shown in FIGS. 16 and 17, the same effect as the arrangement shown in FIG. 14A can be obtained.
 また、第1画素及び第2画素の配置として、以下に示す画素配置を用いてもよい。 Also, the following pixel arrangement may be used as the arrangement of the first pixel and the second pixel.
 図18は、画素配置の変形例、及び加算重心の分布を示す図である。なお、図18に示す点線枠は、対応する第1画素と第2画素の組を示している。 FIG. 18 is a diagram illustrating a variation of the pixel arrangement and the distribution of the added centroids. Note that the dotted frame shown in FIG. 18 indicates a set of the corresponding first pixel and second pixel.
 図18に示す画素配列では、R画素、G画素及びB画素がベイヤ配列される。具体的には、G画素が市松状に配置される。また、G画素及びR画素のみが交互に配置される行と、G画素及びB画素のみが交互に配置される行とが交互に配置されるとともに、G画素及びR画素のみが交互に配置される列と、G画素及びB画素のみが交互に配置される列とが交互に配置される。 In the pixel array shown in FIG. 18, R pixels, G pixels, and B pixels are Bayer arrayed. Specifically, G pixels are arranged in a checkered pattern. In addition, rows in which only G pixels and R pixels are alternately arranged and rows in which only G pixels and B pixels are alternately arranged are alternately arranged, and only G pixels and R pixels are alternately arranged. And columns in which only G pixels and B pixels are alternately arranged are alternately arranged.
 また、G画素は、斜め方向に隣接する画素間で組を成し、R画素及びB画素は、空間的に最も近い同色の画素間で組を成す。例えば、図18に示す例では、R画素及びB画素は、列方向における2つ隣に配置されている同色の画素間で組を成す。なお、R画素及びB画素は、行方向における2つ隣に配置されている同色の画素間で組を成してもよい。 Further, the G pixel forms a pair between pixels adjacent in the oblique direction, and the R pixel and the B pixel form a pair between pixels of the same color that are spatially closest. For example, in the example illustrated in FIG. 18, the R pixel and the B pixel form a group between pixels of the same color that are arranged next to each other in the column direction. Note that the R pixel and the B pixel may form a pair between pixels of the same color that are arranged next to each other in the row direction.
 この画素配列を用いることにより、G画素、R画素及びB画素のそれぞれの加算重心を空間的に均等に配置させることができる。よって、R画素、B画素及びG画素の各々で均等な解像度特性を実現することができる。 By using this pixel arrangement, the added centroids of the G pixel, R pixel, and B pixel can be arranged spatially and evenly. Therefore, uniform resolution characteristics can be realized in each of the R pixel, the B pixel, and the G pixel.
 また、図18に示すベイヤ配列を用いることで、後述する高解像度モード時において、R画素、B画素及びG画素の各々で均等な解像度特性を実現することができる。 Also, by using the Bayer array shown in FIG. 18, it is possible to realize uniform resolution characteristics in each of the R pixel, the B pixel, and the G pixel in the high resolution mode described later.
 次に、高解像度モード時の固体撮像装置100の動作を説明する。 Next, the operation of the solid-state imaging device 100 in the high resolution mode will be described.
 高解像度モード時には、制御部120は、第1期間の間、複数の画素180の全てに光が入射するように光制御部112に制御させる。また、制御部120、当該第1期間に含まれる第1時刻に、複数の第2画素に蓄積されている信号電荷をリセットし、当該第1期間に含まれる第2時刻に複数の第1画素に蓄積されている信号電荷をリセットする。また、制御部120は、第1期間の後の第2期間の間、複数の画素180の全てに光が入射しないように光制御部112に制御させるとともに、複数の画素180に蓄積されている信号電荷を複数の垂直転送部181及び水平転送部182を介してそれぞれ読み出す。 In the high resolution mode, the control unit 120 causes the light control unit 112 to control so that light enters all of the plurality of pixels 180 during the first period. In addition, the control unit 120 resets the signal charges accumulated in the plurality of second pixels at the first time included in the first period, and the plurality of first pixels at the second time included in the first period. The signal charge accumulated in the is reset. In addition, during the second period after the first period, the control unit 120 controls the light control unit 112 so that light does not enter all of the plurality of pixels 180 and is stored in the plurality of pixels 180. The signal charges are read through the plurality of vertical transfer units 181 and horizontal transfer units 182 respectively.
 また、出力部183は、読み出された信号電荷を高解像度画像信号153dに変換し、変換した高解像度画像信号153dを信号処理部140へ出力する。 Also, the output unit 183 converts the read signal charge into a high resolution image signal 153d, and outputs the converted high resolution image signal 153d to the signal processing unit 140.
 次に、固体撮像装置100の全体の動作の流れを説明する。 Next, the overall operation flow of the solid-state imaging device 100 will be described.
 図19は、固体撮像装置100の動作の流れを示すフローチャートである。 FIG. 19 is a flowchart showing an operation flow of the solid-state imaging device 100.
 まず、モード取得部131は、ユーザの操作に応じた指定モード信号152を取得し、取得した指定モード信号152をモード選択部133に出力する(S201)。ここで、指定モード信号152は、固体撮像装置100の動作モードである、広DRモード、高感度モード、高解像度モード及びオートモードのいずれかを示す。 First, the mode acquisition unit 131 acquires the designation mode signal 152 corresponding to the user's operation, and outputs the obtained designation mode signal 152 to the mode selection unit 133 (S201). Here, the designation mode signal 152 indicates any one of a wide DR mode, a high sensitivity mode, a high resolution mode, and an auto mode, which are operation modes of the solid-state imaging device 100.
 また、明るさ取得部132は、被写界の明るさを示す明るさ情報159を取得し、取得した明るさ情報159をモード選択部133に出力する(S202)。例えば、明るさ取得部132は、固体撮像装置100が備える、又は、当該固体撮像装置100が搭載される撮影装置(デジタルスチルカメラ等)が備える光センサにより出力される明るさ情報を取得する。なお、明るさ取得部132は、予め撮影した画像信号151又は153から被写界の明るさを判定してもよい。 Also, the brightness acquisition unit 132 acquires brightness information 159 indicating the brightness of the object scene, and outputs the acquired brightness information 159 to the mode selection unit 133 (S202). For example, the brightness acquisition unit 132 acquires brightness information output from an optical sensor provided in the solid-state imaging device 100 or provided in an imaging device (such as a digital still camera) on which the solid-state imaging device 100 is mounted. Note that the brightness acquisition unit 132 may determine the brightness of the object scene from the image signal 151 or 153 captured in advance.
