WO2011001099A1 - Systeme et procede de traitement de l'eau d'appoint d'un circuit de refroidissement d'eau - Google Patents

Systeme et procede de traitement de l'eau d'appoint d'un circuit de refroidissement d'eau Download PDF

Info

Publication number
WO2011001099A1
WO2011001099A1 PCT/FR2010/051350 FR2010051350W WO2011001099A1 WO 2011001099 A1 WO2011001099 A1 WO 2011001099A1 FR 2010051350 W FR2010051350 W FR 2010051350W WO 2011001099 A1 WO2011001099 A1 WO 2011001099A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
basin
make
regeneration column
cooling circuit
Prior art date
Application number
PCT/FR2010/051350
Other languages
English (en)
Inventor
Jacky Victot
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Publication of WO2011001099A1 publication Critical patent/WO2011001099A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits

Definitions

  • the present invention relates to a system and method for treating make-up water in cooling circuits, in particular power plants or industrial units.
  • the cooling circuit serves in particular to condense the low-pressure steam leaving the turbine, by means of a condenser, which is an apparatus formed of numerous tubes in which cold water taken from an external source such as a river, a lake or the sea. In contact with the outer cold wall of these tubes, the steam of the turbine condenses to turn into water. All the energy of the steam cycle not transformed into electrical energy is thus transmitted by heat transfer to the cooling water of the condenser and released to the environment.
  • a condenser which is an apparatus formed of numerous tubes in which cold water taken from an external source such as a river, a lake or the sea. In contact with the outer cold wall of these tubes, the steam of the turbine condenses to turn into water. All the energy of the steam cycle not transformed into electrical energy is thus transmitted by heat transfer to the cooling water of the condenser and released to the environment.
  • FIG. 1 schematically illustrates such a cooling circuit used in a central electric.
  • closed-loop cooling systems backups from the natural environment are required to compensate for purges, evaporation in cooling towers and any circuit losses due to leaks.
  • Cooling water circuits are sensitive to scaling phenomena and biomass development favored by the rise in temperature. These phenomena are detrimental to the proper functioning and performance of the plant and in some cases present public health risks, particularly because they promote the development of bacteria and legionella.
  • large quantities of biocides are injected, generally based on chlorinated products.
  • acid eg H2SO4 or HCl
  • tartar once present is difficult to eliminate. Acid injections are therefore generally preventive.
  • the treatment of cooling circuits with very large quantities of inhibiting products generates chemical pollution of the aquatic natural environment.
  • US-4,532,045 discloses a method of treating makeup water of a cooling circuit using ion exchange resins. This method has the disadvantage of having to stop the treatment regularly to regenerate the resins.
  • Documents FR-2,009,659, FR-1,294,144 and US-3,056,651 describe other types of water treatment processes, such as the desalination of seawater to provide drinking water.
  • An object of the present invention is to provide a system and method for treating makeup water of a cooling circuit which does not reproduce the aforementioned drawbacks.
  • the present invention is intended in particular to provide a system and a method for treating the make-up water of a cooling circuit. which limits scale formation while preserving the aquatic environment from which this make-up water comes.
  • the object of the present invention is to provide such a system and treatment method which is less polluting for the environment, without hindering the operation or limiting the efficiency of the industrial unit or of the power station to which it is applied. .
  • Another object of the present invention is to provide a system and a treatment method that is simple and less costly to implement than the other solutions envisaged for treating the large quantities of make-up water consumed by the cooling circuits of the power stations. nuclear.
  • the subject of the present invention is therefore a cooling circuit, in particular of an industrial unit or of an electric and / or nuclear power station comprising a system for treating the makeup water of the cooling circuit, comprising a receiving basin of the makeup water, said basin containing capture means adapted to absorb and / or capture and / or fix cations present in the makeup water, the treated makeup water leaving said basin being injected into said cooling circuit, said system comprising a regeneration column, separated from said basin, and connected thereto by a circulation circuit for transferring at least a portion of said cation-loaded collection means from said basin to said regeneration column, wherein said loaded capturing means are regenerated and / or depolluted, said regenerated and / or depolluted capture means being reinjected into said basin; adding the make-up water to said pond and feeding the treated make-up water from said basin to said continuously operating cooling circuit, the feed rate of make-up water in said pond being greater than about 1 m 3 / s, and the percolation area of said basin can reach
  • the feed rate of the makeup water in said basin is about 2 m 3 / s.
  • said capturing means are ion exchange resins with carboxylic function.
  • said capture means comprise resin beads adapted to absorb cations and to ensure partial demineralization of the makeup water.
  • an acid solution is injected into said separate regeneration column to regenerate said charged capturing means.
  • said regeneration column discharges brine.
  • said capturing means are urged against the current in said basin.
  • the transfers and regeneration of the capture means loaded into said regeneration column lasts less than one hour.
  • the treated makeup water leaving said basin is decarbonated and / or softened and / or at least partially demineralized and / or at reduced pH.
  • the rate of percolation of the makeup water in the basin is greater than 20 m / h.
  • said capturing means are completely saturated, or even supersaturated, before being transferred to said regeneration column
  • the subject of the present invention is also a process for treating makeup water of a cooling circuit, in particular of an industrial unit or of an electrical and / or nuclear power station, comprising the following steps: providing a pool containing capture means, such as carboxylic resin beads, adapted to fix the calcium ions present in the make-up water, continuously supply make-up water in said basin at a flow rate greater than about 1 m 3 / s, in particular at a flow rate of approximately 2 m 3 / s, provide a separate regeneration column said basin and connected thereto by a transfer circuit, supplying a part of said calcium-laden collecting means in said regeneration column to be regenerated therein, regenerating said charged capturing means present in said regeneration column, in particular by injection acid in said regeneration column, and reinject the regenerated capture means in said basin.
  • a pool containing capture means such as carboxylic resin beads
  • said transfer circuit removes the charged collection means of said basin in the area of the inlet of the make-up water in the basin, and reinjects the regenerated capture means in said basin in the zone of the outlet of the tank. treated water from the basin to the cooling circuit, thereby creating a circulation of the capture means in said basin against the flow of the makeup water circulation.
  • FIG. 1 schematically represents a closed circuit cooling circuit used in particular in power plants
  • FIG. 2 schematically shows a make-up water treatment system according to an advantageous embodiment of the present invention.
  • FIG. 1 schematically represents a closed cooling circuit used in particular for power plants.
  • This type of cooling circuit is fed with water, for example from a river or a lake, through the make-up water.