 次に、モード選択部133は、指定モード信号152及び明るさ情報159を用いて、動作モードを選択し、選択した動作モードを示す選択モード信号160を制御部120に出力する。 Next, the mode selection unit 133 selects an operation mode using the designation mode signal 152 and the brightness information 159, and outputs a selection mode signal 160 indicating the selected operation mode to the control unit 120.
 具体的には、指定モード信号152でオートモードが指定されている場合(S203でYes)、モード選択部133は、明るさ情報159に示される被写界の明るさが予め定められた閾値以上であるか否かを判定する(S204)。 Specifically, when the auto mode is designated by the designated mode signal 152 (Yes in S203), the mode selection unit 133 determines that the brightness of the object scene indicated by the brightness information 159 is equal to or greater than a predetermined threshold value. It is determined whether or not (S204).
 明るさ情報159に示される被写界の明るさが予め定められた閾値以上である場合(S204でYes)、つまり、被写界が明るい場合、モード選択部133は、広DRモードを選択し、広DRモードを示す選択モード信号160を制御部120に出力する。 When the brightness of the scene shown in the brightness information 159 is equal to or greater than a predetermined threshold (Yes in S204), that is, when the scene is bright, the mode selection unit 133 selects the wide DR mode. The selection mode signal 160 indicating the wide DR mode is output to the control unit 120.
 これにより、第1駆動部121は、撮像素子114に上述した広DRモードの動作を行わせる第1駆動信号154を生成する。具体的には、第1駆動信号154は、基板掃出しパルス(Vsub)と、垂直転送部181を駆動する駆動信号(φV1~φV8等)と、水平転送部182を駆動する駆動信号(φH1~φH4)とを含む。 Thereby, the first drive unit 121 generates the first drive signal 154 that causes the image sensor 114 to perform the above-described wide DR mode operation. Specifically, the first drive signal 154 includes a substrate sweep pulse (Vsub), a drive signal for driving the vertical transfer unit 181 (φV1 to φV8, etc.), and a drive signal for driving the horizontal transfer unit 182 (φH1 to φH4). ).
 具体的には、制御部120は、撮像素子114を非加算読み出しで動作させるとともに、長露光時間t1を短露光時間t2より長くする。例えば、制御部120は、長露光時間t1を短露光時間t2の2倍以上にする(S205)。 Specifically, the control unit 120 operates the image sensor 114 with non-addition readout, and makes the long exposure time t1 longer than the short exposure time t2. For example, the control unit 120 sets the long exposure time t1 to at least twice the short exposure time t2 (S205).
 これにより、撮像素子114は、長露光時間t1に対応する長露光画像信号153aと、短露光時間t2に対応する短露光画像信号153bとを生成する(S206)。 Thereby, the image sensor 114 generates the long exposure image signal 153a corresponding to the long exposure time t1 and the short exposure image signal 153b corresponding to the short exposure time t2 (S206).
 次に、第1ホワイトクリップ処理部141は、長露光画像信号153aにホワイトクリップ処理を行うことにより、補正後長露光画像信号156を生成する。次に、合成部142は、補正後長露光画像信号156と短露光画像信号153bとを合成することにより、合成画像信号157を生成する(S207)。 Next, the first white clip processing unit 141 generates a corrected long exposure image signal 156 by performing white clip processing on the long exposure image signal 153a. Next, the synthesizing unit 142 generates the synthesized image signal 157 by synthesizing the corrected long exposure image signal 156 and the short exposure image signal 153b (S207).
 次に、出力部143は、被写界の状態に対して、モード選択部133により選択された動作モードが適正か否かを判定する(S208)。具体的には、出力部143は、白とび又は黒つぶれが発生している場合には、動作モードが適正でないと判定する。例えば、出力部143は、合成画像信号157の信号レベルの平均値が予め定められた範囲内の場合に動作モードが適正であると判定し、当該範囲外の場合に動作モードが適正でないと判断する。なお、出力部143は、合成画像信号157に含まれる、信号レベルが所定の範囲外にある画素の数が予め定められた数未満の場合に動作モードが適正であると判定し、当該数以上の場合に動作モードが適正でないと判断してもよい。 Next, the output unit 143 determines whether or not the operation mode selected by the mode selection unit 133 is appropriate for the state of the object scene (S208). Specifically, the output unit 143 determines that the operation mode is not appropriate when overexposure or underexposure occurs. For example, the output unit 143 determines that the operation mode is appropriate when the average value of the signal levels of the composite image signal 157 is within a predetermined range, and determines that the operation mode is not appropriate when outside the range. To do. Note that the output unit 143 determines that the operation mode is appropriate when the number of pixels included in the composite image signal 157 whose signal level is outside the predetermined range is less than a predetermined number, and the number is equal to or greater than the number. In this case, it may be determined that the operation mode is not appropriate.
 動作モードが適正である場合(S208でYes)、次に、出力部143は、合成画像信号157を画像信号151として外部に出力する(S216)。 When the operation mode is appropriate (Yes in S208), the output unit 143 outputs the composite image signal 157 to the outside as the image signal 151 (S216).
 一方、ステップS204において、明るさ情報159に示される被写界の明るさが予め定められた閾値未満である場合(S204でNo)、つまり、被写界が暗い場合、モード選択部133は、高感度モードを選択し、高感度モードを示す選択モード信号160を制御部120に出力する。 On the other hand, when the brightness of the object scene indicated in the brightness information 159 is less than a predetermined threshold value in step S204 (No in S204), that is, when the object scene is dark, the mode selection unit 133 The high sensitivity mode is selected, and a selection mode signal 160 indicating the high sensitivity mode is output to the control unit 120.
 これにより、第1駆動部121は、撮像素子114に上述した高感度モードの動作を行わせる第1駆動信号154を生成する。 Thereby, the first drive unit 121 generates the first drive signal 154 that causes the image sensor 114 to perform the above-described operation in the high sensitivity mode.
 具体的には、制御部120は、撮像素子114を混合読み出しで動作させるとともに、長露光時間t1及び短露光時間t2を略等しくする。例えば、制御部120は、長露光時間t1を短露光時間t2の90~110%の範囲内にする(S210)。 Specifically, the control unit 120 operates the image sensor 114 with mixed readout, and makes the long exposure time t1 and the short exposure time t2 substantially equal. For example, the control unit 120 sets the long exposure time t1 within the range of 90 to 110% of the short exposure time t2 (S210).
 これにより、撮像素子114は、混合画像信号153cを生成する(S211)。 Thereby, the image sensor 114 generates the mixed image signal 153c (S211).