  • This cooling water then circulates in a condenser, then in a cooling tower (TAR) from which a portion of this water will evaporate into the atmosphere.
  • TAR cooling tower
  • Another part of the water circulating in this cooling circuit is purged, that is to say returned to the natural environment from which it was taken. This purge is particularly necessary to avoid excessive concentrations of products treatment that is detrimental to often sensitive equipment, including corrosion.
  • a closed loop cooling circuit of a nuclear power plant operates at a flow rate of about 50 m 3 / s
  • the evaporation to the atmosphere represents a flow rate of about 1.5 to 2 m 3 / s
  • the discharge of deconcentration towards the environment generally represents 0.2 to 0.5 m 3 / s.
  • the makeup water that compensates for these losses must therefore supply the cooling circuit with a flow rate greater than about 1 m 3 / s, typically about 2 m 3 / s or more, which may represent flow rates higher than 7000 m 3 / h.
  • These extremely high flow rates make it impossible to use treatment systems based on ion pickup means generally used in other industries, such as the aeronautics or automotive industry, for example.
  • These high flow rates also make it impossible to use the processes and installations of the seawater desalination type.
  • the make-up water is fed continuously into a tank 10.
  • Catching means are provided for absorbing, collecting or fixing the cations, such as calcium, present in the make-up water.
  • the water percolates through said capturing means at speeds typically between 20 and 60 m / h.
  • These capture means are preferably ion exchangers with carboxylic function in the form of resin beads.
  • the treated make-up water once it has passed through the basin 10, is decarbonated, softened, partially demineralized and acidified, ie at reduced pH. In particular, its calcium concentration is reduced.
  • This treated make-up water is then injected into the closed loop cooling circuit and allows, by its prior treatment, to limit the appearance of scale.
  • the chemical treatments of the water of the cooling circuit can thus be lightened thus reducing the pollution of purges released into the environment.
  • the environmental impact will also be reduced because the treatment according to the invention will result in a significant reduction in the volume of the purges discharged.
  • the ion exchange resin beads, in said basin 10, are advantageously biased against the current of the makeup water to promote exchange performance.
  • the invention provides a regeneration column 20 separated from the saturation pond 10 and connected thereto by a transfer circuit 30.
  • This regeneration column also operates continuously.
  • a portion of the saturated resin beads is taken from the pond 10, preferably in the area near the inlet 11 of the makeup water.
  • These collected beads are then transferred through the circulation circuit 30 to said regeneration column 20, in which these resin beads are regenerated by an acidic solution, for example based on a strong acid such as hydrochloric acid or nitric acid. Or other.
  • these balls are reinjected into the saturation pool, preferably on the outlet side 12 of the basin 10 to the cooling circuit. This creates a circulation of the resin resin balls to that of the make-up water passing through the tank 10.
  • the acid injected into the regeneration column 20 is discharged out of the latter in the form of brine, which may be recycled in an industrial application or concentrated before controlled release into the environment, for example in specific landfills.
  • the regeneration can also be done by an acidic solution based on weak complexing acid, for example citric or tartaric acid. This prevents excessive acidification of waste water.
  • an organic liquid-liquid separation solution of the limestone in particular based on crown calyxarenes, may be injected into said regeneration column to regenerate said charged capturing means. Said regeneration column discharges and can separate the limestone from the brine for possible reuse of the organic liquid-liquid separation solution.
  • One of the advantages of the invention is that it makes it possible to maintain a continuous supply of make-up water in the saturation tank 10 and therefore a continuous supply of the make-up water treated in the cooling circuit. cooling. It is not necessary to cut off the makeup water supply for the time necessary for the regeneration of the collection means, since these are regenerated, also preferably continuously, in the regeneration column 20, which is separated from the basin 10.
  • the dimensions of the saturation basin and the flows of the circulation circuit between the saturation basin and the regeneration column are calculated to optimize the system and the treatment method according to the invention.
  • the dimensions of the basin 10 may be chosen so that the front percolation surface, namely the cross section of the basin perpendicular to the flow, can reach more than 250 m 2 .
  • the percolation rate in the saturation pond is high, typically greater than 20m / h. In the regeneration column this rate of percolation is lower, and rather of the order of 8 m / h. The flow rate between the basin and the column will therefore be adjusted to optimize the operation of the system.
  • the supersaturation phase makes it possible to use the resins as much as possible in this case they reliberate in the water Ca 2+ ions, but in a non-incrusting state, and thus make it possible to trap more encrusting Ca 2 + molecules.
  • the exchange production phase is stopped.
  • the invention provides a system that can operate beyond this definition of supersaturation, because there is a physical phenomenon beyond this supersaturation that increases the efficiency of the resins.
  • a conventional ion exchange resin regeneration operation as used for the treatment of feedwater of high pressure boilers, generally requires about two hours in three successive steps, namely a step of passage. reagent, a slow rinse and then a quick rinse.
  • the fast rinse sequence is suppressed.
  • the presence of acid traces in the treated water may even be beneficial. It is therefore possible to eliminate a rinsing step and reduce the total regeneration and transfer time to less than one hour.
  • the present invention thus makes it possible to ensure a partial softening and demineralization of the make-up water of a very high flow rate cooling circuit, without in any way limiting the efficiency of the plant and decreasing in a non-negligible manner. the impact on the environment.
  • the invention has been described in connection with an industrial unit or a power plant, particularly nuclear, the present invention could also be applied in other technical fields, for example in the horticultural field or in pre-treatment to the process reverse osmosis treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Circuit de refroidissement, notamment d'une unité industrielle ou d'une centrale électrique et/ou nucléaire comportant un système de traitement de l'eau d'appoint du circuit de refroidissement, comprenant un bassin recevant de l'eau d'appoint, ledit bassin contenant des moyens de captation adaptés à absorber et/ou capter et/ou fixer des cations présents dans l'eau d'appoint, l'eau d'appoint traitée sortant dudit bassin étant injectée dans ledit circuit de refroidissement, ledit système comportant une colonne de régénération, séparée dudit bassin, et reliée à celui-ci par un circuit de circulation pour transférer au moins une partie desdits moyens de captation chargés de cations dudit bassin vers ladite colonne de régénération, dans laquelle lesdits moyens de captation chargés sont régénérés et/ou dépollués, lesdits moyens de captation régénérés et/ou dépollués étant réinjectés dans ledit bassin, l'alimentation de l'eau d'appoint dans ledit bassin et l'alimentation de l'eau d'appoint traitée dudit bassin vers ledit circuit de refroidissement fonctionnant en continu, le débit d'alimentation de l'eau d'appoint dans ledit bassin étant supérieur à environ 1 m3/s, et la surface de percolation dudit bassin pouvant atteindre plus de 250 m2.