 次に、第2ホワイトクリップ処理部144は、混合画像信号153cにホワイトクリップ処理を行うことにより、補正後混合画像信号158を生成する。 Next, the second white clip processing unit 144 generates a corrected mixed image signal 158 by performing white clip processing on the mixed image signal 153c.
 次に、出力部143は、被写界の状態に対して、モード選択部133により選択された動作モードが適正か否かを判定する(S208)。 Next, the output unit 143 determines whether or not the operation mode selected by the mode selection unit 133 is appropriate for the state of the object scene (S208).
 動作モードが適正である場合(S208でYes)、次に、出力部143は、補正後混合画像信号158を画像信号151として外部に出力する(S216)。 If the operation mode is appropriate (Yes in S208), the output unit 143 then outputs the corrected mixed image signal 158 to the outside as the image signal 151 (S216).
 一方、指定モード信号152で広DRモードが指定されている場合(S203でNo、かつS212でYes)、モード選択部133は、広DRモードを選択し、広DRモードを示す選択モード信号160を制御部120に出力する。なお、この場合の動作は、オートモード時に明るさ情報159に示される被写界の明るさが予め定められた閾値以上である場合(S204でYes)と同様である。 On the other hand, when the wide DR mode is designated by the designated mode signal 152 (No in S203 and Yes in S212), the mode selection unit 133 selects the wide DR mode and outputs the selection mode signal 160 indicating the wide DR mode. Output to the control unit 120. The operation in this case is the same as that in the case where the brightness of the object scene indicated in the brightness information 159 is equal to or greater than a predetermined threshold value (Yes in S204).
 また、指定モード信号152で高感度モードが指定されている場合(S203でNo、かつS212でNo、かつS213でYes)、モード選択部133は、高感度モードを選択し、高感度モードを示す選択モード信号160を制御部120に出力する。なお、この場合の動作は、オートモード時に明るさ情報159に示される被写界の明るさが予め定められた閾値未満である場合(S204でNo)と同様である。 When the high sensitivity mode is designated by the designated mode signal 152 (No in S203, No in S212, and Yes in S213), the mode selection unit 133 selects the high sensitivity mode and indicates the high sensitivity mode. The selection mode signal 160 is output to the control unit 120. Note that the operation in this case is the same as that in the case where the brightness of the object scene indicated in the brightness information 159 is less than a predetermined threshold in the auto mode (No in S204).
 一方、指定モード信号152で高解像度モードが指定されている場合(S203でNo、かつS212でNo、かつS213でNo)、モード選択部133は、高解像度モードを選択し、高解像度モードを示す選択モード信号160を制御部120に出力する。 On the other hand, when the high resolution mode is designated by the designated mode signal 152 (No in S203, No in S212, and No in S213), the mode selection unit 133 selects the high resolution mode and indicates the high resolution mode. The selection mode signal 160 is output to the control unit 120.
 これにより、第1駆動部121は、撮像素子114に高解像度モードの動作を行わせる第1駆動信号154を生成する。 Thereby, the first drive unit 121 generates the first drive signal 154 that causes the image sensor 114 to perform the operation in the high resolution mode.
 具体的には、制御部120は、撮像素子114を非加算読み出しで動作させるとともに、長露光時間t1及び短露光時間t2を略等しくする。例えば、制御部120は、長露光時間t1を短露光時間t2の90~110%の範囲内にする(S214)。 Specifically, the control unit 120 operates the image sensor 114 with non-addition readout, and makes the long exposure time t1 and the short exposure time t2 substantially equal. For example, the control unit 120 sets the long exposure time t1 within the range of 90 to 110% of the short exposure time t2 (S214).
 これにより、撮像素子114は、高解像度画像信号153dを生成する(S215)。この高解像度画像信号153dは、長露光画像信号153a、短露光画像信号153b及び混合画像信号153cに対して2倍の解像度を有する。 Thereby, the image sensor 114 generates the high-resolution image signal 153d (S215). The high resolution image signal 153d has twice the resolution of the long exposure image signal 153a, the short exposure image signal 153b, and the mixed image signal 153c.
 次に、出力部143は、被写界の状態に対して、モード選択部133により選択された動作モードが適正か否かを判定する(S208)。 Next, the output unit 143 determines whether or not the operation mode selected by the mode selection unit 133 is appropriate for the state of the object scene (S208).
 動作モードが適正である場合(S208でYes)、次に、出力部143は、高解像度画像信号153dを画像信号151として外部に出力する(S216)。 If the operation mode is appropriate (Yes in S208), the output unit 143 then outputs the high resolution image signal 153d as an image signal 151 to the outside (S216).
 一方、各動作モードにおいて、動作モードが適正でない場合(S208でNo)、明るさ取得部132は、再度、明るさ情報159を取得し、取得した明るさ情報159をモード選択部133に出力する(S209)。 On the other hand, if the operation mode is not appropriate in each operation mode (No in S208), the brightness acquisition unit 132 acquires the brightness information 159 again and outputs the acquired brightness information 159 to the mode selection unit 133. (S209).
 次に、モード選択部133は、指定モード信号152でオートモードが指定されている場合(S203でYes)と同様の処理を再度行う。 Next, the mode selection unit 133 performs the same process as when the auto mode is designated by the designation mode signal 152 (Yes in S203).
 なお、高解像度モード時において、適正でない場合(S208でNo)には、明るさ情報159に基づき、露光時間t1≒t2を変更したうえで、再度ステップS214の処理を行ってもよい。具体的には、被写界が明るい場合には、露光時間t1≒t2を短くし、被写界が暗い場合には、露光時間t1≒t2を長くすればよい。 If it is not appropriate in the high resolution mode (No in S208), the exposure time t1≈t2 may be changed based on the brightness information 159, and the process of step S214 may be performed again. Specifically, when the object scene is bright, the exposure time t1≈t2 may be shortened, and when the object scene is dark, the exposure time t1≈t2 may be increased.
 以上より、本発明の実施の形態に係る固体撮像装置100は、広DRモード時には、異なる露光時間の長露光画像信号153aと短露光画像信号153bとを生成し、この長露光画像信号153aと短露光画像信号153bとを合成することにより、ダイナミックレンジの広い画像信号151を生成できる。 As described above, the solid-state imaging device 100 according to the embodiment of the present invention generates the long exposure image signal 153a and the short exposure image signal 153b having different exposure times in the wide DR mode, and the short exposure image signal 153a and the short exposure image signal 153a. By combining the exposure image signal 153b, an image signal 151 having a wide dynamic range can be generated.
 さらに、本発明の実施の形態に係る固体撮像装置100は、2つの露光時間の開始時刻を異ならせ、かつ、光制御部112により2つの露光時間の終了時刻を同時刻にする。これにより、本発明の実施の形態に係る固体撮像装置100は、露光時間が終了した後から、信号電荷を読み出すまでの期間、画素180に信号電荷を保持できる。よって、固体撮像装置100は、垂直転送部181等に信号電荷を長時間保持する必要がないので、スミア及び暗電流による雑音を抑えることができる。 Furthermore, in the solid-state imaging device 100 according to the embodiment of the present invention, the start times of the two exposure times are made different, and the end times of the two exposure times are made the same time by the light control unit 112. Thereby, the solid-state imaging device 100 according to the embodiment of the present invention can hold the signal charge in the pixel 180 during the period from the end of the exposure time to the reading of the signal charge. Therefore, the solid-state imaging device 100 does not need to hold the signal charge in the vertical transfer unit 181 or the like for a long time, and thus noise due to smear and dark current can be suppressed.
 また、本発明の実施の形態に係る固体撮像装置100は、高感度モード時には、撮像素子114内で、2画素の信号電荷を混合することにより、高感度な画像信号151を生成できる。 In the high sensitivity mode, the solid-state imaging device 100 according to the embodiment of the present invention can generate a highly sensitive image signal 151 by mixing signal charges of two pixels in the imaging element 114.
 また、本発明の実施の形態に係る固体撮像装置100は、高解像度モード時には、各画素180の信号電荷を個別に読み出すことにより、高解像度な画像信号151を生成できる。 In the high-resolution mode, the solid-state imaging device 100 according to the embodiment of the present invention can generate the high-resolution image signal 151 by reading the signal charges of each pixel 180 individually.
 また、本発明の実施の形態に係る固体撮像装置100は、被写界の明るさに応じて動作モードを選択する。これにより、固体撮像装置100は、自動的に最適な動作モードを選択できる。 Further, the solid-state imaging device 100 according to the embodiment of the present invention selects an operation mode according to the brightness of the object scene. Thereby, the solid-state imaging device 100 can automatically select an optimal operation mode.
 以上、本発明の実施の形態に係る固体撮像装置100について説明したが、本発明は、この実施の形態に限定されるものではない。 The solid-state imaging device 100 according to the embodiment of the present invention has been described above, but the present invention is not limited to this embodiment.
 例えば、上記実施の形態では、光制御部112は、機械式シャッタであるとしたが、複数の画素180の全てへ光を入射させるか否かを制御可能な構成であれば、機械式シャッタ以外でもよい。 For example, in the above embodiment, the light control unit 112 is a mechanical shutter, but other than the mechanical shutter as long as it can control whether light is incident on all of the plurality of pixels 180. But you can.
 具体的には、光制御部112は、液晶パネル等の電気的に光の透過率を制御可能な光学素子であってもよい。例えば、当該光学素子を撮像素子114の入射面側の全面に配置する。この構成において、当該光学素子の透過率を下げることで、撮像素子114へ光150を入射させないように制御し、当該光学素子の透過率を上げることで、撮像素子114へ光150を入射させるように制御できる。 Specifically, the light control unit 112 may be an optical element that can electrically control light transmittance, such as a liquid crystal panel. For example, the optical element is disposed on the entire incident surface side of the image sensor 114. In this configuration, the light 150 is controlled not to be incident on the image sensor 114 by lowering the transmittance of the optical element, and the light 150 is incident on the image sensor 114 by increasing the transmittance of the optical element. Can be controlled.
 また、光制御部112は、MEMS(Micro Electro Mechanical Systems)ミラー等の光150の反射方向を制御可能なデバイスであってもよい。 The light control unit 112 may be a device that can control the reflection direction of the light 150 such as a MEMS (Micro Electro Mechanical Systems) mirror.
 図20A及び図20Bは、光制御部112としてMEMSミラー112Aを用いた場合の撮像部110の構成例を示す図である。 20A and 20B are diagrams illustrating a configuration example of the imaging unit 110 when the MEMS mirror 112A is used as the light control unit 112. FIG.
 図20Aに示すようにMEMSミラー112Aの反射方向を制御することによりレンズ111により集光された光150を撮像素子114へ入射させることができる。また、図20Bに示すようにMEMSミラー112Aの反射方向を制御することによりレンズ111により集光された光150を撮像素子114へ入射させないことができる。 As shown in FIG. 20A, the light 150 condensed by the lens 111 can be incident on the image sensor 114 by controlling the reflection direction of the MEMS mirror 112A. In addition, as shown in FIG. 20B, the light 150 collected by the lens 111 can be prevented from entering the image sensor 114 by controlling the reflection direction of the MEMS mirror 112A.
 また、光制御部112は、ストロボ等の被写体に光を照射する光照射装置であってもよい。例えば、暗所において撮影する場合には、この光照射装置が被写体に光を照射することにより、撮像素子114に光150を入射させ、光照射装置が被写体に光を照射しないことにより、撮像素子114に光150を入射させないように制御できる。 Further, the light control unit 112 may be a light irradiation device that irradiates a subject such as a strobe light. For example, when shooting in a dark place, the light irradiation device irradiates the subject with light, thereby causing the light 150 to enter the imaging device 114, and the light irradiation device does not irradiate the subject with light. It is possible to control so that the light 150 does not enter the beam 114.
 また、上記実施の形態に係る固体撮像装置100に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又はすべてを含むように1チップ化されてもよい。 In addition, each processing unit included in the solid-state imaging device 100 according to the above embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integration of circuits is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 また、本発明の実施の形態に係る固体撮像装置100に含まれる制御部120、モード決定部130及び信号処理部140の機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。 In addition, a part of or all of the functions of the control unit 120, the mode determination unit 130, and the signal processing unit 140 included in the solid-state imaging device 100 according to the embodiment of the present invention is executed by a processor such as a CPU. It may be realized.
 さらに、本発明は上記プログラムであってもよいし、上記プログラムが記録された記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。 Furthermore, the present invention may be the above program or a recording medium on which the above program is recorded. Needless to say, the program can be distributed via a transmission medium such as the Internet.
 また、上記説明では、本発明の実施の形態に係る固体撮像装置100は、撮像部110、制御部120、モード決定部130及び信号処理部140を含むとしたが、モード決定部130及び信号処理部140のうち少なくとも一方が、固体撮像装置100の外部に形成されてもよい。つまり、固体撮像装置100は、画像信号153を外部に出力し、外部の装置が、この画像信号153に上述した信号処理を行ってもよい。 In the above description, the solid-state imaging device 100 according to the embodiment of the present invention includes the imaging unit 110, the control unit 120, the mode determination unit 130, and the signal processing unit 140. However, the mode determination unit 130 and the signal processing are described. At least one of the units 140 may be formed outside the solid-state imaging device 100. That is, the solid-state imaging device 100 may output the image signal 153 to the outside, and the external device may perform the above-described signal processing on the image signal 153.