Description

Système et procédé de traitement de l'eau d'appoint d'un circuit de refroidissement d'eau
La présente invention concerne un système et un procédé de traitement de l'eau d'appoint des circuits de refroidissement, notamment de centrales électriques ou d'unités industrielles.
L'utilisation de circuit de refroidissement par eau de source naturelle (rivières, lac, mer, etc.) est courante dans des unités industrielles ainsi que dans les centrales électriques de tout type pourvues d'un circuit vapeur. Le rendement du cycle vapeur de la centrale ou du site industriel dépend directement de l'efficacité de ce circuit de refroidissement.
Le circuit de refroidissement a notamment pour fonction de condenser la vapeur basse pression sortant de la turbine, au moyen d'un condenseur, qui est un appareil formé de nombreux tubes dans lesquels circule de l'eau froide prélevée à une source extérieure telle qu'une rivière, un lac ou la mer. Au contact de la paroi froide externe de ces tubes, la vapeur de la turbine se condense pour se transformer en eau. Toute l'énergie du cycle vapeur non transformée en énergie électrique est transmise ainsi par transfert thermique à l'eau de refroidissement du condenseur et rejetée à l'environnement.
Le rejet dans l'environnement de l'eau réchauffée peut avoir des conséquences néfastes pour la faune et la flore aquatiques et est de ce fait soumis à autorisations administratives. En fonction des contraintes environnementales, ces circuits de refroidissement sont de différents types.
Avec des circuits dits ouverts, l'eau réchauffée est renvoyée directement à l'environnement. Avec les circuits dits fermés, on utilise des tours de refroidissement ou aéroréfrigérantes dans lesquelles l'eau réchauffée provenant du condenseur est répartie à la base de la tour, et refroidie par le courant d'air (naturel ou forcé) qui monte dans la tour. L'essentiel de cette eau, ainsi refroidie, retourne alors vers le condenseur, avec une petite partie qui s'évapore dans l'atmosphère, ce qui provoque les panaches blancs caractéristiques des centrales nucléaires. La figure 1 illustre de manière schématique un tel circuit de refroidissement utilisé dans une centrale électrique. Pour les circuits de refroidissement fonctionnant en boucle fermée, des appoints provenant du milieu naturel sont nécessaires pour compenser les purges, l'évaporation dans les tours aéroréfrigérantes et toutes les pertes du circuit dues à d'éventuelles fuites.
Les circuits d'eau de refroidissement (ouverts ou fermés) sont sensibles aux phénomènes d'entartrage et de développement de biomasses favorisés par l'élévation de la température. Ces phénomènes sont préjudiciables au bon fonctionnement et au rendement de la centrale et dans certains cas présentent des risques de santé publique notamment parce qu'ils favorisent le développement de bactéries et légionnelles. D'une part, pour empêcher le développement de la biomasse, on injecte de grande quantité de biocides, généralement à base de produits chlorés. Et d'autre part, pour lutter contre l'entartrage, on injecte généralement de l'acide (par exemple H2SO4 ou HCI), abaissant ainsi le pH, qui est un facteur inhibant la précipitation des ions calcium responsables de la formation du tartre. Par ailleurs le tartre une fois présent est difficile à éliminer. Les injections d'acide se font de ce fait généralement en préventif. En plus de la pollution thermique citée ci-dessus, le traitement des circuits de refroidissement par des quantités très importantes de produits inhibiteurs génère des pollutions chimiques du milieu naturel aquatique.
Le document US-4 532 045 décrit un procédé de traitement de l'eau d'appoint d'un circuit de refroidissement utilisant des résines échangeuses d'ions. Ce procédé présente notamment l'inconvénient de devoir arrêter régulièrement le traitement pour régénérer les résines. Les documents FR-2 009 659, FR-1 294 144 et US-3 056 651 décrivent d'autres types de procédés de traitement d'eau, tels que le dessalement d'eau de mer pour fournir de l'eau potable.
Un but de la présente invention est de fournir un système et un procédé de traitement de l'eau d'appoint d'un circuit de refroidissement qui ne reproduit pas les inconvénients susmentionnés.
La présente invention a notamment pour but de fournir un système et un procédé de traitement de l'eau d'appoint d'un circuit de refroidissement qui limite la formation de tartre tout en préservant le milieu aquatique dont provient cette eau d'appoint.
En particulier, la présente invention a pour but de fournir un tel système et procédé de traitement qui soit moins polluant pour l'environnement, sans gêner le fonctionnement ni limiter le rendement de l'unité industrielle ou de la centrale électrique à laquelle il est appliqué.
La présente invention a également pour but de fournir un système et un procédé de traitement qui soit simple et moins coûteux à mettre en œuvre que les autres solutions envisagées pour traiter les grandes quantités d'eau d'appoint consommées par les circuits de refroidissement des centrales nucléaires.
La présente invention a donc pour objet un circuit de refroidissement, notamment d'une unité industrielle ou d'une centrale électrique et/ou nucléaire comportant un système de traitement de l'eau d'appoint du circuit de refroidissement, comprenant un bassin recevant de l'eau d'appoint, ledit bassin contenant des moyens de captation adaptés à absorber et/ou capter et/ou fixer des cations présents dans l'eau d'appoint, l'eau d'appoint traitée sortant dudit bassin étant injectée dans ledit circuit de refroidissement, ledit système comportant une colonne de régénération, séparée dudit bassin, et reliée à celui-ci par un circuit de circulation pour transférer au moins une partie desdits moyens de captation chargés de cations dudit bassin vers ladite colonne de régénération, dans laquelle lesdits moyens de captation chargés sont régénérés et/ou dépollués, lesdits moyens de captation régénérés et/ou dépollués étant réinjectés dans ledit bassin, l'alimentation de l'eau d'appoint dans ledit bassin et l'alimentation de l'eau d'appoint traitée dudit bassin vers ledit circuit de refroidissement fonctionnant en continu, le débit d'alimentation de l'eau d'appoint dans ledit bassin étant supérieur à environ 1 m3/s, et la surface de percolation dudit bassin pouvant atteindre plus de 250 m2.
Avantageusement, le débit d'alimentation de l'eau d'appoint dans ledit bassin est d'environ 2 m3/s. Avantageusement, lesdits moyens de captation sont des résines échangeuses d'ions à fonction carboxylique.
En particulier, lesdits moyens de captation comportent des billes de résines adaptées à absorber des cations et à assurer une déminéralisation partielle de l'eau d'appoint.
Avantageusement, une solution acide, notamment à base d'acide chlorhydrique d'acide citrique ou d'acide tartrique, est injectée dans ladite colonne de régénération séparée pour régénérer lesdits moyens de captation chargés.
Avantageusement, ladite colonne de régénération évacue de la saumure.
Avantageusement, lesdits moyens de captation sont sollicités à contre-courant dans ledit bassin.
Avantageusement, les transferts et la régénération des moyens de captation chargés dans ladite colonne de régénération dure moins d'une heure.
Avantageusement, l'eau d'appoint traitée sortant dudit bassin est décarbonatée et/ou adoucie et/ou au moins partiellement déminéralisée et/ou à pH réduit.
Avantageusement, la vitesse de percolation de l'eau d'appoint dans le bassin est supérieure à 20 m/h.
Avantageusement, lesdits moyens de captation sont complètement saturés, voire sursaturés, avant d'être transférés vers ladite colonne de régénération
La présente invention a aussi pour objet un procédé de traitement de l'eau d'appoint d'un circuit de refroidissement, notamment d'une unité industrielle ou d'une centrale électrique et/ou nucléaire, comprenant les étapes suivantes : fournir un bassin contenant des moyens de captation, tels que des billes de résine à fonction carboxylique, adaptés à fixer les ions calcium présents dans l'eau d'appoint, alimenter en continu de l'eau d'appoint dans ledit bassin à un débit supérieur à environ 1 m3/s, notamment à un débit d'environ 2 m3/s, fournir une colonne de régénération séparée dudit bassin et reliée à celui-ci par un circuit de transfert, alimenter une partie desdits moyens de captation chargés de calcium dans ladite colonne de régénération pour y être régénérée, régénérer lesdits moyens de captation chargés présents dans ladite colonne de régénération, notamment par injection d'acide dans ladite colonne de régénération, et réinjecter les moyens de captation régénérés dans ledit bassin.
Avantageusement, ledit circuit de transfert prélève les moyens de captation chargés dudit bassin dans la zone de l'entrée de l'eau d'appoint dans le bassin, et réinjecte les moyens de captation régénérés dans ledit bassin dans la zone de la sortie de l'eau traitée du bassin vers le circuit de refroidissement, créant ainsi une circulation des moyens de captation dans ledit bassin à contre-courant de la circulation de l'eau d'appoint.
Ces caractéristiques et avantages de la présente invention apparaîtront plus clairement au cours de la description détaillée suivante, faisant référence aux dessins joints, donnés à titre d'exemples non limitatifs, et sur lesquels:
- la figure 1 représente de manière schématique un circuit de refroidissement à circuit fermé utilisé notamment dans les centrales électriques, et
- la figure 2 représente de manière schématique un système de traitement de l'eau d'appoint selon un mode de réalisation avantageux de la présente invention.