 また、上記で用いた数字は、すべて本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。さらに、ハイ/ローにより表される論理レベル又はオン/オフにより表されるスイッチング状態は、本発明を具体的に説明するために例示するものであり、例示された論理レベル又はスイッチング状態の異なる組み合わせにより、同等な結果を得ることも可能である。また、トランジスタ及び半導体層等のn型及びp型等は、本発明を具体的に説明するために例示するものであり、これらを反転させることで、同等の結果を得ることも可能である。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。 Also, the numbers used above are all exemplified for specifically describing the present invention, and the present invention is not limited to the illustrated numbers. Furthermore, the logic levels represented by high / low or the switching states represented by on / off are illustrative for the purpose of illustrating the present invention, and different combinations of the illustrated logic levels or switching states. Therefore, it is possible to obtain an equivalent result. In addition, n-type and p-type such as a transistor and a semiconductor layer are exemplified to specifically describe the present invention, and it is possible to obtain equivalent results by inverting them. In addition, the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
 更に、本発明の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。 Furthermore, various modifications in which the present embodiment is modified within the scope conceived by those skilled in the art are also included in the present invention without departing from the gist of the present invention.
 また、上記実施の形態に係る、固体撮像装置100、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。 Further, at least a part of the functions of the solid-state imaging device 100 and the modification thereof according to the above-described embodiment may be combined.
 本発明は、固体撮像装置に適用でき、特に、デジタルスチルカメラに適用できる。 The present invention can be applied to a solid-state imaging device, and in particular to a digital still camera.
 100 固体撮像装置
 110 撮像部
 111、113 レンズ
 112 光制御部
 112A MEMSミラー
 114 撮像素子
 120 制御部
 121 第1駆動部
 122 第2駆動部
 130 モード決定部
 131 モード取得部
 132 明るさ取得部
 133 モード選択部
 140 信号処理部
 141 第1ホワイトクリップ処理部
 142 合成部
 143 出力部
 144 第2ホワイトクリップ処理部
 150 光
 151、153 画像信号
 152 指定モード信号
 153a 長露光画像信号
 153b 短露光画像信号
 153c 混合画像信号
 153d 高解像度画像信号
 154 第1駆動信号
 155 第2駆動信号
 156 補正後長露光画像信号
 157 合成画像信号
 158 補正後混合画像信号
 159 明るさ情報
 160 選択モード信号
 180 画素
 180A 第1画素
 180B 第2画素
 181 垂直転送部
 182 水平転送部
 183 出力部
 184 位置調整部
 185 ラインメモリ
 191 n型半導体基板
 192 pウェル
 193 p+領域
 194 垂直転送チャネル
 195 垂直転送電極
 196 フォトダイオード
 Bg、Gg、Rg 重心
 B1、B2 B画素
 G1、G2 G画素
 R1、R2 R画素
DESCRIPTION OF SYMBOLS 100 Solid-state imaging device 110 Imaging part 111, 113 Lens 112 Light control part 112A MEMS mirror 114 Imaging element 120 Control part 121 1st drive part 122 2nd drive part 130 Mode determination part 131 Mode acquisition part 132 Brightness acquisition part 133 Mode selection Unit 140 signal processing unit 141 first white clip processing unit 142 combining unit 143 output unit 144 second white clip processing unit 150 light 151, 153 image signal 152 designation mode signal 153a long exposure image signal 153b short exposure image signal 153c mixed image signal 153d High-resolution image signal 154 First drive signal 155 Second drive signal 156 Corrected long exposure image signal 157 Composite image signal 158 Corrected mixed image signal 159 Brightness information 160 Selection mode signal 180 Pixel 180A First image Element 180B Second pixel 181 Vertical transfer unit 182 Horizontal transfer unit 183 Output unit 184 Position adjustment unit 185 Line memory 191 N-type semiconductor substrate 192 p well 193 p + region 194 Vertical transfer channel 195 Vertical transfer electrode 196 Photodiode Bg, Gg, Rg Center of gravity B1, B2 B pixel G1, G2 G pixel R1, R2 R pixel

Claims (15)

  1.  固体撮像装置であって、
     行列状に配置され、光を信号電荷に変換し、変換した前記信号電荷を蓄積する複数の光電変換素子と、
     列毎に設けられ、対応する列に配置された複数の光電変換素子に蓄積されている前記信号電荷を転送する複数の垂直転送部と、
     前記複数の垂直転送部により転送された信号電荷を転送する水平転送部と、
     前記複数の光電変換素子へ光を入射させるか否かを制御する光制御部と、
     制御部とを備え、
     前記制御部は、
     第1期間の間、前記複数の光電変換素子に光が入射するように前記光制御部に制御させ、
     前記第1期間に含まれる第1時刻に、前記複数の光電変換素子に含まれる複数の第1光電変換素子に蓄積されている前記信号電荷をリセットし、
     前記第1期間に含まれ、かつ前記第1時刻より後の第2時刻に前記複数の光電変換素子に含まれる複数の第2光電変換素子に蓄積されている前記信号電荷をリセットし、
     前記第1期間の直後の第2期間の間、前記複数の光電変換素子へ光が入射しないように前記光制御部に制御させ、
     前記第1時刻から前記第2期間の開始時刻までの第1露光時間の間に前記複数の第1光電変換素子に蓄積された第1信号電荷と、前記第2時刻から前記第2期間の開始時刻までの第2露光時間の間に前記複数の第2光電変換素子により蓄積された第2信号電荷とを前記第2期間の間に前記垂直転送部及び前記水平転送部を介して読み出し、
     前記各第1光電変換素子と各第2光電変換素子とは一対一で対応して配置されており、
     前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子から予め定められた距離内に配置されている
     固体撮像装置。
    A solid-state imaging device,
    A plurality of photoelectric conversion elements that are arranged in a matrix, convert light into signal charges, and store the converted signal charges;
    A plurality of vertical transfer units provided for each column and transferring the signal charges accumulated in a plurality of photoelectric conversion elements arranged in the corresponding column;
    A horizontal transfer unit for transferring the signal charges transferred by the plurality of vertical transfer units;
    A light control unit that controls whether light is incident on the plurality of photoelectric conversion elements;
    A control unit,
    The controller is
    During the first period, the light control unit is controlled so that light is incident on the plurality of photoelectric conversion elements,
    Resetting the signal charges accumulated in the plurality of first photoelectric conversion elements included in the plurality of photoelectric conversion elements at a first time included in the first period;
    Resetting the signal charges accumulated in the plurality of second photoelectric conversion elements included in the plurality of photoelectric conversion elements at a second time included in the first period and after the first time;
    During the second period immediately after the first period, the light control unit is controlled so that light does not enter the plurality of photoelectric conversion elements,
    The first signal charge accumulated in the plurality of first photoelectric conversion elements during the first exposure time from the first time to the start time of the second period, and the start of the second period from the second time Reading out the second signal charges accumulated by the plurality of second photoelectric conversion elements during the second exposure time until the time through the vertical transfer unit and the horizontal transfer unit during the second period,
    Each of the first photoelectric conversion elements and each of the second photoelectric conversion elements are arranged in a one-to-one correspondence,
    Each of the first photoelectric conversion elements is disposed within a predetermined distance from the second photoelectric conversion element corresponding to the first photoelectric conversion element.
  2.  前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の行方向、列方向又は斜め方向における1つ隣、又は行方向又は列方向における2つ隣に配置されている
     請求項1記載の固体撮像装置。
    Each of the first photoelectric conversion elements is arranged next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in the row direction, the column direction, or the oblique direction, or adjacent to the second photoelectric conversion element in the row direction or the column direction. The solid-state imaging device according to claim 1.
  3.  前記固体撮像装置は、さらに、
     前記複数の光電変換素子の上にそれぞれ形成される複数のフィルタを備え、
     前記複数のフィルタのそれぞれは、複数の波長帯域のうちいずれかの光を透過する複数の種類のフィルタのうちいずれかであり、
     互いに対応する前記第1光電変換素子及び前記第2光電変換素子の上には、同一の種類の前記フィルタが形成されている
     請求項1又は2記載の固体撮像装置。
    The solid-state imaging device further includes:
    Comprising a plurality of filters respectively formed on the plurality of photoelectric conversion elements;
    Each of the plurality of filters is one of a plurality of types of filters that transmit any one of a plurality of wavelength bands,
    The solid-state imaging device according to claim 1, wherein the same type of filter is formed on the first photoelectric conversion element and the second photoelectric conversion element corresponding to each other.
  4.  前記複数のフィルタのそれぞれは、赤色光を透過する赤色フィルタと、緑色光を透過する緑色フィルタと、青色光を透過する青色フィルタとのうちいずれかであり、
     前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の行方向又は列方向における1つ隣に配置されており、
     前記互いに対応する前記第1光電変換素子及び前記第2光電変換素子の組は、ベイヤ配列されている
     請求項3記載の固体撮像装置。
    Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light.
    Each of the first photoelectric conversion elements is arranged next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in the row direction or the column direction,
    The solid-state imaging device according to claim 3, wherein the first photoelectric conversion element and the second photoelectric conversion element corresponding to each other are arranged in a Bayer array.
  5.  前記複数のフィルタのそれぞれは、赤色光を透過する赤色フィルタ、緑色光を透過する緑色フィルタ、及び青色光を透過する青色フィルタのうちいずれかであるとともに、ベイヤ配列されており、
     前記緑色フィルタの下に形成される各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の斜め方向における1つ隣に配置されており、
     前記赤色フィルタ又は前記青色フィルタの下に配置される各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の行方向又は列方向における2つ隣に配置されている
     請求項3記載の固体撮像装置。
    Each of the plurality of filters is one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light, and is arranged in a Bayer array.
    Each first photoelectric conversion element formed under the green filter is disposed next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in an oblique direction,
    Each 1st photoelectric conversion element arrange | positioned under the said red filter or the said blue filter is arrange | positioned 2 adjacent in the row direction or column direction of the said 2nd photoelectric conversion element corresponding to the said 1st photoelectric conversion element. The solid-state imaging device according to claim 3.
  6.  前記複数のフィルタのそれぞれは、赤色光を透過する赤色フィルタ、緑色光を透過する緑色フィルタ、及び青色光を透過する青色フィルタのうちいずれかであり、
     前記緑色フィルタは市松状に配置されており、
     前記各赤色フィルタ及び各青色フィルタの斜めに隣接する4つのフィルタのうち2つは前記赤色フィルタであり、2つは青色フィルタであり、
     前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子の斜め方向における1つ隣に配置されている
     請求項3記載の固体撮像装置。
    Each of the plurality of filters is any one of a red filter that transmits red light, a green filter that transmits green light, and a blue filter that transmits blue light.
    The green filter is arranged in a checkered pattern,
    Of the four filters diagonally adjacent to each red filter and each blue filter, two are the red filters and two are blue filters,
    The solid-state imaging device according to claim 3, wherein each of the first photoelectric conversion elements is arranged next to the second photoelectric conversion element corresponding to the first photoelectric conversion element in an oblique direction.
  7.  前記固体撮像装置は、さらに、
     前記複数の光電変換素子が形成される半導体基板を備え、
     前記制御部は、前記第1時刻に前記複数の第1光電変換素子に蓄積されている前記信号電荷を、前記半導体基板に排出する、又は前記垂直転送部に転送することにより、当該複数の第1光電変換素子に蓄積されている前記信号電荷をリセットし、前記第2時刻に前記複数の第2光電変換素子に蓄積されている前記信号電荷を、前記垂直転送部に転送することにより、当該複数の第2光電変換素子に蓄積されている前記信号電荷をリセットする
     請求項1~6のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    Comprising a semiconductor substrate on which the plurality of photoelectric conversion elements are formed;
    The control unit discharges the signal charges accumulated in the plurality of first photoelectric conversion elements at the first time to the semiconductor substrate or transfers the signal charges to the vertical transfer unit, thereby Resetting the signal charge accumulated in one photoelectric conversion element and transferring the signal charge accumulated in the plurality of second photoelectric conversion elements at the second time to the vertical transfer unit, The solid-state imaging device according to any one of claims 1 to 6, wherein the signal charges accumulated in a plurality of second photoelectric conversion elements are reset.
  8.  前記固体撮像装置は、さらに、
     前記第1信号電荷を第1画像信号に変換し、前記第2信号電荷を第2画像信号に変換し、変換した前記第1画像信号及び前記第2画像信号を出力する出力部と、
     前記第1画像信号及び前記第2画像信号を合成する信号処理部とを備える
     請求項1~7のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    An output unit that converts the first signal charge into a first image signal, converts the second signal charge into a second image signal, and outputs the converted first image signal and the second image signal;
    The solid-state imaging device according to any one of claims 1 to 7, further comprising: a signal processing unit that synthesizes the first image signal and the second image signal.