Comme déjà évoqué précédemment, la figure 1 représente schématiquement un circuit de refroidissement fermé utilisé notamment pour des centrales électriques. Ce type de circuit de refroidissement est alimenté en eau, par exemple à partir d'une rivière ou d'un lac, par l'intermédiaire de l'eau d'appoint. Cette eau de refroidissement circule alors dans un condenseur, puis dans une tour aéroréfrigérante (TAR) à partir de laquelle une partie de cette eau va s'évaporer dans l'atmosphère. Une autre partie de l'eau qui circule dans ce circuit de refroidissement est purgée, c'est-à-dire renvoyée dans le milieu naturel duquel elle a été prélevée. Cette purge est notamment nécessaire pour éviter les concentrations excessives de produits de traitement qui sont préjudiciables aux équipements souvent sensibles, notamment aux phénomènes de corrosion. Typiquement, à titre d'exemple, un circuit de refroidissement en boucle fermée d'une centrale nucléaire fonctionne à un débit d'environ 50 m3/s, l'évaporation vers l'atmosphère représente un débit d'environ 1 ,5 à 2 m3/s, et la purge de déconcentration vers l'environnement représente généralement 0,2 à 0,5 m3/s. L'eau d'appoint qui compense ces pertes doit donc alimenter le circuit de refroidissement avec un débit supérieur à environ 1 m3/s, typiquement d'environ 2 m3/s, voire plus, ce qui peut représenter des débits supérieurs à 7 000 m3/h. Ces débits extrêmement importants rendent impossibles l'utilisation des systèmes de traitement à base de moyens de captation d'ions généralement utilisés dans d'autres industries, tels que l'industrie aéronautique ou automobile par exemple. Ces débits élevés rendent aussi impossible d'utiliser les procédés et installations du type dessalement d'eau de mer.
Selon l'invention, l'eau d'appoint est alimentée en continu dans un bassin 10. Des moyens de captation sont prévus pour absorber, capter ou fixer les cations, tels que le calcium, présents dans l'eau d'appoint. L'eau percole à travers lesdits moyens de captation à des vitesses typiquement comprises entre 20 et 60 m/h. Ces moyens de captation sont de préférence des échangeurs d'ions à fonction carboxylique sous forme de billes de résine. L'eau d'appoint traitée, une fois qu'elle a traversé le bassin 10, est décarbonatée, adoucie, partiellement déminéralisée et acidifiée, soit à pH réduit. En particulier, sa concentration en calcium est réduite. Cette eau d'appoint traitée est alors injectée dans le circuit de refroidissement en boucle fermée et permet, de par son traitement préalable, de limiter l'apparition de tartre. Les traitements chimiques de l'eau du circuit de refroidissement peuvent donc être allégés diminuant ainsi la pollution des purges rejetées dans l'environnement. L'impact environnemental sera également réduit car le traitement selon l'invention entraînera une réduction sensible du volume des purges rejetées. Les billes de résine échangeuses d'ions, dans ledit bassin 10, sont avantageusement sollicitées à contre-courant de l'eau d'appoint pour favoriser les performances d'échange.
Pour régénérer les billes de résine saturées en cations, l'invention prévoit une colonne de régénération 20 séparée du bassin de saturation 10 et reliée à celui-ci par un circuit de transfert 30. Cette colonne de régénération fonctionne aussi en continu. Ainsi, une partie des billes de résine saturée est prélevée dans le bassin 10, de préférence dans la zone située à proximité de l'entrée 11 de l'eau d'appoint. Ces billes prélevées sont ensuite transférées à travers le circuit de circulation 30 vers ladite colonne de régénération 20, dans laquelle ces billes de résine sont régénérées par une solution acide, par exemple à base d'acide fort tel que de l'acide chlorhydrique, nitrique ou autre. Une fois régénérées, ces billes sont réinjectées dans le bassin de saturation, de préférence du côté de la sortie 12 du bassin 10 vers le circuit de refroidissement. On crée ainsi une circulation des billes de résine inverse à celle de l'eau d'appoint traversant le bassin 10. L'acide injecté dans la colonne de régénération 20, est évacué hors de celle-ci sous forme de saumure, qui pourra être recyclée dans une application industrielle ou concentrée avant rejet contrôlé dans l'environnement, par exemple dans des décharges spécifiques. En variante, la régénération peut se faire aussi par une solution acide à base d'acide faible complexant, par exemple de l'acide citrique ou tartrique. Cela empêche une acidification excessive de l'eau des déchets. Avantageusement, une solution organique de séparation liquide-liquide du calcaire, notamment à base de calyxarènes couronnes, peut être injectée dans ladite colonne de régénération pour régénérer lesdits moyens de captation chargés. Ladite colonne de régénération évacue et peut séparer le calcaire de la saumure pour une réutilisation éventuelle de la solution organique de séparation liquide-liquide.
Un des avantages de l'invention est qu'elle permet de maintenir une alimentation continue de l'eau d'appoint dans le bassin de saturation 10 et donc une alimentation continue de l'eau d'appoint traitée dans le circuit de refroidissement. Il n'est pas nécessaire de couper l'alimentation d'eau d'appoint pendant le temps nécessaire à la régénération des moyens de captation, puisque ceux-ci sont régénérés, également de préférence de manière continue, dans la colonne de régénération 20, qui est séparée du bassin 10. Bien entendu, les dimensions du bassin de saturation et les débits du circuit de circulation entre le bassin de saturation et la colonne de régénération sont calculés pour optimiser le système et le procédé de traitement selon l'invention. Les dimensions du bassin 10 peuvent être choisies de telle sorte que la surface frontale de percolation, à savoir la section transversale du bassin perpendiculairement au flux, puisse atteindre plus de 250 m2.
L'utilisation de bassins de grandes dimensions permet de s'adapter à moindre coût aux débits élevés, ce qui ne serait pas possible avec des enceintes fermées tels qu'utilisées par exemple dans d'autres types de procédés de traitement d'eau, tel que les procédés de dessalement d'eau de mer.
En particulier, la vitesse de percolation dans le bassin de saturation est élevée, typiquement supérieure à 20m/h. Dans la colonne de régénération cette vitesse de percolation est inférieure, et plutôt de l'ordre de 8 m/h. Le débit de circulation entre le bassin et la colonne sera donc réglé pour optimiser le fonctionnement du système.
La présente invention permet donc de combiner quatre fonctions avantageuses :
> la séparation des fonctions saturation dans le bassin 10 et régénération dans la colonne 20 pour les moyens de captation
(par exemple billes de résine),
> une saturation poussée de ces moyens de captation par circulation à contre-courant,
> un processus de régénération accéléré et indépendant de la fonction "saturation", et
> un transfert hydraulique des moyens de captation entre le bassin de saturation 10 et la colonne de régénération 20. En particulier, contrairement aux procédés de déminéralisation d'eau par échange d'ions, qui imposent de ne pas saturer complètement les échangeurs pour obtenir une eau parfaitement déminéralisée de grande qualité, l'eau d'appoint d'un circuit de refroidissement telle qu'utilisée dans les centrales électriques ou sites industriels n'a pas besoin d'être totalement déminéralisée. Ceci permet donc de saturer complètement les billes de résine, en utilisant au maximum leur capacité d'absorption. Cette sursaturation a aussi un autre avantage. Ainsi, la solution riche en calcium et en magnésium passe à travers le lit de la résine jusqu'à complètement saturer cette dernière, voire sursaturer celle ci. La phase de sursaturation permet d'utiliser au maximum les résines en effet dans ce cas elles relibèrent dans l'eau des ions Ca 2+, mais dans un état non incrustant, et permettent donc de piéger plus de molécules Ca2+ incrustantes. Au point de percement ou lorsque la valeur limite de la fuite est atteinte, d'habitude on arrête la phase de production d'échange. Au contraire, l'invention fournit un système qui peut fonctionner au-delà de cette définition de la sursaturation, car il existe un phénomène physique au-delà de cette sursaturation qui permet d'augmenter l'efficacité des résines.
De plus, une opération classique de régénération de résines échangeuses d'ions, telle qu'utilisées pour le traitement de l'eau d'alimentation des chaudières haute pression, nécessite généralement environ deux heures en trois étapes successives, à savoir une étape de passage de réactif, un rinçage lent puis un rinçage rapide. Avec la présente invention, on supprime la séquence de rinçage rapide. La présence de traces acides dans l'eau traitée peut même être bénéfique. On peut donc supprimer une étape de rinçage et ramener le temps total de régénération et de transferts à moins d'une heure.
La présente invention permet donc d'assurer un adoucissement et une déminéralisation partielle de l'eau d'appoint d'un circuit de refroidissement à débit très élevé, sans limiter d'aucune manière le rendement de la centrale et en diminuant de manière non négligeable l'impact sur l'environnement. Bien que l'invention ait été décrite en relation avec une unité industrielle ou une centrale électrique, notamment nucléaire, la présente invention pourrait aussi s'appliquer dans d'autres domaines techniques, par exemple dans le domaine horticole ou en pré-traitement au procédé de traitement par osmose inverse.
Il est également entendu qu'un homme du métier peut apporter toute modification utile à l'invention décrite ci-dessus sans sortir du cadre de la présente invention tel que défini dans les revendications annexées.