  9.  前記信号処理部は、
     前記第1画像信号が第1の値より大きい場合に、当該第1画像信号を前記第1の値にすることにより補正後第1画像信号を生成する第1ホワイトクリップ処理部と、
     前記補正後第1画像信号と、前記第2画像信号とを合成する合成部とを備える
     請求項8記載の固体撮像装置。
    The signal processing unit
    A first white clip processing unit that generates a corrected first image signal by setting the first image signal to the first value when the first image signal is greater than a first value;
    The solid-state imaging device according to claim 8, further comprising a combining unit that combines the corrected first image signal and the second image signal.
  10.  前記固体撮像装置は、第1動作モードと、第2動作モードとを有し、
     前記第1動作モード時には、
     前記制御部は、前記第1信号電荷及び前記第2信号電荷を読み出し、
     前記出力部は、前記第1信号電荷を第1画像信号に変換し、前記第2信号電荷を第2画像信号に変換し、変換した前記第1画像信号及び前記第2画像信号を出力し、
     前記信号処理部は、前記第1画像信号及び前記第2画像信号を合成し、
     前記第2動作モード時には、
     前記制御部は、前記第1信号電荷と前記第2信号電荷とを前記垂直転送部内又は前記水平転送部内で混合することにより混合信号電荷を生成し、
     前記出力部は、前記混合信号電荷を混合画像信号に変換し、変換した混合画像信号を出力する
     請求項8又は9記載の固体撮像装置。
    The solid-state imaging device has a first operation mode and a second operation mode,
    During the first operation mode,
    The controller reads the first signal charge and the second signal charge;
    The output unit converts the first signal charge into a first image signal, converts the second signal charge into a second image signal, and outputs the converted first image signal and the second image signal,
    The signal processing unit combines the first image signal and the second image signal,
    In the second operation mode,
    The control unit generates a mixed signal charge by mixing the first signal charge and the second signal charge in the vertical transfer unit or the horizontal transfer unit,
    The solid-state imaging device according to claim 8 or 9, wherein the output unit converts the mixed signal charge into a mixed image signal and outputs the converted mixed image signal.
  11.  前記信号処理部は、さらに、
     前記第2動作モード時に、前記混合画像信号が第2の値より大きい場合に、当該混合画像信号を前記第2の値にすることにより補正後第2画像信号を生成する第2ホワイトクリップ処理部を備え、
     前記第2の値は、前記光電変換素子の飽和信号電荷に相当する混合画像信号の値をVSATとし、前記第1露光時間をt1とし、前記第2露光時間をt2とした場合、VSAT×(1+t2/t1)で表される値以下である
     請求項10記載の固体撮像装置。
    The signal processing unit further includes:
    In the second operation mode, when the mixed image signal is larger than a second value, a second white clip processing unit that generates a corrected second image signal by setting the mixed image signal to the second value With
    The second value is VSAT × ((2) when the value of the mixed image signal corresponding to the saturation signal charge of the photoelectric conversion element is VSAT, the first exposure time is t1, and the second exposure time is t2. The solid-state imaging device according to claim 10, which is equal to or less than a value represented by 1 + t2 / t1).
  12.  前記制御部は、前記第1露光時間を前記第2露光時間の2倍以上にし、前記第2動作モード時には、前記第2露光時間を前記第1露光時間の90%以上にする
     請求項10又は11記載の固体撮像装置。
    The control unit makes the first exposure time more than twice the second exposure time, and sets the second exposure time to 90% or more of the first exposure time in the second operation mode. The solid-state imaging device according to 11.
  13.  前記固体撮像装置は、さらに、
     被写界の明るさを取得する明るさ取得部と、
     前記明るさ取得部により取得された明るさが第3の値より大きい場合、前記第1動作モードを選択し、前記明るさ取得部により取得された明るさが前記第3の値より小さい場合、前記第2動作モードを選択するモード選択部とを備え、
     前記固体撮像装置は、前記モード選択部により選択された前記第1動作モード又は前記第2動作モードで動作する
     請求項10~12のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device further includes:
    A brightness acquisition unit for acquiring the brightness of the scene;
    When the brightness acquired by the brightness acquisition unit is greater than a third value, the first operation mode is selected, and when the brightness acquired by the brightness acquisition unit is less than the third value, A mode selection unit for selecting the second operation mode,
    The solid-state imaging device according to any one of claims 10 to 12, wherein the solid-state imaging device operates in the first operation mode or the second operation mode selected by the mode selection unit.
  14.  前記光制御部は、機械式シャッタ、液晶、MEMSミラー、又は電気的に制御可能な光学素子である
     請求項1~13のいずれか1項に記載の固体撮像装置。
    The solid-state imaging device according to any one of claims 1 to 13, wherein the light control unit is a mechanical shutter, a liquid crystal, a MEMS mirror, or an optically controllable optical element.
  15.  行列状に配置され、光を信号電荷に変換し、変換した前記信号電荷を蓄積する複数の光電変換素子と、
     列毎に設けられ、対応する列に配置された前記光電変換素子に蓄積されている前記信号電荷を転送する複数の垂直転送部と、
     前記複数の垂直転送部により転送された信号電荷を転送する水平転送部と、
     前記複数の光電変換素子へ光を入射させるか否かを制御する光制御部とを備える固体撮像装置の制御方法であって、
     第1期間の間、前記複数の光電変換素子に光が入射するように前記光制御部に制御させるステップと、
     前記第1期間に含まれる第1時刻に、前記複数の光電変換素子に含まれる複数の第1光電変換素子に蓄積されている前記信号電荷をリセットするステップと、
     前記第1期間に含まれ、かつ前記第1時刻より後の第2時刻に前記複数の光電変換素子に含まれる複数の第2光電変換素子に蓄積されている前記信号電荷をリセットするステップと、
     前記第1期間の直後の第2期間の間、前記複数の光電変換素子へ光が入射しないように前記光制御部に制御させるステップと、
     前記第1時刻から前記第2期間の開始時刻までの第1露光時間の間に前記複数の第1光電変換素子に蓄積された第1信号電荷と、前記第2時刻から前記第2期間の開始時刻までの第2露光時間の間に前記複数の第2光電変換素子により蓄積された第2信号電荷とを前記第2期間の間に前記垂直転送部及び前記水平転送部を介して読み出すステップとを含み、
     前記各第1光電変換素子と各第2光電変換素子とは一対一で対応して配置されており、
     前記各第1光電変換素子は、当該第1光電変換素子に対応する前記第2光電変換素子から予め定められた距離内に配置されている
     固体撮像装置の制御方法。
    A plurality of photoelectric conversion elements that are arranged in a matrix, convert light into signal charges, and store the converted signal charges;
    A plurality of vertical transfer units that are provided for each column and transfer the signal charges accumulated in the photoelectric conversion elements arranged in the corresponding column;
    A horizontal transfer unit for transferring the signal charges transferred by the plurality of vertical transfer units;
    A control method of a solid-state imaging device comprising: a light control unit that controls whether light is incident on the plurality of photoelectric conversion elements;
    During the first period, causing the light control unit to control the light to enter the plurality of photoelectric conversion elements;
    Resetting the signal charges accumulated in the plurality of first photoelectric conversion elements included in the plurality of photoelectric conversion elements at a first time included in the first period;
    Resetting the signal charges accumulated in the plurality of second photoelectric conversion elements included in the plurality of photoelectric conversion elements at a second time that is included in the first period and after the first time;
    Controlling the light control unit so that light does not enter the plurality of photoelectric conversion elements during a second period immediately after the first period;
    The first signal charge accumulated in the plurality of first photoelectric conversion elements during the first exposure time from the first time to the start time of the second period, and the start of the second period from the second time Reading out the second signal charges accumulated by the plurality of second photoelectric conversion elements during the second exposure time until the time through the vertical transfer unit and the horizontal transfer unit during the second period; Including
    Each of the first photoelectric conversion elements and each of the second photoelectric conversion elements are arranged in a one-to-one correspondence,
    Each said 1st photoelectric conversion element is arrange | positioned within the predetermined distance from the said 2nd photoelectric conversion element corresponding to the said 1st photoelectric conversion element. The control method of a solid-state imaging device.
PCT/JP2010/003919 2009-06-30 2010-06-14 Solid-state imaging device, and control method therefor WO2011001616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-156416 2009-06-30
JP2009156416A JP2011015103A (en) 2009-06-30 2009-06-30 Solid-state imaging apparatus, and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2011001616A1 true WO2011001616A1 (en) 2011-01-06

Family

ID=43410707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003919 WO2011001616A1 (en) 2009-06-30 2010-06-14 Solid-state imaging device, and control method therefor

Country Status (2)

Country Link
JP (1) JP2011015103A (en)
WO (1) WO2011001616A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887571A (en) * 2021-01-27 2021-06-01 维沃移动通信有限公司 Image sensor, camera module and electronic equipment
CN112887572A (en) * 2021-01-27 2021-06-01 维沃移动通信有限公司 Image sensor, camera module and electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026722A (en) * 2011-07-19 2013-02-04 Toshiba Corp Image processing apparatus
GB2494908B (en) 2011-09-26 2014-04-30 Elbit Systems Ltd Image gating using an array of reflective elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069491A (en) * 1998-08-19 2000-03-03 Nikon Corp Image pickup element and image pickup device using the same
JP2000138868A (en) * 1998-11-04 2000-05-16 Toshiba Corp Image pickup device and its control method
JP2001069408A (en) * 1999-08-30 2001-03-16 Sony Corp Solid-state image pickup device, its drive method and camera system
JP2007235656A (en) * 2006-03-02 2007-09-13 Fujifilm Corp Solid-state imaging apparatus and driving method thereof
JP2009088706A (en) * 2007-09-27 2009-04-23 Fujifilm Corp Imaging apparatus, and method for driving solid-state imaging element
JP2009141404A (en) * 2007-12-03 2009-06-25 Fujifilm Corp Drive control method for ccd solid-state imaging sensor and imaging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069491A (en) * 1998-08-19 2000-03-03 Nikon Corp Image pickup element and image pickup device using the same
JP2000138868A (en) * 1998-11-04 2000-05-16 Toshiba Corp Image pickup device and its control method
JP2001069408A (en) * 1999-08-30 2001-03-16 Sony Corp Solid-state image pickup device, its drive method and camera system
JP2007235656A (en) * 2006-03-02 2007-09-13 Fujifilm Corp Solid-state imaging apparatus and driving method thereof
JP2009088706A (en) * 2007-09-27 2009-04-23 Fujifilm Corp Imaging apparatus, and method for driving solid-state imaging element
JP2009141404A (en) * 2007-12-03 2009-06-25 Fujifilm Corp Drive control method for ccd solid-state imaging sensor and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887571A (en) * 2021-01-27 2021-06-01 维沃移动通信有限公司 Image sensor, camera module and electronic equipment
CN112887572A (en) * 2021-01-27 2021-06-01 维沃移动通信有限公司 Image sensor, camera module and electronic equipment

Also Published As

Publication number Publication date
JP2011015103A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
US8222709B2 (en) Solid-state imaging device, method of driving solid-state imaging device and imaging apparatus
US7812301B2 (en) Solid-state imaging device, method of driving solid-state imaging device and imaging apparatus
JP6761979B2 (en) Imaging device
JP4973115B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and imaging device
US10784304B2 (en) Solid-state imaging apparatus, and electronic apparatus
JP4877359B2 (en) Solid-state imaging device and imaging device
US20080036856A1 (en) Imaging apparatus and endoscope apparatus using the same
JP5223953B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and imaging device
JP3814609B2 (en) Imaging device and driving method of imaging device
JP2006174404A (en) Solid state image sensor and solid state imaging apparatus
JP4069918B2 (en) Solid-state imaging device
KR20090023186A (en) Imaging apparatus and method for driving solid-state imaging device
JP2011055351A (en) Photographing device and control method thereof
WO2011001616A1 (en) Solid-state imaging device, and control method therefor
JP4833722B2 (en) Imaging device, solid-state imaging device, and driving method of imaging device
JP2004048445A (en) Method and apparatus for compositing image
JP2006014117A (en) Physical information acquisition method, physical information acquisition apparatus and semiconductor device for detecting physical quantity distribution
JP2005198001A (en) Solid state image pickup device
JP2009302946A (en) Solid-state image pickup element, driving method for solid-state image pickup element and image pickup device
JP4001904B2 (en) Driving method of solid-state imaging device
JP2013106231A (en) Imaging apparatus
JP4296025B2 (en) Solid-state imaging device and driving method thereof
JP2011015205A (en) Digital camera and method for driving solid-state imaging device
JP2008091437A (en) Solid-state imaging apparatus
JP4703332B2 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10793792

Country of ref document: EP

Kind code of ref document: A1