Claims

Revendications
1.- Circuit de refroidissement, notamment d'une unité industrielle ou d'une centrale électrique et/ou nucléaire comportant un système de traitement de l'eau d'appoint du circuit de refroidissement, caractérisé en ce que ledit système de traitement comprend un bassin (10) recevant de l'eau d'appoint, ledit bassin contenant des moyens de captation adaptés à absorber et/ou capter et/ou fixer des cations présents dans l'eau d'appoint, l'eau d'appoint traitée sortant dudit bassin étant injectée dans ledit circuit de refroidissement, ledit système comportant une colonne de régénération (20), séparée dudit bassin (10), et reliée à celui-ci par un circuit de circulation (30) pour transférer au moins une partie desdits moyens de captation chargés de cations dudit bassin vers ladite colonne de régénération, dans laquelle lesdits moyens de captation chargés sont régénérés et/ou dépollués, lesdits moyens de captation régénérés et/ou dépollués étant réinjectés dans ledit bassin, l'alimentation de l'eau d'appoint dans ledit bassin et l'alimentation de l'eau d'appoint traitée dudit bassin vers ledit circuit de refroidissement fonctionnant en continu, le débit d'alimentation de l'eau d'appoint dans ledit bassin étant supérieur à environ 1 m3/s, et la surface de percolation dudit bassin pouvant atteindre plus de 250 m2.
2.- Circuit selon la revendication 1 , dans lequel le débit d'alimentation de l'eau d'appoint dans ledit bassin est d'environ 2 m3/s.
3.- Circuit selon l'une quelconque des revendications précédentes, dans lequel lesdits moyens de captation sont des résines échangeuses d'ions à fonction carboxylique.
4.- Circuit selon la revendication 3, dans lequel lesdits moyens de captation comportent des billes de résines adaptées à absorber des cations et à assurer une déminéralisation partielle de l'eau d'appoint.
5.- Circuit selon l'une quelconque des revendications précédentes, dans lequel une solution acide, notamment à base d'acide chlorhydrique, d'acide citrique ou d'acide tartrique, est injectée dans ladite colonne de régénération séparée pour régénérer lesdits moyens de captation chargés.
6.- Circuit selon l'une quelconque des revendications précédentes, dans lequel ladite colonne de régénération évacue de la saumure.
7.- Circuit selon l'une quelconque des revendications précédentes, dans lequel lesdits moyens de captation sont sollicités à contre-courant dans ledit bassin.
8.- Circuit selon l'une quelconque des revendications précédentes, dans lequel les transferts et la régénération des moyens de captation chargés dans ladite colonne de régénération dure moins d'une heure.
9.- Circuit selon l'une quelconque des revendications précédentes, dans lequel l'eau d'appoint traitée sortant dudit bassin est décarbonatée et/ou adoucie et/ou au moins partiellement déminéralisée et/ou à pH réduit.
10.- Circuit selon l'une quelconque des revendications précédentes, dans lequel la vitesse de percolation de l'eau d'appoint dans le bassin est supérieure à 20 m/h.
11.- Circuit selon l'une quelconque des revendications précédentes, dans lequel lesdits moyens de captation sont complètement saturés, voire sursaturés, avant d'être transférés vers ladite colonne de régénération (20).
12.- Procédé de traitement de l'eau d'appoint d'un circuit de refroidissement, notamment d'une unité industrielle ou d'une centrale électrique et/ou nucléaire, comprenant les étapes suivantes :
- fournir un bassin (10) contenant des moyens de captation, tels que des billes de résine à fonction carboxylique, adaptés à fixer les ions calcium présents dans l'eau d'appoint,
- alimenter en continu de l'eau d'appoint dans ledit bassin, à un débit supérieur à environ 1 m3/s, notamment à un débit d'environ 2 m3/s,
- fournir une colonne de régénération (20) séparée dudit bassin
(10) et reliée à celui-ci par un circuit de transfert (30),
- alimenter une partie desdits moyens de captation chargés de calcium dans ladite colonne de régénération pour y être régénérée,
- régénérer lesdits moyens de captation chargés présents dans ladite colonne de régénération, notamment par injection d'acide dans ladite colonne de régénération, et
- réinjecter les moyens de captation régénérés dans ledit bassin.
13.- Procédé selon la revendication 12, dans lequel ledit circuit de transfert prélève les moyens de captation chargés dudit bassin dans la zone de l'entrée (11 ) de l'eau d'appoint dans le bassin, et réinjecte les moyens de captation régénérés dans ledit bassin dans la zone de la sortie (12) de l'eau traitée du bassin vers le circuit de refroidissement, créant ainsi une circulation des moyens de captation dans ledit bassin à contre-courant de la circulation de l'eau d'appoint.
PCT/FR2010/051350 2009-06-29 2010-06-29 Systeme et procede de traitement de l'eau d'appoint d'un circuit de refroidissement d'eau WO2011001099A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903151 2009-06-29
FR0903151A FR2947256B1 (fr) 2009-06-29 2009-06-29 Systeme et procede de traitement de l'eau d'appoint d'un circuit de refroidissement d'eau

Publications (1)

Publication Number Publication Date
WO2011001099A1 true WO2011001099A1 (fr) 2011-01-06

Family

ID=41566018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051350 WO2011001099A1 (fr) 2009-06-29 2010-06-29 Systeme et procede de traitement de l'eau d'appoint d'un circuit de refroidissement d'eau

Country Status (2)

Country Link
FR (1) FR2947256B1 (fr)
WO (1) WO2011001099A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1294144A (fr) 1961-02-08 1962-05-26 Commissariat Energie Atomique Procédé et appareil pour le traitement de l'eau
US3056651A (en) 1958-12-11 1962-10-02 Dow Chemical Co Method for making potable water and magnesium chloride from sea water
FR2009659A1 (fr) 1968-05-30 1970-02-06 Mannesmann Ag
US3976541A (en) * 1974-03-18 1976-08-24 Combustion Engineering, Inc. Secondary coolant purification system with demineralizer bypass
US4532045A (en) 1982-07-07 1985-07-30 Waterscience, Inc. Bleed-off elimination system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3056651A (en) 1958-12-11 1962-10-02 Dow Chemical Co Method for making potable water and magnesium chloride from sea water
FR1294144A (fr) 1961-02-08 1962-05-26 Commissariat Energie Atomique Procédé et appareil pour le traitement de l'eau
FR2009659A1 (fr) 1968-05-30 1970-02-06 Mannesmann Ag
US3976541A (en) * 1974-03-18 1976-08-24 Combustion Engineering, Inc. Secondary coolant purification system with demineralizer bypass
US4532045A (en) 1982-07-07 1985-07-30 Waterscience, Inc. Bleed-off elimination system and method

Also Published As

Publication number Publication date
FR2947256B1 (fr) 2011-11-04
FR2947256A1 (fr) 2010-12-31

Similar Documents

Publication Publication Date Title
AU2004265489B2 (en) Osmotic energy
EP2089142B1 (fr) Procédé de séparation
CA2865871C (fr) Procede de traitement d'eaux usees contenant des amines et systeme de realisation associe
EP3160622B1 (fr) Procédé de traitement d'un flux d'eaux usées par filtration basse pression
WO2015110760A1 (fr) Installation et procede de traitement par evaporation/condensation d'eau pompee en milieu naturel
US20140367337A1 (en) Process for Operating a Cooling Tower Comprising the Treatment of Feed Water by Direct Osmosis
EP3541754A1 (fr) Systèmes et procédés de génération d'eau potable
US20110100917A1 (en) Method for Recovering Amine From Amine-Containing Waste Water
WO2011001099A1 (fr) Systeme et procede de traitement de l'eau d'appoint d'un circuit de refroidissement d'eau
KR100722942B1 (ko) 물리화학적 공정에 의한 에탄올아민 회수방법
FR2636673A1 (fr) Installation pour fournir de l'eau d'alimentation a une centrale de force motrice
US20170096356A1 (en) Process and system for produced water treatment
US11944922B1 (en) Water treatment system
EP3189012B1 (fr) Procede de dessalement d'eaux chaudes sursaturees
WO2011077045A1 (fr) Procede de traitement d'un fluide a traiter contenant du tartre incrustant
TWI240701B (en) Process for removing organics from ultrapure water
EP3189013B1 (fr) Pre-traitement d'eaux chaudes sursaturees
EP3465001B1 (fr) Système et procédé de traitement de l'eau
US20160208658A1 (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
Venkatraman et al. ICONE23-1734 HITACHI-GE-SMALL MODULAR REACTOR BALANCE OF PLANT THERMAL UTILIZATION STUDY
FR2551430A1 (fr) Procede et appareil pour transformer de l'eau gazeuse en vapeur d'eau saturee pure
Nasir Membrane performance and build-up of solute during small scale reverse osmosis operation
FR3020126A1 (fr) Procede de nettoyage a haute temperature d'un generateur de vapeur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745363

Country of ref document: EP

Kind code of ref document: A1